
Building Debian-Packages
with

Git-Buildpackage

Dipl.-Ing. Mechtilde Stehmann
and

Dr. Michael Stehmann

May 4, 2025

German version

https://ddp-team.pages.debian.net/dpb/BuildWithGBP.pdf

English version

https://ddp-team.pages.debian.net/dpb/en_US/BuildWithGBP.pdf

https://ddp-team.pages.debian.net/dpb/BuildWithGBP.pdf
https://ddp-team.pages.debian.net/dpb/en_US/BuildWithGBP.pdf

Content

I. Overview 1

1. License 3

2. About the book’s title 5

3. Who should read this book? 7

4. How is this book conceived? 9
4.1. Motivation . 9
4.2. Under contruction . 10
4.3. Tools . 10

5. Conventions 13
5.1. System . 13
5.2. Terminology . 13
5.3. Typography . 13
5.4. Source Code Representation . 13

6. Quick Guide 15
6.1. Preparing the build environment . 15
6.2. Using the program scripts . 16

II. Preparation 17

7. Literature 21
7.1. Debian Free Software Guidelines . 21
7.2. Debian Policy Manual . 21
7.3. Debian Developer Reference . 21
7.4. Reference for Git-Buildpackage . 22
7.5. Manual for Debian Maintainer . 22
7.6. Debian New Maintianer Guide . 22
7.7. More Information . 22

8. What is a Debian Package? 23

9. How to select the software to be packaged 25

I

May 4, 2025

10.Checking the sources 27
10.1. License verification . 27

10.1.1. debmake . 27
10.1.2. licensecheck . 28
10.1.3. scan-copyrights . 28
10.1.4. licensing . 28
10.1.5. cme . 28
10.1.6. Manually . 29
10.1.7. Stumbling blocks . 29

10.2. Identifying the Programming Language 29
10.3. Checking the Dependencies . 29

10.3.1. Identify dependencies with packages.debian.org 30
10.3.2. Identify dependencies at codesearch.debian.net 30
10.3.3. Search for Dependencies at the Console 30

10.4. Modifications of the Source Code . 30
10.4.1. Exclude complete files . 31

10.4.1.1. Listing of files to be excluded 31
10.4.1.2. Case distinctions . 31
10.4.1.3. Naming of packages when excluding files 32

10.4.2. Changes in individual source code files (patching) 32
10.4.2.1. Patching with Quilt . 33
10.4.2.2. Patching in a Patch-Queue-Branh 33

11.Versioning of the packages 35
11.1. Package Name . 35
11.2. Version Scheme . 35
11.3. apt and dpkg . 36
11.4. uscan and the file debian/watch . 36

12.dh_make 39

13.Building Java Packages 41
13.1. Challenges . 41
13.2. Applications and Libraries . 41

13.2.1. Packaging Java programs . 42
13.2.2. Packaging Java libraries . 42
13.2.3. Name of the Java package . 42

13.3. Dependencies for Java packages . 42
13.3.1. Identify other dependencies . 42
13.3.2. Identify dependencies . 42

13.4. Build systems for Java packages . 43
13.4.1. The build system maven . 43
13.4.2. Packaging with maven . 43
13.4.3. Packaging with ant . 46
13.4.4. Packaging with gradle . 46

13.5. Building Java Packages without build system 46

II

May 4, 2025

14.Building Mozilla extensions 49
14.1. Sources of extensions . 49
14.2. Integration into file system . 50

15.Building Python Packages 51

16.Building metapackages 53
16.1. No upstream source . 53
16.2. Native Debian package . 53

16.2.1. debian/source/format . 53
16.2.2. debian/control . 53
16.2.3. debian/rules . 53
16.2.4. debian/changelog . 53

17.Configuration for installation 55
17.1. debconf . 55
17.2. dbconfig-common . 55

18.System setup 57
18.1. Dependencies for the program script . 57

18.1.1. General dependencies . 57
18.1.2. Dependencies for building Java packages 58
18.1.3. Dependencies for the Mozilla extensions 58

18.2. Create the file . 59
18.2.1. Path to the projects . 59
18.2.2. Configuration files . 59

18.2.2.1. For every project . 59
18.2.2.2. For many projects . 60
18.2.2.3. Fingerprint of the Maintainer-Key 60

18.2.3. .bashrc . 60
18.3. Set up PBuilder . 61

18.3.1. Chroot . 61
18.3.2. Configuration of the Pbuilder . 61
18.3.3. Set up Hooks . 65
18.3.4. Hooks - Examples . 66

18.3.4.1. Hook A . 66
18.3.4.2. Hook B . 67
18.3.4.3. Hook C . 67
18.3.4.4. Hook D . 68
18.3.4.5. Hook E . 68
18.3.4.6. Hook F . 68
18.3.4.7. Hook G . 68
18.3.4.8. Hook H . 69
18.3.4.9. Hook I . 69

18.3.5. Alternative Chroot environment . 69
18.4. More chroot systems . 70

III

May 4, 2025

18.5. Set up quilt for patching . 70

19.Set up Git 73
19.1. Branches . 73
19.2. Mergen . 73
19.3. gbp.conf . 73

19.3.1. Sequence . 74
19.3.2. Sections in the gbp.conf . 74
19.3.3. Syntax of the options . 74
19.3.4. Example . 74

19.4. Git repositories on own infrastructure . 76
19.4.1. Local Git repository . 76
19.4.2. Own Git server . 76

20.Salsa-Repositories 77
20.1. Salsa-Konto anlegen . 77
20.2. Creation of a Salsa-Repository . 77
20.3. Salsa-repository for the Java team . 78

20.3.1. Source of the Script . 78
20.3.2. Dependencies . 78
20.3.3. Get access token . 78
20.3.4. Register token . 79
20.3.5. Call script . 79

20.4. Tasks on salsa.debian.org . 80
20.4.1. Merge Request . 80

21.Packaging beyond the branch Unstable 81
21.1. Security-Updates . 82
21.2. (Old-)Stable-Proposal . 82

21.2.1. Bug report . 83
21.2.2. Requirements for a patch . 83
21.2.3. Dependencies for Mozilla packages 83

21.3. Stable-Backports . 84
21.4. Backports-Repository . 84
21.5. Experimental . 84
21.6. Backporting of unfamiliar packages . 84
21.7. Versioning . 84

22.An email for the start 87
22.1. ITP - Intent To Package . 87
22.2. RFP - Request For Package . 88
22.3. ITA - Intent To Adoption . 89
22.4. RFA - Request for Adoption . 89
22.5. RFH - Request For Help . 89
22.6. O - Orphaned . 89
22.7. RFS - Request For Sponsor . 89

IV

May 4, 2025

22.8. Changes to the bug report . 90
22.9. usertags added . 90

23.Set up report bug 91

24.Autopkgtest 93

25.Reproducible builds 95
25.1. Configuration of sbuild . 95
25.2. reprotest . 96

26.piuparts 97

27.Overcome difficulties 99
27.1. Unfreeze a package . 99

27.1.1. Request for unblocking . 99
27.2. Fix release critical bugs . 100
27.3. Remove package from repository . 100

III. How a shell script helps to build a Debian package 101

28.First steps in the program script 103
28.1. The beginning is at the end . 103
28.2. And this is what the user sees first. 104
28.3. Request project name . 106
28.4. Next steps . 108

29.Create a new project 109
29.1. Create configuration file . 109

29.1.1. Query common variables for configuration file 111
29.1.2. Query special variables for the configuration file 120

29.1.2.1. Identifying the plugin paths 120
29.1.2.2. Variable query for Java packages 121
29.1.2.3. Variable query for Mozilla extensions 124
29.1.2.4. Variable query for Python3 packages 126

29.1.3. Saving the configuration . 127
29.1.4. Example of a configuration file . 130

29.2. Creating the infrastructure . 130
29.2.1. Definition of paths . 130
29.2.2. Creating the necessary directories 131
29.2.3. Create log file . 131

29.3. Git Repositories . 132
29.3.1. Does a Git repository already exist? 132
29.3.2. Selection dialog . 133

29.4. Creating a new local Git repository . 136
29.4.1. Add name and email address to Git repository 136

V

May 4, 2025

29.4.2. Repository at salsa.debian.org . 147
29.4.2.1. Manually . 147
29.4.2.2. Within the Java team . 147

29.4.3. Display remote server . 148
29.5. Clonen from salsa.debian.org . 149

29.5.1. Determination of the Git branches 150
29.5.2. Git branches detect . 152
29.5.3. Assign Git Branch Distribution . 152
29.5.4. Add name and email address . 153

29.6. Import of a Debian package . 155
29.7. GnuPG Key available? . 156
29.8. Starting the packaging process . 157

30.Work in an created projectt 159
30.1. Load and edit configuration file . 159
30.2. Modify lines in the configuration file . 162
30.3. Insert line into configuration file . 163
30.4. Selecting a Git branch . 163

30.4.1. Check with git status. 164
30.4.2. Error message and troubleshooting 165
30.4.3. Selection of the Debian branches 166
30.4.4. Dialog to select a branch . 167
30.4.5. Change entry . 168
30.4.6. Read configuration . 169
30.4.7. No or only one branch exists . 170

30.5. Task selection . 171

31.Building a new version 175
31.1. Download changes from Salsa. 175
31.2. Import an existing patch queue . 177

31.2.1. First attempt to import . 178
31.2.2. Another import attempt . 179
31.2.3. Import successful into PQ branch 180

31.3. Tools for downloading the upstream sources. 182
31.4. Download the classic way . 185

31.4.1. Archive formats . 185
31.4.2. Downloading the source code . 185

31.4.2.1. Download . 187
31.4.2.2. Copy the source archive 189

31.4.3. Identify suffix . 191
31.4.4. Detect upstream version . 192
31.4.5. Exclude files from upstream archive 195
31.4.6. Create Debian source file . 203
31.4.7. Verify signature . 206

31.4.7.1. Download signature file 206
31.4.7.2. Signature Verification . 207

VI

May 4, 2025

31.4.8. Replace link with a copy . 207
31.4.9. gbp Configuration File . 208
31.4.10.Import to Git . 218

31.5. Download and import with uscan . 221

32.Building a new revision 225
32.1. Creating the Debian directory . 226
32.2. Request: Build with mh-make? . 227
32.3. Display the Debian files? . 228
32.4. Files in the directory debian/ . 229

32.4.1. Display the Debian files . 229
32.4.2. debian/source/format . 231
32.4.3. debian/source/include.binaries . 232
32.4.4. debian/upstream/metadata . 232
32.4.5. debian/copyright . 233
32.4.6. debian/control . 234

32.4.6.1. Fundamental structure 234
32.4.6.2. Adaptations for Java packages 236
32.4.6.3. Web-Extension-Plugin . 237
32.4.6.4. Python-Plugin . 237

32.4.7. debian/watch . 238
32.4.8. debian/rules - Fundamental structure 242

32.4.8.1. Create the file . 242
32.4.8.2. Export of variables . 243
32.4.8.3. Call of the Debhelper . 243
32.4.8.4. debian/rules - overrides 245
32.4.8.5. End of the function . 245

32.4.9. salsa-ci.yml . 246
32.4.10.debian/javabuild . 246
32.4.11.<Package name>.install . 247
32.4.12.<Package name>.dirs . 247
32.4.13.<Package name|.docs . 247
32.4.14.<Package name>.links . 248
32.4.15.<Package name>.desktop . 248
32.4.16.<Package name>.examples . 248
32.4.17.README.Debian . 249
32.4.18.README.source . 249

32.5. Checking the files in debian/ with CmeFix 249

33.Making changes to upstream code 251
33.1. Working with gbp pq . 254

33.1.1. Creating a Patch Queue Branch 254
33.1.2. Manual Editing . 256
33.1.3. Troubleshooting hints . 256
33.1.4. Refreshing the patch queue branch 257
33.1.5. Hints for cleaning up the patch queue 258

VII

May 4, 2025

33.1.6. Import of existing patches . 259
33.1.7. Edit source code . 260
33.1.8. Export the patches . 261

33.2. Using Quilt . 263
33.2.1. Create patch . 265

33.3. Create new patch . 266
33.4. Select file for patching . 267

33.4.1. Delete Patch . 269
33.4.2. Restore the initial state . 271

33.5. Patch selection . 273
33.6. Editing Patch . 274
33.7. Modify Patch . 275

34.Building 277
34.1. debian/changelog . 277

34.1.1. Insert version number . 279
34.2. Moving the gbp configuration file . 284
34.3. Set parameters for gbp buildpackage. 285

34.3.1. Identify Git branch and distribution 285
34.3.2. Customize Git branch . 289
34.3.3. Identify distribution . 290
34.3.4. Checking the parameters . 290
34.3.5. Last option to exit . 291
34.3.6. Selecting the build system . 293

34.4. What does Sbuild do? . 294
34.5. Build in the Sbuild chroot . 295

34.5.1. Creating the S-Chroot . 295
34.5.2. sbuild-update . 297

34.6. Build in the Pbuilder chroot . 297
34.6.1. Create base.cow . 298
34.6.2. git-pbuilder update . 299
34.6.3. Inclusion of the *.orig archive in *.changes 300
34.6.4. Build with gbp buildpackage . 303
34.6.5. Download dependencies . 305
34.6.6. Build - compile in pbuilder. 305

35.If building fails 307

36.Build beyond Unstable (sid) 309

37.Verifications 311
37.1. Selection of the Changes file . 313
37.2. Yamllint . 314
37.3. Lintian . 314

37.3.1. Test with Lintian . 314
37.3.2. Lintian reports . 316

VIII

May 4, 2025

37.4. Uscan . 316
37.5. Checking the file debian/copyright . 319
37.6. Check with debdiff and diffoscope . 319

37.6.1. debdiff . 319

IV. Publishing 323

38.Preparation to upload the package 325
38.1. Does debian/changelog exist? . 325
38.2. debian/changelog finisg . 327
38.3. Building again? . 332

39.Upload to Git repositories 333
39.1. Upload to salsa.debian.org . 334
39.2. Upload to the own Git-Server . 336

40.Upload package 337
40.1. Selection of the target repository . 338
40.2. Preparation - Create signature . 340

40.2.1. Use fingerprint . 341
40.3. Upload with dput . 342
40.4. Upload to FTP-Master . 342

40.4.1. Reject a package . 345
40.5. Upload to mentors.debian.net . 345
40.6. Upload as non-maintainer upload. 346
40.7. Upload to people.debian.org . 346
40.8. Local repository . 350

V. Additional components of the script 353

41.Another task 355
41.1. Create new branch . 355
41.2. Entering the name or IP of your own Git server 356
41.3. Prov. AddGitServer . 356

42.Head of the Script 357
42.1. Shebang . 357
42.2. Copyright notice . 357
42.3. Dependencies for the program script . 358
42.4. Function header . 358
42.5. Function for troubleshooting . 358

IX

May 4, 2025

VI. Plugins and Scripts 359

43.Java-Plugin 361
43.1. Adjustments for Java package . 361

44.Maven-Plugin 363
44.1. Head of the Maven plugin . 363
44.2. Notice . 364
44.3. Building with Maven . 364
44.4. Editing Maven files . 373

44.4.1. maven.rules . 373
44.4.2. maven.ignoreRules . 373
44.4.3. maven.properties . 374
44.4.4. PackageName.poms . 375
44.4.5. README.source . 375

44.5. debian/rules - additions for Java packages with Maven 376

45.Web-Extension-Plugin 377
45.1. Header for Webext-Plugins . 377
45.2. Creating the webext*.* files in debian/ . 378

45.2.1. Get the name of the *.xpi file . 378
45.2.2. debian/rules - Additions for Mozilla AddOns 379
45.2.3. debian/control - Additions for Mozilla AddOns 381
45.2.4. debian/webext-*.install . 381
45.2.5. debian/webext-*.docs . 381
45.2.6. debian/webext-links-tb . 382

46.Python-Plugin 383
46.1. Customizations for Python packages . 384
46.2. debian/control - Addition for Python packages 384

47.Scripts 387
47.1. Creation of a project within the Java team 387
47.2. Script for extracting the documentation in PDF and Epub format. 390

47.2.1. Dependencies . 390
47.2.2. Procedure . 390

47.3. Script for extracting the scripts. 393
47.4. gitlab-ci.yml für die Salsa-CI . 395

VII.Anhang A–i

Table of Figures A–iii

Bibliography A–vii

Index A–xi

X

Part I.

Overview

1

1. License

The text of the book Building Debian packages with Git-Buildpackage by Mechtilde
and Michael Stehmann is licensed under the Creative Commons Attribution -
ShareAlike 4.0 International License (CC BY-SA 4.0)[1].

The included code is available under the terms of the GNU General Public License
Version 3 or (at your option) any later version[2].

Copyright: © 2012-2024 Mechtilde Stehmann (E-Mail: mechtilde@debian.org),
Michael Stehmann (E-Mail: michael@canzeley.de)

3

2. About the book’s title

What a Debian package is, is described in chapter 8 (page 23). Let us reveal in advance:
A Debian package is not just an archive in deb format containing binary files.

git-buildpackage is a Debian package which contains useful tools to build Debian
packages from a Git repository. Some of these tools are used by the program script
described in this book (chapter 28, page 103) (see chapter 18, page 57).The names of the
tools in this package start with gbp. An important tool is gbp buildpackage.

The names of the tools in this package start with gbp. An important tool is gbp build-
package.

5

3. Who should read this book?

The information in this book is of particular interest to users of the script. But also
people who are generally interested in packaging for a distribution will find information
in this book.

This book does not want to be a “Lehrbuch” for building Debian packages. It is more
of an experience report, where the experiences have been “in Code gegossen”.

Das Buch beschreibt, wie Debian-Pakete auf der Basis eines Git-Repositoriums mit
den Programmen aus dem Paket git-buildpackage [3] und anderen nützlichen Befehlen
erstellt werden. Am Ende sollte der Leser in der Lage sein, mit der Hilfe des dargestellten
Programmskripts und der Beschreibungen der einzelnen Schritte “veröffentlichungsreife”
Debian-Pakete zu bauen.

The program script itself does not build Debian packages, but assists the user in
building them. It is only an assistance program.

This book can also be used to understand problems that can arise when packaging
Debian packages.

Packaging is basically not difficult, though there are always new challenges. Packaging
is therefore fun.

7

4. How is this book conceived?

4.1. Motivation
What is driving us to write such a book?

To understand this, you need to know the following::
Packaging involves executing many commands in a meaningful order at the shell.

In addition, many small files must be maintained and included. The smallest errors
and inaccuracies usually result in the package not being built correctly. It’s also time-
consuming and error-prone to keep putting in the correct options.".

To keep these sources of error as small as possible, these steps were combined in a shell
script. In the course of the time and with each further package this script grows and is
refined also always further. So far, this has already become an extensive program script.

When Mechtilde started to deal with building Debian packages, the question was how
to document and automate these many steps. The need for documentation could not
be met from the beginning with comments, neither in the individual files nor in this
program script.

That’s why we started early on to record our packaging steps in detail. We paid special
attention to descriptions that make decisions traceable and verifiable. This makes it
easier to make necessary changes..

For this reason, we have also chosen the long form as far as possible when specifying
options. This facilitates readability.

So the documentation should describe the actual packaging as well as explain the
script.

The Debian distribution is the work of many people. It consists of tens of thousands
of packages. Building the packages is a major task of the package maintainers. Many
package maintainers use their own scripts for this purpose. Publishing such a script
is therefore a risk. If our script makes life easier for some package maintainers and
introduces newcomers to package building, this venture has been worthwhile.

The described program script does not refer to a specific Debian package. Rather, it
is intended to be used to build simple Debian packages in general.

It describes the steps we need to take to package the packages maintained by Mechtilde.
The program script does not claim that you can use it to build a Debian package from
any source code.

In many places, you can and must also intervene manually. The description of the
processes during packaging should be of help here.

The fact that the program script presupposes the possibility of manual intervention
makes it necessary for the program script to repeatedly check whether the prerequisites
that the authors have assumed are actually present. This necessity unfortunately increases
the size and complexity of the script and thus also the size of the book.

9

May 4, 2025

4.2. Under contruction
The book and the script are still “Baustellen” because new experiences keep flowing in..

The book is written in German, the interface of the program script is English. Sugges-
tions to improve translations are welcome. As a “proof of concept”, a part of the book
has already been translated into English. 1

The release of the source code is done in the Git repository2 provided by the Debian
project. There, the CI/CD (chapter 47.4, page 395) is enabled. Therefore, the book is
available as *.pdf 3 and *.epub4. You can also download the program scripts from there.5

4.3. Tools
“Living more comfortably with documentation” is a common phrase in our peer group.

Which tools can be used to create such documentation? Are these tools also available
as Debian packages?

Mechtilde received an important hint about this at an event for the Software Freedom
Day 2012 in Cologne. There she learned about the possibilities of noweb [4]6 7.

In this combination, it is possible to maintain code and its description in one document.
Donald Knuth refers to this as “Literate Programming”8

Further we have dealt with the fact that LATEX can be used to create documents in
EPUB format in addition to PDF documents. These documents can also be read with
an e-book reader. (chapter 47.2, page 390)

Translating this book into another language is a particular challenge. Our tests have
shown that OmegaT 9 is a useful and convenient tool in this respect. The corresponding
process is documented in a separate booklet 10.

The bibliography is created and maintained with jabref. The file created in this way
can be included into the LATEX document.

The used editor is geany with the plugin geany-plugin-latext.
Git is ingenious. Building is therefore done with the tools from the package git-

buildpackage11.
The people at Debian have created many useful programs that make building Debian

packages easier and more uniform. The program script presented was therefore created

1https://ddp-team.pages.debian.net/dpb/BuildWithGBP.pdf
2https://salsa.debian.org/ddp-team/dpb
3https://ddp-team.pages.debian.net/dpb/BuildWithGBP.pdf
4https://ddp-team.pages.debian.net/dpb/BuildWithGBP.epub
5https://ddp-team.pages.debian.net/dpb/build-gbp.sh

https://ddp-team.pages.debian.net/dpb/build-gbp-maven-plugin.sh
https://ddp-team.pages.debian.net/dpb/build-gbp-webext-plugin.sh
https://ddp-team.pages.debian.net/dpb/build-gbp-python-plugin.sh
https://ddp-team.pages.debian.net/dpb/build-gbp-java-plugin.sh

6https://sfd.koelnerlinuxtreffen.de/SFD2012/2012Robert_Stanowsky.html
7s.a. https://en.wikipedia.org/wiki/Noweb This also meant getting closer to LATEX
8http://www.literateprogramming.com/
9https://packages.debian.org/sid/omegat

10https://oldmike.pages.debian.net/omegatbooklet/omegat.pdf
11https://packages.debian.org/sid/git-buildpackage

10

https://ddp-team.pages.debian.net/dpb/BuildWithGBP.pdf
https://salsa.debian.org/ddp-team/dpb
https://ddp-team.pages.debian.net/dpb/BuildWithGBP.pdf
https://ddp-team.pages.debian.net/dpb/BuildWithGBP.epub
https://ddp-team.pages.debian.net/dpb/build-gbp.sh
https://ddp-team.pages.debian.net/dpb/build-gbp-maven-plugin.sh
https://ddp-team.pages.debian.net/dpb/build-gbp-webext-plugin.sh
https://ddp-team.pages.debian.net/dpb/build-gbp-python-plugin.sh
https://ddp-team.pages.debian.net/dpb/build-gbp-java-plugin.sh
https://sfd.koelnerlinuxtreffen.de/SFD2012/2012Robert_Stanowsky.html
https://en.wikipedia.org/wiki/Noweb
http://www.literateprogramming.com/
https://packages.debian.org/sid/omegat
https://oldmike.pages.debian.net/omegatbooklet/omegat.pdf
https://packages.debian.org/sid/git-buildpackage

May 4, 2025

“on the shoulders of giants”.
It is used to call up the auxiliary programs used in an expedient order and to provide

them with useful options. It should show its users the way and make their work easier.
To facilitate its adaptation to the needs of its users, it is a shell script.

11

5. Conventions

Some notes for a better understanding of the book:

5.1. System
The book and especially the program script were created on a 64-Bit-PC architecture.
This is called amd64 in Debian. Another name for this system is x86-64.

5.2. Terminology
A new package is a package, which the program script does not know yet. I.e. to this
package no configuration file exists yet.

A new version is a new upstream version. Building a new version is followed by
building a new revision.

A new revision denotes a new Debian package to be uploaded.

5.3. Typography
All program names are set in italic. All proper names are set in non-proportional
type. Superscript numbers point to footnotes on the same page. Citations to an entire
document point directly to the bibliography in square brackets []..

All shell command options are given in the long form, as far as this is possible. This
increases the readability.

For the abbreviations used, please refer to the entries in the glossary1.

5.4. Source Code Representation
The source code is presented in chunks (so-called code chunks). The order of these code
chunks in the book often does not correspond to the order in the scripts. The fact that
the order in the book and script does not have to match is an advantage of noweb.

1https://wiki.debian.org/Glossary

13

https://wiki.debian.org/Glossary

6. Quick Guide

This section is designed to help users understand the steps they need to take and find
their description more quickly in the book.

6.1. Preparing the build environment
The following steps are necessary to create a Debian package from the book and the
scripts,

The program script itself does not build Debian packages, but assists the user in
building them. It is only an assistance program.

1. Download from salsa.debian.org The source code of this book and the following
two scripts can be found at https: // salsa. debian. org/ ddp-team/ dpb .

2. Installing the dependencies to generate the book and build scripts locally. (Chapter
47.2.1, page 390)

3. Generate the PDF with ./create-book.sh (chapter 47.2, page 390).
4. With ./create-buildscript.sh the program script is generated (chapter 47.3, page

393).
5. Alternative: Download files from

• https://ddp-team.pages.debian.net/dpb/BuildWithGBP.pdf
• https://ddp-team.pages.debian.net/dpb/create-book.sh
• https://ddp-team.pages.debian.net/dpb/create-buildscript.sh

6. Create symlinks to the generated scripts under /usr/local/bin So the current scripts
are also in a program path (PATH) and can be called everywhere without path
specification.

7. Installation of all dependencies required by the program script. (Chapter 42.3, page
358)

8. Creating the required directories and files (chapter 18.2, page 59)
• Directory for the configuration files ~/.debian_project/ (chapter 18.2.2, page

59)
• Creating the project directory and subdirectories (chapter 18.2.1, page 59)
• Entries in the file ~/.bashrc (chapter 18.2.3, page 60)
• Creating the gbp.conf file (chapter 19.3, page 73)
• When using the pbuilder configuration (chapter 18.3.2, page 61) and hook

setup (chapter 18.3.3, page 65)

15

https://salsa.debian.org/ddp-team/dpb
https://ddp-team.pages.debian.net/dpb/BuildWithGBP.pdf
https://ddp-team.pages.debian.net/dpb/create-book.sh
https://ddp-team.pages.debian.net/dpb/create-buildscript.sh

May 4, 2025

6.2. Using the program scripts
1. Providing the GPG key to sign Git tags
2. Running build-gbp.sh (chapter 28.1, page 103)
3. Create or load the configuration file with the project name (chapter 28.3, page

106)..
4. Obtain the upstream source code (chapter 31, page 175).
5. Create or update the files in the debian/ directory (chapter 32, page 225).
6. Make changes to the source code (chapter 33, page 251)
7. Building the Debian package (chapter 34, page 277).
8. Checking the quality of the built Debian package (chapter 37, page 311)
9. Publishing the Debian package (chapter 38, page 325)
The program script is modular, so that you can “aussteigen” at many points and

“einsteigen” again later. It also allows manual interventions.
Before working with the program script, you should also look into the following part.

16

Part II.

Preparation

17

May 4, 2025

This part of the book starts with a little theory. Then the setup of the system including
the Git repository, which is essential for git-buildpackage, is described.

19

7. Literature

Some people ask what they should have to read before starting building Debian packages.
Others want to know where they can find helpful information. So here are recommended
readings for those who (want to) build Debian packages.

A short introduction to the topic "‘Packaging for Debian"’ contains the Simple
Packaging Tutorial[5]..

The following three documents are “must-reads” for any package maintainer.

7.1. Debian Free Software Guidelines
All who want to contribute to Debian are recommended to read the social contract.
The Debian Free Software Guidelines (DFSG)[6] are an essential part of the social
contract. They contain the conditions that a license must meet in order to be considered
"‘free’". These conditions are already significant in the selection of the software to be
packaged (chapter 10, page 27).

The Debian Free Software Guidelines (DFSG) apply not only to software licenses,
but according to clause 1 of version 1.1 of the social contract ("‘all components’") also to
the licenses of images, sounds, texts etc..

7.2. Debian Policy Manual
The Debian Policy Manual[7] describes the policies for the Debian GNU/Linux distribu-
tion. It describes the structure and contents of the Debian archive, various operating
system design decisions, and technical requirements that each package must meet to be
included in the distribution. This document is available in English only.

It is also available as Debian package debian-policy.
The Filesystem Hierarchy Standard[8] is an important addition to the Policy Man-

ual.
There are also other supplementary sets of rules.1

7.3. Debian Developer Reference
The Developer Reference[9] lists the procedures and resources for Debian-developers.
The document describes how to become a new developer for the Debian project, the
upload procedure, how to operate the bug database (bug tracking system), the mailing
lists, Internet servers, etc.

This document is intended as a reference manual for all Debian developers. It is
available as Debian package developers-reference-en. [9]

1https://www.debian.org/devel/index.en.html

21

https://www.debian.org/devel/index.en.html

May 4, 2025

7.4. Reference for Git-Buildpackage
There are various procedures and tools for building Debian packages. In this book,
git-buildpackage is used.

In addition, we therefore still recommend the git-buildpackage[3] reference for the build
system we have chosen.

7.5. Manual for Debian Maintainer
This manual for the Debian Maintainer[10] describes how to build a Debian package
using the debmake command. It is intended for normal users and aspiring package
maintainers.

The focus is on the modern packaging style. Many simple examples are included.
This “Manual for Debian maintainers” should consider as a legacy of the “Debian

Guide for New Package Maintainers”.
It is available as Debian package debmake-doc. [10]

7.6. Debian New Maintianer Guide
This mature work[11] attempts to describe building Debian packages in a way that is
understandable to ordinary users and future developers, with working examples.

Unlike previous documents, this one builds on debhelper and other tools available to a
developer. [11]

This document is also available in other languages and as Debian packages.

7.7. More Information
Other useful literature can be found at https://www.debian.org/doc.

On the subject of building Debian packages, one can find documents in other places on
the Internet. However, it is important to note: “The internet does not forget anything,
and somewhere there is always still an outdated documentation linked, whose obsolescence
is also not recognizable due to the lack of an expiration date.” 2[12]

2About this book, chapter 2.9 in the book Debian Package Management

22

https://www.debian.org/doc

8. What is a Debian Package?
To understand the way, you should know the goal. The goal of packaging is a Debian
package[5].

But what is a Debian package?
A formal answer is: A Debian package is a software package released by the Debian

project.
For a package to be released by the Debian project, it must meet requirements

established, written, and published for transparency by the Debian project.
A Debian package is a software package that primarily satisfies the requirements

described in the Debian policy[7]. It is part of the transparency maintained by the
Debian project that the exact version of the Debian policy followed in building the
package is specified in the debian/control file. (Chapter 32.4.6, page 234)

A Debian packages is a collection of files that allows applications or libraries to be
distributed through the Debian package management system. The goal of packaging is
to allow the automation of installing, updating, configuring, and removing software for
Debian in a consistent manner.is[5]

A Debian package is more than just an archive file containing executable code with
the extension .deb. A Debian package consists of four files; three of them are archives.

• An archive file with the extension .orig.tar.gz resp. .orig.tar.xz contains the source
code from which the package is built.

• Another archive file with the extension .debian.tar.xz contains the debian-specific
files that control the build process and installation or contain additional information.

• A file contains the signatures of the archive files. This file has the extension .dsc.
This file is signed, too.

• Finally, the executable code is in the archive with the extension .deb.
The Debian package system enables traceability of the path from the upstream source

code to the binary Debian package. Aimed at and often achieved is a bit-accurate
reproducibility of the build process[13].

How this can be checked is described in chapter 25 (page 95).
This transparency gives the user confidence that the binary package was also compre-

hensibly built from the published source code.
If you save software from your build system to an archive in deb format without caring

about standards and rules, you don’t pack a Debian package.
Several variants (releases) are offered by the Debian project at any time, namely stable,

testing and unstable. After the release of each new Stable version, the previous Stable
version is maintained for some time as Oldstable . Furthermore, there is still oldoldstable
and a branch experimental. There, changes are tried out that could have serious effects
on the overall system.

However, the experimental branch is not a complete distribution, but works only as an
extension of unstable [14].

23

May 4, 2025

The branch unstable (Sid) is the first port of call for new programs and new versions
of programs before they are integrated into testing.

The development of a Debian package usually starts in the unstable branch.1
Each Debian package belongs to a defined development stage of the Debian distribution,

i.e. to a specific, released version2.
Each package must be aligned with its release. It must not have any dependencies

on another release. Libraries may only exist in one version in a release, so that security
updates are easy for the user. A Debian package must therefore not contain its own
version of such a library. 3

1I.Concepts, chapter 2.10.1[12]
2Chapter 2.10 in [12]
3Chapter 7.1 [15]

24

9. How to select the software to be
packaged

Often the question is asked to the project, which package is suitable for starting. To
learn packaging, there is no specially created “training” package. Rather, one learns
packaging by packaging Debian packages (“learning by doing”).

It is emphasized from the beginning that the motivation is brought along to work step
by step into the subject of packaging. A good condition for it is also that it is a software,
which one would like to use gladly as Debian package and make available to others..

Often there are also packages for which the maintainers need help or which are orphaned.
This can also apply to packages that are used by themselves. To find out if and which of
the installed packages are affected, there is a tool that you can install additionally as
package how-can-i-help [16].

This installation causes apt to call how-can-i-help --apt at the end. This will then list
help needing packages that have just been updated.

With how-can-i-help --old you can see which of the installed packages need help.
With how-can-i-help --all all packages are displayed for which help is needed1.
This information can also be found at https://www.debian.org/devel/wnpp/. The

acronym wnpp abbreviates Work-Needing and Prospective Packages and stands, mutatis
mutandis, for packages on which work is needed and which are in the process of being
created (prospective packages).

It is also motivating and helpful if one is active in the upstream project. In these cases,
a certain sustainability of the package support is guaranteed.

For many categories of packages support teams have been formed 2. If you choose
a package that fits into the portfolio of such a team, you have a better chance to find
support and sponsors. Support can also be found on the mailing lists of the respective
teams.

Before you start packaging, you should of course check if the software is already
packaged. With apt search <name> it can be determined whether there is already a
corresponding Debian package. At salsa.debian.org you can check if there are already
packaging attempts in progress.

For all questions about packaging for Debian there is also a special mailing list3. Just
reading along this list is useful.

1More details about how-can-i-help are described in Debian Package Management[12] in chapter 37.3.6.
2Lists can be found at https://wiki.debian.org/Teams.
3https://lists.debian.org/debian-mentors/

25

https://www.debian.org/devel/wnpp/
https://wiki.debian.org/Teams.
https://lists.debian.org/debian-mentors/

10. Checking the sources

Having selected the software to be packaged for Debian, the source code must now be
examined in more detail. The goal of this examination is to determine that the selected
software can be packaged by the package maintainer for Debian main. To do this, it
must be verified that all parts of the source code conform to the Debian Free Software
Guidelines (DFSG)[6] and are consistent with the Debian policy[7] .

This requires an intensive examination of all source code files.

10.1. License verification
In Debian, only Free Software as defined in the Debian Free Software Guidelines
may be published in the main branch. You have to note the Debian Free Software
Guidelines (DFSG) apply not only to software licenses, but according to clause 1 of
version 1.1 of the social contract ("‘all components’") also to licenses of images, sounds,
texts, etc.

Checking this requirement has a big part in the work of a package maintainer, especially
to release a new package in Debian.

When creating and maintaining the debian/copyright file, this work is then used. Thus
this file is also one of the most important files of a Debian package. It describes the
copyright situation.

This file must accurately describe the copyright and licenses of all files in a source
package using a specific syntax (DEP-5).[17]

The debian/copyright file is checked by the FTP masters[18] when a new package is to
be accepted in the Debian project.

To avoid overlooking entries for this purpose, at least a four-eyes-principle (peer-
review)[19] applies.

The contents of the copyright file must therefore accurately reflect the licenses of all
files. The license is often specified in the comments of a source file.

The entire source code must be tested from this point of view. There are some tools
that help the package maintainer to perform these tests. 1

10.1.1. debmake
The debmake -cc command is also used by the program script to create the debian/copy-
right file (Chapter 32.4.5, page 233).

In practice, it turns out that this is sometimes not sufficient. This is because the
information about the licenses and the authors is not stored following a standard.
Therefore the program debmake does not find all entries concerning the required copyrights.
So further tests are needed .

1https://wiki.debian.org/CopyrightReviewTools

27

https://wiki.debian.org/CopyrightReviewTools

May 4, 2025

10.1.2. licensecheck
The licensecheck program (from the package of the same name) is able to scan source files
and reports the copyright and licenses specified in them. However, it does not summarize
this information: A copyright line is generated for each file in a package.

The test was performed with the command line

licensecheck --check '.*' --recursive \
--deb-machine --lines 0 -- *

as detailed in the wiki2.
Unfortunately, the manual page (man page) of licensecheck is rather unproductive.

More information is provided by the command:

licensecheck --help

The output must be evaluated manually, since licensecheck also tries to display the
copyright for so-called binary files (e.g. images, fonts).

10.1.3. scan-copyrights
The scan-copyrights program from the libconfig-model-dpkg-perl package can update an
existing copyright file by rescanning the source.

The command line for this is:

scan-copyrights

The program can also create such a file from scratch. This is done in DEP-5 format.
[17]

This program is written in Perl and uses licensecheck.

10.1.4. licensing
The licensing command from the licenseutils package can scan the source code and return
found licenses with the command.

licensing detect *

It can also add license templates to new code.

10.1.5. cme
Another tool is cme. cme checks and/or edits the data in the configuration files. Among
other things, this can be used to check whether the copyright file provided by the original
author contains all the necessary information.

The cme fix dpkg command checks the dpkg files, updates obsolete parameters, and
applies any fixes (Chapter 32.5, page 249).

With
2https://wiki.debian.org/CopyrightReviewTools#licensecheck

28

https://wiki.debian.org/CopyrightReviewTools#licensecheck

May 4, 2025

cme update dpkg-copyright

the licenses listed in the headers of the source code files are checked and listed.
With

cme check dpkg-copyright -file <path/file name>

data can be read from any file.
There is also a graphical user interface for this package with libcomcnfig-model-tkui-perl.

10.1.6. Manually
The use of these tools is sometimes not sufficient. It may happen that further authors are
named somewhere in the code. This can be searched for with the following commands:

1. grep --recursive --ignore-case “(c)“ .
2. grep --recursive --ignore-case “copyright“ .
3. grep --recursive --ignore-case “author“ .

10.1.7. Stumbling blocks
There are the following stumbling blocks:

1. co-delivered build dependencies
2. microcode
3. co-delivered non-free documents
4. licenses incompletely observed by the upstream author.
Such files must be excluded from the *.orig.tar.xz to be published, if this is reasonably

possible. An appropriate version designation must also be chosen. [20]. In this program
script, it is intended to exclude the files using the debian/copyright file (chapter 31.4.5,
page 195)

If the source code package contains differently licensed files, the source code package
as a whole must be examined in addition to checking the licenses of the individual source
code files. It must be checked whether the licenses used are compatible with each other.
The FINOS Open Source License Compliance Handbook[21] is helpful here.

10.2. Identifying the Programming Language
Software is written in different programming languages. There are also programs written
in several programming languages. Depending on the programming language, different
compiler and build systems must be used.

There are several build systems for building Java packages. This is described in detail
in a separate chapter (chapter 13, page 41).

10.3. Checking the Dependencies
In order to release a package in Debian main, all dependencies (including build depen-
dencies) must already be available in Debian main[7]. This means that dependencies
that are not yet available must be packaged first.

29

May 4, 2025

How the dependencies can be determined depends on the programming language. Hints
on unfulfilled build dependencies can also be found in the build error messages.

For Java programs, there are several places where this information can be found. This
is described in the corresponding chapter (chapter 13, page 41).

10.3.1. Identify dependencies with packages.debian.org
To determine if the required dependency is already packaged, you can start with the
website packages.debian.org.

In the Search package directories section, the options Package names only and Source
package names are interesting.

In the Search the contents of packages section, it is then the option packages that
contain files whose names contain the keyword.

As distribution should then all or Unstable be selected.

10.3.2. Identify dependencies at codesearch.debian.net
Sometimes it can be helpful to look for source code in which a similar problem has been
solved before.

An example is that in a package built with Maven, a certain entry in the file debian/-
maven.rules has been done before.

Such a search can be done – as follows:

https://codesearch.debian.net/search?q=<SearchString>

10.3.3. Search for Dependencies at the Console
With apt-file find 3 it can be determined if needed dependencies are already packaged in
Debian.

10.4. Modifications of the Source Code
The source code must be carefully checked to see if any changes need to be made to it
for the Debian package. Such a need can have various causes.

The upstream release may contain parts that do not comply with the Debian policy[7]
or the Debian Free Software Guidelines[6] .

Changes to the source code specifically for the Debian package can be made as follows:
• Whole files can be excluded. This is done when building a new version (chapter

31.4.5, page 195).
• Changes can be made to upstream files by patching (chapter 10.4.2, page 32). This

is done by the program script when building a new revision (chapter 33, page 251).

3https://manpages.debian.org/unstable/apt-file/apt-file.1.en.html

30

https://manpages.debian.org/unstable/apt-file/apt-file.1.en.html

May 4, 2025

10.4.1. Exclude complete files
If entire files need to be excluded, a source code package must be created that no longer
contains these files.

Before mk-origtargz is called, the program script allows individual source code files to
be excluded from inclusion in the orig archive.

The files that do not comply with the Debian policy[7] or the Debian Free Software
Guidelines (DFSG)[6] must be removed.

A new version must always be built, even if no new upstream source code archive is
used.

The exclusions should be documented with their rationale in the debian/README.source
file (chapter 32.4.18, page 249).

10.4.1.1. Listing of files to be excluded

The files to be excluded can be listed either in a separate file or in the debian/copyright
file in DEP-5 format [17].

Example:

Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: <UpstreamName>
Source: <URL to upstream source>
Files-Excluded: <all files to be excluded>
Comment: <description, why the files are excluded>

In the enumeration, the files to be excluded are separated by one character using spaces
or line breaks with indentation.Case distinctions

10.4.1.2. Case distinctions

Often it is already known before the package is submitted to the New Queue that files
are to be excluded. Since there is no debian/copyright file at this point, it is a good idea
to list the files to be excluded in a separate file.

In response to the corresponding question in the program script, specify that files are
to be excluded. Then the program script determines where to store the information to
exclude files. This is a separate file before submitting the first package of a new project..

This is done by creating a file <SourceName>-excluded in the directory PrjPath
(chapter 29.2.1, page 130).

The information in this file is to be transferred there when the debian/copyright file is
created (chapter , page).32.4.5233

After a rejection from the New Queue, the package must be re-provisioned for release.
Again, files whose license is not DFSG compliant may have to be excluded. The exclusion
of the files already applies to the *.orig.tar.(gz | bz2 | xz) to be published. Usually,
however, no other (newer) upstream version is available at this time. However, the
version to be created must be larger than the previous version but smaller than the next
expected upstream version..

In the case of removing files that are not DFSG compliant, this is the +dfsg attachment
that directly follows the upstream version. If this attachment already exists, it is

31

May 4, 2025

incremented after +dfsg1 (see chapter 10.4.1.3, page 32). Thus, a new tarball with a
larger version label can be created with mk-origtargz. (Chapter 11.2, page 35)

The names of the files to be excluded are added to the then already existing file
debian/copyright in DEP-5 format[17]. After committing these adjustments in the
debian/ directory, a new version can be built. For this the previous upstream archive is
used.

In this way, a new orig tarball is created with mk-origtargz without the files to be
excluded from the previous *.tar.gz and its contents are inserted into the existing Git
repository with gbp import-orig (chapter 31.4.10, page 218).

If a new upstream version requires files to be excluded, or if the files to be excluded
change, proceed in the same way as just explained. The copyright file must be changed
and a corresponding commit must be executed. Again, when building the new version,
specify that files are to be excluded.

10.4.1.3. Naming of packages when excluding files

So that the version designation of this new version is larger than that of the previous
version, but smaller than the expected next upstream version, the previous version
designation is provided with an appendix. This makes clear at the same time that and
why the upstream code was changed.

Common additions to the version string are +dfsg and +ds4.
If licenses of individual files of the upstream source code do not satisfy the Debian

Free Software Guildelines (DFSG) and therefore should not be published as sources
by Debian, the supplement+dfsg is used. If other reasons require the exclusion, one takes
+ds ("Debian Source"). [20]

This is because it is possible that initially only files that do not comply with the
Debian policy were excluded.

If it is later determined that the uploaded original archive still contains non-free
documents, this then leads to a version designation according to the pattern <version
number>+ds+dfsg.5

In some cases, a plus sign (+) can cause problems especially when building Java
packages.

The naming of the Debian packages shown also has consequences for the contents of
the debian/watch file (chapter 11.4 page 36 and chapter 37.4 page 316).

10.4.2. Changes in individual source code files (patching)
Changes to source code filesare necessary when adjustments have to be made due to
different build environments. Other cases are bug fixes, especially security patches.

The classical method is described below with quilt.
Besides, this can also be done in a patch queue branch with gbp pq (chapter 10.4.2.2,

page 33)

4https://wiki.debian.org/DebianMentorsFaq in section What does "’dfsg"’ or "’ds"’ in the version
string mean

5s. Mentors-FAQ 2.6[20]

32

https://wiki.debian.org/DebianMentorsFaq

May 4, 2025

10.4.2.1. Patching with Quilt

Changes to source code files are made by so-called patch files. These document the
original source code and the respective changes. Another file (debian/patches/series)
controls the sequence of application of patches. This usually happens with quilt. Dquilt
is a debian-specific adjustment for quilt..

For this, there is a description in the Debian Guide for New Package Maintainers6

and in the Debian Wiki[22]. In addition, there is a general introduction to the use of
Quilt [23].

Chapter 18.5 (page 70) describes how to generate the debian-specific customization.

10.4.2.2. Patching in a Patch-Queue-Branh

Since a workflow with Git or git-buildpackage [3] is used to build the Debian packages, it
makes sense to use gbp pq instead of quilt7.

The changes are then made in a separate Git branch.
When using gbp pq, all code changes then occur in this branch. These changes should

be thematic and small-scale. Then the patches can flow more easily to upstream or be
adopted from other distributions. This also makes it easier to adapt to a new upstream
version.

The basic idea is that patches are imported from the Debian branch to the patch queue
branch in such a way that one patch file in debian/patches corresponds to one commit
on the patch queue branch at a time.

The patch queue branch is created with gbp pq import. (s. a. Chapter 31.2 Page 177)
The created branch is named after the branch from which it was imported. It is prefixed

with patch-queue/ to distinguish it. So, if the Debian packaging is done on debian/sid
and a gbp pq import is done, the newly created branch is named patch-queue/debian/sid.

The program script allows this import before downloading a new upstream version
(chapter 31.2, page 177) and as a selection option for patching (chapter 33.1, page 254).

In the patch queue branch, the familiar Git commands (rebase, commit and --amend,
etc.) can be used to work on the commits. When this is done, gbp pq export is used to
convert the commits on the patch queue branch back to patches in debian/patches/ files.

(Chapter 33.1, page 254).
This described workflow facilitates, for example, cherry-picking patches for stable

releases, forwarding patches to new upstream releases by using git rebase on the patch
queue branch (already applied patches are automatically detected), and reordering,
dropping, and renaming patches without resorting to quilt. The generated patches in
debian/patches/ have all the necessary information to be forwarded to upstream, since
they use a format similar to git-format-patch.

The main disadvantage of this workflow is the lack of history on the patch queue
branch, since it is often dropped and recreated. But there is of course a full history on
the Debian branch in the debian/patches/ directory.

Note that gbp pq does not currently provide full support for DEP3 headers[24].

6https://www.debian.org/doc/manuals/maint-guide/modify.en.html
7section gbp.patches.html [3]

33

https://www.debian.org/doc/manuals/maint-guide/modify.en.html

May 4, 2025

First, it will try to parse with git-mailinfo[25], which only supports the From and
Subject fields. If neither of these are present, gbp pq will attempt to convert the patch
from DEP3 format to a git-mailinfo(1) compatible format. This is done by first loading
from the “author” and “subject” fields via the first line of the Description field. Then
any additional fields (such as “Origin” and “Forwarded”) and the rest of the description
(if any) are appended to the mail body.

34

11. Versioning of the packages

Both the software to be built for Debian and Debian packages have version names. Here,
the version designation of the upstream software should be included in that of the Debian
package.

The names of all Debian binary package files are structured as follows:
<foo<><Version number>-<Debian revision number>_<Debian architecture>.deb.
1

11.1. Package Name
The version name is preceded by the package name.

This must be written entirely in lowercase. The version name may also contain digits.
Additionally, +, -, ~can be included.

The version designation must begin with a digit.

11.2. Version Scheme
The versioning of the packages follows a firmly defined scheme. This ensures that all
tools that use this versioning can access the same scheme. It must be ensured that the
system recognizes the new version designation also as larger than the previous version
designation. (s.a chapter ??, page ??)

So how must the version designation of the future package be composed? After the
version designation of the upstream package, debian-specific additions can be made.
These may indicate if and why parts of the upstream sortware have been removed, or if
the package has been backported to an older package. In addition, the package version
name includes a Debian revision number. This revision number is incremented especially
if the package was rebuilt because of fixes in files in the debian/ directory.

Possible variants can be checked for their suitability with the following command:

dpkg --compare-versions Version1 Operant Version2 && \
&&\echo "OK"

As operands these are to be used: lt le eq ne gt
lt less than (<)
le less than or equal to (<=)
eq equal to (=)
ne not equal to (!=)
ge greater than or equal to (>=)

1DebianFAQ2019, Chapter 7.3[15]

35

May 4, 2025

gt greater than (>).
The version comparison rules can be summarized as follows:2
• Strings are compared from beginning to end.
• Letters are larger than digits.
• Digits are compared as integers.
• Letters are compared in ASCII sort order.
• There are special rules for dot (.), plus (+), and tilde (~) characters, as follows:

Example: 0.0 < 0.5 < 0.10 < 0.99 < 1 < 1.0~rc1 < 1.0 < 1.0+b1 < 1.0+nmu1 <
1.1 < 2.0.

In some cases, a plus sign (+) can cause problems especially when building Java
packages.

The “correct” versioning plays a role if this is to be read and used by programs. These
are mainly the programs dpkg, apt and uscan.

11.3. apt and dpkg
The correct versioning of the Debian package is then not quite easy if not built for
Debian-Sid (chapter 21.7, page 84).

dpkg or apt must be able to correctly identify if a newer package is available in the
respective release branch.

11.4. uscan and the file debian/watch
uscan is a useful tool in the Debian project. By means of uscan it can be checked if
there is an upstream version which is more recent (i.e. higher versioned) than the current
Debian package.

The uscan program is provided with the devscripts package.
Using the data contained in debian/watch, uscan checks whether newer versions are

available in the original source (chapter 37.4, page 316), and can download them if
necessary (chapter 31.5, page 221).

The information obtained by uscan is also displayed on the page of the respective
maintainer
https://qa.debian.org/developer.php?<Maintainer>@debian.org
.

For this, uscan needs first of all a suitable debian/watch file. The creation of this file,
which is also needed when downloading the source code with uscan (chapter 31.5, page
221), is supported by the program script (chapter 32.4.7, page 238).

If files are excluded and the *.orig.tar.xz file has been named accordingly (chapter
10.4.1.3, page 32), appropriate options must be added to the debian/watch file. These
options are repack, compression, repacksuffix and dversionmangle. Then, on the next
new upstream version, the download can be performed using uscan. This is also true for
checking with uscan if there is a new upstream version.

Example:

2New Maintainer Guide, chapter 2.6 [11, Kapitel 2.6] s.a. Debmake-doc, chapter 5.2

36

https://qa.debian.org/developer.php?<Maintainer>@debian.org

May 4, 2025

opts=repack,\
compression=xz,\
repacksuffix=+dfsg,\
dversionmangle=s/\+dfsg// \

37

12. dh_make
Fortunately, there are many useful programs (utilities) that make building Debian
packages easier and more uniform. Anyone involved in building Debian packages will
always come across the dh_make tool. The package is called dh-make (with hyphen).

dh_make shows how a Debian package can potentially look like. This makes it possible
to learn how to package using concrete examples. Especially instructive are the templates
included in the program package.

dh_make creates many files in the debian/ directory. For most packages, only a subset
of them is needed.

The Practice shows that each time it is necessary to check which files are not needed
for the specific package. Also, the generated files are incomplete and require some manual
work.

To be able to use dh_make, some preparations have to be made. For this purpose a
corresponding "‘working directory"’ is created. The downloaded source code archive is
stored in it. Preferably a tar archive intended for this is used.

This tar archive is unpacked there. This can be done on the console with

tar --extract --auto-compress --file=<tar archiv>.tar.gz

dh_make must be called in the directory containing the source code. In doing so, the
name of the directory containing the source code may contain characters other than
lowercase letters. However, dh_make requires a constrained name that conforms to the
<package name>-<version> scheme. dh_make accepts only lowercase letters for package
names.

To allow dh_make to fill the templates correctly, the additional option --package name
is added to dh_make in such cases. This can be used to force the use of the following
name as the source package name. This package name must contain the version name.
There must be a hyphen between package name and version name.

Thus after the change into this directory there with

dh_make --createorig --packagename <SourceName>

the source tarball in the form desired by Debian <SourceName>.orig.tar.gz|xz can be
generated. Besides this, a draft of the files in the debian/ directory is created.

The following information is requested.
Type of package = package classes single, indep, library, python with the following

meaning
single A single binary package (*.deb) is created. This is the normal case
indep A binary package is created that is independent of the architecture.
library At least two binaries are created. A library package containing only the lib

in /usr/lib, and another *-dev_*.deb package containing the documentation
and C headers.

39

May 4, 2025

python
details about package The determined values for Maintainer Name, Email-Address,

Date, Package Name, Version, License and Package Type are displayed for confir-
mation.

The following files are created. First the files are listed, which are needed in any case,
in each case in alphabetical order. The files README.Debian and README.source can
be used for information purposes. At the end follow such templates, which are used only
in very few packages.

• changelog
• control
• copyright
• rules
• salsa-ci.yml.ex
• source/format
• watch.ex
• README.Debian
• README.source
• manpage.1.ex
• manpage.sgml.ex
• manpage.xml.ex
• postinst.ex
• postrm.ex
• preinst.ex
• prerm.ex
• <packagename>.cron.d.ex
• <packagename>.doc-base.EX
• <packagename>-docs.docs
The unneeded files are removed from the debian/ directory.
The fact that the directory name must contain the respective version designation is

unfavorable when using git. It is refrained so far from using this utility in the program
script.

40

13. Building Java Packages

Building Java packages has special challenges. These special features are described in
detail below.

For packaging Java packages, there is a special policy called Debian-Java policy[26].
Furthermore there is a description about packaging with the Javatools[27]. In it the

Java helpers are described. This tutorial is also part of the Debian package javahelper.
More information can also be obtained from the Java FAQ[28], especially section 2.41.

13.1. Challenges
In a blog article[29] Hans-Christoph Steiner aptly describes the challenges for a Debian
package with respect to Java software.

Accordingly, the Debian-Java team must consistently fight the Java standard practice
of bundling all dependencies into a single *.jar file. This means that there are no common
security updates. In this model each developer must update each dependency. This
works great for large organizations with staff dedicated to this task.

For the majority of Debian use cases, this works poorly. Debian delivers on the promise
that people can just install foo appropriately to make it work, and get security updates.
The user doesn’t even have to know what language the program is written in, it just
works.

The hope that the Java developer community will embrace the value of these use
cases and help Debian by making it easier to package Java projects in the standard
distribution method, with common dependencies that are updated independently, has so
far been only rudimentarily fulfilled.

13.2. Applications and Libraries
There are two categories of Java packages: Applications and Libraries. Both Java
applications and Java libraries may contain (additional) libraries in the source code
which are precompiled.

If applications written in Java are to be packaged, usually Java libraries must also be
provided as Debian packages.

Both applications and libraries are provided in *.jar files as Zip archive.
Both types must basically be written as Java bytecode (*.class files, packaged in a

*.jar archive) and with a "‘Architecture: all"’ (chapter 32.4.8, page 242).
If you have only one (compiled) *.jar archive of an application or library to be packaged,

a look into the MANIFEST.MF file of the respective .jar archive can help to determine
the URL under which the source code has been published.

1https://www.debian.org/doc/manuals/debian-java-faq/ch2.en.html#s2.4

41

https://www.debian.org/doc/manuals/debian-java-faq/ch2.en.html#s2.4

May 4, 2025

13.2.1. Packaging Java programs
Java programs are intended to be executed by end users. These also require a man page,
as far as they are independently executable programs. 2

The package must also ensure that the correct class is used as the main class.
Additional classes in the package must be packaged into one or more Java archive(s)

(*.jar file(s)), which can be placed in /usr/share/java (if intended for use by other
programs) or in a “private” directory in /usr/share/<package>.

13.2.2. Packaging Java libraries
Java libraries are used to fulfill dependencies of programs. These can be build and/or
runtime dependencies.

13.2.3. Name of the Java package
A special challenge is the formation of the correct name of the Java package.

13.3. Dependencies for Java packages
Java applications always depend on Java libraries as well. In addition, Java packages
always require default-jdk as a dependency. Behind this is usually the currently available
OpenJDK version, a free Java implementation with long-term support (JDK = Java
Development Kit).

In addition, there are special dependencies that result from the build system. These
are discussed below for the individual build systems.

13.3.1. Identify other dependencies
Java developers add the required build dependencies - including third-party libraries - to
their source code packages in compiled form as *.jar archives.

Especially among Java developers it is unfortunately very common to fall back on
libraries published somewhere in the World Wide Web and then ship them precompiled.
These libraries must be replaced by packages published in Debian.

So, to find dependencies, search for *.jar archives in the source code.
In this case, repacking is necessary for the Debian maintainer to remove these files

from the upstream tarball. (Chapter 33, page 251).
The excluded libraries must be made available through standalone packages.

13.3.2. Identify dependencies
If one has determined dependencies, then one must determine how these dependencies
can be fulfilled. The first thing to do is to check if corresponding Debian packages already
exist. To determine if a dependency has already been packaged in Debian, there are
several ways to do this.

Debian-Wiki (for Maven-Packages):
2Chapter 2.3 of the Java Policy[26]

42

May 4, 2025

https://wiki.debian.org/Java/MavenPkgs

13.4. Build systems for Java packages
For building Java packages different build systems are used. These are maven, ant and
gradle. This results in peculiarities that must be considered when packaging for Debian.
There are also Java packages that are built without one of these build systems. The
following descriptions are based on the experiences made by the authors.

13.4.1. The build system maven
Apache Maven is a tool for managing and understanding software projects.

A key identifying feature for the Maven build system is the pom.xml file. This contains
all information about the respective software project and follows a standardized XML
format.

Also essential is the default directory structure of a Maven project, shown below.[30]
src/main/java Application / library sources
src/main/resources Application. / library resources
src/main/filters Resource filter files
src/main/webapp Web application sources
src/test/java Test sources
src/test/resources Test resources
src/test/filters Test resource filter files
src/it Integration tests (mainly for plugins)
src/assembly Assembly- Descriptors
src/site Website
LICENSE. txt License of the project
NOTICE.txt Notes and mappings for libraries on which the project depends
README.txt Readme of the project
pom.xml Description of the project and configuration.

In most cases, it is sufficient to build the src/main/ branch as a Debian package. This
is especially true when building libraries that are needed as dependencies for applications.

The upstream package must meet certain requirements to be built with the Maven
build system.

In any case, this includes at least one pom.xml file. This file can be located in various
places within the source code. Sometimes it is provided - especially in the Maven repository
(https://mvnrepository.com/.) - only additionally.

However, if available, it is often better to choose Github or other Git repositories as
source. In doing so, pay attention to the version! For some packages the source code is
also published under the domain https://gitbox.apache.org/repos/asf.

13.4.2. Packaging with maven
For maven-based packages, the use of maven-debian-helper3 is recommended.

In the file debian/rules (chapter 44, page 363) is written.
3https://manpages.debian.org/unstable/maven-debian-helper/index.html

43

https://wiki.debian.org/Java/MavenPkgs
https://mvnrepository.com/
https://gitbox.apache.org/repos/asf
https://manpages.debian.org/unstable/maven-debian-helper/index.html

May 4, 2025

To support building with maven it contains the following commands:
mh_genrules(1) generates, at least partially, the debian/rules file
mh_lspoms(1) looks for all POM files specified in the project source code.
mh_make(1) generates the Debian package by reading the information from the Maven

POM
mh_resolve_dependencies(1) resolves the dependencies and generates the <package

name>.substvars file containing the list of dependent packages for use by debian/-
control.

There are also corresponding man pages for these commands.
Of these, only the mh_make4 command in the build-gbp-maven-plugin.sh plugin is

used at first. (Chapter 44, page 363)
When using mh_make_, note that the environment in which mhmake is started should

have all dependencies of the package to be built. Otherwise, any entries in the relevant
files (e.g. debian/control) must be made up manually. (Chapter 44.4, page 373)

For this purpose, it is recommended to perform these operations in a dedicated chroot
where all dependencies can be installed without burdening the actual host system. The
setup of the same is described in chapter 18.4 (page 70).

From mh_make the following files are created in the debian/ directory:
• maven.cleanIgnoreRules
• maven.rules
• maven.ignoreRules
• maven.properties
• <Paketname>.poms
• maven.publishedRules
In addition, mh_make also creates the (default) files.
• changelog
• control
• copyright
• rules
• README.source
created. This must be taken into account during further work on these files (chapter

32.4, page 229).
With apt-file find5 it can be determined whether there is a Debian package for an

artifactID. This function is also used by mh_make. The artifactID is located in the
pom.xml file from the upstream code.

See wiki.debian.org/Java/MavenPkgs/Unstable for a list of all Maven packages
already packaged in Debian. 6

mh_make also creates the file debian/<package name>.poms from the pom.xml.
In this file all pom.xml files occurring in the package are listed with their relative path.

These can then be provided there with the listed options.
44 ⟨debian/JavaPackage.poms 44⟩≡

4urlhttps://manpages.debian.org/unstable/maven-debian-helper/mh_make.1.en.html
5https://manpages.debian.org/unstable/apt-file/apt-file.1.en.html
6Thanks to Thorsten Glaser and the company Tarent https://www.tarent.de/for this support

44

wiki.debian.org/Java/MavenPkgs/Unstable
https://manpages.debian.org/unstable/apt-file/apt-file.1.en.html
https://www.tarent.de/

May 4, 2025

List of POM files for the package
Format of this file is:
<path to pom file> [option]*
where option can be:
--ignore: ignore this POM and its artifact if any
--ignore-pom: don’t install the POM. To use on POM files that are created
temporarily for certain artifacts such as Javadoc jars. [mh_install,
mh_installpoms]
--no-parent: remove the <parent> tag from the POM
--package=<package>: an alternative package to use when installing this
POM and its artifact
--has-package-version: to indicate that the original version of the POM
is the same as the upstream part # of the version for the package.
--keep-elements=<elem1,elem2>: a list of XML elements to keep in the POM
during a clean operation with mh_cleanpom or mh_installpom
--artifact=<path>: path to the build artifact associated with this POM,
it will be installed when using the command mh_install. [mh_install]
--java-lib: install the jar into /usr/share/java to comply with Debian
packaging guidelines
--usj-name=<name>: name to use when installing the library in /usr/share/java
--usj-version=<version>: version to use when installing the library in
/usr/share/java
--no-usj-versionless: don’t install the versionless link in /usr/share/java
--dest-jar=<path>: the destination for the real jar.
It will be installed with mh_install. [mh_install]
--classifier=<classifier>: Optional, the classifier for the jar. Empty
by default.
--site-xml=<location>: Optional, the location for site.xml if it needs
to be installed. Empty by default. [mh_install]
#

A commonly used line is pom.xml –no-parent –has-package-version. This means that
the <parent> tag is removed from the POM when building. The –has-package-version
option specifies that the original version of the POM is the same as the upstream part of
the package version.

This file can be customized within the build process of a new Debian revision. (Chapter
44.4, page 373).

If the pom.xml is in the root directory of the source code, mh_make creates the other
files for the debian/ directory.

In the Maven repository, the pom.xml file is often only provided separately. This file is
then placed in the debian/ directory.

Therefore, some entries in debian/rules (chapter 32.4.8, page 242 are required here.
After calling all debhelper (dh $@), the dh_auto_build is first overridden in a override

to perform some more preparatory configurations.
This includes copying files to the location where the build system needs them to build

the desired program.
45 ⟨maven-build 45⟩≡

override_dh_auto_build:
cp debian/pom.xml .
dh_auto_build

45

May 4, 2025

More Literature
1. https://wiki.debian.org/Java/MavenBuilder
2. https://wiki.debian.org/Java/MavenRepoSpec
3. https://wiki.ubuntu.com/JavaTeam/Specs/MavenSupportSpec
With apt-file find7 it can be determined whether there is a Debian package for an

artifactID. This function is also used by mh_make. The artifactID is located in the
pom.xml file from the upstream code.

See wiki.debian.org/Java/MavenPkgs/Unstable for a list of all Maven packages
already packaged in Debian. 8

13.4.3. Packaging with ant
The ant build system can be recognized by the fact that there is a build.xml file. 9

13.4.4. Packaging with gradle

13.5. Building Java Packages without build system
It is also possible to simply build a Java library from a directory of *.java files. This is
useful when only one or a few individual Java classes are needed from a larger program
package to satisfy build dependencies of other packages.

Thereby there is no build system for such a Java directory like the still to be described
ant (chapter 13.4.3, page 46 or maven (chapter 13.4.1, page 43.

46 ⟨java-builds 46⟩≡
export DH_VERBOSE=1
export DH_OPTIONS=-v

Class-Path: src/net/numericalchameleon/util/phoneticalphabets.jar
export CLASSPATH=/usr/share/java/sugar.jar

%:
dh $@ --with javahelper --sourcedirectory=src/net/numericalchameleon/util/

override_jh_build:

javac -encoding UTF-8
src/net/numericalchameleon/util/phoneticalphabets/*
jh_build
jar cvf src/phoneticalphabets.jar \
src/net/numericalchameleon/util/phoneticalphabets/*.class

javac -encoding UTF-8 src/net/numericalchameleon/util/spokennumbers/*
jh_build

7https://manpages.debian.org/unstable/apt-file/apt-file.1.en.html
8Thanks to Thorsten Glaser and the company Tarent https://www.tarent.de/for this support
9https://wiki.debian.org/Java/Packaging/Ant

46

https://wiki.debian.org/Java/MavenBuilder
https://wiki.debian.org/Java/MavenRepoSpec
https://wiki.ubuntu.com/JavaTeam/Specs/MavenSupportSpec
wiki.debian.org/Java/MavenPkgs/Unstable
https://manpages.debian.org/unstable/apt-file/apt-file.1.en.html
https://www.tarent.de/
https://wiki.debian.org/Java/Packaging/Ant

May 4, 2025

The javahelper package provides assistance for building with dh. This is highly
recommended for Java packaging.

Furthermore, the file debian/javabuild is required. This contains two columns.
Specify the *.jar file to be built in the first column and the source code directory

where the *.java files are located in the second column.
Example:

#NameOfJarFile SourceDirToPackage

The script allows to create this file (chapter 32.4.10, page 246.

47

14. Building Mozilla extensions

Packaging Mozilla extensions as Debian packages has the advantage for users and
administrators that extensions can be updated together with the main application.

Debian packages are installed centrally for all system users. The updates are also done
with the distribution’s package management system. It requires then only a tool for this
purpose.

These aspects are particularly relevant for security updates or new versions of the
applications.

This has the further advantage that all users work with the same version levels.

14.1. Sources of extensions
At addons.mozilla.org you can find extensions for Firefox published by Mozilla.

For the Thunderbird the extensions are published under addons.thunderbird.net.
These are there as .xpi archives. Provided these are source code packages, there are

not necessarily also separate source code archives. To build the .orig.tar.xz package from
source code archives of file type .xpi, the mozilla-devscripts package is required (chapter
18.1.3, page 58).

In the case of an .xpi file, special entries are required in the debian/watch file for repack-
aging. The .xpi format is a specially specified .zip archive. Below is the debian/watch
file for the Thunderbird extension Mailmindr.

49 ⟨watch4xpi 49⟩≡
version=4
opts=\
repack,compression=xz,\
uversionmangle=s/-?([^\d.]+)/~$1/;tr/A-Z/a-z/,\
filenamemangle=s/.+\/v?(\d\S+)\
.*/$1/, https://addons.thunderbird.net/en-US/thunderbird/addon/mailmindr/versions/ \ (\d.\d.\d)

49

addons.mozilla.org
addons.thunderbird.net

May 4, 2025

Sometimes you can also find source code releases from people and projects on, for
example, Github (github.com) or self-hosted sites. These can also be available as .tar.gz
or .zip archives.

From experience, the versions that have already been published in the addons archive
are not always promptly marked as new versions there.

14.2. Integration into file system
In order to build all desired Mozilla extensions in a uniform way, the required parts
of the script are realized as Webext plugin (chapter 45, page 377). This also ensures a
uniform integration into the system.

From the version (>=78.2) of Thunderbirds can be used exclusively Mail"=Extensions.
This is a break in the deployment of the respective extensions. The old (for TB <= 68.x)
extensions do not work anymore.

The extension must now be added to the /usr/share/webext directory with the name
(id) from the manifest.json file and stored as a zip archive with the extension (.xpi)
(chapter 45.2.4, page 381).

For this the file debian/rules is extended accordingly (chapter 45.2.2, page 379). In
addition, the files <packageName>.install (chapter 45.2.4, page 381) and <package
name>.links (chapter 45.2.6, page 382) must always be created so that Thunderbird.

50

github.com

15. Building Python Packages

51

16. Building metapackages

Metapackages are those Debian packages that depends on a group of packages. This
groups packages together where it makes sense to install them together.

Metapackages have some specific features.

16.1. No upstream source
Since there is no upstream source code, a metapackage does not need a file debian/watch.

16.2. Native Debian package
16.2.1. debian/source/format

16.2.2. debian/control

16.2.3. debian/rules

16.2.4. debian/changelog

53

17. Configuration for installation

17.1. debconf
Debconf is a configuration management system for Debian. This is used to retrieve
information for the installation from the user and then take it into account during the
installation. 1

With sudo dpkg-reconfigure debconf debconf can be configured itself. This also includes
the graphical user interface.

first step: https://wiki.debian.org/debconf
https://wiki.debian.org/debconf

17.2. dbconfig-common
Dbconfig-common provides a simple, reliable and consistent method for managing
databases used by Debian packages.

1https://wiki.debian.org/debconf

55

https://wiki.debian.org/debconf

18. System setup

It is assumed that an installed and running Debian system already exists. It does not
matter which branch (unstable, testing or stable) is running on it.

To sign the products of the program script, a GPG key of the user must be available
on the system. This should usefully be the key intended for the Debian repository.

This also applies when a virtual machine is set up and used for building.

18.1. Dependencies for the program script
The packages required to run the program script are listed in the headers of the same
(chapter 42.3, page 358).

Some of the included programs are described below:

18.1.1. General dependencies
The helpful programs listed below are regularly used by the script to build a Debian
package:
mk-origtargz from the devsripts package renames the original authors’ tarball, option-

ally changes the compression and removes unwanted files. Different options are
available for this[31] (see usage in chapter 31.4.6, page 203).

gbp import-orig from package git-buildpackage imports a new upstream version into
a Git repository (see usage in chapter 31.4.10, page 218).

dh_make from the dh-make package can create the required Debian files. Practice
shows that this is very incomplete and requires some manual work. Therefore, so
far we refrain from using this utility in the program script. (see chapter 12, page
39).

debmake -cc from the debmake package of the same name searches the source files for
copyright and license texts (see chapter 10.1.1, page 27). This command is used by
the program script to create the debian/copyright file. (see usage in chapter 32.4.5,
page 233).

gbp dch is also included in the git-buildpackage package. In the program script, dch
is related via gbp dch(see usage in chapter 34.1, page 277). Further options for dch
can be passed to gbp dch by --dch-opt=<dch-options>.

gbp import-orig from package git-buildpackage <p0> imports a new upstream version
into a Git repository (see usage in chapter <n0>, page <n1>).

lintian in lintian and dh_lintian in devscripts
uscan in devsripts
debsign in devscripts also for signing at sponsoring
dput in dputt resp. dput-ng
mh_make (Plugin)

57

May 4, 2025

18.1.2. Dependencies for building Java packages
The following dependency is required for building with build systems for Java packages.

58a ⟨Dependencies1 58a⟩≡
gradle-debian-helper, maven-debian-helper, libmaven-bundle-plugin-java,
⟨Dependencies5 58b⟩

18.1.3. Dependencies for the Mozilla extensions
If the Mozilla extensions source code is provided only as an *.xpi file, the following
package must be available on the machine for use by mk-origtargz.

58b ⟨Dependencies5 58b⟩≡ (58a)
mozilla-devscripts, zip

58

May 4, 2025

mozilla-devscripts
zip Description like zip for the Mozilla extension.

18.2. Create the file
18.2.1. Path to the projects
It makes sense to create the packaging projects each as subdirectories of a project
directory. An example of this project directory is:

~/Projekte/Git/01_Salsa

This path is deposited in each configuration file in the variable ProjectPath. Further-
more, this can be included in the variable DefaultProjectPath for many projects as a
default value in the file ~/.debian_project/DefaultValues (chapter 18.2.2.2, page 60)..

18.2.2. Configuration files
18.2.2.1. For every project

For each project an own configuration file is created. This is stored in the home directory
of the user in the directory .debian_project/ as file <project name>. Project-specific
information is stored in it.

The configuration file is technically a shell script, which is created and loaded by the
program script. This Shell script contains variables, to which there values are assigned.
The variables provided with values in the configuration file can be used by loading from
the program script.

Furthermore, the file contains comments. These can be created by the user as desired.
However, some of the comments are created by the program script. These contain a
property-value pair, which is structured like the assignment of a value to a variable. The
technical background is that the property name contains characters that are not allowed
to be used in the identifier of a variable.

If the configuration file exists, it is loaded first. (Chapter 30.1, page 159. One can edit
it then, if necessary. OtherwiseExists the configuration file, so it is loaded first. (Chapter
ls, this file is created by the script. (Chapter 29.1, page 109)

The following information is stored there:

!/usr/bin/bash
ConfigFile for <OrigName>
General parameters
SourceName
PackName
ProjectPath = ~/Projekte/Git/01_Salsa
SalsaName
Java-Package

SalsaName = java-team/<SourceName>.git
JavaFlag
MavenPluginFlag
MavenPluginPath

59

May 4, 2025

Maintainer =Maintainer=Debian_Java_Maintainers<u47> _@lt@pkg-java-main-
tainers@lists.alioth.debian.org@gt@

Uploader =Mechtilde_Stehmann_@lt@mechtilde@debian.org@gt@
Web-Extension-Packages

SalsaName = webext-team/
WebextFlag
Maintainer
Uploader

Python-Packages SalsaName = python-team/packages/
PythonFlag
Maintainer
Uploader

DefaultBranch
RecentBranch = debian/sid
RecentUpstreamSuffix = .tar.gz
RecentRepackSuffix = +dfsg | +ds
master_Dist
DownloadUrl
DownloadZip
Maintainer Mechtilde Stehmann <mechtilde@debian.org>
ExcludeFile

18.2.2.2. For many projects

In the ~/.debian_project/DefaultValues file, variables are assigned values that apply to
many projects.

60 ⟨DefaultValues 60⟩≡
#!/usr/bin/bash

HOME=/home/<user>/ DefaultProjectPath=${HOME}/Projekte/Git/01_Salsa

18.2.2.3. Fingerprint of the Maintainer-Key

In the directory ~/.debian_project/ there is also a file fingerprint which contains the
fingerprint of the maintainer key. This key is used to sign the packets. (Chapter ??, page
??)

18.2.3. .bashrc
The following entries must be included in the .bashrc file:

DEBFULLNAME="<Fullname of the Maintainer>"
DEBEMAIL="<Email addressof the Maintainers>"
export DEBEMAIL DEBFULLNAME

Various Debian tools recognize your email address and name using the shell environment
variables $DEBEMAIL and $DEBFULLNAME. 1

These entries are read by the DEBValues function. (Kapitel 29.4.1, Seite 136)
Also for dquilt the file .bashrc has to be added. (Chapter 18.5, page 70)

1Chapter 3.1 in [11]

60

May 4, 2025

18.3. Set up PBuilder
Gbp buildpackage uses cowbuilder . The cowbuilder command is a wrapper for pbuilder,
which allows the use of a pbuilder-like interface in a cowdancer environment .

18.3.1. Chroot
The pbuilder package contains programs to build and maintain a chroot environment.

Chroot means Change root
It is good practice to build Debian packages in a Chroot. This is to ensure that the

package can be built with the resources of the respective distribution.
When building a Debian package in this Chroot environment, the build dependencies

are checked to see if they can be met. This can also avoid FTBFS (Failed To Build From
Source) errors. Under certain circumstances, however, the following error messages may
still occur.

18.3.2. Configuration of the Pbuilder

First, the directory /var/cache/pbuilder/result must be created. This directory must be
writable for the user. After that the configuration of the pbuilder is done.

The configuration of pbuilder is not completely trivial, which may make troubleshooting
difficult. Therefore, we go into it in great detail here.

The default configuration is taken from the /usr/share/pbuilder/pbuilderrc file.

pbuilder defaults; edit /etc/pbuilderrc to override these and see
pbuilderrc.5 for documentation

Set how much output you want from pbuilder, valid values are
E => errors only
W => errors and warnings
I => errors, warnings and informational
D => all of the above and debug messages
LOGLEVEL=I
if positive, some log messagges (errors, warnings, debugs) will be colored
auto => try automatically detection
yes => always use colors
no => never use colors
USECOLORS=auto

BASETGZ=/var/cache/pbuilder/base.tgz
#EXTRAPACKAGES=""
#export DEBIAN_BUILDARCH=athlon
BUILDPLACE=/var/cache/pbuilder/build
directory inside the chroot where the build happens. See #789404
BUILDDIR=/build
what be used as value for HOME during builds. See #441052
The default value prevents builds to write on HOME, which is prevented on
Debian buildds too. You can set it to $BUILDDIR to get a working HOME, if
you need to.
BUILD_HOME=/nonexistent
MIRRORSITE=http://deb.debian.org/debian
#OTHERMIRROR="deb http://www.home.com/updates/ ./"
#export http_proxy=http://your-proxy:8080/
USESHM=yes
USEPROC=yes
USEDEVFS=no
USEDEVPTS=yes

61

May 4, 2025

USESYSFS=yes
USENETWORK=no
USECGROUP=yes
BUILDRESULT=/var/cache/pbuilder/result/

specifying the distribution forces the distribution on "pbuilder update"
#DISTRIBUTION=sid
specifying the architecture passes --arch= to debootstrap; the default is
to use the architecture of the host
#ARCHITECTURE=$(dpkg --print-architecture)
specifying the components of the distribution, for instance to enable all
components on Debian use "main contrib non-free" and on Ubuntu "main
restricted universe multiverse"
COMPONENTS="main"
#specify the cache for APT
APTCACHE="/var/cache/pbuilder/aptcache/"
APTCACHEHARDLINK="yes"
REMOVEPACKAGES=""
#HOOKDIR="/usr/lib/pbuilder/hooks"
HOOKDIR=""
EATMYDATA=no
NB: this var is private to pbuilder; ccache uses "CCACHE_DIR" instead
CCACHEDIR="/var/cache/pbuilder/ccache"
CCACHEDIR=""

make debconf not interact with user
export DEBIAN_FRONTEND="noninteractive"

#for pbuilder debuild
BUILDSOURCEROOTCMD="fakeroot"
PBUILDERROOTCMD="sudo -E"
use cowbuilder for pdebuild
#PDEBUILD_PBUILDER="cowbuilder"

Whether to generate an additional .changes file for a source-only upload,
whilst still producing a full .changes file for any binary packages built.
SOURCE_ONLY_CHANGES=no

additional build results to copy out of the package build area
#ADDITIONAL_BUILDRESULTS=(xunit.xml .coverage)

command to satisfy build-dependencies; the default is an internal shell
implementation which is relatively slow; there are two alternate
implementations, the "experimental" implementation,
"pbuilder-satisfydepends-experimental", which might be useful to pull
packages from experimental or from repositories with a low APT Pin Priority,
and the "aptitude" implementation, which will resolve build-dependencies and
build-conflicts with aptitude which helps dealing with complex cases but does
not support unsigned APT repositories
PBUILDERSATISFYDEPENDSCMD="/usr/lib/pbuilder/pbuilder-satisfydepends"

Arguments for $PBUILDERSATISFYDEPENDSCMD.
PBUILDERSATISFYDEPENDSOPT=()

You can optionally make pbuilder accept untrusted repositories by setting
this option to yes, but this may allow remote attackers to compromise the
system. Better set a valid key for the signed (local) repository with
$APTKEYRINGS (see below).
ALLOWUNTRUSTED=no

Option to pass to apt-get always.
export APTGETOPT=()
Option to pass to aptitude always.
export APTITUDEOPT=()

62

May 4, 2025

Whether to use debdelta or not. If "yes" debdelta will be installed in the
chroot
DEBDELTA=no

#Command-line option passed on to dpkg-buildpackage.
#DEBBUILDOPTS="-IXXX -iXXX"
DEBBUILDOPTS=""

#APT configuration files directory
APTCONFDIR=""

the username and ID used by pbuilder, inside chroot. Needs fakeroot, really
BUILDUSERID=1234
BUILDUSERNAME=pbuilder

BINDMOUNTS is a space separated list of things to mount
inside the chroot.
BINDMOUNTS=""

Set the debootstrap variant to 'buildd' type.
DEBOOTSTRAPOPTS=(

'--variant=buildd'
'--force-check-gpg'
)

or unset it to make it not a buildd type.
unset DEBOOTSTRAPOPTS

Keyrings to use for package verification with apt, not used for debootstrap
(use DEBOOTSTRAPOPTS). By default the debian-archive-keyring package inside
the chroot is used.
APTKEYRINGS=()

Set the PATH I am going to use inside pbuilder: default is
"/usr/sbin:/usr/bin:/sbin:/bin"
export PATH="/usr/sbin:/usr/bin:/sbin:/bin"

SHELL variable is used inside pbuilder by commands like 'su';
and they need sane values
export SHELL=/usr/bin/bash

The name of debootstrap command, you might want "cdebootstrap".
DEBOOTSTRAP="debootstrap"

default file extension for pkgname-logfile
PKGNAME_LOGFILE_EXTENSION="_$(dpkg --print-architecture).build"

default PKGNAME_LOGFILE
PKGNAME_LOGFILE=""

default AUTOCLEANAPTCACHE
AUTOCLEANAPTCACHE=""

#default COMPRESSPROG
COMPRESSPROG="gzip"

pbuilder copies some configuration files (like /etc/hosts or
/etc/hostname)
from the host system into the chroot. If the directory specified here
exists and contains one of the copied files (without the leading /etc) that
file will be copied from here instead of the system one
CONFDIR="/etc/pbuilder/conf_files"

These values may be overridden by values in the /etc/pbuilderrc file if necessary.
After a fresh install, the /etc/pbuilderrc looks like this:

63

May 4, 2025

this is your configuration file for pbuilder.
the file in /usr/share/pbuilder/pbuilderrc is the default template.
/etc/pbuilderrc is the one meant for overwriting defaults in
the default template
#
read pbuilderrc.5 document for notes on specific options.
MIRRORSITE=http://ftp.de.debian.org/debian/

I have set these up as follows:
this is your configuration file for pbuilder.

the file in /usr/share/pbuilder/pbuilderrc is the default template.
/etc/pbuilderrc is the one meant for overwriting defaults in
the default template
#
read pbuilderrc.5 document for notes on specific options.
adapt from Mechtilde - 2019-09-07 (analog wiki)
MIRRORSITE=http://ftp.de.debian.org/debian/
AUTO_DEBSIGN=${AUTO_DEBSIGN:-no}
HOOKDIR=/var/cache/pbuilder/hooks
Codenames for Debian suites according to their alias.
Update these when needed.
EXPERIMENTAL_CODENAME ="experimental"
UNSTABLE_CODENAME="sid"
TESTING_CODENAME="bookworm"
STABLE_CODENAME="bullseye"
STABLE_BACKPORTS_SUITE="$STABLE_CODENAME-backports"

In addition to the global configuration file /etc/puilderrc, a user-specific file ~/.pbuilderrc
can also be created. The contents of this file override the system-wide settings.
BINDMOUNTS is a space separated list of things to mount

inside the chroot.
BINDMOUNTS="/var/local/repository" # lokales Verzeichnis einbinden (mounten)
OTHERMIRROR="deb http://deb.debian.org/debian/ buster-backports main \
| deb [trusted=yes] file:///var/local/repository ./"
OTHERMIRROR="$OTHERMIRROR | deb file:///var/local/repository ./"
Fertige Pakete im lokalen Repository ablegen
BUILDRESULT=..

Added after reading:
https://lists.debian.org/debian-backports/2018/09/msg00021.html

List of Debian suites.
DEBIAN_SUITES=($UNSTABLE_CODENAME $TESTING_CODENAME \
$STABLE_CODENAME $STABLE_BACKPORTS_SUITE

"experimental" "unstable" "testing" "stable")

Mirrors to use. Update these to your preferred mirror.
DEBIAN_MIRROR="ftp.de.debian.org"

Added after reading https://wiki.debian.org/cowbuilder
BASEPATH="/var/cache/pbuilder/base.cow/"

In addition to the system-wide and user-specific configurations, package-specific con-
figurations of the pbuilder are also required. These files can be stored in the project
directory and read in with --configfile <configuration file>. This configuration will
overwrite any existing values. Here then the information to the projects can be stored,
if for these publications in the Backports branch are needed. This file is read after all
other configuration files.

64

May 4, 2025

See also page
https://wiki.debian.org/BuildingFormalBackports
the section #Advanced:_Building_multi-dependency_packages
This can also be added to the ~/.pbuilderrc file if it exists. As MIRROR a common

well accessible Debian mirror is specified. If available, the address of an existing local
mirror can also be entered here.

For the hook scripts, create a directory ~/.pbuilder/.

18.3.3. Set up Hooks
Hooks are scripts that do things at certain predefined points during the build process.
With the so-called hooks (hooks), the process in the build chroot can also be interrupted
at predefined positions to still be able to manually intervene in the process.

The Hook scripts are located in the ~/.pbuilder/ directory.
The name of the hook script determines at which point in the build process the hook

is executed.
The following conversation applies:

X<digit><digit><whatever-else-you-want-as-name>

Here it is important to specify the path and the file name used under <i0>CI/CD</i0>.
Unfortunately, the order in which the classes are executed in the build process does

not correspond to the alphabetical order.
A Is for the –build target. It is executed before the build starts. I.e. after unpacking the

build system, the source code and after the build dependency has been satisfied.
B Executed after the build system has successfully completed the build, before the build

result is copied back. - Interrupt after successful build
C Executed after a build failure, before cleanup. - Interrupt after failed build
D Runs before unpacking the source inside the chroot environment, after the chroot

environment is set up. Creates $TMP and $TMPDIR if necessary. This is called
before the build dependency is satisfied. Also useful for calling apt update. -
Ability to edit sources.list. <u4>[E] Runs after <i0>pbuilder –update</i0> and
<i1>pbuilder –create</i1> finishes apt-get’s work with the chroot, before the
kernel filesystem (/proc) is umounted and the tarball is created from the chroot.
<u5>[F] Is executed just before user logs in, or program starts executing, after
chroot is created in –login or –execute target. <u6>[G] Is executed just after
debootstrap finishes, and configuration is loaded, and pbuilder starts mounting
/proc and invoking apt install in –create target. <u7>[H] Is executed just after
chroot unpacks, mounting proc and any bind mount specified in BINDMOUNTS.
It is run for each target that needs the unpacked chroot. It is useful if you want
to dynamically change the chroot mount before anything starts using it. <u8>[I]
Runs after the build system has successfully a bcompleted the build, after copying
back the build results.

A Is for the --build target. It is executed before the build starts. I.e. after unpacking the
build system, the source code and after the build dependency has been satisfied.

B Executed after the build system has successfully completed the build, before the build
result is copied back. - Interrupt after successful build

65

https://wiki.debian.org/BuildingFormalBackports

May 4, 2025

C Executed after a build failure, before cleanup. - Interrupt after failed build
D Runs before unpacking the source inside the chroot environment, after the chroot

environment is set up. Creates $TMP and $TMPDIR if necessary. This is called
before the build dependency is satisfied. Also useful for calling apt update. - Ability
to edit sources.list.

E Runs after pbuilder --update and pbuilder --create finishes apt-get’s work with the chroot,
before the kernel filesystem (/proc) is umounted and the tarball is created from the
chroot. <u5>[F] Is executed just before user logs in, or program starts executing,
after chroot is created in --login or --execute target. <u6>[G] Is executed just after
debootstrap finishes, and configuration is loaded, and pbuilder starts mounting
/proc and invoking apt install in --create target. <u7>[H] Is executed just after
chroot unpacks, mounting proc and any bind mount specified in BINDMOUNTS.
It is run for each target that needs the unpacked chroot. It is useful if you want
to dynamically change the chroot mount before anything starts using it. <u8>[I]
Runs after the build system has successfully a bcompleted the build, after copying
back the build results.

18.3.4. Hooks - Examples
These are all in the directory: ~/.pbuilder/

18.3.4.1. Hook A

This hook could be named C10shell for example.
66 ⟨Hook-A 66⟩≡

#!/usr/bin/bash
example file to be used with --hookdir
#
invoke shell before build starts.

BUILDDIR="${BUILDDIR:-/tmp/buildd}"

apt-get install -y "${APTGETOPT[@]}" nano less
cd "$BUILDDIR"/*/debian/..
echo "Hook A - the dependencies are installed. Now the build can start."
echo "Please use CTRL-D to continue"
/usr/bin/bash < /dev/tty > /dev/tty 2> /dev/tty

66

May 4, 2025

18.3.4.2. Hook B

This hook could be named C10shell for example.
67a ⟨Hook-B 67a⟩≡

#!/usr/bin/bash
example file to be used with --hookdir
#
invoke shell if build fails.

BUILDDIR="${BUILDDIR:-/tmp/buildd}"

apt-get install -y "${APTGETOPT[@]}" vim less
cd "$BUILDDIR"/*/debian/..
echo "Hook B - The build was built successfully"
echo "You can check it with ls -la ../"
/usr/bin/bash < /dev/tty > /dev/tty 2> /dev/tty

18.3.4.3. Hook C

Here you can install packages that are required if the build fails.
This hook could be named C10shell for example.

67b ⟨Hook-C 67b⟩≡
#!/usr/bin/bash
example file to be used with --hookdir
#
invoke shell if build fails.

BUILDDIR="${BUILDDIR:-/tmp/buildd}"

apt-get install -y "${APTGETOPT[@]}" vim less mc unzip locate
cd "$BUILDDIR"/*/debian/..
echo "Hook C - The build wasn’t built successfully"
echo "After analysing the errors you can continue with using CTRL-D"
/usr/bin/bash < /dev/tty > /dev/tty 2> /dev/tty

67

May 4, 2025

18.3.4.4. Hook D

68a ⟨Hook-D 68a⟩≡
#!/usr/bin/bash
example file to be used with --hookdir
#
invoke shell before unpacking the source
inside the chroot

BUILDDIR="${BUILDDIR:-/tmp/buildd}"

apt-get install -y "${APTGETOPT[@]}" less nano
#cd "$BUILDDIR"/*/debian/..
echo "Hook D -"
echo "After unpacking the sources the dependencies"
echo "can be downloaded and unpacked."
echo "Please use CTRL-D to continue"
/usr/bin/bash < /dev/tty > /dev/tty 2> /dev/tty

18.3.4.5. Hook E

68b ⟨Hook-E 68b⟩≡
echo "Hook E"
echo "Please use CTRL-D to continue"
/usr/bin/bash < /dev/tty > /dev/tty 2> /dev/tty

18.3.4.6. Hook F

68c ⟨Hook-F 68c⟩≡
echo "Hook F"
echo "Please use CTRL-D to continue"
/usr/bin/bash < /dev/tty > /dev/tty 2> /dev/tty

18.3.4.7. Hook G

68d ⟨Hook-G 68d⟩≡
echo "Hook G"
echo "Please use CTRL-D to continue"
/usr/bin/bash < /dev/tty > /dev/tty 2> /dev/tty

68

May 4, 2025

18.3.4.8. Hook H

69a ⟨Hook-H 69a⟩≡
#!/usr/bin/bash
example file to be used with --hookdir
#
invoke shell if build fails.

BUILDDIR="${BUILDDIR:-/tmp/buildd}"

echo "Hook H"
echo "Executed after preparing the chroot \n and before installing the depencencies"
echo "Here you can include dependency from e.g a local repo for testing."
echo "Next the source code of the package to be built is unpacked."
echo "Please use CTRL-D to continue"
/usr/bin/bash < /dev/tty > /dev/tty 2> /dev/tty

18.3.4.9. Hook I

69b ⟨Hook-I 69b⟩≡
#!/usr/bin/bash
example file to be used with --hookdir
#
invoke shell if build fails.

BUILDDIR="${BUILDDIR:-/tmp/buildd}"

#apt-get install -y "${APTGETOPT[@]}" vim less
#cd "$BUILDDIR"/*/debian/..
echo "Hook I"
echo "Please use CTRL-D to continue"
/usr/bin/bash < /dev/tty > /dev/tty 2> /dev/tty

18.3.5. Alternative Chroot environment
It has proven useful to provide separate chroot environments for the different Debian
branches.

For this a copy of the directory /var/cache/pbuilder/base.cow is created. The file
/etc/apt/sources.lists can then be adapted accordingly.

When updating packages, it may be necessary to update dependencies of these packages
first. However, these are only available in the repo with a time delay. Here it can help
for the further tests already once the line

deb http://incoming.debian.org/debian-buildd buildd-unstable main

in the /etc/apt/sources.lists chroot. This makes the packages there available for
building in the pbuilder chroot.

69

May 4, 2025

18.4. More chroot systems
Besides building in an pbuilder chroot, there are other situations where using a separate
system can be useful. This is especially true for running mh_make. (Chapter 44.3, page
364)

This setup of a Maven chroot is described as an example:
First, install the debootstrap package if it is not already present.

sudo mkdir --parents /srv/maven-chroot

ein entsprechendes Verzeichnis angelegt. Die Chroot selber wird mit

sudo /usr/sbin/debootstrap --arch amd64 sid \
/srv/maven-chroot http://ftp.de.debian.org/debian

.[32]
After that, the root user can start a new root directory with the chroot command.
Die konkreten Befehle lauten (als root):

mount --options bind /proc /srv/maven-chroot/proc
mount devpts /dev/pts --types devpts
LANG=C chroot /srv/maven-chroot /usr/bin/bash

Die letzte Zeile startet die angelegte Chroot.
This user root can then no longer access files outside the new root directory.
The chroot environment can be removed again as follows:

sudo umount /srv/maven-chroot/proc # Unmount first!
sudo rm -rf /srv/maven-chroot/

18.5. Set up quilt for patching
With this script, dquilt is used for patching, among other things. This is a debian specific
customization for quilt .

To create this customization, the file .quiltrc-dpkg with the following content 2 is
needed:

70 ⟨DQuilt 70⟩≡
d=. ; while [! -d $d/debian -a ‘readlink -ev $d‘ != /]; do d=$d/..; done
if [-d $d/debian] &&[-z $QUILT_PATCHES]; then

if in Debian package tree with unset $QUILT_PATCHES
QUILT_PATCHES="debian/patches"
QUILT_PATCH_OPTS="--reject-format=unified"
QUILT_DIFF_ARGS="-p ab --no-timestamps --no-index --color=auto"
QUILT_REFRESH_ARGS="-p ab --no-timestamps --no-index"
QUILT_COLORS="diff_hdr=1;32:diff_add=1;34:diff_rem=1;\
31:diff_hunk=1;33:diff_ctx=35:diff_cctx=33"
if ! [-d $d/debian/patches]; then mkdir $d/debian/patches; fi

fi
2https://www.debian.org/doc/manuals/maint-guide/modify.html

70

https://www.debian.org/doc/manuals/maint-guide/modify.html

May 4, 2025

For manual operation, this also includes the entry in the ~/.bashrc file. This entry
looks like this:

is needed for patch tracking with Quilt
alias dquilt="quilt --quiltrc=${HOME}/.quiltrc-dpkg"
complete -F -quilt-completion $_quilt_complete_opt dquilt

Note that settings in the ~/.bashrc file are ignored when this program is executed. So
all necessary settings must be mapped completely in the script.

The use of quilt or dquilt is described in chapter Using Quilt (chapter 33.2, page 263).

71

19. Set up Git

19.1. Branches
The Git repository of a Debian package usually has at least the following branches:

• debian/sid
• Upstream
• pristine-tar
The branch debian/sid can also be called masteror main.
There can be an additional branch for experimental. Branches can also be created for

backports and update-proposal.
Such further branches can also be created by the program script. (Chapter 41.1, page

355)

19.2. Mergen
If merged from debian/experimental to debian/sid, a fast-forward merge is usually
performed.

This is the case when - as here - further updates were initially included in debian/ex-
perimental for testing, but then development is to be continued in debian/sid.

However, if changes have also been added to the debian/sid branch in the meantime,
only a recursive merge can be performed.

If necessary, some customizations, e.g. in the debian/ directory must be selected
individually and added to the respective branch (git cherry-pick).

A command line proven for this purpose is:

git cherry-pick --edit -x <commit>

If multiple commits are to be fed to the branch at once, the following command line
applies:

git cherry-pick --no-commit <commit> <commit> \dots

19.3. gbp.conf
The program script uses the applications from the Debian package git-buildpackage.

git-buildpackage (gbp) can and should be configured.
The configuration file gbp.conf is used to control this application. It can be placed at

different locations in the file system.

73

May 4, 2025

19.3.1. Sequence
The configuration files for gbp are read in the following order:

1. /etc/git-buildpackage/gbp.conf, the system-wide configuration file
2. ~/.gbp.conf, the user specific configuration file
3. debian/gbp.conf, configuration for the repository or branch
4. .git/gbp.conf, configuration for the local repository
All configuration files have the same format. 1

By setting the environment variable GBP_CONF_FILES this order can be overridden.
The content of this variable can be determined with echo $GBP_CONF_FILES. 2.

19.3.2. Sections in the gbp.conf
There are several sections in the gbp.conf. These sections are all optional.

For each gbp command3 a separate section can be created. In addition, there is a
section that applies to all commands

Some important sections are listed below.
[DEFAULT] Options specified in this section are applied to all gbp commands. 4

[import-orig] The options of this section overwrite those of the section [DEFAULT].
They are applied to the gbp import-orig command.

[pq] The options of this section are applied to the gbp pq command and override those
of section [DEFAULT].

[dch] The options of this section are applied to the gbp dch command and override the
options of the section [DEFAULT].

[buildpackage] The options of this section are applied to the gbp buildpackage command
and override the options of section [DEFAULT].

19.3.3. Syntax of the options
The options in the sections of gbp.conf are formed from the command line options. The
possible options for the individual gbp commands can be taken from the respective man
page.

These are specified without the introductory double minus sign. For example, --patch-
num-format=%02d_ as a command line option becomes patch-num-format=%02d_.

In the case of gbp buildpackage, git- must also be omitted5.
So the entry pbuilder-options=PBUILDER_OPTION in the gbp.conf corresponds to

--git-pbuilder-options=PBUILDER_OPTION.

19.3.4. Example
In the user’s home directory, a ~/.gbp.conf file can be created as follows, for example:

74 ⟨gbp.conf 74⟩≡

1[3], section Configuration Files and the Manpage for gbp-conf
2[3] Section Configuration Files/Overriding Parsing Order
3[3] Manpage for gbp-conf
4[3] Manpage for gbp-conf
5Manpage for gbp-conf [3]

74

May 4, 2025

[DEFAULT]
sign-tags = True
keyid for signing the package
keyid = 0x<keyid>
pristine-tar = True
If you want to use normally sbuild
builder = sbuild

[buildpackage]
postbuild = lintian $GBP_CHANGES_FILE
cleaner = /bin/true
If you want to use normally pbuilder
pbuilder = True
pbuilder-options = --source-only-changes --hookdir /home/mechtilde/.pbuilder

#[buildpackage]
use a build area relative to the git repository
export-dir=../build-area
to use the same build area for all packages use an absolute path:
#export-dir=/home/debian-packages/build-area

[dch]
id-length = 7

Options only affecting gbp pq
[pq]
#patch-numbers = False
The format specifier for patch number prefixes
#patch-num-format = ’
patch-num-format = ’
Whether to renumber patches when exporting patch queues
#renumber = False
renumber = True
Whether to drop patch queue after export
#drop = False

75

May 4, 2025

The /etc/git-buildpackage/gbp.conf file lists the configuration options.

19.4. Git repositories on own infrastructure
19.4.1. Local Git repository
The local Git repository is either created by the script (chapter 29.4, page 136) or
generated by cloning (chapter ??, page ??). Also, it can be created with gbp import-dsc
(chapter 29.6, page 155).

More branches can be added to it (chapter 41.1, page 355).

19.4.2. Own Git server
The local Git repository can also be "‘mirrored’" on its own Git server.

The setup of the server is done manually. The use of cgit orgitweb facilitate access.
In the program script the name or IP of the own Git server can be entered (chapter

41.2, page 356).
The "‘workflow"’ is then as follows: After creating the configuration file, the name or

IP of the own Git server is entered first (chapter 41.2, page 356) before starting to build
a new package (chapter 29, page 109).

The "‘finished’" package can then be uploaded to your own Git server (chapter 39.2,
page 336).

76

20. Salsa-Repositories

Salsa is the name of a collaborative development server for Debian, based on the GitLab
software. Salsa is intended to provide the necessary tools for collaborative development
for package maintainers, packaging teams, and other Debian-related individuals and
groups.[33]

Salsa provides all the features of GitLab. The service is available at https://salsa.
debian.org. There is documentation of the debian-specific idiosyncrasies [34], which
you should familiarize yourself with first.

20.1. Salsa-Konto anlegen
Creating an account on Salsa is very simple. One calls the page https://salsa.debian.
org/users/sign_up, which is self-explanatory.

20.2. Creation of a Salsa-Repository
A Git repository on salsa.debian.org is not set up by the program script.

After login and authentication to <i0>https://salsa.debian.org</i0>, a new repository
can be created there in the respective team.

For the creation of new projects on https://salsa.debian.org appropriate rights
are required. These can be the rights of a Debian Developer. For team-supervised
projects, these rights can also be assigned to other persons by the supervisors.

A description of the creation of a project in the Java team is given in chapter 20.3,
page 78.

After logging in to the https://salsa.debian.org page and selecting the appropriate
project for the new package, clicking on the New Project button calls the corresponding
page. There you enter the project name. This is usually the name of the source code
package. As visibility level Public is selected. Then the button Create project follows.

On the following web page there are some more explanations. Much of it is first created
locally with the program described.

In the left navigation bar, in the Settings area, further configurations are now made
for the project.

Here it is important to specify the path and the file name used under CI/CD.
CI stands for Continuous Integration
CD stands for Continuous Delivery

The file used here is called salsa-ci.yml (chapter 32.4.9, page 246) in the debian/
directory.

The build script enters the salsa repository as "‘remote repository’" and reminds the
user to attach to salsa.debian.org (chapter 29.4.2, page 147)

77

https://salsa.debian.org
https://salsa.debian.org
https://salsa.debian.org/users/sign_up
https://salsa.debian.org/users/sign_up
https://salsa.debian.org
https://salsa.debian.org

May 4, 2025

20.3. Salsa-repository for the Java team
Salsa repositories that are assigned to a special project (such as the Java team) should
be created as uniformly as possible. Often a script is provided by the project, which
should be used for this purpose.

To do this, change to the desired team directory.

Figure 20.1.: Information about Java-Teama

.
aSource:https://salsa.debian.org/java-team/

20.3.1. Source of the Script
Under

https://salsa.debian.org/java-team/pkg-java-scripts/blob/master/setup-salsa-repository

the script of the Java team can be downloaded. It is also attached in the appendix
(chapter 47.1, page 387).

20.3.2. Dependencies
This setup script uses jq. jq is a lightweight and flexible JSON processor for the command
line. It has minimal runtime dependencies. There is a Debian package of the same name.
This package must be installed locally (chapter 18.1.2, page 58).

20.3.3. Get access token
A project specific token is still needed for the customization.

After logging in to salsa.debian.org, Preferences is selected from the user’s dropdown
menu. This will bring up the logged in user’s User Preferences page.

In the left bar there is now the entry access token. There the page https://salsa.debian.org/profile/personal_access_tokens
is called to create such a token. It is generated anew for each project.

78

https://salsa.debian.org/java-team/
https://salsa.debian.org/java-team/pkg-java-scripts/ blob/master/setup-salsa-repository

May 4, 2025

Figure 20.2.: Create access tokena

aSource:https://salsa.debian.org

There the name of the project to be created is entered. Furthermore, an expiration
date for the token is entered. Afterwards the validity range of the token is specified. As
Scope api is to be selected here. By clicking on the Create personal access token button,
the access token appears at the top of the page.

20.3.4. Register token
The generated token is to be entered into the script as SALSA_TOKEN. The comment
character is to be removed

It seems to make sense to store this script in the project directory in each case.

20.3.5. Call script
The script is now called with the name of the new project (package) as parameter:

./setup-salsa-repository.sh <packagename>

After that the following messages are output (using the BeanValidationApi example):

./setup-salsa-repository.sh beanvalidation-api
Creating the beanvalidation-api repository\dots
Configuring the BTS tag pending hook\dots
Configuring the KGB hook\dots
Configuring email notification on push\dots

Done! The repository is located at
https://salsa.debian.org/java-team/beanvalidation-api

79

https://salsa.debian.org

May 4, 2025

If only the first line appears, check the script used (see chapter 47.1, page 387) and
tokens.

20.4. Tasks on salsa.debian.org
20.4.1. Merge Request
Sometimes there are also so-called merge requests, in which others provide patches.

On salsa.debian.org there is then an entry "‘Merge-Requests"’ in the left navigation
bar. There this can then be edited.

This is done by clicking the commit message.

80

21. Packaging beyond the branch Unstable

There are several reasons why it is allowed and encouraged to deviate from the general
way of packaging new upstream versions exclusively for Unstable = sid. The program
script also allows this (chapter 36, page 309).

The developer reference [9] refers to uploading to the Stable and Oldstable distributions
as a "‘special case’". 1

A major reason is the presence of a serious error or a security problem. Serious errors
in a package are usually reported by an appropriately classified error report.

Another deviation from the general rule exists regarding the packages of the Mozilla
suite, Firefox and Thunderbird. These packages will also be made available as Security
Updates (chapter 21.1, page 82) for the Stable release promptly after their upstream
release for the ESR = Extended Support Release version.

This can result in incompatibilities with the then current version in the Stable release,
e.g. for the extensions, described here as a web extension (chapter 14, page 49). This is
also a reason to update the Stable release (see also chapter 21.2, page 82).

In addition, it is often desirable to use more up-to-date versions of desktop applications
in a stable operating system environment. For this purpose, the desired packages are
made available as so-called backports (i.e. backports). (see chapter 21.3, page 84)

There are also good reasons to upload packages to Experimental (also called rc-buggy)
first. This is especially true for new packages. During the period when existing versions
are "‘frozen’" and only bug fixes are allowed for the next release, new versions are often
uploaded in advance to Experimental. (see chapter 21.5, page 84).

1Chapter 5.5.1 in the Developer Reference[9]

81

May 4, 2025

Figure 21.1.: Workflows [35] a

a©2016 Antoine Beaupré anarcat@debian.org, CC-BY-SA 4.0

21.1. Security-Updates
It is important to backport changes to source code files because of security issues.

Whenever a security issue becomes known, the maintainer should work with the security
team to provide a corrected version for the Stable or Oldstable release. The bug fix should
be targeted. Further information can be found in the chapters 3.1.2 and 5.8.5 of the
Debian Developer Reference[9].

21.2. (Old-)Stable-Proposal
If packages with serious bugs that do not affect IT security are to be updated, this can
be done in Proposed updates under certain conditions. The same applies with regard to
extensions for Firefox and Thunderbird.

The following have been mentioned as criteria for adding packages to stable-updates 2:
• The update is urgent and not security relevant. The security updates are done in

the way mentioned above (chapter 21.1, page 82).
• The package in question is a data package, and the data must be updated in a

timely manner (e.g., tzdata).
• Corrections to packages that are affected by external changes and on which no

other or only a few other packages depend.
• Packages that need to be up to date to be useful (e.g. clamav).
Anyone who believes that the requested update meets these criteria should confidentially

contact the release team via the debian-release@lists.debian.org mailing list, and explain
that this update should also be done via stable-updates.

2https://lists.debian.org/debian-devel-announce/2011/03/msg00010.html

82

https://www.debian.org/doc/manuals/developers-reference/developer-duties.de.html#maintain-packages-in-stable
https://www.debian.org/doc/manuals/developers-reference/pkgs.de.html#bug-security
https://lists.debian.org/debian-devel-announce/2011/03/msg00010.html

May 4, 2025

The package intended for backporting this way should have already been released in
Unstable or better yet in Testing.

While backports are collected in a separate repository, Proposed updates are added to
the Stable Proposed repository. These packages are uploaded to Stable by the Debian
developers. This applies to oldstable-proposed updates accordingly. They will be
published in the next point release.

21.2.1. Bug report
A necessary prerequisite is also here first a meaningful error report (bug report) (see also
chapter 22, page 87).

This error report requires the following parameters:

Package: release.debian.org
Severity: normal
Tags: <ReleaseName>
User: release.debian.org@packages.debian.org
Usertags: pu

This bug report is generated against the release.debian.org pseudo package. The
severity of such a bug report is generally at most normal. The subject will list the name
of the package being built for proposed-updates.

Proposed updates are only allowed under special circumstances, as outlined. The
Release Team will decide whether to release.

Therefore, the bug report must contain a reason why this version should be updated
in stable. If there is already an associated bug number, it must be provided. This bug
report must have a severity of important or higher.

21.2.2. Requirements for a patch
It should be possible to fix an error with a patch that is as small and accurate as possible.
This is to prevent new errors from arising. Also, no new dependencies should be added.
It must also be taken into account which other packages depend on this package. 3

These matching patches are documented with debdiff <PreviousPackage>.dsc <New-
Package>.dsc > <filename>.txt. It specifies the difference that should be made between
the current package version in stable/oldstable (previous package) and the version that
should be uploaded (new package). How to do this with the program script is described
in chapter 37.6.1 (page 319).

21.2.3. Dependencies for Mozilla packages
A sufficient justification for Webextensions may also be the exception for the packages of
the Mozilla suite mentioned above (see chapter 21, page 81).

For these extensions namely incompatibilities with the then current version of Firefox
orThunderbird in the Stable release can arise. Then the previous versions are unusable,
which is a considerable problem, especially in production use. (Chapter 36, page 309)

3Chapter 5.5.1 in the Developer Reference[9]

83

May 4, 2025

21.3. Stable-Backports
To be able to build packages for backports, some preparations have to be made.

Often such a package cannot be easily built in an Stable environment.
Then further packages from backports are needed. Packages from backports are not

automatically installed in such a chroot.
Therefore it is necessary to enable such an installation in /etc/apt/preferences.
For this purpose hooks are used in the pbuilder (chapter 18.3.3, page 65).
https://wiki.debianforum.de/Pbuilder_-_personal_package_builder

21.4. Backports-Repository
The packages for the unstable branch are built regularly, and from there - provided no
errors are found - they are transferred to the testing branch. On release, the testing
branch is first frozen and then becomes the new stable branch. A new testing branch is
then opened.

If program versions from testing or (exceptionally 4) also from unstable are transferred
to an earlier release, this is called backporting.

Due to the practice oriented release cycles of the stable Debian version, it is sometimes
desirable to have software packages or newer versions from testing also available under
stable.

The backports repository is used for this purpose.
Versioning (e.g. +deb9u1)
Backports are available for the stable and oldstable release.

21.5. Experimental

21.6. Backporting of unfamiliar packages
pristine-tar NMU Dependencies from Backports

Reference to (Chapter ??, Page ??) 5 for release after Proposed updates for Stable or
Old-Stable.

21.7. Versioning
The cause or origin of the upgrade also affects the versioning. It must be ensured that
dpkg can correctly interpret newer versions as upgrades. A look at the next expected
version number can help..

When building for experimental, the following version entry is recommended in the file
debian/changelog:

<version number>-<revision number>~exp<sequential number>
The revision number is usually: 1
When building for Proposed updates, there are two cases to distinguish..

4usually only security updates
5[9] Section upload-stable

84

https://wiki.debianforum.de/Pbuilder_-_personal_package_builder

May 4, 2025

Case A A version existing in the Stable release is to be corrected while retaining this
version number.

Case B Exceptionally, a new version is to be included in the release.
For the version entry in debian/changelog it is mandatory to use the following
nomenclature:

Case A <original version and revision number> +deb<Debian release number>u<revision
number of the update>

Case B <version and revision number from unstable/testing>~deb<Debian release num-
ber>u<revision number of update>.
Using the ~causes the version in Stable to be smaller than the one in Testing (for
the next release). This secures the update path.

85

22. An email for the start

Before packaging with the goal of publishing in the Debian repository can begin, an
email is required. This triggers a "‘bugreport’", whose number is to be noted in the
file debian/changelog. By the publication of the package this bug report is to be closed
namely then.

For more information, visit https://www.debian.org/devel/wnpp/

22.1. ITP - Intent To Package
ITP means "‘Intent to Package"’. This means that this package is being worked on.

This is the name of a bug report created against the WNPP package, which means
Work-Needing and Prospective Package. This can be translated as Work-Needing and
Prospective Package.

This should be announced in good time. Maybe there are still hints what to consider
with the planned package. Also, this prevents different groups from trying to package
this package for Debian.

One possibility is to do this with the reportbug tool installed on every Debian system.
But there is also the possibility to simply use an email template. The following template
is based on the itp_template with which reportbug creates this email.

To: submit@bugs.debian.org
Subject: ITP: <Source Name> - <Short Description>
Package: wnpp
Severity: wishlist

* Package name : <Package Name>
Version : x.y.z
Upstream Author : Name <somebody@example.org>

* URL : http://www.example.org/
* License : (GPL, LGPL, BSD, MIT/X, etc.)
Programming Lang: (C, C++, C#, Perl, Python, etc.)
Description : <Short Description>

(Include the long description here.)

<And answer following questions:>

* Why is this package useful/relevant?
* Is it a dependency for another package?

87

https://www.debian.org/devel/wnpp/

May 4, 2025

* Do you use it yourself?
* If there are other packages providing similar functionality, how does it compare?
* How do you plan to maintain it? Do you plan to maintain it inside a packaging team? (check list at https://wiki.debian.org/Teams)
* Are you looking for co-maintainers? Do you need a sponsor?

The text in the first line after the To: goes in the address line. The text in the second
line after the Subject: goes in the subject line, with the placeholders replaced by the
name of the source code and a short description.

If the package is uploaded, this number from the bug tracking system must be noted
in the debian/changelog (Closes:#XXXXXXXX)

22.2. RFP - Request For Package
RFP means Request for Package. This means that such a package is desired in Debian.

I once created an email template for this as well.

To: submit@bugs.debian.org
Subject: RFP: <Sourcecode Name> - <Short Description>
Package: wnpp
Severity: wishlist

* Package name : <Package Name>
Version : x.y.z
Upstream Author : Name <somebody@example.org>

* URL : http://www.example.org/
* License : (GPL, LGPL, BSD, MIT/X, etc.)
Programming Lang: (C, C++, C#, Perl, Python, etc.)
Description : <Short Description>

(Include the long description here.)

<And answer following questions:>

* Why is this package useful/relevant? Is it a dependency for another package?
* Do you use it yourself?
* If there are other packages providing similar functionality, how does it compare?
* How do you plan to maintain it? Do you plan to maintain it inside a packaging team? (check list at https://wiki.debian.org/Teams)
* Are you looking for co-maintainers? Do you need a sponsor?

Again, the text in the first line after the To: goes in the address line. The text in the
second line after the Subject: goes in the subject line, with the placeholders replaced by
the name of the source code and a short description.

88

May 4, 2025

22.3. ITA - Intent To Adoption
This is used when a package that is marked with "‘O"’ or "‘RFA"’ is to be taken over.

For this purpose, the previous error report must be renamed and "‘O"’ or "‘RFA"’ must
be replaced by "‘ITA"’.

In doing so, you enter yourself as the owner.
If a bug report is to be renamed or the owner changed, this must be done by email to con-

trol@bugs.debian.org or directly to the bug report via the number (xxxxxx@bugs.debian.org)1.
A structured pseudo header must be used. 2

22.4. RFA - Request for Adoption

22.5. RFH - Request For Help

22.6. O - Orphaned

22.7. RFS - Request For Sponsor
As described on https://mentors.debian.net/sponsor/rfs-howto, the template was
adjusted.

To: submit@bugs.debian.org
Subject:
ITP: <Package Name> - <Short Description>
Package: sponsorship-request
Severity: normal [important for RC bugs, wishlist for new packages]

Dear mentors,

I am looking for a sponsor for my package "<Source Name>":

* Package name : <Source Name> Version : x.y.z
Upstream Author : Name <somebody@example.org>
* URL : http://www.example.org/
* License : (GPL, LGPL, BSD, MIT/X, etc.)
Programming Lang: (C, C++, C#, Perl, Python, etc.)
Description : <Short Description>

It builds those binary packages:

<Name of the Binaries>

To access further information about this package, please visit the following URL:

1https://www.debian.org/devel/wnpp/
2https://www.debian.org/Bugs/Reporting#control

89

https://mentors.debian.net/sponsor/rfs-howto
https://www.debian.org/devel/wnpp/
https://www.debian.org/Bugs/Reporting#control

May 4, 2025

https://mentors.debian.net/package/<package name>

Alternatively, one can download the package with dget using this command:

dget -x https://mentors.debian.net/debian/pool/main/<p>/<package name>/<package name>_x.y.z.dsc

Changes since the last upload: [your most recent changelog entry]

Regards,

22.8. Changes to the bug report
In the course of such a process it may happen that changes have to be made to the bug
report. Such a change can be a change of the maintainer, the title or something else.

For this purpose the commands of the control email server are used. The description
of this can be found at https://www.debian.org/Bugs/server-control

This can also be done with a defined structured email. It will be sent to con-
trol@bugs.debian.org. The subject should be

For the change of the title, an additional line is then added as follows.

Control: retitle -1 <neuer Titel>

added.
The following line is added for the maintainer change:

Control: owner -1 <Neuer Maintainer or wnpp@debian.org>

If necessary, an erroneously closed report must be reopened. This is done with

Control: reopen bugnumber [address of the author | = | !]

22.9. usertags added
In the course of a maintainer’s life it happens again and again that error messages must
or should be tagged.

For example, it is helpful for so-called bug squashing parties to also mark the planned
and executed bug fixes.

For this, an email is written to the bug report. Address is then <bugnumber>debian.org.
At the same time this mail should also go CC to controlbugs.debian.org.

At the beginning of such an e-mail is then:

user debian-release@lists.debian.org
usertags -1 + <Title of the BSP>
thank you

90

https://www.debian.org/Bugs/server-control

23. Set up report bug

The Comand-Line interface is already part of the basic installation. In addition, a
graphical user interface can be installed with the package reportbug-gtk.

91

24. Autopkgtest

93

25. Reproducible builds

25.1. Configuration of sbuild
After installing the required packages:

sudo apt install sbuild schroot debootstrap apt-cacher-ng devscripts

the configuration file sbuild is created[SBuild2022].
This is done by copying the following section to the ~/.sbuildrc file. These settings

make it possible to avoid long command line options for typical workflows and run all
tests after build.

95a ⟨.sbuild.rc 95a⟩≡
##
PACKAGE BUILD RELATED (additionally produce _source.changes)
##
-d
$distribution = ’unstable’;
-A
$build_arch_all = 1;
-s
$build_source = 1;
--source-only-changes (applicable for dput. irrelevant for dgit push-source).
$source_only_changes = 1;
-v
$verbose = 1;
⟨.sbuild.rc5 95b⟩

Adapt parallel=5 to the resources of your system.
95b ⟨.sbuild.rc5 95b⟩≡ (95a)

parallel build
$ENV{’DEB_BUILD_OPTIONS’} = ’parallel=5’;
⟨.sbuild.rc6 95c⟩

If instead the variable $run_lintian is set to 0, the execution of lintian is disabled.
Any post-build package test function can be turned off by setting the corresponding

variable to 0.
95c ⟨.sbuild.rc6 95c⟩≡ (95b)

##
POST-BUILD RELATED (turn off functionality by setting variables to 0)
##
$run_lintian = 1;
$lintian_opts = [’-i’, ’-I’];
⟨.sbuild.rc7 96a⟩

95

May 4, 2025

If the variable $run_piuparts is set to 0, the execution of piuparts is disabled.
96a ⟨.sbuild.rc7 96a⟩≡ (95c)

$run_piuparts = 1;
$piuparts_opts = [’--schroot’, ’unstable-amd64-sbuild’];
⟨.sbuild.rc8 96b⟩

The ’--no-eatmydata’ option for piuparts is needed when configuring schroot with
"command-prefix=eatmydata" in /etc/schroot/chroot.d/unstable-amd64-sbuild-*. Then it
must be added at the end – after a comma.

If you set the $run_autopkgtest variable to 0 instead, autopkgtest execution is disabled.
96b ⟨.sbuild.rc8 96b⟩≡ (96a)

$run_autopkgtest = 1;
$autopkgtest_root_args = ’’;
$autopkgtest_opts = [’--’, ’schroot’, ’%r-%a-sbuild’];

%r-%a-sbuild’];
PERL MAGIC ## 1;

For more options, see the sbuild.conf man page.
Besides this, the user must be set up with

sudo sbuild-adduser \$LOGNAME

n the sbuild group. This will add your username so that it can use the sbuild command.
The following message appears after the user is set up:

Now try a build:

cd /path/to/source sbuild-update -ud <distribution> (or "sbuild-apt <distribution> apt-get -f install" first if the chroot is broken) sbuild -d <distribution> <package>_<version>

This means that sbuild-adduser copies the sbuild template configuration in /usr/share/-
doc/sbuild/examples/example.sbuildrc to each user’s ~/.sbuildrc to use as the sbuild
configuration for that user. The sbuild settings can be customized here. Usually, however,
no adjustments are necessary. If they are, they should be done once per user.

The creation of the Sbuild chroot is described in chapter 34.5.1 (page 295).

25.2. reprotest

96

26. piuparts

97

27. Overcome difficulties

27.1. Unfreeze a package
One difficulty arises from the fact that there is a period of time before a scheduled release
when packages no longer automatically migrate from unstable to testing.

In the full ‘freeze’, all packages that are yet to migrate from unstable to testing require
an unblock by the release team.[36]. This must be requested with an unblock bugreport.

27.1.1. Request for unblocking
To do this, first create a file with debdiff (see also chapter 21.2, page 82).

This creates the difference between the version in testing (old version) and Unstable
(new version) with the respective dsc.

This difference file should be checked to make sure that it does not have any unimportant
changes for the desired fix.

Then, using the reportbug tool, a bug report is generated against the release.debian.org
package and the difference file is attached. This bug report contains a detailed justification
for the changes and references to bug numbers. Likewise, it contains a concise description
of the problem that was fixed.

The following questions should be addressed.

Package: release.debian.org
User: release.debian.org@packages.debian.org
Usertags: unblock
Severity: normal

Please unblock package <source name>

(Please provide enough (but not too much) information to help the release team to judge the request efficiently. E.g. by filling in the sections below.)

[Reason] (Explain what the reason for the unblock request is.)

[Impact] (What is the impact for the user if the unblock isn't granted?)

[Tests] (What automated or manual tests cover the affected code?)

[Risks] (Discussion of the risks involved. E.g. code is trivial or complex, key package vs leaf package, alternatives available.)

[Checklist] [] all changes are documented in the d/changelog [] I reviewed all changes and I approve them [] attach debdiff against the package in testing

[Other info] (Anything else the release team should know.)

99

May 4, 2025

27.2. Fix release critical bugs
Before a new release, it is often necessary to help maintainers fix bugs that prevent the
package from being released.

This often happens at events organized for this purpose 1.
Under https://www.debian.org/doc/manuals/developers-reference/pkgs.html#

non-maintainer-uploads-nmus the desired procedure is described.
It is essential that in the file debian/changelog (chapter 34.1, page 277 a corresponding

entry is made in the second line.

* Non-maintainer upload

27.3. Remove package from repository
The developer reference 2 also describes how to remove a package.

To do this, it must first be determined that no other package requires this as a
depídency.

27.3.1.
A bug report must now be generated for the execution.

1https://wiki.debian.org/BSP
2[9], Section 5.9 Remove packages

100

https://www.debian.org/doc/manuals/developers-reference/pkgs.html#non-maintainer-uploads-nmus
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#non-maintainer-uploads-nmus
https://wiki.debian.org/BSP

Part III.

How a shell script helps to build a
Debian package

101

28. First steps in the program script

Now we start with the program script. This helps to build a Debian package and supports
the upload of the same. Thereby the program flow gives a purposeful sequence of the
necessary steps. The program script builds thus no Debian packages, but supports as an
assistant the Maintainer. This is also explicitly pointed out in the initial dialog. (Chapter
28.2, page 104)

The prerequisite is that all required packages are installed and the system is set up
accordingly (chapter 18, page 57).

The program script has a modular structure, so that one can "get out" at many points
and "get in" again later. So you don’t always have to carry out the building process "‘in
one go"’ until completion.

The program flow visible to the user starts in any case with a start dialog (chapter
28.2, page 104).

Building a new Debian package first requires creating a new project (chapter 29, page
109).

All the following points are at least essentially taken care of by the program script.
Configuration file The program requires a configuration file (chapter 29.1, page 109),

which is initially created by the program script. This can be changed at any time.
System setup To build a Debian package, the following preparatory tasks, among others,

must be performed:
Providing the required directories Creating the directories is described in chapter

29.2.2, page 131.
Setting up a Git repository Setting up the local Git repository (chapter 29.4, page

136) must be done before running gbp import-orig (chapter 31.4.10, page 218)
Providing the source code This is described in chapter 31.3, page 182.
Providing the required files in the debian/ directory Creating the files in the debian/

directory is done as part of building the Debian revision (chapter 32, page 225).
Build This is described in Chapter 34, page 277
Test – as much as possible This is described in Chapter 37, page 311.
Upload This is described in chapter 40, page 337.

It’s a long way to uploading. But as we all know, even the longest way begins with the
first step. It should still be noted that the program script is operated keyboard-driven
(with the TAB key). Control with the mouse can lead to unexpected effects.

28.1. The beginning is at the end
The program script contains many functions.

The main program simply calls the BuildApp function. It is at the end of the program
script.

103

May 4, 2025

104a ⟨MainProgram 104a⟩≡ (157)
##############
Here it starts
BuildApp

##############
This is the end, my friend

28.2. And this is what the user sees first.
The BuildApp function essentially controls the program flow by calling other functions.

The first thing it does is present the program to the user.
104b ⟨BuildApp 104b⟩≡ (107)

function BuildApp{
Called by main program

##############

Intro

##############

intro="Assistent to build simple Debian packages\n
using git-buildpackage\n
Authors: Mechtilde Stehmann\n

Michael Stehmann\n
Version: 0.8.4\n
License: GPL v3+\n
This program does not build Debian packages itself.
It is only an assistent for the package maintainer."

whiptail --title "Introduction" --msgbox "$intro" 20 60

⟨BuildApp3 105⟩

104

May 4, 2025

The following welcome dialog appears for this purpose..

Figure 28.1.: Start screen

Then this function queries the name of the corresponding project with the AskOrigName
function (chapter 28.3, page 106).

105 ⟨BuildApp3 105⟩≡ (104b)
Definitions of Project
AskOrigName
CreateDirsAndLogFile

Flag for additional gbp buildpackage options
OptFlag=0

##############

End of intro

⟨BuildApp7 132a⟩

105

May 4, 2025

Finally, this function BuildApp checks the existence of the necessary local infrastructure
(configuration file (chapter 29.1, page 109), directories (chapter 29.2.2, page 131), Git
repository (chapter 30.4, page 163)) and takes care of their creation if necessary.

28.3. Request project name
The project name of an existing project is now queried or specified for a new project.
The insertion of the project name can also be done by Copy & Paste. This possibility is
a special feature of whiptail.

106a ⟨AskOrigName 106a⟩≡ (171)

function AskOrigName {
Called by BuildApp ConfigFileLEC and itself

Name of the project (without this name the app cannot work)
OrigName=$(whiptail --title "This name is required!" \
--inputbox "Name of the project:" \
--cancel-button "Exit" 15 60 3>&2 2>&1 1>&3)

⟨AskOrigName1 106b⟩

Figure 28.2.: Specification of the project name.

A whiptail --inputbox requires redirections of the output using file identifiers (3>&2
2>&1 1>&3).

106b ⟨AskOrigName1 106b⟩≡ (106a)
if [$? -ne 0]
then whiptail --title "Bye" --msgbox "Bye" 15 60

exit
fi

⟨AskOrigName2 107⟩

106

May 4, 2025

Figure 28.3.: Bye

Only the first three file identifiers (starting with 0) have a standardised meaning:
• 0 - stdin - standard input
• 1 - stdout - standard output
• 2 - stderr - standard error display
If the project already exists, it continues with the display of the configuration file

(chapter 30.1, page 159), the selection of a Git branch (chapter 30.4, page 163) and then
the task selection (chapter 30.5, page 171).

If no project name is entered, a note is displayed. The entry of a project name is
mandatory. With Exit the programme is terminated.

107 ⟨AskOrigName2 107⟩≡ (106b)
if [-z "${OrigName}"]
then whiptail --title "No project name" \

--msgbox "You have to identify a project name\n \
even it is a new project!" 15 60
AskOrigName

fi
ConfigFileLEC

}

⟨BuildApp 104b⟩

107

May 4, 2025

Figure 28.4.: No project name specified.

After confirming OK, the input dialogue is displayed again.

28.4. Next steps
The next steps now depend on whether a configuration file already exists for the project,
as described in chapter 18.2.2.1, page 59.

In this case it is “loaded” (chapter 30.1, page 159).
Otherwise, the configuration file is created again.

108

29. Create a new project

To create a new project first the configuration file and the necessary infrastructure are
created.

29.1. Create configuration file
The configuration file is stored in the user’s home directory in the .debian_project/
directory as the <project name> file.

109a ⟨ConfigFileLEC 109a⟩≡ (129)
function ConfigFileLEC {

Called by AskOrigName CreateNewBranch TaskSelect OwnServer

Load, edit or create config file - using AskConfig

Path to config files directory
ConfigPath=~/.debian_project/
changeflag=0

⟨ConfigFileLEC1 159⟩

The function ConfigFileLEC checks first whether a configuration file with the project
name exists. If the result of the check is negative, the message occurs that no configuration
file with this name could be found.

109b ⟨ConfigFileLEC4 109b⟩≡ (161)
else

if whiptail --title "Config file not found" \
--yesno "There is no config file for ${OrigName}\n \
which you can edit.\n \
Do you want to create a new project?" \
--yes-button "Yes" --no-button "No" 15 60
then

changeflag=1 ⟨ConfigFileLEC5 110⟩

109

May 4, 2025

Figure 29.1.: No configuration file found.

A whiptail –yesno returns 0 or true if the question is affirmative, and 1 or false if it is
negative.

If this question is answered in the affirmative, the directory .debian_project is also
created as a precautionary measure as ConfigPath, if it does not already exist. Then the
function AskConfig is called, which creates the configuration file.

110 ⟨ConfigFileLEC5 110⟩≡ (109b)
mkdir --parents ${ConfigPath}
AskConfig

else
AskOrigName

fi
fi

⟨ConfigFileLEC6 128b⟩

110

May 4, 2025

The query whether to create a new project allows the user to correct typos when
entering the project name, if he/she negates them.

The following sections discuss the variables included in the configuration file. First
follow the variables that are required for all packages. Then follow the variables. which
are only required for one group of packages at a time (for Java packages see chapter
29.1.2.2, page 121, for webext packages see chapter 29.1.2.3, page 124).

29.1.1. Query common variables for configuration file
The function AskConfig assigns values to the variables to be contained in the configuration
file in its first part. This is done by querying the individual variables. Saving the
configuration file is then described in chapter 29.1.3, page 127.

It is checked whether a value has been assigned to the respective variable.
This is done first for the name of the source package, which is assigned as the value of

the SourceName veriable.
The name of the source package is the name that the upstream project has given to

its software.
111 ⟨AskConfig 111⟩≡ (121a)

function AskConfig {
Called by ConfigFileLEC

if [-z "${SourceName}"]
then

SourceName=$(whiptail --title "Source Package Name" \
--inputbox "Name of the source package:" \
--cancel-button "Exit" 15 60 3>&2 2>&1 1>&3)

if [$? -ne 0] # Cancel-Button was pressed
then

exit
else

changeflag=1
fi

fi

⟨AskConfig1 112⟩

111

May 4, 2025

Figure 29.2.: Name of the source package

If the variable contains a value, it is asked whether this is the correct value. This
serves on the one hand the control of the previous input and on the other hand this
opens the possibility of editing (chapter 30.1, page 159) the configuration file by means
of the function AskConfig.

112 ⟨AskConfig1 112⟩≡ (111)
if ! whiptail --title "Source Package Name" \
--yesno "The name of the source package is ${SourceName}" \
--yes-button "Yes" --no-button "No" 15 60

⟨AskConfig2 113⟩

112

May 4, 2025

Figure 29.3.: Specify the name of the source package

113 ⟨AskConfig2 113⟩≡ (112)
then

SourceName=$(whiptail --title "Name of the source package" \
--inputbox "Real name of the source package:" \
--cancel-button "Exit" 15 60 3>&2 2>&1 1>&3)

if [${#SourceName} -eq 0 -o $? -ne 0]
then

exit
else

changeflag=1
fi

fi

⟨AskConfig3 114⟩

113

May 4, 2025

Figure 29.4.: Specify the correct name of the source package

Now the name of the package to be built is determined. For this first the value of the
variable SourceName is assigned to the variable PackName as default value. Also for this
a confirmation is queried and a correction possibility is opened.

114 ⟨AskConfig3 114⟩≡ (113)
if [-z "${PackName}"]
then

PackName=${SourceName} tadd=", too?"
else

tadd="?"
fi

if ! whiptail --title "PackName" \
--yesno "The name of the package is ${PackName}${tadd}" \
--yes-button "Yes" --no-button "No" 15 60

⟨AskConfig3-1 115⟩

114

May 4, 2025

Figure 29.5.: Correct name of the package specified.

115 ⟨AskConfig3-1 115⟩≡ (114)
then

PackName=$(whiptail --title "Name of the Debian Package" \
--inputbox "Real name of the package,\nwhich should be built:" \
--cancel-button "Exit" 15 60 3>&2 2>&1 1>&3)

if [${#PackName} -eq 0 -o $? -ne 0]
then

exit
else

changeflag=1
fi

fi

⟨AskConfig4 116⟩

115

May 4, 2025

Figure 29.6.: Correct name of the package specified.

Now the name of the group is requested under which the Git repository on salsa.debian.org
should be created.

116 ⟨AskConfig4 116⟩≡ (115)
if [-z "${SalsaName}"]
then

SalsaName=$(whiptail --title "Group at Salsa" \
--inputbox "Group on salsa.debian.org:" \
--cancel-button "Exit" 15 60 3>&2 2>&1 1>&3)
if [$? -ne 0]
Cancel-Button was pressed
then

exit
else

SalsaName=${SalsaName}"/"${SourceName}".git"
fi

fi

⟨AskConfig5 117a⟩

116

May 4, 2025

Figure 29.7.: Name of the group specified on salsa.debian.org.

There are different packaging teams (for example for Java or Python packages)1.
For the python team, the packages directory must also be specified, i.e. python-

team/packages.
These have their own groups on salsa.debian.org. If a package is to be maintained

independently of a packaging team, enter Debian as the group.
117a ⟨AskConfig5 117a⟩≡ (116)

if ! whiptail --title "Salsa Name" \
--yesno "Group and project name of the repo on salsa.debian.org is $SalsaName" \
--yes-button "Yes" --no-button "No" 15 60

⟨AskConfig5-1 117b⟩

Figure 29.8.: Name of the group specified on salsa.debian.org.

117b ⟨AskConfig5-1 117b⟩≡ (117a)
then

SalsaName=$(whiptail --title "Salsa Group and Project Name" \
--inputbox "Real group and project name of the repo on salsa.debian.org:" \
--cancel-button "Exit" 15 60 3>&2 2>&1 1>&3)

⟨AskConfig5-2 118a⟩

1https://wiki.debian.org/Teams#Packaging_teams

117

https://wiki.debian.org/Teams#Packaging_teams

May 4, 2025

Figure 29.9.: Name of the group specified on salsa.debian.org.

118a ⟨AskConfig5-2 118a⟩≡ (117b)
if [${#SalsaName} -eq 0 -o $? -ne 0]
then

exit
else

changeflag=1
fi

fi

⟨AskConfig6 118b⟩

With https://salsa.debian.org/explore/groups all public groups can be dis-
played.

It is now checked whether a file DefaultValues exists in the directory ~/.debian_project.
In this file, variables are assigned values that apply to many projects (chapter 18.2.2.2,
page 60). The DefaultValues script is then executed.

118b ⟨AskConfig6 118b⟩≡ (118a)
if [-f ${ConfigPath}/DefaultValues]
then

. ${ConfigPath}/DefaultValues
fi

⟨AskConfig7 119⟩

118

https://salsa.debian.org/explore/groups

May 4, 2025

The variable DefaultProjectPath is assigned as value the path which leads to the
directory containing the individual project directories as subdirectories.

119 ⟨AskConfig7 119⟩≡ (118b)
if [-n "${DefaultProjectPath}"]
then

ProjectPath=${DefaultProjectPath}
fi

if [-z "${ProjectPath}"]
then

ProjectPath=$(whiptail --title "Path to Project Directory" \
--inputbox "Path to the project directory on your local machine\n \
(without ’/${OrigName}’:)" \
--cancel-button "Cancel" 15 60 3>&2 2>&1 1>&3)
if [-z "${ProjectPath}"]
then

echo -e "Path to the project directory on your local machine\n \
(without ’/${OrigName}’:)"
read ProjectPath

fi
changeflag=1

fi

if ! whiptail --title "ProjectPath" \
--yesno "Path to the project directory on your local machine \
is ${ProjectPath}/${OrigName}" \
--yes-button "Yes" --no-button "No" 15 60
then

ProjectPath=$(whiptail --title "Path to Project Directory" \
--inputbox "Real path to the project directory on your local machine\n \
(without ’/${OrigName}’:" \
--cancel-button "Cancel" 15 60 3>&2 2>&1 1>&3)
if [-z "${ProjectPath}"]
then

echo -e "Path to the project directory on your local machine\n \
(without ’/${OrigName}’:)"
read ProjectPath

fi
if [-z "${ProjectPath}"]
then

exit
else

changeflag=1
fi

fi

⟨AskConfig10 121b⟩

119

May 4, 2025

29.1.2. Query special variables for the configuration file
Now the variables are determined that are only needed for special types of packages.
Starting with the variables for Java packages (chapter 29.1.2.2, page 121

In addition, the path to a required plugin is entered in the configuration file, if necessary.

29.1.2.1. Identifying the plugin paths

Certain types of packages are built using plugins to the (main) script. These are packages
built with maven, Mozilla extensions, and Python programs.

The DetectPlugins function detects the paths to the plugin script files. It can also be
used for other plugins.

When calling DetectPlugins, two options must be passed. The first option ($1) is
passed to PluginName and the second ($2) to PluginFile.

120 ⟨DetectPlugins 120⟩≡ (162a)
function DetectPlugins {

Called by AskConfig

This function needs two options: the name of the plugin
and the name of the plugin script file
PluginName=$1
PluginFile=$2

Determine path to the (needed) plugin script
PluginPathL=$(locate ${PluginFile})
PluginPathA=(${PluginPathL})

If there is only one result
if [${#PluginPathA[@]} -eq 1]
then

PluginPath=${PluginPathA[0]}
If there are some results
elif [${#PluginPathA[@]} -gt 1]
then

i=0; slct=’’
for element in ${PluginPathA[*]}
do

slct=$slct’ ’$i’ ’${element}’ off ’
i=$(expr $i + 1)

done

PluginNr=$(whiptail --title "${PluginName} plugin found" \
--radiolist "Select:" 15 60 5 $slct \
--cancel-button "Cancel" 3>&2 2>&1 1>&3)

⟨DetectPlugins3 121a⟩

120

May 4, 2025

121a ⟨DetectPlugins3 121a⟩≡ (120)
if [$? -eq 1]
then

return 24
fi

PluginPath=${PluginPathA[${PluginNr}]}
If there is no result
else

PluginFlag=0
whiptail --title "File not found" \
--msgbox "’${PluginFile}’ was not located!" \
15 60
return 24

fi
}

⟨AskConfig 111⟩

29.1.2.2. Variable query for Java packages

Certain types of packages require special handling. This is done, among other things, by
separate scripts. This handling is controlled by "‘flags"’. This also avoids unnecessary
loading of the plugin scripts.

121b ⟨AskConfig10 121b⟩≡ (119)
Java Flag
This is needed to trigger special entries
in debian/control and debian/rules
if [-z "${JavaFlag}"]
then

if whiptail --title "Java" --defaultno \
--yesno "Do you want to build a Java package?" \
--yes-button "Yes" --no-button "No" --defaultno 15 60

⟨AskConfig10-1 122⟩

121

May 4, 2025

Figure 29.10.: Should a Java package be built?

122 ⟨AskConfig10-1 122⟩≡ (121b)
then

JavaFlag=1
else

JavaFlag=0
fi

if [${JavaFlag} -eq 1] &&[-z ${JavaPluginPath}]
then

DetectPlugins ’Java’ build-gbp-java-plugin.sh
if [$? -eq 0]
then

JavaPluginPath=${PluginPath}
else

If ’DetectPlugins’ returns 24
JavaFlag=0

fi
fi
changeflag=1

fi

⟨AskConfig11 123a⟩

122

May 4, 2025

It is also queried whether the Maven plugin (chapter 44, page 363) should be used. This
is then localized in the system and the path to the script is stored in the configuration
file.

123a ⟨AskConfig11 123a⟩≡ (122)
Maven Plugin
if [${JavaFlag} -eq 1]
then

if [-z "${MavenPluginFlag}"]
then

if whiptail --title "Maven" --defaultno \
--yesno "Should the (Java) package be built with maven?" \
--yes-button "Yes" --no-button "No" --defaultno 15 60
then

MavenPluginFlag=1
else

MavenPluginFlag=0
fi
changeflag=1

fi

⟨AskConfig12 123b⟩

The following code now determines the path to the Maven plugin.
123b ⟨AskConfig12 123b⟩≡ (123a)

if [${MavenPluginFlag} -eq 1] &&[-z ${MavenPluginPath}]
then

DetectPlugins ’Maven’ build-gbp-maven-plugin.sh
if [$? -eq 0]
then

MavenPluginPath=${PluginPath}
else

If ’DetectPlugins’ returns 24
MavenPluginFlag=0

fi
fi
changeflag=1

fi

⟨AskConfig15 124⟩

123

May 4, 2025

When calling DetectPlugins, two options must be passed. Here ’Maven’ is passed as $1
to the variable PluginName and build-gbp-maven-plugin.sh is passed as $2 to the variable
PluginFile (see chapter 29.1.2.1, page 120).

29.1.2.3. Variable query for Mozilla extensions

124 ⟨AskConfig15 124⟩≡ (123b)
Webext Flag
This is needed to trigger special entries
in debian/control and debian/rules
if [-z "${WebextFlag}"]
then

if whiptail --title "Mozilla AddOns" --defaultno \
--yesno "Do you want to build a Mozilla AddOn package?" \
--yes-button "Yes" --no-button "No" --defaultno 15 60

⟨AskConfig15-1 125⟩

124

May 4, 2025

Figure 29.11.: Should an extension for Mozilla be packaged?

125 ⟨AskConfig15-1 125⟩≡ (124)
then

WebextFlag=1
else

WebextFlag=0
fi

if [${WebextFlag} -eq 1] &&[-z ${WebextPluginPath}]
then

DetectPlugins ’Webext’ build-gbp-webext-plugin.sh
if [$? -eq 0]
then

WebextPluginPath=${PluginPath}
else

If ’DetectPlugins’ returns 24
WebextFlag=0

fi
fi
changeflag=1

fi

⟨AskConfig18 126a⟩

125

May 4, 2025

29.1.2.4. Variable query for Python3 packages

A corresponding plugin can also be used for packaging Python packages. For this, the
required information is first requested and entered into the configuration file..

126a ⟨AskConfig18 126a⟩≡ (125)
Python Flag
This is needed to trigger special entries
in debian/control and debian/rules
if [-z "${PythonFlag}"]
then

if whiptail --title "Python3 programs" --defaultno \
--yesno "Do you want to build a Python3 package?" \
--yes-button "Yes" --no-button "No" --defaultno 15 60

⟨AskConfig18-1 126b⟩

Figure 29.12.: Should a Python3 pact be built?

126b ⟨AskConfig18-1 126b⟩≡ (126a)
then

PythonFlag=1
else

PythonFlag=0
fi

⟨AskConfig19 127a⟩

126

May 4, 2025

In the following it is queried whether the path to the plugin is already known. If not,
the DetectPlugins function is used to search for it. (Chapter 29.1.2.1, page 120)

127a ⟨AskConfig19 127a⟩≡ (126b)
if [${PythonFlag} -eq 1] &&[-z ${PythonPluginPath}]
then

DetectPlugins ’Python3’ build-gbp-python-plugin.sh
if [$? -eq 0]
then

PythonPluginPath=${PluginPath}
else

If ’DetectPlugins’ returns 24
PluginFlag=0

fi
fi
changeflag=1

fi

⟨AskConfig20 127b⟩

29.1.3. Saving the configuration
The (re-)creation of the configuration file is done in the following part of the AskConfig
function.

First it is checked whether a configuration file already exists for the project. If it exists,
it will be deleted.

The configuration file is a shell script. It therefore starts with a corresponding Shebang.
127b ⟨AskConfig20 127b⟩≡ (127a)

if [$changeflag -eq 1]
then

if [-f ${ConfigPath}${OrigName}]
then

rm ${ConfigPath}${OrigName}
fi
touch ${ConfigPath}${OrigName}

Shebang of the config file
SB=’#!/usr/bin/bash’

The config file is a shell script
echo ${SB} >> ${ConfigPath}${OrigName}
echo ’# ConfigFile for ’${OrigName} >> ${ConfigPath}${OrigName}
echo ’## General parameters’ >> ${ConfigPath}${OrigName}
echo ’SourceName=’${SourceName} >> ${ConfigPath}${OrigName}
echo ’PackName=’${PackName} >> ${ConfigPath}${OrigName}
echo ’ProjectPath=’${ProjectPath} >> ${ConfigPath}${OrigName}
echo ’SalsaName=’${SalsaName} >> ${ConfigPath}${OrigName}

⟨AskConfig22 128a⟩

127

May 4, 2025

The following entries in the configuration file are only created if corresponding flags
are set. This applies to java packages. An additional entry is made if they are built with
maven. This also applies to extensions for Firefox and Thunderbird and programs in
the Python programming language.

128a ⟨AskConfig22 128a⟩≡ (127b)
echo ’## Parameters for Java packages’>> ${ConfigPath}${OrigName}
echo ’JavaFlag=’${JavaFlag} >> ${ConfigPath}${OrigName}
if [${JavaFlag} -eq 1]
then

echo ’MavenPluginFlag=’${MavenPluginFlag} >> ${ConfigPath}${OrigName}
if [${MavenPluginFlag} -eq 1]
then

echo ’MavenPluginPath=’${MavenPluginPath} >> ${ConfigPath}${OrigName}
fi

fi

echo ’## Parameters for Webext packages’>> ${ConfigPath}${OrigName}
echo ’WebextFlag=’${WebextFlag} >> ${ConfigPath}${OrigName}
if [${WebextFlag} -eq 1]
then

echo ’WebextPluginPath=’${WebextPluginPath} >> ${ConfigPath}${OrigName}
fi

echo ’## Parameters for Python3 packages’>> ${ConfigPath}${OrigName}
echo ’PythonFlag=’${PythonFlag} >> ${ConfigPath}${OrigName}
if [${PythonFlag} -eq 1]
then

echo ’PythonPluginPath=’${PythonPluginPath} >> ${ConfigPath}${OrigName}
fi
changeflag=0

fi
}

⟨ReplaceTilde 129⟩

Since the tilde (~) in the path is not automatically replaced by /home/<username>
when the script steps, this must be done by a ReplaceTilde function in the program script.
Furthermore, any slash (/) at the end of the path is removed.

128b ⟨ConfigFileLEC6 128b⟩≡ (110)
Replace tilde if necessary
SuspectPath=${ProjectPath}
ReplaceTilde
ProjectPath=${CleanPath}

⟨ConfigFileLEC7 130⟩

128

May 4, 2025

129 ⟨ReplaceTilde 129⟩≡ (128a)
function ReplaceTilde {

Called by ConfigFileLEC GbpConfIntegration
RecentUser=$(whoami)
tp=$(echo ${SuspectPath} | grep --count ’^~’)
if [$tp -ge 1]
then

CleanPath=$(echo ${SuspectPath} | \
sed --expression="s/^~/\/home\/${RecentUser}/g")

else
CleanPath=${SuspectPath}

fi

Replace / at the end
CleanPath=$(echo ${CleanPath} | sed --expression="s/\/$//")

}

⟨ConfigFileLEC 109a⟩

129

May 4, 2025

29.1.4. Example of a configuration file
#!/usr/bin/bash

ConfigFile for <OrigName>
General parameters
SourceName=<SourceName>
PackName=<PackName>
ProjectPath=/home/mechtilde/Projekte/Git/01_Salsa
SalsaName=<Name of the team>/<SourceName>.git
Parameters for Java packages
JavaFlag=0
Parameters for Webext packages
WebextFlag=0
Parameters for Python3 packages
PythonFlag=0
RecentBranch=debian/sid
Maintainer and Uploaders
Maintainer=<Name and E-Mail-Address of the Maintainer>
Uploaders=<Name and E-Mail-Address of the Uploaders>
Download from upstream
DownloadURL=<Upstream URL for download>
RecentUpstreamSuffix=.xpi
debian/sid_Dist=sid

29.2. Creating the infrastructure
The infrastructure of each project includes directories, a log file and a Git repository. If
these are not already present, the necessary directories and the log file are created.

The infrastructure also includes a chroot directory base.cow or a build chroot directory.
These are created only if they do not already exist for the distribution for which the
package is to be built. (Chapter 34.5, page 295)

29.2.1. Definition of paths
At the end of the ConfigFileLEC function two more composite paths are defined.

130 ⟨ConfigFileLEC7 130⟩≡ (128b)
PrjPath=${ProjectPath}/${OrigName}
GitPath=${PrjPath}/${SourceName}

}

⟨CreateDirsAndLogfile 131a⟩

130

May 4, 2025

29.2.2. Creating the necessary directories
First, the previously defined paths (chapter 29.2.1, page 130) are created.

131a ⟨CreateDirsAndLogfile 131a⟩≡ (130)
function CreateDirsAndLogFile {

Called by BuildApp

Create directories if necessary
mkdir --parents ${PrjPath} # redundantly?
mkdir --parents ${GitPath}

⟨CreateLogFile 131b⟩

29.2.3. Create log file
The date and time are initially entered in the log file each time the program is started.

131b ⟨CreateLogFile 131b⟩≡ (131a)
Create Log-File
cd ${PrjPath}
log=${PrjPath}/${OrigName}.log.txt
touch ${log}
echo -e "\n\n===\n=== $(date) ===\n===\n">>${log

} }

⟨InsertDebName 146a⟩

131

May 4, 2025

29.3. Git Repositories
For working with git-buildpackage a local Git repository with working directory is
essential.

The program script assumes that both a local repository (chapter 19.4, page 76) and a
repository on salsa.debian.org (chapter ??, page ??) should be created. In addition, the
program script also takes into account a Git repository on its own Git server (chapter
19.4.2, page 76)..

Rebuilding a Git repository is the first step in building a new Debian package. After
that, the source code for the (new) version is downloaded (chapter 31.3, page 182), a
revision is built (chapter 32, page 225) and finally uploaded.(chapter 40, page 337).
Therefore, the user is asked if he wants to build a new package.

29.3.1. Does a Git repository already exist?
As a precaution, it is checked whether a local Git repository already exists for the project
to be created. It is considered if a Git repository exists in a parent directory.

If a local Git repository exists, the process continues with the selection of a Git branch
(see chapter 30.4, page 163).

132a ⟨BuildApp7 132a⟩≡ (105)
Checks whether there is a git repo
cd ${GitPath}
git status 1>/dev/null 2>&1&

’==’ does the same as ’-eq’
if [$? == 0]
then

if [-d .git]
then

SelectBranch
else

⟨BuildApp8 132b⟩

If a Git repository exists in a parent directory, a notice will be provided.
132b ⟨BuildApp8 132b⟩≡ (132a)

SupOrdMsg="Is there a git repository in a superordinate directory?"
echo ${SupOrdMsg} >> ${log}
whiptail --title="Attention!" --msgbox "${SupOrdMsg}" 15 60
StartTasks

fi
else

StartTasks
fi

⟨BuildApp10 157⟩

132

May 4, 2025

Figure 29.13.: Is there a parent Git repository?

If no Git repository exists in the corresponding directory, the StartTasks function is
called.

29.3.2. Selection dialog
If no Git repository exists yet, the script provides three possibilities to create such a
repository. These are the new creation with git init and the cloning of an existing (Git)
repository from salsa.debian.org (chapter 29.5, page 149). The latter requires above all
that a branch prostine-tar exists there.

Otherwise, the repository can be created by gbp import-dsc (chapter 29.6, page 155).
133 ⟨StartTasks 133⟩≡

function StartTasks {
Called by BuildApp

Task=$(whiptail --title "Tasks for building a new package:" \
--radiolist "What do you like to do to build a new package? " 17 60 9 \

"0" "Create a git repo and download upstream code" on \
"11" "Clone an existing repo from Salsa" off \
"12" "Importing already existing Debian packages" off \

--cancel-button "Exit" 3>&2 2>&1 1>&3)

⟨StartTasks1 134⟩

133

May 4, 2025

Figure 29.14.: Create a new package

134 ⟨StartTasks1 134⟩≡ (133)

if [-z "${Task}"]
then

exit
fi
TaskSelect

}

⟨DebDiff 319⟩

134

May 4, 2025

The items of the menu deal with different ways to set up a new project. It is mainly
about obtaining the source code of the upstream project.

The call of the corresponding functions is done by the function TaskSelect.
135 ⟨TaskSelect 135⟩≡

function TaskSelect {
Called by StartTasks CommonTasks

The lines below serve also the sequence control. A called function
changes finally the variable ’Task’, so one of the following
if-clauses matches. That is why the following lines can not be
replaced by a case statement.

Start tasks

Building a new package from archive
if [$Task -eq 0]
then

BuildNewPackage
fi

Clone an existing repo from Salsa
if [$Task -eq 11]
then

CloneFromSalsa
fi

Importing already existing Debian package
if [$Task -eq 12]
then

ImportDebianPackage
fi

⟨TaskSelect3 172⟩

135

May 4, 2025

When Build a new package from archive, the local Git repository is created first
(chapter 29.4, page 136). Then a new version is downloaded (chapter 31.4, page 185).

When Clone an existing repo from Salsa, an existing repository is downloaded from
salsa.debian.org (chapter 29.5, page 149).

At Importing already existing Debian™ package a *.dscfile is downloaded and a Git
repository is created by the gbp import-dsc program (chapter 29.6, page 155)..

29.4. Creating a new local Git repository
One way to build a Git repository is to create a new one using git init. This is done in
the BuildNewPackage function. Before this a corresponding entry is made in the log file.

136a ⟨BuildNewPackage 136a⟩≡ (148b)
function BuildNewPackage {

Called by TaskSelect
cd ${GitPath}
if [-d .git]
then

echo "There seems already to be a git repository in ${GitPath}." >> ${log}
if ! whiptail --title "Warning" \
--yesno "There seems already to be a git repository in ${GitPath}.\n \
However continue?" --yes-button "Yes" --no-button "No" 15 60
then

echo "Exit" >> ${log}
exit

fi

else
echo "In ${GitPath} a new git repository will be created." >> ${log}
git init

⟨BuildNewPackage2 147a⟩

29.4.1. Add name and email address to Git repository
136b ⟨BuildNewPackage3 136b⟩≡ (147a)

if whiptail --title "Name and email" \
--yesno "Do you like to add your name and email address \n \
to the local git config file?" --yes-button "Yes" \
--no-button "No" 15 60
then

AddNameAndEmail
fi

⟨BuildNewPackage5 148a⟩

136

May 4, 2025

Figure 29.15.: Name and email.

137a ⟨AddNameAndEmail 137a⟩≡ (146b)
function AddNameAndEmail {

Called by BuildNewPackage CloneFromSalsa
ImportDebianPackage and itself

DEBValues
GCName=${DEBFULLNAME}
GCEmail=${DEBEMAIL}

⟨AddNameAndEmail1 145⟩

So that the packager does not always have to write his full name and e-mail address,
the script looks for this data first in the configuration file and then in the ~/.bashrc. If
necessary, what is found or asked for is entered into the configuration file.

137b ⟨Bashrc 137b⟩≡
DEBEMAIL="your.email.address@example.org"
DEBFULLNAME="Firstname Lastname"
export DEBEMAIL DEBFULLNAME

137

May 4, 2025

138 ⟨DEBValues 138⟩≡ (139)
function DEBValues {

Called by DebianControlTemplate PatchHeader AddNameAndEmail
MaintainerF=0

if Maintainer is stored in config file
if [${Maintainer}]
then

Maintainer=$(echo ${Maintainer} | sed --expression=’s/_/ /g’)
Maintainer=$(echo ${Maintainer} | sed --expression=’s/@lt@/</g’)
Maintainer=$(echo ${Maintainer} | sed --expression=’s/@gt@/>/g’)
DEBFULLNAME=$(echo ${Maintainer} | sed --expression=’s/<.*//’)
DEBEMAIL=$(echo ${Maintainer} | sed --expression=’s/^.*<//’ | sed ’s/>//’)
MaintainerF=1

fi

if Uploaders is stored in config file
if [${Uploaders}]
then

Uploaders=$(echo ${Uploaders} | sed --expression=’s/_/ /g’)
Uploaders=$(echo ${Uploaders} | sed --expression=’s/@lt@/</g’)
Uploaders=$(echo ${Uploaders} | sed --expression=’s/@gt@/>/g’)
DEBFULLNAME=$(echo ${Uploaders} | sed --expression=’s/<.*//’)
DEBEMAIL=$(echo ${Uploaders} | sed --expression=’s/^.*<//’ | sed ’s/>//’)

fi

Looking for a team as maintainer
if [${MaintainerF} -eq 0]
then

TeamMaintainer
fi

⟨DEBValues3 140⟩

138

May 4, 2025

There are packages that are managed by a team. Usually, many similar packages are
maintained by such a team. In these cases the Debian project member acts as uploader
and the team as maintainer. This is entered accordingly in the debian/control file.

139 ⟨TeamMaintainer 139⟩≡ (234a)
function TeamMaintainer {

Called by DEBValues

Makes sure that variable exists
if [-z ’${JavaFlag}’]
then

JavaFlag = 0
fi

if [${JavaFlag} -eq 1]
then

Maintainer="Debian Java Maintainers \
<pkg-java-maintainers@lists.alioth.debian.org>"
MaintainerF=1

fi

if [-z ’${WebextFlag}’]
then

WebextFlag = 0
fi

if [${WebextFlag} -eq 1]
then

Maintainer="Debian Mozilla Extension Maintainers \
<pkg-mozext-maintainers@alioth-lists.debian.org>"
MaintainerF=1

fi

if [-z ’${PythonFlag}’]
then

PythonFlag = 0
fi

if [${PythonFlag} -eq 1]
then

Maintainer="Debian Python Team <team+python@tracker.debian.org>"
MaintainerF=1

fi
}

⟨DEBValues 138⟩

139

May 4, 2025

140 ⟨DEBValues3 140⟩≡ (138)
Extracts DEBFULLNAME and DEBEMAIL from ~/.bashrc (if exist)
if [${MaintainerF} -eq 0]
then

if grep --quiet ’DEBFULLNAME’ ~/.bashrc
then

dfnb=$(grep DEBFULLNAME ~/.bashrc)
dfnb=$(echo ${dfnb} | sed --expression=’s/export .*//’)
dfnb=$(echo ${dfnb} | sed --expression=’s/DEBFULLNAME=//’)
dfnb=$(echo ${dfnb} | sed --expression=’s/"//g’)
dfnb=$(echo ${dfnb} | sed --expression="s/’//g")
DEBFULLNAME=${dfnb}

fi
if grep --quiet ’DEBEMAIL’ ~/.bashrc
then

demb=$(grep ’DEBEMAIL’ ~/.bashrc)
demb=$(echo ${demb} | sed --expression=’s/export .*//’)
demb=$(echo ${demb} | sed --expression=’s/DEBEMAIL=//’)
demb=$(echo ${demb} | sed --expression=’s/"//g’)
demb=$(echo ${demb} | sed --expression="s/’//g")
DEBEMAIL=${demb}

fi
Maintainer=${DEBFULLNAME}" <"${DEBEMAIL}">"
MaintainerF=1

fi

Insert name and email address
if [${MaintainerF} -eq 0]
then

DEBFULLNAME=$(whiptail --title "Name of the maintainer" \
--inputbox "Please insert full name of the maintainer" \
--cancel-button "Cancel" 15 60 3>&2 2>&1 1>&3)
DEBEMAIL=$(whiptail --title "Email of the maintainer" \
--inputbox "Please insert email address of the maintainer" \
--cancel-button "Cancel" 15 60 3>&2 2>&1 1>&3)
Maintainer=${DEBFULLNAME}" <"${DEBEMAIL}">"
changeflag=1
MaintainerF=1

fi

if ! whiptail --title "Maintainer" \
--yesno "The full name and email address of the maintainer(s):\n \
${Maintainer}" --yes-button "Yes" --no-button "No" 15 60

⟨DEBValues5 141a⟩

140

May 4, 2025

Figure 29.16.: Debian-Maintainer OK?

141a ⟨DEBValues5 141a⟩≡ (140)
then

DEBFULLNAME=$(whiptail --title "Name of the maintainer" \
--inputbox "Please insert full name of the maintainer" \
--cancel-button "Cancel" 15 60 3>&2 2>&1 1>&3)

⟨DEBValues5-1 141b⟩

Figure 29.17.: Name of the Debian-Maintainer

141b ⟨DEBValues5-1 141b⟩≡ (141a)
DEBEMAIL=$(whiptail --title "Email of the maintainer"\
--inputbox "Please insert email address of the maintainer" \
--cancel-button "Cancel" 15 60 3>&2 2>&1 1>&3)

⟨DEBValues5-2 142a⟩

141

May 4, 2025

Figure 29.18.: Email of the Debian-Maintainer

142a ⟨DEBValues5-2 142a⟩≡ (141b)
Maintainer=${DEBFULLNAME}" <"${DEBEMAIL}">"
changeflag=1
MaintainerF=1

fi
⟨DEBValues6 142b⟩

142b ⟨DEBValues6 142b⟩≡ (142a)

Insert maintainer data into config file if necessary
if [$changeflag -eq 1]
then

Because Maintainer contains blanks
MaintainerCF=$(echo ${Maintainer} | sed --expression=’s/ /_/g’)
Remove < and >
MaintainerCF=$(echo ${MaintainerCF} | sed --expression=’s/</@lt@/g’)
MaintainerCF=$(echo ${MaintainerCF} | sed --expression=’s/>/@gt@/g’)
echo ’## Maintainer and Uploaders’ >> ${ConfigPath}${OrigName}
echo ’Maintainer=’${MaintainerCF} >> ${ConfigPath}${OrigName}
changeflag=0

fi

⟨DEBValues7 143a⟩

142

May 4, 2025

143a ⟨DEBValues7 143a⟩≡ (142b)
Insert uploaders data into config file
if necessary if [${JavaFlag} -eq 1]
then

if [-z "${Uploaders}"]
then

if grep --quiet ’DEBFULLNAME’ ~/.bashrc
then

dfnb=$(grep DEBFULLNAME ~/.bashrc)
dfnb=$(echo ${dfnb} | sed --expression=’s/export .*//’)
dfnb=$(echo ${dfnb} | sed --expression=’s/DEBFULLNAME=//’)
dfnb=$(echo ${dfnb} | sed --expression=’s/"//g’)
dfnb=$(echo ${dfnb} | sed --expression="s/’//g")
DEBFULLNAME=${dfnb}

else
DEBEMAIL=$(whiptail --title "Email of the uploader" \
--inputbox "Please insert email address of the uploader" \
--cancel-button "Cancel" 15 60 3>&2 2>&1 1>&

fi
⟨DEBValues8 143b⟩

Figure 29.19.: Email of the Debian-Uploaders

143b ⟨DEBValues8 143b⟩≡ (143a)
if grep --quiet ’DEBEMAIL’ ~/.bashrc
then

demb=$(grep ’DEBEMAIL’ ~/.bashrc)
demb=$(echo ${demb} | sed --expression=’s/export .*//’)
demb=$(echo ${demb} | sed --expression=’s/DEBEMAIL=//’)
demb=$(echo ${demb} | sed --expression=’s/"//g’)
demb=$(echo ${demb} | sed --expression="s/’//g")
DEBEMAIL=${demb}

else
DEBEMAIL=$(whiptail --title "Email of the uploader" \
--inputbox "Please insert email address of the uploader" \
--cancel-button "Cancel" 15 60 3>&2 2>&1 1>&3)

fi
⟨DEBValues9 144⟩

143

May 4, 2025

Figure 29.20.: Email of the Debian-Uploaders

144 ⟨DEBValues9 144⟩≡ (143b)
Uploaders=${DEBFULLNAME}" <"${DEBEMAIL}">"
Because Uploaders contains blanks
UploadersCF=$(echo ${Uploaders} | sed --expression=’s/ /_/g’)
Remove < and >
UploadersCF=$(echo ${UploadersCF} | sed --expression=’s/</@lt@/g’)
UploadersCF=$(echo ${UploadersCF} | sed --expression=’s/>/@gt@/g’)
echo ’Uploaders=’${UploadersCF} >> ${ConfigPath}${OrigName}
changeflag=0

fi
fi

}

⟨DebianControlTemplate 234b⟩

144

May 4, 2025

145 ⟨AddNameAndEmail1 145⟩≡ (137a)
if [-z "${GCName}"]
then

InsertDebName
fi
if [-n "${GCName}"]
then

git config user.name ${GCName}
fi
if [-z "${GCEmail}"]
then

InsertDebEmail
fi
if [-n "${GCEmail}"]
then

git config user.email ${GCEmail}
fi

configStr=$(git config --list | grep ’user’)

if ! whiptail --title "Result" \
--yesno "${configStr}\nAllright?" \
--yes-button "Yes" --no-button "No" 15 60
then

AddNameAndEmail
fi

}

⟨AddHomeServer 148b⟩

145

May 4, 2025

146a ⟨InsertDebName 146a⟩≡ (131b)
function InsertDebName {

Called by AddNameAndEmail and itself
DEBFULLNAME=$(whiptail --title "Name of the maintainer" \
--inputbox "Please insert full name of the maintainer" \
--cancel-button "Exit" 15 60 3>&2 2>&1 1>&3)

if [$? -ne 0]
then

exit
fi

Test Name
if [-z "${DEBFULLNAME}"]
then

whiptail --title "Your Name" \
--msgbox "Your name is neccessary." 15 60
InsertDebName

fi

}
⟨InsertDebEmail 146b⟩

146b ⟨InsertDebEmail 146b⟩≡ (146a)
function InsertDebEmail {

Called by AddNameAndEmail and itself
DEBEMAIL=$(whiptail --title "Email of the maintainer" \
--inputbox "Please insert email address of the maintainer" \
--cancel-button "Exit" 15 60 3>&2 2>&1 1>&3)

if [$? -ne 0]
then

exit
fi

Regex string
EmailR="\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,6}\b"
Test email address
if ! echo ${DEBEMAIL} | grep -E ${EmailR} > /dev/null
then

whiptail --title "Bad!" --msgbox "That’s no email address." 15 60
InsertDebEmail

fi
}
⟨AddNameAndEmail 137a⟩

146

May 4, 2025

Figure 29.21.: Debian maintainer data

29.4.2. Repository at salsa.debian.org
The program script adds the Salsa repository as a “Remote repository”.

147a ⟨BuildNewPackage2 147a⟩≡ (136a)
git remote add salsa git@salsa.debian.org:${SalsaName}

⟨BuildNewPackage3 136b⟩

29.4.2.1. Manually

The corresponding repository on salsa.debian.org is then created manually (chapter ??,
page ??) (see chapter 47.1, page 387).

The program script also reminds the user of this.
147b ⟨BuildNewPackage6 147b⟩≡ (148a)

whiptail --title "If not happened yet:" \
--msgbox "Please create a git repo ${SalsaName} \n \
on salsa.debian.org!" 15 60
Task=2 # Go to BuildNewVersion

}

⟨IdentifyBranches 152a⟩

29.4.2.2. Within the Java team

Within the Java team, a new repository should be created using the setup script provided
by the team (chapter ??, page ??). To facilitate this, the build script will automatically
trigger this.

• script copies setup script from .debian_project
• script tells how to generate token
• script queries token (command line)
• script writes in setup the token
• script calls setup script, with source name

147

May 4, 2025

29.4.3. Display remote server
The remote servers entered in the Git repository are displayed. A custom server is
displayed only if it has been entered previously.

148a ⟨BuildNewPackage5 148a⟩≡ (136b)
AddHomeServer

fi
⟨BuildNewPackage6 147b⟩

148b ⟨AddHomeServer 148b⟩≡ (145)
function AddHomeServer {

Called by BuildNewPackage AddGitServer ImportDebianPackage
if [-n "$ServerName"]
then

git remote add home $(whoami)@${ServerName}:/srv/git/${SourceName}.git

whiptail --title "Remoteserver" \
--msgbox "New server added:\n$(git remote --verbose)" 15 60
echo -e "New server added:\n $(git remote --verbose)" >> ${log}

fi
}

⟨BuildNewPackage 136a⟩

148

May 4, 2025

Figure 29.22.: Add remote server

Then a new version is downloaded (chapter 31.4, page 185).

29.5. Clonen from salsa.debian.org
In this case, some of the steps mentioned in the other chapters are omitted. The cloning
is done with the command gbp clone. After that, the remote repository is renamed from
origin to salsa on successful cloning. This allows for more meaningful naming of the
repositories.

Otherwise, an error message is displayed and the program ends.
149a ⟨CloneFromSalsa 149a⟩≡ (176)

function CloneFromSalsa {
Called by TaskSelect
echo "Clone an existing repo from salsa.debian.org" >> ${log}
cd ${PrjPath}
gbp clone git@salsa.debian.org:${SalsaName} --aliases ${SourceName}
if [$? -eq 0]
then

cd ${GitPath}
git remote rename origin salsa
echo "${SalsaName} was cloned" >> ${log}

else
echo "${SalsaName} could not be cloned"
exit

fi

⟨CloneFromSalsa2 149b⟩

If the download is successful, the DebianBranchName function displays the downloaded
branches and the active branch is displayed as a sound.

149b ⟨CloneFromSalsa2 149b⟩≡ (149a)
Identify branches and choose one
DebianBranchName

⟨CloneFromSalsa3 153b⟩

149

May 4, 2025

29.5.1. Determination of the Git branches
The DebianBranchName function is used to determine the Git branches of the cloned
Salsa repository.

To do this, first execute the IdentifyBranches function (chapter 29.5.2, page 152).
150a ⟨DebianBranchName 150a⟩≡ (153a)

function DebianBranchName {
Called by CloneFromSalsa

Identify and show branches
IdentifyBranches
ba=($bl)

whiptail --title "Branches in repo ${OrigName}:" --msgbox "${bl}" 15 60

⟨DebianBranchName2 150b⟩

Then the active Git branch is determined.
150b ⟨DebianBranchName2 150b⟩≡ (150a)

for element in ${ba[*]}
do

Find the default branch
if echo ${element} | grep --quiet ’^x_’
then

DefaultBranch=$(echo ${element} | sed --expression=’s/^x_//’)
whiptail --title "Recent branch found" --msgbox "Found: ${DefaultBranch}" 15 60

fi
⟨DebianBranchName3 151⟩

150

May 4, 2025

151 ⟨DebianBranchName3 151⟩≡ (150b)
Ignore HEAD
if echo ${element} | grep --quiet ’HEAD’
then

continue
fi
Checkout all branches
if echo ${element} | grep --quiet ’^remotes/salsa/’
then

NewBranchName=$(echo ${element} | \
sed --expression=’s/^remotes\/salsa\///’)
git checkout ${NewBranchName}
whiptail --title "Checkout branch" \
--msgbox "Checkout of ${NewBranchName}" 15 60

fi
done
Finally checkout the default branch (again)
git checkout ${DefaultBranch}
whiptail --title "Checkout branch" \
--msgbox "Checkout of ${DefaultBranch}" 15 60

Insert default branch into the config file and write into logfile
echo ’DefaultBranch=’${DefaultBranch} >> ${ConfigPath}${OrigName}
echo "Branches: "${bl} >> ${log}
echo "DefaultBranch: "${DefaultBranch} >> ${log}
RecentBranch=${DefaultBranch}
whiptail --title "Please check! (1)" \
--msgbox "The branch is ${RecentBranch}" 15 60
echo ’RecentBranch=’${RecentBranch} >> ${ConfigPath}${OrigName}
echo "RecentBranch: "${RecentBranch} >> ${log}
Distro4Branch

}

⟨FailureNotice 165⟩

151

May 4, 2025

Finally, by calling the Distro4Branch function, a distribution is assigned to the Git
branch (chapter 29.5.3, page 152)

29.5.2. Git branches detect
This function determines all existing branches. This is done with the command git branch
--all. When marking the active branch, asterisks (*) and spaces are replaced by small X
(x) and Ubterstrich(_).

This function is called at various points in the step of the program script.
152a ⟨IdentifyBranches 152a⟩≡ (147b)

function IdentifyBranches {
Called by DebianBranchName AskDist DebianBranches
cd ${GitPath}
sed is used to kill the asterisk
bl=$(git branch --all | sed --expression=’s/* /x_/’)

}

⟨CreateSchroot 295b⟩

29.5.3. Assign Git Branch Distribution
At various points in the program flow it is necessary to assign a Debian release to a Git
branch.

152b ⟨Distro4Branch 152b⟩≡ (298b)
function Distro4Branch {

Called by DebianBranchName CreateNewBranch AskDist BuildNewRevision

Set Debian distribution for branch
if [${RecentBranch} != "debian/sid" -o -z "${RecentBranchD}"]
then

CowL=$(ls /var/cache/pbuilder/ | grep .cow | grep ’-’| \
sed ’s/base-//’ | sed ’s/.cow//’) i
CowA=($CowL)

i=1; cowE="0 sid on "
for element in ${CowA[*]}
do

cowE=$cowE’ ’$i’ ’${element}’ off ’
i=$(expr $i + 1)

done

RecentBranchDNr=$(whiptail --title "Debian release" \
--radiolist "Select pbuilder cow:" \
--cancel-button "Other" 15 60 8 \ $cowE 3>&2 2>&1 1>&3)

⟨Distro4Branch2 153a⟩

152

May 4, 2025

Figure 29.23.: Choosing the Debian Release.

153a ⟨Distro4Branch2 153a⟩≡ (152b)
if [$? -eq 1]
then

CreateNewCow
fi

if [${RecentBranchDNr} -eq 0]
then

bDist="sid" else RecentBranchDNr=$(expr ${RecentBranchDNr} - 1)
bDist=${CowA[${RecentBranchDNr}]}

fi

echo "# "${RecentBranch}"_Dist="${bDist} >> ${ConfigPath}${OrigName}
RecentBranchD=${bDist}
echo "Notice from Distro4Branch: The distribution is " \
${RecentBranchD} >> ${log}

fi
}

⟨DebianBranchName 150a⟩

29.5.4. Add name and email address
153b ⟨CloneFromSalsa3 153b⟩≡ (149b)

if whiptail --title "Name and email" \
--yesno "Do you like to add your name and email address \n \
to the local git config file?" --yes-button "Yes" \
--no-button "No" 15 60

⟨CloneFromSalsa5 154a⟩

153

May 4, 2025

Figure 29.24.: Name and email.

154a ⟨CloneFromSalsa5 154a⟩≡ (153b)
then

AddNameAndEmail
fi

⟨CloneFromSalsa7 154b⟩

154b ⟨CloneFromSalsa7 154b⟩≡ (154a)
AddHomeServer
PQImport 1
CommonTasks

}

⟨CutSuffix 191a⟩

154

May 4, 2025

29.6. Import of a Debian package
Not all packages of the Debian project are located on salsa.debian.org, a Gitlab instance.
Of these, not all packages are built with git-buildpackage either. Sometimes the pristine-tar
branch is missing. In this case, cloning does not make sense.

These packages can also be built using this program script. In the file /etc/apt/-
sources.list or in a file in the directory /etc/apt/sources.list.d the entry.

deb-src http://deb.debian.org/debian/ sid main

activated must be present. This means that after activation, sudo apt update must also
be executed.

For rare special cases, adapt this line accordingly. This enables the download of source
packages.

155a ⟨ImportDebianPackage 155a⟩≡ (321)
function ImportDebianPackage {

Called by TaskSelect

echo "Import an existing package without pristine-tar" >> ${log}
cd ${PrjPath}
echo "Download ${SourceName} with apt source" >> ${log}
apt source --download-only ${SourceName} >> ${log}

⟨ImportDebianPackage1 155b⟩

With apt source --download-only only the source package is downloaded.
Creating the Git directory is done with gbp import-dsc and the downloaded *.dsc file.

155b ⟨ImportDebianPackage1 155b⟩≡ (155a)
cd ${GitPath}
git init
git remote add salsa git@salsa.debian.org:${SalsaName}
GpgKeyAvailable

⟨ImportDebianPackage2 155c⟩

Since the gbp import-dsc function performs a signing, the GpgKeyAvailable function
(chapter 29.7, page 156) first queries whether the GnuPG key is available.

155c ⟨ImportDebianPackage2 155c⟩≡ (155b)
echo "gbp import-dsc" >> ${log}
gbp import-dsc --verbose ../${SourceName}*.dsc . >> ${log}

⟨ImportDebianPackage3 156a⟩

155

May 4, 2025

This is followed by displaying the existing Git branches and determining the active
branch by calling the DebianBranchName function (chapter 29.5.1, page 150).

156a ⟨ImportDebianPackage3 156a⟩≡ (155c)
Identify branches and choose one DebianBranchName

if whiptail --title "Name and email" \
--yesno "Do you like to add your name and email address \n \
to the local git config file?" --yes-button "Yes" \
--no-button "No" 15 60
then

AddNameAndEmail
fi

⟨ImportDebianPackage4 156b⟩

156b ⟨ImportDebianPackage4 156b⟩≡ (156a)
AddHomeServer
PQImport
CommonTasks

}

⟨CommonTasks 171⟩

29.7. GnuPG Key available?
The GpgKeyAvailable function prompts the user to check if the GnuPG key is available for
signing.

It is called at various points in the program script. If the question about the availability
of the GnuPG key is answered in the negative, the program script terminates.

156c ⟨GpgKeyAvailable 156c⟩≡ (162b)
function GpgKeyAvailable {

Called by BuildWithUscan Import2Git CreateSignature ImportDebianPackage
PrepareUploading

if ! whiptail --title "GPG-Key available?" \
--yesno "GPG-Key must be available for signing." \
--yes-button "Yes, is available" --no-button "Exit" 15 60
then

exit
fi
GettingFingerprint

}

⟨DetectPlugins 120⟩

156

May 4, 2025

Figure 29.25.: GPG-Key available

29.8. Starting the packaging process
The BuildApp function calls the task selection for each step of packaging at the end.

157 ⟨BuildApp10 157⟩≡ (132b)
Start of Packaging
CommonTasks

}

⟨MainProgram 104a⟩

157

30. Work in an created projectt

30.1. Load and edit configuration file
If a project name is entered, the program script tries to load the configuration file of this
project and display it with less.

The function ConfigFileLEC shows the loaded configuration file and then asks if it is
correct. Then it can be decided if this file should be edited.

159 ⟨ConfigFileLEC1 159⟩≡ (109a)
if [-f ${ConfigPath}${OrigName}]
then

. ${ConfigPath}${OrigName} # executes config script
whiptail --title "Config file found" \
--msgbox "${ConfigPath}${OrigName} was loaded." 15 60
less --LINE-NUMBERS ${ConfigPath}${OrigName}
if ! whiptail --title "Check config file" \
--yesno "Is the config file OK?" \
--yes-button "Yes" --no-button "No" 15 60

⟨ConfigFileLEC2 160⟩

159

May 4, 2025

Figure 30.1.: Query - configuration file

If the question whether the configuration file is correct is answered in the negative, it
can be edited. This can be done with the editor nano or by answering questions.

Otherwise, continue with chapter 30.4, page 163. However, if only one or no branch
exists, continue with chapter 30.4.7, page 170.

160 ⟨ConfigFileLEC2 160⟩≡ (159)
then

Edit=$(whiptail --title "Edit Config File" \
--radiolist "How do you like to edit the config file?" \
15 60 2 "0" "Using Nano" on \
"1" "Answering questions" off \
--cancel-button "Exit" 3>&2 2>&1 1>&3)

⟨ConfigFileLEC3 161⟩

160

May 4, 2025

Figure 30.2.: Query - edit configuration file.

If no edit method is specified, the program exits.
161 ⟨ConfigFileLEC3 161⟩≡ (160)

if [-z "${Edit}"]
then

whiptail --title "Bye" --msgbox "Bye" 15 60
exit

fi
if [${Edit} -eq 0]
then

nano --linenumbers --mouse \
--softwrap ${ConfigPath}${OrigName}
. ${ConfigPath}${OrigName}

else
AskConfig

fi
fi

⟨ConfigFileLEC4 109b⟩

161

May 4, 2025

If the configuration file is to be edited with the editor nano, this is called and opens.
After the termination of the same (with STRG-X) the program script runs further
(chapter 30.4, page 163).

If the adjustment is to be done by means of queries, the function AskConfig (see chapter
29.1.1, page 111) is called, After that the file is rewritten.

30.2. Modify lines in the configuration file
The script also contains a function that allows to change individual values in the configu-
ration file. For this purpose, two parameters are passed to the function, namely firstly
the identifier of the variable and secondly the new value of the same.

This function is used by the BuildNewVersion (chapter 31.4.2, page 185), PQMigration
(chapter 33.1, page 254), ChangeEntry (chapter 30.4.5, page 168) and OwnServer (chapter
41.2, page 356) functions.

162a ⟨ReplaceConfigLines 162a⟩≡ (163a)
function ReplaceConfigLines {

Called by BuildNewVersion PQMigration ChangeEntry OwnServer CurSuffix

This function needs two parameters:
First the name of the variable
and second it’s new value
ConfProp=$1
ConfVal=$2

⟨ReplaceConfigLines1 162b⟩

The function checks if the line to be changed exists in the configuration file. If not, it
is created with the InsertConfigLines function.

Before replacing with sed, mask (also with sed) any slashes that may be present in the
variable ConfVal.

162b ⟨ReplaceConfigLines1 162b⟩≡ (162a)
cprop=$(grep --count ${ConfProp} ${ConfigPath}${OrigName})
if [${cprop} -ge 1]
then

Masquerade slasches
ConfVal=$(echo ${ConfVal} | sed ’s/\//\\\//g’)

sed --in-place --expression="s/${ConfProp}=.*/${ConfProp}=${ConfVal}/g" \
${ConfigPath}${OrigName}

else
InsertConfigLine needs two parameters:
name of the variable and new value
InsertConfigLine ${ConfProp} ${ConfVal}

fi
}

⟨GpgKeyAvailable 156c⟩

162

May 4, 2025

30.3. Insert line into configuration file
The InsertConfigLine function inserts a line into the configuration file. It must be passed
the same parameters as the ReplaceConfigLines function.

163a ⟨InsertConfigLine 163a⟩≡
function InsertConfigLine {

Called by ReplaceConfigLines

This function needs two parameters:
First the name of the variable
and second it’s value

ConfProp=$1
ConfVal=$2

echo ${ConfProp}"="${ConfVal} >> ${ConfigPath}${OrigName}

}

⟨ReplaceConfigLines 162a⟩

30.4. Selecting a Git branch
To allow switching the Git branch, a check is made to see if there are any unversioned
changes in the current branch. This check is done with the CheckGitStatus function
(chapter 30.4.1, page 164).

If no change of the Git branch is required, changes in the debian/ directory do not
necessarily need to be versioned.

Changes already made to the upstream code must be restored using git restore.
If several branches exist, one branch can be selected. If only one branch exists, it will

be named. Otherwise the function StartTasks is called (chapter 29.3, page 132).
This function can be called from the task selection (chapter 30.5, page 171).
The SelectBranch function is also called when building a new revision, if applicable

(chapter 34.3.1, page 285).
163b ⟨SelectBranch 163b⟩≡ (169b)

function SelectBranch {
Called by BuildApp TaskSelect BuildNewRevision

CheckGitStatus
DebianBranches

⟨SelectBranch1 167⟩

163

May 4, 2025

After the CheckGitStatus function, described in the following section, the Debian-
Branches function is called to determine the local Debian branches in the Git repository
(chapter 30.4.3, page 166).

30.4.1. Check with git status.
The CheckGitStatus function, which is also called elsewhere in the program script, checks
whether there are new or changed files in the current Git branch. If this is the case,
some Git operations cannot be performed.

If there are no problems, we continue with the display of the existing Git branches
(chapter 30.4.4, page 167).

If this is detected by git status, the FailureNotice function is called and a possibility
for error recovery in another terminal is opened (chapter 30.4.2, page 165).

164 ⟨CheckGitStatus 164⟩≡ (207b)
function CheckGitStatus {

Called by Import2Git BuildWithUscan PQImport
PatchesTreatment SelectBranch and itself

Checks git status
echo "Notice from CheckGitStatus:" >> ${log}
echo $(git status) >> ${log}

if [! -z "$(git status --short)"]
then

git status
FailureNotice "’git status’ shows problems\n\
Please clean up ’git status’"
if whiptail --title "Check another time?" \
--yesno "Do you want to check the git status another time?" \
--yes-button "Yes" --no-button "No" 15 60
then

CheckGitStatus
fi

fi
}

⟨CheckTags 216⟩

164

May 4, 2025

Figure 30.3.: Query - Further check?

30.4.2. Error message and troubleshooting
If the FailureNotice function is called, a message is displayed on the terminal and the
possibility is opened to correct errors in another terminal.

This function can be given a special text as a parameter when it is called. If this is
not done, a standard text is output.

165 ⟨FailureNotice 165⟩≡ (151)
function FailureNotice {

Called by PQImport CheckGitStatus RebasePQBranch PQMigration
You can call this function with a text as parameter (optional)

if [! "$1"]
then

echo "Failure" echo "Something went wrong!"
else

for i in $*
do

String=${String}" "$i
done

echo -e ${String}
fi
echo
echo "Break for fixing it in another terminal"
echo "After fixing press RETURN to go on!"
read a

}

⟨PQImport 177⟩

165

May 4, 2025

30.4.3. Selection of the Debian branches
The DebianBranches function determines which relevant branches exist in the Git
repository.

To do this, the IdentifyBranches function is called first (chapter 29.5.2, page 152).
166a ⟨DebianBranches 166a⟩≡ (168)

function DebianBranches {
Called by CreateNewBranch SelectBranch
selects the Debian branches
IdentifyBranches

⟨DebianBranches1 166b⟩

In the following, the selection is limited to the local Debian branches.
166b ⟨DebianBranches1 166b⟩≡ (166a)

Trim branchlist
bl=$(echo $bl | sed ’s/pristine-tar/ /’)
bl=$(echo $bl | sed ’s/upstream/ /’)
bl=$(echo $bl | sed ’s/HEAD/ /’)
bl=$(echo $bl | sed ’s/remotes\/origin\/.*/ /g’)
bl=$(echo $bl | sed ’s/remotes\/salsa\/.*/ /g’)
bl=$(echo $bl | sed ’s/remotes\/home\/.*/ /g’)
bl=$(echo $bl | sed ’s/remotes\/.*/ /g’)

}

⟨CreateNewBranch (never defined)⟩

166

May 4, 2025

30.4.4. Dialog to select a branch
This dialog is only displayed if there are multiple Debian branches. The current branch
is preselected.

If only one or no branch exists, we continue in chapter 30.4.7 (page 170).
167 ⟨SelectBranch1 167⟩≡ (163b)

Create a radiolist with the branch names
ba=($bl) i=1; slct=’’
for element in ${ba[*]}
do

echo ${element} | grep ’x_’ > /dev/null
if [$? -eq 0]
then

if ["${element}" = "x_"]
then

continue
else

ostr="on"
fi

else
ostr="off"

fi
slct=${slct}’ ’"$i"’ ’"${element}"’ ’${ostr}’ ’
i=$(expr $i + 1)

done

if [${#ba[@]} -gt 1]
then

select branch
branch=$(whiptail --title "Branch" --radiolist "Select:" \
15 60 8 ${slct} --cancel-button "Cancel" 3>&2 2>&1 1>&3)
if [! -z "${branch}"]
then

branch=$(expr ${branch} - 1)
bName=${ba[$branch]}
bName=$(echo ${bName} | sed --expression=’s/^x_//’)
checkout branch
git checkout ${bName}
Change config file -
make selected branch to recent one
ChangeEntry

⟨SelectBranch3 169a⟩

167

May 4, 2025

Figure 30.4.: Selection of the Debian branch.

Instead of debian-stable the name chosen for this Git branch is displayed.
If this is not the case, the program can be exited by clicking on the Cancel button and

in the next step with Exit.
Now the configuration file is displayed again with less.

30.4.5. Change entry
168 ⟨ChangeEntry 168⟩≡

function ChangeEntry {
Called by CreateNewBranch SelectBranch

RecentBranchEntry=$(grep --count ’RecentBranch=’ ${ConfigPath}${OrigName})

Change RecentBranch entry in config file
if [${RecentBranchEntry} -eq 0]
then

echo "RecentBranch="${bName} >> ${ConfigPath}${OrigName}
else

ReplaceConfigLines needs two parameters:
name of the variable and new value
ReplaceConfigLines ’RecentBranch’ ${bName}
bName1=$(echo ${bName} | sed --expression=’s/\//\\\//g’)
sed --in-place --expression=\ # "s/RecentBranch=.*/RecentBranch=${bName1}/g" \
${ConfigPath}${OrigName}

fi
less --LINE-NUMBERS ${ConfigPath}${OrigName}

Set variable
RecentBranch=${bName}
echo "Notice from ChangeEntry: The branch is "${RecentBranch} >> ${log}

}

⟨DebianBranches 166a⟩

168

May 4, 2025

169a ⟨SelectBranch3 169a⟩≡ (167)
whiptail --title "This branch was selected" \
--msgbox "${bName} was selected" 15 60
echo "${bName} was selected" >> ${log}
ParseConfig

fi
⟨SelectBranch4 170a⟩

Figure 30.5.: Selected Debian branch.

In the user interface it continues with the task selection (chapter 30.5, page 171).

30.4.6. Read configuration
This function maps the Debian distribution for which the package is built to the selected
Git branch. (Chapter ??, page ??)

169b ⟨ParseConfig 169b⟩≡
function ParseConfig {

Called by SelectBranch TaskSelect

Parse config file for Debian distribution of branch
vc=$(grep --count ${bName}_Dist ${ConfigPath}${OrigName})
if [$vc -ge 1]
then

Search4Dist
else

va="sid"
fi
RecentBranchD=${va}
echo "Notice from ParseConfig: The distribution is "${RecentBranchD} >> ${log}

}

⟨SelectBranch 163b⟩

169

May 4, 2025

30.4.7. No or only one branch exists
170a ⟨SelectBranch4 170a⟩≡ (169a)

elif [${#ba[@]} -eq 1]
then

whiptail --title "Only one branch" \
--msgbox "There is only one Debian branch: ${ba[0]}" 15 60

⟨SelectBranch6 170b⟩

Figure 30.6.: There is only one Git branch

If there is a Git branch, the task selection continues (chapter 30.5, page 171). Otherwise
there is a hint.

170b ⟨SelectBranch6 170b⟩≡ (170a)
else

whiptail --title "There is no branch" \
--msgbox "There is no branch created.\nPlease build a new version." 15 60

fi
}

⟨AddGitServer (never defined)⟩

170

May 4, 2025

Figure 30.7.: No branch created

30.5. Task selection
After the configuration file is loaded and checked or created, a task selection menu
appears.

Since the program is modular, the tasks can also be selected individually. The building
process can be interrupted and resumed later.

171 ⟨CommonTasks 171⟩≡ (156b)
function CommonTasks {

Called by BuildApp TaskSelect

Task=$(whiptail --title "Tasks:" \
--radiolist "What do you like to do? " 17 60 9 \

"2" "Build a new version of a package" off \
"3" "Build a new debian revision" on \
"4" "Rebuilding a revision" off \
"5" "Running lintian and uscan" off \
"6" "Uploading only (build again if necessary)" off \
"7" "Create new branch" off \
"8" "Select branch" off \
"9" "Set name or IP of own git server" off \
10" "Create a debdiff" off \

--cancel-button "Exit" 3>&2 2>&1 1>&3)

if [-z "${Task}"]
then

exit
fi
TaskSelect

}

⟨AskOrigName 106a⟩

171

May 4, 2025

Figure 30.8.: Task selection.

The choices are first building a new version (chapter 31, page 175) and a new revision.
As default it continues with building a new Debian revision (chapter 32, page 225).

If a new version is to be built, it asks whether changes should be downloaded from
salsa first (chapter 31.1, page 175). After that, the program script checks if there are
already patches. In such a case, these patches can be imported into a separate Git branch
as patch-queue (see chapter 31.2, page 177).

After building, the packages can be checked with (chapter 37, page 311).
The next menu item concerns uploading (chapter 38, page 325).
Two further tasks concern the case of working with multiple Git branches, for example

also for backports (chapter 30.4, page 163). Finally, you can also include your own Git
server in the workflow (chapter 41.2, page 356).

The following lines of the script are also used for flow control. A called function changes
the variable ’Task’ at its end so that one of the following if-clauses applies. For this
reason, the following lines cannot be replaced by a case statement.

The chain of If statements gives the possibility to process one condition after the other,
because the called function returns to the end of the If statement from which it was
called. A case statement ends with the call of the function to be processed.

The call of the corresponding functions is done in the mentioned way again by the
function TaskSelect.

The following call invokes the build of a new version (chapter 31.1, page 175). there,
it first checks if any changes or additions already exist in the project repository on
salsa.debian.org.

172 ⟨TaskSelect3 172⟩≡ (135)
Common tasks
rcts=0 # ReCall TaskSelect flag

Building a new version
if [$Task -eq 2]
then

PullFromSalsa # and then downlod new version
fi

⟨TaskSelect4 173a⟩

172

May 4, 2025

Or it continues with building a new Debian revision (chapter 32, page 225). This
corresponds to the preset value.

173a ⟨TaskSelect4 173a⟩≡ (172)
Building a new revision
if [$Task -eq 3]
then

BuildNewRevision
fi

<u1>203<u2>NW4L0rMe-11Dd8c-1<u3><u4><u6>NW4L0rMe-11Dd8c-1<u8>TaskSelect4~<u5><u7>NW4L0rMe-11Dd8c-1<u9><u10><u11>\NW4L0rMe-2RUsag-1<u12>
Building a revision
if [$Task -eq 3]
then

BuildNewRevision
fi

⟨TaskSelect5 173b⟩

After building a new revision, test it. (Chapter 37, page 311) further. This is done
using lintian (chapter 37.3.1, page 314) and uscan (chapter 37.4, page 316).

173b ⟨TaskSelect5 173b⟩≡ (173a)
Running lintian and uscan
if [$Task -eq 5]
then

RunningTests
fi

⟨TaskSelect6 173c⟩

The next step calls the PrepareUploading function (chapter 38, page 325). In it, it is
first checked whether the file debian/changelog is already prepared for a release . If not,
this is still done.

173c ⟨TaskSelect6 173c⟩≡ (173b)
Uploading the package
if [$Task -eq 6]
then

PrepareUploading
fi

⟨TaskSelect7 174⟩

173

May 4, 2025

The following section is necessary to build for a different distribution. This refers to
Debian backports, Debian Proposed updates for stable and possibly for oldstable. If
necessary, this is also needed to provide a package for an Ubuntu branch. (See also
chapter 36, page 309).

174 ⟨TaskSelect7 174⟩≡ (173c)
Create new branch
(e.g. for backports or proposed-updates)
if [$Task -eq 7]
then

CreateNewBranch
rcts=1

fi

Select branch
if [$Task -eq 7]
then

SelectBranch
rcts=1

fi

Set name or IP of own git server
if [$Task -eq 9]
then

OwnServer
rcts=1

fi

Create a debdiff
if [$Task -eq 10]
then

DebDiff 0
rcts=1

fi

⟨TaskSelect9 (never defined)⟩

174

31. Building a new version

This chapter describes the steps leading to the creation of the Debian source code package
(*.orig.tar.(g|x)z) (Chapter 8, page 23). To do this, also start the program script (chapter
28.2, page 104).

The program script makes it possible to obtain the upstream source code in various
ways. Two possibilities have already been described, namely cloning salsa.debian.org
(Chapter 29.5, page 149) and importing a Debian source code package (Chapter 29.6,
page 155).

[fuzzy]How a shell script helps to build a Debian package

31.1. Download changes from Salsa.
It can happen, especially with team-supported packages, that other team members
provide changes in the Git repository on salsa.debian.org. For further work on this
repository it is now mandatory to commit these changes to the local repository as well.

This can be done with

gbp pull --all salsa

If this causes problems, you can also update the individual branches with

git checkout <BranchName>
git pull salsa <BranchName>.

175 ⟨PullFromSalsa 175⟩≡ (184b)
function PullFromSalsa {

Called by TaskSelect

cd ${GitPath}
if git remote --verbose | grep --quiet ’salsa’
then

if whiptail --title "Pull from Salsa?" \
--yesno "Do you like to pull possible changes from salsa?" \
--yes-button "Yes" --no-button "No" 15 60
then

echo "RecentBranch: "$(git branch) >> ${log} git pull --all
fi

⟨PullFromSalsa1 176⟩

175

May 4, 2025

Figure 31.1.: Download from salsa.debian.org

In addition, the password for the SSH key is requested, which can be used to access
salsa.debian.org.

176 ⟨PullFromSalsa1 176⟩≡ (175)
fi

ClassicalOrUscan
}

⟨CloneFromSalsa 149a⟩

176

May 4, 2025

The PullFromSalsa function calls the ClassicalOrUscan function (chapter 31.3, page
182) at the end, which first calls the PQImport function to import an existing patch
queue.

31.2. Import an existing patch queue
Before downloading the new upstream version, it checks if there is already a patch queue
for the previously packed version. By "‘patch queue"’ is meant the patches listed in the
debian/patches/series file in the order there.

In this case, the possibility is opened to import them via gbp pq import into a separate
patch-queue-branch, if this does not already exist. This allows the patches to be added
back into it later – after the new version has been imported.

When imported into the patch queue branch, the patches are applied to the upstream
source code.

This requires that there are no unversioned files in the current Git branch and that all
patches listed in the debian/patches/series file can be applied. Otherwise, gbp pq import
will fail. Then no patch-queue branch is created. Making the patches manually applicable
can be time-consuming.

However, the above conditions should usually be met before importing a new version.
177 ⟨PQImport 177⟩≡ (165)

function PQImport {
Called by ClassicalOrUscan PQMigration CloneFromSalsa and itself
returnflag=$1
if [! ${returnflag}]
then

returnflag=1
fi
cd ${GitPath}
if echo $(git branch) | grep --quiet ’patch-queue/’${RecentBranch}
patch-queue branch already exists
then

return
fi

if [-f debian/patches/series]
debian/patches/series exists
then

if whiptail --title "There are patches" \
--yesno "Do you like to import the current patches\n\
onto the patch-queue branch? (recommended)" \
--yes-button "Yes" --no-button "No" 15 60

⟨PQImport1 178a⟩

177

May 4, 2025

Figure 31.2.: There are patches

If this question is answered in the negative, the download of the source code continues
(chapter 31.3, page 182).

Otherwise, in preparation for importing into a patch queue branch, the next step is to
check the Git status as described in chapter 30.4.1 (page 164).

178a ⟨PQImport1 178a⟩≡ (177)
then

CheckGitStatus
⟨PQImport1-1 178b⟩

31.2.1. First attempt to import
If no patch queue branch exists, which should be the normal case, one is created. Then
the import into this patch queue branch takes place. After the import has been completed,
the original branch (usually debian/sid) is (re)switched to (chapter 31.2.3, page 180)..

All patches listed in the debian/patches/series file must be applicable.
178b ⟨PQImport1-1 178b⟩≡ (178a)

echo "Notice from gbp pq import: " >> ${log}
gbp pq --verbose import >> ${log} 2>&1

& if [$? -eq 1]
then

Notice="All patches listed in debian/patches/series\n\
have to be appliable"’!’"\n\
For Details, look into the log file of the project.\n"
FailureNotice ${Notice}

⟨PQImport2 179a⟩

178

May 4, 2025

If the import fails, a troubleshooting option is opened (chapter 30.4.2, page 165). After
that, a new attempt can be made. The successful import is reported by the program
script (chapter 31.2.3, page 180).

31.2.2. Another import attempt
After the error has been corrected, a new import attempt can be made. If the error
correction attempt is deemed unsuccessful, the import can be canceled.

179a ⟨PQImport2 179a⟩≡ (178b)
if whiptail --title "Fixed?" --yesno "Retry?" \
--yes-button "Yes" --no-button "No import" 15 60

⟨PQImport3 179b⟩

Figure 31.3.: Fixed? Retry?

179b ⟨PQImport3 179b⟩≡ (179a)
then

PQImport ${returnflag}
else

whiptail --title "No import onto a patch-queue branch" \
--msgbox "Let’s go on without the import\n\
of the current patches onto a patch-queue branch" \
15 60

fi
⟨PQImport4 180⟩

179

May 4, 2025

Figure 31.4.: No import into patch queue

31.2.3. Import successful into PQ branch
The successful import into the PQ-Branch is indicated with a dialog.

180 ⟨PQImport4 180⟩≡ (179b)
else

whiptail --title "Done" \
--msgbox "Imported the current patches onto the patch-queue branch" \
15 60

⟨PQImport5 181⟩

180

May 4, 2025

Figure 31.5.: PQ-Import successful

Then the program script returns to the original Git branch (Debian branch).
181 ⟨PQImport5 181⟩≡ (180)

if [${returnflag} -eq 1]
then

Back to the previous branch
git checkout ${RecentBranch}

fi
fi

fi
fi

}

⟨ClassicalOrUscan 182a⟩

181

May 4, 2025

31.3. Tools for downloading the upstream sources.
To build a Debian package, the source code of the upstream project is needed first. This
can be obtained in several ways.

Downloading the source code with wget is the classic method (chapter 31.4, page 185).
This way should be chosen when building a new package for the first time.

It happens that upstream does not provide a source code archive. Instead, source code
can be found at Github or similar hosts. This places special demands on the maintainer
of a Debian package.

Alone to build reproducible, a tar archive of the upstream source code must be provided.
This must be possible without network access to External Resources.

This method must also be chosen if a specific state of the upstream code from a Git
repository (e.g. Github or similar) is to be used.

However, if a file debian/watch and other files already exist in the directory debian/,
uscan (chapter 31.5, page 221) can also be used for this. A download with uscan is
recommended if the file debian/watch contains an entry uversionmangle=.

If uscan cannot identify the new version, the new version must be deployed manually
or via wget.

These possibilities are offered alternatively by the program script.
There is also the possibility to use get-orig-source in debian/rules.

182a ⟨ClassicalOrUscan 182a⟩≡ (181)
Called by PullFromSalsa

Before importing a new version, check whether there is a patch-queue, # which can be exported onto a patch-queue branch first PQImport 1

⟨ClassicalOrUscan1 182b⟩

The PQimport function is described in chapter 31.2 (page 177).
If a debian/watch file already exists, the user is asked if he wants to download the new

version in the "‘classical’" way or with uscan..
182b ⟨ClassicalOrUscan1 182b⟩≡ (182a)

if [! -f ${GitPath}/debian/watch]
then

BuildNewVersion
return

⟨ClassicalOrUscan1-1 183a⟩

182

May 4, 2025

It is checked whether in the file debian/watch addons.thunderbird.net or addons.mozilla.org
are listed as source. Because from there no download with uscan is possible.

183a ⟨ClassicalOrUscan1-1 183a⟩≡ (182b)

else
Download from Mozilla repos is not possible with uscan
if grep --quiet "addons.thunderbird.net" ${GitPath}/debian/watch
then

whiptail --title "Thunderbird Repository" \
--msgbox "From addons.thunderbird.net \nyou can’t dowload with uscan" \
15 60
BuildNewVersion
return

fi

⟨ClassicalOrUscan2 183b⟩

Figure 31.6.: No download via uscan from thunderbird.net

183b ⟨ClassicalOrUscan2 183b⟩≡ (183a)
if grep --quiet "addons.mozilla.org" ${GitPath}/debian/watch
then

whiptail --title "Mozilla Repository" \
--msgbox "From addons.mozilla.org \nyou can’t dowload with uscan" \
15 60
BuildNewVersion
return

fi

⟨ClassicalOrUscan3 184a⟩

183

May 4, 2025

Figure 31.7.: No download via uscan from mozilla.org

184a ⟨ClassicalOrUscan3 184a⟩≡ (183b)
NVTask=$(whiptail --title "Classical download or uscan" \
--radiolist "How do you want to download the new version? " 17 60 9 \
"0" "using the classical way" on \
"1" "using uscan" off --cancel-button "Exit" 3>&2 2>&1 1>&3)

⟨ClassicalOrUscan5 184b⟩

Figure 31.8.: Download - classical or with uscan

184b ⟨ClassicalOrUscan5 184b⟩≡ (184a)
if [-z "${NVTask}"]
then

exit
case "$NVTask" in

0) BuildNewVersion;;
1) BuildWithUscan;;

esac
fi

}

⟨PullFromSalsa 175⟩

184

May 4, 2025

If the debian/watch file does not exist, the user must download the new version in the
classical way.

If downloading with uscan is selected instead of the classical way, it continues with
chapter 31.5 (page 221).

31.4. Download the classic way
As a rule, the source code of a software is provided as an archive. Various formats are
available for this purpose. The use of these is described below.

31.4.1. Archive formats
For use with git-buildpackage, an orig-tar archive is mandatory as source. This may only
have the formats *.tar.gz or *.tar.xz. The orig tar archive is also uploaded to the Debian
archive.

For use on Linux, a *.tar.gz is usually provided. Sometimes this is also a *.tar.xz.
For software that spans multiple operating systems, the source code is often provided

as a zip archive. A zip archive is therefore repacked into an .tar.xz. For this there is the
tool mk-origtargz (chapter 31.4.6, page 203).

In addition, in the file debian/gbp.conf belonging to the project can be specified
which archive format should be used. If compression = xz is specified here as compres-
sion, a *.tar.gz must also be converted to a *.tar.xz. This is then documented in the
debian/README.source file (chapter 32.4.18, page 249)..

Use mk-origtargz to rename the original authors’ tarball, optionally change the com-
pression, and remove unwanted files.

31.4.2. Downloading the source code
So first the source code is downloaded.

185 ⟨BuildNewVersion 185⟩≡ (220b)
function BuildNewVersion {

Called by ClassicalOrUscan

echo "Building a new version" >> ${log}

UpstreamSourceName=$(whiptail --title "Name of the source" \
--inputbox "Please insert the file name of the upstream source version\n \
to be downloaded or copied (including version and suffix):\n" \
--cancel-button "Exit" 15 60 3>&2 2>&1 1>&3)

⟨BuildNewVersion3 186a⟩

185

May 4, 2025

Figure 31.9.: Name of the upstream URL

Now the name of the source code package is entered here.
186a ⟨BuildNewVersion3 186a⟩≡ (185)

if [-z "${UpstreamSourceName}"]
then

exit
fi

⟨BuildNewVersion4 186b⟩

The program takes care of downloading the upstream version. If this has already been
downloaded, the program can also continue to work with it.

186b ⟨BuildNewVersion4 186b⟩≡ (186a)
cd ${PrjPath}
if whiptail --title "Should the source be downloaded?" \
--yesno "Should $UpstreamSourceName\n \
be downloaded from the upstream page?" \
--defaultno --yes-button "Yes" --no-button "No" 15 60

⟨BuildNewVersion4-1 187a⟩

Figure 31.10.: Download (or copy)?

If the question is answered in the negative, the next step is copying (chapter 31.4.2.2,
page 189).

186

May 4, 2025

31.4.2.1. Download

187a ⟨BuildNewVersion4-1 187a⟩≡ (186b)
then

if [-z "${DownloadUrl}"]
then

DownloadUrl=$(whiptail --title "Insert URL for download" \
--inputbox "Please insert the complete\n \
URL to download ${UpstreamSourceName}\n(with ’https://’\n \
or so and the name of the archive):" \
--cancel-button "Exit" 15 60 3>&2 2>&1 1>&3)

fi

⟨BuildNewVersion4-2 187b⟩

Figure 31.11.: Enter link for download

187b ⟨BuildNewVersion4-2 187b⟩≡ (187a)
if [-z "${DownloadUrl}"]
then

exit
else

changeflag=1
fi

⟨BuildNewVersion5 187c⟩

As a precaution, you will be asked if the URL to download the source code is correct.
187c ⟨BuildNewVersion5 187c⟩≡ (187b)

if ! whiptail --title "DownloadUrl" \
--yesno "The complete URL to download ${UpstreamSourceName} is\n \
${DownloadUrl}" --yes-button "Yes" --no-button "No" 15 60

⟨BuildNewVersion5-1 188a⟩

187

May 4, 2025

Figure 31.12.: Download-URL right?

188a ⟨BuildNewVersion5-1 188a⟩≡ (187c)
then

DownloadUrl=$(whiptail --title "Complete URL" \
--inputbox "Real complete URL to download ${UpstreamSourceName}\n \
(with ’https://’ or so and the name of the archive):" \
--cancel-button "Exit" 15 60 3>&2 2>&1 1>&3)

fi

⟨BuildNewVersion5-2 188b⟩

Figure 31.13.: Correct download URL

188b ⟨BuildNewVersion5-2 188b⟩≡ (188a)
if [-z "${DownloadUrl}"]
then

exit
else

changeflag=1
fi

⟨BuildNewVersion6 189a⟩

188

May 4, 2025

The new URL for downloading the source code is entered in the configuration file.
After that the download is done by wget.

Then the possibility is opened to download and check also the signature file (chapter
31.4.7, page 206).

189a ⟨BuildNewVersion6 189a⟩≡ (188b)
Write download URL into config file
if [$changeflag -eq 1]
then

ReplaceConfigLines ’DownloadUrl’ ${DownloadUrl}
changeflag=0

fi

getting sources using wget
wget --verbose $DownloadUrl &&
echo -e "The sources were pulled from\n${DownloadUrl}\n \
by wget." >> ${log}

if whiptail --title ".asc file?" \
--yesno "Do you want to download an .asc file, too?" \
--yes-button "Yes" --no-button "No" 15 60
then

DownloadAscFile
fi

⟨BuildNewVersion6-1 189b⟩

Figure 31.14.: Download *.asc file

31.4.2.2. Copy the source archive

189b ⟨BuildNewVersion6-1 189b⟩≡ (189a)
else

whiptail --title "Please copy the source code now" \
--msgbox "Please copy ${UpstreamSourceName} to ${PrjPath}!" 15 60

⟨BuildNewVersion6-2 190a⟩

189

May 4, 2025

Figure 31.15.: Path to copy

190a ⟨BuildNewVersion6-2 190a⟩≡ (189b)
if ! whiptail --title "Copy finished?" \
--yesno "Was ${UpstreamSourceName} copied to ${PrjPath}?" \
--yes-button "Yes" --no-button "No" 15 60

⟨BuildNewVersion6-3 190b⟩

190b ⟨BuildNewVersion6-3 190b⟩≡ (190a)
then

echo "Exit" >> ${log} whiptail --title "Bye" --msgbox "Bye" 15 60
exit

fi
⟨BuildNewVersion6-4 190c⟩

Figure 31.16.: Quit program

190c ⟨BuildNewVersion6-4 190c⟩≡ (190b)
fi

Identify the type of the upstream archive by suffix
CutSuffix

⟨BuildNewVersion7 192a⟩

190

May 4, 2025

Now the compression and the version number is determined. This is called also
altogether Suffix. If everything is in order here it continues in the chapter 31.4.5 (page
195).

31.4.3. Identify suffix
Which compression mk-origtargz automatically chooses depends on the file type of the
upstream archive. The file name extension is compared with a list of reasonable file types.

191a ⟨CutSuffix 191a⟩≡ (154b)
function CutSuffix {

Called by BuildNewVersion

List of reasonable suffixes
typea=(’.tar.gz’ ’.tar.xz’ ’.tgz’ ’.zip’ ’.oxt’ ’.xpi’ ’.jar’)

⟨CutSuffix1 191b⟩

The file types .oxt, .xpi and .jar all describe .zip archives. For the .xpi file type, the
mozilla-devscripts package is required.

191b ⟨CutSuffix1 191b⟩≡ (191a)
KnownTyp=0
for element in ${typea[*]}
do

if echo ${UpstreamSourceName} | grep ${element} > /dev/null
then

echo "Notice from CutSuffix: The suffix of the upstream \
file is "${element} >> ${log}
UpstreamSuffix=${element}
RecentUpstreamSuffix=$(echo ${UpstreamSuffix} | sed --expression s/^.//)
ReplaceConfigLines ’RecentUpstreamSuffix’ ${UpstreamSuffix}
KnownTyp=1

fi
done

if [${KnownTyp} -ne 1]
then

echo "Notice from CutSuffix: Unknown suffix" >> ${log}
if ! whiptail --title "Unknown suffix" \
--yesno "The suffix of ${UpstreamSourceName} is not listed.\n \
Continue anyway?" --defaultno --yes-button "Yes" \
--no-button "No" 15 60
then

exit
fi

fi
}

⟨Name2Version 192b⟩

191

May 4, 2025

Figure 31.17.: Unknown suffix

31.4.4. Detect upstream version
192a ⟨BuildNewVersion7 192a⟩≡ (190c)

Identify the upstream version number
Name2Version

⟨BuildNewVersion8 192c⟩

192b ⟨Name2Version 192b⟩≡ (191b)
function Name2Version {

Called by BuildNewVersion
Extracts version from uptream archive name
Suffix=$(echo ${UpstreamSuffix} | sed --expression=’s/\./\\\./g’)
Version1=$(echo ${UpstreamSourceName} | sed --expression="s/${Suffix}$//" | \
sed --expression="s/.*${SourceName}//gI" | \
sed --expression=’s/-//’ | sed --expression=’s/v//’)
if [-z ${Version1}]
then

Version1="0.0.0" # Default value
fi

}

⟨GbpConfIntegration 208c⟩

192c ⟨BuildNewVersion8 192c⟩≡ (192a)
if ! whiptail --title "Version" \
--yesno "You want to build version ${Version1}." \
--yes-button "Yes" --no-button "No" 15 60

⟨BuildNewVersion9 193a⟩

192

May 4, 2025

Figure 31.18.: Right version?

It can happen that the program script cannot determine the correct version designation.
In this case, the version designation can be entered in the following dialog box, which can
also be processed further. In addition to the digits, the version name may only contain
dots and the specification whether it is a release candidate, a beta or alpha version or a
specific commit from the Git repository.

193a ⟨BuildNewVersion9 193a⟩≡ (192c)
then

Version1=$(whiptail --title "Version" \
--inputbox "Name of the upstream version: ${UpstreamSourceName}\n \
Which version (without repack identifiers and without revision)\n \
of the package ${SourceName} should be built?" \
--cancel-button "Cancel" 15 60 3>&2 2>&1 1>&3)

⟨BuildNewVersion10 193b⟩

Figure 31.19.: Which version should be built?

193b ⟨BuildNewVersion10 193b⟩≡ (193a)
if ! whiptail --title "Version" \
--yesno "Do you really want to build version ${Version1}." \
--yes-button "Yes" --no-button "No" 15 60 ⟨BuildNewVersion11 194a⟩

193

May 4, 2025

Figure 31.20.: Will correct version be built?

194a ⟨BuildNewVersion11 194a⟩≡ (193b)
then

echo "Exit" >> ${log}
whiptail --title "Bye" --msgbox "Bye" 15 60
exit

fi
⟨BuildNewVersion11-1 194b⟩

Figure 31.21.: Quit program

194b ⟨BuildNewVersion11-1 194b⟩≡ (194a)
fi

ExcludeFiles

echo "Version "${Version1}${ESuffix}" of the package "${PackName}" \
should be built." >> ${log}

⟨BuildNewVersion12 203c⟩

194

May 4, 2025

31.4.5. Exclude files from upstream archive
Before mk-origtargz is called, the program script allows individual source code files to be
excluded from inclusion in the orig archive.

195a ⟨ExcludeFiles 195a⟩≡ (199a)
function ExcludeFiles {

Called by BuildNewVersion

⟨ExcludeFiles1 195b⟩

It is necessary to specify that files are to be excluded. To do this, the program script
determines where the information to exclude files should come from. This is here the file
debian/copyright.

Now it checks if a file debian/copyright exists.
195b ⟨ExcludeFiles1 195b⟩≡ (195a)

Checks whether debian/copyright contains a section Files-Excluded
gitflag=0
exflag=0
crflag=0
if [-f ${GitPath}/debian/copyright]
then

⟨ExcludeFiles2 195c⟩

Then it is checked whether it contains the expression Files-Excluded. In this case it is
queried whether the file debian/copyright should be edited.

195c ⟨ExcludeFiles2 195c⟩≡ (195b)
crflag=1
grep ’Files-Excluded’ ${GitPath}/debian/copyright > /dev/null
if [$? -eq 0]
then

exflag=1 whiptail --title "Copyright file contains Files-Excluded" \
--msgbox "debian/copyright contains section Files-Excluded." 15 60
less --LINE-NUMBERS ${GitPath}/debian/copyright

fi
fi

⟨ExcludeFiles3 196⟩

195

May 4, 2025

Figure 31.22.: File debian/copyright contains section Files-Excluded

196 ⟨ExcludeFiles3 196⟩≡ (195c)
if whiptail --title "Exclude files from upstream source" \
--yesno "Do you want to exclude files from upstream source?" \
--defaultno --yes-button "Yes" --no-button "No" 15 60

⟨ExcludeFiles3-1 197⟩

196

May 4, 2025

Figure 31.23.: Exclude files

If no file exclusion is needed, mk-origtargz is run in the background.(Chapter 31.4.6,
page 203). Then it continues in chapter 31.4.8, (page 207).

197 ⟨ExcludeFiles3-1 197⟩≡ (196)
then

if [$crflag -eq 1]
then

if whiptail --title "Copyright file exitst" \
--yesno "debian/copyright exists.\nDo you want to edit it?" \
--yes-button "Yes" --no-button "No" 15 60
then

gitflag=1
nano --linenumbers --mouse --softwrap ${GitPath}/debian/copyright

fi
AddOpt=" --copyright-file "${SourceName}"/debian/copyright"

⟨ExcludeFiles4 198⟩

197

May 4, 2025

Figure 31.24.: Should debian/copyright be edited?

Otherwise, the SpecialExcludeFile function is called. In this function, unless - as in
the present case - the information in the file debian/copyright is used, a special file is
requested which contains the names of the files to be excluded in the format DEP-51.

198 ⟨ExcludeFiles4 198⟩≡ (197)
else

SpecialExcludeFile
fi

⟨ExcludeFiles5 199b⟩

1DEP-5[17]

198

May 4, 2025

If it is already clear before submitting the package to the New Queue that files are to
be excluded, no debian/copyright file exists at that time. It is then a good idea to list
the files to be excluded in a separate file.

The ExcludeFiles function calls the following function for this purpose. This function
asks for a special file containing the names of the files to be excluded in DEP-5 format.

199a ⟨SpecialExcludeFile 199a⟩≡ (205b)
function SpecialExcludeFile {

Called by ExcludeFiles
if [-z "${ExcludeFile}"]
then

ExcludeFile=$(whiptail --title "Name of exclude file" \
--inputbox "Please insert name of the exclude file:" \
--cancel-button "Exit" 15 60 3>&2 2>&1 1>&3)
if [-z "${ExcludeFile}"]
then

exit
fi
echo ’ExcludeFile=’${ExcludeFile} >> ${ConfigPath}${OrigName}

else
whiptail --title "Exclude file name" \
--msgbox "The name of the exlude file is ${ExcludeFile}" \
15 60

fi
AddOpt=" --copyright-file "${ExcludeFile

} }

⟨ExcludeFiles 195a⟩

Then the program script asks for the attachment to add to the upstream version name..
Often select +dfsg as an attachment here to document the reason for the exclusion

(see also chapter 10.4.1.3, page 32)
199b ⟨ExcludeFiles5 199b⟩≡ (198)

ESuffixN=$(whiptail --title "Suffix:" \
--radiolist "Please choose the suffix: " \
--cancel-button "Cancel" 15 60 4 \
"0" "+ds" off \
"1" "+dfsg" on \
"2" "other" off 3>&2 2>&1 1>&3)
if [${ESuffixN} -eq 1]
then

ESuffix="+dfsg"
elif [${ESuffixN} -eq 0]
then

ESuffix="+ds"
⟨ExcludeFile6 200⟩

199

May 4, 2025

Figure 31.25.: Suffix for exclusion of files

If a suffix other than the two suggested is to be used, this must be added manually.
This entry must also be added accordingly in the debian/watch file. (s.a chapter 32.4.7,
page 238)

200 ⟨ExcludeFile6 200⟩≡ (199b)
else

ESuffix=$(whiptail --title "Enter suffix" \
--inputbox "Please insert the suffix:" \
--cancel-button "Cancel" 15 60 3>&2 2>&1 1>&3)

fi
⟨ExcludeFile7 201⟩

200

May 4, 2025

Figure 31.26.: Custom suffix for excluding files

201 ⟨ExcludeFile7 201⟩≡ (200)
if [-z "${ESuffix}"]
then

whiptail --title "Warning!" \
--msgbox "You repacked the upstream source and\n\
do not want to use a repack suffix." 15 60
if [-n "${RecentRepackSuffix}"]
then

Remove suffix from config file
sed --in-place \
--expression="s/RecentRepackSuffix=.*//g" \

${ConfigPath}${OrigName}
fi

else
⟨ExcludeFile8 202a⟩

201

May 4, 2025

Figure 31.27.: Warning. - No suffix specified

In some cases a plus sign (+) can cause problems especially when building Java
packages. Sometimes it is also necessary that no suffix can be added. The documentation
of such operations can then be done in the file README.source (chapter 32.4.18, page
249)

202a ⟨ExcludeFile8 202a⟩≡ (201)
Insert suffix into config file
if [-z "${RecentRepackSuffix}"]
then

echo "RecentRepackSuffix="${ESuffix} >> ${ConfigPath}${OrigName}
else

sed --in-place \
--expression="s/RecentRepackSuffix=.*/RecentRepackSuffix=${ESuffix}/g" \ ${ConfigPath}${OrigName}

fi

RecentRepackSuffix=${ESuffix}
AddOpt=${AddOpt}" --repack-suffix "${ESuffix}

fi
⟨ExcludeFiles10 202b⟩

The compression of the *.orig.tar.* archive is stored in the suffix variable. It is set to
.tar.xz.

202b ⟨ExcludeFiles10 202b⟩≡ (202a)
whiptail --title "Option(s) for mk-origtargz:" \
--msgbox "\n${AddOpt}" 15 60

else
AddOpt=""
ESuffix=""

⟨ExcludeFiles12 203a⟩

202

May 4, 2025

If no files are to be excluded, but the debian/copyright file contains a Files-Excluded:
section, remove it (manually).

203a ⟨ExcludeFiles12 203a⟩≡ (202b)
if [$exflag -eq 1]
then

gitflag=1
whiptail --title "Copyright file contains Files-Excluded" \
--msgbox "debian/copyright contains Files-Excluded section.\n \
Please delete it" 15 60
nano --linenumbers --mouse \
--softwrap ${GitPath}/debian/copyright

fi
fi

⟨ExcludeFiles15 203b⟩

If the debian/copyright file was edited in connection with the exclusion of files, a
corresponding commit occurs.

203b ⟨ExcludeFiles15 203b⟩≡ (203a)
if [$gitflag -eq 1]
then

git add debian/copyright
git commit -am "Changed debian/copyright"

fi
}

⟨CheckSignature 207a⟩

31.4.6. Create Debian source file
The script then continues to execute the BuildNewVersion function and passes the
parameters necessary for exclusion to the mk-origtargz program. (Reference to this
location in the other function).

In this way, a new orig tarball is created with mk-origtargz without the files to be
excluded from the previous *.tar.gz and its contents are inserted into the existing Git
repository with gbp import-orig.

203c ⟨BuildNewVersion12 203c⟩≡ (194b)
Creating orig file using mk-origtargz
if [-z ${Version1}]
then

whiptail --title "No version number!"\
--msgbox "No version - no *.orig.tar.gz! Bye!" 15 60
exit

fi
echo "mk-origtargz --package "${SourceName}" \
--version "${Version1}${AddOpt}" "${UpstreamSourceName} >> ${log}
mk-origtargz --package ${SourceName} \
--version ${Version1}${AddOpt} ${UpstreamSourceName} 2>> ${log}

⟨BuildNewVersion13 204⟩

203

May 4, 2025

Figure 31.28.: Create orig.tar.xz

204 ⟨BuildNewVersion13 204⟩≡ (203c)
if [$? -eq 0]
then

echo "orig file was created by mk-origtargz" >> ${log}
Version1=${Version1}${ESuffix}

else
echo "mk-origtargz failed" >> ${log}
whiptail --title "Fatal error" \
--msgbox "mk-origtargz failed" 15 60
exit

fi

⟨BuildNewVersion14 205a⟩

204

May 4, 2025

Figure 31.29.: mk-origtargz failed

205a ⟨BuildNewVersion14 205a⟩≡ (204)
Link2File
SearchGbpConf

cd ${GitPath}

DebianBranch4Import
⟨BuildNewVersion15 218⟩

If the variable RecentBranch does not exist or is empty, it is assigned the value
debian/sid and a corresponding entry is made in the configuration file.

205b ⟨DebianBranch4Import 205b⟩≡ (284b)
function DebianBranch4Import {

Called by BuildNewVersion
Makes sure RecentBranch contains value
RecentBranch=$(grep ’RecentBranch=’ ${ConfigPath}${OrigName})
RecentBranch=$(echo ${RecentBranch} | sed --expression=’s/RecentBranch=//’)
if [-z "${RecentBranch}"]
then

RecentBranch="debian/sid"
changeflag=1
whiptail --title "Set RecentBranch" \
--msgbox "Set RecentBranch to ${RecentBranch}" 15 60

fi

if [$changeflag -eq 1]
then

echo ’RecentBranch=’${RecentBranch} >> ${ConfigPath}${OrigName}
fi
echo "Notice from DebianBranch4Import: \
The branch is "${RecentBranch} >> ${log}
changeflag=0

}

⟨SpecialExcludeFile 199a⟩

205

May 4, 2025

31.4.7. Verify signature
Some projects publish a signature file along with the source code package. The script
can download this and perform a cryptographic check. A signature file in asc format is
expected.

31.4.7.1. Download signature file

206 ⟨DownloadAscFile 206⟩≡ (207a)
function DownloadAscFile {

Called by BuildNewVersion and itself

cd ${PrjPath}

AscFileURL=$(whiptail --title "URL of .asc file" \
--inputbox "URL and name (with suffix)\nof the .asc file:" \
--cancel-button "Cancel" 15 60 3>&2 2>&1 1>&3)

if [$? -eq 1]
then

return 1
fi

if [-z "${AscFileURL}"]
then

echo -e "URL and name (with suffix)\nof the .asc file:"
read AscFileURL

fi

if [-n "${AscFileURL}"]
then

getting -asc file using wget
wget --version ${AscFileURL} &>> ${log} &{
if [$? -eq 0]
then

echo -e "The .asc file was pulled from\n${AscFileURL}\n \
by wget." >> ${log}
whiptail --title "Download successful" \
--msgbox "${AscFileURL} was downloaded." 15 60
if [-r ${UpstreamSourceName}.asc]
then

CheckSignature
else

whiptail --title "There is something wrong!" \
--msgbox "Maybe you has downloaded the wrong .asc file." 15 60
DownloadAscFile

fi
else

DownloadAscFile
fi

fi

206

May 4, 2025

}

⟨Link2File 207b⟩

31.4.7.2. Signature Verification

207a ⟨CheckSignature 207a⟩≡ (203b)
function CheckSignature {

Called by DownloadAscFile
gpg --verify ${UpstreamSourceName}.asc >> ${log}

if [$? -ne 0]
then

tail --lines=5 ${log}
read x

else
whiptail --title "Check successfull!" --msgbox "gpg \
--verify has been successfull" 15 60

fi
}

⟨DownloadAscFile 206⟩

31.4.8. Replace link with a copy
The default behavior of mk-origtargz (chapter 31.4.6, page 203) is to create a symbolic
reference to the original file if it is taken unchanged.

The program script replaces this reference with a corresponding file if necessary.
207b ⟨Link2File 207b⟩≡ (206)

function Link2File {
Called by BuildNewVersion
OrigLinkNr=$(ls -la ${PrjPath} | grep --count -e ’.orig.tar.[gx]z -> ’)
if [$OrigLinkNr -ge 1]
then

OrigLink=$(ls -la ${PrjPath} | grep --regexp=’.orig.tar.[gx]z -> ’)
OrigLink=$(echo ${OrigLink} | \ sed --expression=’s/^.*:.. //’ | sed --expression=’s/ //g’)
echo ${OrigLink}" will be transformed into a file" >> ${log}

LinkTarget=$(echo $OrigLink | sed --expression=’s/^.*->//’)
LinkName=$(echo $OrigLink | sed --expression=’s/->.*$//’)
rm ${PrjPath}/${LinkName}
cp -a ${PrjPath}/${LinkTarget} ${PrjPath}/${LinkName}
whiptail --title "Result of transformation link to file:" \
--msgbox "$(ls -la ${PrjPath})" 15 60
echo "Result of transformation link to file: \
"$(ls -la ${PrjPath}) >> ${log}

fi
}

⟨CheckGitStatus 164⟩

207

May 4, 2025

31.4.9. gbp Configuration File
gbp import-orig (chapter 31.4.10, page 218) adds the downloaded source code to the Git
repository.

To control this process, the insertion of a prepared gbp.conf file into the .git directory
is enabled (chapter 31.4.10, page 218)

208a ⟨SearchGbpConf 208a⟩≡ (215)
function SearchGbpConf {

Called by BuildNewVersion BuildWithUscan

Neither .git/gbp.conf nor debian/gbp.conf exist
if [! -f ${GitPath}/.git/gbp.conf -a ! -f ${GitPath}/debian/gbp.conf]
then

if whiptail --title "gbp.conf needed?" \
--yesno "Do you want to integrate a special gbp.conf for this project?" \
--defaultno --yes-button "Yes" --no-button "No" 15 60

⟨SearchGbpConf1 208b⟩

Figure 31.30.: Special gbp.conf

208b ⟨SearchGbpConf1 208b⟩≡ (208a)
then

GbpConfIntegration
fi

fi
⟨SearchGbpConf2 210⟩

208c ⟨GbpConfIntegration 208c⟩≡ (192b)
function GbpConfIntegration {

Called by SearchGbpConf and itself
GbpConfPath=$(whiptail --title "gbp.conf" \
--inputbox "Please insert the path to the your special\n \
gbp.conf for this project:" \
--cancel-button "Cancel" 15 60 3>&2 2>&1 1>&3)

⟨GbpConfIntegration1 209⟩

208

May 4, 2025

Figure 31.31.: path to the gbp.conf?

209 ⟨GbpConfIntegration1 209⟩≡ (208c)
if [-z "${GbpConfPath}"]
then

echo "Please insert the path to the your special gbp.conf for this project:"
read GbpConfPath

fi

Replace tilde if necessary
SuspectPath=${GbpConfPath}
ReplaceTilde
GbpConfPath=${CleanPath}

if [-f ${GbpConfPath}/gbp.conf]
then

cp -av ${GbpConfPath}/gbp.conf ${GitPath}/.git/
else

if whiptail --title "File not found!" \
--yesno "There was no gbp.conf found at ${GbpConfPath}! Retry?" \
--yes-button "Yes" --no-button "No" 15 60
then

GbpConfIntegration
fi

fi
}

⟨TwoConfFilesFound 213a⟩

209

May 4, 2025

Figure 31.32.: gbp.conf not found

If a gbp.conf file is found, it is displayed in the editor for checking and, if necessary,
adjustment. Especially the value of the variable compression should be checked – especially
if a corresponding change of the archive format is to be made.

210 ⟨SearchGbpConf2 210⟩≡ (208b)
debian/gbp.conf exists, but not .git/gbp.conf
if [! -f ${GitPath}/.git/gbp.conf -a -f ${GitPath}/debian/gbp.conf]
then

whiptail --title "Found gbp.conf" \
--msgbox "Please check and edit your gbp.conf (if necessary)" 15 60

⟨SearchGbpConf3 211⟩

210

May 4, 2025

Figure 31.33.: Check gbp.conf

211 ⟨SearchGbpConf3 211⟩≡ (210)

nano --linenumbers --mouse --softwrap ${GitPath}/debian/gbp.conf
fi
.git/gbp.conf exists, but not debian/gbp.conf
if [-f ${GitPath}/.git/gbp.conf -a ! -f ${GitPath}/debian/gbp.conf]
then

whiptail --title "Found gbp.conf" \
--msgbox "Please check and edit your gbp.conf (if necessary)" 15 60

⟨SearchGbpConf4 212a⟩

211

May 4, 2025

Figure 31.34.: Check gbp.conf

212a ⟨SearchGbpConf4 212a⟩≡ (211)

nano --linenumbers --mouse --softwrap ${GitPath}/.git/gbp.conf
fi
There is a gbp.conf in both directories
if [-f ${GitPath}/.git/gbp.conf -a -f ${GitPath}/debian/gbp.conf]
then

TwoConfFilesFound
fi

}

⟨MovingGbpConfFile 284b⟩

The following is the file with the information that can be used for many Debian
packages.

212b ⟨debian/gbp.conf 212b⟩≡
Configuration file for git-buildpackage and friends

[DEFAULT]
use pristine-tar:
pristine-tar = True
generate xz compressed orig file
compression = xz
debian-branch = debian/experimental
upstream-branch = upstream

[pq]
patch-numbers = False

[dch] id-length = 7
debian-branch = debian/experimental

[import-orig]
filter out unwanted files/dirs from upstream
filter = [’.cvsignore’, ’.gitignore’, ’.hgtags’, ’.hgignore’, ’*.orig’, *.rej’]
filter the files out of the tarball passed to pristine-tar
filter-pristine-tar = True

212

May 4, 2025

The TwoConfFilesFound function handles the case where a file gbp.conf occurs in both
the .git/ and debian/ directories.

213a ⟨TwoConfFilesFound 213a⟩≡ (209)
function TwoConfFilesFound {

Called by SearchGbpConf MovingGbpConfFile

whiptail --title "Information" \
--msgbox "There are a gbp.conf in debian/ and a gbp.conf in .git/" 15 60

⟨TwoConfFilesFound0-1 213b⟩

Figure 31.35.: gbp.conf found twice.

213b ⟨TwoConfFilesFound0-1 213b⟩≡ (213a)
Are they different?
GitConfFile=$(cat ${GitPath}/.git/gbp.conf)
DebianConfFile=$(cat ${GitPath}/debian/gbp.conf)
if ["${GitConfFile}" != "${DebianConfFile}"]
then

whiptail --title "Warning!" \
--msgbox "There are a gbp.conf in debian/ and a gbp.conf in .git/\n \
But they are different!\n\nThe left column is ${GitPath}/.git/gbp.conf\n \
The right column is ${GitPath}/debian/gbp.conf\n \
After studying the diff press RETURN!" 15 60

⟨TwoConfFilesFound1 214⟩

213

May 4, 2025

Figure 31.36.: Different configuration files

With diff --side-by-side (-y) the difference is displayed in two columns.
214 ⟨TwoConfFilesFound1 214⟩≡ (213b)

diff --side-by-side ${GitPath}/.git/gbp.conf ${GitPath}/debian/gbp.conf
read a

fi
Editing
if whiptail --title "debian/gbp.conf" \
--yesno "Do you want to edit ${GitPath}/debian/gbp.conf?" \
--yes-button "Yes" --no-button "No" 15 60

⟨TwoConfFilesFound2 215⟩

214

May 4, 2025

Figure 31.37.: Do you want to edit gbp.conf in the debian/ directory?

215 ⟨TwoConfFilesFound2 215⟩≡ (214)
then

nano --linenumbers --mouse --softwrap ${GitPath}/debian/gbp.conf
fi
if

whiptail --title ".git/gbp.conf" \
--yesno "Do you want to edit ${GitPath}/.git/gbp.conf (too)?" \
--yes-button "Yes" --no-button "No" 15 60

then
nano --linenumbers --mouse --softwrap ${GitPath}/.git/gbp.conf

fi
}

⟨SearchGbpConf 208a⟩

215

May 4, 2025

Figure 31.38.: Do you want to edit gbp.conf in the .git/ directory?

A check is made to see if there is still a local change that has not been marked for
commit. These must be processed before importing a new version.

Here you can also synchronize with the Debian repository on salsa.debian.org.
The following section lists the tags. For the following commit with gbp import-orig,

the tag of the version to be imported must not exist yet. (Tag collision)
216 ⟨CheckTags 216⟩≡ (164)

function CheckTags {
Called by BuildWithUscan Import2Git and itself
checks git tags before executing gbp import-orig
echo $(git tag) >> ${log}
cTags=$(git tag | grep --fixed-strings ${Version1})
if [${#cTags} -gt 0]
then

cTags1=$(echo ${cTags} | sed --expression=’s/ /\\n/g’)
if ! whiptail --title "List of dubious tags:" \
--yesno "${cTags1}\n\nDo you want to continue regardless?" --defaultno \
--yes-button "Yes" --no-button "No" 15 60

⟨CheckTags2 217a⟩

216

May 4, 2025

Figure 31.39.: Dubious git tag

If a Git tag is listed here, which should still be removed before importing a new version,
the answer here is "‘No"’. Then the next dialog will ask to remove this Git tag.

217a ⟨CheckTags2 217a⟩≡ (216)
then

whiptail --title "Delete tags!" \
--msgbox "Please delete tags in another terminal\n \
and then press ok" 15 60

⟨CheckTags3 217b⟩

Figure 31.40.: Delete Git Tags

217b ⟨CheckTags3 217b⟩≡ (217a)
git tag -d
CheckTags

fi
fi

}

⟨Import2Git 219⟩

217

May 4, 2025

31.4.10. Import to Git
Here gbp is used for the first time. As a first step, gbp import-orig adds the downloaded
source code to the Git repository. The –debian-branch option is assigned the contents of
the RecentBranch variable.

If several possible branches exist, the Debian branch to import into can be selected
beforehand (chapter 30.4, page 163).

218 ⟨BuildNewVersion15 218⟩≡ (205a)
Import2Git # Contains import to the git repo using gbp import
Task=3 # Go to BuildNewRevision

}

⟨DebianFormatTemplate 231b⟩

218

May 4, 2025

219 ⟨Import2Git 219⟩≡ (217b)
function Import2Git {

Called by BuildNewVersion and itself

CheckGitStatus # to exercise caution
CheckTags

Check branch for import
bl=$(git branch --list | sed --expression=’s/* /x_/’)
ba=($bl)
for element in ${ba[*]}
do

if echo ${element} | grep --quiet ’^x_’
then

ActiveBranch=$(echo ${element} | sed --expression ’s/\x_//’)
fi

done

if [${ActiveBranch} != ${RecentBranch}]
then

whiptail --title "Check Branch!" \
--msgbox "The active branch is ${ActiveBranch}.\n\
In ${ConfigPath}${OrigName} ’RecentBranch’ is ${RecentBranch}." \
15 60
echo -e "The active branch is "${ActiveBranch}".\n"\
"In "${ConfigPath}${OrigName}" ’RecentBranch’ is "${RecentBranch}"."
FailureNotice

fi

Import to the git repo using gbp import

echo "Notice from BuildNewVersion: The branch is \
${RecentBranch}" >> ${log}
whiptail --title "Notice from BuildNewVersion:" \
--msgbox "The branch is ${RecentBranch}" 15 60

OrigFile=$(ls ${PrjPath}/${SourceName}_${Version1}.orig.tar.?z)
whiptail --title "Notice from BuildNewVersion:" \
--msgbox "The orig file to be imported is ${OrigFile}" 15 60

⟨Import2Git3 220a⟩

219

May 4, 2025

Now the input of the passphrase for the GPG key is requested here. If it is not entered
promptly, the import is rolled back. It is therefore first queried whether the GnuPG key
is available (chapter 29.7, page 156). If the question is answered in the negative, the
program is terminated.

This signs the Git tag to be generated. This is in accordance with good practice. Only
signed tags should be uploaded to salsa.debian.org.

Tag signing is the default behavior of gbp import-orig. This option was nevertheless
included in the command line, because “explicit is better than implicit”.

If you exceptionally do not want to sign, use the option –no-sign-tags..
220a ⟨Import2Git3 220a⟩≡ (219)

GpgKeyAvailable
echo -e "\n Starting gbp import-orig - Please wait"’!’"\n"
Signing tags is default
gbp import-orig --verbose --debian-branch=${RecentBranch} \
--sign-tags ${OrigFile}

⟨Import2Git4 220b⟩

Now gbp buildpackage shows in detail all the steps that are now executed. Thereby the
determined package version must be confirmed and adjusted.

220b ⟨Import2Git4 220b⟩≡ (220a)
if [$? -eq 0]
then

echo ${OrigFile}" was imported by gbp import-orig" >> ${log}
else

whiptail --title "Something went wrong!" \
--msgbox "gbp import-orig -v --debian-branch=${RecentBranch} \
--sign-tags ${OrigFile} failed!" 15 60
echo "gbp import-orig -v --debian-branch="${RecentBranch}" \
--sign-tags "${OrigFile}" failed!" >> ${log}
FailureNotice
Import2Git

fi
}

⟨BuildNewVersion 185⟩

220

May 4, 2025

At the end, the BuildNewVersion function calls the BuildNewRevision function (chapter
32, page 225.

31.5. Download and import with uscan
The following steps are performed by the command gbp import-orig --uscan

Using the first entry in the file debian/changelog (chapter 34.1, page 277), uscan
determines the version name of the last package built. uscan then loads the web page
from the URL specified in the debian/watch file (chapter 32.4.7, page 238). Then uscan
searches for hyperlinks (href) pointing to upstream archives using the search pattern
specified in debian/watch.

uscan downloads the upstream archive with the latest version if it is newer than the
last version specified in debian/changelog. The downloaded archive is stored in the parent
directory. Finally, mk-origtargz (see chapter 18.1.1, page 57) is called.

The program script first checks whether a download with uscan is possible and useful.
Furthermore, an existing gbp.conf file (with the SearchGbpConf function (chapter

31.4.9, page 208)) is opened in the editor for the purpose of checking. Special attention
must be paid to the specified compression (compression).

221 ⟨BuildWithUscan 221⟩≡ (223a)
function BuildWithUscan {

Called by ClassicalOrUscan

cd ${GitPath}

echo "Try gbp import-orig --uscan" >> ${log}
uscaninfo=$(uscan --no-download --verbose)
if [${#uscaninfo} -gt 0]
then

SearchGbpConf
whiptail --title "uscan" --msgbox "${uscaninfo}" \
--scrolltext 15 60
echo -e "Result of uscan:\n"${uscaninfo} >> ${log}
echo ${uscaninfo} | grep ’=> Package is up to date’ > /dev/null
if [$? -eq 0]
then

whiptail --title "uscan" \
--msgbox "Package seems to be up to date.\n \
Nothing to do!" 15 60
echo "Package seems to be up to date. Nothing to do!" \
>> ${log}

⟨BuildWithUscan4 222a⟩

221

May 4, 2025

Figure 31.41.: Up to date

222a ⟨BuildWithUscan4 222a⟩≡ (221)
fi
echo ${uscaninfo} | grep ’=> Newer package available from’ \
> /dev/null
if [$? -eq 0]
then

if ! whiptail --title "Newer package available" \
--yesno "All well? Continue?" --yes-button "Yes" \
--no-button "Exit" 15 60
then

exit
fi

⟨BuildWithUscan5 222b⟩

Figure 31.42.: New Version available

222b ⟨BuildWithUscan5 222b⟩≡ (222a)
CheckRepackSuffix

⟨BuildWithUscan5-1 223b⟩

222

May 4, 2025

This checks if the RecentRepackSuffix entry is present in the configuration file, but no
corresponding debian/watch.

In this case a hint is given and the file debian/watch is presented for editing.
223a ⟨CheckRepackSuffix 223a⟩≡ (312)

function CheckRepackSuffix {
Called by BuildWithUscan
if [-n "${RecentRepackSuffix}"]
then

if ! [cat ${GitPath}/debian/watch | grep "repacksuffix=" > /dev/null]
then

whiptail -- title "debian/watch!" \
--msgbox "No repacksuffix in debian/watch." 15 60
nano --linenumbers --mouse --softwrap ${GitPath}/debian/watch

fi
fi

}

⟨BuildWithUscan 221⟩

223b ⟨BuildWithUscan5-1 223b⟩≡ (222b)
Version1=$(uscan --no-download --verbose | \
grep newversion | sed --expression ’s/ $newversion = //’)
CheckGitStatus

⟨BuildWithUscan6 223c⟩

To sign the archive of the downloaded source code, the GPG key of the maintainer is
required. This must therefore be available. Otherwise it cannot proceed. (Chapter 29.7,
page 156

223c ⟨BuildWithUscan6 223c⟩≡ (223b)
GpgKeyAvailable

⟨BuildWithUscan7 224⟩

223

May 4, 2025

The steps described at the beginning are executed by gbp import-orig --uscan..
This is not the way implied in the new-maintainer guild in Chapter 5.21, but uses gbp

import-org [37].
224 ⟨BuildWithUscan7 224⟩≡ (223c)

CheckTags
Downloads with uscan and imports with gbp import-orig
gbp import-orig --uscan --verbose \
--debian-branch=${RecentBranch} --sign-tags ${OrigFile}
if [$? -ne 0]
then

echo "Import with gbp import-orig --uscan failed!" \
>> ${log}
exit

fi
echo "Imported with gbp import-orig --uscan" >> ${log}

else
exit

fi
else

whiptail -- title "Uscan failed!" \
--msgbox "Please check the watch file with uscan." 15 60
echo "Uscan failed! Please check the watch file with uscan." >> ${log}
exit

fi

Task=3 # Go to BuildNewRevision
}

⟨PrepareUploading (never defined)⟩

At the end, the BuildWithUscan function calls the BuildNewRevision function (chapter
32, page 225)

224

32. Building a new revision

The BuildNewRevison function is automatically called by the BuildNewVersion and
BuildWithUscan functions.

In order to be able to postpone the building of a new revision to a later time, the
possibility is given to cancel the program beforehand.

225 ⟨BuildNewRevision2 225⟩≡ (226)
Intro
if ! whiptail --title "New Debian revision" \
--yesno "A new Debian revision will be built." --yes-button "Yes" \
--no-button "Exit" 15 60
then

exit
fi

echo "A new Debian revision will be built." >> ${log}
⟨BuildNewRevision4 227⟩

225

May 4, 2025

Figure 32.1.: Vuilt new revision

If the debian/source directory exists and it is not a Maven package, the next question is
whether to display the files in the debian/ directory for editing (chapter 32.3, page 228)

32.1. Creating the Debian directory
If the debian/source directory does not (yet) exist, it will be created by the program
script. This is usually only relevant if a new package for Debian is to be packaged.

226 ⟨BuildNewRevision 226⟩≡ (294a)
function BuildNewRevision {

Called by TaskSelect
cd ${GitPath}

Generate directory if necessary
echo $(pwd) >> ${log}
if [-d debian/source]
then

echo "The directory debian/source in ${GitPath} \
already exists." >> ${log}
dfe=1

else
mkdir --parents debian/source
echo "Directory debian/source was created" >> ${log}
dfe=0

fi

⟨BuildNewRevision2 225⟩

226

May 4, 2025

The result of the execution of the program script is noted in the log file.

32.2. Request: Build with mh-make?
Provided that the Maven plugin (chapter 44, page 363) is installed and Maven is selected
as the build system, you will be asked whether certain files should be created for this
build system. Usually this question can be answered in the negative

227 ⟨BuildNewRevision4 227⟩≡ (225)

For building java packages with maven

To avoid an error, if ’MavenPluginFlag’ is empty
if [! -z ${MavenPluginFlag}] &&[${MavenPluginFlag} -eq 1]
then

if whiptail --title "Maven" \
--yesno "Should mh_make create the ${PackName}.poms\n \
file and some maven.* files?\n\n \
Normally you only need it at the first run" --yes-button "Yes" \
--no-button "No" --defaultno 15 60
then

. ${MavenPluginPath}
MakeMaven

fi
fi

⟨BuildNewRevision5 228⟩

227

May 4, 2025

Figure 32.2.: Create data for Maven?

If it is answered in the affirmative, the MavenPlugin is loaded (chapter 44, page 363
and the function MakeMaven is called. In chapter 44.3 (page 364) the further steps are
described.

32.3. Display the Debian files?
Now the possibility is opened here to create and edit the files in the directory debian/.

228 ⟨BuildNewRevision5 228⟩≡ (227)
Displaying files in debian/ for editing
if [${dfe} -ne 1]
then

DisplayDebianFiles
DisplayDebianFiles

else
if whiptail --title "Showing debian files for editing" \
--yesno "Should the files of debian/ be displayed\n \
to check, edit or create them?" --yes-button "Yes" \
--no-button "No" 15 60
then

DisplayDebianFiles
fi

fi
dfe=0

⟨BuildNewRevision5-1 251a⟩

228

May 4, 2025

Figure 32.3.: Display Debian files

If the question whether the files in the directory debian/ should be displayed is answered
in the affirmative, these files are created if necessary and displayed for possible editing.

Otherwise, it continues with changes to the upstream code (chapter 33, page 251) and
only the debian/changelog file is still displayed (chapter 34.1, page 277).

32.4. Files in the directory debian/
The files in the debian/ directory are used to control and document the build process.

The script has the task to create the necessary or more frequently used files in the
debian/ directory - as far as possible - to make suggestions for their content.

32.4.1. Display the Debian files
If the files in the debian/ directory are to be displayed in order to check them, edit them
or even create them, the following function is executed:

229 ⟨DisplayDebianFiles 229⟩≡ (250)
function DisplayDebianFiles {

Called by BuildNewRevision

Add Debian files

If the Debian files already exists, you can review and improve them now
If not, you have to write them

There is default content for Debian files
Change the default values, if you know, what you are doing

Loading Webext plugin or Python3 Plugin if needed

if [-z "${WebextFlag}"]
then

WebextFlag=0
fi

229

May 4, 2025

if [${WebextFlag} -eq 1]
then

. ${WebextPluginPath}
fi

if [-z "${PythonFlag}"]
then

PythonFlag=0
fi

if [${PythonFlag} -eq 1]
then

. ${PythonPluginPath}
fi

DebianFormatTemplate ⟨DisplayDebianFiles1 230a⟩

s. Chapter 32.4.2, page 231
230a ⟨DisplayDebianFiles1 230a⟩≡ (229)

DebianUpstreamMetadataTemplate
⟨DisplayDebianFiles2 230b⟩

Chapter 32.4.4, Page 232
230b ⟨DisplayDebianFiles2 230b⟩≡ (230a)

DebianCopyrightTemplate
⟨DisplayDebianFiles3 230c⟩

230c ⟨DisplayDebianFiles3 230c⟩≡ (230b)
DebianControlTemplate ⟨DisplayDebianFiles4 230d⟩

230d ⟨DisplayDebianFiles4 230d⟩≡ (230c)
DebianWatchTemplate

⟨DisplayDebianFiles4-1 230e⟩

230e ⟨DisplayDebianFiles4-1 230e⟩≡ (230d)
DebianRulesTemplate

⟨DisplayDebianFiles4-2 230f⟩

230f ⟨DisplayDebianFiles4-2 230f⟩≡ (230e)
DebianSalsaCiTemplate

⟨DisplayDebianFiles5 247a⟩

230

May 4, 2025

If a Java package is to be built without a build system, it may be necessary to create
a debian/javabuild file.

If the Maven plugin is used, the Maven files are displayed for editing (chapter 44.4,
page 373).

231a ⟨DisplayDebianFiles10 231a⟩≡ (248c)

if [${JavaFlag} -eq 1]
then

if [${MavenPluginFlag} -eq 0]
then

DebianJavabuildTemplate
else

ls debian/ | grep ’maven’
if [$? -eq 0]
then

ShowMaven
fi

fi
fi
CmeFix

}

⟨ForceOrig 300a⟩

32.4.2. debian/source/format
This file contains the format of the source package. In the debian/source/format file, the
3.0 (quilt) entry is created. This means that it is not a native package. In the other case,
the 3.0 (native) entry must be created.

There is a detailed description of this in the Debian Guide for New Package Maintainers
1.

231b ⟨DebianFormatTemplate 231b⟩≡ (218)
function DebianFormatTemplate {

Called by DisplayDebianFiles

String for debian/source/format
str4format="3.0 (quilt)"

if ! [-f ${GitPath}/debian/source/format]
then

touch ${GitPath}/debian/source/format
echo ${str4format} >> ${GitPath}/debian/source/format
echo "/debian/source/format was created." >> ${log}

fi
nano --linenumbers --mouse --softwrap ${GitPath}/debian/source/format

}

⟨DebianUpstreamMetadataTemplate 232⟩
1https://www.debian.org/doc/manuals/maint-guide/dother.en.html#sourcef

231

https://www.debian.org/doc/manuals/maint-guide/dother.en.html#sourcef

May 4, 2025

32.4.3. debian/source/include.binaries
Basically, binary files should not find inclusion in the Debian package. They should
therefore be regularly excluded from inclusion in the *.orig archive (chapter 31.4.5, page
195).

However, there are exceptions. These may include media files and compressed doc-
umentation. These files must be listed in the debian/source/include-binaries file with
their path for documentation purposes.

32.4.4. debian/upstream/metadata
There is a detailed description[38] of this YAML file in English. There is also reference
to DEP-122.

There it is also explained which information should be entered in the individual lines
by the maintainer, if this information is available.

It is recommended to remove the comments when editing the file.
232 ⟨DebianUpstreamMetadataTemplate 232⟩≡ (231b)

function DebianUpstreamMetadataTemplate {
Called by DisplayDebianFiles

Strings for debian/upstream/metadata
if ! [-f ${GitPath}/debian/upstream/metadata]
then

mkdir --parents debian/upstream
creating a template for debian/upstream/metadata
echo -e "# You can find a description at\n#\
https://wiki.debian.org/UpstreamMetadata" \
>> debian/upstream/metadata
echo "# Archive: " >> debian/upstream/metadata
echo "# ASCL-id: " >> debian/upstream/metadata
echo "Bug-Database: " >> debian/upstream/metadata
echo "Bug-Submit: " >> debian/upstream/metadata
echo "# Cite-As: " >> debian/upstream/metadata
echo "Changelog: " >> debian/upstream/metadata
echo "# CPE: " >> debian/upstream/metadata
echo "Documentation: " >> debian/upstream/metadata
echo "# Donation: " >> debian/upstream/metadata
echo "# FAQ: " >> debian/upstream/metadata
echo "# Funding: " >> debian/upstream/metadata
echo "# Gallery: " >> debian/upstream/metadata
echo "# Other-References: " >> debian/upstream/metadata
echo "# Reference: " >> debian/upstream/metadata
echo "# Author: " >> debian/upstream/metadata
echo "# Booktitle: " >> debian/upstream/metadata
echo "# DOI: " >> debian/upstream/metadata
echo "# Editor: " >> debian/upstream/metadata
echo "# Eprint: " >> debian/upstream/metadata
echo "# ISBN: " >> debian/upstream/metadata
echo "# ISSN: " >> debian/upstream/metadata

2Resource:[39]

232

May 4, 2025

echo "# Journal: " >> debian/upst ream/metadata
echo "# Number: " >> debian/upstream/metadata
echo "# Pages: " >> debian/upstream/metadata
echo "# PMID: " >> debian/upstream/metadata
echo "# Publisher: " >> debian/upstream/metadata
echo "# Title: " >> debian/upstream/metadata
echo "# Type: " >> debian/upstream/metadata
echo "# URL: " >> debian/upstream/metadata
echo "# Volume: " >> debian/upstream/metadata
echo "# Year: " >> debian/upstream/metadata
echo "# Debian-package: " >> debian/upstream/metadata
echo "# Registration: " >> debian/upstream/metadata
echo "# Registry: " >> debian/upstream/metadata
echo "Repository: " >> debian/upstream/metadata
echo "Repository-Browse: " >> debian/upstream/metadata
echo "# Screenshots: " >> debian/upstream/metadata
echo "# Security-Contact: " >> debian/upstream/metadata
echo "# Webservice: " >> debian/upstream/metadata

fi
nano --linenumbers --mouse --softwrap ${GitPath}/debian/upstream/metadata

}

⟨DebianCopyrightTemplate 233⟩

The following fields are relevant for many packages. Their presence is partially checked
by lintian.
Bug-Database URL zur Liste der bekannten Fehler
Bug-Submit Adresse, an die Fehlermeldungen gesandt werden können.
Changelog URL des Upstream Changelogs
Documentation Upstream Dokumentation
Repository URL zum Upstream-Repositorium
Repository-Browse Durchsuchbares Repositorium von Upstream

32.4.5. debian/copyright
This file contains information about the copyright and licenses of the original authors’
sources.

This file can be created with debmake –cc and stored in DEP-5 format [17].
233 ⟨DebianCopyrightTemplate 233⟩≡ (232)

function DebianCopyrightTemplate {
Called by DisplayDebianFiles

if ! [-f ${GitPath}/debian/copyright]
then

creating debian/copyright using debmake
debmake -cc > debian/copyright

⟨DebianCopyrightTemplate2 234a⟩

233

May 4, 2025

Excerpt from the man page for debmake
-c, --copyright scan source for copyright+license text and exit.

• -c: simple output style

• -cc: normal output style (similar to the debian/copyright file)

• -ccc: debug output style
After that, the file still needs to be edited. Files with the same author and the same

license can be combined. If files are under several licenses, these licenses are connected
withor.

234a ⟨DebianCopyrightTemplate2 234a⟩≡ (233)
fi
nano --linenumbers --mouse --softwrap ${GitPath}/debian/copyright

}

⟨TeamMaintainer 139⟩

Each Files paragraph in the machine-readable copyright file must reference a license,
each of which has a separate license paragraph. These paragraphs must appear after all
Files paragraphs.

Standalone license paragraphs can be used to provide the full license text for a particular
license only once, rather than repeating it in each Files section that references it.[40]

If the license text is available at /usr/share/common-licenses/, instead of the com-
plete license text an abbreviated version and the file name together with the path of the
file containing the license text (for example /usr/share/common-licenses/GPL-3) shall
be listed.

32.4.6. debian/control
This file contains essential values used by the package management tools .

The package management system processes data that is stored in a common format
called control data in the control file. This data is used for source packages, binary
packages, and the *.changes files that control the installation of the uploaded files.

Details are described in the Debian policy[7].

32.4.6.1. Fundamental structure

The program script creates a "‘framework’" of the control file for the source package. The
control file of the binary package and the .changes file are created by the build process
from the information in the section for the binary file(s).

234b ⟨DebianControlTemplate 234b⟩≡ (144)
function DebianControlTemplate {

Called by DisplayDebianFiles

Strings for debian/control
str4versiondebhelpers="(=13)"

⟨DebianControlTemplate1 235a⟩

234

/usr/share/common-licenses/

May 4, 2025

Starting with version debhelper >= 12 , the compatibility version is no longer addi-
tionally maintained in the debian/compat file. Instead, in the debian/control file, the
debhelper entry is replaced by debhelper-compat with version (= 13).3 This also applies
to all subsequent releases.

The use of version 11 is already discouraged.
235a ⟨DebianControlTemplate1 235a⟩≡ (234b)

str4standardsversion="4.6.2"

⟨DebianControlTemplate2 235b⟩

In the file debian/control there must be an entry "‘default-version: "’ which specifies
the conformance to the version of the Debian policy (see chapter 7.2, page 21). Here the
current version (now: 4.6.1) is given in each case.

At this point in the program script, a template for the debian/control file is created if
the file does not already exist.

235b ⟨DebianControlTemplate2 235b⟩≡ (235a)
if ! [-f ${GitPath}/debian/control]
then

creating a template for debian/control
echo -e "Source: "${SourceName} > debian/control
echo -e "Priority: optional" >> debian/control

⟨DebianControlTemplate3 236d⟩

Name and email address of Maintainer and, if applicable, Uploaders are determined
by the DEBValues function. (Chapter 29.4.1, page 136)

235c ⟨DebianControlTemplate4 235c⟩≡ (236d)
DEBValues

if [-n "${Maintainer}"]
then

echo -e "Maintainer: "${Maintainer} >> debian/control
else

echo "Maintainer: " >> debian/control
fi

if [-n "${Uploaders}"]
then

echo -e "Uploaders: "${Uploaders} >> debian/control
fi

⟨DebianControlTemplate5 236a⟩

3https://release.debian.org/bookworm/freeze_policy.html (2023)

235

https://release.debian.org/bookworm/freeze_policy.html

May 4, 2025

236a ⟨DebianControlTemplate5 236a⟩≡ (235c)
echo -e "Build-Depends: debhelper-compat" \
${str4versiondebhelpers} >> debian/control

⟨DebianControlTemplate6 237a⟩

236b ⟨DebianControlTemplate7 236b⟩≡ (237a)
echo -e "Standards-Version: "${str4standardsversion} \
>> debian/control
echo -e "Rules-Requires-Root: no" >> debian/control
echo -e "Vcs-Git: https://salsa.debian.org/"${SalsaName} \
>> debian/control
BrowserName=$(echo ${SalsaName} | sed --expression=’s/.git$//g’)
echo -e "Vcs-Browser: https://salsa.debian.org/"${BrowserName} \
>> debian/control
echo -e "Homepage: \n" >> debian/control

⟨DebianControlTemplate8 236c⟩

Now follows in the file debian/control the information about the binary package.
236c ⟨DebianControlTemplate8 236c⟩≡ (236b)

echo -e "Package: "${PackName} >> debian/control
echo -e "Architecture: all" >> debian/control
echo -e "Depends: \${misc:Depends}" >> debian/control
echo -e "Description: " >> debian/control
echo "A template for debian/control was created." >> ${log}

⟨DebianControlTemplate9 237b⟩

32.4.6.2. Adaptations for Java packages

Information from this file is used when creating the control file of the binary package.
For packaging Java packages, the following entries can already be made..

236d ⟨DebianControlTemplate3 236d⟩≡ (235b)
if [${JavaFlag} -eq 1]
then

echo -e "Section: java" >> debian/control
else

echo -e "Section:" >> debian/control
fi

⟨DebianControlTemplate4 235c⟩

236

May 4, 2025

For packages that are maintained in a team, the address of the team is specified here.
This is usually the email address of the mailing list. In these cases the Uploaders field
must also be filled with the names of the package maintainers.

Maintainer for the Java team, for example, is Debian Java maintainers <pkg-java-
maintainers@lists.alioth.debian.org>.

So that the packager does not always have to write his full name and e-mail address,
the script first looks for this data in the configuration file (chapter 29.4.1, page 136).

237a ⟨DebianControlTemplate6 237a⟩≡ (236a)
if [${JavaFlag} -eq 1]
then

echo " , default-jdk" >> debian/control

if [${MavenPluginFlag} -eq 1]
then

echo " , maven-debian-helper" >> debian/control
fi

fi
⟨DebianControlTemplate7 236b⟩

32.4.6.3. Web-Extension-Plugin

Call the function to customize the debian/control file for Mozilla add-ons. This function
is located in the Webext plugin (chapter 45.2.3, page 381)

237b ⟨DebianControlTemplate9 237b⟩≡ (236c)
if [${WebextFlag} -eq 1]
then

WebextControl
fi

⟨DebianControlTemplate10 237c⟩

32.4.6.4. Python-Plugin

Call the function to customize the debian/control file for Python packages and libraries.
This function is located in the Python plugin (chapter 46.2, page 384).

237c ⟨DebianControlTemplate10 237c⟩≡ (237b)
if [${PythonFlag} -eq 1]
then

PythonControl
fi

⟨DebianControlTemplate11 237d⟩

237d ⟨DebianControlTemplate11 237d⟩≡ (237c)
fi
nano --linenumbers --mouse --softwrap ${GitPath}/debian/control

}

⟨OptionsWatchFile 239a⟩

237

May 4, 2025

32.4.7. debian/watch
The watch file in the Debian directory contains data for the uscan program (chapter
31.5, page 221 and chapter 37.4, page 316)..

To determine the name of the source package, uscan reads the first entry in the
debian/changelog file (chapter 34.1, page 277). Using this entry, uscan also determines
the version name of the last package built [41].

Then uscan processes the lines of the debian/watch file in one go from top to bottom.
Details about the debian/watch file are described in the corresponding article in the
Debian wiki4.

Regular expressions in Perl format5 can be used in this file. Lines starting with a #
are ignored as comment lines.

At the beginning of this file is the version of the format used. This specification is
required. The recommended version number is 4 and is already entered by the script
when the file is created.

238 ⟨DebianWatchTemplate 238⟩≡ (241b)
function DebianWatchTemplate {

Called by DisplayDebianFiles

String for debian/watch str4watch="version=4"

if ! [-f ${GitPath}/debian/watch]
then

creating a template for debian/watch
echo ${str4watch} > debian/watch
OptionsWatchFile

⟨DebianWatchTemplate3 241c⟩

4https://wiki.debian.org/debian/watch
5see for this:

• https://de.wikibooks.org/wiki/Perl-Programmierung:_RegulÃďre_AusdrÃcke
• http://www.mathe2.uni-bayreuth.de/perl/GK/regExp.htm
• http://perl-seiten.privat.t-online.de/html/perl_reg.html

238

https://wiki.debian.org/debian/watch
https://de.wikibooks.org/wiki/Perl-Programmierung:_Reguläre_Ausdrücke
http://www.mathe2.uni-bayreuth.de/perl/GK/regExp.htm
http://perl-seiten.privat.t-online.de/html/perl_reg.html

May 4, 2025

Now the options are defined how uscan can check if the current version is built too.
The evaluation of the versioning follows the presentation in chapter 11, (page 35).
The options specify rules for selecting possible Upstream.archives. They are explained

in the manual page (man page) of uscan 6.
The program script sets the options based on the information available so far in the

debian/watch file.
The program script avoids spaces in the list of options. Otherwise the options list must

be framed by double quotes (").
239a ⟨OptionsWatchFile 239a⟩≡ (237d)

function OptionsWatchFile {
Called by DebianWatchfile

olf=’\\\n’
WOpt=’opts=’

⟨OptionsWatchFile1 239b⟩

When creating the *.orig.tar.* file (chapter 31.4.1, page 185), the original archive
format was already determined. This information is now used for the debian/watch file..

The following option specifies when building a new version using uscan that the
.orig.tar. file is archived in a different compression format than the upstream archive
to be downloaded. Specified here as the compression format of the orig archive is xz.

Namely, if the upstream archive is in a zip format (including .xpi, .jar, or .oxt), a
repackaging must be performed. The compression=xz option specifies that an *.orig.tar.xz
is formed. The repack option is dispensable in this case; but explicit is better than
implicit.

239b ⟨OptionsWatchFile1 239b⟩≡ (239a)
Repacked <UpstreamPackage>.zip
RepackFlag=0
ZipSuffix=(.zip .oxt .xpi .jar)
if [[${ZipSuffix} =~ ${RecentUpstreamSuffix}]]
then

WOpt=${WOpt}${olf}’repack,compression=xz,’
RepackFlag=1

fi

⟨OptionsWatchFile2 240a⟩

6https://people.debian.org/∼osamu/uscan.html#WATCH-FILE-OPTIONS

239

https://people.debian.org/~osamu/uscan.html#WATCH-FILE-OPTIONS

May 4, 2025

If a repackaging has to be done because files have to be removed from the source code
archive, this should be evident in the name of the *.orig.tar.* file. The repacksuffix
option is used for this purpose. The files to be excluded result from the corresponding
list (Files-Exluded) in the file debian/copyright.

240a ⟨OptionsWatchFile2 240a⟩≡ (239b)
Excluded files
if [-z ${RecentRepackSuffix}]
then

if [${RepackFlag} -eq 1]
then

WOpt=${WOpt}${olf}’repacksuffix=’${RecentRepackSuffix}’,\\\n’
else

WOpt=${WOpt}${olf}’repack,compression=xz,\\\n\
repacksuffix=’${RecentRepackSuffix}’,\\\n’

fi

⟨OptionsWatchFile3 240b⟩

Next is the dversionmangle option. This normalizes the last found upstream version
name in the debian/changelog file to match the version of the available upstream archive.
This is done by removing the Debian specific suffixes like +dfsg or +ds by way of
substitution.

240b ⟨OptionsWatchFile3 240b⟩≡ (240a)
WOpt=${WOpt}${olf}’dversionmangle=s/’${RecentRepackSuffix}’//,’

fi

⟨OptionsWatchFile4 240c⟩

The uversionmangle option normalizes the strings of the upstream version files extracted
from the links to those files in the web page source code. In the version name, the non-
numeric characters (except the dot) are replaced in a meaningful way for the sake of
uniformity. This makes the version designation of the upstream archive versioning scheme
compliant (chapter 11.2, page 35). This is used as version sort index when selecting the
latest upstream version.

240c ⟨OptionsWatchFile4 240c⟩≡ (240b)

For beta-, rc- etc. releases

WOpt=${WOpt}${olf}’uversionmangle=s/-?([^\d.]+)/~$1/;tr/A-Z/a-z/,’
⟨OptionsWatchFile5 241a⟩

240

May 4, 2025

filenamemangle generates the upstream tarball filename from the selected href string
if the comparison patterns can extract the latest upstream version from the selected href
string. Otherwise, the upstream tarball filename is generated from its full URL string and
the missing upstream version is inserted from the generated upstream tarball filename.

Without this option, the default upstream tarball filename is generated by taking the
last component of the URL and removing everything after a ’?’ or ’#’.

241a ⟨OptionsWatchFile5 241a⟩≡ (240c)
For packages from Github
if echo ${DownloadUrl} | grep "github" > /dev/null
then

WOpt=${WOpt}${olf}’filenamemangle=s/.+\/v?(\d\S+)\.*/$1/,’
fi

⟨OptionsWatchFile8 241b⟩

241b ⟨OptionsWatchFile8 241b⟩≡ (241a)
If there are no options
if [${#WOpt} -eq 6]
then

WOpt=’# ’${WOpt} WOpt=$(echo ${WOpt} | sed ’s/\\/\"\" \\/’)
fi

echo -e ${WOpt} >> debian/watch
}

⟨DebianWatchTemplate 238⟩

uscan loads the web page from the URL specified in debian/watch. Then uscan searches
for hyperlinks (hrefs) pointing to upstream archives using the search pattern specified in
debian/watch.

Starting from the URL with which the source code was downloaded, the program
script defines how to search for a new version. The URL was assigned to the variable
DownladURL as value (chapter 31.4.1, page 185).

241c ⟨DebianWatchTemplate3 241c⟩≡ (238)
if echo ${DownloadUrl} | grep "github" > /dev/null
then

DownloadUrl=$(echo ${DownloadUrl} | \
sed --expression ’s/archive.*$/releases/’)
DownloadUrl=${DownloadUrl}’ .*/v?(\d\S+)\.tar\.gz’
echo -e ${DownloadUrl} >> debian/watch

fi
echo "A template for debian/watch was created." >> ${log}
whiptail --title "Edit debian/watch!" \
--msgbox "Please insert reasonable regular expressions\n \
into debian/watch!" 15 60

fi
nano --linenumbers --mouse --softwrap ${GitPath}/debian/watch

}

⟨DebianRulesTemplate 242⟩

241

May 4, 2025

An example:

opts=repack,compression=xz,dversionmangle=s/\+dfsg$//,\
uversionmangle=s/-Beta/~beta/;s/-rc/~rc/,\
filenamemangle=s/.*\/v?(\d+\.\d+\.\d+(?:-(Beta|rc)\d+)?)\.tar\
.gz/jax-maven-plugin-$1.tar.gz/ \
https://github.com/davidmoten/jax-maven-plugin/releases .*/v?(\d\S+)\.tar\.gz

The debian/watch file, when in the directory where the Git repository is located, can be
checked with the uscan –no-download –debug command. The –no-download option causes
a found, newer upstream archive not to be downloaded. The –debug option generates a
human readable report which also shows the status of the internal variables.

32.4.8. debian/rules - Fundamental structure
This file controls the flow of the build process.

Unlike the other files in the debian directory, the debian/rules file must be marked as
executable.

Like any other makefile, the debian/rules file is composed of several rules that define
the target and how these rules are executed. In the Debian policy, chapter 4.9[7] Main
building script: debian/rules the details are explained.

32.4.8.1. Create the file

If the file debian/rules does not exist yet, it will be created.
It is a Makefile and therefore has a corresponding Shebang (#!/usr/bin/make -f).

242 ⟨DebianRulesTemplate 242⟩≡ (241c)
function DebianRulesTemplate {

Called by DisplayDebianFiles

Strings for debian/rules
str4rules="#!/usr/bin/make -f\n# -*- makefile -*-\n"\
str4rulesdh="

%:\n\tdh \$@\n\n"
if ! [-f ${GitPath}/debian/rules]
then

touch ${GitPath}/debian/rules
echo -e ${str4rules} >> ${GitPath}/debian/rules

⟨DebianRulesTemplate1 243a⟩

242

May 4, 2025

32.4.8.2. Export of variables

It is turned on the more comprehensive output of the messages by exporting the variables
DH_VERBOSE and DH_OPTIONS, as well as assigning appropriate values to them.

243a ⟨DebianRulesTemplate1 243a⟩≡ (242)
echo -e "# Uncomment this to turn on verbose mode.\n" \
>> ${GitPath}/debian/rules
echo -e "export DH_VERBOSE=1\nexport DH_OPTIONS=-v\n" \
>> ${GitPath}/debian/rules

⟨DebianRulesTemplate2 243b⟩

In addition, supplementary variables are exported for various package types. These
are defined in the respective plugins. The description for Java packages can be found in
chapter 43.1 (page 361). The customization for Java packages is done by the Rules4Java
function.

243b ⟨DebianRulesTemplate2 243b⟩≡ (243a)
if [JavaFlag -eq 1]
then

Rules4Java
fi

⟨DebianRulesTemplate3 243c⟩

Building the Mozilla extensions also requires additional entries. The description of
the specifics for the Mozilla add-ons can be found in chapter 45.2.2 (page 379).

The customization for Webext packages is done by the WebextRules function in the
corresponding plugin (chapter 45 page 377).

243c ⟨DebianRulesTemplate3 243c⟩≡ (243b)
if [${WebextFlag} -eq 1]
then

WebextRules
fi

⟨DebianRulesTemplate4 243d⟩

The same applies to the Python packages (chapter 46.1 page 384).
243d ⟨DebianRulesTemplate4 243d⟩≡ (243c)

if [${PythonFlag} -eq 1]
then

PythonRules
fi

⟨DebianRulesTemplate5 243e⟩

32.4.8.3. Call of the Debhelper

243e ⟨DebianRulesTemplate5 243e⟩≡ (243d)
echo -e ${str4rulesdh} >> ${GitPath}/debian/rules

⟨DebianRulesTemplate6 244a⟩

243

May 4, 2025

For Maven packages, the call to the debhelper must be added. This is done by the
Rules3MavenDH function of the Maven plugin (chapter 44.5 page 376).

244a ⟨DebianRulesTemplate6 244a⟩≡ (243e)
if [${MavenPluginFlag} -eq 1]
then

Rules4MavenDH
fi

⟨DebianRulesTemplate7 244b⟩

Also for the Mozilla extensions the call to the debhelper must be added. This is done
by the Web extension plugin (chapter 45, page 377).

244b ⟨DebianRulesTemplate7 244b⟩≡ (244a)
if [${WebextFlag} -eq 1]
then

WebextRulesDH
fi

⟨DebianRulesTemplate10 244c⟩

Also, when packaging Python packages, add the debhelper call to the debian/rules file.
244c ⟨DebianRulesTemplate10 244c⟩≡ (244b)

if [${PythonFlag} -eq 1]
then

PythonRulesDH
fi

⟨DebianRulesTemplate11 245⟩

244

May 4, 2025

32.4.8.4. debian/rules - overrides

Sometimes it is necessary to execute additional steps before or after the execution of the
respective debhelper scripts. For this purpose, the respective script is overridden.

Example:

override_dh_auto_build:
dh_auto_build -- -f org/xmlunit/pom.xml package -DskipTests

The first line of the example names the target to be modified. The second line must
start with a tab character in a width of 8 characters.

The double minus sign means that first the parameters are executed that dh_auto_build
normally passes. After that, other parameters may be listed that are passed to the
program.

package denotes the so-called goal.

32.4.8.5. End of the function

At the end of the function, an entry is made in the log file. The debian/rules file is
displayed for editing. Finally it is made executable as Make file.

245 ⟨DebianRulesTemplate11 245⟩≡ (244c)
echo "debian/rules was created " >${log}

fi
nano --linenumbers --mouse --softwrap ${GitPath}/debian/rules

if ! [-x ${GitPath}/debian/rules]
then

chmod ugo+x ${GitPath}/debian/rules
echo ${GitPath}"/debian/rules is now executable" >> ${log}

fi
}

⟨DebianSalsaCiTemplate 246a⟩

245

May 4, 2025

32.4.9. salsa-ci.yml
On salsa.debian.org, enter debian/salsa-ci.yml in the respective project under Settings -
CI/CD - General pipelines - CI/CD configuration file, or the corresponding file name
located in the directory debian/.

This triggers the automatic build process for the Reproducible Builds as well.
246a ⟨DebianSalsaCiTemplate 246a⟩≡ (245)

function DebianSalsaCiTemplate {
Called by DisplayDebianFiles

String for debian/salsa-ci.yml
str4salsa="include:\n\
- https://salsa.debian.org/salsa-ci-team/pipeline/raw/master/salsa-ci.yml\n\
- https://salsa.debian.org/salsa-ci-team/pipeline/raw/master/pipeline-jobs.yml"

if ! [-f ${GitPath}/debian/salsa-ci.yml]
then

touch ${GitPath}/debian/salsa-ci.yml
echo -e ${str4salsa} >> ${GitPath}/debian/salsa-ci.yml
echo "debian/salsa-ci.yml was created." >> ${log}

fi
nano --linenumbers --mouse --softwrap ${GitPath}/debian/salsa-ci.yml

}

⟨SelectChangesFile 313⟩

32.4.10. debian/javabuild
The following function allows the creation of a debian/javabuild file, which can be used
to build a Java package without a build system.

The debian/javabuild file contains on each line the name of a .jar file followed by a list
of source code files or directories. This file is read by the javahelper program jh_build.

246b ⟨DebianJavabuildTemplate 246b⟩≡ (281a)
function DebianJavabuildTemplate {

Called by DisplayDebianFiles
For building a java package without build system (like maven)
if [-f debian/javabuild]
then

if whiptail --title "Creating debian/javabuild?" \
--defaultno --yesno "Should debian/javabuild be created?" \
--yes-button "Yes" --no-button "No" 15 60
then

echo "# NameOfJarFile SourceDirToPackage" >>debian/javabuild
echo "debian/javabuild was created" >> ${log}
nano --linenumbers --mouse --softwrap debian/javabuild

fi
fi

}

⟨DisplayDebianChangelog 277b⟩

246

May 4, 2025

32.4.11. <Package name>.install
This file is needed to specify where a file should be installed. It is mandatory to make
sure that the package name is really the name of the binary to be built.

247a ⟨DisplayDebianFiles5 247a⟩≡ (230f)
if [${WebextFlag} -eq 1] &&[! -f ${GitPath}/debian/${PackName}.install]
then

WebextInstall
fi

nano --linenumbers --mouse \
--softwrap ${GitPath}/debian/${PackName}.install

⟨DisplayDebianFiles6 247b⟩

Example:

nc.jar usr/share/java

This copies the respective files to the future directory. By default, it is not possible to
rename a file so that the file name matches the naming of Java libraries in the Debian
Policy for Java [26], for example.

As described in the manual for dh_install 7. This then also requires further steps.
• The package must have a build dependency on dh-exec. The package that must be

specified in the debian/control file is dh-exec
• The installation file must be marked as executable.

32.4.12. <Package name>.dirs
This file does not necessarily have to have the name of the binary. The package name
can also be omitted completely

247b ⟨DisplayDebianFiles6 247b⟩≡ (247a)
nano --linenumbers --mouse \
--softwrap ${GitPath}/debian/${PackName}.dirs

⟨DisplayDebianFiles7 247c⟩

Example:

usr/share/java

32.4.13. <Package name|.docs
The files listed here are installed in the build process from the corresponding debhelper
dh_installdocs to a directory created for this purpose /usr/share/docs/<package name>.

The LICENSE file does not need to be included. This is automatically installed after
/usr/share/docs/<package name>.

247c ⟨DisplayDebianFiles7 247c⟩≡ (247b)
nano --linenumbers --mouse \
--softwrap ${GitPath}/debian/${PackName}.docs

⟨DisplayDebianFiles8 248a⟩
7https://manpages.debian.org/unstable/debhelper/dh_install.1.en.html

247

https://manpages.debian.org/unstable/debhelper/dh_install.1.en.html

May 4, 2025

32.4.14. <Package name>.links
This file is called from the dh_link.

248a ⟨DisplayDebianFiles8 248a⟩≡ (247c)
if [${WebextFlag} -eq 1] &&[! -f ${GitPath}/debian/${PackName}.links]

then
WebextLinksTB

fi

nano --linenumbers --mouse \
--softwrap ${GitPath}/debian/${PackName}.links

⟨DisplayDebianFiles9 248c⟩

32.4.15. <Package name>.desktop
248b ⟨PaketnameDesktop 248b⟩≡

[Desktop Entry]
X-AppInstall-Package=JVerein
X-AppInstall-Popcon=1
X-AppInstall-Section=main

Version=1.0
Name=JVerein
Comment=Administration of an Association
Comment[de]=Vereinssoftware

Exec=jameica
Icon=jameica-icon
Terminal=false
Type=Application
Categories=Office
Keywords=Association;Verein
StartupNotify=true

32.4.16. <Package name>.examples
This file is called by the dh_installexamples.

248c ⟨DisplayDebianFiles9 248c⟩≡ (248a)
nano --linenumbers --mouse \
--softwrap ${GitPath}/debian/${PackName}.examples

⟨DisplayDebianFiles10 231a⟩

248

May 4, 2025

32.4.17. README.Debian

32.4.18. README.source
This file can be used to document the exclusions (chapter 10.4.1.3, page 32) and their
justifications. 8. This file gets an entry in any case when building with maven. (Chapter
44.4.5, page 375.

32.5. Checking the files in debian/ with CmeFix
The cme fix dpkg command checks the dpkg files, updates obsolete parameters, and
applies any fixes.

With the parameter -verbose you get more information about what happens. The
parameter -backup creates backup files before saving the changes. These are identified
by the extension .old. Note that in this case the long form of the options are really just
prefixed with a hyphen 9.

249 ⟨CmeFix 249⟩≡ (283)

function CmeFix {
Called by DisplayDebianFiles

if whiptail --title "Check and fix with cme?" \
--yesno "Should debian files be checked and fixed using ’cme fix’?" \
--yes-button "Yes" --no-button "No" 15 60
then

if whiptail --title "Backup?" \
--yesno "Should the recent files be backuped (recommended)?" \
--yes-button "Yes" --no-button "No" 15 60
then

cme fix -verbose -backup dpkg
else

cme fix -verbose dpkg
fi

⟨cmefix1 250⟩

8Debian-Policy, chapter 4.14 [7]
9https://manpages.debian.org/unstable/cme/cme.1p.en.html

249

https://manpages.debian.org/unstable/cme/cme.1p.en.html

May 4, 2025

Execution of the program script is halted here so that the output of the cme fix dpkg
command can be analyzed. In another terminal – if the backup option was selected – the
original files can be compared with the newly created files, backup files can be deleted
and corrections can be made if necessary.

250 ⟨cmefix1 250⟩≡ (249)
echo "Please check the result of cme fix!"
echo "You can check and fix it in another terminal."
echo "Please press RETURN to go on."
read a

fi
}

⟨DisplayDebianFiles 229⟩

250

33. Making changes to upstream code

We continue with possible changes to the source code. If no changes are made to the
source code, the treatment of the file debian/changelog (chapter 34.1, page 277) follows
directly.

251a ⟨BuildNewRevision5-1 251a⟩≡ (228)
Patches treatment
PatchesTreatment

⟨BuildNewRevision6 277a⟩

When a new revision is created, the user is asked if changes should be made to the
source code. However, to do this, the program first checks again (see chapter 31.2, page
177) whether a directory debian/patches already exists and informs the user of the result
of this check.

251b ⟨PatchesTreatment 251b⟩≡ (303a)
function PatchesTreatment {

Called by BuildNewRevision

Patches treatment
cd ${GitPath}
if [-d debian/patches]
then

whiptail --title "Info" \
--msgbox "There is a directory debian/patches" 15 60

⟨PatchesTreatment1 252a⟩

251

May 4, 2025

Figure 33.1.: There is a directory debian/patches.

252a ⟨PatchesTreatment1 252a⟩≡ (251b)
else

whiptail --title "Info" \
--msgbox "There is no directory debian/patches" 15 60

fi

⟨PatchesTreatment2 252b⟩

Figure 33.2.: There is no directory debian/patches.

Now the query occurs whether a patch is to be created, edited or deleted. Furthermore,
you can choose between the two methods quilt (chapter 33.2, page 263) and gbp pq
(chapter 33.1, page 254). Of course, the build process can also be continued without
patch (chapter 34.1, page 277).

252b ⟨PatchesTreatment2 252b⟩≡ (252a)
PMTask=$(whiptail --title "Tasks:" \
--radiolist "Do you want to create, edit or delete patches?" 15 60 4 \
"0" "By using quilt" off \
"1" "By using gbp pq" off \
"2" "No" on --cancel-button "Exit" 3>&2 2>&1 1>&3)

⟨PatchesTreatment3 253a⟩

252

May 4, 2025

Figure 33.3.: Create patches for Debian

If the question is answered in the negative, the next step is to edit the debian/changelog
file (chapter 34.1, page 277).

With Exit the program script is left.
253a ⟨PatchesTreatment3 253a⟩≡ (252b)

if [-z "${PMTask}"]
then

exit
fi

⟨PatchesTreatment4 253b⟩

If you have decided to patch and to use a method, the program script now calls the
respective further functions.

253b ⟨PatchesTreatment4 253b⟩≡ (253a)
if [${PMTask} -eq 0]
then

PatchRunNr=0
PatchTasks

elif [$PMTask -eq 1]
then

CheckGitStatus
PQMigration

fi
}

⟨LastQuestionsBeforeBuild 290b⟩

253

May 4, 2025

Either you work with gbp pq or with quilt (chapter 33.2, page 263).
If one has decided to work with quilt, the variable PatchRunNr is set to 0 and the

function PatchTasks (chapter 33.2, page 263) is called.
Otherwise, the PQMigration function (chapter 33.1.1, page 254) of the program script

is called.

33.1. Working with gbp pq
To manage patches, gbp pq can be used. This is mainly intended for source packages
in 3.0 (quilt) format (see chapter 32.4.2, page 231). The modification of the upstream
source code is done by files in the debian/patches/ directory.

The PQMigration function can create a patch queue branch using these patches if it
does not already exist. Furthermore, this function can update an existing patch queue
branch.

33.1.1. Creating a Patch Queue Branch
It will check again if there is a file debian/patches/series or not.

It also checks if there is a matching patch queue branch.
There are four cases to distinguish:
1. There is neither a file debian/patches/series nor a matching patch-queue branch.

Then git checkout -b creates a new patch-queue branch and changes to it.
2. The file debian/patches/series does not exist, but a matching patch-queue branch

already does. Then its existence is pointed out and changed to it.
3. The file debian/patches/series exists, but no matching patch-queue branch. Then

gbp pq import is used to create a matching patch-queue branch. However, this
involves significant risks if not all patches in the queue are applicable (chapter
31.2, page 177). Therefore, it is urgently recommended to create the patch queue
branch if necessary before downloading a new version. If this has not been done,
the option to work with quilt should be selected.

4. Both the debian/patches/series file and the matching patch-queue branch exist.
This will often be the case. Then gbp pq rebase is applied first.

A patch queue branch is created only in cases 1 and 3.
254 ⟨PQMigration 254⟩≡ (258)

function PQMigration {
Called by PatchesTreatment and itself
Transfers patches into patch-queue branch
npqf=0
cd ${GitPath

}

if [! -f debian/patches/series]
debian/patches/series does not exists
then

Case 2
Anything is easy
npqf=1

254

May 4, 2025

if echo $(git branch) | grep --quiet ’patch-queue/’${RecentBranch}
then

whiptail --title "PQ-branch exists" \
--msgbox "Branch ’patch-queue/${RecentBranch}’ exists." 15 60
git checkout patch-queue/${RecentBranch}

⟨PQMigration0 255a⟩

Figure 33.4.: There exists a PQ branch.

If the file debian/patches/series does not exist and no matching patch queue branch
exists, it is recreated here and changed to this.

255a ⟨PQMigration0 255a⟩≡ (254)
else

git checkout -b patch-queue/${RecentBranch}
fi

⟨PQMigration1 255b⟩

You can then immediately start editing the source code (chapter 33.1.7, page 260).
Both gbp pq rebase and gbp pq import assume that there are no unversioned files in

the current Git branch and that all previous patches can be applied. Otherwise, merge
conflicts need to be resolved.

The user is informed about this.
255b ⟨PQMigration1 255b⟩≡ (255a)

else
debian/patches/series exists
Notice="All patches listed in ’debian/patches/series’ \n\
have to be appliable"’!’"\n\
Otherwise you have to solve ’merge conflicts’"’!’
if whiptail --title "Attention please"’!’ \
--yesno "${Notice} Do you want to check the situation?" \
--yes-button "Yes" --no-button "No" 15 60
then

ShowPatches "check"
⟨PQMigration1-1 256⟩

255

May 4, 2025

What can be done here is given in chapter 33.5, page 273).
256 ⟨PQMigration1-1 256⟩≡ (255b)

if whiptail --title "Attention please"’!’ \
--yesno "Do you want to edit ’debian/patches/series’?" \
--yes-button "Yes" --no-button "No" 15 60
then

nano --linenumbers --mouse --softwrap debian/patches/series
fi

fi

echo -e ${Notice}
CheckGitStatus
fi

⟨PQMigration2 257a⟩

Figure 33.5.: Hint on the requirements for further work.

33.1.2. Manual Editing
In the debian/patches/series file, yes, all patches are listed in the order in which they
have been applied so far.Manual edit

Now they need to be checked to see if the problems have already been improved by
upstream, making these patches obsolete.

Then these patches are to be removed from the debian/patches directory and their
entries from the debian/patches/series file. These adjustments are made in the main
branch.

33.1.3. Troubleshooting hints
Only general information can be given for troubleshooting after a failure.

If changes to source code files already exist, these are to be undone with git restore
<path/filename>. A possibly existing directory .pc/ is to be deleted.

Changes to the debian/changelog file are to be committed.

256

May 4, 2025

33.1.4. Refreshing the patch queue branch
The program script checks whether a corresponding patch queue branch already exists.

If a suitable patch queue branch exists, the program script first calls the RebasePQBranch
function.

Otherwise, patch queue branch is created by gbp pq import from the current Git branch
(chapter 33.1.6, page 259).

257a ⟨PQMigration2 257a⟩≡ (256)

if [${npqf} -eq 0]
then

if echo $(git branch) | grep --quiet ’patch-queue/’${RecentBranch}
patch-queue branch exists
then

Case 4
RebaseCounter=0
RebasePQBranch

⟨PQMigration3 259⟩

The RebasePQBranch function executes a gbp pq rebase. The commits of the debian/
branch are applied to the patch queue branch.

With gbp pq rebase it is changed to the patch queue branch which is connected to the
current branch. All new additions to the current branch are transferred to the patch
queue branch by a rebase.[42]

257b ⟨RebasePQBranch 257b⟩≡ (269d)
function RebasePQBranch {

Called by PQMigration and itself
if [${RebaseCounter} == 0]
then

gbp pq rebase --verbose
else

git rebase --continue --verbose
fi

⟨RebasePQBranch1 257c⟩

If the execution of gbp pq rebase fails, manual intervention can and must be performed
to rectify the situation (chapter 33.1.5, page 258).

For this purpose, Git gives the user hints. These look like the following, for example:

Resolve all conflicts manually, mark them as resolved with Hinweis: "git add/rm <conflicted_files>", then run "git rebase --continue". Hinweis: You can instead skip this commit: run "git rebase --skip". Hinweis: To abort and get back to the state before "git rebase", run "git rebase --abort". Konnte 9d4ba6c... (modify source to follow common conventions. Prevent texhash.) nicht anwenden gbp:error: Couldn't run git rebase: it exited with 1

Manually resolve all conflicts, mark them as resolved with "git add/rm <conflicted_files>" and then run "git rebase --continue". You can also skip this commit: Run "git rebase --skip". To abort and return to the state before "git rebase", run "git rebase --abort". Could 9d4ba6c... (Adapt source code to common conventions. prevent texhash.) did not apply gbp:error: git rebase could not be executed: it terminated with 1

257c ⟨RebasePQBranch1 257c⟩≡ (257b)
if [$? -ne 0]
then

git rebase --show-current-patch | cat
⟨RebasePQBranch2 258⟩

257

May 4, 2025

At this point, the patch that cannot be applied (completely) is displayed. With this
help, it is then possible to manually resolve the merge conflicts after the interruption.

258 ⟨RebasePQBranch2 258⟩≡ (257c)
Notice="gbp pq rebase failed"’!’"\n\
All changes must be committed"’!’"\n\
All patches have to be appliable"’!’"\n"
FailureNotice ${Notice}
RebaseCounter=$(expr ${RebaseCounter} + 1)
RebasePQBranch

fi
}

⟨PQMigration 254⟩

After that, a new attempt can be made.

33.1.5. Hints for cleaning up the patch queue
In very many cases the pq rebase command fails, because there are also always changes
from upstream to already patched files. Patches that have already been adopted by the
upstream project can be removed.

The program script git in such cases the hint to switch to another terminal. There you
can check with git status that there is an incomplete rebase.

The following command displays the failed patch in the additional terminal.

git rebase --show-current-patch

In yet another terminal, the (still) existence of the file to be patched can be checked
with the following command.

tar --list --file ../<UpstreamPackageName>.orig.tar.xz | grep <Filename>

If the file does not (longer) exist, the patch can be removed with

git rebase --skip

Then, in the (original) terminal in which the program script is running, continue with
RETURN. This first executes a git rebase –continue –verbose.

If the file to be patched exists, it must be edited in an editor. This changes the patches
so that they can be applied to the new version.

The file is then to be saved and a git add executed. In the original terminal, continue
with RETURN.

If necessary, repeat the procedure until the program script continues with its execution.
Eine Möglichkeit ist es auch, durch den Befehl

gbp pq import --time-maschine=<n>

solange Commit für Commit durchzugehen, bis die Patch-Queue angewandt werden
kann.

n gibt dabei die maximale Anzahl der Rückschritte an.

258

May 4, 2025

33.1.6. Import of existing patches
The contents of debian/patches are imported into the patch queue branch with gbp pq
and changed into it1.

On import, output like this is generated:

gbp:info: Trying to apply patches \under 'aaa1011bfd5aa74fea43620aae94709de05f80be' \apply.

gbp:info: 18 patches listed in 'debian/patches/series' \
imported under 'patch-queue/debian/sid'.

It imported each patch file with gbp pq and changed to the newly created patch queue
branch patch-queue/debian/sid.

Figure 33.6.: The patch queue branch with patches from debian/patches has been ap-
plied.[3]

If the file debian/patches/series exists, but no corresponding patch queue branch exists
yet, gbp pq import is executed. This is done in the PQImport function (chapter 31.2,
page 177).

gbp pq import creates a new patch queue branch from the quilt patches in the de-
bian/patches directory listed in the debian/patches/series file. These patches must be
applicable without fuzziness.

259 ⟨PQMigration3 259⟩≡ (257a)
else

patch-queue branch does not exist
Case 3
if whiptail --title "Attention"’!’ \
--yesno "Do you really want to use ’gbp pq import’?" \
--yes-button "Yes" --no-button "Working with Quilt" 15 60
then

PQImport 0
else

PatchTasks
Working with Quilt

fi

1s. section gbp.patches.html and man.gbp.pq.html[3]

259

May 4, 2025

fi
fi

⟨PQMigration4 260⟩

The above troubleshooting instructions also apply here (chapter 33.1.3, page 256).

33.1.7. Edit source code
260 ⟨PQMigration4 260⟩≡ (259)

Starting the work in the patch-queue branch echo echo "Break for patching in another terminal" echo "After finishing press RETURN to go on!" read a

⟨PQMigration5 262a⟩

260

May 4, 2025

In the separate terminal, git branch -v should be used to determine that the correct Git
branch (patch-queue/ branch) is active and that its state matches that of the previous
Git branch. Then files in the patch queue branch can be edited.

Code can be added, changed or removed. The patches can be created or “brought into
shape” like this.

In doing so, the changes are to be committed as small as possible. What will later
become a single patch in debian/patches/ is simply added by a commit.

The first line of the commit message later becomes part of the patch name. The
following lines contain the details about the functions of the patch. Therefore, it is useful
to write multiline commit messages.

The multiline commit message should then conform to the patch tagging guideline in
the patch2 The header of the patch file will look like this:

The author and the date are set automatically. The name entered under Gbp-PQ must
not contain spaces. If necessary, these are to be replaced by underscores (_). This will
be the name of the patch file in the debian/patches directory.

From: Autor <email address>
Date: <Date and time of creation>
Subject: <Commit message>

Gbp-Pq: Name <name of the patch>
Forwarded: Yes/No <if necessary>

* posix/regcomp.c (re_compile_fastmap_iter): Rewrite COMPLEX_BRACKET handling.

Origin: upstream, http://sourceware.org/git/?p=glibc.git;a=commitdiff;h=bdb56bac
Bug: http://sourceware.org/bugzilla/show_bug.cgi?id=9697
Bug-Debian: http://bugs.debian.org/510219

This can be corrected with git commit --amend -m "New Message" can be corrected.

33.1.8. Export the patches
Once we are satisfied with the commits, let’s regenerate the patches in debian/patches/
using gbp pq. This will switch you back to the debian/sid branch and regenerate the
patches using a method similar to git-format-patch:

The result could now be added as follows:

gbp pq export
git add debian/patches
git commit

gbp pq export means:
Exported the patches on the patch queue branch associated with the current branch

to a quilt row of patches to debian/patches/ and updated the series file in the current
branch (e.g., debian/sid)3[3].

2https://dep-team.pages.debian.net/deps/dep3/[24]
3https://honk.sigxcpu.org/projects/git-buildpackage/manual-html/gbp.patches.html

261

https://dep-team.pages.debian.net/deps/dep3/
https://honk.sigxcpu.org/projects/git-buildpackage/manual-html/gbp.patches.html

May 4, 2025

To avoid having to transfer the result by hand each time, –commit can also be passed
to the gbp export command.

262a ⟨PQMigration5 262a⟩≡ (260)
Export
if whiptail --title "Use gbp pq export?" \
--yesno "Do you like to use ’gbp pq export --commit’?" \
--yes-button "Yes" --no-button "No" 15 60

⟨PQMigration7 262b⟩

Figure 33.7.: Should gbp pq export be applied?

262b ⟨PQMigration7 262b⟩≡ (262a)
then

gbp pq export --commit --verbose >> ${log} 2>&1
echo "Check branch."
git branch --verbose
echo "Press RETURN to continue!"
read a

⟨PQMigration8 262c⟩

After exporting the patches, the next step is usually to determine the distribution.
(Chapter 34.3.1, page 285)

If the question is answered in the negative, manual intervention is possible.
262c ⟨PQMigration8 262c⟩≡ (262b)

else
git log
git checkout ${HistoricBranch}
ReplaceConfigLines ’RecentBranch’ ${HistoricBranch}
git branch
echo "Break for importing in another way in another terminal"
echo "After finishing press RETURN to go on!"
read a

fi
}

⟨PatchTasks 264a⟩

262

May 4, 2025

33.2. Using Quilt
The changes to the upstream are made with the help of Quilt. As described at the
beginning, dquilt has to be set up first (chapter 18.5, page 70).

The setup in .bashrc cannot be used when running this program (chapter 18.5, page
70).

The program therefore first checks whether quilt is available. Since the script ignores
the alias of .bashrc, dquilt is defined in a variable.

263a ⟨CreateDquilt 263a⟩≡ (269a)
function CreateDquilt {

Called by PatchTasks

Check whether quilt is available if [${PatchRunNr} -eq 0] then if [! -f ~/.quiltrc-dpkg] ⟨CreateDquilt1 263b⟩

The line checks if there is a file .quiltrc-dpkg in the user’s home directory. If this file
does not exist, the message dquilt is not configured, because then the corresponding alias
for quilt –quiltrc=$HOME/.quiltrc-dpkg cannot be created.

263b ⟨CreateDquilt1 263b⟩≡ (263a)
then

whiptail --title "No dquilt!" \
--msgbox "Dquilt seems not to be configured.\n \
See: https://www.debian.org/doc/manuals/maint-guide/modify.html" \
15 60
exit

fi

⟨CreateDquilt2 263c⟩

If the file .quiltrc-dpkg is not found, the script prints an appropriate message and exits.
Only if the file /.quiltrc-dpkg exists, the following definition can be made.

263c ⟨CreateDquilt2 263c⟩≡ (263b)
Definition of dquilt

dquilt="quilt --quiltrc=${HOME}/.quiltrc-dpkg"
fi

}

⟨MakePatches 265b⟩

263

May 4, 2025

A selection is made as to whether patches are to be created, edited or removed. These
tasks can be executed in any order and also several times.

264a ⟨PatchTasks 264a⟩≡ (262c)
function PatchTasks {

Called by PatchesTreatment and itself

cd ${GitPath}
if [! -d debian/patches]
then

Create patch
if whiptail --title "Patches" --yesno "Is a patch necessary?" \
--yes-button "Yes" --no-button "No" 15 60
then

CreateDquilt
MakePatches

else
return

fi
else

CreateDquilt
PTask=$(whiptail --title "Tasks:" \
--radiolist "What do you like to do? " 15 60 8 \
"0" "Display patch files to check or edit them" off \
"1" "Create additional patch" off \
"2" "Add another patch to existing patch file" off \
"3" "Show patch files for deleting" off \
"4" "Edit debian/patches/series" off \
"5" "Exit to go on" on --cancel-button "Cancel" 3>&2 2>&1 1>&3) ⟨PatchTasks1 264b⟩

If the Cancel button is pressed, the Exit to go on task is also executed. Here the value
1.

264b ⟨PatchTasks1 264b⟩≡ (264a)

if [$? -eq 1]
then

PTask=6
fi

⟨PatchTasks2 264c⟩

In the following section, commands are assigned to the individual tasks. Thereby the
variable PTask contains a digit from 0 to 4.

For example, if this variable is assigned the value 0 = Display patch files to check or
edit them, then the ChangePatches function is executed.

In the following case statement, 0) is a value from the list of 0 to 4 against which the
contents of the variable PTask are compared.

264c ⟨PatchTasks2 264c⟩≡ (264b)
Patches treatment
case "$PTask" in

0) ChangePatches;; # Edit patches
⟨PatchTasks3 265a⟩

264

May 4, 2025

Using the JaxWS package, we describe how to edit existing patches.

33.2.1. Create patch
265a ⟨PatchTasks3 265a⟩≡ (264c)

1) MakePatches;; # If (more) patches are necessary
⟨PatchTasks4 269b⟩

Now the creation of a patch begins.
265b ⟨MakePatches 265b⟩≡ (263c)

function MakePatches {
Called by PatchTasks and itself

cd ${GitPath}
cnpr=0 CreateNewPatch
if [$cnpr -ne 0]
then

return
fi

PatchRunNr=1

if whiptail --title "Another patch?" \
--yesno "Do you want to apply another patch?" --yes-button "Yes" \
--no-button "No" 15 60
then

MakePatches
fi

}

⟨ShowPatches 273⟩

265

May 4, 2025

33.3. Create new patch
266a ⟨CreateNewPatch 266a⟩≡ (267b)

function CreateNewPatch {
Called by MakePatches

PatchFileName=$(whiptail --title "Patch name" \
--inputbox "Name of the patchfile:" \
--cancel-button "Cancel" 15 60 3>&2 2>&1 1>&3)

if [$? -eq 1]
then

return 1
fi

Because a user might use blanks in a filename
PatchFileName=$(echo ${PatchFileName} | sed --expression=’s/ /-/g’)
if [-z "${PatchFileName}"]
then

cnpr=1
return 1

fi

⟨CreateNewPatch1 266b⟩

Now it checks if a file <i0>debian/copyright</i0> exists.
266b ⟨CreateNewPatch1 266b⟩≡ (266a)

if [-f debian/patches/${PatchFileName}]
then

if ! whiptail --title "Patch exists" \
--yesno "${PatchFileName} exists already.\nContinue?" \
--yes-button "Yes" --no-button "No" 15 60

then
return 1

fi
fi

⟨CreateNewPatch2 267a⟩

266

May 4, 2025

The command dquilt new with the parameter of the patch name creates the first "patch
file".

The following files are created:

debian/patches/series contains the name of the patch DescriptionNoRegistration.patch
.pc/applied-patches contains the name of the patch DescriptionNoRegistration.patch
.pc/DescriptionNoRegistration.patch/
.pc/.quilt_patches contains debian/patches
.pc/.quilt_series contains series
.pc/.version contains 2

If patches already exist, make sure that they are named in the correct order in the
debian/patches/series file.

267a ⟨CreateNewPatch2 267a⟩≡ (266b)
Create a new patch file
$dquilt new ${PatchFileName

}

Patch FileToPatch ⟨CreateNewPatch4 269a⟩

33.4. Select file for patching
267b ⟨FileToPatch 267b⟩≡ (268)

function FileToPatch {
Called by CreateNewPatch PatchTasks and itself

FileSelector ${GitPath} # Select the file to be patched
File2Patch=${selected}

echo "Patch ${PatchFileName} because of ${File2Patch}" >> ${log}

quilt add must get only the filename without
the path of the file to be patched
File2pName=$(basename ${File2Patch})
$dquilt add -P ${PatchFileName} ${File2pName}

nano --linenumbers --mouse --softwrap ${File2Patch}

$dquilt refresh ${PatchFileName}

if whiptail --title "Patch another" \
--yesno "Do you want to patch another file in ${PatchFileName}?" \
--yes-button "Yes" --no-button "No" --defaultno 15 60
then

FileToPatch
fi

}

⟨CreateNewPatch 266a⟩

267

May 4, 2025

The file to be corrected is selected in a file selection dialogue.
268 ⟨FileSelector 268⟩≡ (272)

function FileSelector {
Called by CreateNewPatch and itself
Dialog to select a file using whiptail

StartPath=$1
cd $StartPath
txta=($(ls -a))

i=0
flist=’’
for element in ${txta[*]}
do

if [$element == ’.’]
then

i=$(expr $i + 1)
continue

fi
flist=$flist’ ’$i’ ’${element} i=$(expr $i + 1)

done

sel=$(whiptail --title "Filepicker" \
--menu "Select:" 15 60 6 $flist 3>&2 2>&1 1>&3)

if [$? -ne 0]
then

return
fi

Go back
if [${txta[$sel]} = ’..’]
then

cd ..
StartPath=$(pwd)
selected=${StartPath}

else
selected=${StartPath}"/"${txta[$sel]}

fi

The order of the following if-clauses is important
if [-f ${selected}]
then

if ! whiptail --title "Your choice;" \
--yesno "${selected}\nContinue?" --yes-button "Yes" \
--no-button "No" 15 60
then

FileSelector ${StartPath}
fi

fi

268

May 4, 2025

if [-d ${selected}]
then

FileSelector ${selected}
fi

}

⟨FileToPatch 267b⟩

If all files are present in this directory, dquilt add with the parameter of the file to be
edited will include it in quilt.

With this in .pc/DescriptionNoRegistration.patch/ the mentioned file is added. There
it is then available for the first adjustment.

269a ⟨CreateNewPatch4 269a⟩≡ (267a) PatchHeader }

⟨CreateDquilt 263a⟩

269b ⟨PatchTasks4 269b⟩≡ (265a)
2) FileToPatch # Add patch to patch file

PatchRunNr=1
$dquilt refresh;; ⟨PatchTasks6 269c⟩

33.4.1. Delete Patch
The following selection deletes existing patches. This is necessary if a previous patch is
no longer needed because the corrections have been incorporated by the upstream in the
meantime.

269c ⟨PatchTasks6 269c⟩≡ (269b)
3) DeletePatches;; # Delete patches

⟨PatchTasks7 270b⟩

However, it may be that the previous patch needs to be adapted for the current
upstream version. One way to do this is to delete the old patch and create a new one
(see chapter 33.2.1, page 265).

269d ⟨DeletePatches 269d⟩≡ (270a)
function DeletePatches {

Called by PatchTasks and itself

cd ${GitPath}
DeletePatch
PatchRunNr=1

if whiptail --title "Another patch?" \
--yesno "Do you want to delete another patch?" --yes-button "Yes" \
--no-button "No" 15 60
then

DeletePatches
fi

}

⟨RebasePQBranch 257b⟩

269

May 4, 2025

If the question is answered with No, the program jumps back to the patch task selection
(chapter 33.2, page 263).

270a ⟨DeletePatch 270a⟩≡ (275)
function DeletePatch {

Called by DeletePatches

ShowPatches "delete" # String will be found in ${1}

if [-z "${PatchFileName}"]
then

PatchTasks
fi

less --LINE-NUMBERS ${GitPath}/debian/patches/${PatchFileName}

if whiptail --title "Delete this patch?" \
--yesno "Do you really want to delete ${PatchFileName}?" \
--yes-button "Yes" --no-button "No" 15 60
then

$dquilt delete -r --backup ${PatchFileName}

if whiptail --title "Delete backup file?" \
--yesno "Do you want to delete the backup file, too" \
--yes-button "Yes" --no-button "No" 15 60
then

rm ${GitPath}/debian/patches/${PatchFileName}~
fi

fi
}

⟨DeletePatches 269d⟩

In order to use the gbp pq function, it must be set up beforehand (chapter 10.4.2.2,
page 33).

270b ⟨PatchTasks7 270b⟩≡ (269c)
Edit series

4) nano --linenumbers --mouse --softwrap debian/patches/series;;
⟨PatchTasks8 271⟩

270

May 4, 2025

33.4.2. Restore the initial state
If a patch has been created, edited or deleted with quilt, exiting the function will remove
the patches from the upstream code and return it to its original state. This is done with
quilt pop -a. This means that all applied patches are removed.

271 ⟨PatchTasks8 271⟩≡ (270b)
5) if [${PatchRunNr} -eq 1]

then
remove all patches and return the source
to its original state
${dquilt} pop -a
PatchRunNr=0

fi
If debian/patches/series is empty,
delete directory debian/patches
if ! [-s debian/patches/series]
then

rm debian/patches/series
rmdir debian/patches

fi
return;;

esac
fi

PatchTasks }

⟨GitBranch2RecentBranch 289b⟩

271

May 4, 2025

So it is possible for Quilt to always create the diff between the previous version and the
current version. After that the change is made. The registration information is removed.
With dquilt refresh one creates the diff to document the change. With dquilt header -e
now the description of the change is created in the $EDITOR.

272 ⟨PatchHeader 272⟩≡ (313)
function PatchHeader {

Called by CreateNewPatch EditPatch

PatchDescription=$(whiptail --title "Describe patch!" \
--inputbox "Description:\n\n" \
--cancel-button "Cancel" 15 60 3>&2 2>&1 1>&3)
if [-z "${PatchDescription}"]
then

echo "Please insert the description of the patch!"
read PatchDescription

fi
if whiptail --title "Describe patch!" --yesno "Forwarded:?" \
--yes-button "Yes" --no-button "No" 15 60
then

PatchForwarded="Yes"
else

PatchForwarded="No"
fi

DEBValues
if [-z ${Uploaders}]
then

PatchAuthor=${Maintainer}
else

PatchAuthor=${Uploaders}
fi

PatchUpdate=$(date +

%Y’-’%m’-’%d)
touch ${PatchFileName}.header
echo "Description: "${PatchDescription} >> ${PatchFileName}.header
echo "Forwarded: "${PatchForwarded} >> ${PatchFileName}.header
echo "Author: "${PatchAuthor} >> ${PatchFileName}.header
echo "Last-Update: "${PatchUpdate} >> ${PatchFileName}.header

$dquilt header -a < ${PatchFileName}.header
rm ${PatchFileName}.header

}

⟨FileSelector 268⟩

272

May 4, 2025

Here is an example of this:

Description: removed registration of license Forwarded: No Author: Mechtilde Stehmann <ooo@mechtilde.de> Last-Update: 2014-05-18

33.5. Patch selection
273 ⟨ShowPatches 273⟩≡ (265b)

function ShowPatches {
Called by EditPatch DeletePatch and itself
actionstr=${1}

patchfilesa=$(ls debian/patches)
i=0; slct=’’
for element in ${patchfilesa[*]}
do

if [${element} != ’series’]
then

slct=$slct’ ’$i’ ’${element}’ off ’
newPFA[$i]=${element}
i=$(expr $i + 1)

fi
done

PatchFileNo=$(whiptail --title "Select patch" \
--radiolist "Select one of these patches:" \
--cancel-button "Cancel" 15 60 8 \
$slct 3>&2 2>&1 1>&3)

if ["${actionstr}" = "check"]
then

Code for PQMigation
if [-z "${PatchFileNo}"]
then

return
fi
PatchFileName=${newPFA[$PatchFileNo]}
less --LINE-NUMBERS debian/patches/${PatchFileName}
ShowPatches "check"

else
if [-z "${PatchFileNo}"]
then

PatchFileName=""
else

PatchFileName=${newPFA[$PatchFileNo]}
if ! whiptail --title "${PatchFileNo}" \
--yesno "Do you want to ${actionstr} ${PatchFileName}?" \
--yes-button "Yes" --no-button "No" 15 60
then

ShowPatches
fi

fi

273

May 4, 2025

fi
}

⟨EditPatch 274⟩

33.6. Editing Patch
274 ⟨EditPatch 274⟩≡ (273)

function EditPatch {
Called by ChangePatches

ShowPatches "edit" # String will be found in ${1}

if [-z "${PatchFileName}"]
then

return 1
else

PatchRunNr=1
fi

$dquilt pop ${PatchFileName}
nano --linenumbers --mouse --softwrap debian/patches/${PatchFileName}
$dquilt refresh

if whiptail --title "New Patch Header" \
--yesno "Do you want to create a new patch header?" --yes-button "Yes" \
--no-button "No" 15 60
then

PatchHeader
fi

while $dquilt push
do

$dquilt refresh
done }

⟨ChangePatches 275⟩

274

May 4, 2025

33.7. Modify Patch
275 ⟨ChangePatches 275⟩≡ (274)

function ChangePatches {
Called by PatchTasks and itself

cd ${GitPath}
EditPatch

if whiptail --title "Another patch?" \
--yesno "Do you want to edit another patch?" --yes-button "Yes" \
--no-button "No" 15 60
then

ChangePatches
fi

}

⟨DeletePatch 270a⟩

275

34. Building

The actual building of the binary packages is done in a chroot. This mainly involves
checking that all the required build dependencies are listed in the debian/control file
(chapter 32.4.6, page 234) and are already available as Debian packages. This ensures
that the package can also be built reproducibly by the FTP masters without access to
further network resources.

34.1. debian/changelog
Before the actual build, the debian/changelog file is displayed for adjustment.

277a ⟨BuildNewRevision6 277a⟩≡ (251a)
Check debian/changelog
- includes creating changelog using gbp dch
DisplayDebianChangelog

⟨MovingGbpConf 284a⟩

First, the script checks if a file debian/changelog already exists. If this is the case, this
file is displayed and queried if it is correct.

Otherwise it is created with gbp dch.
277b ⟨DisplayDebianChangelog 277b⟩≡ (246b)

function DisplayDebianChangelog {
Called by BuildNewRevision

newChangelog=0
if [-f debian/changelog]
then

less --LINE-NUMBERS debian/changelog
if ! whiptail --title "Changelog ok?" --defaultno \
--yesno "Is debian/changelog ok?" --yes-button "Yes" \
--no-button "No" 15 60
then

newChangelog=1
fi

else
newChangelog=1

fi

⟨DisplayDebianChangelog1 278⟩

277

May 4, 2025

Figure 34.1.: Debian-Changelog OK?

If the question about the correctness of the changelog is answered in the affirmative,
the process continues with a possible move of the gbp configuration file (chapter 34.2,
page 284). Otherwise, this file is displayed in the editor.

Pay special attention to the version and revision designation in the first line of the
debian/changelog file. This applies mainly when files have been excluded from the
upstream source code (chapter 10.4.1.3, page 32.

For a non-maintainer upload (NMU), the first entry expected after the version infor-
mation is the entry.

* Non-maintainer upload

Also for dquilt the file .bashrc has to be added. (Chapter <n0>, page <n1>.
278 ⟨DisplayDebianChangelog1 278⟩≡ (277b)

Check whether d/control exists without a comment in line 1
if [${newChangelog} -eq 1]
then

if ! [-f debian/control]
then

DebianControlTemplate
else

cat --number debian/conrol | grep ’1’ | grep ’#’ > /dev/null
if [$? -eq 0]

then
DebianControlTemplate

fi
fi
creating changelog using gbp dch

AddVersionNumber ⟨DisplayDebianChangelog3 282⟩

278

May 4, 2025

34.1.1. Insert version number
gbp dch requires the current version name to be specified. If the corresponding variable
does not contain this value, you will be prompted to (manually) enter this version
designation.

In contrast, dch can create the next higher version designation with dch –increment.
This can also be done explicitly with dch --newversion <version>. 1

The program script uses the second option.
279a ⟨AddVersionNumber 279a⟩≡ (280b)

function AddVersionNumber {
Called by DisplayDebianChangelog
if [-z "${Version1}"]
then

RecentIdentifier
fi

⟨AddVersionNumber1 281a⟩

First it is checked which version designation is entered in the first line of the file
debian/changelog. It is queried whether a version designation found there is to be taken
over. If the file debian/changelog does not exist, the version number is queried (see page
281).

279b ⟨RecentIdentifier 279b⟩≡ (281b)
function RecentIdentifier {

Called by AddVersionNumber ForceOrig
Takes version number from debian/changelog, if it exists

if [-f ${GitPath}/debian/changelog]
then

firstLine=$(grep --line-number ’urgency=’ ${GitPath}/debian/changelog | grep ’^1:’)
whiptail --title "First line:" \
--msgbox "First line of debian/changelog;\n${firstLine}" 15 60
recentId=$(echo ${firstLine} | sed --expression=’s/^.*(//’ | \
sed --expression=’s/).*//’)

⟨RecentIdentifier2 280a⟩

1New Maintainer Guide, Chap. 8.1[11]

279

May 4, 2025

Figure 34.2.: Display the first line of the debian/changelog file.

280a ⟨RecentIdentifier2 280a⟩≡ (279b)
whiptail --title "Recent identifier" \
--msgbox "Recent identifier is ${recentId}" 15 60

⟨RecentIdentifier3 280b⟩

Figure 34.3.: Recent version

280b ⟨RecentIdentifier3 280b⟩≡ (280a)
if [-n "${recentId}"]
then

Version1=${recentId}
fi

else
InsertIdentifier

fi
}

⟨AddVersionNumber 279a⟩

280

May 4, 2025

After that, it continues with control questions.
281a ⟨AddVersionNumber1 281a⟩≡ (279a)

revisionflag=$(echo ${Version1} | grep --count ’\-[0-9]’)
if [${revisionflag} -eq 0]
then

if ! whiptail --title "Identifier of the version:" \
--defaultno --yesno "${Version1} contains no revision number.\n \
Is it a native package?" --yes-button "Yes" --no-button "No" 15 60
then

InsertIdentifier
if ! whiptail --title "Identifier of the version:" \
--defaultno --yesno "Is ${Version1} the right identifier?" \
--yes-button "Yes" --no-button "No" 15 60
then

InsertIdentifier
fi

fi
else

if ! whiptail --title "Identifier of the version:" \
--defaultno --yesno "Is ${Version1} the right identifier?" \
--yes-button "Yes" --no-button "No" 15 60
then

InsertIdentifier
fi

fi
echo "Message from AddVersionNumber: identifier="${Version1} >> ${log

} }

⟨DebianJavabuildTemplate 246b⟩

In the InsertIdentifier function, first the complete identifier of the package including
the verion name of the revision is requested.

281b ⟨InsertIdentifier 281b⟩≡ (287b)
function InsertIdentifier {

Called by AddVersionNumber Recentidentifier
RIdentifier=${Version1}
Version1=$(whiptail --title "Identifier" \
--inputbox "Recent identifier: ${RIdentifier}\n \
Please insert the whole identifier of the package\n \
(including revision version):" \
--nocancel 15 60 3>&2 2>&1 1>&3) }

⟨RecentIdentifier 279b⟩

281

May 4, 2025

Figure 34.4.: Query the identifier

The presence of a tilde is used to check whether it is a snapshot version. If this is the
case, the gbp dch command is also given the --dch-opt=--force-bad-version option and
this is displayed.

This causes the debchange program not to stop if the new version is smaller than the
current one. This is especially useful when backporting.

282 ⟨DisplayDebianChangelog3 282⟩≡ (278)
SnapshotFlag=$(echo ${Version1} | grep --count ’~’)
if [${SnapshotFlag} -eq 0]
then

DchAdd=’’
else

DchAdd=’ --dch-opt=--force-bad-version’
whiptail --title "Additional option to gbp dch:" \
--msgbox "Option: ${DchAdd}" 15 60

fi
⟨DisplayDebianChangelog4 283⟩

282

May 4, 2025

Figure 34.5.: More options for dch

The debian/changelog file is created by the program script using gbp dch. Always gbp
dch is called with the options --verbose, --debian-branch= and --new-version=.

In case gbp dch fails, an error message is printed. Otherwise, the debian/changelog file
is displayed for editing.

283 ⟨DisplayDebianChangelog4 283⟩≡ (282)
gbp dch --verbose --debian-branch=${RecentBranch} \
--new-version=${Version1}${DchAdd}
if [$? -ne 0]
then

FailureNotice
fi
nano --linenumbers --mouse --softwrap debian/changelog

fi
}

⟨CmeFix 249⟩

283

May 4, 2025

For the tbsync package, the following command line resulted for building a bug fix for
Buster, which was too currently the stable release.

gbp dch --verbose --debian-branch=debian/buster
\--new-version=1.16-1~deb10u1 --dch-opt=--force-bad-version

The following is to be said about the background:
With --dch-opt=<dch-option> options for debchange (dch) can be passed to the gbp

dch command. It should be noted that dbp dch calls the dch program multiple times and
passes the option on each call. Therefore, not all dch options are useful at this point.
Also, options may conflict with options passed by gbp dch by itself.

34.2. Moving the gbp configuration file
If a special configuration file for git-buildpackage is to be used for the package to be built
(chapter 19.3, page 73), it is published in the directory debian/.

If such a configuration file was created for gbp import-orig when the source code
was (initially) downloaded (chapter 31.4.9, page 208), it must be moved to the debian/
directory if necessary. This is done by the MovingGbpConfFile function.

284a ⟨MovingGbpConf 284a⟩≡ (277a)
MovingGbpConfFile

⟨Preparations 285a⟩

If a gbp.conf file exists in the .git/ directory, but none exists in the debian/ directory,
this file is moved to debian/.

If there are corresponding files in both directories, the file to be published can be
selected.

284b ⟨MovingGbpConfFile 284b⟩≡ (212a)
function MovingGbpConfFile {

Called by BuildNewRevision

.git/gbp.conf exists, but not debian/gbp.conf
Move gbp.conf from .git/ to debian/
if [-f ${GitPath}/.git/gbp.conf -a ! -f ${GitPath}/debian/gbp.conf]
then

mv -iv ${GitPath}/.git/gbp.conf ${GitPath}/debian
fi
There is a gbp.conf in both directories
if [-f ${GitPath}/.git/gbp.conf -a -f ${GitPath}/debian/gbp.conf]
then

TwoConfFilesFound
fi

}

⟨DebianBranch4Import 205b⟩

The function TwoConfFilesFound which enables this selection is described in chapter
31.4.9.

284

May 4, 2025

34.3. Set parameters for gbp buildpackage.
Before building the packages can begin, parameters for gbp buildpackage must first be
determined and set.

285a ⟨Preparations 285a⟩≡ (284a)
Preparations for gbp buildpackage
AskDist # Ensure that RecentBranch has a value

⟨Preparations1 288a⟩

34.3.1. Identify Git branch and distribution
In order to build in the right Git branch and with the right distribution, these parameters
are determined and displayed. They can also still be adjusted.

First, the IdentifyBranches function is used to determine the existing Git branches
(chapter 29.5.2, page 152).

285b ⟨AskDist 285b⟩≡ (290a)
function AskDist {

Called by BuildNewRevision PrepareUploading LastQuestionsBeforeBuild

IdentifyBranches
ba=($bl)
for element in ${ba[*]}
do

rb=$(echo ${element} | grep --count ’^x_’)
if [$rb -ge 1]
if echo ${element} | grep --quiet ’^x_’
then

CurrentBranch=$(echo ${element} | sed --expression=’s/^x_//’)
fi

done

⟨AskDist0 285c⟩

First, -z is used to check whether the variable RecentBranch is empty. In this case the
function GitBranch2RecentBranch (chapter 34.3.2, page 289) is called.

Otherwise, it checks if the name of the current branch corresponds to the value of the
variable RecentBranch.If this is not the case, a hint is given and the user can select one
of the two branches.

285c ⟨AskDist0 285c⟩≡ (285b)
if [-z "${RecentBranch}"]
then

GitBranch2RecentBranch
else

if ["${RecentBranch}" != "${CurrentBranch}"]
then

Msg="Branch according to git: "${CurrentBranch}",\n \
branch according to "${ConfigPath}${OrigName}": "${RecentBranch}
whiptail --title "There is something wrong!" --msgbox "${Msg}" 15 60

⟨AskDist1 286⟩

285

May 4, 2025

Figure 34.6.: Something is going wrong!

286 ⟨AskDist1 286⟩≡ (285c)
WishedBranch=$(whiptail --title "Choose branch:" \
--radiolist "Which branch do you want to work with? " \
--cancel-button "Cancel" 15 60 2 \
"0" "${RecentBranch}" off \
"1" "${CurrentBranch}" off 3>&2 2>&1 1>&3) ⟨AskDist2 287a⟩

286

May 4, 2025

Figure 34.7.: Selection of the branch

287a ⟨AskDist2 287a⟩≡ (286)
if [${WishedBranch} -eq 0]
then

git checkout ${RecentBranch}
else

GitBranch2RecentBranch
fi

fi
fi

echo "Notice from AskDist: The branch is "${RecentBranch} >> ${log}
va=$(grep --count ${RecentBranch}_Dist ${ConfigPath}${OrigName})
if [$va -eq 1]
then

bName=${RecentBranch}
Search4Dist
RecentBranchD=${va}

elif [$va -gt 1]
then

nano ${ConfigPath}${OrigName}
AskDist

⟨AskDist5 287b⟩

287b ⟨AskDist5 287b⟩≡ (287a)
else

Distro4Branch
fi

if [-z "${RecentBranchD}"]
then

RecentBranchD="sid"
fi
echo "Notice from AskDist: The distribution is "${RecentBranchD} >> ${log

} }

⟨InsertIdentifier 281b⟩

287

May 4, 2025

288a ⟨Preparations1 288a⟩≡ (285a)
echo "Notice from BuildNewRevision: Branch is "${RecentBranch} >> ${log}
whiptail --title "Please check!" \
--yesno "The git branch is ${RecentBranch}" --yes-button "Yes" \
--no-button "No" 15 60
rbq=$?

⟨Preparations2 288b⟩

Figure 34.8.: Release-Branch

If the question whether the displayed Git branch is the correct one is answered in the
negative, the applicable branch can be selected (chapter 30.4, page 163).

288b ⟨Preparations2 288b⟩≡ (288a)
if [$rbq -ne 0]
then

SelectBranch
fi ⟨Preparations3 288c⟩

If the question whether the displayed distribution is the correct one is answered in the
negative, the applicable distribution can be selected (chapter 29.5.3, page 152).

288c ⟨Preparations3 288c⟩≡ (288b)
if ! whiptail --title "Please check!" \
--yesno "The distribution is ${RecentBranchD}" --yes-button "Yes" \
--no-button "No" 15 60

⟨Preparation4 289a⟩

288

May 4, 2025

Figure 34.9.: Release branch of the distribution

289a ⟨Preparation4 289a⟩≡ (288c)

then
RecentBranchD=""
Distro4Branch

fi

echo "Notice from BuildNewRevision: Distribution is "${RecentBranchD} >> ${log}

SBuildOrPBuilder

⟨BuildNewRevision8 304b⟩

34.3.2. Customize Git branch
First, in the value of the variable CurrentBranch (which is the name of the current
branch), a ”/” is replaced by ”\/”, that is, a slash is masked.

Then the so changed value of the variable is inserted as RecentBranch into the configu-
ration file.

Finally, this value is assigned to the RecentBranch variable.
289b ⟨GitBranch2RecentBranch 289b⟩≡ (271)

function GitBranch2RecentBranch {
Called by AskDist

bName1=$(echo ${CurrentBranch} | sed --expression=’s/\//\\\//g’)
sed --in-place --expression="s/RecentBranch=.*/RecentBranch=${bName1}/g" \
${ConfigPath}${OrigName}
RecentBranch=${CurrentBranch

} }

⟨Search4Dist 290a⟩

289

May 4, 2025

34.3.3. Identify distribution
290a ⟨Search4Dist 290a⟩≡ (289b)

function Search4Dist {
Called by AskDist ParseConfig
va=$(grep ${bName}_Dist ${ConfigPath}${OrigName})
bName1=$(echo ${bName} | sed --expression=’s/\//\\\//g’)
va=$(echo $va | sed --expression="s/# ${bName1}_Dist=//g")
va=$(echo $va | sed --expression=’s/"//g’) }

⟨AskDist 285b⟩

34.3.4. Checking the parameters
Before the package construction finally starts, the parameters are displayed for the last
time for checking.

290b ⟨LastQuestionsBeforeBuild 290b⟩≡ (253b)
function LastQuestionsBeforeBuild {

Called by UsingSBuild UsingPBuilder

if ! whiptail --title "Please check!" \
--yesno "The release you want to build for in ${BuildEnv} is ${RecentBranchD}" \
--yes-button "Yes" --no-button "No" 15 60
then

AskDist
fi

⟨LastQuestionsBeforeBuild1 291a⟩

290

May 4, 2025

Figure 34.10.: Distribution for PBuilder

34.3.5. Last option to exit
Finally, before the package is built, a last opportunity to exit is given.

291a ⟨LastQuestionsBeforeBuild1 291a⟩≡ (290b)
whiptail --title "Last opportunity to exit before building" \
--yesno "Do you want to start the build process?" --yes-button "Yes" \
--no-button "Exit" 15 60

⟨LastQuestionsBeforeBuild2 291b⟩

Figure 34.11.: Start building the package

291b ⟨LastQuestionsBeforeBuild2 291b⟩≡ (291a)
if [$? -ne 0]
then

whiptail --title "Bye" --msgbox "Exit" 15 60
⟨LastQuestionsBeforeBuild3 292⟩

291

May 4, 2025

Figure 34.12.: Finish

292 ⟨LastQuestionsBeforeBuild3 292⟩≡ (291b)
exit

else
whiptail --title "Start building" \
--msgbox "${BuildEnv} will be updated first\n \
This need sudo and/or root rights" 15 60

fi
}

⟨UsingSBuild 294b⟩

292

May 4, 2025

Figure 34.13.: Information about updating the build environment

34.3.6. Selecting the build system
Now you can choose whether to build with pbuilder or sbuild.

293 ⟨SBuildOrPBuilder 293⟩≡ (304a)
function SBuildOrPBuilder {

Called by BuildNewRevision TaskSelect

Builder=$(whiptail --title "Which builder do you want to use?" \
--radiolist "Which builder do you want to use? " 15 60 6 \
"0" "PBuilder" off \
"1" "SBuild" on \
--cancel-button "Exit" 3>&2 2>&1 1>&3)

⟨SBuildOrPbuilder1 294a⟩

293

May 4, 2025

Figure 34.14.: Selecting the build system

The default is to select sbuild.
294a ⟨SBuildOrPbuilder1 294a⟩≡ (293)

if [-z "${Builder}"]
then

exit
fi
if [${Builder} -eq 1]
then

echo "Using SBuild." >>${log}
UsingSBuild

else
echo "Using PBuilder." >>${log}
UsingPBuilder

fi
} ⟨BuildNewRevision 226⟩

If sbuild is selected, the program script calls the UsingSBuild function. If pbuilder is
selected, the UsingPBuilder function is called.

For a description of the PBuilder, see chapter 34.6 (page 297).

34.4. What does Sbuild do?
Sbuild is used in the official buildd network to build binary and source packages for all
supported architectures.

A separate build environment is created for each.
294b ⟨UsingSBuild 294b⟩≡ (292)

function UsingSBuild {
Called by BuildNewRevision

BuildEnv="sbuild"
⟨UsingSBuild1 295a⟩

294

May 4, 2025

First, the LastQuestionsBeforeBuild function is called to set the release parameters
and the associated Git branch for gbp buildpackage.

295a ⟨UsingSBuild1 295a⟩≡ (294b)
LastQuestionsBeforeBuild

⟨UsingSbuild2 297a⟩

34.5. Build in the Sbuild chroot
34.5.1. Creating the S-Chroot
First it is checked if the file .sbuildrc is already created in the user’s home directory
(chapter 25.1, page 95).

295b ⟨CreateSchroot 295b⟩≡ (152a)
function CreateNewSchroot {

Called by UsingSBuild
’ # Check whether ~/.sbuildrc exists

if ! [-f ~/.sbuildrc]
then
Copy from template
cp /usr/share/doc/sbuild/examples/example.sbuildrc \
${HOME}/.sbuildrc

fi

whiptail --title ".sbuildrc (now) exists." \
--msgbox "Please check (and edit) ~/.sbuildrc!" 15 60

⟨CreateSchroot2 295c⟩

Figure 34.15.: Check .sbuildrc

Now the file can still be edited
295c ⟨CreateSchroot2 295c⟩≡ (295b)

nano ~/.sbuildrc

⟨CreateSchroot3 296⟩

295

May 4, 2025

Then the Sbuild chroot is created.
This uses sbuild-createchroot to create a chroot which is used by sbuild to build packages

for Debian Unstable Main.
296 ⟨CreateSchroot3 296⟩≡ (295c)

bDist="sid"
bDist=$(whiptail --title "Create new Sbuild-Chroot for ${RecentBranch}" \
--inputbox "Debian distribution\n \
for this branch ${RecentBranch}:" \
--cancel-button "Use Sid" 15 60 3>&2 2>&1 1>&3)
if [${bDist} = ""]
then

bDist="sid"
fi

sudo sbuild-createchroot ${bDist} \
/srv/chroot/${bDist}-amd64-sbuild \
http://127.0.0.1:3142/deb.debian.org/debian
echo "Schroot for "${bDist}" created." >> ${log}

} ⟨CreateNewCow 298a⟩

296

May 4, 2025

The schroot is placed in /srv/chroot/unstable-amd64-sbuild. It will install the ccache
package in the schroot in case you want to use some of the extensions described below.
The related apt repository is the http://deb.debian.org/debian mirror service via apt-
cacher-ng, which automatically selects a suitable local mirror. This can be changed to
use a URL for a different mirror of the Debian archive.

This command can be run once per desired distribution and passed to --arch=i386 to
create a schroot for a different architecture (the default is the host architecture).

34.5.2. sbuild-update
The schroot should be up to date before building packages in it. The updates can be
done with sbuild-update.[SBuild2022]

297a ⟨UsingSbuild2 297a⟩≡ (295a)
Check whether chroot directory exits

if [-d /srv/chroot/${RecentBranchD}-amd64-sbuild]
then

if exists update-chroot
sudo sbuild-update --update --dist-upgrade --clean --autoclean \
--autoremove ${RecentBranchD}
echo "Updated Schroot for ${RecentBranchD}." >>${log}

else
else create chroot
CreateNewSchroot

fi
ForceOrig

sbuild --dist=${RecentBranchD} *.dsc
gbp buildpackage --git-builder=sbuild \

--git-debian-branch=${RecentBranch} \
--git-dist=${RecentBranchD} --git-ignore-new

gbpq=$?

⟨UsingSbuild3 297b⟩

All sbuild chroots created with sbuild-createchroot are created by schroot and have the
suffix "-sbuild". So, to find the names of all sbuild chroots, the following is executed.

schroot -l | grep sbuild

297b ⟨UsingSbuild3 297b⟩≡ (297a)

build --dist=${RecentBranchD} #*.dsc
} ⟨UsingPBuilder 299⟩

34.6. Build in the Pbuilder chroot
The packages are built in a chroot provided by pbuilder. For better control of the process,
so-called hooks can be built in at predefined places (chapter 18.3.3, page 65).

297

May 4, 2025

34.6.1. Create base.cow
If the required base-cow does not yet exist, it is created with git-pbuilder create. This
can also be used to create a chroot for a different architecture such as i386 (32-bit) on a
64-bit machine. For this a base-sid-i386.cow is created with

DIST=sid ARCH=i386 git-pbuilder create

298a ⟨CreateNewCow 298a⟩≡ (296)
function CreateNewCow {

Called by Distro4Branch UsingPBuilder

bDist="sid"
bDist=$(whiptail --title "Create new cow for ${RecentBranch}" \
--inputbox "Debian distribution\n \
for this branch ${RecentBranch}:" \
--cancel-button "Use Sid" 15 60 3>&2 2>&1 1>&3) ⟨CreateNewCow1 298b⟩

Figure 34.16.: Selection of the cow to create.

298b ⟨CreateNewCow1 298b⟩≡ (298a)
if [${bDist} == ""]
then

bDist="sid"
fi
You must be root to create a cow
echo -e "\nPlease enter Password for creating pbuilder cow.\n"
sudo DIST=${bDist} git-pbuilder create
echo "Cow for "${bDist}" created." >> ${log

} }

⟨Distro4Branch 152b⟩

298

May 4, 2025

With PBuilder an environment is created in which Debian packages can be built (see
also chapter 18.3, page 61).

A wrapper is a program that surrounds another program. The wrappers mentioned
below are technical in nature. Git-pbuilder is a wrapper for pdebuild and is intended for
use by gbp buildpackage.

Git-pbuilder configures pdebuild to use cowbuilder by default.
Cowbuilder is again a pbuilder wrapper for cowdancer. cowbuilder performs the specified

operation with cowdancer.
Since git pbuilder requires root privileges to update the base installation, a password

prompt is issued.

34.6.2. git-pbuilder update
Before starting gbp buildpackage, precautions must be taken to ensure that the setup
in the chroot is up-to-date. This is done using git-pbuilder update. Before this, it is
still checked whether the necessary base-cow (of the corresponding branch/release) is
available.

While the cow directories for the other releases have the release names in their names,
the corresponding directory for sid is simply called base.cow.

Therefore, two conditions are used to check whether the corresponding directory exists.
If the corresponding directory is missing, it is created using the CreateNewCow function

(chapter 34.6.1, page 298).
299 ⟨UsingPBuilder 299⟩≡ (297b)

function UsingPBuilder {
Called by BuildNewRevision

BuildEnv="pbuilder"
LastQuestionsBeforeBuild

Building package using git-pbuilder and gbp buildpackage

check, whether cow exists
if exists update cow
else create cow
if [-d /var/cache/pbuilder/base-${RecentBranchD}.cow]
then

echo -e "\nPlease enter Password for updating pbuilder cow.\n"
DIST=${RecentBranchD} git-pbuilder update
echo "Notice from BuildNewRevision: Pbuilder was updated." >> ${log}

elif [-d /var/cache/pbuilder/base.cow -a ${RecentBranchD} = "sid"]
then

echo -e "\nPlease enter Password for updating pbuilder cow.\n"
DIST=${RecentBranchD} git-pbuilder update
echo "Notice from BuildNewRevision: Pbuilder was updated." >> ${log}

else
CreateNewCow

fi
ForceOrig

299

May 4, 2025

⟨UsingPBuilder3 303b⟩

34.6.3. Inclusion of the *.orig archive in *.changes
Basically, the *.orig archive (*.orig.tar.gz or *.orig.tar.xz) is only included in the *.changes
file and thus also uploaded if the revision number does not exceed 1.

So first the version identifier is determined and displayed by calling the RecentIdentifier
function (chapter 34.1.1, page 279).

300a ⟨ForceOrig 300a⟩≡ (231a)
function ForceOrig {

Called by BuildNewRevision PrepareUploading
OptFlag=1
if [-z "${Version1}"]
then

RecentIdentifier
fi
whiptail --title "Version" --msgbox "Version: ${Version1}" 15 60

⟨ForceOrig2 300b⟩

Figure 34.17.: Display of the version with revision number

From this, the revision number is now extracted and displayed. For native packages
no revision number is displayed.

300b ⟨ForceOrig2 300b⟩≡ (300a)
cat debian/source/format | grep "native" > /dev/null
if [$? -ne 0]
then

RevNr=$(echo ${Version1} | sed --expression=’s/[^0-9]/#/g’ | \
sed --expression=’s/^.*#//’) whiptail --title "Revision number" \
--msgbox "The number of the revision is ${RevNr}." 15 60
pbuilderOpt=" --git-builder=git-pbuilder \
--git-pbuilder-options=’--source-only-changes’"

⟨ForceOrig5 301⟩

300

May 4, 2025

Figure 34.18.: Display of the revision number

However, you can force the *.orig archive to be included in the *.changes file and thus
also uploaded if the revision number is greater than 1 by giving git-pbuilder the -sa
option.

This is useful if the *orig archive has not been uploaded yet or needs to be re-provisioned
in the New Queue..

When using gbp buildpackage, as in the script, the corresponding option is –git-
builder=git-pbuilder -sa..

301 ⟨ForceOrig5 301⟩≡ (300b)
if [${RevNr} -gt 1]
then

if whiptail --title "orig in changes file" \
--yesno "Do you want to insert the orig archive into the changes file?\n \
That makes sense, if the orig archive has not been uploaded before." \
--defaultno --yes-button "Yes" --no-button "No" 15 60

⟨ForceOrig6 302a⟩

301

May 4, 2025

Figure 34.19.: Should the upstream tarball be uploaded too

The -sa option means that according to dpkg-buildpackage –help the source always
contains Orig.

302a ⟨ForceOrig6 302a⟩≡ (301)
then

pbuilderOpt=" --git-builder=git-pbuilder -sa"
fi

fi
fi

}

⟨MoreOptions 302b⟩

Now in the following function the possibility is opened to give further options for the
pbuilder in gbp buildpackage. Before that the previous options are displayed.

302b ⟨MoreOptions 302b⟩≡ (302a)
function MoreOptions {

Called by BuildNewRevision PrepareUploading
Adds options to specify pbuilder in gpb buildpackage
moreOpts=’’
intText="The options for gbp buildpackage are:\n"
intText=${intText}${normalOpts}
if whiptail --title "Options for gbp buildpackage" \
--yesno "${intText}\nDo you want to add some more?" --yes-button "Yes" \
--no-button "No" --defaultno 15 60 ⟨MoreOptions2 303a⟩

302

May 4, 2025

Figure 34.20.: Display the options of gbp buildbackage.

303a ⟨MoreOptions2 303a⟩≡ (302b)
then

moreOpts=$(whiptail --title "Options for gbp buildpackage" \
--inputbox "${intText}\nPlease insert options to be added:" \
--cancel-button "Cancel" 15 60 3>&2 2>&1 1>&3)
moreOpts=" "${moreOpts}

fi
}

⟨PatchesTreatment 251b⟩

The information about pbuilderOpt has been gathered from various manpages.
In the manpage of gbp buildbackage you get the information that with –git-pbuilder-

options= PBUILDER_OPTIONS further options of pbuilder can be added. Which
options these are can be found in the man page of pbuilder.

34.6.4. Build with gbp buildpackage
After the preparations now the building of the respective package with gbp buildpackage
takes place. If this fails, the program terminates. Otherwise it continues to check the
built packages (chapter 37, page 311). Good luck!

303b ⟨UsingPBuilder3 303b⟩≡ (299)

normalOpts="--git-debian-branch="${RecentBranch}" \
--git-dist="${RecentBranchD}" --git-verbose \
--git-ignore-new"${pbuilderOpt}
MoreOptions

⟨UsingPBuilder4 304a⟩

303

May 4, 2025

Now the actual building of the Debian package starts here with the download of the
build dependencies.

304a ⟨UsingPBuilder4 304a⟩≡ (303b)
echo "Starting gbp buildpackage" >> ${log}
gbp buildpackage --git-debian-branch=${RecentBranch} \
--git-dist=${RecentBranchD} --git-verbose \
--git-ignore-new${pbuilderOpt}${moreOpts}
gbpq=$?

}

⟨SBuildOrPBuilder 293⟩

304b ⟨BuildNewRevision8 304b⟩≡ (289a)
if [$gbpq -eq 0]
then

echo -e "The package ${SourceName} was built with gbp buildpackage\n \
without creating and signing tags." >> ${log}

else
whiptail --title "Build failed!" \
--msgbox "Gbp buildpackage failed!" 15 60
echo
echo "Please fix the problem in another terminal!"
echo "After fixing, press RETURN to continue."
read a
if ["${BuildEnv}" = "sbuild"]
then

UsingSBuild
else

UsingPBuilder
fi

fi

Task=5 # Go to RunningTests }

⟨RunningLintian 314a⟩

Figure 34.21.: Unsuccessful building attempt!

304

May 4, 2025

34.6.5. Download dependencies

34.6.6. Build - compile in pbuilder.

305

35. If building fails

If the build fails or the subsequent tests (chapter 37, page 311) are not satisfactory, this
can have various causes.

First starting point for root cause investigation is to study the file
< SourceName >_< V ersion >-< Revision >_< Arch >.build.

One reason why the build failed may be insufficient determination of the build depen-
dencies. Determining whether required dependencies are already packaged is described
in chapter 10.3 (page 29).

307

36. Build beyond Unstable (sid)

To build for backports and proposed-updates packages (chapter 21, page 81), the following
procedure has worked well for us.

First, from the output selection (chapter 30.5, page 171), a new Git branch must be
created (chapter 41.1, page 355). This usually starts from the Git branch debian/sid or
master.

The name of this new branch should specify the target of the package (e.g. debian/bookworm-
bpo).

If this Git branch already exists, it is used.
309 ⟨Merge2Stable 309⟩≡

git branch -vv
git checkout <stableBranch>
git merge debian/sid # or master
Solve merge conflicts esp. d/changelog
nano debian/changelog
git add debian/changelog
git commit
This is the merge commit

Fixing the merge conflict usually requires at least editing the debian/changelog file.
After that, build a new revision (chapter 32, page 225).
This creates a new entry in d/changelog. (Chapter 34.1, page 277)
For the version entry in debian/changelog it is mandatory to use nomenclature described

in chapter 21.7 (page 84).
After that, the package for proposed-update is built. The changelog must not contain

the number of this bug report.
If the release team approves the request, the package can be built and uploaded.

(Chapter 39.1, page 334 or Chapter 40.3, page 342)
The bug report to release.debian.org will be closed once the package has been added

to the next point release of the stable release. This is then the end of this process.

309

37. Verifications

An initial quality control is already performed during the construction process in pbuilder
with lintian.

The following quality control is done with lintian in pedantic mode and with uscan
regarding the content of the file debian/watch..

This is followed by more checks with debdiff and diffoscope.
Finally piuparts is described.

311 ⟨RunningTests 311⟩≡ (318)
function RunningTests {

Called by TaskSelect BuildNewRevision

QA using lintian and uscan

lintian RunningLintian

uscan
if [$linq -eq 0]
then

RunningUscan
else

usq=1
fi

⟨RunningTests3 312⟩

311

May 4, 2025

If at least one of the two test results is qualified as poor, the program script terminates
after a corresponding entry into the log file.

Otherwise there is a question whether to prepare the upload of the package.
312 ⟨RunningTests3 312⟩≡ (311)

if [$usq -ne 0] || [$linq -ne 0]
then

echo "At least one test failed!" >> ${log}
exit

else
if whiptail --title "Upload?" \
--yesno "Should the package be prepared to be uploaded now?" \
--yes-button "Yes" --no-button "Exit" 15 60
then

Task=5 # Go to PrepareUploading
else

exit
fi

fi
}

⟨CheckRepackSuffix 223a⟩

312

May 4, 2025

Figure 37.1.: Prepare upload of release

37.1. Selection of the Changes file
This function is used to select the changes file (*.changes), which is used to check the
package build result and determine which files to upload.

313 ⟨SelectChangesFile 313⟩≡ (246a)
function SelectChangesFile {

Called by RunningLintian SelectUploadTarget

titlestr=${1}
cd ${PrjPath}
changesa=($(ls ${SourceName}_${Version1}*_*.changes))

if [-z "${changesa}"]
then

echo "File *"${SourceName}"*_"${Version1}"*_*.changes not found!"
exit

fi

i=0; slct=’’
for element in ${changesa[*]}
do

slct=$slct’ ’$i’ ’${element}’ off ’
i=$(expr $i + 1)

done

paket=$(whiptail --title "${titlestr}" --radiolist "Select:" \
--cancel-button "Exit" 15 60 8 $slct 3>&2 2>&1 1>&3)

if [-z "${paket}"]
then

exit
fi

}

⟨PatchHeader 272⟩

313

May 4, 2025

37.2. Yamllint
With the command line tool yamllint the syntax of the corresponding files can be checked.

37.3. Lintian
There is a User’s Manual for Lintian, which is also available in the lintian package as
file lintian.rst (in English)[43].

37.3.1. Test with Lintian
The result of the build is checked with lintian. To do this, the *.changes file to which
the check should refer must first be selected. For this the function SelectChangesFile is
called (chapter 37.1, page 313).

314a ⟨RunningLintian 314a⟩≡ (304b)
function RunningLintian {

Called by RunningTests

SelectChangesFile "lintian_check" # String will be found in ${1}
linfile=${changesa[$paket]}

⟨RunningLintian1 314b⟩

Lintian is called with options that cause a verbose check.
314b ⟨RunningLintian1 314b⟩≡ (314a)

lininfo=$(lintian --check --display-experimental --display-info \
--info --verbose --show-overrides --pedantic --tag-display-limit 0 \
--color auto ${linfile})
lx=$?

⟨RunningLintian3 314c⟩

If Lintian does not report anything, the user should experience this pleasing result.
314c ⟨RunningLintian3 314c⟩≡ (314b)

if [${lx} -eq 0]
then

lininfo="Lintian does not find any Errors, Warnings or \n \
any other problems. \n\n Congratulations"

fi

⟨RunningLintian4 315a⟩

314

May 4, 2025

The variable lininfo must still be edited with sed so that the Lintian messages appear
in individual lines.

315a ⟨RunningLintian4 315a⟩≡ (314c)
Make lininfo better readable
lininfo=$(echo ${lininfo} | sed --expression=’s/ [EWIPNX]:/\\n&/g’)

echo -e "lintian("${lx}"): "${lininfo}
whiptail --title "Lintian" --msgbox "${lininfo}" --scrolltext 15 60
echo -e "Result of Lintian:\n"${lininfo} >> ${log}

⟨RunningLintian5 315b⟩

After displaying the result of the test, the user must evaluate the result.
315b ⟨RunningLintian5 315b⟩≡ (315a)

whiptail --title "All well?" \
--yesno "All well? Continue?" --yes-button "Yes" \
--no-button "Exit" 15 60
linq=$?

}

⟨RunningUscan 316⟩

315

May 4, 2025

Figure 37.2.: Lintian: All Well?

If the result is OK, the next test follows.

37.3.2. Lintian reports
A complete list of possible messages can be found at https://lintian.debian.org/
tags.html.

Here are some examples:
bad-jar-name Der Name entspricht nicht den Richtlinien der Java-Policy. 1

codeless-jar Die *.jar Datei enthält keinen kompilierten Java-Code.
empty-binary-package Das gebaute Paket ist leer.
javalib-but-no-public-jars Im Verzeichnis /usr/share/java/ gibt es kein *.jar-Archiv.

Dann fehlt in der Regel der Eintrag in der entsprechenden Datei debian/<paketname.poms
als –java-lib.

new-package-should-close-itp-bug In der Datei debian/changelog ist der ITP-Bug zu
schließen (Closes: #nnnnnn)

rules-requires-root-missing In die Datei debian/control wird im ersten Abschnitt der
Eintrag Rules-Requires-Root: no benötigt.

wildcard-matches-nothing-in-dep5-copyright
backports-changes-missing
out-of-date-standard
testsuite-autopkgtest-missing

37.4. Uscan
With the option –verbose, uscan creates a human-readable report about the programme
execution. With the option –debug, the status of the internal variables is additionally
displayed.

316 ⟨RunningUscan 316⟩≡ (315b)
function RunningUscan {

Called by RunningTests BuildWithUscan

1Chapter 2.4 of the Java Policy[26]

316

https://lintian.debian.org/tags.html
https://lintian.debian.org/tags.html

May 4, 2025

cd ${GitPath}
uscaninfo=$(uscan --no-download --verbose)
if [${#uscaninfo} -gt 0]
then

whiptail --title "uscan" --msgbox "${uscaninfo}" --scrolltext 15 60
echo -e "Result of uscan:\n"${uscaninfo} >> ${log}

⟨RunningUscan1 317a⟩

Here it is read from uscaninfo whether the built version is also the current one. This
applies to all builds that are to be published in experimental or sid. The corresponding
message is: "=> Package is up to date . . . ".

317a ⟨RunningUscan1 317a⟩≡ (316)
echo ${uscaninfo} | grep ’=> Package is up to date’ > /dev/null
usc1=$?
echo ${uscaninfo} | grep ’=> Only older package available’ > /dev/null
usc2=$?
if [${usc1} -eq 0]
then

whiptail --title "uscan" --msgbox "Package seems to be up to date." 15 60
usq=0

⟨RunningUscan2 317b⟩

317b ⟨RunningUscan2 317b⟩≡ (317a)
elif [${usc2} -eq 0]
then

whiptail --title "uscan" --msgbox "Only older package available." 15 60
usq=0

⟨RunningUscan3 317c⟩

Figure 37.3.: Older package available

317c ⟨RunningUscan3 317c⟩≡ (317b)
else

whiptail --title "No up to date message" \
--yesno "No up to date message!\nRegardless all well? Continue?" \
--defaultno --yes-button "Yes" --no-button "Exit" 15 60
usq=$?

fi
⟨RunningUscan4 318⟩

317

May 4, 2025

Figure 37.4.: Uscan - OK?

318 ⟨RunningUscan4 318⟩≡ (317c)
else

echo "uscan failed" >> ${log}
whiptail --title "uscan failed" --msgbox "uscan failed" 15 60
usq=1

fi
}

⟨RunningTests 311⟩

318

May 4, 2025

Figure 37.5.: Uscan fails

37.5. Checking the file debian/copyright
At this point, it is checked whether all details of the licences in the file debian/copyright
have really been made. There are several tools for this. These are described in chapter
10.1 (page 27).

At present, this check still has to be done manually, because the use of these tools is
sometimes insufficient.

37.6. Check with debdiff and diffoscope
Both programmes are used to show the difference between the current package and the
previous version.

debdiff is installed with the devscripts package. diffoscope, on the other hand, must be
installed additionally with the package of the same name.

37.6.1. debdiff
With debdiff file lists in two Debian packages can be compared.

debdiff is used in this case to prove that there are no differences between two source
packets without only minor differences.

319 ⟨DebDiff 319⟩≡ (134)
function DebDiff {

Called by TaskSelect
if [$1 -gt 0]
then

whiptail --title "debdiff" \
--msgbox "Now you can detect the differences between two builds."\n \
15 60

fi

⟨DebDiff1 320⟩

319

May 4, 2025

Figure 37.6.: Determine differences

For this purpose, debdiff is passed two source packages (.dsc files). This compares the
contents of the source packages. If the source packages differ only in the Debian revision
number (i.e. the .orig.tar.gz files are the same in both .dsc files), then interdiff is used to
compare the two patch files. The interdiff program from the patchutils package must be
available on the system to do this. Otherwise, a diff is performed between both source
directory trees.

320 ⟨DebDiff1 320⟩≡ (319)
cd ${PrjPath}
PackageList=$(ls ${PrjPath} | grep \.dsc$ | sort --reverse --version-sort)
PackageArray=(${PackageList})

i=0
for element in ${PackageArray[*]}
do

if [$i -eq 0]
then

i=$(expr $i + 1)
continue

fi
packageE=${packageE}’ ’$i’ ’${element}’ off ’
i=$(expr $i + 1)

done

PackageNr=$(whiptail --title "debdiff" \
--radiolist "Which version should be compared?" 15 60 $i ${packageE} \
--cancel-button "Cancel" \ 3>&2 2>&1 1>&3)

⟨DebDiff4 321⟩

320

May 4, 2025

321 ⟨DebDiff4 321⟩≡ (320)

if [-z "${PackageNr}"]
then

CommonTasks fi

debdiff --diffstat ${PackageArray[${PackageNr}]} ${PackageArray[0]} >> \
debdiff_${PackageArray[${PackageNr}]}-${PackageArray[0]}.diff

less debdiff_${PackageArray[${PackageNr}]}-${PackageArray[0]}.diff
CommonTasks }

⟨ImportDebianPackage 155a⟩

321

Part IV.

Publishing

323

38. Preparation to upload the package

So far, we have been busy building a Debian package on our machine, as also provided
by the Debian project.

Nun geht es darum, dass dieses Paket auch hochgeladen und damit dem Debian-Projekt
zur Verfügung gestellt werden kann.

Die Vorbereitung erfolgt durch die Funktion PrepareUploading.

38.1. Does debian/changelog exist?
To be on the safe side, it checks if a file debian/changelog already exists.

If this file exists, it is displayed for checking whether it is ready for publication.
325a ⟨PrepareUploading 325a⟩≡

function PrepareUploading {
Called by TaskSelect

cd ${GitPath}

Check debian/changelog
if [-f debian/changelog]
then

less --LINE-NUMBERS debian/changelog
else

⟨PrepareUploading1 325b⟩

If this file does not exist, the program script terminates at this point with a corre-
sponding message.

325b ⟨PrepareUploading1 325b⟩≡ (325a)
whiptail --title "This is the end" \
--msgbox "No changelog - no upload!" 15 60
exit

fi

⟨PrepareUploading2 326⟩

325

May 4, 2025

Figure 38.1.: No Changelog - No upload

If this file does not exist, the program script terminates at this point with a corre-
sponding message.

326 ⟨PrepareUploading2 326⟩≡ (325b)
if ! whiptail --title "Changelog fit for publishing?" --defaultno \
--yesno "Is the changelog fit for publishing?" --yes-button "Yes" \
--no-button "No" 15 60

⟨PrepareUploading3 327⟩

326

May 4, 2025

Figure 38.2.: Changelog fir for uploading?

If the answer is yes, the option to build the package again is opened (chapter 38.3,
page 332).

38.2. debian/changelog finisg
If the debian/changelog file is not ready for release, it is improved.

To do this, it first prompts to check if you are in the correct Git branch. The AskDist
function (chapter 34.3.1, page 285) is used to determine which is the current Git branch
and which distribution is assigned to it.

After that, the result is displayed. If necessary, the branch can be changed in another
terminal.

327 ⟨PrepareUploading3 327⟩≡ (326)
then

AskDist
echo -e "Notice from PrepareUploading: The branch is "${RecentBranch}"\n \
The distribution is "${RecentBranchD} >> ${log}
whiptail --title "Please check! (U)" \
--msgbox "The branch is ${RecentBranch}" 15 60

⟨PrepareUploading4 328⟩

327

May 4, 2025

Figure 38.3.: Check branch

Then, if necessary, specify the name of the distribution where the built Debian package
should be uploaded. Usually this is the unstable distribution.

328 ⟨PrepareUploading4 328⟩≡ (327)

if ["${RecentBranchD}" = "sid"]
then

distName="unstable"
elif ["${RecentBranchD}" = "experimental"]
then

distName="experimental"
else

distName=$(whiptail --title "Name of the distribution" \
--inputbox "Please insert the name of the distribution\n \
specified in the changelog" \
--cancel-button "Cancel" 15 60 3>&2 2>&1 1>&3)

fi
⟨PrepareUploading5 329⟩

328

May 4, 2025

Figure 38.4.: Enter the name of the distribution

If no name is entered, unstable is assumed to be the distribution. .
Then the name of the distribution is displayed again with the request to check.

329 ⟨PrepareUploading5 329⟩≡ (328)
if [-z "${distName}"]
then

distName="unstable"
fi

echo -e "Another notice from PrepareUploading:\n \
The distribution is now "${distName} >> ${log}
whiptail --title "Please check! (U)" \
--msgbox "The distribution is ${distName}" 15 60

⟨PrepareUploading6 330a⟩

329

May 4, 2025

Figure 38.5.: Check distribution name

Especially for new packages, authors like to use an upload to experimental. This is
because a binary upload is required for new packages.

330a ⟨PrepareUploading6 330a⟩≡ (329)

making debian/changelog fit for publishing
gbp dch --release --verbose --debian-branch=${RecentBranch} \
--distribution=${distName} #--commit

⟨PrepareUploading8 330b⟩

After creating the changelog for the release, the standard editor is automatically opened
for checking. This cannot be influenced by the script.

This display is also useful. Often there are duplicate commit entries to be deleted.
330b ⟨PrepareUploading8 330b⟩≡ (330a)

git add .
git commit -a

whiptail --title "Build again" \
--msgbox "Now the release will be built another time." 15 60

⟨PrepareUploading10 331a⟩

330

May 4, 2025

Figure 38.6.: Building for release

Now the package is built for upload to the Debian repository.
To do this, the PBuilderChroot is updated again (chapter 34.6.2, page 299).

331a ⟨PrepareUploading10 331a⟩≡ (330b)
Building revision
DIST=${RecentBranchD} git-pbuilder update
GpgKeyAvailable

⟨PrepareUploading11 331b⟩

The first step is to make sure that the options from the ForceOrig function (chapter
34.6.3, page 300) are set.

331b ⟨PrepareUploading11 331b⟩≡ (331a)
if [${OptFlag} -ne 1]
then

ForceOrig

⟨PrepareUploading12 331c⟩

Also, the user is given the opportunity to add more options for gbp buildpackage.
331c ⟨PrepareUploading12 331c⟩≡ (331b)

normalOpts="--git-debian-branch="${RecentBranch}" \
--git-dist="${RecentBranchD}" --git-verbose --git-tag \
--git-sign-tags"${pbuilderOpt} MoreOptions fi

⟨PrepareUploading15 331d⟩

Now the actual build process takes place. This is necessary because the debian/changelog
file has been changed and must therefore be integrated again.

331d ⟨PrepareUploading15 331d⟩≡ (331c)
gbp buildpackage --git-debian-branch=${RecentBranch} \
--git-dist=${RecentBranchD} --git-verbose --git-tag \
--git-sign-tags${pbuilderOpt}${moreOpts}
echo "Package ${SourceName} was built using gbp buildpackage." >> ${log}

⟨PrepareUploading16 332a⟩

331

May 4, 2025

38.3. Building again?
Here it continues if the question is answered in the affirmative whether the file de-
bian/changelog is ready for release. Then the option is opened to build the package
again.

Building is then done in the manner just described.
332a ⟨PrepareUploading16 332a⟩≡ (331d)

else
if whiptail --title "Building another time?" \
--yesno "Should the release be build another time?\n(Without tagging)" \
--yes-button "Yes" --no-button "No" 15 60

⟨PrepareUploading20 332b⟩

Figure 38.7.: Building for release

332b ⟨PrepareUploading20 332b⟩≡ (332a)
then

Building revision DIST=${RecentBranchD} git-pbuilder update

if [${OptFlag} -ne 1]
then

ForceOrig

normalOpts="--git-debian-branch="${RecentBranch}" \
--git-dist="${RecentBranchD}" --git-verbose"${pbuilderOpt}
MoreOptions

fi

gbp buildpackage --git-debian-branch=${RecentBranch} \
--git-dist=${RecentBranchD} --git-verbose${pbuilderOpt}${moreOpts}
echo "Package ${SourceName} was built using gbp buildpackage." >> ${log}

fi
fi

}

⟨SelectUploadTarget 338⟩

332

39. Upload to Git repositories

The following section from the task selection first calls the functions to upload to the Git
repositories.

333 ⟨TaskSelect9 333⟩≡
if [${rcts} -eq 0]
then

##############

Pushing git repo

##############

Upload2OwnServer
Upload2Salsa

⟨TaskSelect10 337a⟩

333

May 4, 2025

39.1. Upload to salsa.debian.org
Before uploading to salsa.debian.org, the program script checks whether there is already
an appropriate repository there.

334 ⟨Upload2Salsa 334⟩≡ (336)
function Upload2Salsa {

Called by TaskSelect and itself

Uploading to Salsa

if whiptail --title "Upload to salsa.debian.org?" \
--yesno "Should ${SourceName} be uploaded to Salsa?" \
--yes-button "Yes" --no-button "No" 15 60
then

BrowserName=$(echo ${SalsaName} | sed --expression=’s/.git$//g’)
BrowserName="https://salsa.debian.org/"${BrowserName}
wget --spider --verbose --max-redirect=0 \
--append-output=${log} ${BrowserName}
if [$? -ne 0]
then

whiptail --title "No project found at salsa.debian.org" \
--msgbox "Please create ${BrowserName} first" 15 60
echo "No project "${BrowserName}" found at salsa.debian.org" \
>> ${log}

if whiptail --title "Done?" \
--yesno "Created ${BrowserName} on salsa.debian.org?" \
--yes-button "Yes" --no-button "No" 15 60
then

Upload2Salsa
else

exit
fi

else
⟨Upload2Salsa5 335⟩

334

May 4, 2025

If patch queue branches exist, they can be deleted before uploading to salsa.debian.org.
335 ⟨Upload2Salsa5 335⟩≡ (334)

if echo $(git branch) | grep --quiet ’patch-queue/’
then

if whiptail --title "Patch queue branches found:" \
--yesno "$(git branch | grep ’patch-queue’)\n \
Delete all patch-queue branches?" \
--yes-button "Yes" --no-button "No" 15 60
then

git branch --delete --force \
$(git branch | grep ’patch-queue’)

fi
fi
if ! whiptail --title "Last stop before upload!" \
--yesno "Anything all right?" \
--yes-button "Yes" --no-button "No" 15 60
then

exit
fi
if git remote | grep ’salsa’ > /dev/null
then

RepoName="salsa"
else

RepoA=($(git remote))

i=0; slct=’’
for element in ${RepoA[*]}
do

slct=$slct’ ’$i’ ’${element}’ off ’
i=$(expr $i + 1)

done

RepoNr=$(whiptail --title "Select repository" \
--radiolist "Select one of these repositories" \
--cancel-button "Exit" 15 60 8 \
$slct 3>&2 2>&1 1>&3)

if [-z "${RepoNr}"]
then

exit
else

RepoName=${RepoA[${RepoNr}]}
fi

fi
git push --set-upstream ${RepoName} --all >> ${log}
git push --set-upstream ${RepoName} --tags >> ${log }

echo ${SourceName}" was uploaded to salsa.debian.org." >> ${log}
fi

fi
}

335

May 4, 2025

⟨GettingFingerprint 341⟩

39.2. Upload to the own Git-Server
Uploading to your own Git server requires that one has been set up (chapter 19.4.2, page
76). Furthermore, its name or IP address must be entered beforehand (chapter 41.2, page
356).

336 ⟨Upload2OwnServer 336⟩≡ (339)
function Upload2OwnServer {

Called by TaskSelect

Uploading to own git server
if [-n "$ServerName"]
then

if whiptail --title "Upload to own git server?" \
--yesno "Should ${SourceName} be uploaded to your own git server?" \
--yes-button "Yes" --no-button "No" 15 60
then

git push --set-upstream home --all >> ${log}
git push --set-upstream home --tags >> ${log}

echo ${SourceName}" was uploaded to your git server." >> ${log}
fi

fi }

⟨Upload2Salsa 334⟩

336

40. Upload package

In the TaskSelect (task selection) function, the functions for uploading the packages are
also called.

337a ⟨TaskSelect10 337a⟩≡ (333)
##############

Uploading packages

##############

SelectUploadTarget
CreateSignature
UploadUsingDput
Upload2PeopleDO
UploadLocal

⟨TaskSelect11 337b⟩

If the CreateNewBranch (chapter 41.1, page 355), SelectBranch (chapter 30.4, page
163), or OwnServer (chapter 41.2, page 356) functions were called, the configuration file
will be displayed again for editing (chapter 30.1, page 159 and then the task selection
will be called again.

337b ⟨TaskSelect11 337b⟩≡ (337a)
else

ConfigFileLEC
CommonTasks

fi
}

⟨StartTasks (never defined)⟩

337

May 4, 2025

40.1. Selection of the target repository
338 ⟨SelectUploadTarget 338⟩≡ (332b)

function SelectUploadTarget {
Called by TaskSelect Upload2FtpMaster

Select upload target
Upl=$(whiptail --title "Uploading?" \
--radiolist "Should the package be uploaded to ftp-master,\n \
people.d.o or mentors.debian.net?" 15 60 6\
"0" "No" off \
"1" "ftp-master" on \
"2" "people.d.o" off \
"3" "Mentors" off \
"4" "Non-Maintainer-Upload" off \
"5" "Local repository" off --cancel-button "Exit" 3>&2 2>&1 1>&3)

⟨SelectUploadTarget1 339⟩

338

May 4, 2025

Figure 40.1.: Upload target

339 ⟨SelectUploadTarget1 339⟩≡ (338)
The order of the conditions is important!
’Cancel’ results an empty variable
if [-z ${Upl}] || [${Upl} -eq 0]
then

exit
fi

case "${Upl}" in
1) Upltext="ftp-master";;
2) Upltext="people.d.o";;
3) Upltext="Mentors";;
4) Upltext="delayed";;
5) Upltext="local repository";;
esac

cd ${PrjPath}

Select package
SelectChangesFile "Upload" # String will be found in ${1}
UplPaket=${changesa[$paket]}

Version2=$(echo ${UplPaket} | sed --expression="s/^[a-z\-]*_//" | \
sed --expression="s/-.*$//")
SourceName1=$(echo ${UplPaket} | sed --expression="s/_.*//1")
OrigPaket=${SourceName1}"_"${Version2}".orig"

Final question before uploading starts
if ! whiptail --title "Upload to ${Upltext}?" \
--yesno "You want ${UplPaket} upload to ${Upltext}." \
--yes-button "Yes" --no-button "No" 15 60
then

whiptail --title "Bye" --msgbox "Exit" 15 60
exit

fi

echo "${UplPaket} should be uploaded to ${Upltext}." >> ${log

339

May 4, 2025

} }

⟨Upload2OwnServer 336⟩

40.2. Preparation - Create signature
The CreateSignature function creates the required signatures using debsign. debsign signs
a Debian .changes and .dsc file pair using GnuPG. For this, the GnuPG key must be
available (chapter 29.7, page 156).

In case of failure a retry is provided.
340 ⟨CreateSignature 340⟩≡ (341)

function CreateSignature {
Called by TaskSelect Upload2FtpMaster and itself

Signature using debsign

GettingFingerprint GpgKeyAvailable

Signature
debsign -k${fipr} ${UplPaket}
if [$? -ne 0]
then

if whiptail --title "Signing failed!" \
--yesno "Signature failed - Retry?" \
--yes-button "Yes" --no-button "Exit" 15 60
then

CreateSignature
else

exit
fi

fi

echo "${UplPaket} was signed" >> ${log
} }

⟨Upload2Mentors 345⟩

340

May 4, 2025

40.2.1. Use fingerprint
To sign the packages to be uploaded we need the fingerprint of the maintainer key. This
is the fingerprint of the key that is also stored in the Debian keyring.

If there is no corresponding file in the configuration files directory, a corresponding file
is created.

341 ⟨GettingFingerprint 341⟩≡ (335)
function GettingFingerprint {

Called by CreateSignature

finchflag=0

getting the fingerprint of the key to sign
if [-f ${ConfigPath}/fingerprint]
then

. ${ConfigPath}/fingerprint
else

mkdir --parents ${ConfigPath}
finchflag=1

fi

if [-z "${fipr}"]
then

fipr=$(whiptail --title "Your fingerprint" \
--inputbox "Please insert fingerprint of your key for signing!" \
--cancel-button "Cancel" 15 60 3>&2 2>&1 1>&3)
if [-z "${fipr}"]
then

echo "Please insert fingerprint of your key for signing!"
read fipr

fi
finchflag=1

fi

if ! whiptail --title "Fingerprint" \
--yesno "Is ${fipr} the right fingerprint of the key for signing?" \
--yes-button "Yes" --no-button "No" 15 60
then

fipr=$(whiptail --title "Key for signing" \
--inputbox "Real fingerprint of the key for signing:" \
--cancel-button "Cancel" 15 60 3>&2 2>&1 1>&3)
if [-z "${fipr}"]
then

echo "Please insert fingerprint of your key for signing!"
read fipr

fi
finchflag=1

fi

if [$finchflag -eq 1]
then

341

May 4, 2025

if [-f ${ConfigPath}/fingerprint]
then

mv ${ConfigPath}/fingerprint ${ConfigPath}/fingerprint.backup
whiptail --title "Fingerprint file" \
--msgbox "You can find the old fingerprint file as\n \
${ConfigPath}/fingerprint.backup" 15 60

fi
touch ${ConfigPath}/fingerprint
echo "#!/usr/bin/bash" >> ${ConfigPath}/fingerprint
echo "fipr="${fipr} >> ${ConfigPath}/fingerprint
. ${ConfigPath}/fingerprint

fi
}

⟨CreateSignature 340⟩

40.3. Upload with dput
342a ⟨UploadUsingDput 342a⟩≡ (343)

function UploadUsingDput {
Called by TaskSelect Upload2FtpMaster

Uploading using dput

cd ${PrjPath}/
if [${Upl} -eq 3]
then

Upload2Mentors
elif [${Upl} -eq 1] || [${Upl} -eq 4]
then

Upload2FtpMaster
fi

}

⟨UploadFilesSelect 347⟩

40.4. Upload to FTP-Master
342b ⟨Upload2FtpMaster 342b⟩≡ (344)

function Upload2FtpMaster {
Called by UploadUsingDput

repeat question
if whiptail --title "Last exit" \
--yesno "Should the package be uploaded to ftp-master?" \
--yes-button "Yes" --no-button "No" 15 60

⟨Upload2FtpMaster1 343⟩

342

May 4, 2025

Figure 40.2.: Upload to FTP-Master - OK?

343 ⟨Upload2FtpMaster1 343⟩≡ (342b)
then

Checking whether the .changes file is the right one for the upload target
sourceFlag=$(echo ${UplPaket} | grep --count ’_source.’)
expFlag=$(grep --line-number ’) experimental; urgency=’ ${GitPath}/debian/changelog \
| grep ’^1:’)
echo -e "${UplPaket}:\n${expFlag}\nsourceFlag: ${sourceFlag}" >> ${log}
Strip line to isolate release
expFlag=$(echo ${expFlag} | sed --expression=’s/^.*) //’ | \
sed --expression=’s/; .*$//’)

if [-z "${expFlag}"]
then

if [${sourceFlag} -eq 0]
then

if whiptail --title "Uploading?" \
--yesno "Do you really want to upload a binary package\n \
to ftp-master?" --yes-button "Yes" --no-button "No" 15 60
then

Dput2FtpMaster
else

echo "Next try to upload" >> ${log}
SelectUploadTarget

fi
else

Dput2FtpMaster
fi

else
if [$sourceFlag -ge 1]
then

if whiptail --title "Uploading?" \
--yesno "Do you really want to upload a source package\n \
to experimental?" --yes-button "Yes" --no-button "No" 15 60
then

Dput2FtpMaster
else

343

May 4, 2025

echo "Next try to upload" >> ${log}
SelectUploadTarget
CreateSignature
UploadUsingDput

fi
else

Dput2FtpMaster
fi

fi
fi

}

⟨UploadUsingDput 342a⟩

In the following function the upload to FTP master is done.
344 ⟨Dput2FtpMaster 344⟩≡ (346a)

function Dput2FtpMaster {
Called by Upload2FtpMaster

if whiptail --title "Simulate uploading?" \
--yesno "Should the upload to ftp-master be simulated?" \
--yes-button "Yes" --no-button "No" 15 60
then

dput --simulate ftp-master ${UplPaket}
echo
echo "After reading press return!"
read x

fi

if whiptail --title "Uploading to FTP-Master?" \
--yesno "Everything fine?\n\nShould the package be uploaded to ftp-master now?" \
--yes-button "Yes" --no-button "No" 15 60
then

if [${Upl} -eq 1]
then

dput ftp-master ${UplPaket}
echo "${UplPaket} was uploaded to ${Upltext}." >> ${log}

else
Dput2NMU

fi
fi

}

⟨Upload2FtpMaster 342b⟩

344

May 4, 2025

This package initially lands on https://incoming.debian.org/debian-buildd/pool/
main/ until it is built by the build daemon (builddd) and made available for download.
Provision.

40.4.1. Reject a package
When a package is rejected by the FTP masters, the subsequent upload of the corrected
package should not increment the revision number.

40.5. Upload to mentors.debian.net
345 ⟨Upload2Mentors 345⟩≡ (340)

function Upload2Mentors {
Called by UploadUsingDput

if whiptail --title "Simulate uploading?" \
--yesno "Should the upload to Mentors be simulated?" \
--yes-button "Yes" --no-button "No" 15 60
then

dput --simulate mentors ${UplPaket}
echo
echo "After reading press return!"
read x

fi

repeat question
if whiptail --title "Uploading?" \
--yesno "Should the package be uploaded to Mentors?" \
--yes-button "Yes" --no-button "No" 15 60
then

dput mentors ${UplPaket}
echo "${UplPaket} was uploade to ${Upltext}." >> ${log}

fi
}

⟨Dput2NMU 346a⟩

345

https://incoming.debian.org/debian-buildd/pool/main/
https://incoming.debian.org/debian-buildd/pool/main/

May 4, 2025

40.6. Upload as non-maintainer upload.
In the context of fixing release-critical bugs by parties other than the package maintainer,
it is common to allow the package maintainer some time to fix the problem.

346a ⟨Dput2NMU 346a⟩≡ (345)
function Dput2NMU {

Called by Dput2FtpMaster

DelayDays=$(whiptail --title "Non-Maintainer-Upload" \
--radiolist "Days for delay?" 15 60 5 \
"0" " 5 days of delay" off \
"1" "10 days of delay" on \
"2" "15 days of delay" off --cancel-button "Exit" 3>&2 2>&1 1>&3)

if [-z ${DelayDays}]
then

exit
fi

case "${DelayDays}" in
0) DelDays=5;;
1) DelDays=10;;
2) DelDays=15;;
esac

dput ftp-master --delayed ${DelDays} ${UplPaket
} }

⟨Dput2FtpMaster 344⟩

40.7. Upload to people.debian.org
346b ⟨Upload2PeopleDO 346b⟩≡ (347)

function Upload2PeopleDO {
Called by TaskSelect

if [${Upl} -eq 2]
then

For people.d.o you can not use dput
if whiptail --title "Archive on people.d.o" \
--yesno "Does the directory public_html/${OrigName} \
already exsist at people.d.o?\n \
If not you have to enter the following commands\n \
in a separate terminal:\n\n \
ssh <user>@people.debian.org\n \
mkdir --parents public_html/${OrigName}" \
--yes-button "Yes" --no-button "No" 15 60
then

UploadFilesSelect
⟨Upload2PeopleDO3 348⟩

346

May 4, 2025

347 ⟨UploadFilesSelect 347⟩≡ (342a)
function UploadFilesSelect {

Called by Upload2PeopleDO UploadLocal
UplFL=$(cat ${UplPaket} | grep --after-context=10 ’Files: *’)
UplFL1=$(echo ${UplFL} | sed --expression=’s/Files: //’)
i=1
while [$i -lt 6]
do

c=$(expr ${i} ’*’ ’5’)
UplFL2=${UplFL2}" "$(echo $UplFL1 | cut --delimiter=" " -f${c})
i=$(expr ${i} ’+’ ’1’)

done
}

⟨Upload2PeopleDO 346b⟩

347

May 4, 2025

348 ⟨Upload2PeopleDO3 348⟩≡ (346b)
if whiptail --title "Upload file?" \
--yesno "Should the following files\n${UplFL2}\n \
have to be uploaded?" --yes-button "Yes" \
--no-button "No" 15 60
then

if [-z "${pdoaccount}"]
then

pdoaccount=$(whiptail --title "Account at people.debian.org" \
--inputbox "Please insert the name of your account on\n \
people.debian.org" \
--cancel-button "Cancel" 15 60 3>&2 2>&1 1>&3)
if [-z "${pdoaccount}"]
then

echo "Please insert the name of your account on\n \
people.debian.org"
read pdoaccount

fi
changeflag=1

fi

if ! whiptail --title "Account name" \
--yesno "The name of your account on people.debian.org:\n \
${pdoaccount}" --yes-button "Yes" --no-button "No" 15 60
then

pdoaccount=$(whiptail --title " Account name" \
--inputbox "Name of your account on people.debian.org:" \
--cancel-button "Cancel" 15 60 3>&2 2>&1 1>&3)
if [-z "${pdoaccount}"]
then

echo "Please insert the name of your account on\n \
people.debian.org"
read pdoaccount

fi
changeflag=1

fi

if [$changeflag -eq 1]
then

echo ’pdoaccount=’${pdoaccount} >> ${ConfigPath}${OrigName}
changeflag=0

fi

cd ${ProjectPath}/${OrigName}
if scp -p ${UplFL2} \
${pdoaccount}@people.debian.org:/home/${pdoaccount}/public_html/${OrigName}
then

echo "${UplFL2} were uploaded to p.d.o." >> ${log}
else

echo "Something went wrong while uploading to p.d.o." >> ${log}
echo "Tried to execute this command:" >> ${log}
echo "scp -p "${UplFL2}" "${pdoaccount}"@people.debian.org:/home/"\

348

May 4, 2025

${pdoaccount}"/public_html/"${OrigName} >> ${log}
fi
pdoarchivetext="If the archive on people.d.o should be\n \
used too, you have to enter the following commands:\n \
ssh <user>@people.debian.org\n \
cd public_html/${OrigName}\n \
apt-ftparchive packages . > Packages\n \
apt-ftparchive sources . > Sources\n \
cat Packages | gzip -c > Packages.gz\n \
cat Sources | gzip -c > Sources.gz\n \
apt-ftparchive release . > Release"

if whiptail --title "Archive on people.d.o" \
--yesno "${pdoarchivetext}\n\n \
Do you like to copy and paste these commands?" \
--yes-button "Yes" --no-button "No" 15 60
then

echo -e $pdoarchivetext echo -e "\nPlease press any key to continue!"
read x

fi
fi

fi
fi

}

⟨UpdateLocalRepo 350b⟩

349

May 4, 2025

40.8. Local repository
It happens again and again that packages must be built, which are needed for the actual
project as dependencies. To bridge the time for going through the new-queue, these can
also be provided locally for building in the chroot.

350a ⟨UploadLocal 350a⟩≡ (350b)
function UploadLocal {

Called by TaskSelect
if [${Upl} -eq 5]
then

Provide for local chroot
UploadFilesSelect
if whiptail --title " Files Uploaded?" \
--yesno "Should the following files\n \
${UplFL2}\nhave to be uploaded?" 15 60
then

cd ${ProjectPath}/${OrigName}
sudo cp ${UplFL2} /var/local/repository
UpdateLocalRepo

fi
fi
}

⟨ChangeEntry (never defined)⟩

The following function already exists as a shell script under /usr/local/bin/Local-
NewRepo.

350b ⟨UpdateLocalRepo 350b⟩≡ (348)
function UpdateLocalRepo {

Called by UploadLocal
cd /var/local/repository

Make package archives writable
(not only for root)
sudo chmod o+w Packages
sudo chmod o+w Sources
sudo chmod o+w Packages.gz
sudo chmod o+w Sources.gz
sudo chmod o+w Release

Use apt-ftparchive to update package archives sudo apt-ftparchive packages . > Packages && sudo apt-ftparchive sources . > Sources && sudo cat Packages | gzip -c > Packages.gz && sudo cat Sources | gzip -c > Sources.gz && sudo apt-ftparchive release . > Release

Reset rights
sudo chmod o-w Packages
sudo chmod o-w Sources
sudo chmod o-w Packages.gz
sudo chmod o-w Sources.gz
sudo chmod o-w Release

}

⟨UploadLocal 350a⟩

350

May 4, 2025

[fuzzy]In the chroot environment, here /var/cache/pbuilder/base.cow, add the following
to the /etc/apt/sources.list file:

deb [trusted=yes] file:///var/local/repository ./
deb-src [trusted=yes] file:///var/local/repository ./

351

Part V.

Additional components of the script

353

41. Another task

41.1. Create new branch
355 ⟨CreateNewBranch 355⟩≡

function CreateNewBranch {
Called by TaskSelect

Creates a new branch (for backports or proposed-updates)
DebianBranches
whiptail --title "Recent branches" \
--msgbox "Recent branches:\n${bl}" 15 60
bName=""
bName=$(whiptail --inputbox "Name of the new branch:" \
--cancel-button "Cancel" 15 60 3>&2 2>&1 1>& 3)
if [${bName} != ""]
then

Create new branch in git
git checkout -b ${bName}

Change config file - make new branch to recent one
ChangeEntry

whiptail --title "New branch was created" \
--msgbox "New branch ${bName} was created" 15 60
echo "New branch ${bName} was created" >> ${log}
Distro4Branch

fi
}

⟨ParseConfig (never defined)⟩

355

May 4, 2025

41.2. Entering the name or IP of your own Git server
Mit dieser Funktion, die von der Aufgabenauswahl (Kapitel 30.5, Seite 171) aufgerufen
werden kann, werden der Name oder die IP eines eigenen Git-Servers in die Konfigurations-
datei eingetragen. Die Eingabe eines Namens setzt eine funktionierende Namensauflösung
voraus.

[fuzzy]
356a ⟨OwnServer 356a⟩≡ (356b)

function OwnServer {
Called by TaskSelect

Set name or IP of own git server
ServerName=$(whiptail --inputbox "Name or IP-address of your git server:" \
--cancel-button "Cancel" 15 60 3>&2 2>&1 1>&3)
if [-z "${ServerName}"]
then

echo "Name or IP of your git server:"
read ServerName

fi
if [-n "$ServerName"]
then

ReplaceConfigLines needs two parameters:
name of the variable and new value
ReplaceConfigLines ’ServerName’ ${ServerName}
AddGitServer

fi }

⟨TaskSelect (never defined)⟩

41.3. Prov. AddGitServer
356b ⟨AddGitServer 356b⟩≡

function AddGitServer {
Called by OwnServer

serverlist=$(git remote -v)
if whiptail --title "Recent remote servers" \
--yesno "${serverlist}\nAdd git remote server ’home’?" \
--yes-button "Yes" \ --no-button "No" 15 60
then

AddHomeServer
fi

}

⟨OwnServer 356a⟩

356

42. Head of the Script

42.1. Shebang
[fuzzy]At the beginning of the script are the Shebang, notes about the authors, the version
and the license.

357a ⟨build-gbp.sh 357a⟩≡
#!/usr/bin/bash

⟨copyright 357b⟩

42.2. Copyright notice
he shebang is followed by the copyright notice.

357b ⟨copyright 357b⟩≡ (357a)
Copyright 2019-2023 Mechtilde and Michael Stehmann <mechtilde@debian.org>
version 0.8.4

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA.

⟨Dependencies 358a⟩

357

May 4, 2025

42.3. Dependencies for the program script
358a ⟨Dependencies 358a⟩≡ (357b)

Dependencies: git-buildpackage, build-essential, less, pbuilder,
pristine-tar, sudo, unzip, cowbuilder, cowdancer, debmake, quilt,
locate, jq, lintian, devscripts, debhelper
sbuild, schroot, debootstrap, apt-cacher-ng, devscripts
gradle-debian-helper, maven-debian-helper, libmaven-bundle-plugin-java,
mozilla-devscripts, zip

⟨Header 358b⟩

Then the dependencies are listed (chapter 18.1, page 57).

42.4. Function header
358b ⟨Header 358b⟩≡ (358a)

##########################

Definitions of functions

##########################

⟨DebugRP 358c⟩

42.5. Function for troubleshooting
The following function shows a path and allows you to exit the program if necessary.

It is used for debugging and is normally unused.
358c ⟨DebugRP 358c⟩≡ (358b)

function DebugRP {
Function to show a path and give an opportunity to exit
It is for debugging
descstr=${1} pathstr=${2}
if ! whiptail --title "Shows the path" \
--yesno "${descstr}= ${pathstr}?" --yes-button "Yes" \
--no-button "No" 15 60
then

exit
fi

}

⟨InsertConfigLine (never defined)⟩

358

Part VI.

Plugins and Scripts

359

43. Java-Plugin
361a ⟨build-gbp-java-plugin.sh 361a⟩≡

#!/usr/bin/bash

Copyright 2019-2023 Mechtilde and Michael Stehmann <mechtilde@debian.org>
version 0.1.1

java plugin for build-gbp.sh

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA.

⟨Rules4Java 361b⟩

43.1. Adjustments for Java package
In the debian/rules file (chapter 32.4.8, page 242), the following lines are added for
compiling with Java

361b ⟨Rules4Java 361b⟩≡ (361a)
function Rules4Java {

echo "export JAVA_TOOL_OPTIONS := -Dfile.encoding=UTF8" >> ${GitPath}/debian/rules
echo -e "export JAVA_HOME := /usr/lib/jvm/default-java\n" >> ${GitPath}/debian/rules

} ⟨build-gbp-java-plugin 362⟩

361

May 4, 2025

This means that:
1. Always use the UTF-8 encoding
2. the variable JAVA_HOME is set.
Only a minimal configuration of the rules file is provided by the script. This must

often be supplemented still meaningfully. For building the JAVA packages the following
options are often needed.

JMODS := /usr/lib/jvm/default-java/jmods
JAVACMD="\$JAVA_HOME/bin/java"

It also happens that JDK_HOME is used instead of JAVA_HOME.
These additions are provided for packages built with the maven build system by the

Maven plugin (chapter 44, page 363).
In the line with dh $@ options can be inserted.

--with javahelper
--buildsystem=maven
--buildsystem=ant
--buildsystem=gradle

362 ⟨build-gbp-java-plugin 362⟩≡ (361b)

whiptail --title "Java plugin found" \
--msgbox "build-gbp-java-plugin.sh was loaded." 15 60

echo "build-gbp-java-plugin.sh was loaded." >> ${log}

362

44. Maven-Plugin

The Maven plugin supports building Java packages using the Java build system maven
(chapter 13.4.1, page 43).

44.1. Head of the Maven plugin
The header of the plugin contains information about the creators and the license.

It also notes which Debian packages must be installed for the program script to run.
363 ⟨build-gbp-maven-plugin.sh 363⟩≡

#!/usr/bin/bash

Copyright 2019-2023 Mechtilde and Michael Stehmann <mechtilde@debian.org>
version 0.1.1

maven plugin for build-gbp.sh

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA.

Dependencies: maven-debian-helper licensecheck apt-file

⟨Rules4MavenDH 376⟩

363

May 4, 2025

44.2. Notice
The plugin script tells that it has been loaded. Thus the code of the plugin is part of the
(main) program script.

364a ⟨MavenPlugin 364a⟩≡ (372)
whiptail --title "maven plugin found" \
--msgbox "build-gbp-maven-plugin.sh was loaded." 15 60

echo "build-gbp-maven-plugin.sh was loaded." >> ${log}
Next the function MakeMaven is executed by the main script.
This is the end, my friend

Figure 44.1.: Maven Plugin loaded

44.3. Building with Maven
This function is called by the BuildNewVersion function of the (main) program script
after loading the plugin when building a new revision (chapter 32.1, page 226).

The execution of mh_make is done in a chroot environment. If the chroot does not yet
exist, it must first be created as described in chapter 18.4, page 70.

364b ⟨MakeMaven 364b⟩≡ (369)
function MakeMaven {

Called by BuildNewRevision

cd ${GitPath}
IdentifyMavenChrootPath

⟨MakeMaven1 370⟩

364

May 4, 2025

365a ⟨IdentifyMavenChrootPath 365a⟩≡ (368a)
function IdentifyMavenChrootPath {

Called by MakeMaven and itself

if [-n "${ChrootPath}"]
then

if ! whiptail --title "Maven chroot path " \
--yesno "Is ${ChrootPath}\nthe right path to\n\
maven chroot directory on the host?" \
--yes-button "Yes" \
--no-button "No" 15 60

⟨IdentifyMavenChrootPath1 365b⟩

Figure 44.2.: Determine path to Maven chroot

365b ⟨IdentifyMavenChrootPath1 365b⟩≡ (365a)
then

OldCP=${ChrootPath}
AskChrootPath

fi
else

AskChrootPath
fi

⟨IdentifyMavenChrootPath2 366b⟩

365c ⟨AskChrootPath 365c⟩≡ (373b)
function AskChrootPath {

Called by IdentifyMavenChrootPath

This is the way from GitPath To /srv/maven-chroot
ChrootPath=$(whiptail --title "Maven chroot path" \
--inputbox "Please insert the path\nto the maven chroot directory\n\
on the host:" \ --nocancel 15 60 3>&2 2>&1 1>&3)

⟨AskChrootPath1 366a⟩

365

May 4, 2025

Figure 44.3.: Specify path to Maven chroot

366a ⟨AskChrootPath1 366a⟩≡ (365c)

if [-n "${OldCP}"]
then

ReplaceConfigLines "ChrootPath" ${ChrootPath}
else

echo "### Maven chroot path"
echo "ChrootPath="${ChrootPath} >> ${ConfigPath}${OrigName}

fi
OldCP=""

}

⟨AskWorkspacePath 367c⟩

366b ⟨IdentifyMavenChrootPath2 366b⟩≡ (365b)
Create Maven-Chroot if not exists
if ! [-d ${ChrootPath}]
then

echo "Please enter your SUDO password!"
sudo mkdir --parents ${ChrootPath}

fi

if ! [-d ${ChrootPath}/usr]
then

echo "Please enter your SUDO password!"
sudo /usr/sbin/debootstrap --arch amd64 sid \
${ChrootPath} http://ftp.de.debian.org/debian
echo "The maven chroot has been created." >> ${log}

fi

⟨IdentifyMavenChrootPath3 367a⟩

366

May 4, 2025

367a ⟨IdentifyMavenChrootPath3 367a⟩≡ (366b)
The workspace is /home/user
if [-n "${Path2Workspace}"]
then

if ! whiptail --title "Maven chroot path " \
--yesno "Is ${Path2Workspace}\nthe workspace in the maven chroot?" \
--yes-button "Yes" \
--no-button "No" 15 60

⟨IdentifyMavenChrootPath4 367b⟩

Figure 44.4.: Determine working directory in the Maven chroot

367b ⟨IdentifyMavenChrootPath4 367b⟩≡ (367a)
then

OldP2W=${Path2Workspace}
AskWorkspacePath

fi
else

AskWorkspacePath
fi

⟨IdentifyMavenChrootPath5 368b⟩

367c ⟨AskWorkspacePath 367c⟩≡ (366a)
function AskWorkspacePath {

Called by IdentifyMavenChrootPath

This is the way to /home/user/
Path2Workspace=$(whiptail --title "Maven chroot path" \
--inputbox "Please insert the path\nto the workspace directory:" \
--nocancel 15 60 3>&2 2>&1 1>&3)

⟨AskWorkspacePath2 368a⟩

367

May 4, 2025

Figure 44.5.: Specify working directory in the Maven chroot

368a ⟨AskWorkspacePath2 368a⟩≡ (367c)

if [-n "${OldP2W}"]
then

ReplaceConfigLines "Path2Workspace" ${Path2Workspace}
else

echo "Path2Workspace="${Path2Workspace} >> ${ConfigPath}${OrigName}
fi
OldP2W=""

}

⟨IdentifyMavenChrootPath 365a⟩

368b ⟨IdentifyMavenChrootPath5 368b⟩≡ (367b)
Replace / at the end
Path2Workspace=$(echo ${Path2Workspace} | sed --expression="s/\/$//")
MavenChrootPath=${ChrootPath}${Path2Workspace}
if ! [-d ${MavenChrootPath}]
then

whiptail --title "Error!" \
--msgbox "${MavenChrootPath} does not exist.\n\
It will be created now." 15 60

⟨IdentifyMavenChrootPath7 369⟩

368

May 4, 2025

Figure 44.6.: Maven chroot does not exist

If the chroot does not exist, create it as described in chapter 18.4, page 70.
369 ⟨IdentifyMavenChrootPath7 369⟩≡ (368b)

echo "Please enter your SUDO password!"
sudo mkdir --parents ${MavenChrootPath}
echo "The maven work space has been created." >> ${log}

fi
}

⟨MakeMaven 364b⟩

369

May 4, 2025

370 ⟨MakeMaven1 370⟩≡ (364b)
Copy workspace to maven chroot
sudo cp --archive ${GitPath}
${MavenChrootPath}

Because mh_make has to run in the directory, where pom.xml is
echo "pom.xml is here:" find . -name ’pom.xml’ -print
echo "Please switch to the Maven chroot in another terminal."
echo "Use these commands:"
echo
echo "# sudo mount -o bind /proc /srv/maven-chroot/proc"
echo "# sudo mount devpts /dev/pts -t devpts"
echo
echo "sudo LANG=C chroot "${ChrootPath}" /usr/bin/bash"
echo "cd "${Path2Workspace}"/"${SourceName}"
echo "try: apt install maven-debian-helper"
echo "apt update &&apt upgrade""
echo "mh_make --verbose "${SourceName}""
echo
echo "Then follow the questions of mh_make"
echo
echo "You can leave the chroot with ’exit’."
echo
echo "After finishing press return to go on!"
read a

#--run-tests=true --javadoc=true --verbose
#mh_make --package=${SourceName} --bin-package=${PackName} \
#--run-tests=false --javadoc=false --verbose
#if [$? -ne 0]
#then

echo "mh_make failed!"
exit

#else
echo "mh_make has been executed for "${PackName} >> ${log}

#fi

cp --recursive --update ${MavenChrootPath}/${SourceName}/debian \
${GitPath}

⟨MakeMaven5 372⟩

370

May 4, 2025

When running the program mh_make the following questions must be answered. This
program itself in also a shell script.
Environment variable DEBLICENSE not set, using Apache-2.0 by default The envi-

ronment variable DEBLICENSE is not set, then the Apache-2.0 license is used by
default. In the variable DEBLICENSE the license for the files in debian/ is stored.

Checking that apt-file is installed and has been configured. . . [ok] Check if the apt-
file package is installed. This package is only marked as recommended.

Checking that licensecheck is installed. . . [ok] Check if the licensecheck package is
installed. This package is also marked as recommended only.

Solving dependencies for package <PaketName>
Analysing pom.xml. . .
Resolving com.jcabi:jcabi:pom:1.21 of scope runtime. . .
In pom.xml: The parent POM cannot be found in the Maven repository for Debian. Ignore it? com.jcabi:jcabi:pom:1.21 [Y/n] >

That the dependency for the parent element is not found is the rule case. There-
fore the question is answered in the affirmative that this can be ignored. This
information is then written as –no-parent in the file <packageName>.poms.

Enter the upstream version for the package. Here the version number of the upstream
code to be built is requested and usually confirmed with Enter. Otherwise the
correct version number is entered

Version of com.jcabi:jcabi-aspects is 0.22.6 The version number is displayed again.
Choose how the version will be transformed: Now a selection is displayed how this

version number should be converted.
0 - Replace all versions starting by 0. with 0.x Ersetze alle Versionsbezeichnun-

gen
(1) - Change the version to the symbolic ’debian’ version Die Standardangabe

wird mit eckigen Klammern (Hier sind es aus satztechnischen Gründen runde
Klammern) gekennzeichnet. Diese kann mit Enter bestätigt werden.

2 - Keep the version
3 - Custom rule
Andernfalls wird nun die gewünschte Ziffer eingegeben.

com.jcabi:jcabi-aspects is a bundle. - Inform mh_make that dependencies of type jar which may match this library should be transformed into bundles automatically? [Y/n] >
When using mh_make<p0>

, note that the environment in which mhmake is started should have all dependen-
cies of the package to be built. Otherwise, any entries in the relevant files (e.g.
<i2>debian/control</i2>) must be made up manually. (Chapter <n0>, page
<n1>)

In pom.xml: This dependency cannot be found in the Debian Maven repository. Ignore this dependency? com.jcabi:jcabi-log:jar:0.17 [y/N] >
Diese Meldung kommt, wenn die benötigte Abhängigkeit nicht auf der Arbeitsmas-
chine installiert ist.

> dpkg --search /usr/share/maven-repo/com/jcabi/jcabi-log/*/*
dpkg failed to execute successfully
> apt-file search /usr/share/maven-repo/com/jcabi/jcabi-log
Found /usr/share/maven-repo/com/jcabi/jcabi-log/0.18.1/jcabi-log-0.18.1.pom in libjcabi-log-java
Found /usr/share/maven-repo/com/jcabi/jcabi-log/0.19.0/jcabi-log-0.19.0.pom in libjcabi-log-java
Found /usr/share/maven-repo/com/jcabi/jcabi-log/debian/jcabi-log-debian.pom in libjcabi-log-java

371

May 4, 2025

> dpkg --search /usr/share/java/jcabi-log.jar
dpkg failed to execute successfully
> apt-file search /usr/share/java/jcabi-log.jar
Found libjcabi-log-java
[error] Package libjcabi-log-java does not contain Maven dependency
com.jcabi:jcabi-log:jar:0.17 but there seem to be a match
If the package contains already Maven artifacts but the names don't match,
try to enter a substitution rule of the form
s/groupId/newGroupId/ s/artifactId/newArtifactId/ jar s/version/newVersion/ here: >

After installing the missing package on the working machine, the search can be
repeated.:

372 ⟨MakeMaven5 372⟩≡ (370)
if [-w debian/maven.rules]
then

echo "#[groupId] [artefactId] [type] [version] [classifier] [scope]" \
>> debian/maven.rules

fi

ShowMaven

Patch for mh_make bug
str4standardsversion="4.5.1"
cd ${GitPath}/debian/
less --LINE-NUMBERS control

sed --in-place --expression=\
"s/Standards-Version: 4.4.1/Standards-Version: ${str4standardsversion}/" \
control
’a’ means append. The string after the ’a’ will be appended
to the sting before the ’a’.
sed --in-place \
--expression="/Standards-Version: ${str4standardsversion}/ a Rules-Requires-Root: no" \
control
sed --in-place --expression=\
"s/debhelper-compat (=12)/debhelper-compat ${str4versiondebhelpers}/" \
control

cd ${GitPath}
whiptail --title "Check debian/control" \
--msgbox "Please check the control file another time!" 15 60
less --LINE-NUMBERS ${GitPath}/debian/control

}

⟨MavenPlugin 364a⟩

372

May 4, 2025

44.4. Editing Maven files
Packages built with Maven (mvn) require additional files in the debian/ directory for
this purpose. These are listed below.

373a ⟨ShowMaven 373a⟩≡ (376)
function ShowMaven {

Called by DisplayDebianFiles MakeMaven

nano --linenumbers --mouse --softwrap debian/${PackName}.poms

⟨ShowMaven2 373b⟩

• maven.cleanIgnoreRules
• maven.properties
• maven.rules
• maven.ignoreRules
• maven.publishedRules
Now the file can still be edited

373b ⟨ShowMaven2 373b⟩≡ (373a)
mavenl=$(ls ${GitPath}/debian/ | grep ’maven’)
for element in ${mavenl[*]}
do

nano --linenumbers --mouse --softwrap debian/${element}
done

pomsl=$(ls ${GitPath}/debian/ | grep ${PackName})
for element in ${pomsl[*]}
do

nano --linenumbers --mouse --softwrap debian/${element}
done

}

⟨AskChrootPath 365c⟩

44.4.1. maven.rules
This file is constructed as follows:

373c ⟨maven-rules.header 373c⟩≡
#[groupID] [artifactID] [type] [version] [classifier] [scope]

44.4.2. maven.ignoreRules
This file is constructed like the maven.rules file.

373d ⟨maven-ignoreRules.header 373d⟩≡
#[groupID] [artifactID] [type] [version] [classifier] [scope]

Artifacts that are included in the maven.rules file are to be deleted here if necessary.

373

May 4, 2025

44.4.3. maven.properties
The maven.properties file can be used to override values of variables within the pom.xml
files. The most common use case is to disable or enable tests with maven.test.skip=true.

Other options are to change the source (maven.compiler.source=8) or target level
(maven.compiler.target=8). Here the value (here: 8) refers to the java minimum version.
This entry is especially needed if a message like the following is output during compilation:
use -source 8 or higher to enable

In addition, the file encoding used (project.build.sourceEncoding=UTF-8) can be set
here.

374 ⟨maven.properties 374⟩≡
Include here properties to pass to Maven during the build.
For example:
maven.test.skip=true # project.build.sourceEncoding=UTF-8
maven.compiler.source=8
maven.compiler.target=8
To skip test - missing dependencies
maven.test.skip=true

374

May 4, 2025

44.4.4. PackageName.poms
In the file <package name>.poms the options to the respective pom.xml files are deposited.

The file then contains 2 columns. The first column contains the pom.xml with the
corresponding path and the second column contains the corresponding options, e.g.

List of POM files for the package # Format of this file is:
<path to pom file> [option]* # where option can be:
--ignore: ignore this POM and its artifact if any
--ignore-pom: don't install the POM. To use on POM files that are
created temporarily for certain artifacts such as Javadoc jars.
[mh_install, mh_installpoms]
--no-parent: remove the <parent> tag from the POM
--package=<package>: an alternative package to use when installing
this POM and its artifact
--has-package-version: to indicate that the original version of the
POM is the same as the upstream part of the version for the package.
--keep-elements=<elem1,elem2>: a list of XML elements to keep in the
POM during a clean operation with mh_cleanpom or mh_installpom
--artifact=<path>: path to the build artifact associated with this
POM, it will be installed when using the command mh_install. [mh_install]
--java-lib: install the jar into /usr/share/java to comply with Debian
packaging guidelines
--usj-name=<name>: name to use when installing the library in /usr/share/java
--usj-version=<version>: version to use when installing the library in
/usr/share/java
--no-usj-versionless: don't install the versionless link in /usr/share/java
--dest-jar=<path>: the destination for the real jar.
It will be installed with mh_install. [mh_install]
--classifier=<classifier>: Optional, the classifier for the jar.
Empty by default.
--site-xml=<location>: Optional, the location for site.xml if it
needsto be installed.
Empty by default. [mh_install]
pom.xml --no-parent --has-package-version

This means that the <parent> tag is removed from the POM when it is built. The
–has-package-version option specifies that the original version of the POM is the same as
the upstream part of the package version.

44.4.5. README.source

Information about jcabi-aspects ------------------------------

This package was debianized using the mh_make command from the maven-debian-helper package.

The build system uses Maven but prevents it from downloading anything from the Internet, making the build compliant with the Debian policy.

375

May 4, 2025

44.5. debian/rules - additions for Java packages with Maven
In the Rules4Maven function, the build system specification is added to the debian/rules
file.

376 ⟨Rules4MavenDH 376⟩≡ (363)
function Rules4MavenDH {

Called by DebianRulesTemplates

sed --in-place \
--expression="s/dh $@/dh $@ --buildsystem=maven" \
${GitPath}/debian/rules

} ⟨ShowMaven 373a⟩

376

45. Web-Extension-Plugin

The plugin shown below meets the special requirements of building Mozilla extensions
as Debian packages (chapter 14, page 49).

45.1. Header for Webext-Plugins
The header of the plugin contains information about the creators and the license.

It also notes which Debian packages must be installed for the program script to run.
377 ⟨build-gbp-webext-plugin.sh 377⟩≡

#!/usr/bin/bash

Copyright 2020-2023 Mechtilde and Michael Stehmann <mechtilde@debian.org>
version 0.1.1

webext plugin for build-gbp.sh

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA.

⟨IdentifyWebextId 378⟩

377

May 4, 2025

45.2. Creating the webext*.* files in debian/
45.2.1. Get the name of the *.xpi file
The extension to be packaged must be stored under the name which is composed of the
designation (id) in the file manifest.json and the extension .xpi.

The designation is therefore determined as follows.
378 ⟨IdentifyWebextId 378⟩≡ (377)

function IdentifyWebextId {
Called by WebextRulesDH WebextInstall

if [-z ${webextID}] &&[-f ${GitPath}/manifest.json]
then

webextID=$(grep ’"id":’ ${GitPath}/manifest.json)
webextID=$(echo ${webextID} | sed --expression=’s/^\"id\": \"//’)
webextID=$(echo ${webextID} | sed --expression=’s/\",\s*//’)

echo -e "Notice from Webext-Plugin: WebextID = "${webextID} >> ${log}
fi

if [-z ${webextID}]
then

webextID="PLEASE_REPLACE_WITH_ID"
whiptail --title "ID not found" \
--msgbox "Didn’t find ID or manifest.json in ${GitPath}" 15 60

fi
}

⟨webext-rules 379a⟩

378

May 4, 2025

45.2.2. debian/rules - Additions for Mozilla AddOns
In the debian/rules file for the web extension, it makes sense to list the directories or
files to be installed there and assign them to a variable.This is done according to the
pattern <Package>_FILES = <List of files to include>.

The <package>_FILES list is created automatically by the plugin script. It must
be checked for completeness and correctness. The files to be excluded are to be entered
manually.

Since the creation of the debian/rules file is done once, when packaging new versions,
the two lists must be carefully checked and adjusted if necessary.

379a ⟨webext-rules 379a⟩≡ (378)
function WebextRules {

Called by DebianRulesTemplate

These strings will be added to str4rules

Package=$(echo ${SourceName} | tr "a-z" "A-Z")
echo -e ${Package}"_FILES = \\" >> ${GitPath}/debian/rules

PackageL=$(ls ${GitPath})
PackageA=(${PackageL})

for element in ${PackageA[*]}
do

if ["${element}" != "debian"]
then

echo -e ${element}" \\" >> ${GitPath}/debian/rules
fi

done
echo "\$(NULL)" >> ${GitPath}/debian/rules

⟨webext-rules5 379b⟩

379b ⟨webext-rules5 379b⟩≡ (379a)
echo -e "\n Uncomment the following lines \n"
echo "if there are files to exclude and add them."
echo -e "\n# "${Package}"_FILES_EXCLUDE = \\" \
>> ${GitPath}/debian/rules
echo -e "# \$(NULL)\n" >> ${GitPath}/debian/rules

}

⟨webext-rules-dh 380⟩

379

May 4, 2025

The following lines are added to the str4rulesdh variable by the program script..
380 ⟨webext-rules-dh 380⟩≡ (379b)

function WebextRulesDH {
Called by DebianRulesTemplate

IdentifyWebextId

DHCleanStr="override_dh_clean:\n\tdh_clean\n\trm -rf debian/build\n"

DHAutoBuildIndepStr1="override_dh_auto_build-indep:"
DHAutoBuildIndepStr2="\tmkdir \$(CURDIR)/debian/build &&\\"
Str3B="\tzip --recurse-paths "
DHAutoBuildIndepStr3=${Str3B}"\$(CURDIR)/debian/build/"${webextID}".xpi \\"
DHAutoBuildIndepStr4="\t \$(${Package}_FILES) \\"
DHAutoBuildIndepStr5="# \t --exclude \$(${Package}_FILES_EXCLUDE)"
DHAutoBuildIndepStr6="\tdh_auto_build\n"

echo -e ${DHCleanStr} >> ${GitPath}/debian/rules
echo -e ${DHAutoBuildIndepStr1} >> ${GitPath}/debian/rules
echo -e ${DHAutoBuildIndepStr2} >> ${GitPath}/debian/rules
echo -e ${DHAutoBuildIndepStr3} >> ${GitPath}/debian/rules
echo -e "${DHAutoBuildIndepStr4}" >> ${GitPath}/debian/rules
echo -e "${DHAutoBuildIndepStr5}" >> ${GitPath}/debian/rules
echo -e ${DHAutoBuildIndepStr6} >> ${GitPath}/debian/rules

}

⟨WebextControl 381a⟩

380

May 4, 2025

45.2.3. debian/control - Additions for Mozilla AddOns
381a ⟨WebextControl 381a⟩≡ (380)

function WebextControl {
Called by DebianControlTemplate
TB specific, for FF ’web’ sed --in-place \
--expression="s/Section: /Section: mail/" ${GitPath}/debian/control

’a’ means append. The string after the ’a’ will be appended
to the sting before the ’a’.
@X escapes the space at the beginning of the appended line.
It will be removed later.
sed --in-place \
--expression="/Build-Depends: debhelper-compat ${str4versiondebhelpers}/ \
a @X , zip" \
${GitPath}/debian/control
TB specific, for FF ’firefox-esr (>= 91.4)’ sed --in-place \
--expression="/Depends: \${misc:Depends}/ \
a @X , thunderbird (>= 1:91.4)" \
${GitPath}/debian/control

sed --in-place --expression="s/^@X//g" ${GitPath}/debian/control
}

⟨WebextInstall 381b⟩

45.2.4. debian/webext-*.install
For Mozilla extensions the following entry is mandatory:

debian/build/<manifest-id>.xpi /usr/share/webext

381b ⟨WebextInstall 381b⟩≡ (381a)
function WebextInstall {

Called by DisplayDebianFiles
IdentifyWebextId
InstallStr="debian/build/"${webextID}".xpi\tusr/share/webext"
echo -e ${InstallStr} >> ${GitPath}/debian/${PackName}.install

}

⟨WebextDocs 381c⟩

45.2.5. debian/webext-*.docs
381c ⟨WebextDocs 381c⟩≡ (381b)

function WebextDocs {
Called by echo "Still empty"

}

⟨WebextLinks 382a⟩

381

May 4, 2025

45.2.6. debian/webext-links-tb
\# Source Target

/usr/share/webext/<manifest.id>.xpi /usr/lib/thunderbird/extensions/<manifest.id>.xpi

382a ⟨WebextLinks 382a⟩≡ (381c)
function WebextLinksTB {

Called by DisplayDebianFiles
IdentifyWebextId
SourceStr="/usr/share/webext/"${webextID}".xpi\t"
TargetStr="/usr/lib/thunderbird/extensions/"${webextID}".xpi"
echo -e ${SourceStr}${TargetStr} >> \
${GitPath}/debian/${PackName}.links

}

⟨webext-plugin-end 382b⟩

Now comes the conclusion of this Webext plugin.
382b ⟨webext-plugin-end 382b⟩≡ (382a)

whiptail --title "webext plugin found" \
--msgbox "build-gbp-webext-plugin.sh was loaded." 15 60
This is the end, my friend

382

46. Python-Plugin

The plugin shown below meets the special requirements of building packages written in
the Python programming language. (Chapter 15, page 51).

383a ⟨build-gbp-python-plugin.sh 383a⟩≡
#!/usr/bin/bash

Copyright 2020-2022 Mechtilde and Michael Stehmann <mechtilde@debian.org>
version 0.1.1

python plugin for build-gbp.sh

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA.

⟨python-rulesDH 384b⟩

Next, the plugin announces that it has been loaded.
383b ⟨IdentifyPythonId 383b⟩≡ (385a)

whiptail –title "python plugin found" \
–msgbox "build-gbp-python-plugin.sh was loaded." 15 60

echo "build-gbp-python-plugin.sh was loaded." >> ${log}

⟨python-plugin-end 385b⟩

383

May 4, 2025

46.1. Customizations for Python packages
Here, the specifics for Python packaging are mapped to the debian/rules file.

384a ⟨python-rules 384a⟩≡ (384b)
function PythonRules {

Called by DebianRulesTemplate

These strings will be added to str4rules
echo -e "export PYBUILD_NAME="${SourceName}"\n" >> ${GitPath}/Debian/rules
echo -e "export PYBUILD_SYSTEM=distutils\n" >> ${GitPath}/Debian/rules

}

⟨python-control 384c⟩

384b ⟨python-rulesDH 384b⟩≡ (383a)
function PythonRulesDH {

Called by DebianRulesTemplate

sed --in-place \
--expression="s/dh $@/dh $@ -with python3 --buildsystem=pybuild/" \
${GitPath}/debian/rules

} ⟨python-rules 384a⟩

46.2. debian/control - Addition for Python packages
Here, the specifics for Python packaging are mapped to the debian/control file.

384c ⟨python-control 384c⟩≡ (384a)
function PythonControl {

Called by DebianControlTemplate

Recent Python version
PythonVersion=$(py3versions --installed)

sed --in-place \
--expression="s/Section:/Section: python/" ${GitPath}/debian/control

sed --in-place \
--expression="/Build-Depends: debhelper-compat ${str4versiondebhelpers}/ \
a , dh-python@X , python3-all@X , python3-setuptools@X\
X-Python3-Version: >=${PythonVersion}" ${GitPath}/debian/control

sed --in-place \
--expression=""

⟨python-control1 385a⟩

384

May 4, 2025

For testing, the python3-distutils and python3-distutils-extra packages are also required
as build dependencies.

385a ⟨python-control1 385a⟩≡ (384c)

sed --in-place \
--expression="/Depends: \${misc:Depends}/ \
a @X , \${python3:Depends}" \
${GitPath}/debian/control

sed --in-place --expression="s/@X/\n/g" ${GitPath}/debian/control
}

⟨IdentifyPythonId 383b⟩

385b ⟨python-plugin-end 385b⟩≡ (383b)

This is the end, my friend

385

47. Scripts

47.1. Creation of a project within the Java team
Creating a project in the Java team, including obtaining an access token to be assigned
to the SALSA_TOKEN variable in the following script, is described in chapter ?? (page
??).

387a ⟨setup-salsa-repository 387a⟩≡
#!/usr/bin/bash
#
Setup a new Git repository on Salsa
#
This script uses the GitLab REST API and requires an access token.
The token is obtained from the GitLab profile page -> Access Tokens
(https://salsa.debian.org/profile/personal_access_tokens).
The token is in the environment variable SALSA_TOKEN
or has to be sourced from the ~/.salsarc file and assigned
to the SALSA_TOKEN variable:
#
This is the Token for jollyday-java
SALSA_TOKEN="KyuZRyWTTxfddcGcyphN"

set -eu
⟨setup-salsa-repository3 387b⟩

The jq package must be installed on the local machine.
387b ⟨setup-salsa-repository3 387b⟩≡ (387a)

if ! which jq >/dev/null
then

echo "You need to apt install jq" >&2
exit 1

fi

⟨setup-salsa-repository5 388a⟩

387

May 4, 2025

The call is made with the specification of the SourceName.
388a ⟨setup-salsa-repository5 388a⟩≡ (387b)

if [-z "$1"];
then

echo "Usage: ./setup-salsa-repository <packagename>"
exit 1;

fi

check_return_code() {
if [$? -ne 0];
then

echo
echo "Something went wrong!"
exit 1

fi
}

test -n "$SALSA_TOKEN" || . ~/.salsarc

PACKAGE=$1

SALSA_URL="https://salsa.debian.org/api/v4"
SALSA_GROUP=java-team
SALSA_GROUP_ID=2588

⟨setup-salsa-repository5 388a⟩

Now the repository is created on salsa.debian.org.
389 ⟨setup-salsa-repository8 389⟩≡ (388a)

--

echo "Creating the ${PACKAGE} repository..."

RESPONSE=$(curl -s "$SALSA_URL/projects?private_token=$SALSA_TOKEN" \
--data "path=$PACKAGE&namespace_id=\ $SALSA_GROUP_ID&visibility=public&issues_enabled=false&snippets_enabled=false&wiki_enable\ d=false&jobs_enabled=false&printing_merge_request_link_enabled=false")

echo $RESPONSE | jq --exit-status .id > /dev/null
check_return_code

PROJECT_ID=$(echo $RESPONSE | jq ’.id’)
⟨setup-salsa-repository10 ??⟩

388

May 4, 2025

Now the pending BTS tag hook is configured.
389 ⟨setup-salsa-repository8 389⟩≡ (388a)

--

echo "Configuring the BTS tag pending hook..."

TAGPENDING_URL="https://webhook.salsa.debian.org/tagpending/$PACKAGE"
curl --silent --output /dev/null -XPOST --header "PRIVATE-TOKEN: $SALSA_TOKEN" \
$SALSA_URL/projects/$PROJECT_ID/hooks \

--data "url=$TAGPENDING_URL&push_events=1&enable_ssl_verification=1"
check_return_code

--

echo "Configuring the KGB hook..."

KGB_URL="http://kgb.debian.net:9418/webhook/?channel=debian-java\

%26network=oftc%26private=1%26use_color=1%26use_irc_notices=1%26squash_threshold=20"
curl --silent --output /dev/null -XPOST --header "PRIVATE-TOKEN: $SALSA_TOKEN" \
$SALSA_URL/projects/$PROJECT_ID/hooks \

--data "url=\
$KGB_URL&push_events=yes&issues_events=yes&merge_requests_events=
yes&tag_push_events=\ yes¬e_events=yes&job_events=yes&pipeline_events=yes&wiki_events=yes&enable_ssl_verification=1"

check_return_code

--

echo "Configuring email notification on push..."

curl --silent --output /dev/null -XPUT --header "PRIVATE-TOKEN: $SALSA_TOKEN" \
$SALSA_URL/projects/$PROJECT_ID/services/emails-on-push \

--data "recipients=pkg-java-commits@lists.alioth.debian.org \
dispatch@tracker.debian.org"

check_return_code

--

echo
echo "Done! The repository is located at ${SALSA_URL

389

May 4, 2025

47.2. Script for extracting the documentation in PDF and Epub
format.

This script is used to create readable documents.

47.2.1. Dependencies
The following packages must be installed for the script to run.

• noweb
• texlive
• texlive-latex-extra
• texlive-extra-utils
• texlive-binaries
• texlive-bibtex-extra
• biber
• texlive-lang-japanese
• tidy
• texlive-lang-german - for the German documentation
• texlive-lang-english - for the English transaltion
• texlive-lang-french - for the French translation

47.2.2. Procedure
First, the script creates *.tex documents from the *.nw documents.

The following script can be extracted with

notangle -Rcreate-book.sh Part6.nw > create-book.sh &&t=$(date +
echo "#generated on $t" >> create-book.sh
chmod ugo+x create-book.sh

from the file Part6.nw.
390 ⟨create-book.sh 390⟩≡

#!/usr/bin/bash

#set -e

BasePath=$(pwd)

LANGS="en_US"

noweave -index -delay BuildWithGBP.nw > BuildWithGBP.tex # contains preamble
noweave -index -delay Title.nw > GBP-Title.tex
noweave -index -delay Part1.nw > GBP-Part1.tex
noweave -index -delay Part2.nw > GBP-Part2.tex
noweave -index -delay Part3.nw > GBP-Part3.tex
noweave -index -delay Part4.nw > GBP-Part4.tex
noweave -index -delay Part5.nw > GBP-Part5.tex

390

May 4, 2025

noweave -index -delay Part6.nw > GBP-Part6.tex

#noweave -filter l2h -index -html BuildWithGBP.nw | htmltoc > BuildWithGBP.html

⟨create-book.sh1 391a⟩

This will then be converted to *.pdf and *.epub documents. The keyword directory
must be created only once, after the first execution of pdflatex. Multiple execution
generates too high page numbers.

391a ⟨create-book.sh1 391a⟩≡ (390)
if [-f BuildWithGBP.aux]
then

rm BuildWithGBP.aux
fi

for ((i=4; i>0; i--))
do

echo $i
pdflatex -shell-escape BuildWithGBP.tex

Create Index only one time
Otherwise you get wrong page numbers
if [i=4]
then

makeindex BuildWithGBP
fi

Create Bibliography
biber BuildWithGBP

done

⟨create-book.sh5 391b⟩

The EPUB format is a zipped XHTML enriched with metadata.
391b ⟨create-book.sh5 391b⟩≡ (391a)

tex4ebook -f mobi BuildWithGBP.tex
tex4ebook -f epub BuildWithGBP.tex ../

⟨create-book.sh6 392⟩

391

May 4, 2025

392 ⟨create-book.sh6 392⟩≡ (391b)

For the first translation

for lang in ${LANGS}
do

cd translation/${lang}/target
for ((i=4; i>0; i--))
do

pdflatex -shell-escape ./BuildWithGBP.tex
if [i=4]
then

makeindex BuildWithGBP
fi

Create Bibliography
biber BuildWithGBP

done
cd ${BasePath}

done

Remove auxillary *.html files which are needed for epub
if ls | grep --quiet ’\.html’
then

rm *.html
fi

392

May 4, 2025

47.3. Script for extracting the scripts.
The following script can be extracted with

notangle -Rcreate-buildscript.sh Part6.nw > create-buildscript.sh &&t=$(date +
echo "#generated on $t" >> create-buildscript.sh
chmod ugo+x create-buildscript.sh

from the file Part6.nw.
393 ⟨build-script 393⟩≡

cat Title.nw Part1.nw Part2.nw Part3.nw Part4.nw Part5.nw Part6.nw > BuildWithGBPg.nw
notangle -Rbuild-gbp.sh BuildWithGBPg.nw > build-gbp.sh &&t=$(date +%c)
sed --in-place \
--expression=’s/This is the end, my friend[[:cntrl:]]*/This is the end, my friend/’ \
build-gbp.sh
echo "#generated on $t" >> build-gbp.sh
chmod ugo+x build-gbp.sh

%c)
notangle -Rbuild-gbp-maven-plugin.sh BuildWithGBPg.nw > build-gbp-maven-plugin.sh &&t=$(date +%c)
sed --in-place \
--expression=’s/This is the end, my friend[[:cntrl:]]*/This is the end, my friend/’ \
build-gbp-maven-plugin.sh
echo "#generated on $t" >> build-gbp-maven-plugin.sh
chmod ugo+x build-gbp-maven-plugin.sh

%c)
notangle -Rbuild-gbp-webext-plugin.sh BuildWithGBPg.nw > \
build-gbp-webext-plugin.sh &&t=$(date +%c)
sed --in-place \
--expression=’s/This is the end, my friend[[:cntrl:]]*/This is the end, my friend/’ \
build-gbp-webext-plugin.sh
echo "#generated on $t" >> build-gbp-webext-plugin.sh
chmod ugo+x build-gbp-webext-plugin.sh

%c)
Remove auxillary file BuildWithGBPg.nw
rm BuildWithGBPg.nw

393

May 4, 2025

By means of the command noweave the German language *.nw files are converted into
*.tex files.

394a ⟨CreateTexFromNW 394a⟩≡
function CreateTexFromNW {

Called by TaskSelect
Create *.tex files from *.nw files

cd ${SRCDIR}

noweave -index -delay BuildWithGBP.nw > BuildWithGBP.tex # contains preamble
noweave -index -delay Title.nw > GBP-Title.tex
noweave -index -delay Part1.nw > GBP-Part1.tex
noweave -index -delay Part2.nw > GBP-Part2.tex
noweave -index -delay Part3.nw > GBP-Part3.tex
noweave -index -delay Part4.nw > GBP-Part4.tex
noweave -index -delay Part5.nw > GBP-Part5.tex
noweave -index -delay Part6.nw > GBP-Part6.tex

⟨CreateTexFromNW1 394b⟩

Any existing BuildWithGBP_html.tex file will be removed..
394b ⟨CreateTexFromNW1 394b⟩≡ (394a)

if [-f BuildWithGBP_html.tex] then rm BuildWithGBP_html.tex fi }

394

May 4, 2025

47.4. gitlab-ci.yml für die Salsa-CI
395 ⟨gitlab-ci.yml 395⟩≡

variables:
DEPS: file make texlive noweb texlive-bibtex-extra texlive-lang-german

texlive-lang-japanese texlive-latex-extra texlive-binaries
texlive-extra-utils biber tidy texlive-lang-english

stages:
- build
- deploy

build:
stage: build
image: debian:sid
before_script:

- apt -y update
- apt -y install $DEPS

script:
- make

artifacts:
paths:

- ’*.pdf’
- ’*.epub’
- ’build-gbp-python-plugin.sh’
- ’build-gbp-maven-plugin.sh’
- ’build-gbp-webext-plugin.sh’
- ’build-gbp.sh’
- ’build-gbp-java-plugin.sh’
- ’translation/en_US/target/*.pdf’

pages:
stage: deploy
image: debian:sid
needs:

- build
script:

- mkdir -p public/de
- mkdir -p public/en_US
- cp *.pdf *.epub build-gbp*.sh public/
- cp *.tex public/de/
- cp translation/en_US/target/*.pdf public/en_US/

artifacts:
paths:

- public
only:

- master

395

Part VII.

Anhang

A–i

List of Figures

20.1. Information about Java-Team1 . 78
20.2. Create access token2 . 79

21.1. Workflows [35] 3 . 82

28.1. Start screen . 105
28.2. Specification of the project name. 106
28.3. Bye . 107
28.4. No project name specified. 108

29.1. No configuration file found. 110
29.2. Name of the source package . 112
29.3. Specify the name of the source package 113
29.4. Specify the correct name of the source package 114
29.5. Correct name of the package specified. 115
29.6. Correct name of the package specified. 116
29.7. Name of the group specified on salsa.debian.org. 117
29.8. Name of the group specified on salsa.debian.org. 117
29.9. Name of the group specified on salsa.debian.org. 118
29.10. Should a Java package be built? . 122
29.11. Should an extension for Mozilla be packaged? 125
29.12. Should a Python3 pact be built? . 126
29.13. Is there a parent Git repository? . 133
29.14. Create a new package . 134
29.15. Name and email. 137
29.16. Debian-Maintainer OK? . 141
29.17. Name of the Debian-Maintainer . 141
29.18. Email of the Debian-Maintainer . 142
29.19. Email of the Debian-Uploaders . 143
29.20. Email of the Debian-Uploaders . 144
29.21. Debian maintainer data . 147
29.22. Add remote server . 149
29.23. Choosing the Debian Release. 153
29.24. Name and email. 154
29.25. GPG-Key available . 157

30.1. Query - configuration file . 160

1Source:https://salsa.debian.org/java-team/
2Source:https://salsa.debian.org
3©2016 Antoine Beaupré anarcat@debian.org, CC-BY-SA 4.0

A–iii

https://salsa.debian.org/java-team/
https://salsa.debian.org

May 4, 2025

30.2. Query - edit configuration file. 161
30.3. Query - Further check? . 165
30.4. Selection of the Debian branch. 168
30.5. Selected Debian branch. 169
30.6. There is only one Git branch . 170
30.7. No branch created . 171
30.8. Task selection. 172

31.1. Download from salsa.debian.org . 176
31.2. There are patches . 178
31.3. Fixed? Retry? . 179
31.4. No import into patch queue . 180
31.5. PQ-Import successful . 181
31.6. No download via uscan from thunderbird.net 183
31.7. No download via uscan from mozilla.org 184
31.8. Download - classical or with uscan . 184
31.9. Name of the upstream URL . 186
31.10. Download (or copy)? . 186
31.11. Enter link for download . 187
31.12. Download-URL right? . 188
31.13. Correct download URL . 188
31.14. Download *.asc file . 189
31.15. Path to copy . 190
31.16. Quit program . 190
31.17. Unknown suffix . 192
31.18. Right version? . 193
31.19. Which version should be built? . 193
31.20. Will correct version be built? . 194
31.21. Quit program . 194
31.22. File debian/copyright contains section Files-Excluded 196
31.23. Exclude files . 197
31.24. Should debian/copyright be edited? . 198
31.25. Suffix for exclusion of files . 200
31.26. Custom suffix for excluding files . 201
31.27. Warning. - No suffix specified . 202
31.28. Create orig.tar.xz . 204
31.29. mk-origtargz failed . 205
31.30. Special gbp.conf . 208
31.31. path to the gbp.conf? . 209
31.32. gbp.conf not found . 210
31.33. Check gbp.conf . 211
31.34. Check gbp.conf . 212
31.35. gbp.conf found twice. 213
31.36. Different configuration files . 214
31.37. Do you want to edit gbp.conf in the debian/ directory? 215
31.38. Do you want to edit gbp.conf in the .git/ directory? 216

A–iv

May 4, 2025

31.39. Dubious git tag . 217
31.40. Delete Git Tags . 217
31.41. Up to date . 222
31.42. New Version available . 222

32.1. Vuilt new revision . 226
32.2. Create data for Maven? . 228
32.3. Display Debian files . 229

33.1. There is a directory debian/patches. 252
33.2. There is no directory debian/patches. 252
33.3. Create patches for Debian . 253
33.4. There exists a PQ branch. 255
33.5. Hint on the requirements for further work. 256
33.6. The patch queue branch with patches from debian/patches has been

applied.[3] . 259
33.7. Should gbp pq export be applied? . 262

34.1. Debian-Changelog OK? . 278
34.2. Display the first line of the debian/changelog file. 280
34.3. Recent version . 280
34.4. Query the identifier . 282
34.5. More options for dch . 283
34.6. Something is going wrong! . 286
34.7. Selection of the branch . 287
34.8. Release-Branch . 288
34.9. Release branch of the distribution . 289
34.10. Distribution for PBuilder . 291
34.11. Start building the package . 291
34.12. Finish . 292
34.13. Information about updating the build environment 293
34.14. Selecting the build system . 294
34.15. Check .sbuildrc . 295
34.16. Selection of the cow to create. 298
34.17. Display of the version with revision number 300
34.18. Display of the revision number . 301
34.19. Should the upstream tarball be uploaded too 302
34.20. Display the options of gbp buildbackage. 303
34.21. Unsuccessful building attempt! . 304

37.1. Prepare upload of release . 313
37.2. Lintian: All Well? . 316
37.3. Older package available . 317
37.4. Uscan - OK? . 318
37.5. Uscan fails . 319
37.6. Determine differences . 320

A–v

May 4, 2025

38.1. No Changelog - No upload . 326
38.2. Changelog fir for uploading? . 327
38.3. Check branch . 328
38.4. Enter the name of the distribution . 329
38.5. Check distribution name . 330
38.6. Building for release . 331
38.7. Building for release . 332

40.1. Upload target . 339
40.2. Upload to FTP-Master - OK? . 343

44.1. Maven Plugin loaded . 364
44.2. Determine path to Maven chroot . 365
44.3. Specify path to Maven chroot . 366
44.4. Determine working directory in the Maven chroot 367
44.5. Specify working directory in the Maven chroot 368
44.6. Maven chroot does not exist . 369

A–vi

Bibliography

[1] Creative Commons. “Attribution-ShareAlike 4.0 International”. In: https://creativecommons.org/
(Oct. 15, 2013). url: https://creativecommons.org/licenses/by-sa/4.0/
legalcode. (Cit. on p. 3).

[2] Free Software Foundation, Inc. “GNU General Public License 3”. In: https://www.gnu.org
(June 29, 2007). url: https://www.gnu.org/licenses/gpl-3.0.de.html. (Cit.
on p. 3).

[3] Guido Günther. “Building Debian Packages with git-buildpackage”. In: Git-Buildpackage
(2017). url: https://honk.sigxcpu.org/projects/git-buildpackage/manual-
html// (cit. on pp. 7, 22, 33, 74, 259, 261).

[4] Norman Ramsey. “Noweb — A Simple, Extensible Tool for Literate Programming”.
In: NoWeb (June 28, 2018). url: https://www.cs.tufts.edu/%5Ctextasciitilde%
20nr/noweb/ (cit. on p. 10).

[5] Simple Packaging Tutorial. Oct. 26, 2019. url: https://wiki.debian.org/
SimplePackagingTutorial (cit. on pp. 21, 23).

[6] Debian Project. “Die Debian-Richtlinien für Freie Software (DFSG)”. German.
In: Debian-Gesellschaftsvertrag (Apr. 26, 2004). url: https://www.debian.org/
social_contract.de.html (cit. on pp. 21, 27, 30, 31).

[7] Ian Jackson, Christian Schwarz, and David A. Morris. “Debian Policy”. English.
Version 4.6.1. In: Debian Policy Manual (May 22, 2022). Ed. by Die Debian-Policy-
Gruppe. url: https://www.debian.org/doc/debian-policy/. GNU General
Public License Version 2+ (cit. on pp. 21, 23, 27, 29–31, 234, 242, 249).

[8] Christopher Yeoh, Paul ’Rusty’ Russell, Daniel Quinlan. “Filesystem Hierarchy
Standard”. English. Version 3.0. In: Filesystem Hierarchy Standard (Mar. 19, 2015).
Ed. by The Linux Foundation LSB Workgroup. url: https://www.debian.org/
doc/packaging-manuals/fhs/fhs-3.0.html. BSD (cit. on p. 21).

[9] Ian Jackson et al. “Debian-Entwicklerreferenz”. Deutsch. Version 13.3. In: Debian
Entwicklerreferenz (Aug. 5, 2023). Ed. by Hideki Nussbaum Lucas andYamane
and Holger Levsen. url: https://www.debian.org/doc/manuals/developers-
reference/index.de.html. GNU General Public License Version 2+ (cit. on
pp. 21, 81–84, 100).

[10] Osamu Aoki. “Leitfaden für Debian-Betreuer. debmake-doc”. Deutsch. In: Debmake-
Doc (Mar. 26, 2019). url: https://www.debian.org/doc/devel- manuals#
debmake-doc. Expat-Lizenz (cit. on p. 22).

A–vii

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://www.gnu.org/licenses/gpl-3.0.de.html
https://www.gnu.org/licenses/gpl-3.0.de.html
https://honk.sigxcpu.org/projects/git-buildpackage/manual-html//
https://honk.sigxcpu.org/projects/git-buildpackage/manual-html//
https://www.cs.tufts.edu/%5Ctextasciitilde%20nr/noweb/
https://www.cs.tufts.edu/%5Ctextasciitilde%20nr/noweb/
https://wiki.debian.org/SimplePackagingTutorial
https://wiki.debian.org/SimplePackagingTutorial
https://www.debian.org/social_contract.de.html
https://www.debian.org/social_contract.de.html
https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/packaging-manuals/fhs/fhs-3.0.html
https://www.debian.org/doc/packaging-manuals/fhs/fhs-3.0.html
https://www.debian.org/doc/manuals/developers-reference/index.de.html
https://www.debian.org/doc/manuals/developers-reference/index.de.html
https://www.debian.org/doc/devel-manuals#debmake-doc
https://www.debian.org/doc/devel-manuals#debmake-doc

May 4, 2025

[11] Josip Rodin, Osamu Aoki. “Debian-Leitfaden für Neue Paketbetreuer. New Main-
tainer Guide”. Deutsch. Version 1.2.43. In: Debian-Leitfaden für Neue Paketbetreuer
(Nov. 7, 2020). Ed. by Osamu Aoki. wird ersetzt durch Aoki, Leitfaden für Debian-
Betreuer. url: https://www.debian.org/doc/manuals/maint-guide/. GNU
General Public License Version 2+ (cit. on pp. 22, 36, 60, 279).

[12] Axel Beckert and Frank Hofmann. “Debian-Paketmanagement”. In: DPMB (Feb. 7,
2021), p. 400. url: https://book.dpmb.org/debian-paketmanagement.chunked/
index.html (cit. on pp. 22, 24, 25).

[13] ReproducibleBuilds. Dec. 6, 2020. url: https://reproducible- builds.org/
(cit. on p. 23).

[14] The experimental repository. Nov. 15, 2020. url: https://wiki.debian.org/
DebianExperimental (cit. on p. 23).

[15] The Debian GNU/Linux FAQ. Aug. 12, 2019. url: https://www.debian.org/
doc/manuals/debian-faq/index.de.html (cit. on pp. 24, 35).

[16] How can i help. Feb. 7, 2021. url: https://wiki.debian.org/how-can-i-help
(cit. on p. 25).

[17] Steve Langasek. “DEP-5: Machine-readable debian/copyright”. In: Machine-readable
debian/copyright (Feb. 24, 2012). url: https://dep-team.pages.debian.net/
deps/dep5/ (cit. on pp. 27, 28, 31, 32, 198, 233).

[18] TeamsFTPMaster. Mar. 13, 2020. url: https://wiki.debian.org/TeamsFTPMaster
(cit. on p. 27).

[19] CopyrightReviewTools. Dec. 17, 2021. url: https://wiki.debian.org/CopyrightReviewTolls
(cit. on p. 27).

[20] Mathew Palmer. “Debian-Mentors FAQ”. English. In: Debian-Wiki (2007). url:
https://wiki.debian.org/DebianMentorsFaq. GNU General Public License
version 2 (cit. on pp. 29, 32).

[21] Jilayne et al. Lovejoy. “Open Source License Compliance Handbook”. In: Open
Source License (Apr. 29, 2019). url: https : / / github . com / finos / OSLC -
handbook/tree/master/output (cit. on p. 29).

[22] Using Quilt. July 22, 2020. url: https://wiki.debian.org/UsingQuilt (cit. on
p. 33).

[23] Andreas Grünbacher. “How to Survive With Many Patches or Introduction to
Quilt”. In: Introduction to Quilt (Feb. 22, 2012). url: http://users.suse.com/
∼agruen/quilt.pdf (cit. on p. 33).

[24] Raphael Hertzog. “DEP-3: Patch Tagging Guidelines”. In: Patch Tagging Guidelines
(Nov. 26, 2009). url: https://dep-team.pages.debian.net/deps/dep3/ (cit. on
pp. 33, 261).

[25] Git-Mailinfo -Manpage. Apr. 20, 2020. url: https://manpages.debian.org/
unstable/git-man/git-mailinfo.1.en.html (cit. on p. 34).

[26] Niels Thykier et al. “Debian Policy for Java”. In: Debian Java Policy (July 27,
2020). url: https://www.debian.org/doc/packaging-manuals/java-policy/
(cit. on pp. 41, 42, 247, 316).

A–viii

https://www.debian.org/doc/manuals/maint-guide/
https://book.dpmb.org/debian-paketmanagement.chunked/index.html
https://book.dpmb.org/debian-paketmanagement.chunked/index.html
https://reproducible-builds.org/
https://wiki.debian.org/DebianExperimental
https://wiki.debian.org/DebianExperimental
https://www.debian.org/doc/manuals/debian-faq/index.de.html
https://www.debian.org/doc/manuals/debian-faq/index.de.html
https://wiki.debian.org/how-can-i-help
https://dep-team.pages.debian.net/deps/dep5/
https://dep-team.pages.debian.net/deps/dep5/
https://wiki.debian.org/TeamsFTPMaster
https://wiki.debian.org/CopyrightReviewTolls
https://wiki.debian.org/DebianMentorsFaq
https://github.com/finos/OSLC-handbook/tree/master/output
https://github.com/finos/OSLC-handbook/tree/master/output
https://wiki.debian.org/UsingQuilt
http://users.suse.com/~agruen/quilt.pdf
http://users.suse.com/~agruen/quilt.pdf
https://dep-team.pages.debian.net/deps/dep3/
https://manpages.debian.org/unstable/git-man/git-mailinfo.1.en.html
https://manpages.debian.org/unstable/git-man/git-mailinfo.1.en.html
https://www.debian.org/doc/packaging-manuals/java-policy/

May 4, 2025

[27] Markus Koschany. “Packaging Java with Javatools”. In: https://people.debian.org/~apo/java/tutorial.html
(Aug. 2, 2018). url: https://people.debian.org/%5Ctextasciitilde%7B%
7Dapo/java/tutorial.html (cit. on p. 41).

[28] Torsten Werner twerner@debian.org Niels Thykier niels@thykier.net Javier Fernández-
Sanguino Peña jfs@debian.org Sylvestre Ledru sylvestre@debian.org. “Debian Java
FAQ.” In: Debian Java FAQ. (May 22, 2014). url: https://www.debian.org/
doc/manuals/debian-java-faq/ (cit. on p. 41).

[29] Help the Java Team distribute your project. Jan. 31, 2019. url: https://java.
debian.net/blog/2019/01/help-the-java-team-distribute-your-project.
html (cit. on p. 41).

[30] Introduction to the Standard Directory Layout. Dec. 29, 2020. url: https://
maven.apache.org/guides/introduction/introduction-to-the-standard-
directory-layout.html (cit. on p. 43).

[31] Devsripts. Nov. 28, 2020. url: https : / / manpages . debian . org / unstable /
devscripts/devscripts.1.en.html (cit. on p. 57).

[32] debian mit debootstrap in chroot-Umgebung installieren. Feb. 16, 2014. url: http:
//www.kai-hildebrandt.de/linux/debian%5C_chroot.html (cit. on p. 70).

[33] Salsa. Feb. 22, 2023. url: https://wiki.debian.org/Salsa (cit. on p. 77).
[34] Salsa-Doc. Aug. 26, 2023. url: wiki.debian.org/Salsa/Doc (cit. on p. 77).
[35] wiki.debian.org. “Debian Releases”. In: https://wiki.debian.org/DebianReleases.

Nov. 29, 2020. url: https://salsa.debian.org/debian/package-cycle/raw/
master/package-cycle.svg (cit. on p. 82).

[36] ReleaseTeam. Mar. 22, 2021. url: https://wiki.debian.org/Teams/releaseTeams
(cit. on p. 99).

[37] GBP-Import-orig uscan. July 19, 2022. url: https://manpages.debian.org/
unstable/git-buildpackage/gbp-import-orig.1.en.html (cit. on p. 224).

[38] wiki.debian.org. “Upstream MEtadata GAthered with YAml (UMEGAYA)”. In:
https://wiki.debian.org/UpstreamMetadata?action=recall&rev=138. Jan. 31, 2020.
url: https://wiki.debian.org/UpstreamMetadata?action=recall&rev=138
(cit. on p. 232).

[39] Charles Plessy and Andreas Tille. “DEP-12: Per-package machine-readable meta-
data about Upstream”. In: Per-package machine-readable metadata about Upstream
(Feb. 23, 2014). url: https://dep-team.pages.debian.net/deps/dep12/ (cit.
on p. 232).

[40] Machine-Readable Copyright. “Machine-readable debian/copyright file”. In: Debian
Policy (Nov. 17, 2020). url: https://www.debian.org/doc/packaging-manuals/
copyright-format/1.0/%5C#stand-alone-license-paragraph (cit. on p. 234).

[41] Debian Projekt, ed. Manpage uscan. Aug. 4, 2019. url: https://manpages.debian.
org/buster/devscripts/uscan.1.en.html (cit. on p. 238).

[42] GBP-PQ. July 1, 2020. url: https://manpages.debian.org/unstable/git-
buildpackage/gbp-pq.1.en.html (cit. on p. 257).

A–ix

https://people.debian.org/%5Ctextasciitilde%7B%7Dapo/java/tutorial.html
https://people.debian.org/%5Ctextasciitilde%7B%7Dapo/java/tutorial.html
https://www.debian.org/doc/manuals/debian-java-faq/
https://www.debian.org/doc/manuals/debian-java-faq/
https://java.debian.net/blog/2019/01/help-the-java-team-distribute-your-project.html
https://java.debian.net/blog/2019/01/help-the-java-team-distribute-your-project.html
https://java.debian.net/blog/2019/01/help-the-java-team-distribute-your-project.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://manpages.debian.org/unstable/devscripts/devscripts.1.en.html
https://manpages.debian.org/unstable/devscripts/devscripts.1.en.html
http://www.kai-hildebrandt.de/linux/debian%5C_chroot.html
http://www.kai-hildebrandt.de/linux/debian%5C_chroot.html
https://wiki.debian.org/Salsa
wiki.debian.org/Salsa/Doc
https://salsa.debian.org/debian/package-cycle/raw/master/package-cycle.svg
https://salsa.debian.org/debian/package-cycle/raw/master/package-cycle.svg
https://wiki.debian.org/Teams/releaseTeams
https://manpages.debian.org/unstable/git-buildpackage/gbp-import-orig.1.en.html
https://manpages.debian.org/unstable/git-buildpackage/gbp-import-orig.1.en.html
https://wiki.debian.org/UpstreamMetadata?action=recall&rev=138
https://dep-team.pages.debian.net/deps/dep12/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/%5C#stand-alone-license-paragraph
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/%5C#stand-alone-license-paragraph
https://manpages.debian.org/buster/devscripts/uscan.1.en.html
https://manpages.debian.org/buster/devscripts/uscan.1.en.html
https://manpages.debian.org/unstable/git-buildpackage/gbp-pq.1.en.html
https://manpages.debian.org/unstable/git-buildpackage/gbp-pq.1.en.html

May 4, 2025

[43] Debian, ed. Lintian User’s Manual. Jan. 23, 2023. url: https://lintian.debian.
org/manual/index.html (cit. on p. 314).

A–x

https://lintian.debian.org/manual/index.html
https://lintian.debian.org/manual/index.html

Index

~/.bashrc, 71

Access tokens, 78, 387
ant, 46
apt, 36

Backporting, 82
Build environments, 32

Chroot, 61
Chroot (maven), 44
cme, 28
compare-version, 35
Configuration file, 59, 103, 108, 159, 341
Copyright-Review, 27
cowbuilder, 61
cowdancer, 61
Creative Commons, 3

DEBEMAIL, 60
DEBFULLNAME, 60
debhelper, 235
Debian Developer Reference, 21
Debian Keyring, 341
Debian Package, 23
Debian Policy, 21, 27, 30
Debian Project, 23
debian/watch, 221, 238
debmake, 27
dependency, 29, 41
Developer Reference, 21
devscripts, 36, 57
DFSG, 27, 30
dh_make, 57
Directory, 130
Directory structure of Maven, 43
Distribution, 9
dpkg, 36

dquilt, 70
dversionmangle, 240

ebook, 10
EPUB Document, 10
experimental, 23

FHS, 21
filenamemangle, 241
Fingerprint, 60, 341
Free Software, 27
FTBFS, 61

gbp buildpackage, 61
gbp pq, 33
gbp.conf, 73, 74, 221
Geany, 10
git, 10
git-buildpackage, 10, 22, 57
GNU General Public License, 3
GPG-Key, 57, 220, 223

home directory, 109

Java Application, 41, 42
Java build system, 43
Java Library, 41, 42
Java-FAQ, 41
Java-Policy, 41
javahelper, 41

License, 3, 27
License verification, 27, 319
Licenses, 27, 29
Literate Programming, 10
Literature, 22
Logfile, 130

Mail-Extension, 50

A–xi

May 4, 2025

main, 27
Main program, 103
Maintainer-Key, 60
Manual, 22
Maven, 43
maven, 46
mh_make, 44

New Maintianer Guide, 22
noweave, 394
noweb, 10

oldoldstable, 23
oldstable, 23
Options (uscan), 239
Original author, 28
Original source, 36

Package management system, 49
Package management tool, 234
Packaging, 7
Patching, 32
pbuilder, 61
PDF Document, 10
Perl-Format, 238
pom.xml, 43
Program flow, 103, 104
Program script, 103
Project, 105
Project name, 106
project specific, 59
Proposed-Updates, 82, 83
Publishing, 10, 173

Quick Guide, 15
quilt, 33, 70

regular expressions, 238
Release-Team, 83
Reproducibility, 23
Revision Number, 35
Rules of comparison, 36

Security Patches, 32, 82
Security-Team, 82
sign, 60
Social Contract, 21
Source code, 10

stable, 23
Standard-Version, 235
Start dialog, 103
System user, 49

testing, 23
TeX-Files, 394
Thunderbird, 50
Tools, 10
Troubleshooting, 32

unstable, 23
Updating, 49
Uploading, 325
uscan, 36, 221, 238
Utilities, 39
uversionmangle, 240

Version index, 240
Version Name, 35, 199
Versioning, 35

Watch (File), 36, 238

A–xii

	Overview
	License
	About the book's title
	Who should read this book?
	How is this book conceived?
	Motivation
	Under contruction
	Tools

	Conventions
	System
	Terminology
	Typography
	Source Code Representation

	Quick Guide
	Preparing the build environment
	Using the program scripts

	Preparation
	Literature
	Debian Free Software Guidelines
	Debian Policy Manual
	Debian Developer Reference
	Reference for Git-Buildpackage
	Manual for Debian Maintainer
	Debian New Maintianer Guide
	More Information

	What is a Debian Package?
	How to select the software to be packaged
	Checking the sources
	License verification
	debmake
	licensecheck
	scan-copyrights
	licensing
	cme
	Manually
	Stumbling blocks

	Identifying the Programming Language
	Checking the Dependencies
	Identify dependencies with packages.debian.org
	Identify dependencies at codesearch.debian.net
	Search for Dependencies at the Console

	Modifications of the Source Code
	Exclude complete files
	Listing of files to be excluded
	Case distinctions
	Naming of packages when excluding files

	Changes in individual source code files (patching)
	Patching with Quilt
	Patching in a Patch-Queue-Branh

	Versioning of the packages
	Package Name
	Version Scheme
	apt and dpkg
	uscan and the file debian/watch

	dh_make
	Building Java Packages
	Challenges
	Applications and Libraries
	Packaging Java programs
	Packaging Java libraries
	Name of the Java package

	Dependencies for Java packages
	Identify other dependencies
	Identify dependencies

	Build systems for Java packages
	The build system maven
	Packaging with maven
	Packaging with ant
	Packaging with gradle

	Building Java Packages without build system

	Building Mozilla extensions
	Sources of extensions
	Integration into file system

	Building Python Packages
	Building metapackages
	No upstream source
	Native Debian package
	debian/source/format
	debian/control
	debian/rules
	debian/changelog

	Configuration for installation
	debconf
	dbconfig-common

	System setup
	Dependencies for the program script
	General dependencies
	Dependencies for building Java packages
	Dependencies for the Mozilla extensions

	Create the file
	Path to the projects
	Configuration files
	For every project
	For many projects
	Fingerprint of the Maintainer-Key

	.bashrc

	Set up PBuilder
	Chroot
	Configuration of the Pbuilder
	Set up Hooks
	Hooks - Examples
	Hook A
	Hook B
	Hook C
	Hook D
	Hook E
	Hook F
	Hook G
	Hook H
	Hook I

	Alternative Chroot environment

	More chroot systems
	Set up quilt for patching

	Set up Git
	Branches
	Mergen
	gbp.conf
	Sequence
	Sections in the gbp.conf
	Syntax of the options
	Example

	Git repositories on own infrastructure
	Local Git repository
	Own Git server

	Salsa-Repositories
	Salsa-Konto anlegen
	Creation of a Salsa-Repository
	Salsa-repository for the Java team
	Source of the Script
	Dependencies
	Get access token
	Register token
	Call script

	Tasks on salsa.debian.org
	Merge Request

	Packaging beyond the branch Unstable
	Security-Updates
	(Old-)Stable-Proposal
	Bug report
	Requirements for a patch
	Dependencies for Mozilla packages

	Stable-Backports
	Backports-Repository
	Experimental
	Backporting of unfamiliar packages
	Versioning

	An email for the start
	ITP - Intent To Package
	RFP - Request For Package
	ITA - Intent To Adoption
	RFA - Request for Adoption
	RFH - Request For Help
	O - Orphaned
	RFS - Request For Sponsor
	Changes to the bug report
	usertags added

	Set up report bug
	Autopkgtest
	Reproducible builds
	Configuration of sbuild
	reprotest

	piuparts
	Overcome difficulties
	Unfreeze a package
	Request for unblocking

	Fix release critical bugs
	Remove package from repository

	How a shell script helps to build a Debian package
	First steps in the program script
	The beginning is at the end
	And this is what the user sees first.
	Request project name
	Next steps

	Create a new project
	Create configuration file
	Query common variables for configuration file
	Query special variables for the configuration file
	Identifying the plugin paths
	Variable query for Java packages
	Variable query for Mozilla extensions
	Variable query for Python3 packages

	Saving the configuration
	Example of a configuration file

	Creating the infrastructure
	Definition of paths
	Creating the necessary directories
	Create log file

	Git Repositories
	Does a Git repository already exist?
	Selection dialog

	Creating a new local Git repository
	Add name and email address to Git repository
	Repository at salsa.debian.org
	Manually
	Within the Java team

	Display remote server

	Clonen from salsa.debian.org
	Determination of the Git branches
	Git branches detect
	Assign Git Branch Distribution
	Add name and email address

	Import of a Debian package
	GnuPG Key available?
	Starting the packaging process

	Work in an created projectt
	Load and edit configuration file
	Modify lines in the configuration file
	Insert line into configuration file
	Selecting a Git branch
	Check with git status.
	Error message and troubleshooting
	Selection of the Debian branches
	Dialog to select a branch
	Change entry
	Read configuration
	No or only one branch exists

	Task selection

	Building a new version
	Download changes from Salsa.
	Import an existing patch queue
	First attempt to import
	Another import attempt
	Import successful into PQ branch

	Tools for downloading the upstream sources.
	Download the classic way
	Archive formats
	Downloading the source code
	Download
	Copy the source archive

	Identify suffix
	Detect upstream version
	Exclude files from upstream archive
	Create Debian source file
	Verify signature
	Download signature file
	Signature Verification

	Replace link with a copy
	gbp Configuration File
	Import to Git

	Download and import with uscan

	Building a new revision
	Creating the Debian directory
	Request: Build with mh-make?
	Display the Debian files?
	Files in the directory debian/
	Display the Debian files
	debian/source/format
	debian/source/include.binaries
	debian/upstream/metadata
	debian/copyright
	debian/control
	Fundamental structure
	Adaptations for Java packages
	Web-Extension-Plugin
	Python-Plugin

	debian/watch
	debian/rules - Fundamental structure
	Create the file
	Export of variables
	Call of the Debhelper
	debian/rules - overrides
	End of the function

	salsa-ci.yml
	debian/javabuild
	<Package name>.install
	<Package name>.dirs
	<Package name|.docs
	<Package name>.links
	<Package name>.desktop
	<Package name>.examples
	README.Debian
	README.source

	Checking the files in debian/ with CmeFix

	Making changes to upstream code
	Working with gbp pq
	Creating a Patch Queue Branch
	Manual Editing
	Troubleshooting hints
	Refreshing the patch queue branch
	Hints for cleaning up the patch queue
	Import of existing patches
	Edit source code
	Export the patches

	Using Quilt
	Create patch

	Create new patch
	Select file for patching
	Delete Patch
	Restore the initial state

	Patch selection
	Editing Patch
	Modify Patch

	Building
	debian/changelog
	Insert version number

	Moving the gbp configuration file
	Set parameters for gbp buildpackage.
	Identify Git branch and distribution
	Customize Git branch
	Identify distribution
	Checking the parameters
	Last option to exit
	Selecting the build system

	What does Sbuild do?
	Build in the Sbuild chroot
	Creating the S-Chroot
	sbuild-update

	Build in the Pbuilder chroot
	Create base.cow
	git-pbuilder update
	Inclusion of the *.orig archive in *.changes
	Build with gbp buildpackage
	Download dependencies
	Build - compile in pbuilder.

	If building fails
	Build beyond Unstable (sid)
	Verifications
	Selection of the Changes file
	Yamllint
	Lintian
	Test with Lintian
	Lintian reports

	Uscan
	Checking the file debian/copyright
	Check with debdiff and diffoscope
	debdiff

	Publishing
	Preparation to upload the package
	Does debian/changelog exist?
	debian/changelog finisg
	Building again?

	Upload to Git repositories
	Upload to salsa.debian.org
	Upload to the own Git-Server

	Upload package
	Selection of the target repository
	Preparation - Create signature
	Use fingerprint

	Upload with dput
	Upload to FTP-Master
	Reject a package

	Upload to mentors.debian.net
	Upload as non-maintainer upload.
	Upload to people.debian.org
	Local repository

	Additional components of the script
	Another task
	Create new branch
	Entering the name or IP of your own Git server
	Prov. AddGitServer

	Head of the Script
	Shebang
	Copyright notice
	Dependencies for the program script
	Function header
	Function for troubleshooting

	Plugins and Scripts
	Java-Plugin
	Adjustments for Java package

	Maven-Plugin
	Head of the Maven plugin
	Notice
	Building with Maven
	Editing Maven files
	maven.rules
	maven.ignoreRules
	maven.properties
	PackageName.poms
	README.source

	debian/rules - additions for Java packages with Maven

	Web-Extension-Plugin
	Header for Webext-Plugins
	Creating the webext*.* files in debian/
	Get the name of the *.xpi file
	debian/rules - Additions for Mozilla AddOns
	debian/control - Additions for Mozilla AddOns
	debian/webext-*.install
	debian/webext-*.docs
	debian/webext-links-tb

	Python-Plugin
	Customizations for Python packages
	debian/control - Addition for Python packages

	Scripts
	Creation of a project within the Java team
	Script for extracting the documentation in PDF and Epub format.
	Dependencies
	Procedure

	Script for extracting the scripts.
	gitlab-ci.yml für die Salsa-CI

	Anhang
	Table of Figures
	Bibliography
	Index

