
Debian Packaging Tutorial

Lucas Nussbaum
packaging-tutorial@packages.debian.org

version 0.30 – 2024-03-16

Debian Packaging Tutorial 1 / 89

About this tutorial

▶ Goal: tell you what you really need to know about Debian packaging
▶ Modify existing packages

▶ Create your own packages

▶ Interact with the Debian community

▶ Become a Debian power-user

▶ Covers the most important points, but is not complete
▶ You will need to read more documentation

▶ Most of the content also applies to Debian derivative distributions

▶ That includes Ubuntu

Debian Packaging Tutorial 2 / 89

Outline

1 Introduction

2 Creating source packages

3 Building and testing packages

4 Practical session 1: modifying the grep package

5 Advanced packaging topics

6 Maintaining packages in Debian

7 Conclusions

8 Additional practical sessions

9 Answers to practical sessions

Debian Packaging Tutorial 3 / 89

Outline

1 Introduction

2 Creating source packages

3 Building and testing packages

4 Practical session 1: modifying the grep package

5 Advanced packaging topics

6 Maintaining packages in Debian

7 Conclusions

8 Additional practical sessions

9 Answers to practical sessions

Debian Packaging Tutorial 4 / 89

Debian

▶ GNU/Linux distribution

▶ 1st major distro developed “openly in the spirit of GNU”

▶ Non-commercial, built collaboratively by over 1,000 volunteers

▶ 3 main features:
▶ Quality – culture of technical excellence

We release when it’s ready

▶ Freedom – devs and users bound by the Social Contract
Promoting the culture of Free Software since 1993

▶ Independence – no (single) company babysitting Debian
And open decision-making process (do-ocracy + democracy)

▶ Amateur in the best sense: done for the love of it

Debian Packaging Tutorial 5 / 89

Debian packages

▶ .deb files (binary packages)

▶ A very powerful and convenient way to distribute software to users

▶ One of the two most common package formats (with RPM)

▶ Universal:
▶ 30,000 binary packages in Debian

→ most of the available free software is packaged in Debian!

▶ For 12 ports (architectures), including 2 non-Linux (Hurd; KFreeBSD)

▶ Also used by 120 Debian derivative distributions

Debian Packaging Tutorial 6 / 89

The Deb package format

▶ .deb file: an ar archive

$ ar tv wget_1 .12 -2.1 _i386.deb

rw-r--r-- 0/0 4 Sep 5 15:43 2010 debian -binary

rw-r--r-- 0/0 2403 Sep 5 15:43 2010 control.tar.gz

rw-r--r-- 0/0 751613 Sep 5 15:43 2010 data.tar.gz

▶ debian-binary: version of the deb file format, "2.0\n"
▶ control.tar.gz: metadata about the package

control, md5sums, (pre|post)(rm|inst), triggers, shlibs, . . .
▶ data.tar.gz: data files of the package

▶ You could create your .deb files manually
http://tldp.org/HOWTO/html_single/Debian-Binary-Package-Building-HOWTO/

▶ But most people don’t do it that way

This tutorial: create Debian packages, the Debian way

Debian Packaging Tutorial 7 / 89

http://tldp.org/HOWTO/html_single/Debian-Binary-Package-Building-HOWTO/

Tools you will need

▶ A Debian (or Ubuntu) system (with root access)

▶ Some packages:
▶ build-essential: has dependencies on the packages that will be

assumed to be available on the developer’s machine (no need to
specify them in the Build-Depends: control field of your package)
▶ includes a dependency on dpkg-dev, which contains basic

Debian-specific tools to create packages

▶ devscripts: contains many useful scripts for Debian maintainers

Many other tools will also be mentioned later, such as debhelper, cdbs, quilt,
pbuilder, sbuild, lintian, svn-buildpackage, git-buildpackage, . . .
Install them when you need them.

Debian Packaging Tutorial 8 / 89

General packaging workflow

Web upstream sourceDebian mirror

source package where most of the
manual work is done

one or several binary packages .deb

dh_makeapt-get source dget

debuild (build and test with lintian)
or dpkg-buildpackage

install (debi)upload (dput)

Debian Packaging Tutorial 9 / 89

Example: rebuilding dash
1 Install packages needed to build dash, and devscripts

sudo apt-get build-dep dash

(requires deb-src lines in /etc/apt/sources.list)
sudo apt-get install --no-install-recommends devscripts

fakeroot

2 Create a working directory, and get in it:
mkdir /tmp/debian-tutorial ; cd /tmp/debian-tutorial

3 Grab the dash source package
apt-get source dash

(This needs you to have deb-src lines in your /etc/apt/sources.list)

4 Build the package
cd dash-*

debuild -us -uc (-us -uc disables signing the package with GPG)

5 Check that it worked
▶ There are some new .deb files in the parent directory

6 Look at the debian/ directory
▶ That’s where the packaging work is done

Debian Packaging Tutorial 10 / 89

Outline

1 Introduction

2 Creating source packages

3 Building and testing packages

4 Practical session 1: modifying the grep package

5 Advanced packaging topics

6 Maintaining packages in Debian

7 Conclusions

8 Additional practical sessions

9 Answers to practical sessions

Debian Packaging Tutorial 11 / 89

Source package
▶ One source package can generate several binary packages

e.g. the libtar source generates the libtar0 and libtar-dev binary packages

▶ Two kinds of packages: (if unsure, use non-native)
▶ Native packages: normally for Debian specific software (dpkg, apt)
▶ Non-native packages: software developed outside Debian

▶ Main file: .dsc (meta-data)

▶ Other files depending on the version of the source format
▶ 1.0 or 3.0 (native): package_version.tar.gz

▶ 1.0 (non-native):
▶ pkg_ver.orig.tar.gz: upstream source
▶ pkg_debver.diff.gz: patch to add Debian-specific changes

▶ 3.0 (quilt):
▶ pkg_ver.orig.tar.gz: upstream source
▶ pkg_debver.debian.tar.gz: tarball with the Debian changes

(See dpkg-source(1) for exact details)

Debian Packaging Tutorial 12 / 89

Source package example (wget_1.12-2.1.dsc)

Format: 3.0 (quilt)

Source: wget

Binary: wget

Architecture: any

Version: 1.12 -2.1

Maintainer: Noel Kothe <noel@debian.org >

Homepage: http ://www.gnu.org/software/wget/

Standards -Version: 3.8.4

Build -Depends: debhelper (>> 5.0.0) , gettext , texinfo ,

libssl -dev (>= 0.9.8) , dpatch , info2man

Checksums -Sha1:

50 d4ed2441e67 [..]1 ee0e94248 2464747 wget_1 .12. orig.tar.gz

d4c1c8bbe431d [..] dd7cef3611 48308 wget_1 .12 -2.1. debian.tar.gz

Checksums -Sha256:

7578 ed0974e12 [..] dcba65b572 2464747 wget_1 .12. orig.tar.gz

1e9b0c4c00eae [..]89 c402ad78 48308 wget_1 .12 -2.1. debian.tar.gz

Files:

141461 b9c04e4 [..]9 d1f2abf83 2464747 wget_1 .12. orig.tar.gz

e93123c934e3c [..]2 f380278c2 48308 wget_1 .12 -2.1. debian.tar.gz

Debian Packaging Tutorial 13 / 89

Retrieving an existing source package
▶ From the Debian archive:

▶ apt-get source package
▶ apt-get source package=version
▶ apt-get source package/release

(You need deb-src lines in sources.list)

▶ From the Internet:
▶ dget url-to.dsc
▶ dget http://snapshot.debian.org/archive/debian-archive/

20090802T004153Z/debian/dists/bo/main/source/web/

wget_1.4.4-6.dsc

(snapshot.d.o provides all packages from Debian since 2005)

▶ From the (declared) version control system:
▶ debcheckout package

▶ Once downloaded, extract with dpkg-source -x file.dsc

Debian Packaging Tutorial 14 / 89

http://snapshot.debian.org/

Creating a basic source package

▶ Download the upstream source
(upstream source = the one from the software’s original developers)

▶ Rename to <source_package>_<upstream_version>.orig.tar.gz

(example: simgrid_3.6.orig.tar.gz)

▶ Untar it

▶ Rename the directory to <source_package>-<upstream_version>

(example: simgrid-3.6)

▶ cd <source_package>-<upstream_version> && dh_make

(from the dh-make package)

▶ There are some alternatives to dh_make for specific sets of packages:
dh-make-perl, dh-make-php, . . .

▶ debian/ directory created, with a lot of files in it

Debian Packaging Tutorial 15 / 89

Files in debian/
All the packaging work should be made by modifying files in debian/

▶ Main files:
▶ control – meta-data about the package (dependencies, etc.)
▶ rules – specifies how to build the package
▶ copyright – copyright information for the package
▶ changelog – history of the Debian package

▶ Other files:
▶ compat
▶ watch
▶ dh_install* targets

*.dirs, *.docs, *.manpages, . . .
▶ maintainer scripts

*.postinst, *.prerm, . . .
▶ source/format
▶ patches/ – if you need to modify the upstream sources

▶ Several files use a format based on RFC 822 (mail headers)

Debian Packaging Tutorial 16 / 89

debian/changelog
▶ Lists the Debian packaging changes
▶ Gives the current version of the package

1.2.1.1-5
Debian
revision

Upstream
version

▶ Edited manually or with dch
▶ Create a changelog entry for a new release: dch -i

▶ Special format to automatically close Debian or Ubuntu bugs
Debian: Closes: #595268; Ubuntu: LP: #616929

▶ Installed as /usr/share/doc/package /changelog.Debian.gz

mpich2 (1.2.1.1 -5) unstable; urgency=low

* Use /usr/bin/python instead of /usr/bin/python2 .5. Allow

to drop dependency on python2 .5. Closes: #595268

* Make /usr/bin/mpdroot setuid. This is the default after

the installation of mpich2 from source , too. LP: #616929

+ Add corresponding lintian override.

-- Lucas Nussbaum <lucas@debian.org > Wed , 15 Sep 2010 18:13:44 +0200

Debian Packaging Tutorial 17 / 89

debian/control
▶ Package metadata

▶ For the source package itself
▶ For each binary package built from this source

▶ Package name, section, priority, maintainer, uploaders,
build-dependencies, dependencies, description, homepage, . . .

▶ Documentation: Debian Policy chapter 5
https://www.debian.org/doc/debian-policy/ch-controlfields

Source: wget

Section: web

Priority: important

Maintainer: Noel Kothe <noel@debian.org >

Build -Depends: debhelper (>> 5.0.0) , gettext , texinfo ,

libssl -dev (>= 0.9.8) , dpatch , info2man

Standards -Version: 3.8.4

Homepage: http ://www.gnu.org/software/wget/

Package: wget

Architecture: any

Depends: ${shlibs:Depends}, ${misc:Depends}

Description: retrieves files from the web

Wget is a network utility to retrieve files from the Web

Debian Packaging Tutorial 18 / 89

https://www.debian.org/doc/debian-policy/ch-controlfields

Architecture: all or any

Two kinds of binary packages:

▶ Packages with different contents on each Debian architecture
▶ Example: C program
▶ Architecture: any in debian/control

▶ Or, if it only works on a subset of architectures:
Architecture: amd64 i386 ia64 hurd-i386

▶ buildd.debian.org: builds all the other architectures for you on upload
▶ Named package_version_architecture.deb

▶ Packages with the same content on all architectures
▶ Example: Perl library
▶ Architecture: all in debian/control
▶ Named package_version_all.deb

A source package can generate a mix of Architecture: any and
Architecture: all binary packages

Debian Packaging Tutorial 19 / 89

debian/rules

▶ Makefile

▶ Interface used to build Debian packages

▶ Documented in Debian Policy, chapter 4.8
https://www.debian.org/doc/debian-policy/ch-source#s-debianrules

▶ Required targets:
▶ build, build-arch, build-indep: should perform all the

configuration and compilation

▶ binary, binary-arch, binary-indep: build the binary packages
▶ dpkg-buildpackage will call binary to build all the packages, or

binary-arch to build only the Architecture: any packages

▶ clean: clean up the source directory

Debian Packaging Tutorial 20 / 89

https://www.debian.org/doc/debian-policy/ch-source#s-debianrules

Packaging helpers – debhelper
▶ You could write shell code in debian/rules directly
▶ Better practice (used by most packages): use a Packaging helper
▶ Most popular one: debhelper (used by 98% of packages)
▶ Goals:

▶ Factor the common tasks in standard tools used by all packages
▶ Fix some packaging bugs once for all packages

dh_installdirs, dh_installchangelogs, dh_installdocs, dh_install, dh_installdebconf,
dh_installinit, dh_link, dh_strip, dh_compress, dh_fixperms, dh_perl, dh_makeshlibs,
dh_installdeb, dh_shlibdeps, dh_gencontrol, dh_md5sums, dh_builddeb, . . .

▶ Called from debian/rules
▶ Configurable using command parameters or files in debian/

package.docs, package.examples, package.install, package.manpages, ...

▶ Third-party helpers for sets of packages: python-support, dh_ocaml, . . .

▶ debian/compat: Debhelper compatibility version
▶ Defines precise behaviour of dh_*
▶ New syntax: Build-Depends: debhelper-compat (= 13)

Debian Packaging Tutorial 21 / 89

debian/rules using debhelper (1/2)
#!/usr/bin/make -f

Uncomment this to turn on verbose mode.

#export DH_VERBOSE =1

build:

$(MAKE)

#docbook -to-man debian/packagename.sgml > packagename .1

clean:

dh_testdir

dh_testroot

rm -f build -stamp configure -stamp

$(MAKE) clean

dh_clean

install: build

dh_testdir

dh_testroot

dh_clean -k

dh_installdirs

Add here commands to install the package into debian/packagename.

$(MAKE) DESTDIR=$(CURDIR)/ debian/packagename install

Debian Packaging Tutorial 22 / 89

debian/rules using debhelper (2/2)

Build architecture -independent files here.

binary -indep: build install

Build architecture -dependent files here.

binary -arch: build install

dh_testdir

dh_testroot

dh_installchangelogs

dh_installdocs

dh_installexamples

dh_install

dh_installman

dh_link

dh_strip

dh_compress

dh_fixperms

dh_installdeb

dh_shlibdeps

dh_gencontrol

dh_md5sums

dh_builddeb

binary: binary -indep binary -arch

.PHONY: build clean binary -indep binary -arch binary install configure
Debian Packaging Tutorial 23 / 89

CDBS
▶ With debhelper, still a lot of redundancy between packages

▶ Second-level helpers that factor common functionality
▶ E.g. building with ./configure && make && make install or

CMake

▶ CDBS:
▶ Introduced in 2005, based on advanced GNU make magic
▶ Documentation: /usr/share/doc/cdbs/
▶ Support for Perl, Python, Ruby, GNOME, KDE, Java, Haskell, . . .
▶ But some people hate it:

▶ Sometimes difficult to customize package builds:
"twisty maze of makefiles and environment variables"

▶ Slower than plain debhelper (many useless calls to dh_*)

#!/usr/bin/make -f

include /usr/share/cdbs /1/ rules/debhelper.mk

include /usr/share/cdbs /1/ class/autotools.mk

add an action after the build

build/mypackage ::

/bin/bash debian/scripts/foo.sh

Debian Packaging Tutorial 24 / 89

Dh (aka Debhelper 7, or dh7)

▶ Introduced in 2008 as a CDBS killer

▶ dh command that calls dh_*

▶ Simple debian/rules, listing only overrides

▶ Easier to customize than CDBS

▶ Doc: manpages (debhelper(7), dh(1)) + slides from DebConf9 talk
http://kitenet.net/~joey/talks/debhelper/debhelper-slides.pdf

#!/usr/bin/make -f

%:

dh $@

override_dh_auto_configure:

dh_auto_configure -- --with -kitchen -sink

override_dh_auto_build:

make world

Debian Packaging Tutorial 25 / 89

http://kitenet.net/~joey/talks/debhelper/debhelper-slides.pdf

Classic debhelper vs CDBS vs dh

▶ Mind shares:
Classic debhelper: 15% CDBS: 15% dh: 68%

▶ Which one should I learn?
▶ Probably a bit of all of them
▶ You need to know debhelper to use dh and CDBS
▶ You might have to modify CDBS packages

▶ Which one should I use for a new package?
▶ dh (only solution with an increasing mind share)
▶ See https://trends.debian.net/#build-systems

Debian Packaging Tutorial 26 / 89

https://trends.debian.net/#build-systems

Outline

1 Introduction

2 Creating source packages

3 Building and testing packages

4 Practical session 1: modifying the grep package

5 Advanced packaging topics

6 Maintaining packages in Debian

7 Conclusions

8 Additional practical sessions

9 Answers to practical sessions

Debian Packaging Tutorial 27 / 89

Building packages
▶ apt-get build-dep mypackage

Installs the build-dependencies (for a package already in Debian)
Or mk-build-deps -ir (for a package not uploaded yet)

▶ debuild: build, test with lintian, sign with GPG

▶ Also possible to call dpkg-buildpackage directly
▶ Usually with dpkg-buildpackage -us -uc

▶ It is better to build packages in a clean & minimal environment
▶ pbuilder – helper to build packages in a chroot

Good documentation: https://wiki.ubuntu.com/PbuilderHowto
(optimization: cowbuilder ccache distcc)

▶ schroot and sbuild: used on the Debian build daemons
(not as simple as pbuilder, but allows LVM snapshots
see: https://help.ubuntu.com/community/SbuildLVMHowto)

▶ Generates .deb files and a .changes file
▶ .changes: describes what was built; used to upload the package

Debian Packaging Tutorial 28 / 89

https://wiki.ubuntu.com/PbuilderHowto
https://help.ubuntu.com/community/SbuildLVMHowto

Installing and testing packages
▶ Install the package locally: debi (will use .changes to know what to install)

▶ List the content of the package: debc ../mypackage<TAB>.changes

▶ Compare the package with a previous version:
debdiff ../mypackage_1_*.changes ../mypackage_2_*.changes

or to compare the sources:
debdiff ../mypackage_1_*.dsc ../mypackage_2_*.dsc

▶ Check the package with lintian (static analyzer):
lintian ../mypackage<TAB>.changes

lintian -i: gives more information about the errors
lintian -EviIL +pedantic: shows more problems

▶ Upload the package to Debian (dput) (needs configuration)

▶ Manage a private Debian archive with reprepro or aptly
Documentation:
https://wiki.debian.org/HowToSetupADebianRepository

Debian Packaging Tutorial 29 / 89

https://wiki.debian.org/HowToSetupADebianRepository

Outline

1 Introduction

2 Creating source packages

3 Building and testing packages

4 Practical session 1: modifying the grep package

5 Advanced packaging topics

6 Maintaining packages in Debian

7 Conclusions

8 Additional practical sessions

9 Answers to practical sessions

Debian Packaging Tutorial 30 / 89

Practical session 1: modifying the grep package

1 Go to http://ftp.debian.org/debian/pool/main/g/grep/ and
download version 2.12-2 of the package
▶ If the source package is not unpacked automatically, unpack it with

dpkg-source -x grep_*.dsc

2 Look at the files in debian/.
▶ How many binary packages are generated by this source package?
▶ Which packaging helper does this package use?

3 Build the package

4 We are now going to modify the package. Add a changelog entry and
increase the version number.

5 Now disable perl-regexp support (it is a ./configure option)

6 Rebuild the package

7 Compare the original and the new package with debdiff

8 Install the newly built package

Debian Packaging Tutorial 31 / 89

http://ftp.debian.org/debian/pool/main/g/grep/

Outline

1 Introduction

2 Creating source packages

3 Building and testing packages

4 Practical session 1: modifying the grep package

5 Advanced packaging topics

6 Maintaining packages in Debian

7 Conclusions

8 Additional practical sessions

9 Answers to practical sessions

Debian Packaging Tutorial 32 / 89

debian/copyright

▶ Copyright and license information for the source and the packaging
▶ Traditionally written as a text file
▶ New machine-readable format:

https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/

Format: https ://www.debian.org/doc/packaging -manuals/copyright -format /1.0/
Upstream -Name: X Solitaire
Source: ftp://ftp.example.com/pub/games

Files: *
Copyright: Copyright 1998 John Doe <jdoe@example.com >
License: GPL -2+
This program is free software; you can redistribute it
[...]
.
On Debian systems , the full text of the GNU General Public
License version 2 can be found in the file
‘/usr/share/common -licenses/GPL -2’.

Files: debian /*
Copyright: Copyright 1998 Jane Smith <jsmith@example.net >
License:
[LICENSE TEXT]

Debian Packaging Tutorial 33 / 89

https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/

Modifying the upstream source

Often needed:
▶ Fix bugs or add customizations that are specific to Debian

▶ Backport fixes from a newer upstream release

Several methods to do it:
▶ Modifying the files directly

▶ Simple
▶ But no way to track and document the changes

▶ Using patch systems
▶ Eases contributing your changes to upstream
▶ Helps sharing the fixes with derivatives
▶ Gives more exposure to the changes

http://patch-tracker.debian.org/ (down currently)

Debian Packaging Tutorial 34 / 89

http://patch-tracker.debian.org/

Patch systems

▶ Principle: changes are stored as patches in debian/patches/

▶ Applied and unapplied during build

▶ Past: several implementations – simple-patchsys (cdbs), dpatch, quilt
▶ Each supports two debian/rules targets:

▶ debian/rules patch: apply all patches
▶ debian/rules unpatch: de-apply all patches

▶ More documentation: https://wiki.debian.org/debian/patches

▶ New source package format with built-in patch system: 3.0 (quilt)
▶ Recommended solution

▶ You need to learn quilt
https://perl-team.pages.debian.net/howto/quilt.html

▶ Patch-system-agnostic tool in devscripts: edit-patch

Debian Packaging Tutorial 35 / 89

https://wiki.debian.org/debian/patches
https://perl-team.pages.debian.net/howto/quilt.html

Documentation of patches

▶ Standard headers at the beginning of the patch

▶ Documented in DEP-3 - Patch Tagging Guidelines
http://dep.debian.net/deps/dep3/

Description: Fix widget frobnication speeds

Frobnicating widgets too quickly tended to cause explosions.

Forwarded: http :// lists.example.com /2010/03/1234. html

Author: John Doe <johndoe -guest@users.alioth.debian.org >

Applied -Upstream: 1.2, http ://bzr.foo.com/frobnicator/revision /123

Last -Update: 2010 -03 -29

--- a/src/widgets.c

+++ b/src/widgets.c

@@ -101,9 +101,6 @@ struct {

Debian Packaging Tutorial 36 / 89

http://dep.debian.net/deps/dep3/

Doing things during installation and removal
▶ Decompressing the package is sometimes not enough

▶ Create/remove system users, start/stop services, manage alternatives

▶ Done in maintainer scripts
preinst, postinst, prerm, postrm

▶ Snippets for common actions can be generated by debhelper

▶ Documentation:
▶ Debian Policy Manual, chapter 6

https://www.debian.org/doc/debian-policy/ch-maintainerscripts

▶ Debian Developer’s Reference, chapter 6.4
https://www.debian.org/doc/developers-reference/best-pkging-practices.html

▶ https://people.debian.org/~srivasta/MaintainerScripts.html

▶ Prompting the user
▶ Must be done with debconf
▶ Documentation: debconf-devel(7) (debconf-doc package)

Debian Packaging Tutorial 37 / 89

https://www.debian.org/doc/debian-policy/ch-maintainerscripts
https://www.debian.org/doc/developers-reference/best-pkging-practices.html
https://people.debian.org/~srivasta/MaintainerScripts.html

Monitoring upstream versions

▶ Specify where to look in debian/watch (see uscan(1))

version =3

http :// tmrc.mit.edu/mirror/twisted/Twisted /(\d\.\d)/ \

Twisted -([\d\.]*)\. tar\.bz2

▶ There are automated trackers of new upstream versions, that notify the
maintainer on various dashboards including
https://tracker.debian.org/ and https://udd.debian.org/dmd/

▶ uscan: run a manual check

▶ uupdate: try to update your package to the latest upstream version

Debian Packaging Tutorial 38 / 89

https://tracker.debian.org/
https://udd.debian.org/dmd/

Packaging with a Version Control System
▶ Several tools to help manage branches and tags for your packaging work:

svn-buildpackage, git-buildpackage

▶ Example: git-buildpackage
▶ upstream branch to track upstream with upstream/version tags
▶ master branch tracks the Debian package
▶ debian/version tags for each upload
▶ pristine-tar branch to be able to rebuild the upstream tarball

Doc: http://honk.sigxcpu.org/projects/git-buildpackage/
manual-html/gbp.html

▶ Vcs-* fields in debian/control to locate the repository
▶ https://wiki.debian.org/Salsa

Vcs -Browser: https :// salsa.debian.org/debian/devscripts
Vcs -Git: https :// salsa.debian.org/debian/devscripts.git

Vcs -Browser: https :// salsa.debian.org/perl -team/modules/packages/libwww -perl
Vcs -Git: https :// salsa.debian.org/perl -team/modules/packages/libwww -perl.git

▶ VCS-agnostic interface: debcheckout, debcommit, debrelease
▶ debcheckout grep → checks out the source package from Git

Debian Packaging Tutorial 39 / 89

http://honk.sigxcpu.org/projects/git-buildpackage/manual-html/gbp.html
http://honk.sigxcpu.org/projects/git-buildpackage/manual-html/gbp.html
https://wiki.debian.org/Salsa

Backporting packages

▶ Goal: use a newer version of a package on an older system
e.g. use mutt from Debian unstable on Debian stable

▶ General idea:
▶ Take the source package from Debian unstable

▶ Modify it so that it builds and works fine on Debian stable
▶ Sometimes trivial (no changes needed)
▶ Sometimes difficult
▶ Sometimes impossible (many unavailable dependencies)

▶ Some backports are provided and supported by the Debian project
http://backports.debian.org/

Debian Packaging Tutorial 40 / 89

http://backports.debian.org/

Outline

1 Introduction

2 Creating source packages

3 Building and testing packages

4 Practical session 1: modifying the grep package

5 Advanced packaging topics

6 Maintaining packages in Debian

7 Conclusions

8 Additional practical sessions

9 Answers to practical sessions

Debian Packaging Tutorial 41 / 89

Debian archive and suites

security stable-updates stable

oldstable

archive.d.o

backports

stable-proposed-updates

stable-new

testing

unstable
experimental

testing-proposed-updates

developersecurity team

stable
releasestable

point
release

package uploads
package migrations between suites

development test internal production

preparation of
next releasestable

release
management

Based on graph by Antoine Beaupré. https://salsa.debian.org/debian/package-cycle

Debian Packaging Tutorial 42 / 89

https://salsa.debian.org/debian/package-cycle

Suites for development

▶ New versions of packages are uploaded to unstable (sid)

▶ Packages migrate from unstable to testing based on several criterias
(e.g. has been in unstable for 10 days, and no regressions)

▶ New packages can also be uploaded to:
▶ experimental (for more experimental packages, such as when the

new version is not ready to replace the one currently in unstable)
▶ testing-proposed-updates, to update the version in testing without

going through unstable (this is rarely used)

Debian Packaging Tutorial 43 / 89

Freezing and releasing

▶ At some point during the release cycle, the release team decides to freeze
testing: automatic migrations from unstable to testing are stopped, and
replaced by manual review

▶ When the release team considers testing to be ready for release:
▶ The testing suite becomes the new stable suite
▶ Similarly, the old stable becomes oldstable
▶ Unsupported releases are moved to archive.debian.org

▶ See https://release.debian.org/

Debian Packaging Tutorial 44 / 89

https://release.debian.org/

Stable release suites and management
▶ Several suites are used to provide stable release packages:

▶ stable: the main suite

▶ security updates suite provided on security.debian.org, used by
the security team. Updates are announced on the
debian-security-announce mailing list

▶ stable-updates: updates that are not security related, but that should
urgently be installed (without waiting for the next point release):
antivirus databases, timezone-related packages, etc. Announced on
the debian-stable-announce mailing list

▶ backports: new upstream versions, based on the version in testing

▶ The stable suite is updated every few months by stable point releases
(that include only bug fixes)
▶ Packages targetting the next stable point release are uploaded to

stable-proposed-updates and reviewed by the release team

▶ The oldstable release has the same set of suites

Debian Packaging Tutorial 45 / 89

Several ways to contribute to Debian

▶ Worst way to contribute:
1 Package your own application
2 Get it into Debian
3 Disappear

▶ Better ways to contribute:
▶ Get involved in packaging teams

▶ Many teams that focus on set of packages, and need help
▶ List available at https://wiki.debian.org/Teams
▶ An excellent way to learn from more experienced contributors

▶ Adopt existing unmaintained packages (orphaned packages)

▶ Bring new software to Debian
▶ Only if it’s interesting/useful enough, please
▶ Are there alternatives already packaged in Debian?

Debian Packaging Tutorial 46 / 89

https://wiki.debian.org/Teams

Adopting orphaned packages
▶ Many unmaintained packages in Debian

▶ Full list + process: https://www.debian.org/devel/wnpp/

▶ Installed on your machine: wnpp-alert
Or better: how-can-i-help

▶ Different states:
▶ Orphaned: the package is unmaintained

Feel free to adopt it

▶ RFA: Request For Adopter
Maintainer looking for adopter, but continues work in the meantime
Feel free to adopt it. A mail to the current maintainer is polite

▶ ITA: Intent To Adopt
Someone intends to adopt the package
You could propose your help!

▶ RFH: Request For Help
The maintainer is looking for help

▶ Some unmaintained packages not detected → not orphaned yet

▶ When in doubt, ask debian-qa@lists.debian.org

or #debian-qa on irc.debian.org Debian Packaging Tutorial 47 / 89

https://www.debian.org/devel/wnpp/

Adopting a package: example

From: You <you@yourdomain >

To: 640454 @bugs.debian.org , control@bugs.debian.org

Cc: Francois Marier <francois@debian.org >

Subject: ITA: verbiste -- French conjugator

retitle 640454 ITA: verbiste -- French conjugator

owner 640454 !

thanks

Hi,

I am using verbiste and I am willing to take care of the package.

Cheers ,

You

▶ Polite to contact the previous maintainer (especially if the package was
RFAed, not orphaned)

▶ Very good idea to contact the upstream project

Debian Packaging Tutorial 48 / 89

Getting your package in Debian

▶ You do not need any official status to get your package into Debian
1 Submit an ITP bug (Intent To Package) using reportbug wnpp

2 Prepare a source package

3 Find a Debian Developer that will sponsor your package

▶ Official status (when you are an experienced package maintainer):
▶ Debian Maintainer (DM):

Permission to upload your own packages
See https://wiki.debian.org/DebianMaintainer

▶ Debian Developer (DD):
Debian project member; can vote and upload any package

Debian Packaging Tutorial 49 / 89

https://wiki.debian.org/DebianMaintainer

Things to check before asking for sponsorship

▶ Debian puts a lot of focus on quality

▶ Generally, sponsors are hard to find and busy
▶ Make sure your package is ready before asking for sponsorship

▶ Things to check:
▶ Avoid missing build-dependencies: make sure that your package

build fine in a clean sid chroot
▶ Using pbuilder is recommended

▶ Run lintian -EviIL +pedantic on your package
▶ Errors must be fixed, all other problems should be fixed

▶ Do extensive testing of your package, of course

▶ In doubt, ask for help

Debian Packaging Tutorial 50 / 89

Where to find help?
Help you will need:
▶ Advice and answers to your questions, code reviews
▶ Sponsorship for your uploads, once your package is ready

You can get help from:
▶ Other members of a packaging team

▶ List of teams: https://wiki.debian.org/Teams

▶ The Debian Mentors group (if your package does not fit in a team)
▶ https://wiki.debian.org/DebianMentorsFaq
▶ Mailing list: debian-mentors@lists.debian.org

(also a good way to learn by accident)
▶ IRC: #debian-mentors on irc.debian.org
▶ http://mentors.debian.net/
▶ Documentation: http://mentors.debian.net/intro-maintainers

▶ Localized mailing lists (get help in your language)
▶ debian-devel-{french,italian,portuguese,spanish}@lists.d.o
▶ Full list: https://lists.debian.org/devel.html
▶ Or users lists: https://lists.debian.org/users.html

Debian Packaging Tutorial 51 / 89

https://wiki.debian.org/Teams
https://wiki.debian.org/DebianMentorsFaq
debian-mentors@lists.debian.org
http://mentors.debian.net/
http://mentors.debian.net/intro-maintainers
https://lists.debian.org/devel.html
https://lists.debian.org/users.html

More documentation

▶ Debian Developers’ Corner
https://www.debian.org/devel/

Links to many resources about Debian development

▶ Guide for Debian Maintainers
https://www.debian.org/doc/manuals/debmake-doc/

▶ Debian Developer’s Reference
https://www.debian.org/doc/developers-reference/

Mostly about Debian procedures, but also some best packaging practices (part 6)

▶ Debian Policy
https://www.debian.org/doc/debian-policy/
▶ All the requirements that every package must satisfy
▶ Specific policies for Perl, Java, Python, . . .

▶ Ubuntu Packaging Guide
https://packaging.ubuntu.com/html/

Debian Packaging Tutorial 52 / 89

https://www.debian.org/devel/
https://www.debian.org/doc/manuals/debmake-doc/
https://www.debian.org/doc/developers-reference/
https://www.debian.org/doc/debian-policy/
https://packaging.ubuntu.com/html/

Debian dashboards for maintainers

▶ Source package centric:
https://tracker.debian.org/dpkg

▶ Maintainer/team centric: Developer’s Packages Overview (DDPO)
https://qa.debian.org/developer.php?login=

pkg-ruby-extras-maintainers@lists.alioth.debian.org

▶ TODO-list oriented: Debian Maintainer Dashboard (DMD)
https://udd.debian.org/dmd/

Debian Packaging Tutorial 53 / 89

https://tracker.debian.org/dpkg
https://qa.debian.org/developer.php?login=pkg-ruby-extras-maintainers@lists.alioth.debian.org
https://qa.debian.org/developer.php?login=pkg-ruby-extras-maintainers@lists.alioth.debian.org
https://udd.debian.org/dmd/

Using the Debian Bug Tracking System (BTS)

▶ A quite unique way to manage bugs
▶ Web interface to view bugs
▶ Email interface to make changes to bugs

▶ Adding information to bugs:
▶ Write to 123456@bugs.debian.org (does not include the submitter,

you need to add 123456-submitter@bugs.debian.org)

▶ Changing bug status:
▶ Send commands to control@bugs.debian.org
▶ Command-line interface: bts command in devscripts
▶ Documentation: https://www.debian.org/Bugs/server-control

▶ Reporting bugs: use reportbug

▶ Normally used with a local mail server: install ssmtp or nullmailer
▶ Or use reportbug --template, then send (manually) to

submit@bugs.debian.org

Debian Packaging Tutorial 54 / 89

https://www.debian.org/Bugs/server-control

Using the BTS: examples

▶ Sending an email to the bug and the submitter:
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=680822#10

▶ Tagging and changing the severity:
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=680227#10

▶ Reassigning, changing the severity, retitling . . . :
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=680822#93

▶ notfound, found, notfixed, fixed are for version-tracking
See https://wiki.debian.org/HowtoUseBTS#Version_tracking

▶ Using usertags: https:
//bugs.debian.org/cgi-bin/bugreport.cgi?msg=42;bug=642267

See https://wiki.debian.org/bugs.debian.org/usertags

▶ BTS Documentation:
▶ https://www.debian.org/Bugs/
▶ https://wiki.debian.org/HowtoUseBTS

Debian Packaging Tutorial 55 / 89

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=680822#10
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=680227#10
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=680822#93
https://wiki.debian.org/HowtoUseBTS#Version_tracking
https://bugs.debian.org/cgi-bin/bugreport.cgi?msg=42;bug=642267
https://bugs.debian.org/cgi-bin/bugreport.cgi?msg=42;bug=642267
https://wiki.debian.org/bugs.debian.org/usertags
https://www.debian.org/Bugs/
https://wiki.debian.org/HowtoUseBTS

More interested in Ubuntu?

▶ Ubuntu mainly manages the divergence with Debian

▶ No real focus on specific packages
Instead, collaboration with Debian teams

▶ Usually recommend uploading new packages to Debian first
https://wiki.ubuntu.com/UbuntuDevelopment/NewPackages

▶ Possibly a better plan:
▶ Get involved in a Debian team and act as a bridge with Ubuntu

▶ Help reduce divergence, triage bugs in Launchpad

▶ Many Debian tools can help:
▶ Ubuntu column on the Developer’s packages overview
▶ Ubuntu box on the Package Tracking System
▶ Receive launchpad bugmail via the PTS

Debian Packaging Tutorial 56 / 89

https://wiki.ubuntu.com/UbuntuDevelopment/NewPackages

Outline

1 Introduction

2 Creating source packages

3 Building and testing packages

4 Practical session 1: modifying the grep package

5 Advanced packaging topics

6 Maintaining packages in Debian

7 Conclusions

8 Additional practical sessions

9 Answers to practical sessions

Debian Packaging Tutorial 57 / 89

Conclusions

▶ You now have a full overview of Debian packaging

▶ But you will need to read more documentation

▶ Best practices have evolved over the years
▶ If not sure, use the dh packaging helper, and the 3.0 (quilt) format

Feedback: packaging-tutorial@packages.debian.org

Debian Packaging Tutorial 58 / 89

Legal stuff

Copyright ©2011–2019 Lucas Nussbaum – lucas@debian.org

This document is free software: you can redistribute it and/or modify it under either
(at your option):

▶ The terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.
http://www.gnu.org/licenses/gpl.html

▶ The terms of the Creative Commons Attribution-ShareAlike 3.0 Unported License.
http://creativecommons.org/licenses/by-sa/3.0/

Debian Packaging Tutorial 59 / 89

http://www.gnu.org/licenses/gpl.html
http://creativecommons.org/licenses/by-sa/3.0/

Contribute to this tutorial

▶ Contribute:
▶ apt-get source packaging-tutorial

▶ debcheckout packaging-tutorial

▶ git clone

https://salsa.debian.org/debian/packaging-tutorial.git

▶ https://salsa.debian.org/debian/packaging-tutorial

▶ Open bugs: bugs.debian.org/src:packaging-tutorial

▶ Provide feedback:
▶ mailto:packaging-tutorial@packages.debian.org

▶ What should be added to this tutorial?
▶ What should be improved?

▶ reportbug packaging-tutorial

Debian Packaging Tutorial 60 / 89

https://salsa.debian.org/debian/packaging-tutorial
bugs.debian.org/src:packaging-tutorial
mailto:packaging-tutorial@packages.debian.org

Outline

1 Introduction

2 Creating source packages

3 Building and testing packages

4 Practical session 1: modifying the grep package

5 Advanced packaging topics

6 Maintaining packages in Debian

7 Conclusions

8 Additional practical sessions

9 Answers to practical sessions

Debian Packaging Tutorial 61 / 89

Practical session 2: packaging GNUjump
1 Download GNUjump 1.0.8 from

http://ftp.gnu.org/gnu/gnujump/gnujump-1.0.8.tar.gz

2 Create a Debian package for it
▶ Install build-dependencies so that you can build the package
▶ Fix bugs
▶ Get a basic working package
▶ Finish filling debian/control and other files

3 Enjoy

Debian Packaging Tutorial 62 / 89

http://ftp.gnu.org/gnu/gnujump/gnujump-1.0.8.tar.gz

Practical session 2: packaging GNUjump (tips)
▶ To get a basic working package, use dh_make

▶ To start with, creating a 1.0 source package is easier than 3.0 (quilt)
(change that in debian/source/format)

▶ To search for missing build-dependencies, find a missing file, and use
apt-file to find the missing package

▶ If you encounter that error:
/usr/bin/ld: SDL_rotozoom.o: undefined reference to symbol ’ceil@@GLIBC_2 .2.5’

//lib/x86_64 -linux -gnu/libm.so.6: error adding symbols: DSO missing from command line

collect2: error: ld returned 1 exit status

Makefile :376: recipe for target ’gnujump ’ failed

You need to add -lm to the linker command line:
Edit src/Makefile.am and replace

gnujump_LDFLAGS = $(all_libraries)

by

gnujump_LDFLAGS = -Wl,--as-needed

gnujump_LDADD = $(all_libraries) -lm

Then run autoreconf -i

Debian Packaging Tutorial 63 / 89

Practical session 3: packaging a Java library

1 Take a quick look at some documentation about Java packaging:
▶ https://wiki.debian.org/Java

▶ https://wiki.debian.org/Java/Packaging

▶ https://www.debian.org/doc/packaging-manuals/java-policy/

▶ /usr/share/doc/javahelper/tutorial.txt.gz

2 Download IRClib from http://moepii.sourceforge.net/

3 Package it

Debian Packaging Tutorial 64 / 89

https://wiki.debian.org/Java
https://wiki.debian.org/Java/Packaging
https://www.debian.org/doc/packaging-manuals/java-policy/
http://moepii.sourceforge.net/

Practical session 4: packaging a Ruby gem

1 Take a quick look at some documentation about Ruby packaging:
▶ https://wiki.debian.org/Ruby

▶ https://wiki.debian.org/Teams/Ruby

▶ https://wiki.debian.org/Teams/Ruby/Packaging

▶ gem2deb(1), dh_ruby(1) (in the gem2deb package)

2 Create a basic Debian source package from the peach gem:
gem2deb peach

3 Improve it so that it becomes a proper Debian package

Debian Packaging Tutorial 65 / 89

https://wiki.debian.org/Ruby
https://wiki.debian.org/Teams/Ruby
https://wiki.debian.org/Teams/Ruby/Packaging

Practical session 5: packaging a Perl module

1 Take a quick look at some documentation about Perl packaging:
▶ https://perl-team.pages.debian.net

▶ https://wiki.debian.org/Teams/DebianPerlGroup

▶ dh-make-perl(1), dpt(1) (in the pkg-perl-tools package)

2 Create a basic Debian source package from the Acme CPAN distribution:
dh-make-perl --cpan Acme

3 Improve it so that it becomes a proper Debian package

Debian Packaging Tutorial 66 / 89

https://perl-team.pages.debian.net
https://wiki.debian.org/Teams/DebianPerlGroup

Outline

1 Introduction

2 Creating source packages

3 Building and testing packages

4 Practical session 1: modifying the grep package

5 Advanced packaging topics

6 Maintaining packages in Debian

7 Conclusions

8 Additional practical sessions

9 Answers to practical sessions

Debian Packaging Tutorial 67 / 89

Answers to

practical sessions

Debian Packaging Tutorial 68 / 89

Practical session 1: modifying the grep package

1 Go to http://ftp.debian.org/debian/pool/main/g/grep/ and
download version 2.12-2 of the package

2 Look at the files in debian/.
▶ How many binary packages are generated by this source package?
▶ Which packaging helper does this package use?

3 Build the package

4 We are now going to modify the package. Add a changelog entry and
increase the version number.

5 Now disable perl-regexp support (it is a ./configure option)

6 Rebuild the package

7 Compare the original and the new package with debdiff

8 Install the newly built package

Debian Packaging Tutorial 69 / 89

http://ftp.debian.org/debian/pool/main/g/grep/

Fetching the source
1 Go to http://ftp.debian.org/debian/pool/main/g/grep/ and

download version 2.12-2 of the package

▶ Use dget to download the .dsc file:
dget http://cdn.debian.net/debian/pool/main/g/grep/grep_2.12-2.dsc

▶ If you have deb-src for a Debian release that has grep version 2.12-2
(find out on https://tracker.debian.org/grep), you can use: apt-get
source grep=2.12-2

or apt-get source grep/release (e.g. grep/stable)
or, if you feel lucky: apt-get source grep

▶ The grep source package is composed of three files:
▶ grep_2.12-2.dsc
▶ grep_2.12-2.debian.tar.bz2
▶ grep_2.12.orig.tar.bz2

This is typical of the "3.0 (quilt)" format.

▶ If needed, uncompress the source with
dpkg-source -x grep_2.12-2.dsc

Debian Packaging Tutorial 70 / 89

http://ftp.debian.org/debian/pool/main/g/grep/
https://tracker.debian.org/grep

Looking around and building the package

2 Look at the files in debian/

▶ How many binary packages are generated by this source package?
▶ Which packaging helper does this package use?

▶ According to debian/control, this package only generates one binary
package, named grep.

▶ According to debian/rules, this package is typical of classic debhelper
packaging, without using CDBS or dh. One can see the various calls to
dh_* commands in debian/rules.

3 Build the package

▶ Use apt-get build-dep grep to fetch the build-dependencies
▶ Then debuild or dpkg-buildpackage -us -uc (Takes about 1 min)

Debian Packaging Tutorial 71 / 89

Editing the changelog

4 We are now going to modify the package. Add a changelog entry and
increase the version number.

▶ debian/changelog is a text file. You could edit it and add a new entry
manually.

▶ Or you can use dch -i, which will add an entry and open the editor

▶ The name and email can be defined using the DEBFULLNAME and DEBEMAIL

environment variables

▶ After that, rebuild the package: a new version of the package is built

▶ Package versioning is detailed in section 5.6.12 of the Debian policy
https://www.debian.org/doc/debian-policy/ch-controlfields

Debian Packaging Tutorial 72 / 89

https://www.debian.org/doc/debian-policy/ch-controlfields

Disabling Perl regexp support and rebuilding

5 Now disable perl-regexp support (it is a ./configure option)
6 Rebuild the package

▶ Check with ./configure --help: the option to disable Perl regexp is
--disable-perl-regexp

▶ Edit debian/rules and find the ./configure line

▶ Add --disable-perl-regexp

▶ Rebuild with debuild or dpkg-buildpackage -us -uc

Debian Packaging Tutorial 73 / 89

Comparing and testing the packages

7 Compare the original and the new package with debdiff
8 Install the newly built package

▶ Compare the binary packages: debdiff ../*changes

▶ Compare the source packages: debdiff ../*dsc

▶ Install the newly built package: debi
Or dpkg -i ../grep_<TAB>

▶ grep -P foo no longer works!

Reinstall the previous version of the package:
▶ apt-get install --reinstall grep=2.6.3-3 (= previous version)

Debian Packaging Tutorial 74 / 89

Practical session 2: packaging GNUjump
1 Download GNUjump 1.0.8 from

http://ftp.gnu.org/gnu/gnujump/gnujump-1.0.8.tar.gz

2 Create a Debian package for it
▶ Install build-dependencies so that you can build the package
▶ Get a basic working package
▶ Finish filling debian/control and other files

3 Enjoy

Debian Packaging Tutorial 75 / 89

http://ftp.gnu.org/gnu/gnujump/gnujump-1.0.8.tar.gz

Step by step. . .
▶ wget http://ftp.gnu.org/gnu/gnujump/gnujump-1.0.8.tar.gz

▶ mv gnujump-1.0.8.tar.gz gnujump_1.0.8.orig.tar.gz

▶ tar xf gnujump_1.0.8.orig.tar.gz

▶ cd gnujump-1.0.8/

▶ dh_make -f ../gnujump-1.0.8.tar.gz
▶ Type of package: single binary (for now)

gnujump -1.0.8$ ls debian/

changelog gnujump.default.ex preinst.ex

compat gnujump.doc -base.EX prerm.ex

control init.d.ex README.Debian

copyright manpage .1.ex README.source

docs manpage.sgml.ex rules

emacsen -install.ex manpage.xml.ex source

emacsen -remove.ex menu.ex watch.ex

emacsen -startup.ex postinst.ex

gnujump.cron.d.ex postrm.ex

Debian Packaging Tutorial 76 / 89

Step by step. . . (2)

▶ Look at debian/changelog, debian/rules, debian/control
(auto-filled by dh_make)

▶ In debian/control:
Build-Depends: debhelper (>= 7.0.50), autotools-dev

Lists the build-dependencies = packages needed to build the package

▶ Try to build the package as-is with debuild (thanks to dh magic)
▶ And add build-dependencies, until it builds
▶ Hint: use apt-cache search and apt-file to find the packages
▶ Example:

checking for sdl -config ... no

checking for SDL - version >= 1.2.0... no

[...]

configure: error: *** SDL version 1.2.0 not found!

→ Add libsdl1.2-dev to Build-Depends and install it.

▶ Better: use pbuilder to build in a clean environment

Debian Packaging Tutorial 77 / 89

Step by step. . . (3)
▶ Required build-dependencies are libsdl1.2-dev,

libsdl-image1.2-dev, libsdl-mixer1.2-dev

▶ Then, you will probably run into another error:

/usr/bin/ld: SDL_rotozoom.o: undefined reference to symbol ’ceil@@GLIBC_2 .2.5’

//lib/x86_64 -linux -gnu/libm.so.6: error adding symbols: DSO missing from command line

collect2: error: ld returned 1 exit status

Makefile :376: recipe for target ’gnujump ’ failed

▶ This problem is caused by bitrot: gnujump has not been adjusted following
linker changes.

▶ If you are using source format version 1.0, you can directly change
upstream sources.
▶ Edit src/Makefile.am and replace

gnujump_LDFLAGS = $(all_libraries)

by

gnujump_LDFLAGS = -Wl,--as-needed

gnujump_LDADD = $(all_libraries) -lm

▶ Then run autoreconf -i

Debian Packaging Tutorial 78 / 89

Step by step. . . (4)
▶ If you are using source format version 3.0 (quilt), use quilt to prepare a

patch. (see https://wiki.debian.org/UsingQuilt)
▶ export QUILT_PATCHES=debian/patches
▶ mkdir debian/patches

quilt new linker-fixes.patch

quilt add src/Makefile.am

▶ Edit src/Makefile.am and replace

gnujump_LDFLAGS = $(all_libraries)

by

gnujump_LDFLAGS = -Wl,--as-needed

gnujump_LDADD = $(all_libraries) -lm

▶ quilt refresh

▶ Since src/Makefile.am was changed, autoreconf must be called
during the build. To do that automatically with dh, change the dh call
in debian/rules from: dh $ --with autotools-dev

to: dh $ --with autotools-dev --with autoreconf

Debian Packaging Tutorial 79 / 89

https://wiki.debian.org/UsingQuilt

Step by step. . . (5)

▶ The package should now build fine.

▶ Use debc to list the content of the generated package, and debi to install
it and test it.

▶ Test the package with lintian

▶ While not a strict requirement, it is recommended that packages
uploaded to Debian are lintian-clean

▶ More problems can be listed using lintian -EviIL +pedantic

▶ Some hints:
▶ Remove the files that you don’t need in debian/

▶ Fill in debian/control

▶ Install the executable to /usr/games by overriding
dh_auto_configure

▶ Use hardening compiler flags to increase security.
See https://wiki.debian.org/Hardening

Debian Packaging Tutorial 80 / 89

https://wiki.debian.org/Hardening

Step by step. . . (6)

▶ Compare your package with the one already packaged in Debian:
▶ It splits the data files to a second package, that is the same across all

architectures (→ saves space in the Debian archive)

▶ It installs a .desktop file (for the GNOME/KDE menus) and also
integrates into the Debian menu

▶ It fixes a few minor problems using patches

Debian Packaging Tutorial 81 / 89

Practical session 3: packaging a Java library

1 Take a quick look at some documentation about Java packaging:
▶ https://wiki.debian.org/Java

▶ https://wiki.debian.org/Java/Packaging

▶ https://www.debian.org/doc/packaging-manuals/java-policy/

▶ /usr/share/doc/javahelper/tutorial.txt.gz

2 Download IRClib from http://moepii.sourceforge.net/

3 Package it

Debian Packaging Tutorial 82 / 89

https://wiki.debian.org/Java
https://wiki.debian.org/Java/Packaging
https://www.debian.org/doc/packaging-manuals/java-policy/
http://moepii.sourceforge.net/

Step by step. . .

▶ apt-get install javahelper

▶ Create a basic source package: jh_makepkg
▶ Library
▶ None
▶ Default Free compiler/runtime

▶ Look at and fix debian/*

▶ dpkg-buildpackage -us -uc or debuild

▶ lintian, debc, etc.

▶ Compare your result with the libirclib-java source package

Debian Packaging Tutorial 83 / 89

Practical session 4: packaging a Ruby gem

1 Take a quick look at some documentation about Ruby packaging:
▶ https://wiki.debian.org/Ruby

▶ https://wiki.debian.org/Teams/Ruby

▶ https://wiki.debian.org/Teams/Ruby/Packaging

▶ gem2deb(1), dh_ruby(1) (in the gem2deb package)

2 Create a basic Debian source package from the peach gem:
gem2deb peach

3 Improve it so that it becomes a proper Debian package

Debian Packaging Tutorial 84 / 89

https://wiki.debian.org/Ruby
https://wiki.debian.org/Teams/Ruby
https://wiki.debian.org/Teams/Ruby/Packaging

Step by step. . .

gem2deb peach:
▶ Downloads the gem from rubygems.org
▶ Creates a suitable .orig.tar.gz archive, and untar it
▶ Initializes a Debian source package based on the gem’s metadata

▶ Named ruby-gemname

▶ Tries to build the Debian binary package (this might fail)

dh_ruby (included in gem2deb) does the Ruby-specific tasks:
▶ Build C extensions for each Ruby version
▶ Copy files to their destination directory
▶ Update shebangs in executable scripts
▶ Run tests defined in debian/ruby-tests.rb, debian/ruby-tests.rake,

or debian/ruby-test-files.yaml, as well as various other checks

Debian Packaging Tutorial 85 / 89

Step by step. . . (2)

Improve the generated package:
▶ Run debclean to clean the source tree. Look at debian/.

▶ changelog and compat should be correct

▶ Edit debian/control: improve Description

▶ Write a proper copyright file based on the upstream files

▶ Build the package

▶ Compare your package with the ruby-peach package in the Debian
archive

Debian Packaging Tutorial 86 / 89

Practical session 5: packaging a Perl module

1 Take a quick look at some documentation about Perl packaging:
▶ https://perl-team.pages.debian.net

▶ https://wiki.debian.org/Teams/DebianPerlGroup

▶ dh-make-perl(1), dpt(1) (in the pkg-perl-tools package)

2 Create a basic Debian source package from the Acme CPAN distribution:
dh-make-perl --cpan Acme

3 Improve it so that it becomes a proper Debian package

Debian Packaging Tutorial 87 / 89

https://perl-team.pages.debian.net
https://wiki.debian.org/Teams/DebianPerlGroup

Step by step. . .

dh-make-perl --cpan Acme:
▶ Downloads the tarball from the CPAN
▶ Creates a suitable .orig.tar.gz archive, and untars it
▶ Initializes a Debian source package based on the distribution’s metadata

▶ Named libdistname-perl

Debian Packaging Tutorial 88 / 89

Step by step. . . (2)

Improve the generated package:
▶ debian/changelog, debian/compat, debian/libacme-perl.docs, and

debian/watch should be correct

▶ Edit debian/control: improve Description, and remove boilerplate at
the bottom

▶ Edit debian/copyright: remove boilerplate paragraph at the top, add
years of copyright to the Files: * stanza

Debian Packaging Tutorial 89 / 89

	Introduction
	Debian
	Debian packages
	The Deb package format
	Tools you will need
	General packaging workflow
	Rebuilding dash

	Creating source packages
	Source packages basics
	Retrieving source packages
	Creating a basic source package
	Files in debian/
	Packaging helpers

	Building and testing packages
	Building packages
	Installing and testing packages

	Practical session 1: modifying the grep package
	Advanced packaging topics
	debian/copyright
	Modifying the upstream source
	Doing things during installation and removal
	Packaging with a Version Control System (SVN, Git)
	Backporting packages

	Maintaining packages in Debian
	Debian archive and suites
	Several ways to contribute to Debian
	Adopting orphaned packages
	Getting your package in Debian
	Where to find help?
	More documentation
	Debian dashboards for maintainers
	More interested in Ubuntu?

	Conclusions
	Conclusions
	Legal stuff
	Contribute to this tutorial

	Additional practical sessions
	Practical session 2: packaging GNUjump
	Practical session 3: packaging a Java library
	Practical session 4: packaging a Ruby gem
	Practical session 5: packaging a Perl module

	Answers to practical sessions
	Practical session 1: modifying the grep package
	Practical session 2: packaging GNUjump
	Practical session 3: packaging a Java library
	Practical session 4: packaging a Ruby gem
	Practical session 5: packaging a Perl module

