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About this tutorial

▶ Goal: tell you what you really need to know about Debian packaging
▶ Modify existing packages

▶ Create your own packages

▶ Interact with the Debian community

▶ Become a Debian power-user

▶ Covers the most important points, but is not complete
▶ You will need to read more documentation

▶ Most of the content also applies to Debian derivative distributions

▶ That includes Ubuntu
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Debian

▶ GNU/Linux distribution

▶ 1st major distro developed “openly in the spirit of GNU”

▶ Non-commercial, built collaboratively by over 1,000 volunteers

▶ 3 main features:
▶ Quality – culture of technical excellence

We release when it’s ready

▶ Freedom – devs and users bound by the Social Contract
Promoting the culture of Free Software since 1993

▶ Independence – no (single) company babysitting Debian
And open decision-making process (do-ocracy + democracy )

▶ Amateur in the best sense: done for the love of it
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Debian packages

▶ .deb files (binary packages)

▶ A very powerful and convenient way to distribute software to users

▶ One of the two most common package formats (with RPM)

▶ Universal:
▶ 30,000 binary packages in Debian

→ most of the available free software is packaged in Debian!

▶ For 12 ports (architectures), including 2 non-Linux (Hurd; KFreeBSD)

▶ Also used by 120 Debian derivative distributions
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The Deb package format

▶ .deb file: an ar archive

$ ar tv wget_1 .12 -2.1 _i386.deb

rw-r--r-- 0/0 4 Sep 5 15:43 2010 debian -binary

rw-r--r-- 0/0 2403 Sep 5 15:43 2010 control.tar.gz

rw-r--r-- 0/0 751613 Sep 5 15:43 2010 data.tar.gz

▶ debian-binary: version of the deb file format, "2.0\n"
▶ control.tar.gz: metadata about the package

control, md5sums, (pre|post)(rm|inst), triggers, shlibs, . . .
▶ data.tar.gz: data files of the package

▶ You could create your .deb files manually
http://tldp.org/HOWTO/html_single/Debian-Binary-Package-Building-HOWTO/

▶ But most people don’t do it that way

This tutorial: create Debian packages, the Debian way
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Tools you will need

▶ A Debian (or Ubuntu) system (with root access)

▶ Some packages:
▶ build-essential: has dependencies on the packages that will be

assumed to be available on the developer’s machine (no need to
specify them in the Build-Depends: control field of your package)
▶ includes a dependency on dpkg-dev, which contains basic

Debian-specific tools to create packages

▶ devscripts: contains many useful scripts for Debian maintainers

Many other tools will also be mentioned later, such as debhelper, cdbs, quilt,
pbuilder, sbuild, lintian, svn-buildpackage, git-buildpackage, . . .
Install them when you need them.
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General packaging workflow

Web upstream sourceDebian mirror

source package where most of the
manual work is done

one or several binary packages .deb

dh_makeapt-get source dget

debuild (build and test with lintian)
or dpkg-buildpackage

install (debi)upload (dput)
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Example: rebuilding dash
1 Install packages needed to build dash, and devscripts

sudo apt-get build-dep dash

(requires deb-src lines in /etc/apt/sources.list)
sudo apt-get install --no-install-recommends devscripts

fakeroot

2 Create a working directory, and get in it:
mkdir /tmp/debian-tutorial ; cd /tmp/debian-tutorial

3 Grab the dash source package
apt-get source dash

(This needs you to have deb-src lines in your /etc/apt/sources.list)

4 Build the package
cd dash-*

debuild -us -uc (-us -uc disables signing the package with GPG)

5 Check that it worked
▶ There are some new .deb files in the parent directory

6 Look at the debian/ directory
▶ That’s where the packaging work is done
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Source package
▶ One source package can generate several binary packages

e.g. the libtar source generates the libtar0 and libtar-dev binary packages

▶ Two kinds of packages: (if unsure, use non-native)
▶ Native packages: normally for Debian specific software (dpkg, apt)
▶ Non-native packages: software developed outside Debian

▶ Main file: .dsc (meta-data)

▶ Other files depending on the version of the source format
▶ 1.0 or 3.0 (native): package_version.tar.gz

▶ 1.0 (non-native):
▶ pkg_ver.orig.tar.gz: upstream source
▶ pkg_debver.diff.gz: patch to add Debian-specific changes

▶ 3.0 (quilt):
▶ pkg_ver.orig.tar.gz: upstream source
▶ pkg_debver.debian.tar.gz: tarball with the Debian changes

(See dpkg-source(1) for exact details)
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Source package example (wget_1.12-2.1.dsc)

Format: 3.0 (quilt)

Source: wget

Binary: wget

Architecture: any

Version: 1.12 -2.1

Maintainer: Noel Kothe <noel@debian.org >

Homepage: http ://www.gnu.org/software/wget/

Standards -Version: 3.8.4

Build -Depends: debhelper (>> 5.0.0) , gettext , texinfo ,

libssl -dev (>= 0.9.8) , dpatch , info2man

Checksums -Sha1:

50 d4ed2441e67 [..]1 ee0e94248 2464747 wget_1 .12. orig.tar.gz

d4c1c8bbe431d [..] dd7cef3611 48308 wget_1 .12 -2.1. debian.tar.gz

Checksums -Sha256:

7578 ed0974e12 [..] dcba65b572 2464747 wget_1 .12. orig.tar.gz

1e9b0c4c00eae [..]89 c402ad78 48308 wget_1 .12 -2.1. debian.tar.gz

Files:

141461 b9c04e4 [..]9 d1f2abf83 2464747 wget_1 .12. orig.tar.gz

e93123c934e3c [..]2 f380278c2 48308 wget_1 .12 -2.1. debian.tar.gz
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Retrieving an existing source package
▶ From the Debian archive:

▶ apt-get source package
▶ apt-get source package=version
▶ apt-get source package/release

(You need deb-src lines in sources.list)

▶ From the Internet:
▶ dget url-to.dsc
▶ dget http://snapshot.debian.org/archive/debian-archive/

20090802T004153Z/debian/dists/bo/main/source/web/

wget_1.4.4-6.dsc

(snapshot.d.o provides all packages from Debian since 2005)

▶ From the (declared) version control system:
▶ debcheckout package

▶ Once downloaded, extract with dpkg-source -x file.dsc
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Creating a basic source package

▶ Download the upstream source
(upstream source = the one from the software’s original developers)

▶ Rename to <source_package>_<upstream_version>.orig.tar.gz

(example: simgrid_3.6.orig.tar.gz)

▶ Untar it

▶ Rename the directory to <source_package>-<upstream_version>

(example: simgrid-3.6)

▶ cd <source_package>-<upstream_version> && dh_make

(from the dh-make package)

▶ There are some alternatives to dh_make for specific sets of packages:
dh-make-perl, dh-make-php, . . .

▶ debian/ directory created, with a lot of files in it
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Files in debian/
All the packaging work should be made by modifying files in debian/

▶ Main files:
▶ control – meta-data about the package (dependencies, etc.)
▶ rules – specifies how to build the package
▶ copyright – copyright information for the package
▶ changelog – history of the Debian package

▶ Other files:
▶ compat
▶ watch
▶ dh_install* targets

*.dirs, *.docs, *.manpages, . . .
▶ maintainer scripts

*.postinst, *.prerm, . . .
▶ source/format
▶ patches/ – if you need to modify the upstream sources

▶ Several files use a format based on RFC 822 (mail headers)
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debian/changelog
▶ Lists the Debian packaging changes
▶ Gives the current version of the package

1.2.1.1-5
Debian
revision

Upstream
version

▶ Edited manually or with dch
▶ Create a changelog entry for a new release: dch -i

▶ Special format to automatically close Debian or Ubuntu bugs
Debian: Closes: #595268; Ubuntu: LP: #616929

▶ Installed as /usr/share/doc/package /changelog.Debian.gz

mpich2 (1.2.1.1 -5) unstable; urgency=low

* Use /usr/bin/python instead of /usr/bin/python2 .5. Allow

to drop dependency on python2 .5. Closes: #595268

* Make /usr/bin/mpdroot setuid. This is the default after

the installation of mpich2 from source , too. LP: #616929

+ Add corresponding lintian override.

-- Lucas Nussbaum <lucas@debian.org > Wed , 15 Sep 2010 18:13:44 +0200
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debian/control
▶ Package metadata

▶ For the source package itself
▶ For each binary package built from this source

▶ Package name, section, priority, maintainer, uploaders,
build-dependencies, dependencies, description, homepage, . . .

▶ Documentation: Debian Policy chapter 5
https://www.debian.org/doc/debian-policy/ch-controlfields

Source: wget

Section: web

Priority: important

Maintainer: Noel Kothe <noel@debian.org >

Build -Depends: debhelper (>> 5.0.0) , gettext , texinfo ,

libssl -dev (>= 0.9.8) , dpatch , info2man

Standards -Version: 3.8.4

Homepage: http ://www.gnu.org/software/wget/

Package: wget

Architecture: any

Depends: ${shlibs:Depends}, ${misc:Depends}

Description: retrieves files from the web

Wget is a network utility to retrieve files from the Web
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Architecture: all or any

Two kinds of binary packages:

▶ Packages with different contents on each Debian architecture
▶ Example: C program
▶ Architecture: any in debian/control

▶ Or, if it only works on a subset of architectures:
Architecture: amd64 i386 ia64 hurd-i386

▶ buildd.debian.org: builds all the other architectures for you on upload
▶ Named package_version_architecture.deb

▶ Packages with the same content on all architectures
▶ Example: Perl library
▶ Architecture: all in debian/control
▶ Named package_version_all.deb

A source package can generate a mix of Architecture: any and
Architecture: all binary packages
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debian/rules

▶ Makefile

▶ Interface used to build Debian packages

▶ Documented in Debian Policy, chapter 4.8
https://www.debian.org/doc/debian-policy/ch-source#s-debianrules

▶ Required targets:
▶ build, build-arch, build-indep: should perform all the

configuration and compilation

▶ binary, binary-arch, binary-indep: build the binary packages
▶ dpkg-buildpackage will call binary to build all the packages, or

binary-arch to build only the Architecture: any packages

▶ clean: clean up the source directory
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Packaging helpers – debhelper
▶ You could write shell code in debian/rules directly
▶ Better practice (used by most packages): use a Packaging helper
▶ Most popular one: debhelper (used by 98% of packages)
▶ Goals:

▶ Factor the common tasks in standard tools used by all packages
▶ Fix some packaging bugs once for all packages

dh_installdirs, dh_installchangelogs, dh_installdocs, dh_install, dh_installdebconf,
dh_installinit, dh_link, dh_strip, dh_compress, dh_fixperms, dh_perl, dh_makeshlibs,
dh_installdeb, dh_shlibdeps, dh_gencontrol, dh_md5sums, dh_builddeb, . . .

▶ Called from debian/rules
▶ Configurable using command parameters or files in debian/

package.docs, package.examples, package.install, package.manpages, ...

▶ Third-party helpers for sets of packages: python-support, dh_ocaml, . . .

▶ debian/compat: Debhelper compatibility version
▶ Defines precise behaviour of dh_*
▶ New syntax: Build-Depends: debhelper-compat (= 13)
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debian/rules using debhelper (1/2)
#!/usr/bin/make -f

# Uncomment this to turn on verbose mode.

#export DH_VERBOSE =1

build:

$(MAKE)

#docbook -to-man debian/packagename.sgml > packagename .1

clean:

dh_testdir

dh_testroot

rm -f build -stamp configure -stamp

$(MAKE) clean

dh_clean

install: build

dh_testdir

dh_testroot

dh_clean -k

dh_installdirs

# Add here commands to install the package into debian/packagename.

$(MAKE) DESTDIR=$(CURDIR )/ debian/packagename install
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debian/rules using debhelper (2/2)

# Build architecture -independent files here.

binary -indep: build install

# Build architecture -dependent files here.

binary -arch: build install

dh_testdir

dh_testroot

dh_installchangelogs

dh_installdocs

dh_installexamples

dh_install

dh_installman

dh_link

dh_strip

dh_compress

dh_fixperms

dh_installdeb

dh_shlibdeps

dh_gencontrol

dh_md5sums

dh_builddeb

binary: binary -indep binary -arch

.PHONY: build clean binary -indep binary -arch binary install configure
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CDBS
▶ With debhelper, still a lot of redundancy between packages

▶ Second-level helpers that factor common functionality
▶ E.g. building with ./configure && make && make install or

CMake

▶ CDBS:
▶ Introduced in 2005, based on advanced GNU make magic
▶ Documentation: /usr/share/doc/cdbs/
▶ Support for Perl, Python, Ruby, GNOME, KDE, Java, Haskell, . . .
▶ But some people hate it:

▶ Sometimes difficult to customize package builds:
"twisty maze of makefiles and environment variables"

▶ Slower than plain debhelper (many useless calls to dh_*)

#!/usr/bin/make -f

include /usr/share/cdbs /1/ rules/debhelper.mk

include /usr/share/cdbs /1/ class/autotools.mk

# add an action after the build

build/mypackage ::

/bin/bash debian/scripts/foo.sh
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Dh (aka Debhelper 7, or dh7)

▶ Introduced in 2008 as a CDBS killer

▶ dh command that calls dh_*

▶ Simple debian/rules, listing only overrides

▶ Easier to customize than CDBS

▶ Doc: manpages (debhelper(7), dh(1)) + slides from DebConf9 talk
http://kitenet.net/~joey/talks/debhelper/debhelper-slides.pdf

#!/usr/bin/make -f

%:

dh $@

override_dh_auto_configure:

dh_auto_configure -- --with -kitchen -sink

override_dh_auto_build:

make world
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Classic debhelper vs CDBS vs dh

▶ Mind shares:
Classic debhelper: 15% CDBS: 15% dh: 68%

▶ Which one should I learn?
▶ Probably a bit of all of them
▶ You need to know debhelper to use dh and CDBS
▶ You might have to modify CDBS packages

▶ Which one should I use for a new package?
▶ dh (only solution with an increasing mind share)
▶ See https://trends.debian.net/#build-systems

Debian Packaging Tutorial 26 / 89

https://trends.debian.net/#build-systems


Outline

1 Introduction

2 Creating source packages

3 Building and testing packages

4 Practical session 1: modifying the grep package

5 Advanced packaging topics

6 Maintaining packages in Debian

7 Conclusions

8 Additional practical sessions

9 Answers to practical sessions

Debian Packaging Tutorial 27 / 89



Building packages
▶ apt-get build-dep mypackage

Installs the build-dependencies (for a package already in Debian)
Or mk-build-deps -ir (for a package not uploaded yet)

▶ debuild: build, test with lintian, sign with GPG

▶ Also possible to call dpkg-buildpackage directly
▶ Usually with dpkg-buildpackage -us -uc

▶ It is better to build packages in a clean & minimal environment
▶ pbuilder – helper to build packages in a chroot

Good documentation: https://wiki.ubuntu.com/PbuilderHowto
(optimization: cowbuilder ccache distcc)

▶ schroot and sbuild: used on the Debian build daemons
(not as simple as pbuilder, but allows LVM snapshots
see: https://help.ubuntu.com/community/SbuildLVMHowto )

▶ Generates .deb files and a .changes file
▶ .changes: describes what was built; used to upload the package
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Installing and testing packages
▶ Install the package locally: debi (will use .changes to know what to install)

▶ List the content of the package: debc ../mypackage<TAB>.changes

▶ Compare the package with a previous version:
debdiff ../mypackage_1_*.changes ../mypackage_2_*.changes

or to compare the sources:
debdiff ../mypackage_1_*.dsc ../mypackage_2_*.dsc

▶ Check the package with lintian (static analyzer):
lintian ../mypackage<TAB>.changes

lintian -i: gives more information about the errors
lintian -EviIL +pedantic: shows more problems

▶ Upload the package to Debian (dput) (needs configuration)

▶ Manage a private Debian archive with reprepro or aptly
Documentation:
https://wiki.debian.org/HowToSetupADebianRepository
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Practical session 1: modifying the grep package

1 Go to http://ftp.debian.org/debian/pool/main/g/grep/ and
download version 2.12-2 of the package
▶ If the source package is not unpacked automatically, unpack it with

dpkg-source -x grep_*.dsc

2 Look at the files in debian/.
▶ How many binary packages are generated by this source package?
▶ Which packaging helper does this package use?

3 Build the package

4 We are now going to modify the package. Add a changelog entry and
increase the version number.

5 Now disable perl-regexp support (it is a ./configure option)

6 Rebuild the package

7 Compare the original and the new package with debdiff

8 Install the newly built package

Debian Packaging Tutorial 31 / 89

http://ftp.debian.org/debian/pool/main/g/grep/


Outline

1 Introduction

2 Creating source packages

3 Building and testing packages

4 Practical session 1: modifying the grep package

5 Advanced packaging topics

6 Maintaining packages in Debian

7 Conclusions

8 Additional practical sessions

9 Answers to practical sessions

Debian Packaging Tutorial 32 / 89



debian/copyright

▶ Copyright and license information for the source and the packaging
▶ Traditionally written as a text file
▶ New machine-readable format:

https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/

Format: https ://www.debian.org/doc/packaging -manuals/copyright -format /1.0/
Upstream -Name: X Solitaire
Source: ftp://ftp.example.com/pub/games

Files: *
Copyright: Copyright 1998 John Doe <jdoe@example.com >
License: GPL -2+
This program is free software; you can redistribute it
[...]
.
On Debian systems , the full text of the GNU General Public
License version 2 can be found in the file
‘/usr/share/common -licenses/GPL -2’.

Files: debian /*
Copyright: Copyright 1998 Jane Smith <jsmith@example.net >
License:
[LICENSE TEXT]
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Modifying the upstream source

Often needed:
▶ Fix bugs or add customizations that are specific to Debian

▶ Backport fixes from a newer upstream release

Several methods to do it:
▶ Modifying the files directly

▶ Simple
▶ But no way to track and document the changes

▶ Using patch systems
▶ Eases contributing your changes to upstream
▶ Helps sharing the fixes with derivatives
▶ Gives more exposure to the changes

http://patch-tracker.debian.org/ (down currently)
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Patch systems

▶ Principle: changes are stored as patches in debian/patches/

▶ Applied and unapplied during build

▶ Past: several implementations – simple-patchsys (cdbs), dpatch, quilt
▶ Each supports two debian/rules targets:

▶ debian/rules patch: apply all patches
▶ debian/rules unpatch: de-apply all patches

▶ More documentation: https://wiki.debian.org/debian/patches

▶ New source package format with built-in patch system: 3.0 (quilt)
▶ Recommended solution

▶ You need to learn quilt
https://perl-team.pages.debian.net/howto/quilt.html

▶ Patch-system-agnostic tool in devscripts: edit-patch

Debian Packaging Tutorial 35 / 89

https://wiki.debian.org/debian/patches
https://perl-team.pages.debian.net/howto/quilt.html


Documentation of patches

▶ Standard headers at the beginning of the patch

▶ Documented in DEP-3 - Patch Tagging Guidelines
http://dep.debian.net/deps/dep3/

Description: Fix widget frobnication speeds

Frobnicating widgets too quickly tended to cause explosions.

Forwarded: http :// lists.example.com /2010/03/1234. html

Author: John Doe <johndoe -guest@users.alioth.debian.org >

Applied -Upstream: 1.2, http ://bzr.foo.com/frobnicator/revision /123

Last -Update: 2010 -03 -29

--- a/src/widgets.c

+++ b/src/widgets.c

@@ -101,9 +101,6 @@ struct {
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Doing things during installation and removal
▶ Decompressing the package is sometimes not enough

▶ Create/remove system users, start/stop services, manage alternatives

▶ Done in maintainer scripts
preinst, postinst, prerm, postrm

▶ Snippets for common actions can be generated by debhelper

▶ Documentation:
▶ Debian Policy Manual, chapter 6

https://www.debian.org/doc/debian-policy/ch-maintainerscripts

▶ Debian Developer’s Reference, chapter 6.4
https://www.debian.org/doc/developers-reference/best-pkging-practices.html

▶ https://people.debian.org/~srivasta/MaintainerScripts.html

▶ Prompting the user
▶ Must be done with debconf
▶ Documentation: debconf-devel(7) (debconf-doc package)
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Monitoring upstream versions

▶ Specify where to look in debian/watch (see uscan(1))

version =3

http :// tmrc.mit.edu/mirror/twisted/Twisted /(\d\.\d)/ \

Twisted -([\d\.]*)\. tar\.bz2

▶ There are automated trackers of new upstream versions, that notify the
maintainer on various dashboards including
https://tracker.debian.org/ and https://udd.debian.org/dmd/

▶ uscan: run a manual check

▶ uupdate: try to update your package to the latest upstream version

Debian Packaging Tutorial 38 / 89

https://tracker.debian.org/
https://udd.debian.org/dmd/


Packaging with a Version Control System
▶ Several tools to help manage branches and tags for your packaging work:

svn-buildpackage, git-buildpackage

▶ Example: git-buildpackage
▶ upstream branch to track upstream with upstream/version tags
▶ master branch tracks the Debian package
▶ debian/version tags for each upload
▶ pristine-tar branch to be able to rebuild the upstream tarball

Doc: http://honk.sigxcpu.org/projects/git-buildpackage/
manual-html/gbp.html

▶ Vcs-* fields in debian/control to locate the repository
▶ https://wiki.debian.org/Salsa

Vcs -Browser: https :// salsa.debian.org/debian/devscripts
Vcs -Git: https :// salsa.debian.org/debian/devscripts.git

Vcs -Browser: https :// salsa.debian.org/perl -team/modules/packages/libwww -perl
Vcs -Git: https :// salsa.debian.org/perl -team/modules/packages/libwww -perl.git

▶ VCS-agnostic interface: debcheckout, debcommit, debrelease
▶ debcheckout grep → checks out the source package from Git
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Backporting packages

▶ Goal: use a newer version of a package on an older system
e.g. use mutt from Debian unstable on Debian stable

▶ General idea:
▶ Take the source package from Debian unstable

▶ Modify it so that it builds and works fine on Debian stable
▶ Sometimes trivial (no changes needed)
▶ Sometimes difficult
▶ Sometimes impossible (many unavailable dependencies)

▶ Some backports are provided and supported by the Debian project
http://backports.debian.org/
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Debian archive and suites

security stable-updates stable

oldstable

archive.d.o

backports

stable-proposed-updates

stable-new

testing

unstable
experimental

testing-proposed-updates

developersecurity team

stable
releasestable

point
release

package uploads
package migrations between suites

development test internal production

preparation of
next releasestable

release
management

Based on graph by Antoine Beaupré. https://salsa.debian.org/debian/package-cycle
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Suites for development

▶ New versions of packages are uploaded to unstable (sid)

▶ Packages migrate from unstable to testing based on several criterias
(e.g. has been in unstable for 10 days, and no regressions)

▶ New packages can also be uploaded to:
▶ experimental (for more experimental packages, such as when the

new version is not ready to replace the one currently in unstable)
▶ testing-proposed-updates, to update the version in testing without

going through unstable (this is rarely used)
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Freezing and releasing

▶ At some point during the release cycle, the release team decides to freeze
testing: automatic migrations from unstable to testing are stopped, and
replaced by manual review

▶ When the release team considers testing to be ready for release:
▶ The testing suite becomes the new stable suite
▶ Similarly, the old stable becomes oldstable
▶ Unsupported releases are moved to archive.debian.org

▶ See https://release.debian.org/
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Stable release suites and management
▶ Several suites are used to provide stable release packages:

▶ stable: the main suite

▶ security updates suite provided on security.debian.org, used by
the security team. Updates are announced on the
debian-security-announce mailing list

▶ stable-updates: updates that are not security related, but that should
urgently be installed (without waiting for the next point release):
antivirus databases, timezone-related packages, etc. Announced on
the debian-stable-announce mailing list

▶ backports: new upstream versions, based on the version in testing

▶ The stable suite is updated every few months by stable point releases
(that include only bug fixes)
▶ Packages targetting the next stable point release are uploaded to

stable-proposed-updates and reviewed by the release team

▶ The oldstable release has the same set of suites
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Several ways to contribute to Debian

▶ Worst way to contribute:
1 Package your own application
2 Get it into Debian
3 Disappear

▶ Better ways to contribute:
▶ Get involved in packaging teams

▶ Many teams that focus on set of packages, and need help
▶ List available at https://wiki.debian.org/Teams
▶ An excellent way to learn from more experienced contributors

▶ Adopt existing unmaintained packages (orphaned packages)

▶ Bring new software to Debian
▶ Only if it’s interesting/useful enough, please
▶ Are there alternatives already packaged in Debian?
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Adopting orphaned packages
▶ Many unmaintained packages in Debian

▶ Full list + process: https://www.debian.org/devel/wnpp/

▶ Installed on your machine: wnpp-alert
Or better: how-can-i-help

▶ Different states:
▶ Orphaned: the package is unmaintained

Feel free to adopt it

▶ RFA: Request For Adopter
Maintainer looking for adopter, but continues work in the meantime
Feel free to adopt it. A mail to the current maintainer is polite

▶ ITA: Intent To Adopt
Someone intends to adopt the package
You could propose your help!

▶ RFH: Request For Help
The maintainer is looking for help

▶ Some unmaintained packages not detected → not orphaned yet

▶ When in doubt, ask debian-qa@lists.debian.org
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Adopting a package: example

From: You <you@yourdomain >

To: 640454 @bugs.debian.org , control@bugs.debian.org

Cc: Francois Marier <francois@debian.org >

Subject: ITA: verbiste -- French conjugator

retitle 640454 ITA: verbiste -- French conjugator

owner 640454 !

thanks

Hi,

I am using verbiste and I am willing to take care of the package.

Cheers ,

You

▶ Polite to contact the previous maintainer (especially if the package was
RFAed, not orphaned)

▶ Very good idea to contact the upstream project
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Getting your package in Debian

▶ You do not need any official status to get your package into Debian
1 Submit an ITP bug (Intent To Package) using reportbug wnpp

2 Prepare a source package

3 Find a Debian Developer that will sponsor your package

▶ Official status (when you are an experienced package maintainer):
▶ Debian Maintainer (DM):

Permission to upload your own packages
See https://wiki.debian.org/DebianMaintainer

▶ Debian Developer (DD):
Debian project member; can vote and upload any package
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Things to check before asking for sponsorship

▶ Debian puts a lot of focus on quality

▶ Generally, sponsors are hard to find and busy
▶ Make sure your package is ready before asking for sponsorship

▶ Things to check:
▶ Avoid missing build-dependencies: make sure that your package

build fine in a clean sid chroot
▶ Using pbuilder is recommended

▶ Run lintian -EviIL +pedantic on your package
▶ Errors must be fixed, all other problems should be fixed

▶ Do extensive testing of your package, of course

▶ In doubt, ask for help
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Where to find help?
Help you will need:
▶ Advice and answers to your questions, code reviews
▶ Sponsorship for your uploads, once your package is ready

You can get help from:
▶ Other members of a packaging team

▶ List of teams: https://wiki.debian.org/Teams

▶ The Debian Mentors group (if your package does not fit in a team)
▶ https://wiki.debian.org/DebianMentorsFaq
▶ Mailing list: debian-mentors@lists.debian.org

(also a good way to learn by accident)
▶ IRC: #debian-mentors on irc.debian.org
▶ http://mentors.debian.net/
▶ Documentation: http://mentors.debian.net/intro-maintainers

▶ Localized mailing lists (get help in your language)
▶ debian-devel-{french,italian,portuguese,spanish}@lists.d.o
▶ Full list: https://lists.debian.org/devel.html
▶ Or users lists: https://lists.debian.org/users.html
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More documentation

▶ Debian Developers’ Corner
https://www.debian.org/devel/

Links to many resources about Debian development

▶ Guide for Debian Maintainers
https://www.debian.org/doc/manuals/debmake-doc/

▶ Debian Developer’s Reference
https://www.debian.org/doc/developers-reference/

Mostly about Debian procedures, but also some best packaging practices (part 6)

▶ Debian Policy
https://www.debian.org/doc/debian-policy/
▶ All the requirements that every package must satisfy
▶ Specific policies for Perl, Java, Python, . . .

▶ Ubuntu Packaging Guide
https://packaging.ubuntu.com/html/
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Debian dashboards for maintainers

▶ Source package centric:
https://tracker.debian.org/dpkg

▶ Maintainer/team centric: Developer’s Packages Overview (DDPO)
https://qa.debian.org/developer.php?login=

pkg-ruby-extras-maintainers@lists.alioth.debian.org

▶ TODO-list oriented: Debian Maintainer Dashboard (DMD)
https://udd.debian.org/dmd/
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Using the Debian Bug Tracking System (BTS)

▶ A quite unique way to manage bugs
▶ Web interface to view bugs
▶ Email interface to make changes to bugs

▶ Adding information to bugs:
▶ Write to 123456@bugs.debian.org (does not include the submitter,

you need to add 123456-submitter@bugs.debian.org)

▶ Changing bug status:
▶ Send commands to control@bugs.debian.org
▶ Command-line interface: bts command in devscripts
▶ Documentation: https://www.debian.org/Bugs/server-control

▶ Reporting bugs: use reportbug

▶ Normally used with a local mail server: install ssmtp or nullmailer
▶ Or use reportbug --template, then send (manually) to

submit@bugs.debian.org
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Using the BTS: examples

▶ Sending an email to the bug and the submitter:
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=680822#10

▶ Tagging and changing the severity:
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=680227#10

▶ Reassigning, changing the severity, retitling . . . :
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=680822#93

▶ notfound, found, notfixed, fixed are for version-tracking
See https://wiki.debian.org/HowtoUseBTS#Version_tracking

▶ Using usertags: https:
//bugs.debian.org/cgi-bin/bugreport.cgi?msg=42;bug=642267

See https://wiki.debian.org/bugs.debian.org/usertags

▶ BTS Documentation:
▶ https://www.debian.org/Bugs/
▶ https://wiki.debian.org/HowtoUseBTS
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More interested in Ubuntu?

▶ Ubuntu mainly manages the divergence with Debian

▶ No real focus on specific packages
Instead, collaboration with Debian teams

▶ Usually recommend uploading new packages to Debian first
https://wiki.ubuntu.com/UbuntuDevelopment/NewPackages

▶ Possibly a better plan:
▶ Get involved in a Debian team and act as a bridge with Ubuntu

▶ Help reduce divergence, triage bugs in Launchpad

▶ Many Debian tools can help:
▶ Ubuntu column on the Developer’s packages overview
▶ Ubuntu box on the Package Tracking System
▶ Receive launchpad bugmail via the PTS
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Conclusions

▶ You now have a full overview of Debian packaging

▶ But you will need to read more documentation

▶ Best practices have evolved over the years
▶ If not sure, use the dh packaging helper, and the 3.0 (quilt) format

Feedback: packaging-tutorial@packages.debian.org
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Legal stuff

Copyright ©2011–2019 Lucas Nussbaum – lucas@debian.org

This document is free software: you can redistribute it and/or modify it under either
(at your option):

▶ The terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.
http://www.gnu.org/licenses/gpl.html

▶ The terms of the Creative Commons Attribution-ShareAlike 3.0 Unported License.
http://creativecommons.org/licenses/by-sa/3.0/
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Contribute to this tutorial

▶ Contribute:
▶ apt-get source packaging-tutorial

▶ debcheckout packaging-tutorial

▶ git clone

https://salsa.debian.org/debian/packaging-tutorial.git

▶ https://salsa.debian.org/debian/packaging-tutorial

▶ Open bugs: bugs.debian.org/src:packaging-tutorial

▶ Provide feedback:
▶ mailto:packaging-tutorial@packages.debian.org

▶ What should be added to this tutorial?
▶ What should be improved?

▶ reportbug packaging-tutorial
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Practical session 2: packaging GNUjump
1 Download GNUjump 1.0.8 from

http://ftp.gnu.org/gnu/gnujump/gnujump-1.0.8.tar.gz

2 Create a Debian package for it
▶ Install build-dependencies so that you can build the package
▶ Fix bugs
▶ Get a basic working package
▶ Finish filling debian/control and other files

3 Enjoy
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Practical session 2: packaging GNUjump (tips)
▶ To get a basic working package, use dh_make

▶ To start with, creating a 1.0 source package is easier than 3.0 (quilt)
(change that in debian/source/format)

▶ To search for missing build-dependencies, find a missing file, and use
apt-file to find the missing package

▶ If you encounter that error:
/usr/bin/ld: SDL_rotozoom.o: undefined reference to symbol ’ceil@@GLIBC_2 .2.5’

//lib/x86_64 -linux -gnu/libm.so.6: error adding symbols: DSO missing from command line

collect2: error: ld returned 1 exit status

Makefile :376: recipe for target ’gnujump ’ failed

You need to add -lm to the linker command line:
Edit src/Makefile.am and replace

gnujump_LDFLAGS = $(all_libraries)

by

gnujump_LDFLAGS = -Wl,--as-needed

gnujump_LDADD = $(all_libraries) -lm

Then run autoreconf -i
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Practical session 3: packaging a Java library

1 Take a quick look at some documentation about Java packaging:
▶ https://wiki.debian.org/Java

▶ https://wiki.debian.org/Java/Packaging

▶ https://www.debian.org/doc/packaging-manuals/java-policy/

▶ /usr/share/doc/javahelper/tutorial.txt.gz

2 Download IRClib from http://moepii.sourceforge.net/

3 Package it
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Practical session 4: packaging a Ruby gem

1 Take a quick look at some documentation about Ruby packaging:
▶ https://wiki.debian.org/Ruby

▶ https://wiki.debian.org/Teams/Ruby

▶ https://wiki.debian.org/Teams/Ruby/Packaging

▶ gem2deb(1), dh_ruby(1) (in the gem2deb package)

2 Create a basic Debian source package from the peach gem:
gem2deb peach

3 Improve it so that it becomes a proper Debian package
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Practical session 5: packaging a Perl module

1 Take a quick look at some documentation about Perl packaging:
▶ https://perl-team.pages.debian.net

▶ https://wiki.debian.org/Teams/DebianPerlGroup

▶ dh-make-perl(1), dpt(1) (in the pkg-perl-tools package)

2 Create a basic Debian source package from the Acme CPAN distribution:
dh-make-perl --cpan Acme

3 Improve it so that it becomes a proper Debian package
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Practical session 1: modifying the grep package

1 Go to http://ftp.debian.org/debian/pool/main/g/grep/ and
download version 2.12-2 of the package

2 Look at the files in debian/.
▶ How many binary packages are generated by this source package?
▶ Which packaging helper does this package use?

3 Build the package

4 We are now going to modify the package. Add a changelog entry and
increase the version number.

5 Now disable perl-regexp support (it is a ./configure option)

6 Rebuild the package

7 Compare the original and the new package with debdiff

8 Install the newly built package
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Fetching the source
1 Go to http://ftp.debian.org/debian/pool/main/g/grep/ and

download version 2.12-2 of the package

▶ Use dget to download the .dsc file:
dget http://cdn.debian.net/debian/pool/main/g/grep/grep_2.12-2.dsc

▶ If you have deb-src for a Debian release that has grep version 2.12-2
(find out on https://tracker.debian.org/grep), you can use: apt-get
source grep=2.12-2

or apt-get source grep/release (e.g. grep/stable)
or, if you feel lucky: apt-get source grep

▶ The grep source package is composed of three files:
▶ grep_2.12-2.dsc
▶ grep_2.12-2.debian.tar.bz2
▶ grep_2.12.orig.tar.bz2

This is typical of the "3.0 (quilt)" format.

▶ If needed, uncompress the source with
dpkg-source -x grep_2.12-2.dsc
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Looking around and building the package

2 Look at the files in debian/

▶ How many binary packages are generated by this source package?
▶ Which packaging helper does this package use?

▶ According to debian/control, this package only generates one binary
package, named grep.

▶ According to debian/rules, this package is typical of classic debhelper
packaging, without using CDBS or dh. One can see the various calls to
dh_* commands in debian/rules.

3 Build the package

▶ Use apt-get build-dep grep to fetch the build-dependencies
▶ Then debuild or dpkg-buildpackage -us -uc (Takes about 1 min)
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Editing the changelog

4 We are now going to modify the package. Add a changelog entry and
increase the version number.

▶ debian/changelog is a text file. You could edit it and add a new entry
manually.

▶ Or you can use dch -i, which will add an entry and open the editor

▶ The name and email can be defined using the DEBFULLNAME and DEBEMAIL

environment variables

▶ After that, rebuild the package: a new version of the package is built

▶ Package versioning is detailed in section 5.6.12 of the Debian policy
https://www.debian.org/doc/debian-policy/ch-controlfields
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Disabling Perl regexp support and rebuilding

5 Now disable perl-regexp support (it is a ./configure option)
6 Rebuild the package

▶ Check with ./configure --help: the option to disable Perl regexp is
--disable-perl-regexp

▶ Edit debian/rules and find the ./configure line

▶ Add --disable-perl-regexp

▶ Rebuild with debuild or dpkg-buildpackage -us -uc
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Comparing and testing the packages

7 Compare the original and the new package with debdiff
8 Install the newly built package

▶ Compare the binary packages: debdiff ../*changes

▶ Compare the source packages: debdiff ../*dsc

▶ Install the newly built package: debi
Or dpkg -i ../grep_<TAB>

▶ grep -P foo no longer works!

Reinstall the previous version of the package:
▶ apt-get install --reinstall grep=2.6.3-3 (= previous version)
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Practical session 2: packaging GNUjump
1 Download GNUjump 1.0.8 from

http://ftp.gnu.org/gnu/gnujump/gnujump-1.0.8.tar.gz

2 Create a Debian package for it
▶ Install build-dependencies so that you can build the package
▶ Get a basic working package
▶ Finish filling debian/control and other files

3 Enjoy
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Step by step. . .
▶ wget http://ftp.gnu.org/gnu/gnujump/gnujump-1.0.8.tar.gz

▶ mv gnujump-1.0.8.tar.gz gnujump_1.0.8.orig.tar.gz

▶ tar xf gnujump_1.0.8.orig.tar.gz

▶ cd gnujump-1.0.8/

▶ dh_make -f ../gnujump-1.0.8.tar.gz
▶ Type of package: single binary (for now)

gnujump -1.0.8$ ls debian/

changelog gnujump.default.ex preinst.ex

compat gnujump.doc -base.EX prerm.ex

control init.d.ex README.Debian

copyright manpage .1.ex README.source

docs manpage.sgml.ex rules

emacsen -install.ex manpage.xml.ex source

emacsen -remove.ex menu.ex watch.ex

emacsen -startup.ex postinst.ex

gnujump.cron.d.ex postrm.ex

Debian Packaging Tutorial 76 / 89



Step by step. . . (2)

▶ Look at debian/changelog, debian/rules, debian/control
(auto-filled by dh_make)

▶ In debian/control:
Build-Depends: debhelper (>= 7.0.50 ), autotools-dev

Lists the build-dependencies = packages needed to build the package

▶ Try to build the package as-is with debuild (thanks to dh magic)
▶ And add build-dependencies, until it builds
▶ Hint: use apt-cache search and apt-file to find the packages
▶ Example:

checking for sdl -config ... no

checking for SDL - version >= 1.2.0... no

[...]

configure: error: *** SDL version 1.2.0 not found!

→ Add libsdl1.2-dev to Build-Depends and install it.

▶ Better: use pbuilder to build in a clean environment
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Step by step. . . (3)
▶ Required build-dependencies are libsdl1.2-dev,

libsdl-image1.2-dev, libsdl-mixer1.2-dev

▶ Then, you will probably run into another error:

/usr/bin/ld: SDL_rotozoom.o: undefined reference to symbol ’ceil@@GLIBC_2 .2.5’

//lib/x86_64 -linux -gnu/libm.so.6: error adding symbols: DSO missing from command line

collect2: error: ld returned 1 exit status

Makefile :376: recipe for target ’gnujump ’ failed

▶ This problem is caused by bitrot: gnujump has not been adjusted following
linker changes.

▶ If you are using source format version 1.0, you can directly change
upstream sources.
▶ Edit src/Makefile.am and replace

gnujump_LDFLAGS = $(all_libraries)

by

gnujump_LDFLAGS = -Wl,--as-needed

gnujump_LDADD = $(all_libraries) -lm

▶ Then run autoreconf -i
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Step by step. . . (4)
▶ If you are using source format version 3.0 (quilt), use quilt to prepare a

patch. (see https://wiki.debian.org/UsingQuilt)
▶ export QUILT_PATCHES=debian/patches
▶ mkdir debian/patches

quilt new linker-fixes.patch

quilt add src/Makefile.am

▶ Edit src/Makefile.am and replace

gnujump_LDFLAGS = $(all_libraries)

by

gnujump_LDFLAGS = -Wl,--as-needed

gnujump_LDADD = $(all_libraries) -lm

▶ quilt refresh

▶ Since src/Makefile.am was changed, autoreconf must be called
during the build. To do that automatically with dh, change the dh call
in debian/rules from: dh $ --with autotools-dev

to: dh $ --with autotools-dev --with autoreconf
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Step by step. . . (5)

▶ The package should now build fine.

▶ Use debc to list the content of the generated package, and debi to install
it and test it.

▶ Test the package with lintian

▶ While not a strict requirement, it is recommended that packages
uploaded to Debian are lintian-clean

▶ More problems can be listed using lintian -EviIL +pedantic

▶ Some hints:
▶ Remove the files that you don’t need in debian/

▶ Fill in debian/control

▶ Install the executable to /usr/games by overriding
dh_auto_configure

▶ Use hardening compiler flags to increase security.
See https://wiki.debian.org/Hardening
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Step by step. . . (6)

▶ Compare your package with the one already packaged in Debian:
▶ It splits the data files to a second package, that is the same across all

architectures (→ saves space in the Debian archive)

▶ It installs a .desktop file (for the GNOME/KDE menus) and also
integrates into the Debian menu

▶ It fixes a few minor problems using patches
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Practical session 3: packaging a Java library

1 Take a quick look at some documentation about Java packaging:
▶ https://wiki.debian.org/Java

▶ https://wiki.debian.org/Java/Packaging

▶ https://www.debian.org/doc/packaging-manuals/java-policy/

▶ /usr/share/doc/javahelper/tutorial.txt.gz

2 Download IRClib from http://moepii.sourceforge.net/

3 Package it
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Step by step. . .

▶ apt-get install javahelper

▶ Create a basic source package: jh_makepkg
▶ Library
▶ None
▶ Default Free compiler/runtime

▶ Look at and fix debian/*

▶ dpkg-buildpackage -us -uc or debuild

▶ lintian, debc, etc.

▶ Compare your result with the libirclib-java source package
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Practical session 4: packaging a Ruby gem

1 Take a quick look at some documentation about Ruby packaging:
▶ https://wiki.debian.org/Ruby

▶ https://wiki.debian.org/Teams/Ruby

▶ https://wiki.debian.org/Teams/Ruby/Packaging

▶ gem2deb(1), dh_ruby(1) (in the gem2deb package)

2 Create a basic Debian source package from the peach gem:
gem2deb peach

3 Improve it so that it becomes a proper Debian package
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Step by step. . .

gem2deb peach:
▶ Downloads the gem from rubygems.org
▶ Creates a suitable .orig.tar.gz archive, and untar it
▶ Initializes a Debian source package based on the gem’s metadata

▶ Named ruby-gemname

▶ Tries to build the Debian binary package (this might fail)

dh_ruby (included in gem2deb) does the Ruby-specific tasks:
▶ Build C extensions for each Ruby version
▶ Copy files to their destination directory
▶ Update shebangs in executable scripts
▶ Run tests defined in debian/ruby-tests.rb, debian/ruby-tests.rake,

or debian/ruby-test-files.yaml, as well as various other checks
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Step by step. . . (2)

Improve the generated package:
▶ Run debclean to clean the source tree. Look at debian/.

▶ changelog and compat should be correct

▶ Edit debian/control: improve Description

▶ Write a proper copyright file based on the upstream files

▶ Build the package

▶ Compare your package with the ruby-peach package in the Debian
archive
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Practical session 5: packaging a Perl module

1 Take a quick look at some documentation about Perl packaging:
▶ https://perl-team.pages.debian.net

▶ https://wiki.debian.org/Teams/DebianPerlGroup

▶ dh-make-perl(1), dpt(1) (in the pkg-perl-tools package)

2 Create a basic Debian source package from the Acme CPAN distribution:
dh-make-perl --cpan Acme

3 Improve it so that it becomes a proper Debian package
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Step by step. . .

dh-make-perl --cpan Acme:
▶ Downloads the tarball from the CPAN
▶ Creates a suitable .orig.tar.gz archive, and untars it
▶ Initializes a Debian source package based on the distribution’s metadata

▶ Named libdistname-perl
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Step by step. . . (2)

Improve the generated package:
▶ debian/changelog, debian/compat, debian/libacme-perl.docs, and

debian/watch should be correct

▶ Edit debian/control: improve Description, and remove boilerplate at
the bottom

▶ Edit debian/copyright: remove boilerplate paragraph at the top, add
years of copyright to the Files: * stanza
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