Debian Reference
COLLABORATORS

<table>
<thead>
<tr>
<th>TITLE:</th>
<th>Debian Reference</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ACTION</th>
<th>NAME</th>
<th>DATE</th>
<th>SIGNATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRITTEN BY</td>
<td>Osamu Aoki</td>
<td>March 21, 2019</td>
<td></td>
</tr>
</tbody>
</table>

REVISION HISTORY

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>DATE</th>
<th>DESCRIPTION</th>
<th>NAME</th>
</tr>
</thead>
</table>
Contents

1 GNU/Linux tutorials 1
 1.1 Console basics 1
 1.1.1 The shell prompt 1
 1.1.2 The shell prompt under X 2
 1.1.3 The root account 2
 1.1.4 The root shell prompt 3
 1.1.5 GUI system administration tools 3
 1.1.6 Virtual consoles 3
 1.1.7 How to leave the command prompt 3
 1.1.8 How to shutdown the system 4
 1.1.9 Recovering a sane console 4
 1.1.10 Additional package suggestions for the newbie 4
 1.1.11 An extra user account 5
 1.1.12 sudo configuration 5
 1.1.13 Play time 6
 1.2 Unix-like filesystem 7
 1.2.1 Unix file basics 7
 1.2.2 Filesystem internals 8
 1.2.3 Filesystem permissions 8
 1.2.4 Control of permissions for newly created files: umask 11
 1.2.5 Permissions for groups of users (group) 11
 1.2.6 Timestamps 12
 1.2.7 Links 13
 1.2.8 Named pipes (FIFOs) 14
 1.2.9 Sockets 15
 1.2.10 Device files 15
 1.2.11 Special device files 16
 1.2.12 procfs and sysfs 16
 1.2.13 tmpfs 16
 1.3 Midnight Commander (MC) 17
1.3 Customization of MC
- 1.3.1 Customization of MC .. 17
- 1.3.2 Starting MC .. 17
- 1.3.3 File manager in MC .. 17
- 1.3.4 Command-line tricks in MC 18
- 1.3.5 The internal editor in MC ... 18
- 1.3.6 The internal viewer in MC .. 19
- 1.3.7 Auto-start features of MC .. 19
- 1.3.8 FTP virtual filesystem of MC 19

1.4 The basic Unix-like work environment
- 1.4.1 The login shell .. 19
- 1.4.2 Customizing bash ... 20
- 1.4.3 Special key strokes .. 21
- 1.4.4 Unix style mouse operations 21
- 1.4.5 The pager ... 21
- 1.4.6 The text editor .. 22
- 1.4.7 Setting a default text editor 22
- 1.4.8 Customizing vim .. 22
- 1.4.9 Recording the shell activities 23
- 1.4.10 Basic Unix commands .. 23

1.5 The simple shell command
- 1.5.1 Command execution and environment variable 25
- 1.5.2 The "$LANG" variable .. 26
- 1.5.3 The "$PATH" variable .. 27
- 1.5.4 The "$HOME" variable .. 27
- 1.5.5 Command line options .. 28
- 1.5.6 Shell glob ... 28
- 1.5.7 Return value of the command 29
- 1.5.8 Typical command sequences and shell redirection 29
- 1.5.9 Command alias ... 31

1.6 Unix-like text processing
- 1.6.1 Unix text tools ... 31
- 1.6.2 Regular expressions ... 32
- 1.6.3 Replacement expressions ... 33
- 1.6.4 Global substitution with regular expressions 34
- 1.6.5 Extracting data from text file table 35
- 1.6.6 Script snippets for piping commands 36
2 Debian package management

2.1 Debian package management prerequisites

2.1.1 Package configuration

2.1.2 Basic precautions

2.1.3 Life with eternal upgrades

2.1.4 Debian archive basics

2.1.5 Debian is 100% free software

2.1.6 Package dependencies

2.1.7 The event flow of the package management

2.1.8 First response to package management troubles

2.2 Basic package management operations

2.2.1 apt vs. apt-get / apt-cache vs. aptitude

2.2.2 Basic package management operations with the commandline

2.2.3 Interactive use of aptitude

2.2.4 Key bindings of aptitude

2.2.5 Package views under aptitude

2.2.6 Search method options with aptitude

2.2.7 The aptitude regex formula

2.2.8 Dependency resolution of aptitude

2.2.9 Package activity logs

2.3 Examples of aptitude operations

2.3.1 Listing packages with regex matching on package names

2.3.2 Browsing with the regex matching

2.3.3 Purging removed packages for good

2.3.4 Tidying auto/manual install status

2.3.5 System wide upgrade

2.4 Advanced package management operations

2.4.1 Advanced package management operations with commandline

2.4.2 Verification of installed package files

2.4.3 Safeguarding for package problems

2.4.4 Searching on the package meta data

2.5 Debian package management internals

2.5.1 Archive meta data

2.5.2 Top level "Release" file and authenticity

2.5.3 Archive level "Release" files

2.5.4 Fetching of the meta data for the package

2.5.5 The package state for APT

2.5.6 The package state for aptitude

2.5.7 Local copies of the fetched packages
2.5.8 Debian package filenames ... 63
2.5.9 The dpkg command ... 63
2.5.10 The update-alternatives command 64
2.5.11 The dpkg-statoverride command 65
2.5.12 The dpkg-divert command .. 65
2.6 Recovery from a broken system .. 65
2.6.1 Incompatibility with old user configuration 65
2.6.2 Different packages with overlapped files 65
2.6.3 Fixing broken package script ... 66
2.6.4 Rescue with the dpkg command 66
2.6.5 Recovering package selection data 67
2.7 Tips for the package management 68
2.7.1 How to pick Debian packages .. 68
2.7.2 Packages from mixed source of archives 68
2.7.3 Tweaking candidate version ... 69
2.7.4 Updates and Backports .. 71
2.7.5 Blocking packages installed by "Recommends" 71
2.7.6 Tracking testing with some packages from unstable 72
2.7.7 Tracking unstable with some packages from experimental 73
2.7.8 Automatic download and upgrade of packages 73
2.7.9 Limiting download bandwidth for APT 74
2.7.10 Emergency downgrading .. 74
2.7.11 Who uploaded the package? ... 74
2.7.12 The equivs package ... 75
2.7.13 Porting a package to the stable system 75
2.7.14 Proxy server for APT .. 76
2.7.15 Small public package archive 76
2.7.16 Recording and copying system configuration 78
2.7.17 Converting or installing an alien binary package 79
2.7.18 Extracting package without dpkg 79
2.7.19 More readings for the package management 79

3 The system initialization ... 81
3.1 An overview of the boot strap process 81
3.1.1 Stage 1: the BIOS ... 82
3.1.2 Stage 2: the boot loader .. 82
3.1.3 Stage 3: the mini-Debian system 84
3.1.4 Stage 4: the normal Debian system 85
3.2 Systemd init ... 86
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1</td>
<td>The hostname</td>
<td>86</td>
</tr>
<tr>
<td>3.2.2</td>
<td>The filesystem</td>
<td>87</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Network interface initialization</td>
<td>87</td>
</tr>
<tr>
<td>3.2.4</td>
<td>The kernel message</td>
<td>87</td>
</tr>
<tr>
<td>3.2.5</td>
<td>The system message</td>
<td>87</td>
</tr>
<tr>
<td>3.2.6</td>
<td>System management under systemd</td>
<td>88</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Customizing systemd</td>
<td>88</td>
</tr>
<tr>
<td>3.3</td>
<td>The udev system</td>
<td>90</td>
</tr>
<tr>
<td>3.3.1</td>
<td>The kernel module initialization</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>Authentication</td>
<td>92</td>
</tr>
<tr>
<td>4.1</td>
<td>Normal Unix authentication</td>
<td>92</td>
</tr>
<tr>
<td>4.2</td>
<td>Managing account and password information</td>
<td>94</td>
</tr>
<tr>
<td>4.3</td>
<td>Good password</td>
<td>94</td>
</tr>
<tr>
<td>4.4</td>
<td>Creating encrypted password</td>
<td>95</td>
</tr>
<tr>
<td>4.5</td>
<td>PAM and NSS</td>
<td>95</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Configuration files accessed by PAM and NSS</td>
<td>97</td>
</tr>
<tr>
<td>4.5.2</td>
<td>The modern centralized system management</td>
<td>97</td>
</tr>
<tr>
<td>4.5.3</td>
<td>"Why GNU su does not support the wheel group"</td>
<td>98</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Stricter password rule</td>
<td>98</td>
</tr>
<tr>
<td>4.6</td>
<td>Other access controls</td>
<td>98</td>
</tr>
<tr>
<td>4.6.1</td>
<td>sudo</td>
<td>98</td>
</tr>
<tr>
<td>4.6.2</td>
<td>PolicyKit</td>
<td>98</td>
</tr>
<tr>
<td>4.6.3</td>
<td>SELinux</td>
<td>99</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Restricting access to some server services</td>
<td>99</td>
</tr>
<tr>
<td>4.7</td>
<td>Security of authentication</td>
<td>99</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Secure password on the Internet</td>
<td>99</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Secure Shell</td>
<td>100</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Extra security measures for the Internet</td>
<td>100</td>
</tr>
<tr>
<td>4.7.4</td>
<td>Securing the root password</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>Network setup</td>
<td>102</td>
</tr>
<tr>
<td>5.1</td>
<td>The basic network infrastructure</td>
<td>102</td>
</tr>
<tr>
<td>5.1.1</td>
<td>The hostname resolution</td>
<td>104</td>
</tr>
<tr>
<td>5.1.2</td>
<td>The network interface name</td>
<td>105</td>
</tr>
<tr>
<td>5.1.3</td>
<td>The network address range for the LAN</td>
<td>105</td>
</tr>
<tr>
<td>5.1.4</td>
<td>The network device support</td>
<td>106</td>
</tr>
<tr>
<td>5.2</td>
<td>The modern network configuration for desktop</td>
<td>106</td>
</tr>
<tr>
<td>5.2.1</td>
<td>GUI network configuration tools</td>
<td>106</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>5.3</td>
<td>The modern network configuration without GUI</td>
<td>107</td>
</tr>
<tr>
<td>5.4</td>
<td>The legacy network connection and configuration</td>
<td>108</td>
</tr>
<tr>
<td>5.5</td>
<td>The network connection method (legacy)</td>
<td>108</td>
</tr>
<tr>
<td>5.5.1</td>
<td>The DHCP connection with the Ethernet</td>
<td>110</td>
</tr>
<tr>
<td>5.5.2</td>
<td>The static IP connection with the Ethernet</td>
<td>110</td>
</tr>
<tr>
<td>5.5.3</td>
<td>The PPP connection with pppconfig</td>
<td>110</td>
</tr>
<tr>
<td>5.5.4</td>
<td>The alternative PPP connection with wvdialconf</td>
<td>111</td>
</tr>
<tr>
<td>5.5.5</td>
<td>The PPPoE connection with pppoeconf</td>
<td>111</td>
</tr>
<tr>
<td>5.6</td>
<td>The basic network configuration with ifupdown (legacy)</td>
<td>112</td>
</tr>
<tr>
<td>5.6.1</td>
<td>The command syntax simplified</td>
<td>112</td>
</tr>
<tr>
<td>5.6.2</td>
<td>The basic syntax of "etc/network/interfaces"</td>
<td>113</td>
</tr>
<tr>
<td>5.6.3</td>
<td>The loopback network interface</td>
<td>113</td>
</tr>
<tr>
<td>5.6.4</td>
<td>The network interface served by the DHCP</td>
<td>114</td>
</tr>
<tr>
<td>5.6.5</td>
<td>The network interface with the static IP</td>
<td>114</td>
</tr>
<tr>
<td>5.6.6</td>
<td>The basics of wireless LAN interface</td>
<td>115</td>
</tr>
<tr>
<td>5.6.7</td>
<td>The wireless LAN interface with WPA/WPA2</td>
<td>115</td>
</tr>
<tr>
<td>5.6.8</td>
<td>The wireless LAN interface with WEP</td>
<td>115</td>
</tr>
<tr>
<td>5.6.9</td>
<td>The PPP connection</td>
<td>116</td>
</tr>
<tr>
<td>5.6.10</td>
<td>The alternative PPP connection</td>
<td>116</td>
</tr>
<tr>
<td>5.6.11</td>
<td>The PPPoE connection</td>
<td>116</td>
</tr>
<tr>
<td>5.6.12</td>
<td>The network configuration state of ifupdown</td>
<td>117</td>
</tr>
<tr>
<td>5.6.13</td>
<td>The basic network reconfiguration</td>
<td>117</td>
</tr>
<tr>
<td>5.6.14</td>
<td>The ifupdown-extra package</td>
<td>117</td>
</tr>
<tr>
<td>5.7</td>
<td>The advanced network configuration with ifupdown (legacy)</td>
<td>118</td>
</tr>
<tr>
<td>5.7.1</td>
<td>The ifplugd package</td>
<td>118</td>
</tr>
<tr>
<td>5.7.2</td>
<td>The ifmetric package</td>
<td>119</td>
</tr>
<tr>
<td>5.7.3</td>
<td>The virtual interface</td>
<td>119</td>
</tr>
<tr>
<td>5.7.4</td>
<td>The advanced command syntax</td>
<td>119</td>
</tr>
<tr>
<td>5.7.5</td>
<td>The mapping stanza</td>
<td>120</td>
</tr>
<tr>
<td>5.7.6</td>
<td>The manually switchable network configuration</td>
<td>121</td>
</tr>
<tr>
<td>5.7.7</td>
<td>Scripting with the ifupdown system</td>
<td>122</td>
</tr>
<tr>
<td>5.7.8</td>
<td>Mapping with guessnet</td>
<td>123</td>
</tr>
<tr>
<td>5.8</td>
<td>The low level network configuration</td>
<td>124</td>
</tr>
<tr>
<td>5.8.1</td>
<td>Iproute2 commands</td>
<td>124</td>
</tr>
<tr>
<td>5.8.2</td>
<td>Safe low level network operations</td>
<td>124</td>
</tr>
<tr>
<td>5.9</td>
<td>Network optimization</td>
<td>125</td>
</tr>
<tr>
<td>5.9.1</td>
<td>Finding optimal MTU</td>
<td>125</td>
</tr>
<tr>
<td>5.9.2</td>
<td>Setting MTU</td>
<td>126</td>
</tr>
<tr>
<td>5.9.3</td>
<td>WAN TCP optimization</td>
<td>126</td>
</tr>
<tr>
<td>5.10</td>
<td>Netfilter infrastructure</td>
<td>127</td>
</tr>
</tbody>
</table>
6 Network applications

6.1 Web browsers .. 128
 6.1.1 Browser configuration 128
6.2 The mail system .. 129
 6.2.1 Email basics .. 130
 6.2.2 Modern mail service basics 130
 6.2.3 The mail configuration strategy for workstation 131
6.3 Mail transport agent (MTA) 131
 6.3.1 The configuration of exim4 133
 6.3.2 The configuration of postfix with SASL 134
 6.3.3 The mail address configuration 135
 6.3.4 Basic MTA operations 136
6.4 Mail user agent (MUA) 137
 6.4.1 Basic MUA —Mutt 137
 6.4.2 Advanced MUA —Mutt + smtp 138
6.5 The remote mail retrieval and forward utility 139
 6.5.1 getmail configuration 139
 6.5.2 fetchmail configuration 141
6.6 Mail delivery agent (MDA) with filter 141
 6.6.1 maildrop configuration 141
 6.6.2 procmail configuration 143
 6.6.3 Redeliver mbox contents 144
6.7 POP3/IMAP4 server 144
6.8 The print server and utilities 144
6.9 The remote access server and utilities (SSH) 145
 6.9.1 Basics of SSH ... 146
 6.9.2 Port forwarding for SMTP/POP3 tunneling 147
 6.9.3 Connecting without remote passwords 148
 6.9.4 Dealing with alien SSH clients 148
 6.9.5 Setting up ssh-agent 148
 6.9.6 How to shutdown the remote system on SSH 149
 6.9.7 Troubleshooting SSH 149
6.10 Other network application servers 149
6.11 Other network application clients 150
6.12 The diagnosis of the system daemons 150
7 The X Window System

7.1 Key packages

7.2 Setting up desktop environment

7.2.1 Debian menu

7.2.2 Freedesktop.org menu

7.2.3 Debian menu from Freedesktop.org menu

7.3 The server/client relationship

7.4 The X server

7.4.1 The (re)configuration of the X server

7.4.2 The connection methods to the X server

7.5 Starting the X Window System

7.5.1 Starting X session with gdm3

7.5.2 Customizing the X session (classic method)

7.5.3 Customizing the X session (new method)

7.5.4 Connecting a remote X client via SSH

7.5.5 Secure X terminal via the Internet

7.6 Fonts in the X Window

7.6.1 Basic fonts

7.6.2 Additional fonts

7.6.3 CJK fonts

7.7 X applications

7.7.1 X office applications

7.7.2 X utility applications

7.8 The X trivia

7.8.1 Clipboard

7.8.2 Keymaps and pointer button mappings in X

7.8.3 Classic X clients

7.8.4 The X terminal emulator—xterm

7.8.5 Running X clients as root

8 I18N and L10N

8.1 The keyboard input

8.1.1 The input method support with IBus

8.1.2 An example for Japanese

8.1.3 Disabling the input method

8.2 The display output

8.3 East Asian Ambiguous Character Width Characters

8.4 The locale

8.4.1 Basics of encoding
8.4.2 Rationale for UTF-8 locale ... 167
8.4.3 The reconfiguration of the locale .. 168
8.4.4 The value of the "$LANG" environment variable 168
8.4.5 Specific locale only under X Window 169
8.4.6 Filename encoding .. 169
8.4.7 Localized messages and translated documentation 170
8.4.8 Effects of the locale ... 170

9 System tips ... 171

9.1 The screen program ... 171
9.1.1 The use scenario for screen(1) ... 171
9.1.2 Key bindings for the screen command 172

9.2 Data recording and presentation .. 172

9.2.1 The log daemon ... 172
9.2.2 Log analyzer .. 172
9.2.3 Recording the shell activities cleanly 173
9.2.4 Customized display of text data ... 174
9.2.5 Customized display of time and date 174
9.2.6 Colorized shell echo .. 174
9.2.7 Colorized commands .. 175
9.2.8 Recording the editor activities for complex repeats 175
9.2.9 Recording the graphic image of an X application 175
9.2.10 Recording changes in configuration files 176

9.3 Monitoring, controlling, and starting program activities 176
9.3.1 Timing a process .. 176
9.3.2 The scheduling priority ... 177
9.3.3 The ps command ... 177
9.3.4 The top command ... 178
9.3.5 Listing files opened by a process ... 178
9.3.6 Tracing program activities .. 178
9.3.7 Identification of processes using files or sockets 178
9.3.8 Repeating a command with a constant interval 178
9.3.9 Repeating a command looping over files 179
9.3.10 Starting a program from GUI .. 179
9.3.11 Customizing program to be started 180
9.3.12 Killing a process ... 181
9.3.13 Scheduling tasks once ... 181
9.3.14 Scheduling tasks regularly ... 182
9.3.15 Alt-SysRq key ... 182
9.7 The binary data ... 199
 9.7.1 Viewing and editing binary data 199
 9.7.2 Manipulating files without mounting disk 199
 9.7.3 Data redundancy ... 200
 9.7.4 Data file recovery and forensic analysis 200
 9.7.5 Splitting a large file into small files 200
 9.7.6 Clearing file contents ... 201
 9.7.7 Dummy files .. 201
 9.7.8 Erasing an entire hard disk 202
 9.7.9 Erasing unused area of an hard disk 202
 9.7.10 Undeleting deleted but still open files 203
 9.7.11 Searching all hardlinks 203
 9.7.12 Invisible disk space consumption 204
9.8 Data encryption tips .. 204
 9.8.1 Removable disk encryption with dm-crypt/LUKS 204
 9.8.2 Encrypted swap partition with dm-crypt 205
 9.8.3 Mounting encrypted disk with dm-crypt/LUKS 205
 9.8.4 Automatically encrypting files with eCryptfs 206
 9.8.5 Automatically mounting eCryptfs 206
9.9 The kernel ... 207
 9.9.1 Linux kernel 2.6/3.x .. 207
 9.9.2 Kernel parameters ... 207
 9.9.3 Kernel headers .. 207
 9.9.4 Compiling the kernel and related modules 208
 9.9.5 Compiling the kernel source: Debian Kernel Team recommendation 208
 9.9.6 Hardware drivers and firmware 209
9.10 Virtualized system .. 210
 9.10.1 Virtualization tools .. 210
 9.10.2 Virtualization workflow 210
 9.10.3 Mounting the virtual disk image file 211
 9.10.4 Chroot system .. 212
 9.10.5 Multiple desktop systems 213
10 Data management ... 214
 10.1 Sharing, copying, and archiving 214
 10.1.1 Archive and compression tools 215
 10.1.2 Copy and synchronization tools 216
 10.1.3 Idioms for the archive 217
 10.1.4 Idioms for the copy ... 217
10.8.1 Configuration of Subversion repository .. 242
10.8.2 Access to Subversion via Apache2 server ... 242
10.8.3 Local access to Subversion by group ... 243
10.8.4 Remote access to Subversion via SSH .. 243
10.8.5 Subversion directory structure ... 243
10.8.6 Importing a new source to Subversion .. 244
10.8.7 Work flow of Subversion .. 244

11 Data conversion ... 248
11.1 Text data conversion tools ... 248
11.1.1 Converting a text file with iconv .. 248
11.1.2 Checking file to be UTF-8 with iconv ... 250
11.1.3 Converting file names with iconv .. 250
11.1.4 EOL conversion .. 251
11.1.5 TAB conversion ... 251
11.1.6 Editors with auto-conversion ... 252
11.1.7 Plain text extraction ... 252
11.1.8 Highlighting and formatting plain text data 252
11.2 XML data ... 253
11.2.1 Basic hints for XML ... 253
11.2.2 XML processing .. 255
11.2.3 The XML data extraction .. 257
11.3 Type setting .. 257
11.3.1 roff typesetting ... 257
11.3.2 TeX/LaTeX .. 257
11.3.3 Pretty print a manual page ... 258
11.3.4 Creating a manual page .. 258
11.4 Printable data ... 258
11.4.1 Ghostscript ... 259
11.4.2 Merge two PS or PDF files ... 259
11.4.3 Printable data utilities ... 259
11.4.4 Printing with CUPS ... 260
11.5 The mail data conversion ... 260
11.5.1 Mail data basics .. 261
11.6 Graphic data tools ... 261
11.7 Miscellaneous data conversion ... 263
12 Programming

12.1 The shell script .. 265
 12.1.1 POSIX shell compatibility 265
 12.1.2 Shell parameters ... 266
 12.1.3 Shell conditionals .. 267
 12.1.4 Shell loops .. 268
 12.1.5 The shell command-line processing sequence 268
 12.1.6 Utility programs for shell script 269
 12.1.7 Shell script dialog ... 270
 12.1.8 Shell script example with zenity 270

12.2 Make .. 271

12.3 C .. 272
 12.3.1 Simple C program (gcc) 272

12.4 Debug .. 272
 12.4.1 Basic gdb execution .. 273
 12.4.2 Debugging the Debian package 273
 12.4.3 Obtaining backtrace ... 274
 12.4.4 Advanced gdb commands 274
 12.4.5 Debugging X Errors .. 275
 12.4.6 Check dependency on libraries 275
 12.4.7 Memory leak detection tools 275
 12.4.8 Static code analysis tools 275
 12.4.9 Disassemble binary .. 276

12.5 Flex — a better Lex ... 276

12.6 Bison — a better Yacc .. 276

12.7 Autoconf .. 277
 12.7.1 Compile and install a program 277
 12.7.2 Uninstall program .. 277

12.8 Perl short script madness 277

12.9 Web .. 278

12.10 The source code translation 279

12.11 Making Debian package 279

A Appendix .. 280

A.1 The Debian maze ... 280
A.2 Copyright history ... 280
A.3 Document format ... 281
List of Tables

1.1 List of interesting text-mode program packages ... 5
1.2 List of informative documentation packages .. 5
1.3 List of usage of key directories ... 8
1.4 List of the first character of ”ls -l” output ... 9
1.5 The numeric mode for file permissions in chmod(1) commands 10
1.6 The `umask` value examples ... 11
1.7 List of notable system-provided groups for file access 12
1.8 List of notable system provided groups for particular command executions 12
1.9 List of types of timestamps .. 12
1.10 List of special device files .. 16
1.11 The key bindings of MC ... 18
1.12 The reaction to the enter key in MC ... 19
1.13 List of shell programs ... 20
1.14 List of key bindings for bash ... 21
1.15 List of Unix style mouse operations ... 21
1.16 List of basic Unix commands ... 24
1.17 The 3 parts of locale value ... 26
1.18 List of locale recommendations .. 26
1.19 List of ”HOME” values .. 28
1.20 Shell glob patterns .. 28
1.21 Command exit codes ... 29
1.22 Shell command idioms .. 30
1.23 Predefined file descriptors .. 30
1.24 Metacharacters for BRE and ERE ... 33
1.25 The replacement expression ... 33
1.26 List of script snippets for piping commands .. 37
2.1 List of Debian package management tools ... 39
2.2 List of Debian archive sites .. 41
2.3 List of Debian archive area .. 42
2.4 The relationship between suite and codename .. 42
2.5 List of key web site to resolving problems with a specific package 47
2.6 Basic package management operations with the commandline using apt(8), aptitude(8) and apt-get(8) / apt-cache(8) 49
2.7 Notable command options for aptitude(8) ... 50
2.8 List of key bindings for aptitude ... 51
2.9 List of views for aptitude ... 52
2.10 The categorization of standard package views 52
2.11 List of the aptitude regex formula ... 54
2.12 The log files for package activities .. 54
2.13 List of advanced package management operations 58
2.14 The content of the Debian archive meta data 60
2.15 The name structure of Debian packages ... 63
2.16 The usable characters for each component in the Debian package names 63
2.17 The notable files created by dpkg .. 64
2.18 List of notable Pin-Priority values for apt-pinning technique. 70
2.19 List of the proxy tools specially for Debian archive 76

3.1 List of boot loaders .. 83
3.2 The meaning of GRUB parameters ... 83
3.3 List of boot utilities for the Debian system .. 85
3.4 List of kernel error levels ... 87
3.5 List of typical systemd management command snippets 89

4.1 3 important configuration files for pam_unix(8) 92
4.2 The second entry content of "/etc/passwd" .. 93
4.3 List of commands to manage account information 94
4.4 List of tools to generate password .. 95
4.5 List of notable PAM and NSS systems ... 96
4.6 List of configuration files accessed by PAM and NSS 96
4.7 List of insecure and secure services and ports 100
4.8 List of tools to provide extra security measures 100

5.1 List of network configuration tools .. 103
5.2 List of network address ranges ... 105
5.3 List of network connection methods and connection paths 109
5.4 List of network connection configurations ... 109
5.5 List of network connection acronyms ... 109
5.6 List of configuration files for the PPP connection with pppconfig 110
5.7 List of configuration files for the PPP connection with wvdialconf 111
5.8 List of configuration files for the PPPoE connection with pppoeconf 112
7.7 Table of key words used in CJK font names to indicate font types .. 160
7.8 List of basic X office applications ... 161
7.9 List of basic X utility applications ... 161
7.10 List of basic X selection programs ... 162
8.1 List of input method supports with IBus ... 165
9.1 List of programs to support interrupted network connections 171
9.2 List of key bindings for screen .. 172
9.3 List of system log analyzers ... 173
9.4 Display examples of time and date for the ”ls -l” command for wheezy 174
9.5 List of graphic image manipulation tools ... 176
9.6 List of packages to record configuration history in VCS 176
9.7 List of tools for monitoring and controlling program activities 177
9.8 List of nice values for the scheduling priority ... 177
9.9 List of ps command styles ... 177
9.10 List of frequently used signals for kill command .. 181
9.11 List of SAK command keys .. 182
9.12 List of hardware identification tools .. 184
9.13 List of hardware configuration tools .. 184
9.14 List of sound packages ... 186
9.15 List of commands for disabling the screen saver ... 186
9.16 List of memory sizes reported .. 187
9.17 List of tools for system security and integrity check 187
9.18 List of disk partition management packages .. 188
9.19 List of filesystem management packages .. 190
9.20 List of packages which view and edit binary data 200
9.21 List of packages to manipulate files without mounting disk 200
9.22 List of tools to add data redundancy to files ... 200
9.23 List of packages for data file recovery and forensic analysis 201
9.24 List of data encryption utilities .. 204
9.25 List of key packages to be installed for the kernel recompilation on the Debian system ... 208
9.26 List of virtualization tools ... 210
10.1 List of archive and compression tools .. 215
10.2 List of copy and synchronization tools ... 216
10.3 List of filesystem choices for removable storage devices with typical usage scenarios ... 221
10.4 List of the network service to chose with the typical usage scenario 222
10.5 List of backup suite utilities .. 224
10.6 List of data security infrastructure tools ... 227
10.7 List of GNU Privacy Guard commands for the key management 228
10.8 List of the meaning of the trust code ... 228
10.9 List of GNU Privacy Guard commands on files 229
10.10 List of source code merge tools .. 231
10.11 List of version control system tools .. 232
10.12 Comparison of native VCS commands .. 233
10.13 List of git related packages and commands .. 235
10.14 Notable options for CVS commands (use as first argument(s) to cvs(1)) 241
10.15 Notable options for Subversion commands (use as first argument(s) to svn(1)) 247

11.1 List of text data conversion tools ... 248
11.2 List of encoding values and their usage ... 249
11.3 List of EOL styles for different platforms ... 251
11.4 List of TAB conversion commands from bsdmainutils and coreutils packages 251
11.5 List of tools to extract plain text data .. 253
11.6 List of tools to highlight plain text data ... 254
11.7 List of predefined entities for XML ... 255
11.8 List of XML tools ... 256
11.9 List of DSSSL tools .. 256
11.10 List of XML data extraction tools ... 256
11.11 List of XML pretty print tools .. 257
11.12 List of typesetting tools .. 257
11.13 List of packages to help creating the manpage 259
11.14 List of Ghostscript PostScript interpreters ... 259
11.15 List of printable data utilities .. 260
11.16 List of packages to help mail data conversion 261
11.17 List of graphic data tools ... 262
11.18 List of miscellaneous data conversion tools ... 263

12.1 List of packages to help programming .. 264
12.2 List of typical bashisms ... 266
12.3 List of shell parameters .. 266
12.4 List of shell parameter expansions ... 266
12.5 List of key shell parameter substitutions .. 267
12.6 List of file comparison operators in the conditional expression 267
12.7 List of string comparison operators in the conditional expression 268
12.8 List of packages containing small utility programs for shell scripts 269
12.9 List of user interface programs .. 270
12.10 List of make automatic variables ... 271
12.11 List of make variable expansions .. 271
12.12 List of advanced gdb commands .. 274
12.13 List of memory leak detection tools ... 275
12.14 List of tools for static code analysis ... 275
12.15 List of Yacc-compatible LALR parser generators 276
12.16 List of source code translation tools .. 279
Abstract

This book is free; you may redistribute it and/or modify it under the terms of the GNU General Public License of any version compliant to the Debian Free Software Guidelines (DFSG).
Preface

This Debian Reference (version 2.76) (2019-03-21 15:39:20 UTC) is intended to provide a broad overview of the Debian system administration as a post-installation user guide.

The target reader is someone who is willing to learn shell scripts but who is not ready to read all the C sources to figure out how the GNU/Linux system works.

For installation instructions, see:

- Debian GNU/Linux Installation Guide for current stable system
- Debian GNU/Linux Installation Guide for current testing system

Disclaimer

All warranties are disclaimed. All trademarks are property of their respective trademark owners.

The Debian system itself is a moving target. This makes its documentation difficult to be current and correct. Although the current unstable version of the Debian system was used as the basis for writing this, some contents may be already outdated by the time you read this.

Please treat this document as the secondary reference. This document does not replace any authoritative guides. The author and contributors do not take responsibility for consequences of errors, omissions or ambiguity in this document.

What is Debian

The Debian Project is an association of individuals who have made common cause to create a free operating system. It’s distribution is characterized by the following.

- Commitment to the software freedom: Debian Social Contract and Debian Free Software Guidelines (DFSG)
- Internet based distributed unpaid volunteer effort: https://www.debian.org
- Large number of pre-compiled high quality software packages
- Focus on stability and security with easy access to the security updates
- Focus on smooth upgrade to the latest software packages in the unstable and testing archives
- Large number of supported hardware architectures

Free Software pieces in Debian come from GNU, Linux, BSD, X, ISC, Apache, Ghostscript, Common Unix Printing System, Samba, GNOME, KDE, Mozilla, LibreOffice, Vim, TeX, LaTeX, DocBook, Perl, Python, Tcl, Java, Ruby, PHP, Berkeley DB, MariaDB, PostgreSQL, SQLite, Exim, Postfix, Mutt, FreeBSD, OpenBSD, Plan 9 and many more independent free software projects. Debian integrates this diversity of Free Software into one system.
About this document

Guiding rules

Following guiding rules are followed while compiling this document.

• Provide overview and skip corner cases. (Big Picture)
• Keep It Short and Simple. (KISS)
• Do not reinvent the wheel. (Use pointers to the existing references)
• Focus on non-GUI tools and consoles. (Use shell examples)
• Be objective. (Use popcon etc.)

Tip
I tried to elucidate hierarchical aspects and lower levels of the system.

Prerequisites

Warning
You are expected to make good efforts to seek answers by yourself beyond this documentation. This document only gives efficient starting points.

You must seek solution by yourself from primary sources.

• The Debian Administrator’s Handbook
• The Debian site at https://www.debian.org for the general information
• The documentation under the ”/usr/share/doc/<package_name>” directory
• The Unix style manpage: "dpkg -L <package_name> | grep '/man/man.*'/"
• The GNU style info page: "dpkg -L <package_name> | grep '/info/"
• The bug report: http://bugs.debian.org/<package_name>
• The Debian Wiki at https://wiki.debian.org/ for the moving and specific topics
• The HOWTOs from The Linux Documentation Project (TLDP) at http://tldp.org/
• The Single UNIX Specification from the Open Group’s The UNIX System Home Page at http://www.unix.org/
• The free encyclopedia from Wikipedia at https://www.wikipedia.org/

Note
For detailed documentation, you may need to install the corresponding documentation package named with ”-doc” as its suffix.
Conventions

This document provides information through the following simplified presentation style with bash(1) shell command examples.

```
# <command in root account>
$ <command in user account>
```

These shell prompts distinguish account used and correspond to set environment variables as: "$PS1='\$'" and "$PS2=' '". These values are chosen for the sake of readability of this document and are not typical on actual installed system.

Note

See the meaning of the "$PS1" and "$PS2" environment variables in bash(1).

Action required by the system administrator is written in the imperative sentence, e.g. "Type Enter-key after typing each command string to the shell."

The **description** column and similar ones in the table may contain a **noun phrase** following the **package short description convention** which drops leading articles such as "a" and "the". They may alternatively contain an infinitive phrase as a **noun phrase** without leading "to" following the short command description convention in manpages. These may look funny to some people but are my intentional choices of style to keep this documentation as simple as possible. These **Noun phrases** do not capitalize their starting nor end with periods following these short description convention.

Note

Proper nouns including command names keeps their case irrespective of their location.

A **command snippet** quoted in a text paragraph is referred by the typewriter font between double quotation marks, such as "aptitude safe-upgrade".

A **text data** from a configuration file quoted in a text paragraph is referred by the typewriter font between double quotation marks, such as "deb-src".

A **command** is referred by its name in the typewriter font optionally followed by its manpage section number in parenthesis, such as bash(1). You are encouraged to obtain information by typing the following.

```
$ man 1 bash
```

A **manpage** is referred by its name in the typewriter font followed by its manpage section number in parenthesis, such as sources.list(5). You are encouraged to obtain information by typing the following.

```
$ man 5 sources.list
```

An **info page** is referred by its command snippet in the typewriter font between double quotation marks, such as "info make". You are encouraged to obtain information by typing the following.

```
$ info make
```

A **filename** is referred by the typewriter font between double quotation marks, such as "'/etc/passwd". For configuration files, you are encouraged to obtain information by typing the following.

```
$ cat /etc/passwd
```
A directory name is referred by the typewriter font between double quotation marks, such as "/etc/apt/". You are encouraged to explore its contents by typing the following.

$ mc "/etc/apt/"

A package name is referred by its name in the typewriter font, such as vim. You are encouraged to obtain information by typing the following.

$ dpkg -L vim
$ apt-cache show vim
$ aptitude show vim

A documentation may indicate its location by the filename in the typewriter font between double quotation marks, such as "/usr/share/doc/base-passwd/users-and-groups.txt.gz" and "/usr/share/doc/base-passwd/users-and-groups.html" or by its URL, such as https://www.debian.org. You are encouraged to read the documentation by typing the following.

$ zcat "/usr/share/doc/base-passwd/users-and-groups.txt.gz" | sensible-pager
$ sensible-browser "/usr/share/doc/base-passwd/users-and-groups.html"
$ sensible-browser "https://www.debian.org"

An environment variable is referred by its name with leading "$" in the typewriter font between double quotation marks, such as "$TERM". You are encouraged to obtain its current value by typing the following.

$ echo "$TERM"

The popcon

The popcon data is presented as the objective measure for the popularity of each package. It was downloaded on 2019-03-21 15:37:51 UTC and contains the total submission of 200711 reports over 168993 binary packages and 26 architectures.

Note
Please note that the amd64 unstable archive contains only 60425 packages currently. The popcon data contains reports from many old system installations.

The popcon number preceded with "V:" for "votes" is calculated by "1000 * (the popcon submissions for the package executed recently on the PC)/(the total popcon submissions)".

The popcon number preceded with "I:" for "installs" is calculated by "1000 * (the popcon submissions for the package installed on the PC)/(the total popcon submissions)".

Note
The popcon figures should not be considered as absolute measures of the importance of packages. There are many factors which can skew statistics. For example, some system participating popcon may have mounted directories such as "/bin" with "noatime" option for system performance improvement and effectively disabled "vote" from such system.
The package size

The package size data is also presented as the objective measure for each package. It is based on the “Installed-Size:” reported by "apt-cache show" or "aptitude show" command (currently on amd64 architecture for the unstable release). The reported size is in KiB (Kibibyte = unit for 1024 bytes).

Note

A package with a small numerical package size may indicate that the package in the unstable release is a dummy package which installs other packages with significant contents by the dependency. The dummy package enables a smooth transition or split of the package.

Note

A package size followed by "(*)" indicates that the package in the unstable release is missing and the package size for the experimental release is used instead.

Bug reports on this document

Please file bug reports on the debian-reference package using reportbug(1) if you find any issues on this document. Please include correction suggestion by "diff -u" to the plain text version or to the source.

Reminders for new users

Here are some reminders for new users:

• Backup your data
• Secure your password and security keys
• KISS (keep it simple stupid)
 – Don’t over-engineer your system
• Read your log files
 – The FIRST error is the one that counts
• RTFM (read the fine manual)
• Search the Internet before asking questions
• Don’t be root when you don’t have to
• Don’t mess with the package management system
• Don’t type anything you don’t understand
• Don’t change the file permissions (before the full security review)
• Don’t leave your root shell until you TEST your changes
• Always have an alternative boot media (USB memory stick, CD, ···)
Some quotes for new users

Here are some interesting quotes from the Debian mailing list which may help enlighten new users.

• "This is Unix. It gives you enough rope to hang yourself." --- Miquel van Smoorenburg <miquels at cistron.nl>
• "Unix IS user friendly…It’s just selective about who its friends are.” --- Tollef Fog Heen <tollef at add.no>

Wikipedia has article "Unix philosophy" which lists interesting quotes.
Chapter 1

GNU/Linux tutorials

I think learning a computer system is like learning a new foreign language. Although tutorial books and documentation are helpful, you have to practice it yourself. In order to help you get started smoothly, I elaborate a few basic points.

The powerful design of Debian GNU/Linux comes from the Unix operating system, i.e., a multiuser, multitasking operating system. You must learn to take advantage of the power of these features and similarities between Unix and GNU/Linux.

Don’t shy away from Unix oriented texts and don’t rely solely on GNU/Linux texts, as this robs you of much useful information.

Note
If you have been using any Unix-like system for a while with command line tools, you probably know everything I explain here. Please use this as a reality check and refresher.

1.1 Console basics

1.1.1 The shell prompt

Upon starting the system, you are presented with the character based login screen if you did not install X Window System with the display manager such as gdm3. Suppose your hostname is foo, the login prompt looks as follows.

```
foo login:
```

If you did install a GUI environment such as GNOME or KDE, then you can get to a login prompt by Ctrl-Alt-F1, and you can return to the GUI environment via Alt-F7 (see Section 1.1.6 below for more).

At the login prompt, you type your username, e.g. penguin, and press the Enter-key, then type your password and press the Enter-key again.

Note
Following the Unix tradition, the username and password of the Debian system are case sensitive. The username is usually chosen only from the lowercase. The first user account is usually created during the installation. Additional user accounts can be created with adduser(8) by root.

The system starts with the greeting message stored in "/etc/motd" (Message Of The Day) and presents a command prompt.
Now you are in the shell. The shell interprets your commands.

1.1.2 The shell prompt under X

If you installed X Window System with a display manager such as GNOME’s gdm3 by selecting “Desktop environment” task during the installation, you are presented with the graphical login screen upon starting your system. You type your username and your password to login to the non-privileged user account. Use tab to navigate between username and password, or use the mouse and primary click.

You can gain the shell prompt under X by starting a x-terminal-emulator program such as gnome-terminal(1), rxvt(1) or xterm(1). Under the GNOME Desktop environment, clicking “Applications” → “Accessories” → “Terminal” does the trick.

You can also see the section below Section 1.1.6.

Under some other Desktop systems (like fluxbox), there may be no obvious starting point for the menu. If this happens, just try (right) clicking the background of the desktop screen and hope for a menu to pop-up.

1.1.3 The root account

The root account is also called superuser or privileged user. From this account, you can perform the following system administration tasks.

- Read, write, and remove any files on the system irrespective of their file permissions
- Set file ownership and permissions of any files on the system
- Set the password of any non-privileged users on the system
- Login to any accounts without their passwords

This unlimited power of root account requires you to be considerate and responsible when using it.

Warning

Never share the root password with others.

Note

File permissions of a file (including hardware devices such as CD-ROM etc. which are just another file for the Debian system) may render it unusable or inaccessible by non-root users. Although the use of root account is a quick way to test this kind of situation, its resolution should be done through proper setting of file permissions and user’s group membership (see Section 1.2.3).
1.1.4 The root shell prompt

Here are a few basic methods to gain the root shell prompt by using the root password.

- Type `root` at the character based login prompt.
- Click "Applications" → "Accessories" → "Root Terminal", under the GNOME Desktop environment.
- Type "su -l" from any user shell prompt.
 - This does not preserve the environment of the current user.
- Type "su" from any user shell prompt.
 - This preserves some of the environment of the current user.

1.1.5 GUI system administration tools

When your desktop menu does not start GUI system administration tools automatically with the appropriate privilege, you can start them from the root shell prompt of the X terminal emulator, such as gnome-terminal(1), rxvt(1), or xterm(1). See Section 1.1.4 and Section 7.8.5.

Warning

Never start the X display/session manager under the root account by typing in `root` to the prompt of the display manager such as gdm3(1).

Warning

Never run untrusted remote GUI program under X Window when critical information is displayed since it may eavesdrop your X screen.

1.1.6 Virtual consoles

In the default Debian system, there are six switchable VT100-like character consoles available to start the command shell directly on the Linux host. Unless you are in a GUI environment, you can switch between the virtual consoles by pressing the Left-Alt-key and one of the F1—F6 keys simultaneously. Each character console allows independent login to the account and offers the multiuser environment. This multiuser environment is a great Unix feature, and very addictive.

If you are under the X Window System, you gain access to the character console 1 by pressing Ctrl-Alt-F1 key, i.e., the left-Ctrl-key, the left-Alt-key, and the F1-key are pressed together. You can get back to the X Window System, normally running on the virtual console 7, by pressing Alt-F7.

You can alternatively change to another virtual console, e.g. to the console 1, from the commandline.

```
# chvt 1
```

1.1.7 How to leave the command prompt

You type Ctrl-D, i.e., the left-Ctrl-key and the d-key pressed together, at the command prompt to close the shell activity. If you are at the character console, you return to the login prompt with this. Even though these control characters are referred as "control D" with the upper case, you do not need to press the Shift-key. The short hand expression, ^D, is also used for Ctrl-D. Alternately, you can type "exit".

If you are at x-terminal-emulator(1), you can close x-terminal-emulator window with this.
1.1.8 How to shutdown the system

Just like any other modern OS where the file operation involves caching data in memory for improved performance, the Debian system needs the proper shutdown procedure before power can safely be turned off. This is to maintain the integrity of files, by forcing all changes in memory to be written to disk. If the software power control is available, the shutdown procedure automatically turns off power of the system. (Otherwise, you may have to press power button for few seconds after the shutdown procedure.)

You can shutdown the system under the normal multiuser mode from the command line.

```
# shutdown -h now
```

You can shutdown the system under the single-user mode from the command line.

```
# poweroff -i -f
```

Alternatively, you may type `Ctrl-Alt-Delete` (The left-Ctrl-key, the left-Alt-Key, and the Delete are pressed together) to shutdown if “/etc/inittab” contains “ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -h now” in it. See inittab(5) for details.

See Section 6.9.6.

1.1.9 Recovering a sane console

When the screen goes berserk after doing some funny things such as “cat <some-binary-file>”, type “reset” at the command prompt. You may not be able to see the command echoed as you type. You may also issue “clear” to clean up the screen.

1.1.10 Additional package suggestions for the newbie

Although even the minimal installation of the Debian system without any desktop environment tasks provides the basic Unix functionality, it is a good idea to install few additional commandline and curses based character terminal packages such as `mc` and `vim` with `apt-get(8)` for beginners to get started by the following.

```
# apt-get update
...  
# apt-get install mc vim sudo  
...  
```

If you already had these packages installed, no new packages are installed.

It may be a good idea to read some informative documentations.

You can install some of these packages by the following.

```
# apt-get install package_name
```
Table 1.1: List of interesting text-mode program packages

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mc</td>
<td>V:66,I:237</td>
<td>1450</td>
<td>A text-mode full-screen file manager</td>
</tr>
<tr>
<td>sudo</td>
<td>V:517,I:739</td>
<td>3795</td>
<td>A program to allow limited root privileges to users</td>
</tr>
<tr>
<td>vim</td>
<td>V:119,I:395</td>
<td>2799</td>
<td>Unix text editor Vi IMproved, a programmer's text editor (standard version)</td>
</tr>
<tr>
<td>vim-tiny</td>
<td>V:64,I:969</td>
<td>1343</td>
<td>Unix text editor Vi IMproved, a programmer's text editor (compact version)</td>
</tr>
<tr>
<td>emacs25</td>
<td>V:4,I:14</td>
<td>75</td>
<td>GNU project Emacs, the Lisp based extensible text editor</td>
</tr>
<tr>
<td>w3m</td>
<td>V:80,I:433</td>
<td>2323</td>
<td>Text-mode WWW browsers</td>
</tr>
<tr>
<td>gpm</td>
<td>V:11,I:19</td>
<td>497</td>
<td>The Unix style cut-and-paste on the text console (daemon)</td>
</tr>
</tbody>
</table>

Table 1.2: List of informative documentation packages

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>doc-debian</td>
<td>I:859</td>
<td>166</td>
<td>Debian Project documentation, (Debian FAQ) and other documents</td>
</tr>
<tr>
<td>debian-policy</td>
<td>I:62</td>
<td>4245</td>
<td>Debian Policy Manual and related documents</td>
</tr>
<tr>
<td>developers-reference</td>
<td>I:6</td>
<td>1308</td>
<td>Guidelines and information for Debian developers</td>
</tr>
<tr>
<td>maint-guide</td>
<td>I:4</td>
<td>989</td>
<td>Debian New Maintainers' Guide</td>
</tr>
<tr>
<td>debian-history</td>
<td>I:1</td>
<td>4059</td>
<td>History of the Debian Project</td>
</tr>
<tr>
<td>debian-faq</td>
<td>I:852</td>
<td>1277</td>
<td>Debian FAQ</td>
</tr>
</tbody>
</table>

1.1.11 An extra user account

If you do not want to use your main user account for the following training activities, you can create a training user account, e.g. fish by the following.

```
# adduser fish
```

Answer all questions.

This creates a new account named as fish. After your practice, you can remove this user account and its home directory by the following.

```
# deluser --remove-home fish
```

1.1.12 sudo configuration

For the typical single user workstation such as the desktop Debian system on the laptop PC, it is common to deploy simple configuration of sudo(8) as follows to let the non-privileged user, e.g. penguin, to gain administrative privilege just with his user password but without the root password.

```
# echo "penguin ALL=(ALL) ALL" >> /etc/sudoers
```

Alternatively, it is also common to do as follows to let the non-privileged user, e.g. penguin, to gain administrative privilege without any password.

```
# echo "penguin ALL=(ALL) NOPASSWD:ALL" >> /etc/sudoers
```
This trick should only be used for the single user workstation which you administer and where you are the only user.

⚠️ **Warning**
Do not set up accounts of regular users on multiuser workstation like this because it would be very bad for system security.

⚠️ **Caution**
The password and the account of the penguin in the above example requires as much protection as the root password and the root account.

⚠️ **Caution**
Administrative privilege in this context belongs to someone authorized to perform the system administration task on the workstation. Never give some manager in the Admin department of your company or your boss such privilege unless they are authorized and capable.

Note
For providing access privilege to limited devices and limited files, you should consider to use `group` to provide limited access instead of using the `root` privilege via `sudo(8)`.

Note
With more thoughtful and careful configuration, `sudo(8)` can grant limited administrative privileges to other users on a shared system without sharing the root password. This can help with accountability with hosts with multiple administrators so you can tell who did what. On the other hand, you might not want anyone else to have such privileges.

1.1.13 Play time

Now you are ready to play with the Debian system without risks as long as you use the non-privileged user account.

This is because the Debian system is, even after the default installation, configured with proper file permissions which prevent non-privileged users from damaging the system. Of course, there may still be some holes which can be exploited but those who worry about these issues should not be reading this section but should be reading *Securing Debian Manual*.

We learn the Debian system as a **Unix-like** system with the following.

- Section 1.2 (basic concept)
- Section 1.3 (survival method)
- Section 1.4 (basic method)
- Section 1.5 (shell mechanism)
- Section 1.6 (text processing method)
1.2 Unix-like filesystem

In GNU/Linux and other Unix-like operating systems, files are organized into directories. All files and directories are arranged in one big tree rooted at "/". It’s called a tree because if you draw the filesystem, it looks like a tree but it is upside down.

These files and directories can be spread out over several devices. mount(8) serves to attach the filesystem found on some device to the big file tree. Conversely, umount(8) detaches it again. On recent Linux kernels, mount(8) with some options can bind part of a file tree somewhere else or can mount filesystem as shared, private, slave, or unbindable. Supported mount options for each filesystem are available in "/usr/share/doc/linux-doc-*/Documentation/filesystems/".

Directories on Unix systems are called folders on some other systems. Please also note that there is no concept for drive such as "A:" on any Unix system. There is one filesystem, and everything is included. This is a huge advantage compared to Windows.

1.2.1 Unix file basics

Here are some Unix file basics.

- Filenames are case sensitive. That is, "MYFILE" and "MyFile" are different files.
- The root directory means root of the filesystem referred as simply "/". Don’t confuse this with the home directory for the root user: "/root".
- Every directory has a name which can contain any letters or symbols except "/". The root directory is an exception; its name is "/" (pronounced "slash" or "the root directory") and it cannot be renamed.
- Each file or directory is designated by a fully-qualified filename, absolute filename, or path, giving the sequence of directories which must be passed through to reach it. The three terms are synonymous.
- All fully-qualified filenames begin with the "/" directory, and there’s a "/" between each directory or file in the filename. The first "/" is the top level directory, and the other "/"’s separate successive subdirectories, until we reach the last entry which is the name of the actual file. The words used here can be confusing. Take the following fully-qualified filename as an example: "/usr/share/keytables/us.map.gz". However, people also refers to its basename "us.map.gz" alone as a filename.
- The root directory has a number of branches, such as "/etc/" and "/usr/". These subdirectories in turn branch into still more subdirectories, such as "/etc/init.d/" and "/usr/local/". The whole thing viewed collectively is called the directory tree. You can think of an absolute filename as a route from the base of the tree ("/") to the end of some branch (a file). You also hear people talk about the directory tree as if it were a family tree encompassing all direct descendants of a single figure called the root directory ("/"): thus subdirectories have parents, and a path shows the complete ancestry of a file. There are also relative paths that begin somewhere other than the root directory. You should remember that the directory "../" refers to the parent directory. This terminology also applies to other directory like structures, such as hierarchical data structures.
- There's no special directory path name component that corresponds to a physical device, such as your hard disk. This differs from RT-11, CP/M, OpenVMS, MS-DOS, AmigaOS, and Microsoft Windows, where the path contains a device name such as "C:\". (However, directory entries do exist that refer to physical devices as a part of the normal filesystem. See Section 1.2.2.)

Note
While you can use almost any letters or symbols in a file name, in practice it is a bad idea to do so. It is better to avoid any characters that often have special meanings on the command line, including spaces, tabs, newlines, and other special characters: { } () [] ‘ ’ " \ / > < | ; ! # & ^ * % @ $. If you want to separate words in a name, good choices are the period, hyphen, and underscore. You could also capitalize each word, "LikeThis". Experienced Linux users tend to avoid spaces in filenames.

Note
The word "root" can mean either "root user" or "root directory". The context of their usage should make it clear.
Note
The word path is used not only for fully-qualified filename as above but also for the command search path. The intended meaning is usually clear from the context.

The detailed best practices for the file hierarchy are described in the Filesystem Hierarchy Standard ("/usr/share/doc/debian-policy/fhs/fhs-2.3.txt.gz" and hier(7)). You should remember the following facts as the starter.

<table>
<thead>
<tr>
<th>directory</th>
<th>usage of the directory</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>the root directory</td>
</tr>
<tr>
<td>/etc/</td>
<td>system wide configuration files</td>
</tr>
<tr>
<td>/var/log/</td>
<td>system log files</td>
</tr>
<tr>
<td>/home/</td>
<td>all the home directories for all non-privileged users</td>
</tr>
</tbody>
</table>

Table 1.3: List of usage of key directories

1.2.2 Filesystem internals

Following the Unix tradition, the Debian GNU/Linux system provides the filesystem under which physical data on hard disks and other storage devices reside, and the interaction with the hardware devices such as console screens and remote serial consoles are represented in an unified manner under "/dev/".

Each file, directory, named pipe (a way two programs can share data), or physical device on a Debian GNU/Linux system has a data structure called an inode which describes its associated attributes such as the user who owns it (owner), the group that it belongs to, the time last accessed, etc. The idea of representing just about everything in the filesystem was a Unix innovation, and modern Linux kernels have developed this idea ever further. Now, even information about processes running in the computer can be found in the filesystem.

This abstract and unified representation of physical entities and internal processes is very powerful since this allows us to use the same command for the same kind of operation on many totally different devices. It is even possible to change the way the kernel works by writing data to special files that are linked to running processes.

Tip
If you need to identify the correspondence between the file tree and the physical entity, execute mount(8) with no arguments.

1.2.3 Filesystem permissions

Filesystem permissions of Unix-like system are defined for three categories of affected users.

- The user who owns the file (u)
- Other users in the group which the file belongs to (g)
- All other users (o) also referred to as "world" and "everyone"

For the file, each corresponding permission allows following actions.

- The read (r) permission allows owner to examine contents of the file.
- The write (w) permission allows owner to modify the file.
- The execute (x) permission allows owner to run the file as a command.
For the directory, each corresponding permission allows following actions.

- **The read (r)** permission allows owner to list contents of the directory.
- **The write (w)** permission allows owner to add or remove files in the directory.
- **The execute (x)** permission allows owner to access files in the directory.

Here, the **execute** permission on a directory means not only to allow reading of files in that directory but also to allow viewing their attributes, such as the size and the modification time.

`ls(1)` is used to display permission information (and more) for files and directories. When it is invoked with the "-l" option, it displays the following information in the order given.

- **Type of file** (first character)
- **Access permission** of the file (nine characters, consisting of three characters each for user, group, and other in this order)
- **Number of hard links** to the file
- Name of the **user** who owns the file
- Name of the **group** which the file belongs to
- **Size** of the file in characters (bytes)
- **Date and time** of the file (mtime)
- **Name** of the file

<table>
<thead>
<tr>
<th>character</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>normal file</td>
</tr>
<tr>
<td>d</td>
<td>directory</td>
</tr>
<tr>
<td>l</td>
<td>symlink</td>
</tr>
<tr>
<td>c</td>
<td>character device node</td>
</tr>
<tr>
<td>b</td>
<td>block device node</td>
</tr>
<tr>
<td>p</td>
<td>named pipe</td>
</tr>
<tr>
<td>s</td>
<td>socket</td>
</tr>
</tbody>
</table>

Table 1.4: List of the first character of "ls -l" output

`chown(1)` is used from the root account to change the owner of the file. `chgrp(1)` is used from the file’s owner or root account to change the group of the file. `chmod(1)` is used from the file’s owner or root account to change file and directory access permissions. Basic syntax to manipulate a `foo` file is the following.

```bash
# chown <newowner> foo
# chgrp <newgroup> foo
# chmod [ugo][+][-][rwxXst][,...] foo
```

For example, you can make a directory tree to be owned by a user `foo` and shared by a group `bar` by the following.

```bash
# cd /some/location/
# chown -R foo:bar .
# chmod -R ug+rwX,o=rX .
```

There are three more special permission bits.
• The set user ID bit (s or S instead of user’s x)
• The set group ID bit (s or S instead of group’s x)
• The sticky bit (t or T instead of other’s x)

Here the output of "ls -l" for these bits is capitalized if execution bits hidden by these outputs are unset.

Setting set user ID on an executable file allows a user to execute the executable file with the owner ID of the file (for example root). Similarly, setting set group ID on an executable file allows a user to execute the executable file with the group ID of the file (for example root). Because these settings can cause security risks, enabling them requires extra caution.

Setting set group ID on a directory enables the BSD-like file creation scheme where all files created in the directory belong to the group of the directory.

Setting the sticky bit on a directory prevents a file in the directory from being removed by a user who is not the owner of the file. In order to secure contents of a file in world-writable directories such as "/tmp" or in group-writable directories, one must not only reset the write permission for the file but also set the sticky bit on the directory. Otherwise, the file can be removed and a new file can be created with the same name by any user who has write access to the directory.

Here are a few interesting examples of file permissions.

There is an alternative numeric mode to describe file permissions with chmod(1). This numeric mode uses 3 to 4 digit wide octal (radix=8) numbers.

<table>
<thead>
<tr>
<th>digit</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st optional digit</td>
<td>sum of set user ID (=4), set group ID (=2), and sticky bit (=1)</td>
</tr>
<tr>
<td>2nd digit</td>
<td>sum of read (=4), write (=2), and execute (=1) permissions for user</td>
</tr>
<tr>
<td>3rd digit</td>
<td>ditto for group</td>
</tr>
<tr>
<td>4th digit</td>
<td>ditto for other</td>
</tr>
</tbody>
</table>

Table 1.5: The numeric mode for file permissions in chmod(1) commands

This sounds complicated but it is actually quite simple. If you look at the first few (2-10) columns from "ls -l" command output and read it as a binary (radix=2) representation of file permissions ("-" being "0" and "rwx" being "1"), the last 3 digit of the numeric mode value should make sense as an octal (radix=8) representation of file permissions to you.

For example, try the following

```
$ ls -l /etc/passwd /etc/shadow /dev/ppp /usr/sbin/exim4
```

```
crw-----T 1 root root 108, 0 Oct 16 20:57 /dev/ppp
-rw-r--r-- 1 root root 2761 Aug 30 18:38 /etc/passwd
-rw------- 1 root shadow 1695 Aug 30 18:38 /etc/shadow
-rw------- 1 root root 973824 Sep 23 22:04 /usr/sbin/exim4
$ ls -ld /tmp /var/tmp /usr/local /var/mail /usr/src
drwxrwxrwt 14 root root 20480 Oct 16 21:25 /tmp
drwxrwxsr-x 10 root staff 4096 Sep 29 22:50 /usr/local
drwxr-xr-x 10 root root 4096 Oct 11 00:28 /usr/src
drwxrwxr-x 2 root mail 4096 Oct 15 21:40 /var/mail
drwxrwxrwt 3 root root 4096 Oct 16 21:20 /var/tmp
```
If you need to access information displayed by "ls -l" in shell script, you should use pertinent commands such as test(1), stat(1) and readlink(1). The shell builtin such as "[" or "test" may be used too.

1.2.4 Control of permissions for newly created files: umask

What permissions are applied to a newly created file or directory is restricted by the `umask` shell builtin command. See `dash(1)`, `bash(1)`, and `builtins(7)`.

\[(\text{file permissions}) = (\text{requested file permissions}) \& \neg (\text{umask value})\]

<table>
<thead>
<tr>
<th>umask</th>
<th>file permissions created</th>
<th>directory permissions created</th>
<th>usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0022</td>
<td>-rw-r--r--</td>
<td>-rwxr-xr-x</td>
<td>writable only by the user</td>
</tr>
<tr>
<td>0002</td>
<td>-rw-rw-r--</td>
<td>-rwxrwxr-x</td>
<td>writable by the group</td>
</tr>
</tbody>
</table>

Table 1.6: The `umask` value examples

The Debian system uses a user private group (UPG) scheme as its default. A UPG is created whenever a new user is added to the system. A UPG has the same name as the user for which it was created and that user is the only member of the UPG. UPG scheme makes it safe to set umask to 0002 since every user has their own private group. (In some Unix variants, it is quite common to setup all normal users belonging to a single `users` group and is a good idea to set umask to 0022 for security in such cases.)

Tip

Enable UPG by putting "umask 002" in the `~/.bashrc` file.

1.2.5 Permissions for groups of users (group)

In order to make group permissions to be applied to a particular user, that user needs to be made a member of the group using "sudo vigr" for `/etc/group` and "sudo vigr -s" for `/etc/gshadow`. You need to login after logout (or run "exec newgrp") to enable the new group configuration.

Note

Alternatively, you may dynamically add users to groups during the authentication process by adding "auth optional pam_group.so" line to "/etc/pam.d/common-auth" and setting "/etc/security/group.conf". (See Chapter 4.)

The hardware devices are just another kind of file on the Debian system. If you have problems accessing devices such as CD-ROM and USB memory stick from a user account, you should make that user a member of the relevant group.

Some notable system-provided groups allow their members to access particular files and devices without `root` privilege.

Tip

You need to belong to the `dialout` group to reconfigure modem, dial anywhere, etc. But if `root` creates predefined configuration files for trusted peers in "/etc/ppp/peers/", you only need to belong to the `dip` group to create Dialup IP connection to those trusted peers using `pppd(8)`, `pon(1)`, and `poff(1)` commands.
<table>
<thead>
<tr>
<th>group</th>
<th>description for accessible files and devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>dialout</td>
<td>full and direct access to serial ports ("/dev/ttyS[0-3]")</td>
</tr>
<tr>
<td>dip</td>
<td>limited access to serial ports for Dialup IP connection to trusted peers</td>
</tr>
<tr>
<td>cdrom</td>
<td>CD-ROM, DVD+/-RW drives</td>
</tr>
<tr>
<td>audio</td>
<td>audio device</td>
</tr>
<tr>
<td>video</td>
<td>video device</td>
</tr>
<tr>
<td>scanner</td>
<td>scanner(s)</td>
</tr>
<tr>
<td>adm</td>
<td>system monitoring logs</td>
</tr>
<tr>
<td>staff</td>
<td>some directories for junior administrative work: "/usr/local", "/home"</td>
</tr>
</tbody>
</table>

Table 1.7: List of notable system-provided groups for file access

<table>
<thead>
<tr>
<th>group</th>
<th>accessible commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>sudo</td>
<td>execute sudo without their password</td>
</tr>
<tr>
<td>ladmin</td>
<td>execute commands to add, modify, and remove printers from printer databases</td>
</tr>
</tbody>
</table>

Table 1.8: List of notable system provided groups for particular command executions

Some notable system-provided groups allow their members to execute particular commands without **root** privilege. For the full listing of the system provided users and groups, see the recent version of the "Users and Groups” document in "/usr/share/doc/base-passwd/users-and-groups.html” provided by the base-passwd package. See passwd(5), group(5), shadow(5), newgrp(1), vipw(8), vigr(8), and pam_group(8) for management commands of the user and group system.

1.2.6 Timestamps

There are three types of timestamps for a GNU/Linux file.

<table>
<thead>
<tr>
<th>type</th>
<th>meaning (historic Unix definition)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mtime</td>
<td>the file modification time (ls -l)</td>
</tr>
<tr>
<td>ctime</td>
<td>the file status change time (ls -lC)</td>
</tr>
<tr>
<td>atime</td>
<td>the last file access time (ls -lu)</td>
</tr>
</tbody>
</table>

Table 1.9: List of types of timestamps

Note

ctime is not file creation time.

Note

The actual value of atime on GNU/Linux system may be different from that of the historic Unix definition.

- Overwriting a file changes all of the mtime, ctime, and atime attributes of the file.
- Changing ownership or permission of a file changes the ctime and atime attributes of the file.
- Reading a file changes the atime attribute of the file on the historic Unix system.
- Reading a file changes the atime attribute of the file on the GNU/Linux system if its filesystem is mounted with "strictatime".
- Reading a file for the first time or after one day changes the atime attribute of the file on the GNU/Linux system if its filesystem is mounted with "relatime". (default behavior since Linux 2.6.30)
• Reading a file doesn’t change the **atime** attribute of the file on the GNU/Linux system if its filesystem is mounted with "noatime".

Note
The "noatime" and "relatime" mount options are introduced to improve the filesystem read performance under the normal use cases. Simple file read operation under the "strictatime" option accompanies the time-consuming write operation to update the **atime** attribute. But the **atime** attribute is rarely used except for the **mbox(5)** file. See mount(8).

Use `touch(1)` command to change timestamps of existing files.

For timestamps, the **ls** command outputs different strings under non-English locale ("fr_FR.UTF-8") from under the old one ("C").

```
$ LANG=fr_FR.UTF-8  ls -l foo
-rw-rw-r-- 1 penguin penguin 0 oct. 16 21:35 foo
$ LANG=C  ls -l foo
-rw-rw-r-- 1 penguin penguin 0 Oct 16 21:35 foo
```

Tip
See Section 9.2.5 to customize "ls -l" output.

1.2.7 Links

There are two methods of associating a file "foo" with a different filename "bar".

• **Hard link**
 – Duplicate name for an existing file
 – "ln foo bar"

• **Symbolic link or symlink**
 – Special file that points to another file by name
 – "ln -s foo bar"

See the following example for changes in link counts and the subtle differences in the result of the **rm** command.

```
$ umask 002
$ echo "Original Content" > foo
$ ls -li foo
1449840 -rw-rw-r-- 1 penguin penguin 17 Oct 16 21:42 foo
$ ln foo bar # hard link
$ ln -s foo baz # symlink
$ ls -li foo bar baz
1449840 -rw-rw-r-- 2 penguin penguin 17 Oct 16 21:42 bar
1450180 lrwxrwxrwx 1 penguin penguin 3 Oct 16 21:47 baz -> foo
1449840 -rw-rw-r-- 2 penguin penguin 17 Oct 16 21:42 foo
$ rm foo
$ echo "New Content" > foo
$ ls -li foo bar baz
1449840 -rw-rw-r-- 1 penguin penguin 17 Oct 16 21:42 bar
```
The hardlink can be made within the same filesystem and shares the same inode number which the "-i" option with ls(1) reveals. The symlink always has nominal file access permissions of "rwxrwxrwx", as shown in the above example, with the effective access permissions dictated by permissions of the file that it points to.

Caution

It is generally a good idea not to create complicated symbolic links or hardlinks at all unless you have a very good reason. It may cause nightmares where the logical combination of the symbolic links results in loops in the filesystem.

Note

It is generally preferable to use symbolic links rather than hardlinks unless you have a good reason for using a hardlink.

The "." directory links to the directory that it appears in, thus the link count of any new directory starts at 2. The ".." directory links to the parent directory, thus the link count of the directory increases with the addition of new subdirectories.

If you are just moving to Linux from Windows, it soon becomes clear how well-designed the filename linking of Unix is, compared with the nearest Windows equivalent of "shortcuts". Because it is implemented in the filesystem, applications can’t see any difference between a linked file and the original. In the case of hardlinks, there really is no difference.

1.2.8 Named pipes (FIFOs)

A named pipe is a file that acts like a pipe. You put something into the file, and it comes out the other end. Thus it’s called a FIFO, or First-In-First-Out: the first thing you put in the pipe is the first thing to come out the other end.

If you write to a named pipe, the process which is writing to the pipe doesn’t terminate until the information being written is read from the pipe. If you read from a named pipe, the reading process waits until there is nothing to read before terminating. The size of the pipe is always zero --- it does not store data, it just links two processes like the functionality offered by the shell "|" syntax. However, since this pipe has a name, the two processes don’t have to be on the same command line or even be run by the same user. Pipes were a very influential innovation of Unix.

For example, try the following

```
$ cd; mkfifo mypipe
$ echo "hello" >mypipe & # put into background
[1] 8022
$ ls -l mypipe
prw-rw-r-- 1 penguin penguin 0 Oct 16 21:49 mypipe
$ cat mypipe
hello
[1]+  Done  echo "hello" >mypipe
$ ls mypipe
mypipe
$ rm mypipe
```
1.2.9 Sockets

Sockets are used extensively by all the Internet communication, databases, and the operating system itself. It is similar to the named pipe (FIFO) and allows processes to exchange information even between different computers. For the socket, those processes do not need to be running at the same time nor to be running as the children of the same ancestor process. This is the endpoint for the inter process communication (IPC). The exchange of information may occur over the network between different hosts. The two most common ones are the Internet socket and the Unix domain socket.

Tip

"netstat -an" provides a very useful overview of sockets that are open on a given system.

1.2.10 Device files

Device files refer to physical or virtual devices on your system, such as your hard disk, video card, screen, or keyboard. An example of a virtual device is the console, represented by "/dev/console".

There are 2 types of device files.

- **Character device**
 - Accessed one character at a time
 - 1 character = 1 byte
 - E.g. keyboard device, serial port, ...

- **Block device**
 - accessed in larger units called blocks
 - 1 block > 1 byte
 - E.g. hard disk, ...

You can read and write device files, though the file may well contain binary data which may be an incomprehensible-to-humans gibberish. Writing data directly to these files is sometimes useful for the troubleshooting of hardware connections. For example, you can dump a text file to the printer device "/dev/lp0" or send modem commands to the appropriate serial port "/dev/ttyS0". But, unless this is done carefully, it may cause a major disaster. So be cautious.

Note

For the normal access to a printer, use lp(1).

The device node number are displayed by executing ls(1) as the following.

```bash
$ ls -l /dev/sda /dev/sr0 /dev/ttyS0 /dev/zero
brw-rw----T 1 root disk  8,  0 Oct 16 20:57 /dev/sda
brw-rw----T+1 root cdrom 11,  0 Oct 16 21:53 /dev/sr0
crw-rw----T 1 root dialout  4, 64 Oct 16 20:57 /dev/ttyS0
crw-rw-rw- 1 root root   1,  5 Oct 16 20:57 /dev/zero
```

- "/dev/sda" has the major device number 8 and the minor device number 0. This is read/write accessible by users belonging to the disk group.
- "/dev/sr0" has the major device number 11 and the minor device number 0. This is read/write accessible by users belonging to the cdrom group.
- "/dev/ttyS0" has the major device number 4 and the minor device number 64. This is read/write accessible by users belonging to the dialout group.
- "/dev/zero" has the major device number 1 and the minor device number 5. This is read/write accessible by anyone.

On the modern Linux system, the filesystem under "/dev/" is automatically populated by the udev(7) mechanism.
1.2.11 Special device files

There are some special device files.

<table>
<thead>
<tr>
<th>device file</th>
<th>action</th>
<th>description of response</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/null</td>
<td>read</td>
<td>return "end-of-file (EOF) character"</td>
</tr>
<tr>
<td>/dev/null</td>
<td>write</td>
<td>return nothing (a bottomless data dump pit)</td>
</tr>
<tr>
<td>/dev/zero</td>
<td>read</td>
<td>return "the \0 (NUL) character" (not the same as the number zero ASCII)</td>
</tr>
<tr>
<td>/dev/random</td>
<td>read</td>
<td>return random characters from a true random number generator, delivering real entropy (slow)</td>
</tr>
<tr>
<td>/dev/urandom</td>
<td>read</td>
<td>return random characters from a cryptographically secure pseudorandom number generator</td>
</tr>
<tr>
<td>/dev/full</td>
<td>write</td>
<td>return the disk-full (ENOFSPEC) error</td>
</tr>
</tbody>
</table>

Table 1.10: List of special device files

These are frequently used in conjunction with the shell redirection (see Section 1.5.8).

1.2.12 procfs and sysfs

The procfs and sysfs mounted on "/proc" and "/sys" are the pseudo-filesystem and expose internal data structures of the kernel to the userspace. In other word, these entries are virtual, meaning that they act as a convenient window into the operation of the operating system.

The directory "/proc" contains (among other things) one subdirectory for each process running on the system, which is named after the process ID (PID). System utilities that access process information, such as ps(1), get their information from this directory structure.

The directories under "/proc/sys/" contain interfaces to change certain kernel parameters at run time. (You may do the same through the specialized sysctl(8) command or its preload/configuration file "/etc/sysctl.conf").

People frequently panic when they notice one file in particular - "/proc/kcore" - which is generally huge. This is (more or less) a copy of the content of your computer’s memory. It’s used to debug the kernel. It is a virtual file that points to computer memory, so don’t worry about its size.

The directory under "/sys" contains exported kernel data structures, their attributes, and their linkages between them. It also contains interfaces to change certain kernel parameters at run time.

See "proc.txt(.gz)", "sysfs.txt(.gz)" and other related documents in the Linux kernel documentation ("/usr/share/doc/linux-doc-*/Documentation/filesystems/*") provided by the linux-doc-* package.

1.2.13 tmpfs

The tmpfs is a temporary filesystem which keeps all files in the virtual memory. The data of the tmpfs in the page cache on memory may be swapped out to the swap space on disk as needed.

The directory "/run" is mounted as the tmpfs in the early boot process. This enables writing to it even when the directory "/" is mounted as read-only. This is the new location for the storage of transient state files and replaces several locations described in the Filesystem Hierarchy Standard version 2.3:

- "/var/run" → "/run"
- "/var/lock" → "/run/lock"
- "/dev/shm" → "/run/shm"

See "tmpfs.txt(.gz)" in the Linux kernel documentation("/usr/share/doc/linux-doc-*/Documentation/filesystems/*") provided by the linux-doc-* package.
1.3 Midnight Commander (MC)

Midnight Commander (MC) is a GNU “Swiss army knife” for the Linux console and other terminal environments. This gives newbie a menu driven console experience which is much easier to learn than standard Unix commands.

You may need to install the Midnight Commander package which is titled “mc” by the following.

```sh
$ sudo apt-get install mc
```

Use the mc(1) command to explore the Debian system. This is the best way to learn. Please explore few interesting locations just using the cursor keys and Enter key.

- “/etc” and its subdirectories
- “/var/log” and its subdirectories
- “/usr/share/doc” and its subdirectories
- “/sbin” and “/bin”

1.3.1 Customization of MC

In order to make MC to change working directory upon exit and cd to the directory, I suggest to modify “~/.bashrc” to include a script provided by the mc package.

```sh
. /usr/lib/mc/mc.sh
```

See mc(1) (under the “-P” option) for the reason. (If you do not understand what exactly I am talking here, you can do this later.)

1.3.2 Starting MC

MC can be started by the following.

```sh
$ mc
```

MC takes care of all file operations through its menu, requiring minimal user effort. Just press F1 to get the help screen. You can play with MC just by pressing cursor-keys and function-keys.

Note

In some consoles such as gnome-terminal(1), key strokes of function-keys may be stolen by the console program. You can disable these features by "Edit" → "Keyboard Shortcuts" for gnome-terminal.

If you encounter character encoding problem which displays garbage characters, adding “-a” to MC’s command line may help prevent problems.

If this doesn’t clear up your display problems with MC, see Section 9.4.6.

1.3.3 File manager in MC

The default is two directory panels containing file lists. Another useful mode is to set the right window to ”information” to see file access privilege information, etc. Following are some essential keystrokes. With the gpm(8) daemon running, one can use a mouse on Linux character consoles, too. (Make sure to press the shift-key to obtain the normal behavior of cut and paste in MC.)
1.3.4 Command-line tricks in MC

- **cd** command changes the directory shown on the selected screen.
- **Ctrl-Enter** or **Alt-Enter** copies a filename to the command line. Use this with **cp(1)** and **mv(1)** commands together with command-line editing.
- **Alt-Tab** shows shell filename expansion choices.
- One can specify the starting directory for both windows as arguments to **MC**; for example, "`mc /etc /root`".
- **Esc + n-key → Fn** (i.e., **Esc + 1 → F1**, etc.; **Esc + 0 → F10**)
- Pressing **Esc** before the key has the same effect as pressing the **Alt** and the key together; i.e., type **Esc + c** for **Alt-C.Esc** is called meta-key and sometimes noted as "M-".

1.3.5 The internal editor in MC

The internal editor has an interesting cut-and-paste scheme. Pressing **F3** marks the start of a selection, a second **F3** marks the end of selection and highlights the selection. Then you can move your cursor. If you press **F6**, the selected area is moved to the cursor location. If you press **F5**, the selected area is copied and inserted at the cursor location. **F2** saves the file. **F10** gets you out. Most cursor keys work intuitively.

This editor can be directly started on a file using one of the following commands.

```bash
$ mc -e filename_to_edit
```

```bash
$ mcedit filename_to_edit
```

This is not a multi-window editor, but one can use multiple Linux consoles to achieve the same effect. To copy between windows, use **Alt-F<n>** keys to switch virtual consoles and use "File→Insert file" or "File→Copy to file" to move a portion of a file to another file.

This internal editor can be replaced with any external editor of choice.

Also, many programs use the environment variables "$EDITOR" or "$VISUAL" to decide which editor to use. If you are uncomfortable with vim(1) or nano(1) initially, you may set these to "mcedit" by adding the following lines to "~/.bashrc".

```bash
export EDITOR=mcedit
export VISUAL=mcedit
```

I do recommend setting these to "vim" if possible.

If you are uncomfortable with vim(1), you can keep using mcedit(1) for most system maintenance tasks.
1.3.6 The internal viewer in MC

MC is a very smart viewer. This is a great tool for searching words in documents. I always use this for files in the "/usr/share/doc" directory. This is the fastest way to browse through masses of Linux information. This viewer can be directly started using one of the following commands.

```
$ mc -v path/to/filename_to_view
```

```
$ mcview path/to/filename_to_view
```

1.3.7 Auto-start features of MC

Press Enter on a file, and the appropriate program handles the content of the file (see Section 9.3.11). This is a very convenient MC feature.

<table>
<thead>
<tr>
<th>File type</th>
<th>Reaction to enter key</th>
</tr>
</thead>
<tbody>
<tr>
<td>executable file</td>
<td>execute command</td>
</tr>
<tr>
<td>man file</td>
<td>pipe content to viewer software</td>
</tr>
<tr>
<td>html file</td>
<td>pipe content to web browser</td>
</tr>
<tr>
<td>".tar.gz" and ".deb" file</td>
<td>browse its contents as if subdirectory</td>
</tr>
</tbody>
</table>

Table 1.12: The reaction to the enter key in MC

In order to allow these viewer and virtual file features to function, viewable files should not be set as executable. Change their status using chmod(1) or via the MC file menu.

1.3.8 FTP virtual filesystem of MC

MC can be used to access files over the Internet using FTP. Go to the menu by pressing F9, then type "p" to activate the FTP virtual filesystem. Enter a URL in the form "username:passwd@hostname.domainname", which retrieves a remote directory that appears like a local one.

Try "[deb.debian.org/debian]" as the URL and browse the Debian archive.

1.4 The basic Unix-like work environment

Although MC enables you to do almost everything, it is very important for you to learn how to use the command line tools invoked from the shell prompt and become familiar with the Unix-like work environment.

1.4.1 The login shell

You can select your login shell with chsh(1).

Tip

Although POSIX-like shells share the basic syntax, they can differ in behavior for things as basic as shell variables and glob expansions. Please check their documentation for details.

In this tutorial chapter, the interactive shell always means `bash`.
1.4.2 Customizing bash

You can customize bash(1) behavior by "~/.bashrc".

For example, try the following.

```bash
# enable bash-completion
if ! shopt -oq posix; then
    if [ -f /usr/share/bash-completion/bash_completion ]; then
        /usr/share/bash-completion/bash_completion
    elif [ -f /etc/bash_completion ]; then
        /etc/bash_completion
    fi
fi

# CD upon exiting MC
. /usr/lib/mc/mc

# set CDPATH to a good one
CDPATH=./usr/share/doc:~:~:/Desktop:
export CDPATH

PATH="${PATH:+$PATH:}/usr/sbin:/sbin"
# set PATH so it includes user’s private bin if it exists
if [ -d ~/.bin ]; then
    PATH="~/.bin$PATH"
fi
export PATH

EDITOR=vim
export EDITOR
```

Tip

You can find more bash customization tips, such as Section 9.2.7, in Chapter 9.

Tip

The bash-completion package enables programmable completion for bash.
1.4.3 Special key strokes

In the Unix-like environment, there are few key strokes which have special meanings. Please note that on a normal Linux character console, only the left-hand Ctrl and Alt keys work as expected. Here are few notable key strokes to remember.

<table>
<thead>
<tr>
<th>key</th>
<th>description of key binding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl-U</td>
<td>erase line before cursor</td>
</tr>
<tr>
<td>Ctrl-H</td>
<td>erase a character before cursor</td>
</tr>
<tr>
<td>Ctrl-D</td>
<td>terminate input (exit shell if you are using shell)</td>
</tr>
<tr>
<td>Ctrl-C</td>
<td>terminate a running program</td>
</tr>
<tr>
<td>Ctrl-Z</td>
<td>temporarily stop program by moving it to the background job</td>
</tr>
<tr>
<td>Ctrl-S</td>
<td>halt output to screen</td>
</tr>
<tr>
<td>Ctrl-Q</td>
<td>reactivate output to screen</td>
</tr>
<tr>
<td>Ctrl-Alt-Del</td>
<td>reboot/halt the system, see init(5)</td>
</tr>
<tr>
<td>Left-Alt-key</td>
<td>meta-key for Emacs and the similar UI</td>
</tr>
<tr>
<td>Up-arrow</td>
<td>start command history search under bash</td>
</tr>
<tr>
<td>Ctrl-R</td>
<td>start incremental command history search under bash</td>
</tr>
<tr>
<td>Tab</td>
<td>complete input of the filename to the command line under bash</td>
</tr>
<tr>
<td>Ctrl-V Tab</td>
<td>input Tab without expansion to the command line under bash</td>
</tr>
</tbody>
</table>

Table 1.14: List of key bindings for bash

Tip

The terminal feature of Ctrl-S can be disabled using stty(1).

1.4.4 Unix style mouse operations

Unix style mouse operations are based on the 3 button mouse system.

<table>
<thead>
<tr>
<th>action</th>
<th>response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left-click-and-drag mouse</td>
<td>select and copy to the clipboard</td>
</tr>
<tr>
<td>Left-click</td>
<td>select the start of selection</td>
</tr>
<tr>
<td>Right-click</td>
<td>select the end of selection and copy to the clipboard</td>
</tr>
<tr>
<td>Middle-click</td>
<td>paste clipboard at the cursor</td>
</tr>
</tbody>
</table>

Table 1.15: List of Unix style mouse operations

The center wheel on the modern wheel mouse is considered middle mouse button and can be used for middle-click. Clicking left and right mouse buttons together serves as the middle-click under the 2 button mouse system situation. In order to use a mouse in Linux character consoles, you need to have gpm(8) running as daemon.

1.4.5 The pager

The less(1) command is the enhanced pager (file content browser). It reads the file specified by its command argument or its standard input. Hit "h" if you need help while browsing with the less command. It can do much more than more(1) and can be supercharged by executing "eval $(lesspipe)" or "eval $(lessfile)" in the shell startup script. See more in "/usr/share/doc/less/LESSOPEN". The "-R" option allows raw character output and enables ANSI color escape sequences. See less(1).
1.4.6 The text editor

You should become proficient in one of variants of Vim or Emacs programs which are popular in the Unix-like system.

I think getting used to Vim commands is the right thing to do, since Vi-editor is always there in the Linux/Unix world. (Actually, original vi or new nvi are programs you find everywhere. I chose Vim instead for newbie since it offers you help through F1 key while it is similar enough and more powerful.)

If you chose either Emacs or XEmacs instead as your choice of the editor, that is another good choice indeed, particularly for programming. Emacs has a plethora of other features as well, including functioning as a newsreader, directory editor, mail program, etc. When used for programming or editing shell scripts, it intelligently recognizes the format of what you are working on, and tries to provide assistance. Some people maintain that the only program they need on Linux is Emacs. Ten minutes learning Emacs now can save hours later. Having the GNU Emacs manual for reference when learning Emacs is highly recommended.

All these programs usually come with tutoring program for you to learn them by practice. Start Vim by typing "vim" and press F1-key. You should at least read the first 35 lines. Then do the online training course by moving cursor to "|tutor|" and pressing Ctrl-].

Note
Good editors, such as Vim and Emacs, can handle UTF-8 and other exotic encoding texts correctly. It is a good idea to use the X environment in the UTF-8 locale and to install required programs and fonts to it. Editors have options to set the file encoding independent of the X environment. Please refer to their documentation on multibyte text.

1.4.7 Setting a default text editor

Debian comes with a number of different editors. We recommend to install the vim package, as mentioned above.

Debian provides unified access to the system default editor via command "/usr/bin/editor" so other programs (e.g., reportbug(1)) can invoke it. You can change it by the following.

```
$ sudo update-alternatives --config editor
```

The choice "/usr/bin/vim.basic" over "/usr/bin/vim.tiny" is my recommendation for newbies since it supports syntax highlighting.

Tip
Many programs use the environment variables "$EDITOR" or "$VISUAL" to decide which editor to use (see Section 1.3.5 and Section 9.3.11). For the consistency on the Debian system, set these to "/usr/bin/editor". (Historically, "$EDITOR" was "ed" and "$VISUAL" was "vi".)

1.4.8 Customizing vim

You can customize vim(1) behavior by "~/vimrc".

For example, try the following

```
" -------------------------------
" Local configuration
" set nocompatible
set nopaste
set pastetoggle=<f2>
```


1.4.9 Recording the shell activities

The output of the shell command may roll off your screen and may be lost forever. It is a good practice to log shell activities into the file for you to review them later. This kind of record is essential when you perform any system administration tasks.

The basic method of recording the shell activity is to run it under script(1).

For example, try the following

```
$ script
Script started, file is typescript

Do whatever shell commands under script.
Press Ctrl-D to exit script.

$ vim typescript
```

See Section 9.2.3.

1.4.10 Basic Unix commands

Let’s learn basic Unix commands. Here I use "Unix" in its generic sense. Any Unix clone OSs usually offer equivalent commands. The Debian system is no exception. Do not worry if some commands do not work as you wish now. If alias is used in the shell, its corresponding command outputs are different. These examples are not meant to be executed in this order.

Try all following commands from the non-privileged user account.

Note

Unix has a tradition to hide filenames which start with ".". They are traditionally files that contain configuration information and user preferences.

Note

For cd command, see builtins(7).

Note

The default pager of the bare bone Debian system is more(1) which cannot scroll back. By installing the less package using command line “apt-get install less”, less(1) becomes default pager and you can scroll back with cursor keys.
<table>
<thead>
<tr>
<th>command</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pwd</td>
<td>display name of current/working directory</td>
</tr>
<tr>
<td>whoami</td>
<td>display current user name</td>
</tr>
<tr>
<td>id</td>
<td>display current user identity (name, uid, gid, and associated groups)</td>
</tr>
<tr>
<td>file <foo></td>
<td>display a type of file for the file "<foo>"</td>
</tr>
<tr>
<td>type -p <commandname></td>
<td>display a file location of command "<commandname>"</td>
</tr>
<tr>
<td>which <commandname></td>
<td>display information on command "<commandname>"</td>
</tr>
<tr>
<td>type <commandname></td>
<td>display information on command "<commandname>"</td>
</tr>
<tr>
<td>apropos <key-word></td>
<td>find commands related to "<key-word>"</td>
</tr>
<tr>
<td>man -k <key-word></td>
<td>..</td>
</tr>
<tr>
<td>whatis <commandname></td>
<td>display one line explanation on command "<commandname>"</td>
</tr>
<tr>
<td>man -a <commandname></td>
<td>display explanation on command "<commandname>" (Unix style)</td>
</tr>
<tr>
<td>info <commandname></td>
<td>display rather long explanation on command "<commandname>" (GNU style)</td>
</tr>
<tr>
<td>ls</td>
<td>list contents of directory (non-dot files and directories)</td>
</tr>
<tr>
<td>ls -a</td>
<td>list contents of directory (all files and directories)</td>
</tr>
<tr>
<td>ls -A</td>
<td>list contents of directory (almost all files and directories, i.e., skip "." and ".")</td>
</tr>
<tr>
<td>ls -la</td>
<td>list all contents of directory with detail information</td>
</tr>
<tr>
<td>ls -lai</td>
<td>list all contents of directory with inode number and detail information</td>
</tr>
<tr>
<td>ls -d</td>
<td>list all directories under the current directory</td>
</tr>
<tr>
<td>tree</td>
<td>display file tree contents</td>
</tr>
<tr>
<td>lsot <foo></td>
<td>list open status of file "<foo>"</td>
</tr>
<tr>
<td>lsot -p <pid></td>
<td>list files opened by the process ID: "<pid>"</td>
</tr>
<tr>
<td>mkdir <foo></td>
<td>make a new directory "<foo>" in the current directory</td>
</tr>
<tr>
<td>rmdir <foo></td>
<td>remove a directory "<foo>" in the current directory</td>
</tr>
<tr>
<td>cd <foo></td>
<td>change directory to the directory "<foo>" in the current directory or in the directory listed in the variable "$CDPATH$"</td>
</tr>
<tr>
<td>cd /</td>
<td>change directory to the root directory</td>
</tr>
<tr>
<td>cd </foo></td>
<td>change directory to the current user's home directory</td>
</tr>
<tr>
<td>cd /<foo></td>
<td>change directory to the absolute path directory "/<foo>"</td>
</tr>
<tr>
<td>cd ..</td>
<td>change directory to the parent directory</td>
</tr>
<tr>
<td>cd ~<foo></td>
<td>change directory to the home directory of the user "<foo>"</td>
</tr>
<tr>
<td>cd -</td>
<td>change directory to the previous directory</td>
</tr>
<tr>
<td>/etc/motd pager</td>
<td>display contents of "/etc/motd" using the default pager</td>
</tr>
<tr>
<td>touch <junkfile></td>
<td>create a empty file "<junkfile>"</td>
</tr>
<tr>
<td>cp <foo> <bar></td>
<td>copy a existing file "<foo>" to a new file "<bar>"</td>
</tr>
<tr>
<td>rm <junkfile></td>
<td>remove a file "<junkfile>"</td>
</tr>
<tr>
<td>mv <foo> <bar></td>
<td>rename an existing file "<foo>" to a new name "<bar>" ("<bar>" must not exist)</td>
</tr>
<tr>
<td>mv <foo> <bar></td>
<td>move an existing file "<foo>" to a new location "<bar>" (<"bar>" must exist)</td>
</tr>
<tr>
<td>mv <foo> <bar>/<baz></td>
<td>move an existing file "<foo>" to a new location with a new name "<bar>/<baz>" (<"bar>/<baz>" must exist but the directory "<bar>/<baz>" must not exist)</td>
</tr>
<tr>
<td>chmod 600 <foo></td>
<td>make an existing file "<foo>" to be non-readable and non-writable by the other people (non-executable for all)</td>
</tr>
<tr>
<td>chmod 644 <foo></td>
<td>make an existing file "<foo>" to be readable but non-writable by the other people (non-executable for all)</td>
</tr>
<tr>
<td>chmod 755 <foo></td>
<td>make an existing file "<foo>" to be readable but non-writable by the other people (executable for all)</td>
</tr>
<tr>
<td>find . -name <pattern></td>
<td>find matching filenames using shell "<pattern>" (slower)</td>
</tr>
<tr>
<td>locate . -d . <pattern></td>
<td>find matching filenames using shell "<pattern>" (quicker using regularly generated database)</td>
</tr>
<tr>
<td>grep -e "<pattern>" *.html</td>
<td>find a "<pattern>" in all files ending with "*.html" in current directory and display them all</td>
</tr>
<tr>
<td>top</td>
<td>display process information using full screen, type "q" to quit</td>
</tr>
<tr>
<td>ps aux</td>
<td>pager</td>
</tr>
<tr>
<td>ps -ef</td>
<td>pager</td>
</tr>
<tr>
<td>ps aux</td>
<td>grep -e "[e]xim4"**</td>
</tr>
<tr>
<td>ps axf</td>
<td>pager</td>
</tr>
<tr>
<td>kill <1234></td>
<td>kill a process identified by the process ID: "<1234>"</td>
</tr>
<tr>
<td>tar -cvJf <foo>.tar.xz <bar>/</td>
<td>archive content from "<foo>.tar.xz" in "<bar>"</td>
</tr>
<tr>
<td>tar -xvJf <foo>.tar.xz</td>
<td>extract files from "<foo>.tar.xz" in the current directory or in the directory listed in the variable "$CDPATH$"</td>
</tr>
<tr>
<td>tar -cvf <foo>.tar <bar>/</td>
<td>archive content from "<foo>.tar" in "<bar>"</td>
</tr>
<tr>
<td>tar -xvzf <foo>.tar.gz</td>
<td>extract files from "<foo>.tar.gz" in the current directory</td>
</tr>
<tr>
<td>unxz <foo>.xz</td>
<td>decompress "<foo>.xz" to create "<foo>.xz.gz" using the Lempel-Ziv Huffmancoding (better compression than directory and display the other people (executable for all))</td>
</tr>
<tr>
<td>bzip2 <foo></td>
<td>compress "<foo>" to create "<foo>.bz2" using the Burrows-Wheeler block sorting text compress algorithm, (slower)</td>
</tr>
<tr>
<td>gunzip <foo>.gz</td>
<td>decompress "<foo>.gz" to create "<foo>.gz" (if it does not exist, create it first)</td>
</tr>
<tr>
<td>gzip <foo></td>
<td>compress "<foo>" to create "<foo>.gz" (if it does not exist, create it first)</td>
</tr>
<tr>
<td>kill <1234></td>
<td>kill a process identified by the process ID: "<1234>"</td>
</tr>
</tbody>
</table>
Note
The "[" and "]" in the regular expression of the "ps aux | grep -e "^[e]xim4*"" command above enable grep to avoid matching itself. The "4*" in the regular expression means 0 or more repeats of character "4" thus enables grep to match both "exim" and "exim4". Although "*" is used in the shell filename glob and the regular expression, their meanings are different. Learn the regular expression from grep(1).

Please traverse directories and peek into the system using the above commands as training. If you have questions on any of console commands, please make sure to read the manual page.

For example, try the following

```
$ man man
$ man bash
$ man builtins
$ man grep
$ man ls
```

The style of man pages may be a little hard to get used to, because they are rather terse, particularly the older, very traditional ones. But once you get used to it, you come to appreciate their succinctness.

Please note that many Unix-like commands including ones from GNU and BSD display brief help information if you invoke them in one of the following ways (or without any arguments in some cases).

```
$ <commandname> --help
$ <commandname> -h
```

1.5 The simple shell command

Now you have some feel on how to use the Debian system. Let’s look deep into the mechanism of the command execution in the Debian system. Here, I have simplified reality for the newbie. See bash(1) for the exact explanation.

A simple command is a sequence of components.

1. Variable assignments (optional)
2. Command name
3. Arguments (optional)
4. Redirects (optional: >, >>, <, <<, etc.)
5. Control operators (optional: &&, ||, <newline>, ;, &,

1.5.1 Command execution and environment variable

The values of some environment variables change the behavior of some Unix commands.

Default values of environment variables are initially set by the PAM system and then some of them may be reset by some application programs.

- The display manager such as gdm3 resets environment variables.
- The shell in its start up codes resets environment variables in "~/.bash_profile" and "~/.bashrc".
locale value | **meaning**
---|---
xx | ISO 639 language codes (lower case) such as "en"
YY | ISO 3166 country codes (upper case) such as "US"
ZZZZ | codeset, always set to "UTF-8"

Table 1.17: The 3 parts of locale value

1.5.2 The "$LANG" variable

The full locale value given to "$LANG" variable consists of 3 parts: "xx_YY.ZZZZ".

For language codes and country codes, see pertinent description in the "info gettext".

For the codeset on the modern Debian system, you should always set it to **UTF-8** unless you specifically want to use the historic one with good reason and background knowledge.

For fine details of the locale configuration, see Section 8.4.

Note

The "$LANG=en_US" is not "$LANG=C" nor "$LANG=en_US.UTF-8". It is "$LANG=en_US.ISO-8859-1" (see Section 8.4.1).

<table>
<thead>
<tr>
<th>locale recommendation</th>
<th>Language (area)</th>
</tr>
</thead>
</table>
en_US.UTF-8 | English (USA) |
en_GB.UTF-8 | English (Great Britain) |
fr_FR.UTF-8 | French (France) |
de_DE.UTF-8 | German (Germany) |
it_IT.UTF-8 | Italian (Italy) |
es_ES.UTF-8 | Spanish (Spain) |
ca_ES.UTF-8 | Catalan (Spain) |
sv_SE.UTF-8 | Swedish (Sweden) |
pt_BR.UTF-8 | Portuguese (Brazil) |
ru_RU.UTF-8 | Russian (Russia) |
zh_CN.UTF-8 | Chinese (P.R. of China) |
zh_TW.UTF-8 | Chinese (Taiwan R.O.C.,) |
ja_JP.UTF-8 | Japanese (Japan) |
ko_KR.UTF-8 | Korean (Republic of Korea) |
viet_VN.UTF-8 | Vietnamese (Vietnam) |

Table 1.18: List of locale recommendations

Typical command execution uses a shell line sequence as the following.

```
$ date
$ LANG=fr_FR.UTF-8 date
dimanche 3 juin 2007, 10:27:33 (UTC+0900)
```

Here, the program date(1) is executed with different values of the environment variable "$LANG".

- For the first command, "$LANG" is set to the system default locale value "en_US.UTF-8".
- For the second command, "$LANG" is set to the French UTF-8 locale value "fr_FR.UTF-8".
Most command executions usually do not have preceding environment variable definition. For the above example, you can alternatively execute as the following.

```bash
$ LANG=fr_FR.UTF-8
$ date
dimanche 3 juin 2007, 10:27:33 (UTC+0900)
```

As you can see here, the output of command is affected by the environment variable to produce French output. If you want the environment variable to be inherited to subprocesses (e.g., when calling shell script), you need to `export` it instead by the following.

```bash
$ export LANG
```

Note
When you use a typical console terminal, the "$LANG" environment variable is usually set to be `exported` by the desktop environment. So the above is not really a good example to test the effect of `export`.

Tip
When filing a bug report, running and checking the command under "LANG=en_US.UTF-8" is a good idea if you use non-English environment.

See `locale(5)` and `locale(7)` for "$LANG" and related environment variables.

Note
I recommend you to configure the system environment just by the "$LANG" variable and to stay away from "$LC_*" variables unless it is absolutely needed.

1.5.3 The "$PATH" variable

When you type a command into the shell, the shell searches the command in the list of directories contained in the "$PATH" environment variable. The value of the "$PATH" environment variable is also called the shell’s search path.

In the default Debian installation, the "$PATH" environment variable of user accounts may not include "/sbin" and "/usr/sbin". For example, the `ifconfig` command needs to be issued with full path as "/sbin/ifconfig". (Similar `ip` command is located in "/bin").

You can change the "$PATH" environment variable of Bash shell by "~/.bash_profile" or "~/.bashrc" files.

1.5.4 The "$HOME" variable

Many commands stores user specific configuration in the home directory and changes their behavior by their contents. The home directory is identified by the environment variable "$HOME".

Tip
Shell expands "~" to current user's home directory, i.e., "$HOME/". Shell expands "~foo/" to foo's home directory, i.e., "/home/foo/".
Command line options

Some commands take arguments. Arguments starting with "-" or "--" are called options and control the behavior of the command.

```bash
$ date
Mon Oct 27 23:02:09 CET 2003
$ date -R
Mon, 27 Oct 2003 23:02:40 +0100
```

Here the command-line argument "-R" changes date(1) behavior to output RFC2822 compliant date string.

Shell glob

Often you want a command to work with a group of files without typing all of them. The filename expansion pattern using the shell **glob**, (sometimes referred as **wildcards**), facilitate this need.

<table>
<thead>
<tr>
<th>Shell glob pattern</th>
<th>Description of match rule</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>*</code></td>
<td>filename (segment) not started with "."</td>
</tr>
<tr>
<td><code>.=</code></td>
<td>filename (segment) started with "."</td>
</tr>
<tr>
<td><code>?</code></td>
<td>exactly one character</td>
</tr>
<tr>
<td><code>[…]</code></td>
<td>exactly one character with any character enclosed in brackets</td>
</tr>
<tr>
<td><code>[a-z]</code></td>
<td>exactly one character with any character between "a" and "z"</td>
</tr>
<tr>
<td><code>[^…]</code></td>
<td>exactly one character other than any character enclosed in brackets (excluding "^")</td>
</tr>
</tbody>
</table>

For example, try the following

```bash
$ mkdir junk; cd junk; touch 1.txt 2.txt 3.c 4.h .5.txt ..6.txt
$ echo *.txt
1.txt 2.txt
$ echo *
1.txt 2.txt 3.c 4.h
$ echo *.txt
3.c 4.h
$ echo .*
... .5.txt ..6.txt
$ echo .*[^.]*
.5.txt ..6.txt
$ echo [^1-3]*
4.h
$ cd ..; rm -rf junk
```
See glob(7).

Note
Unlike normal filename expansion by the shell, the shell pattern "*" tested in find(1) with "-name" test etc., matches the initial "." of the filename. (New POSIX feature)

Note
BASH can be tweaked to change its glob behavior with its shopt builtin options such as "dotglob", "noglob", "nocaseglob", "nullglob", "extglob", etc. See bash(1).

1.5.7 Return value of the command

Each command returns its exit status (variable: "$?") as the return value.

<table>
<thead>
<tr>
<th>command exit status</th>
<th>numeric return value</th>
<th>logical return value</th>
</tr>
</thead>
<tbody>
<tr>
<td>success</td>
<td>zero, 0</td>
<td>TRUE</td>
</tr>
<tr>
<td>error</td>
<td>non-zero, -1</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

Table 1.21: Command exit codes

For example, try the following.

```
$ [ 1 = 1 ] ; echo $? 
0 
$ [ 1 = 2 ] ; echo $? 
1
```

Note
Please note that, in the logical context for the shell, success is treated as the logical TRUE which has 0 (zero) as its value. This is somewhat non-intuitive and needs to be reminded here.

1.5.8 Typical command sequences and shell redirection

Let's try to remember following shell command idioms typed in one line as a part of shell command.

The Debian system is a multi-tasking system. Background jobs allow users to run multiple programs in a single shell. The management of the background process involves the shell builtins: jobs, fg, bg, and kill. Please read sections of bash(1) under "SIGNALS", and "JOB CONTROL", and builtins(1).

For example, try the following

```
$ </etc/motd pager

$ pager </etc/motd
```
command idiom	description
command & | background execution of command in the subshell
command1 | command2 | pipe the standard output of command1 to the standard input of command2 (concurrent execution)
command1 2>&1 | command2 | pipe both standard output and standard error of command1 to the standard input of command2 (concurrent execution)
command1 ; command2 | execute command1 and command2 sequentially
command1 && command2 | execute command1; if successful, execute command2 sequentially (return success if both command1 and command2 are successful)
command1 || command2 | execute command1; if not successful, execute command2 sequentially (return success if command1 or command2 are successful)
command > foo | redirect standard output of command to a file foo (overwrite)
command 2> foo | redirect standard error of command to a file foo (overwrite)
command >> foo | redirect standard output of command to a file foo (append)
command 2>> foo | redirect standard error of command to a file foo (append)
command > foo 2>&1 | redirect both standard output and standard error of command to a file foo
command < foo | redirect standard input of command to a file foo
command << delimiter | redirect standard input of command to the following lines until "delimiter" is met (here document)
command <<- delimiter | redirect standard input of command to the following lines until "delimiter" is met (here document, the leading tab characters are stripped from input lines)

Table 1.22: Shell command idioms

Although all 4 examples of shell redirections display the same thing, the last example runs an extra cat command and wastes resources with no reason.

The shell allows you to open files using the exec builtin with an arbitrary file descriptor.

$ echo Hello >foo
$ exec 3<foo 4>bar # open files
$ cat <&3 >&4 # redirect stdin to 3, stdout to 4
$ exec 3<&- 4<&- # close files
$ cat bar
Hello

The file descriptor 0-2 are predefined.

<table>
<thead>
<tr>
<th>device</th>
<th>description</th>
<th>file descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>stdin</td>
<td>standard input</td>
<td>0</td>
</tr>
<tr>
<td>stdout</td>
<td>standard output</td>
<td>1</td>
</tr>
<tr>
<td>stderr</td>
<td>standard error</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 1.23: Predefined file descriptors
1.5.9 Command alias

You can set an alias for the frequently used command.
For example, try the following

```
$ alias la='ls -la'
```

Now, “la” works as a short hand for “ls -la” which lists all files in the long listing format.
You can list any existing aliases by `alias` (see bash(1) under ”SHELL BUILTIN COMMANDS”).

```
$ alias
... alias la='ls -la'
```

You can identity exact path or identity of the command by `type` (see bash(1) under ”SHELL BUILTIN COMMANDS”).
For example, try the following

```
$ type ls
ls is hashed (/bin/ls)
$ type la
la is aliased to ls -la
$ type echo
echo is a shell builtin
$ type file
file is /usr/bin/file
```

Here `ls` was recently searched while “file” was not, thus “ls” is “hashed”, i.e., the shell has an internal record for the quick access to the location of the “ls” command.

Tip
See Section 9.2.7.

1.6 Unix-like text processing

In Unix-like work environment, text processing is done by piping text through chains of standard text processing tools. This was another crucial Unix innovation.

1.6.1 Unix text tools

There are few standard text processing tools which are used very often on the Unix-like system.

- No regular expression is used:
 - `cat(1)` concatenates files and outputs the whole content.
 - `tac(1)` concatenates files and outputs in reverse.
 - `cut(1)` selects parts of lines and outputs.
 - `head(1)` outputs the first part of files.
 - `tail(1)` outputs the last part of files.
– sort(1) sorts lines of text files.
– uniq(1) removes duplicate lines from a sorted file.
– tr(1) translates or deletes characters.
– diff(1) compares files line by line.

• Basic regular expression (BRE) is used:
 – grep(1) matches text with patterns.
 – ed(1) is a primitive line editor.
 – sed(1) is a stream editor.
 – vim(1) is a screen editor.
 – emacs(1) is a screen editor. (somewhat extended BRE)

• Extended regular expression (ERE) is used:
 – egrep(1) matches text with patterns.
 – awk(1) does simple text processing.
 – tcl(3tcl) can do every conceivable text processing: See re_syntax(3). Often used with tk(3tk).
 – perl(1) can do every conceivable text processing. See perlre(1).
 – pcregrep(1) from the pcregrep package matches text with Perl Compatible Regular Expressions (PCRE) pattern.
 – python(1) with the re module can do every conceivable text processing. See “/usr/share/doc/python/html/index.html”.

If you are not sure what exactly these commands do, please use "man command" to figure it out by yourself.

Note
Sort order and range expression are locale dependent. If you wish to obtain traditional behavior for a command, use C locale instead of UTF-8 ones by prepending command with "LANG=C" (see Section 1.5.2 and Section 8.4).

Note
Perl regular expressions (perlre(1)), Perl Compatible Regular Expressions (PCRE), and Python regular expressions offered by the re module have many common extensions to the normal ERE.

1.6.2 Regular expressions

Regular expressions are used in many text processing tools. They are analogous to the shell globs, but they are more complicated and powerful.

The regular expression describes the matching pattern and is made up of text characters and metacharacters. A metacharacter is just a character with a special meaning. There are 2 major styles, BRE and ERE, depending on the text tools as described above.

The regular expression of emacs is basically BRE but has been extended to treat "+" and "?" as the metacharacters as in ERE. Thus, there are no needs to escape them with "\" in the regular expression of emacs.

grep(1) can be used to perform the text search using the regular expression.

For example, try the following
BRE and ERE Metacharacters

<table>
<thead>
<tr>
<th>BRE</th>
<th>ERE</th>
<th>description of the regular expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>. [] ^ $ *</td>
<td>. [] ^ $ *</td>
<td>common metacharacters</td>
</tr>
<tr>
<td>+/- ? () [] }</td>
<td>+ ? () { }</td>
<td>BRE only “\n” escaped metacharacters</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>match non-metacharacter “c”</td>
</tr>
<tr>
<td>\c</td>
<td>\c</td>
<td>match a literal character “c” even if “c” is metacharacter by itself</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>match any character including newline</td>
</tr>
<tr>
<td>^</td>
<td>^</td>
<td>position at the beginning of a string</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>position at the end of a string</td>
</tr>
<tr>
<td><</td>
<td><</td>
<td>position at the beginning of a word</td>
</tr>
<tr>
<td>></td>
<td>></td>
<td>position at the end of a word</td>
</tr>
<tr>
<td>[abc…]</td>
<td>[abc…]</td>
<td>match any characters in “abc…”</td>
</tr>
<tr>
<td>[^abc…]</td>
<td>[^abc…]</td>
<td>match any characters except in “abc…”</td>
</tr>
<tr>
<td>r*</td>
<td>r*</td>
<td>match zero or more regular expressions identified by “r”</td>
</tr>
<tr>
<td>r+</td>
<td>r+</td>
<td>match one or more regular expressions identified by “r”</td>
</tr>
<tr>
<td>r?</td>
<td>r?</td>
<td>match zero or one regular expressions identified by “r”</td>
</tr>
<tr>
<td>r1</td>
<td>r2</td>
<td>r1</td>
</tr>
<tr>
<td>(r1</td>
<td>r2)</td>
<td>(r1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BRE</th>
<th>ERE</th>
<th>description of the regular expression</th>
</tr>
</thead>
</table>

Table 1.24: Metacharacters for BRE and ERE

Replacement Expressions

For the replacement expression, some characters have special meanings.

<table>
<thead>
<tr>
<th>replacement expression</th>
<th>description of the text to replace the replacement expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>&</td>
<td>what the regular expression matched (use & in emacs)</td>
</tr>
<tr>
<td>\n</td>
<td>what the n-th bracketed regular expression matched (“n” being number)</td>
</tr>
</tbody>
</table>

Table 1.25: The replacement expression

For Perl replacement string, “$&” is used instead of “&” and “$n” is used instead of “\n”.

For example, try the following
Here please pay extra attention to the style of the \textbf{bracketed} regular expression and how the matched strings are used in the text replacement process on different tools.

These regular expressions can be used for cursor movements and text replacement actions in some editors too.

The back slash "\" at the end of line in the shell commandline escapes newline as a white space character and continues shell command line input to the next line.

Please read all the related manual pages to learn these commands.

1.6.4 Global substitution with regular expressions

The ed(1) command can replace all instances of "FROM_REGEX" with "TO_TEXT" in "file".

```bash
$ ed file <<EOF
  s/FROM\_REGEX/TO\_TEXT/g
  w
  q
EOF
```

The sed(1) command can replace all instances of "FROM_REGEX" with "TO_TEXT" in "file".

```bash
$ sed -i -e 's/FROM\_REGEX/TO\_TEXT/g' file
```

The vim(1) command can replace all instances of "FROM_REGEX" with "TO_TEXT" in "file" by using ex(1) commands.

```bash
$ vim '+%s/FROM\_REGEX/TO\_TEXT/gc'+w'+q' file
```

\textbf{Tip}

The "c" flag in the above ensures interactive confirmation for each substitution.

Multiple files ("file1", "file2", and "file3") can be processed with regular expressions similarly with vim(1) or perl(1).

```bash
$ vim '+argdo %s/FROM\_REGEX/TO\_TEXT/ge|update'+q' file1 file2 file3
```

\textbf{Tip}

The "e" flag in the above prevents the "No match" error from breaking a mapping.
In the `perl(1)` example, "-i" is for the in-place editing of each target file, and "-p" is for the implicit loop over all given files.

Tip
Use of argument "-i.bak" instead of "-i" keeps each original file by adding ".bak" to its filename. This makes recovery from errors easier for complex substitutions.

Note
ed(1) and vim(1) are BRE; perl(1) is ERE.

1.6.5 Extracting data from text file table

Let's consider a text file called "DPL" in which some pre-2004 Debian project leader's names and their initiation date are listed in a space-separated format.

<table>
<thead>
<tr>
<th>Name</th>
<th>Initiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ian</td>
<td>August 1993</td>
</tr>
<tr>
<td>Bruce</td>
<td>April 1996</td>
</tr>
<tr>
<td>Ian</td>
<td>January 1998</td>
</tr>
<tr>
<td>Wichert</td>
<td>January 1999</td>
</tr>
<tr>
<td>Ben</td>
<td>April 2001</td>
</tr>
<tr>
<td>Bdale</td>
<td>April 2002</td>
</tr>
<tr>
<td>Martin</td>
<td>March 2003</td>
</tr>
</tbody>
</table>

Tip
See "A Brief History of Debian" for the latest Debian leadership history.

Awk is frequently used to extract data from these types of files.

For example, try the following

```bash
$ awk '{ print $3 }' <DPL  # month started
August
April
January
January
April
April
March
$ awk '{$1=="Ian"} { print }' <DPL  # DPL called Ian
Ian  Murdock  August 1993
Ian  Jackson  January 1998
$ awk '{$2=="Perens"} { print $3,$4 }' <DPL  # When Perens started
April 1996
```

Shells such as Bash can be also used to parse this kind of file.

For example, try the following
\$ while read first last month year; do
echo \$month
done <DPL
... same output as the first Awk example

Here, the read builtin command uses characters in "$IFS" (internal field separators) to split lines into words.
If you change "$IFS" to ":", you can parse "/etc/passwd" with shell nicely.

\$ oldIFS="IFS" # save old value
\$ IFS=:
\$ while read user password uid gid rest_of_line; do
 if ["\$user" = "bozo"]; then
 echo "$user's ID is \$uid"
 fi
 done < /etc/passwd
bozo's ID is 1000
\$ IFS="\$oldIFS" # restore old value

(If Awk is used to do the equivalent, use "FS=':'" to set the field separator.)

IFS is also used by the shell to split results of parameter expansion, command substitution, and arithmetic expansion. These do not occur within double or single quoted words. The default value of IFS is <space>, <tab>, and <newline> combined.

Be careful about using this shell IFS tricks. Strange things may happen, when shell interprets some parts of the script as its input.

\$ IFS=;,
\$ echo IFS=$IFS, IFS="IFS"
IFS= , IFS=:
\$ date -R
 Sat, 23 Aug 2003 08:30:15 +0200
\$ echo $\(date -R\) # just a command output
 Sat, 23 Aug 2003 08:30:36 +0200
\$ unset IFS
\$ echo $\(date -R\) # sub shell --> input to main shell
 Sat, 23 Aug 2003 08:30:50 +0200
\$ unset IFS
\$ echo $\(date -R\)
 Sat, 23 Aug 2003 08:30:50 +0200

1.6.6 Script snippets for piping commands

The following scripts do nice things as a part of a pipe.

A one-line shell script can loop over many files using find(1) and xargs(1) to perform quite complicated tasks. See Section 10.1.5 and Section 9.3.9.

When using the shell interactive mode becomes too complicated, please consider to write a shell script (see Section 12.1).
<table>
<thead>
<tr>
<th>script snippet (type in one line)</th>
<th>effect of command</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>find /usr -print</code></td>
<td>find all files under "/usr"</td>
</tr>
<tr>
<td><code>seq 1 100</code></td>
<td>print 1 to 100</td>
</tr>
<tr>
<td><code>xargs -n 1 <command></code></td>
<td>run command repeatedly with each item from pipe as its argument</td>
</tr>
<tr>
<td><code>xargs -n 1 echo</code></td>
<td>split white-space-separated items from pipe into lines</td>
</tr>
<tr>
<td><code>xargs echo</code></td>
<td>merge all lines from pipe into a line</td>
</tr>
<tr>
<td><code>grep -e <regex_pattern></code></td>
<td>extract lines from pipe containing <regex_pattern></td>
</tr>
<tr>
<td><code>grep -v -e <regex_pattern></code></td>
<td>extract lines from pipe not containing <regex_pattern></td>
</tr>
<tr>
<td><code>cut -d: -f3 -</code></td>
<td>extract third field from pipe separated by ":" (passwd file etc.)</td>
</tr>
<tr>
<td><code>awk '{ print $3 }'</code></td>
<td>extract third field from pipe separated by whitespaces</td>
</tr>
<tr>
<td><code>awk -F'\t' '{ print $3 }'</code></td>
<td>extract third field from pipe separated by tab</td>
</tr>
<tr>
<td><code>cot -bx</code></td>
<td>remove backspace and expand tabs to spaces</td>
</tr>
<tr>
<td><code>expand -</code></td>
<td>expand tabs</td>
</tr>
<tr>
<td>`sort</td>
<td>uniq`</td>
</tr>
<tr>
<td><code>tr 'A-Z' 'a-z'</code></td>
<td>convert uppercase to lowercase</td>
</tr>
<tr>
<td><code>tr -d '\n'</code></td>
<td>concatenate lines into one line</td>
</tr>
<tr>
<td><code>tr -d '\r'</code></td>
<td>remove CR</td>
</tr>
<tr>
<td><code>sed 's/^/# /'</code></td>
<td>add "#" to the start of each line</td>
</tr>
<tr>
<td><code>sed 's/\.*\./g'</code></td>
<td>remove ".ext"</td>
</tr>
<tr>
<td><code>sed -n e 2p</code></td>
<td>print the second line</td>
</tr>
<tr>
<td><code>head -n 2 -</code></td>
<td>print the first 2 lines</td>
</tr>
<tr>
<td><code>tail -n 2 -</code></td>
<td>print the last 2 lines</td>
</tr>
</tbody>
</table>

Table 1.26: List of script snippets for piping commands
Chapter 2

Debian package management

Note
This chapter is written assuming the latest stable release is codename: buster.

Debian is a volunteer organization which builds consistent distributions of pre-compiled binary packages of free software and distributes them from its archive.

The Debian archive is offered by many remote mirror sites for access through HTTP and FTP methods. It is also available as CD-ROM/DVD.

The Debian package management system, when used properly, offers the user to install consistent sets of binary packages to the system from the archive. Currently, there are 60425 packages available for the amd64 architecture.

The Debian package management system has a rich history and many choices for the front end user program and back end archive access method to be used. Currently, we recommend the following.

- apt(8) for all interactive command line operations, including package installation, removal and dist-upgrades. Available since Debian Jessie (Debian 8).
- apt-get(8) for calling Debian package management system from scripts. It is also a fallback option when apt is not available (often with older Debian systems).
- aptitude(8) for an interactive text interface to manage the installed packages and to search the available packages.

2.1 Debian package management prerequisites

2.1.1 Package configuration

Here are some key points for package configuration on the Debian system.

- The manual configuration by the system administrator is respected. In other words, the package configuration system makes no intrusive configuration for the sake of convenience.
- Each package comes with its own configuration script with standardized user interface called debconf(7) to help initial installation process of the package.
- Debian Developers try their best to make your upgrade experience flawless with package configuration scripts.
- Full functionalities of packaged software are available to the system administrator. But ones with security risks are disabled in the default installation.
<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>apt</td>
<td>V:875, I:999</td>
<td>3997</td>
<td>Advanced Packaging Tool (APT), front-end for dpkg providing "http", "ftp", and "file" archive access methods (apt/apt-get/apt-cache commands included)</td>
</tr>
<tr>
<td>aptitude</td>
<td>V:104, I:571</td>
<td>4366</td>
<td>interactive terminal-based package manager with aptitude(8)</td>
</tr>
<tr>
<td>tasksel</td>
<td>V:36, I:974</td>
<td>378</td>
<td>tool for selecting tasks for installation on the Debian system (front-end for APT)</td>
</tr>
<tr>
<td>unattended-upgrades</td>
<td>V:299, I:421</td>
<td>299</td>
<td>enhancement package for APT to enable automatic installation of security upgrades</td>
</tr>
<tr>
<td>dselect</td>
<td>V:3, I:43</td>
<td>2603</td>
<td>terminal-based package manager (previous standard, front-end for APT and other old access methods)</td>
</tr>
<tr>
<td>dpkg</td>
<td>V:940, I:999</td>
<td>6651</td>
<td>package management system for Debian</td>
</tr>
<tr>
<td>synaptic</td>
<td>V:60, I:438</td>
<td>7810</td>
<td>graphical package manager (GNOME front-end for APT)</td>
</tr>
<tr>
<td>apt-utils</td>
<td>V:397, I:996</td>
<td>1130</td>
<td>APT utility programs: apt-extracttemplates(1), apt-ftparchive(1), and apt-sortpkg(1)</td>
</tr>
<tr>
<td>apt-listchanges</td>
<td>V:401, I:849</td>
<td>399</td>
<td>package change history notification tool</td>
</tr>
<tr>
<td>apt-listbugs</td>
<td>V:8, I:11</td>
<td>457</td>
<td>lists critical bugs before each APT installation</td>
</tr>
<tr>
<td>apt-file</td>
<td>V:17, I:78</td>
<td>90</td>
<td>APT package searching utility —command-line interface</td>
</tr>
<tr>
<td>apt-rdepends</td>
<td>V:0, I:5</td>
<td>40</td>
<td>recursively lists package dependencies</td>
</tr>
</tbody>
</table>

Table 2.1: List of Debian package management tools

- If you manually activate a service with some security risks, you are responsible for the risk containment.
- Esoteric configuration may be manually enabled by the system administrator. This may create interference with popular generic helper programs for the system configuration.

2.1.2 Basic precautions

Warning

Do not install packages from random mixture of suites. It probably breaks the package consistency which requires deep system management knowledge, such as compiler ABI, library version, interpreter features, etc.

The newbie Debian system administrator should stay with the stable release of Debian while applying only security updates. I mean that some of the following valid actions are better avoided, as a precaution, until you understand the Debian system very well. Here are some reminders.

- Do not include testing or unstable in "/etc/apt/sources.list".
- Do not mix standard Debian with other non-Debian archives such as Ubuntu in "/etc/apt/sources.list".
- Do not create "/etc/apt/preferences".
- Do not change default behavior of package management tools through configuration files without knowing their full impacts.
- Do not install random packages by “dpkg -i <random_package>”.
- Do not ever install random packages by “dpkg --force-all -i <random_package>”.
- Do not erase or alter files in “/var/lib/dpkg/”.
- Do not overwrite system files by installing software programs directly compiled from source.
 - Install them into “/usr/local” or “/opt”, if needed.
The non-compatible effects caused by above actions to the Debian package management system may leave your system unusable. The serious Debian system administrator who runs mission critical servers, should use extra precautions.

- Do not install any packages including security updates from Debian without thoroughly testing them with your particular configuration under safe conditions.
 - You as the system administrator are responsible for your system in the end.
 - The long stability history of the Debian system is no guarantee by itself.

2.1.3 Life with eternal upgrades

Despite my warnings above, I know many readers of this document wish to run the testing or unstable suites of Debian as their main system for self-administered Desktop environments. This is because they work very well, are updated frequently, and offer the latest features.

Caution

For your production server, the stable suite with the security updates is recommended. The same can be said for desktop PCs on which you can spend limited administration efforts, e.g. for your mother's PC.

It takes no more than simply setting the distribution string in the "/etc/apt/sources.list" to the suite name: "testing" or "unstable"; or the codename: "bullseye" or "sid". This makes you live the life of eternal upgrades.

The use of testing or unstable is a lot of fun but comes with some risks. Even though the unstable suite of the Debian system looks very stable for most of the times, there have been some package problems on the testing and unstable suite of the Debian system and a few of them were not so trivial to resolve. It may be quite painful for you. Sometimes, you may have a broken package or missing functionality for a few weeks.

Here are some ideas to ensure quick and easy recovery from bugs in Debian packages.

- Make the system dual bootable by installing the stable suite of the Debian system to another partition
- Make the installation CD handy for the rescue boot
- Consider installing apt-listbugs to check the Debian Bug Tracking System (BTS) information before the upgrade
- Learn the package system infrastructure enough to work around the problem
- Create a chroot or similar environment and run the latest system in it in advance (see Section 9.10)

(If you can not do any one of these precautionary actions, you are probably not ready for the testing and unstable suites.) Enlightenment with the following saves a person from the eternal karmic struggle of upgrade hell and let him reach Debian nirvana.

2.1.4 Debian archive basics

Let’s look into the Debian archive from a system user’s perspective.

Tip

Official policy of the Debian archive is defined at Debian Policy Manual, Chapter 2 - The Debian Archive.

For the typical HTTP access, the archive is specified in the "/etc/apt/sources.list" file as the following, e.g. for the current stable = buster system.
Here, I tend to use codename “buster” instead of suite name “stable” to avoid surprises when the next stable is released. The meaning of “/etc/apt/sources.list” is described in sources.list(5) and key points are followings.

• The “deb” line defines for the binary packages.
• The “deb-src” line defines for the source packages.
• The 1st argument is the root URL of the Debian archive.
• The 2nd argument is the distribution name: either the suite name or the codename.
• The 3rd and following arguments are the list of valid archive area names of the Debian archive.

The “deb-src” lines can safely be omitted (or commented out by placing “#” at the start of the line) if it is just for aptitude which does not access source related metadata. It speeds up the updates of the archive meta data. The URL can be “http://", "ftp://", "file://", ...

Tip
If "sid" is used in the above example instead of "buster", the "deb: http://security.debian.org/ ..." line for security updates in the ”/etc/apt/sources.list” is not required. This is because there is no security update archive for "sid" (unstable).

Here is the list of URL of the Debian archive sites and suite name or codename used in the configuration file.

<table>
<thead>
<tr>
<th>archive URL</th>
<th>suite name (codename)</th>
<th>purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://deb.debian.org/debian/</td>
<td>stable (buster)</td>
<td>stable (buster) release</td>
</tr>
<tr>
<td>http://deb.debian.org/debian/</td>
<td>testing (bullseye)</td>
<td>testing (bullseye) release</td>
</tr>
<tr>
<td>http://deb.debian.org/debian/</td>
<td>unstable (sid)</td>
<td>unstable (sid) release</td>
</tr>
<tr>
<td>http://deb.debian.org/debian/</td>
<td>experimental</td>
<td>experimental pre-release (optional, only for developer)</td>
</tr>
<tr>
<td>http://deb.debian.org/debian/</td>
<td>stable-proposed-updates</td>
<td>Updates for the next stable point release (optional)</td>
</tr>
<tr>
<td>http://security.debian.org/</td>
<td>stable/updates</td>
<td>security updates for stable release (important)</td>
</tr>
<tr>
<td>http://security.debian.org/</td>
<td>testing/updates</td>
<td>security updates for testing release (important)</td>
</tr>
<tr>
<td>http://deb.debian.org/debian/</td>
<td>buster-updates</td>
<td>compatible updates for spam filter, IM clients, etc. for buster</td>
</tr>
<tr>
<td>http://deb.debian.org/debian/</td>
<td>buster-backports</td>
<td>newer backported packages for buster (optional)</td>
</tr>
</tbody>
</table>

Table 2.2: List of Debian archive sites

Caution
Only pure stable release with security updates provides the best stability. Running mostly stable release mixed with some packages from testing or unstable release is riskier than running pure unstable release for library version mismatch etc. If you really need the latest version of some programs under stable release, please use packages from buster-updates and http://backports.debian.org (see Section 2.7.4) services. These services must be used with extra care.
Caution
You should basically list only one of stable, testing, or unstable suites in the "deb" line. If you list any combination of stable, testing, and unstable suites in the "deb" line, APT programs slow down while only the latest archive is effective. Multiple listing makes sense for these when the "/etc/apt/preferences" file is used with clear objectives (see Section 2.7.3).

Tip
For the Debian system with the stable and testing suites, it is a good idea to include lines with "http://security.debian.org/" in the "/etc/apt/sources.list" to enable security updates as in the example above.

Note
The security bugs for the stable archive are fixed by the Debian security team. This activity has been quite rigorous and reliable. Those for the testing archive may be fixed by the Debian testing security team. For several reasons, this activity is not as rigorous as that for stable and you may need to wait for the migration of fixed unstable packages. Those for the unstable archive are fixed by the individual maintainer. Actively maintained unstable packages are usually in a fairly good shape by leveraging latest upstream security fixes. See Debian security FAQ for how Debian handles security bugs.

<table>
<thead>
<tr>
<th>area</th>
<th>number of packages</th>
<th>criteria of package component</th>
</tr>
</thead>
<tbody>
<tr>
<td>main</td>
<td>59430</td>
<td>DFSG compliant and no dependency to non-free</td>
</tr>
<tr>
<td>contrib</td>
<td>343</td>
<td>DFSG compliant but having dependency to non-free</td>
</tr>
<tr>
<td>non-free</td>
<td>652</td>
<td>not DFSG compliant</td>
</tr>
</tbody>
</table>

Table 2.3: List of Debian archive area

Here the number of packages in the above is for the amd64 architecture. The main area provides the Debian system (see Section 2.1.5).

The Debian archive organization can be studied best by pointing your browser to the each archive URL appended with dists or pool.

The distribution is referred by two ways, the suite or codename. The word distribution is alternatively used as the synonym to the suite in many documentations. The relationship between the suite and the codename can be summarized as the following.

<table>
<thead>
<tr>
<th>Timing</th>
<th>suite = stable</th>
<th>suite = testing</th>
<th>suite = unstable</th>
</tr>
</thead>
<tbody>
<tr>
<td>after the buster release</td>
<td>codename = buster</td>
<td>codename = bullseye</td>
<td>codename = sid</td>
</tr>
<tr>
<td>after the bullseye release</td>
<td>codename = bullseye</td>
<td>codename = bookworm</td>
<td>codename = sid</td>
</tr>
</tbody>
</table>

Table 2.4: The relationship between suite and codename

The history of codenames are described in Debian FAQ: 6.2.1 Which other codenames have been used in the past?

In the stricter Debian archive terminology, the word "section" is specifically used for the categorization of packages by the application area. (Although, the word "main section" may sometimes be used to describe the Debian archive area named as "main".)

Every time a new upload is done by a Debian developer (DD) to the unstable archive (via incoming processing), the DD is required to ensure uploaded packages to be compatible with the latest set of packages in the latest unstable archive.

If DD breaks this compatibility intentionally for important library upgrade etc, there is usually announcement to the debian-devel mailing list etc.
Before a set of packages are moved by the Debian archive maintenance script from the unstable archive to the testing archive, the archive maintenance script not only checks the maturity (about 10 days old) and the status of the RC bug reports for the packages but also tries to ensure them to be compatible with the latest set of packages in the testing archive. This process makes the testing archive very current and usable.

Through the gradual archive freeze process led by the release team, the testing archive is matured to make it completely consistent and bug free with some manual interventions. Then the new stable release is created by assigning the codename for the old testing archive to the new stable archive and creating the new codename for the new testing archive. The initial contents of the new testing archive is exactly the same as that of the newly released stable archive.

Both the unstable and the testing archives may suffer temporary glitches due to several factors.

- Broken package upload to the archive (mostly for unstable)
- Delay of accepting the new packages to the archive (mostly for unstable)
- Archive synchronization timing issue (both for testing and unstable)
- Manual intervention to the archive such as package removal (more for testing) etc.

So if you ever decide to use these archives, you should be able to fix or work around these kinds of glitches.

Caution

For about few months after a new stable release, most desktop users should use the stable archive with its security updates even if they usually use unstable or testing archives. For this transition period, both unstable and testing archives are not good for most people. Your system is difficult to keep in good working condition with the unstable archive since it suffers surges of major upgrades for core packages. The testing archive is not useful either since it contains mostly the same content as the stable archive without its security support ([Debian testing-security-announce 2008-12](https://lists.debian.org/debian-announce/2008-q4/msg00019.html)). After a month or so, the unstable archive may be usable if you are careful.

Tip

When tracking the testing archive, a problem caused by a removed package is usually worked around by installing corresponding package from the unstable archive which is uploaded for bug fix.

- "Sections"
- "Priorities"
- "Base system"
- "Essential packages"

2.1.5 Debian is 100% free software

Debian is 100% free software because of the followings:

- Debian installs only free software by default to respect user’s freedoms.
- Debian provides only free software in main.
- Debian recommends running only free software from main.
- No packages in main depend nor recommend packages in non-free nor contrib.
Some people wonder if the following 2 facts contradict or not.

- "Debian will remain 100% free". (First term of Debian Social Contract)
- Debian servers host some non-free and contrib packages.

These do not contradict, because of the followings.

- The Debian system is 100% free and its packages are hosted by Debian servers in the main area.
- Packages outside of the Debian system are hosted by Debian servers in the non-free and contrib areas.

These are precisely explained in the 4th and 5th terms of Debian Social Contract:

- Our priorities are our users and free software
 - We will be guided by the needs of our users and the free software community. We will place their interests first in our priorities. We will support the needs of our users for operation in many different kinds of computing environments. We will not object to non-free works that are intended to be used on Debian systems, or attempt to charge a fee to people who create or use such works. We will allow others to create distributions containing both the Debian system and other works, without any fee from us. In furtherance of these goals, we will provide an integrated system of high-quality materials with no legal restrictions that would prevent such uses of the system.

- Works that do not meet our free software standards
 - We acknowledge that some of our users require the use of works that do not conform to the Debian Free Software Guidelines. We have created "contrib" and "non-free" areas in our archive for these works. The packages in these areas are not part of the Debian system, although they have been configured for use with Debian. We encourage CD manufacturers to read the licenses of the packages in these areas and determine if they can distribute the packages on their CDs. Thus, although non-free works are not a part of Debian, we support their use and provide infrastructure for non-free packages (such as our bug tracking system and mailing lists).

Users should be aware of the risks of using packages in the non-free and contrib areas:

- lack of freedom for such software packages
- lack of support from Debian on such software packages (Debian can’t support software properly without having access to its source code.)
- contamination of your 100% free Debian system

The Debian Free Software Guidelines are the free software standards for Debian. Debian interprets "software" in the widest scope including document, firmware, logo, and artwork data in the package. This makes Debian’s free software standards very strict ones.

In order to meet this strict free software standards required for main, Debian once unbranded Mozilla software packages such as Firefox, Thunderbird, and Seamonkey by removing their logo and some artwork data; and ships them as Iceweasel, Icedove, and Iceape, respectively. Those packages have restored their original names with the release of Debian Stretch (Debian 9) after those problems get solved.

Typical non-free and contrib packages include freely distributable packages of following types:

- Document packages under GNU Free Documentation License with invariant sections such as ones for GCC and Make. (mostly found in the non-free/doc section.)
- Firmware packages containing sourceless binary data such as ones listed in Section 9.9.6 as non-free. (mostly found in the non-free/kernel section.)
- Game and font packages with restriction on commercial use and/or content modification.

Please note that the number of non-free and contrib packages is less than 2% of that of main packages. Enabling access to the non-free and contrib areas does not obscure the source of packages. Interactive full screen use of aptitude(8) provides you with full visibility and control over what packages are installed from which area to keep your system as free as you wish.
2.1.6 Package dependencies

The Debian system offers a consistent set of binary packages through its versioned binary dependency declaration mechanism in the control file fields. Here is a bit over simplified definition for them.

- "Depends"
 - This declares an absolute dependency and all of the packages listed in this field must be installed at the same time or in advance.

- "Pre-Depends"
 - This is like Depends, except that it requires completed installation of the listed packages in advance.

- "Recommends"
 - This declares a strong, but not absolute, dependency. Most users would not want the package unless all of the packages listed in this field are installed.

- "Suggests"
 - This declares a weak dependency. Many users of this package may benefit from installing packages listed in this field but can have reasonable functions without them.

- "Enhances"
 - This declares a week dependency like Suggests but works in the opposite direction.

- "Breaks"
 - This declares a package incompatibility usually with some version specification. Generally the resolution is to upgrade all of the packages listed in this field.

- "Conflicts"
 - This declares an absolute incompatibility. All of the packages listed in this field must be removed to install this package.

- "Replaces"
 - This is declared when files installed by this package replace files in the listed packages.

- "Provides"
 - This is declared when this package provide all of the files and functionality in the listed packages.

Note
Please note that defining "Provides", "Conflicts" and "Replaces" simultaneously to an virtual package is the sane configuration. This ensures that only one real package providing this virtual package can be installed at any one time.

The official definition including source dependency can be found in the Policy Manual: Chapter 7 - Declaring relationships between packages.
2.1.7 The event flow of the package management

Here is a summary of the simplified event flow of the package management by APT.

- **Update** ("apt update", "aptitude update" or "apt-get update"):
 1. Fetch archive metadata from remote archive
 2. Reconstruct and update local metadata for use by APT

- **Upgrade** ("apt upgrade" and "apt full-upgrade", or "aptitude safe-upgrade" and "aptitude full-upgrade", or "apt-get upgrade" and "apt-get dist-upgrade"):
 1. Chose candidate version which is usually the latest available version for all installed packages (see Section 2.7.3 for exception)
 2. Make package dependency resolution
 3. Fetch selected binary packages from remote archive if candidate version is different from installed version
 4. Unpack fetched binary packages
 5. Run **preinst** script
 6. Install binary files
 7. Run **postinst** script

- **Install** ("apt install …", "aptitude install …" or "apt-get install …"):
 1. Chose packages listed on the command line
 2. Make package dependency resolution
 3. Fetch selected binary packages from remote archive
 4. Unpack fetched binary packages
 5. Run **preinst** script
 6. Install binary files
 7. Run **postinst** script

- **Remove** ("apt remove …", "aptitude remove …" or "apt-get remove …"):
 1. Chose packages listed on the command line
 2. Make package dependency resolution
 3. Run **prerm** script
 4. Remove installed files except configuration files
 5. Run **postrm** script

- **Purge** ("apt purge", "aptitude purge …" or "apt-get purge …"):
 1. Chose packages listed on the command line
 2. Make package dependency resolution
 3. Run **prerm** script
 4. Remove installed files including configuration files
 5. Run **postrm** script

Here, I intentionally skipped technical details for the sake of big picture.
2.1.8 First response to package management troubles

You should read the fine official documentation. The first document to read is the Debian specific "/usr/share/doc/<package_name>/README.Debian". Other documentation in "/usr/share/doc/<package_name>" should be consulted too. If you set shell as Section 1.4.2, type the following.

```bash
$ cd <package_name>
$ pager README.Debian
$ mc
```

You may need to install the corresponding documentation package named with "-doc" suffix for detailed information.

If you are experiencing problems with a specific package, make sure to check out the Debian bug tracking system (BTS) sites, first.

<table>
<thead>
<tr>
<th>web site</th>
<th>command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home page of the Debian bug tracking system (BTS)</td>
<td>sensible-browser "http://bugs.debian.org/"</td>
</tr>
<tr>
<td>The bug report of a known package name</td>
<td>sensible-browser "http://bugs.debian.org/<package_name>"</td>
</tr>
<tr>
<td>The bug report of known bug number</td>
<td>sensible-browser "http://bugs.debian.org/<bug_number>"</td>
</tr>
</tbody>
</table>

Table 2.5: List of key web site to resolving problems with a specific package

Search Google with search words including "site:debian.org", "site:wiki.debian.org", "site:lists.debian.org" etc.

When you file a bug report, please use reportbug(1) command.

2.2 Basic package management operations

Repository based package management operations on the Debian system can be performed by many APT-based package management tools available on the Debian system. Here, we explain 3 basic package management tools: apt, apt-get / apt-cache and aptitude.

For the package management operation which involves package installation or updates package metadata, you need to have root privilege.

2.2.1 apt vs. apt-get / apt-cache vs. aptitude

Although aptitude is a very nice interactive tool which the author mainly uses, you should know some cautionary facts:

- The aptitude command is not recommended for the release-to-release system upgrade on the stable Debian system after the new release.
 - The use of "apt full-upgrade" or "apt-get dist-upgrade" is recommended for it. See Bug #411280.
- The aptitude command sometimes suggests mass package removals for the system upgrade on the testing or unstable Debian system.
 - This situation has frightened many system administrators. Don’t panic.
 - This seems to be caused mostly by the version skew among packages depended or recommended by a meta-package such as gnome-core.
– This can be resolved by selecting "Cancel pending actions" in the `aptitude` command menu, exiting `aptitude`, and using "apt full-upgrade".

The `apt-get` and `apt-cache` commands are the most **basic** APT-based package management tools.

- `apt-get` and `apt-cache` offer only the commandline user interface.
- `apt-get` is most suitable for the **major system upgrade** between releases, etc.
- `apt-get` offers a **robust** package dependency resolver.
- `apt-get` is less demanding on hardware resources. It consumes less memory and runs faster.
- `apt-cache` offers a **standard** regex based search on the package name and description.
- `apt-get` and `apt-cache` can manage multiple versions of packages using `/etc/apt/preferences` but it is quite cumbersome.

The `apt` command is a high-level commandline interface for package management. It is basically a wrapper of `apt-get`, `apt-cache` and similar commands, originally intended as an end-user interface and enables some options better suited for interactive usage by default.

- `apt` provides a friendly progress bar when installing packages using `apt install`.
- `apt` will remove cached `.deb` packages by default after successful installation of downloaded packages.

Tip

Users are recommended to use the new `apt`(8) command for **interactive** usage and use the `apt-get`(8) and `apt-cache`(8) commands in the shell script.

The `aptitude` command is the most **versatile** APT-based package management tool.

- `aptitude` offers the fullscreen interactive text user interface.
- `aptitude` offers the commandline user interface, too.
- `aptitude` is most suitable for the **daily interactive package management** such as inspecting installed packages and searching available packages.
- `aptitude` is more demanding on hardware resources. It consumes more memory and runs slower.
- `aptitude` offers an **enhanced** regex based search on all of the package metadata.
- `aptitude` can manage multiple versions of packages without using `/etc/apt/preferences` and it is quite intuitive.

2.2.2 Basic package management operations with the commandline

Here are basic package management operations with the commandline using `apt`(8), `aptitude`(8) and `apt-get`(8) / `apt-cache`(8).

Note

Although the `aptitude` command comes with rich features such as its enhanced package resolver, this complexity has caused (or may still causes) some regressions such as **Bug #411123**, **Bug #514930**, and **Bug #570377**. In case of doubt, please use the `apt`, `apt-get` and `apt-cache` commands over the `aptitude` command.
<table>
<thead>
<tr>
<th><code>apt</code> syntax</th>
<th><code>aptitude</code> syntax</th>
<th><code>apt-get/apt-cache</code> description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>apt update</code></td>
<td><code>aptitude update</code></td>
<td>update package archive metadata</td>
</tr>
<tr>
<td><code>apt install foo</code></td>
<td><code>aptitude install foo</code></td>
<td>install candidate version of “foo” package with its dependencies</td>
</tr>
<tr>
<td><code>apt upgrade</code></td>
<td><code>aptitude safe-upgrade</code></td>
<td>install candidate version of installed packages without removing any other packages</td>
</tr>
<tr>
<td><code>apt full-upgrade</code></td>
<td><code>aptitude full-upgrade</code></td>
<td>install candidate version of installed packages while removing other packages if needed</td>
</tr>
<tr>
<td><code>apt remove foo</code></td>
<td><code>aptitude remove foo</code></td>
<td>remove “foo” package while leaving its configuration files</td>
</tr>
<tr>
<td><code>apt autoremove</code></td>
<td>N/A</td>
<td>remove auto-installed packages which are no longer required</td>
</tr>
<tr>
<td><code>apt purge foo</code></td>
<td><code>aptitude purge foo</code></td>
<td>purge “foo” package with its configuration files</td>
</tr>
<tr>
<td><code>apt clean</code></td>
<td><code>aptitude clean</code></td>
<td>clear out the local repository of retrieved package files completely</td>
</tr>
<tr>
<td><code>apt autoclean</code></td>
<td><code>aptitude autoclean</code></td>
<td>clear out the local repository of retrieved package files for outdated packages</td>
</tr>
<tr>
<td><code>apt show foo</code></td>
<td><code>aptitude show foo</code></td>
<td>display detailed information about “foo” package</td>
</tr>
<tr>
<td><code>apt search <regex></code></td>
<td><code>aptitude search <regex></code></td>
<td>search packages which match <regex></td>
</tr>
<tr>
<td>N/A</td>
<td><code>aptitude why <regex></code></td>
<td>explain the reason why <regex> matching packages should be installed</td>
</tr>
<tr>
<td>N/A</td>
<td><code>aptitude why-not <regex></code></td>
<td>explain the reason why <regex> matching packages can not be installed</td>
</tr>
<tr>
<td>N/A</td>
<td><code>aptitude search '~i!-M'</code></td>
<td>list manually installed packages</td>
</tr>
</tbody>
</table>

Table 2.6: Basic package management operations with the commandline using `apt(8)`, `aptitude(8)` and `apt-get(8)` / `apt-cache(8)`.
Note
Since `apt` / `apt-get` and `aptitude` share auto-installed package status (see Section 2.5.5) after lenny, you can mix these tools without major troubles (see Bug #594490).

The "`aptitude why <regex>`" can list more information by "`aptitude -v why <regex>`". Similar information can be obtained by "`apt rdepends <package>`" or "`apt-cache rdepends <package>`".

When `aptitude` command is started in the commandline mode and faces some issues such as package conflicts, you can switch to the full screen interactive mode by pressing "e"-key later at the prompt.

You may provide command options right after "`aptitude`".

<table>
<thead>
<tr>
<th>command option</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-s</td>
<td>simulate the result of the command</td>
</tr>
<tr>
<td>-d</td>
<td>download only but no install/upgrade</td>
</tr>
<tr>
<td>-D</td>
<td>show brief explanations before the automatic installations and removals</td>
</tr>
</tbody>
</table>

Table 2.7: Notable command options for aptitude(8)

See `aptitude(8)` and "`aptitude user's manual`" at "`/usr/share/doc/aptitude/README`" for more.

Tip
The dselect package is still available and was the preferred full screen interactive package management tool in previous releases.

2.2.3 Interactive use of aptitude

For the interactive package management, you start `aptitude` in interactive mode from the console shell prompt as follows.

```bash
$ sudo aptitude -u
Password:
```

This updates the local copy of the archive information and display the package list in the full screen with menu. Aptitude places its configuration at "`~/.aptitude/config`".

Tip
If you want to use root's configuration instead of user's one, use "`sudo -H aptitude ...`" instead of "`sudo aptitude ...`" in the above expression.

Tip
Aptitude automatically sets pending actions as it is started interactively. If you do not like it, you can reset it from menu: "Action" → "Cancel pending actions".

2.2.4 Key bindings of aptitude

Notable key strokes to browse status of packages and to set "planned action" on them in this full screen mode are the following.

The file name specification of the command line and the menu prompt after pressing "l" and "//" take the aptitude regex as described below. Aptitude regex can explicitly match a package name using a string started by "~n" and followed by the package name.
Debian Reference 51 / 281

<table>
<thead>
<tr>
<th>keybinding</th>
<th>key binding</th>
</tr>
</thead>
<tbody>
<tr>
<td>F10 or Ctrl-t</td>
<td>menu</td>
</tr>
<tr>
<td>?</td>
<td>display help for keystroke (more complete listing)</td>
</tr>
<tr>
<td>u</td>
<td>update package archive information</td>
</tr>
<tr>
<td>+</td>
<td>mark the package for the upgrade or the install</td>
</tr>
<tr>
<td>-</td>
<td>mark the package for the remove (keep configuration files)</td>
</tr>
<tr>
<td>_</td>
<td>mark the package for the purge (remove configuration files)</td>
</tr>
<tr>
<td>=</td>
<td>place the package on hold</td>
</tr>
<tr>
<td>U</td>
<td>mark all upgradable packages (function as full-upgrade)</td>
</tr>
<tr>
<td>g</td>
<td>start downloading and installing selected packages</td>
</tr>
<tr>
<td>q</td>
<td>quit current screen and save changes</td>
</tr>
<tr>
<td>x</td>
<td>quit current screen and discard changes</td>
</tr>
<tr>
<td>Enter</td>
<td>view information about a package</td>
</tr>
<tr>
<td>C</td>
<td>view a package’s changelog</td>
</tr>
<tr>
<td>l</td>
<td>change the limit for the displayed packages</td>
</tr>
<tr>
<td>/</td>
<td>search for the first match</td>
</tr>
<tr>
<td>\</td>
<td>repeat the last search</td>
</tr>
</tbody>
</table>

Table 2.8: List of key bindings for aptitude

Tip
You need to press "U" to get all the installed packages upgraded to the candidate version in the visual interface. Otherwise only the selected packages and certain packages with versioned dependency to them are upgraded to the candidate version.

2.2.5 Package views under aptitude

In the interactive full screen mode of aptitude(8), packages in the package list are displayed as the next example.

| idA | libsmbclient | -2228kB 3.0.25a-1 3.0.25a-2 |

Here, this line means from the left as the following.

- The "current state" flag (the first letter)
- The "planned action" flag (the second letter)
- The "automatic" flag (the third letter)
- The Package name
- The change in disk space usage attributed to "planned action"
- The current version of the package
- The candidate version of the package

Tip
The full list of flags are given at the bottom of Help screen shown by pressing "?".

The candidate version is chosen according to the current local preferences (see apt_preferences(5) and Section 2.7.3). Several types of package views are available under the menu "Views".
<table>
<thead>
<tr>
<th>view</th>
<th>status</th>
<th>description of view</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package View</td>
<td>Good</td>
<td>see Table 2.10 (default)</td>
</tr>
<tr>
<td>Audit Recommendations</td>
<td>Good</td>
<td>list packages which are recommended by some installed packages but not yet installed</td>
</tr>
<tr>
<td>Flat Package List</td>
<td>Good</td>
<td>list packages without categorization (for use with regex)</td>
</tr>
<tr>
<td>Debtags Browser</td>
<td>Very usable</td>
<td>list packages categorized according to their debtags entries</td>
</tr>
<tr>
<td>Categorical Browser</td>
<td>Deprecated</td>
<td>list packages categorized according to their category (use debtags Browser, instead)</td>
</tr>
</tbody>
</table>

Table 2.9: List of views for aptitude

Note
Please help us improving tagging packages with **debtags**!

The standard "Package View" categorizes packages somewhat like **dselect** with few extra features.

<table>
<thead>
<tr>
<th>category</th>
<th>description of view</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upgradable Packages</td>
<td>list packages organized as section → area → package</td>
</tr>
<tr>
<td>New Packages</td>
<td>..</td>
</tr>
<tr>
<td>Installed Packages</td>
<td>..</td>
</tr>
<tr>
<td>Not Installed Packages</td>
<td>..</td>
</tr>
<tr>
<td>Obsolete and Locally Created Packages</td>
<td>..</td>
</tr>
<tr>
<td>Virtual Packages</td>
<td>list packages with the same function</td>
</tr>
<tr>
<td>Tasks</td>
<td>list packages with different functions generally needed for a task</td>
</tr>
</tbody>
</table>

Table 2.10: The categorization of standard package views

Tip
Tasks view can be used to cherry pick packages for your task.

2.2.6 Search method options with aptitude

Aptitude offers several options for you to search packages using its regex formula.

- **Shell commandline:**
 - "aptitude search 'aptitude_regex'" to list installation status, package name and short description of matching packages
 - "aptitude show '<package_name>'" to list detailed description of the package

- **Interactive full screen mode:**
 - "l" to limit package view to matching packages
 - "/" for search to a matching package
 - "\" for backward search to a matching package
 - "n" for find-next
 - "N" for find-next (backward)
Tip
The string for <package_name> is treated as the exact string match to the package name unless it is started
explicitly with "~" to be the regex formula.

2.2.7 The aptitude regex formula

The aptitude regex formula is mutt-like extended ERE (see Section 1.6.2) and the meanings of the aptitude specific special
match rule extensions are as follows.

- The regex part is the same ERE as the one used in typical Unix-like text tools using "^", ".*", "$" etc. as in egrep(1), awk(1)
 and perl(1).
- The dependency <type> is one of (depends, predepends, recommends, suggests, conflicts, replaces, provides) specifying the
 package interrelationship.
- The default dependency <type> is "depends".

Tip
When <regex_pattern> is a null string, place "~T" immediately after the command.

Here are some short cuts.

- "~P<term>" == "~Dprovides:<term>"
- "~C<term>" == "~Dconflicts:<term>"
- "~W term" == "(⋯|term)"

Users familiar with mutt pick up quickly, as mutt was the inspiration for the expression syntax. See "SEARCHING, LIMITING,
AND EXPRESSIONS" in the "User’s Manual" /usr/share/doc/aptitude/README".

Note
With the lenny version of aptitude(8), the new long form syntax such as "?broken" may be used for regex
matching in place for its old short form equivalent "~b". Now space character " " is considered as one of the regex
terminating character in addition to tilde character "~". See "User’s Manual" for the new long form syntax.

2.2.8 Dependency resolution of aptitude

The selection of a package in aptitude not only pulls in packages which are defined in its "Depends:" list but also defined
in the "Recommends:" list if the menu "F10 → Options → Preferences → Dependency handling" is set accordingly. These
auto installed packages are removed automatically if they are no longer needed under aptitude.

The flag controlling the "auto install" behavior of the aptitude command can also be manipulated using the apt-mark(8)
command from the apt package.

2.2.9 Package activity logs

You can check package activity history in the log files.

In reality, it is not so easy to get meaningful understanding quickly out from these logs. See Section 9.2.10 for easier way.
description of the extended match rule

<table>
<thead>
<tr>
<th>Match on</th>
<th>Regex Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package name</td>
<td>~n<regex_name></td>
</tr>
<tr>
<td>Description</td>
<td>~d<regex_description></td>
</tr>
<tr>
<td>Task name</td>
<td>~t<regex_task></td>
</tr>
<tr>
<td>Debtag</td>
<td>~G<regex_debtag></td>
</tr>
<tr>
<td>Maintainer</td>
<td>~m<regex_maintainer></td>
</tr>
<tr>
<td>Package section</td>
<td>~s<regex_section></td>
</tr>
<tr>
<td>Package version</td>
<td>~V<regex_version></td>
</tr>
<tr>
<td>Archive</td>
<td>~A{buster,bullseye,sid}</td>
</tr>
<tr>
<td>Origin</td>
<td>~O{debian,}</td>
</tr>
<tr>
<td>Priority</td>
<td>~p{extra,important,optional,required,standard}</td>
</tr>
<tr>
<td>Essential packages</td>
<td>~E</td>
</tr>
<tr>
<td>Virtual packages</td>
<td>~V</td>
</tr>
<tr>
<td>New packages</td>
<td>~N</td>
</tr>
<tr>
<td>Pending action</td>
<td>~a{install,upgrade,downgrade,remove,purge,hold,keep}</td>
</tr>
<tr>
<td>Installed packages</td>
<td>~i</td>
</tr>
<tr>
<td>Installed packages with A-mark (auto installed)</td>
<td>~M</td>
</tr>
<tr>
<td>Installed packages without A-mark (administration selected packages)</td>
<td>~i!~M</td>
</tr>
<tr>
<td>Installed and upgradable packages</td>
<td>~U</td>
</tr>
<tr>
<td>Removed but not purged packages</td>
<td>~c</td>
</tr>
<tr>
<td>Removed, purged or can-be-removed packages</td>
<td>~g</td>
</tr>
<tr>
<td>Packages declaring a broken dependency</td>
<td>~b</td>
</tr>
<tr>
<td>Packages declaring broken dependency of <type></td>
<td>~B<type></td>
</tr>
<tr>
<td><pattern> packages declaring dependency of <type></td>
<td>~D[type]:<pattern></td>
</tr>
<tr>
<td><pattern> packages declaring broken dependency of <type></td>
<td>~DB[type]:<pattern></td>
</tr>
<tr>
<td>Packages to which the <pattern> matching package declares dependency <type></td>
<td>~R[type]:<pattern></td>
</tr>
<tr>
<td>Packages to which the <pattern> matching package declares broken dependency <type></td>
<td>~RB[type]:<pattern></td>
</tr>
<tr>
<td>Packages to which some other installed packages depend on</td>
<td>~R~i</td>
</tr>
<tr>
<td>Packages to which no other installed packages depend on</td>
<td>!Ri</td>
</tr>
<tr>
<td>Packages to which some other installed packages depend or recommend on</td>
<td>~R~i!~Rrecommends:~i</td>
</tr>
<tr>
<td><pattern> packages with filtered version</td>
<td>$ filter <pattern></td>
</tr>
<tr>
<td>All packages (true)</td>
<td>~T</td>
</tr>
<tr>
<td>No packages (false)</td>
<td>~F</td>
</tr>
</tbody>
</table>

Table 2.11: List of the aptitude regex formula

<table>
<thead>
<tr>
<th>File</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>/var/log/dpkg.log</td>
<td>Log of dpkg level activity for all package activities</td>
</tr>
<tr>
<td>/var/log/apt/term.log</td>
<td>Log of generic APT activity</td>
</tr>
<tr>
<td>/var/log/aptitude</td>
<td>Log of aptitude command activity</td>
</tr>
</tbody>
</table>

Table 2.12: The log files for package activities
2.3 Examples of aptitude operations

Here are few examples of aptitude(8) operations.

2.3.1 Listing packages with regex matching on package names

The following command lists packages with regex matching on package names.

```
$ aptitude search '-n(pam|nss).*ldap'
p libnss-ldap - NSS module for using LDAP as a naming service
p libpam-ldap - Pluggable Authentication Module allowing LDAP interfaces
```

This is quite handy for you to find the exact name of a package.

2.3.2 Browsing with the regex matching

The regex "~dipv6" in the "New Flat Package List" view with "l" prompt, limits view to packages with the matching description and let you browse their information interactively.

2.3.3 Purging removed packages for good

You can purge all remaining configuration files of removed packages.
Check results of the following command.

```
# aptitude search '-c'
```

If you think listed packages are OK to be purged, execute the following command.

```
# aptitude purge '-c'
```

You may want to do the similar in the interactive mode for fine grained control.

You provide the regex "~c" in the "New Package View" view with "l" prompt. This limits the package view only to regex matched packages, i.e., "removed but not purged". All these regex matched packages can be shown by pressing "[" at top level headings.

Then you press "_" at top level headings such as "Not Installed Packages". Only regex matched packages under the heading are marked to be purged by this. You can exclude some packages to be purged by pressing "=" interactively for each of them.

This technique is quite handy and works for many other command keys.

2.3.4 Tidying auto/manual install status

Here is how I tidy auto/manual install status for packages (after using non-aptitude package installer etc.).

1. Start aptitude in interactive mode as root.
2. Type "u", "U", "f" and "g" to update and upgrade package list and packages.
3. Type "l" to enter the package display limit as "~i(~R~i|~Rrecommends:~i)" and type "M" over "Installed Packages" as auto installed.
4. Type "l" to enter the package display limit as "~prequired|~pimportant|~pstandard|~E" and type "m" over "Installed Packages" as manual installed.

5. Type "l" to enter the package display limit as "~i!~M" and remove unused package by typing "-" over each of them after exposing them by typing "[" over "Installed Packages".

6. Type "l", to enter the package display limit as "~i"; then type "m" over "Tasks", to mark that packages as manual installed.

7. Exit aptitude.

8. Start "apt-get -s autoremove|less" as root to check what are not used.

9. Restart aptitude in interactive mode and mark needed packages as "m".

10. Restart "apt-get -s autoremove|less" as root to recheck REMOVED contain only expected packages.

11. Start "apt-get autoremove|less" as root to autoremove unused packages.

The "m" action over "Tasks" is an optional one to prevent mass package removal situation in future.

2.3.5 System wide upgrade

Note

When moving to a new release etc, you should consider to perform a clean installation of new system even though Debian is upgradable as described below. This provides you a chance to remove garbages collected and exposes you to the best combination of latest packages. Of course, you should make a full backup of system to a safe place (see Section 10.2) before doing this. I recommend to make a dual boot configuration using different partition to have the smoothest transition.

You can perform system wide upgrade to a newer release by changing contents of the "/etc/apt/sources.list" file pointing to a new release and running the "apt update; apt dist-upgrade" command.

To upgrade from stable to testing or unstable, you replace "buster" in the "/etc/apt/sources.list" example of Section 2.1.4 with "bullseye" or "sid".

In reality, you may face some complications due to some package transition issues, mostly due to package dependencies. The larger the difference of the upgrade, the more likely you face larger troubles. For the transition from the old stable to the new stable after its release, you can read its new Release Notes and follow the exact procedure described in it to minimize troubles.

When you decide to move from stable to testing before its formal release, there are no Release Notes to help you. The difference between stable and testing could have grown quite large after the previous stable release and makes upgrade situation complicated.

You should make precautionary moves for the full upgrade while gathering latest information from mailing list and using common senses.

1. Read previous "Release Notes".
2. Backup entire system (especially data and configuration information).
3. Have bootable media handy for broken bootloader.
4. Inform users on the system well in advance.
5. Record upgrade activity with script(1).
6. Apply "unmarkauto" to required packages, e.g., "aptitude unmarkauto vim", to prevent removal.
7. Minimize installed packages to reduce chance of package conflicts, e.g., remove desktop task packages.
8. Remove the "/etc/apt/preferences" file (disable apt-pinning).
10. Update the "/etc/apt/sources.list" file to point to new archive only and run "aptitude update".
11. Install, optionally, new core packages first, e.g., "aptitude install perl".
12. Run the "apt-get -s dist-upgrade" command to assess impact.
13. Run the "apt-get dist-upgrade" command at last.

Caution

It is not wise to skip major Debian release when upgrading between stable releases.

Caution

In previous "Release Notes", GCC, Linux Kernel, initrd-tools, Glibc, Perl, APT tool chain, etc. have required some special attention for system wide upgrade.

For daily upgrade in unstable, see Section 2.4.3.

2.4 Advanced package management operations

2.4.1 Advanced package management operations with commandline

Here are list of other package management operations for which **aptitude** is too high-level or lacks required functionalities.

Note

For a package with the multi-arch feature, you may need to specify the architecture name for some commands. For example, use "dpkg -L libglib2.0-0:amd64" to list contents of the *libglib2.0* package for the *amd64* architecture.

Caution

Lower level package tools such as "dpkg -i …" and "debi …" should be carefully used by the system administrator. It does not automatically take care required package dependencies. Dpkg's commandline options "-force-all" and similar (see dpkg(1)) are intended to be used by experts only. Using them without fully understanding their effects may break your whole system.

Please note the following.

- All system configuration and installation commands require to be run from root.
- Unlike **aptitude** which uses regex (see Section 1.6.2), other package management commands use pattern like shell glob (see Section 1.5.6).
- apt-file(1) provided by the **apt-file** package must run "apt-file update" in advance.
- configure-debian(8) provided by the **configure-debian** package runs dpkg-reconfigure(8) as its backend.
<table>
<thead>
<tr>
<th>command</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>COLUMNS=120 dpkg -l <package_name_pattern></code></td>
<td>list status of an installed package for the bug report</td>
</tr>
<tr>
<td><code>dpkg -L <package_name></code></td>
<td>list contents of an installed package</td>
</tr>
<tr>
<td>`dpkg -L <package_name></td>
<td>egrep '/usr/share/man/man.*'`</td>
</tr>
<tr>
<td><code>dpkg -S <file_name_pattern></code></td>
<td>list installed packages which have matching file name</td>
</tr>
<tr>
<td><code>apt-file search <file_name_pattern></code></td>
<td>list packages in archive which have matching file name</td>
</tr>
<tr>
<td><code>apt-file list <package_name_pattern></code></td>
<td>list contents of matching packages in archive</td>
</tr>
<tr>
<td><code>dpkg-reconfigure <package_name></code></td>
<td>reconfigure the exact package</td>
</tr>
<tr>
<td><code>dpkg-reconfigure -p=low <package_name></code></td>
<td>reconfigure the exact package with the most detailed question</td>
</tr>
<tr>
<td><code>configure-debian</code></td>
<td>reconfigure packages from the full screen menu</td>
</tr>
<tr>
<td><code>dpkg --audit</code></td>
<td>audit system for partially installed packages</td>
</tr>
<tr>
<td><code>dpkg --configure -a</code></td>
<td>configure all partially installed packages</td>
</tr>
<tr>
<td><code>apt-cache policy <binary_package_name></code></td>
<td>show available version, priority, and archive information of a binary package</td>
</tr>
<tr>
<td><code>apt-cache madison <package_name></code></td>
<td>show available version, archive information of a package</td>
</tr>
<tr>
<td><code>apt-cache showsrc <binary_package_name></code></td>
<td>show source package information of a binary package</td>
</tr>
<tr>
<td><code>apt-get build-dep <package_name></code></td>
<td>install required packages to build package</td>
</tr>
<tr>
<td><code>aptitude build-dep <package_name></code></td>
<td>install required packages to build package</td>
</tr>
<tr>
<td><code>apt-get source <package_name></code></td>
<td>download a source (from standard archive)</td>
</tr>
<tr>
<td><code>dget <URL for dsc file></code></td>
<td>download a source packages (from other archive)</td>
</tr>
<tr>
<td><code>dpkg-source -x <package_name> <version> <debian_version>.dsc</code></td>
<td>build a source tree from a set of source packages (".orig.tar.gz" ".debian.tar.gz" "*.diff.gz")</td>
</tr>
<tr>
<td><code>debuild binary</code></td>
<td>build package(s) from a local source tree</td>
</tr>
<tr>
<td><code>make-kpkg kernel_image</code></td>
<td>build a kernel package from a kernel source tree</td>
</tr>
<tr>
<td><code>make-kpkg --initrd kernel_image</code></td>
<td>build a kernel package from a kernel source tree with initramfs enabled</td>
</tr>
<tr>
<td><code>dpkg -i <package_name> <version> <debian_version> <arch>.deb</code></td>
<td>install a local package to the system</td>
</tr>
<tr>
<td><code>apt install /path/to/<package_filename>.deb</code></td>
<td>install a local package to the system, meanwhile try to resolve dependency automatically</td>
</tr>
<tr>
<td><code>dpkg --get-selections '** >selection.txt</code></td>
<td>save dpkg level package selection state information</td>
</tr>
<tr>
<td><code>dpkg --set-selections <selection.txt</code></td>
<td>set dpkg level package selection state information</td>
</tr>
<tr>
<td>`echo <package_name> hold</td>
<td>dpkg --set-selections`</td>
</tr>
</tbody>
</table>

Table 2.13: List of advanced package management operations
• dpkg-reconfigure(8) runs package scripts using debconf(1) as its backend.

• "apt-get build-dep", "apt-get source" and "apt-cache showsrc" commands require "deb-src" entry in "/etc/apt/sources.list".

• dget(1), debuild(1), and debi(1) require devscripts package.

• See (re)packaging procedure using "apt-get source" in Section 2.7.13.

• make-kpkg command requires the kernel-package package (see Section 9.9).

• See Section 12.11 for general packaging.

2.4.2 Verification of installed package files

The installation of debsums enables verification of installed package files against MD5sum values in the "/var/lib/dpkg/info/*" file with debsums(1). See Section 10.3.5 for how MD5sum works.

Note
Because MD5sum database may be tampered by the intruder, debsums(1) is of limited use as a security tool. It is only good for checking local modifications by the administrator or damage due to media errors.

2.4.3 Safeguarding for package problems

Many users prefer to follow the unstable release of the Debian system for its new features and packages. This makes the system more prone to be hit by the critical package bugs.

The installation of the apt-listbugs package safeguards your system against critical bugs by checking Debian BTS automatically for critical bugs when upgrading with APT system.

The installation of the apt-listchanges package provides important news in "NEWS.Debian" when upgrading with APT system.

2.4.4 Searching on the package meta data

Although visiting Debian site https://packages.debian.org/ facilitates easy ways to search on the package meta data these days, let’s look into more traditional ways.

The grep-dctrl(1), grep-status(1), and grep-available(1) commands can be used to search any file which has the general format of a Debian package control file.

The "dpkg -S <file_name_pattern>" can be used search package names which contain files with the matching name installed by dpkg. But this overlooks files created by the maintainer scripts.

If you need to make more elaborate search on the dpkg meta data, you need to run "grep -e regex_pattern *" command in the "/var/lib/dpkg/info/" directory. This makes you search words mentioned in package scripts and installation query texts.

If you wish to look up package dependency recursively, you should use apt-rdepends(8).

2.5 Debian package management internals

Let’s learn how the Debian package management system works internally. This should help you to create your own solution to some package problems.
2.5.1 Archive meta data

Meta data files for each distribution are stored under "dist/<codename>" on each Debian mirror sites, e.g., "http://deb.debian.org". Its archive structure can be browsed by the web browser. There are 6 types of key meta data.

<table>
<thead>
<tr>
<th>file</th>
<th>location</th>
<th>content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td>top of distribution</td>
<td>archive description and integrity information</td>
</tr>
<tr>
<td>Release.gpg</td>
<td>top of distribution</td>
<td>signature file for the "Release" file signed with the archive key</td>
</tr>
<tr>
<td>Contents-<architecture></td>
<td>top of distribution</td>
<td>list of all files for all the packages in the pertinent archive</td>
</tr>
<tr>
<td>Release</td>
<td>top of each distribution/area/architecture combination</td>
<td>archive description used for the rule of apt_preferences(5)</td>
</tr>
<tr>
<td>Packages</td>
<td>top of each distribution/area/binary-architecture combination</td>
<td>concatenated debian/control for binary packages</td>
</tr>
<tr>
<td>Sources</td>
<td>top of each distribution/area/source combination</td>
<td>concatenated debian/control for source packages</td>
</tr>
</tbody>
</table>

Table 2.14: The content of the Debian archive meta data

In the recent archive, these meta data are stored as the compressed and differential files to reduce network traffic.

2.5.2 Top level "Release" file and authenticity

Tip
The top level "Release" file is used for signing the archive under the secure APT system.

Each suite of the Debian archive has a top level "Release" file, e.g., "http://deb.debian.org/debian/dists/unstable/", as follows.

```
Origin: Debian
Label: Debian
Suite: unstable
Codename: sid
Date: Sat, 14 May 2011 08:20:50 UTC
Valid-Until: Sat, 21 May 2011 08:20:50 UTC
Architectures: alpha amd64 armel hppa hurd-i386 i386 ia64 kfreebsd-amd64 kfreebsd-i386 mips ←
mipsel powerpc s390 sparc
Components: main contrib non-free
Description: Debian x.y Unstable - Not Released
MDSSum: 
bdc8faa4b3f5e4a715dd8d56d176fc789 18876880 Contents-alpha.gz
9469a03c9b85e010d11aeeab9614c0 19441880 Contents-amd64.gz
3d68e280d7faa3aded660dc0990054fe 19203165 Contents-armel.gz
...```
Note
Here, you can find my rationale to use the "suite", and "codename" in Section 2.1.4. The "distribution" is used when referring to both "suite" and "codename". All archive "area" names offered by the archive are listed under "Components".

The integrity of the top level "Release" file is verified by cryptographic infrastructure called the secure apt.

- The cryptographic signature file "Release.gpg" is created from the authentic top level "Release" file and the secret Debian archive key.
- The public Debian archive key can be seeded into "/etc/apt/trusted.gpg";
  - automatically by installing the keyring with the latest base-files package, or
  - manually by gpg or apt-key tool with the latest public archive key posted on the ftp-master.debian.org.
- The secure APT system verifies the integrity of the downloaded top level "Release" file cryptographically by this "Release.gpg" file and the public Debian archive key in "/etc/apt/trusted.gpg".

The integrity of all the "Packages" and "Sources" files are verified by using MD5sum values in its top level "Release" file. The integrity of all package files are verified by using MD5sum values in the "Packages" and "Sources" files. See debsums(1) and Section 2.4.2.

Since the cryptographic signature verification is a much more CPU intensive process than the MD5sum value calculation, use of MD5sum value for each package while using cryptographic signature for the top level "Release" file provides the good security with the performance (see Section 10.3).

2.5.3 Archive level "Release" files

Tip
The archive level "Release" files are used for the rule of apt_preferences(5).

There are archive level "Release" files for all archive locations specified by "deb" line in "/etc/apt/sources.list", such as "http://deb.debian.org/debian/dists/unstable/main/binary-amd64/Release" or "http://deb.debian.org/debian/dists/sid/main/binary-amd64/Release" as follows.

<table>
<thead>
<tr>
<th>Archive: unstable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin: Debian</td>
</tr>
<tr>
<td>Label: Debian</td>
</tr>
<tr>
<td>Component: main</td>
</tr>
<tr>
<td>Architecture: amd64</td>
</tr>
</tbody>
</table>

Caution
For "Archive:" stanza, suite names ("stable", "testing", "unstable", ...) are used in the Debian archive while codenames ("trusty", "xenial", "artful", ...) are used in the Ubuntu archive.

For some archives, such as experimental, and buster-backports, which contain packages which should not be installed automatically, there is an extra line, e.g., "http://deb.debian.org/debian/dists/experimental/main/binary-amd64" as follows.
Please note that for normal archives without "NotAutomatic: yes", the default Pin-Priority value is 500, while for special archives with "NotAutomatic: yes", the default Pin-Priority value is 1 (see apt_preferences(5) and Section 2.7.3).

### 2.5.4 Fetching of the meta data for the package

When APT tools, such as aptitude, apt-get, synaptic, apt-file, auto-apt, … are used, we need to update the local copies of the meta data containing the Debian archive information. These local copies have following file names corresponding to the specified distribution, area, and architecture names in the "/etc/apt/sources.list" (see Section 2.1.4).

- "/var/lib/apt/lists/deb.debian.org_debian_dists_<distribution>_Release"
- "/var/lib/apt/lists/deb.debian.org_debian_dists_<distribution>_Release.gpg"
- "/var/lib/apt/lists/deb.debian.org_debian_dists_<distribution>_<area>_binary-<architecture>
- "/var/lib/apt/lists/deb.debian.org_debian_dists_<distribution>_<area>_source_Sources"
- "/var/cache/apt/apt-file/deb.debian.org_debian_dists_<distribution>_Contents-<architecture>.gz" (for apt-file)

First 4 types of files are shared by all the pertinent APT commands and updated from command line by "apt-get update" or "aptitude update". The "Packages" meta data are updated if there is the "deb" line in "/etc/apt/sources.list". The "Sources" meta data are updated if there is the "deb-src" line in "/etc/apt/sources.list". The "Packages" and "Sources" meta data contain "Filename:" stanza pointing to the file location of the binary and source packages. Currently, these packages are located under the "pool/" directory tree for the improved transition over the releases.

Local copies of "Packages" meta data can be interactively searched with the help of aptitude. The specialized search command grep-dctrl(1) can search local copies of "Packages" and "Sources" meta data.

Local copy of "Contents-<architecture>" meta data can be updated by "apt-file update" and its location is different from other 4 ones. See apt-file(1). (The auto-apt uses different location for local copy of "Contents-<architecture>.gz" as default.)

### 2.5.5 The package state for APT

In addition to the remotely fetched meta data, the APT tool after lenny stores its locally generated installation state information in the "/var/lib/apt/extended_states" which is used by all APT tools to track all auto installed packages.

### 2.5.6 The package state for aptitude

In addition to the remotely fetched meta data, the aptitude command stores its locally generated installation state information in the "/var/lib/aptitude/pkgststates" which is used only by it.

### 2.5.7 Local copies of the fetched packages

All the remotely fetched packages via APT mechanism are stored in the "/var/cache/apt/archives" until they are cleaned.

This cache file cleaning policy for aptitude can be set under "Options" → "Preferences" and it may be forced by its menu "Clean package cache" or "Clean obsolete files" under "Actions".
2.5.8 Debian package file names

Debian package files have particular name structures.

<table>
<thead>
<tr>
<th>package type</th>
<th>name structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>The binary package (a.k.a deb)</td>
<td>&lt;package-name&gt;:_&lt;epoch&gt;::&lt;upstream-version&gt;::&lt;debian.version&gt;-&lt;architecture&gt;.deb</td>
</tr>
<tr>
<td>The binary package for debian-installer (a.k.a udeb)</td>
<td>&lt;package-name&gt;:_&lt;epoch&gt;::&lt;upstream-version&gt;::&lt;debian.version&gt;-&lt;architecture&gt;.udeb</td>
</tr>
<tr>
<td>The source package (upstream source)</td>
<td>&lt;package-name&gt;:_&lt;epoch&gt;::&lt;upstream-version&gt;::&lt;debian.version&gt;-&lt;architecture&gt;.orig.tar.gz</td>
</tr>
<tr>
<td>The 1.0 source package (Debian changes)</td>
<td>&lt;package-name&gt;:_&lt;epoch&gt;::&lt;upstream-version&gt;::&lt;debian.version&gt;-&lt;architecture&gt;.diff.gz</td>
</tr>
<tr>
<td>The 3.0 (quilt) source package (Debian changes)</td>
<td>&lt;package-name&gt;:_&lt;epoch&gt;::&lt;upstream-version&gt;::&lt;debian.version&gt;-&lt;architecture&gt;.debian.tar.gz</td>
</tr>
<tr>
<td>The source package (description)</td>
<td>&lt;package-name&gt;:_&lt;epoch&gt;::&lt;upstream-version&gt;::&lt;debian.version&gt;-&lt;architecture&gt;.dsc</td>
</tr>
</tbody>
</table>

Table 2.15: The name structure of Debian packages

**Tip**
Here only the basic source package formats are described. See more on dpkg-source(1).

<table>
<thead>
<tr>
<th>name component</th>
<th>usable characters (regex)</th>
<th>existence</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;package-name&gt;</td>
<td>[a-z,A-Z,0-9,.,+,-]+</td>
<td>required</td>
</tr>
<tr>
<td>&lt;epoch&gt;</td>
<td>[0-9]+</td>
<td>optional</td>
</tr>
<tr>
<td>&lt;upstream-version&gt;</td>
<td>[a-z,A-Z,0-9,.,+,-,~]+</td>
<td>required</td>
</tr>
<tr>
<td>&lt;debian.version&gt;</td>
<td>[a-z,A-Z,0-9,.,+,-,~]+</td>
<td>optional</td>
</tr>
</tbody>
</table>

Table 2.16: The usable characters for each component in the Debian package names

**Note**
You can check package version order by dpkg(1), e.g., "dpkg --compare-versions 7.0 gt 7.~pre1 ; echo $?".

**Note**
The debian-installer (d-i) uses udeb as the file extension for its binary package instead of normal deb. An udeb package is a stripped down deb package which removes few non-essential contents such as documentation to save space while relaxing the package policy requirements. Both deb and udeb packages share the same package structure. The "u" stands for micro.

2.5.9 The dpkg command

dpkg(1) is the lowest level tool for the Debian package management. This is very powerful and needs to be used with care.

While installing package called "<package_name>", dpkg process it in the following order.

1. Unpack the deb file ("ar -x" equivalent)
2. Execute "<package_name>.preinst" using debconf(1)
3. Install the package content to the system ("tar -x" equivalent)
4. Execute "<package_name>.postinst" using debconf(1)
Debian Reference

The **debconf** system provides standardized user interaction with I18N and L10N (Chapter 8) supports. The "status" file is also used by the tools such as dpkg(1), "dselect update" and "apt-get -u dselect-upgrade". The specialized search command grep-dctrl(1) can search the local copies of "status" and "available" meta data.

### Tip
In the debian-installer environment, the udpkg command is used to open udeb packages. The udpkg command is a stripped down version of the dpkg command.

#### 2.5.10 The update-alternatives command

The Debian system has mechanism to install somewhat overlapping programs peacefully using update-alternatives(1). For example, you can make the vi command select to run vim while installing both vim and nvi packages.

```
$ ls -l $(type -p vi)
lrwxrwxrwx 1 root root 20 2007-03-24 19:05 /usr/bin/vi -> /etc/alternatives/vi
$ sudo update-alternatives --display vi
... $ sudo update-alternatives --config vi
 Selection Command
 1 /usr/bin/vim
 *+ 2 /usr/bin/nvi

Enter to keep the default[*], or type selection number: 1
```

The Debian alternatives system keeps its selection as symlinks in "/etc/alternatives/". The selection process uses corresponding file in "/var/lib/dpkg/alternatives/".
2.5.11 The dpkg-statoverride command

Stat overrides provided by the dpkg-statoverride(8) command are a way to tell dpkg(1) to use a different owner or mode for a file when a package is installed. If “--update” is specified and file exists, it is immediately set to the new owner and mode.

Caution

The direct alteration of owner or mode for a file owned by the package using chmod or chown commands by the system administrator is reset by the next upgrade of the package.

Note

I use the word file here, but in reality this can be any filesystem object that dpkg handles, including directories, devices, etc.

2.5.12 The dpkg-divert command

File diversions provided by the dpkg-divert(8) command are a way of forcing dpkg(1) not to install a file into its default location, but to a diverted location. The use of dpkg-divert is meant for the package maintenance scripts. Its casual use by the system administrator is deprecated.

2.6 Recovery from a broken system

When running unstable system, the administrator is expected to recover from broken package management situation.

Caution

Some methods described here are high risk actions. You have been warned!

2.6.1 Incompatibility with old user configuration

If a desktop GUI program experienced instability after significant upstream version upgrade, you should suspect interferences with old local configuration files created by it. If it is stable under a newly created user account, this hypothesis is confirmed. (This is a bug of packaging and usually avoided by the packager.)

To recover stability, you should move corresponding local configuration files and restart the GUI program. You may need to read old configuration file contents to recover configuration information later. (Do not erase them too quickly.)

2.6.2 Different packages with overlapped files

Archive level package management systems, such as aptitude(8) or apt-get(1), do not even try to install packages with overlapped files using package dependencies (see Section 2.1.6).

Errors by the package maintainer or deployment of inconsistently mixed source of archives (see Section 2.7.2) by the system administrator may create a situation with incorrectly defined package dependencies. When you install a package with overlapped files using aptitude(8) or apt-get(1) under such a situation, dpkg(1) which unpacks package ensures to return error to the calling program without overwriting existing files.
Caution

The use of third party packages introduces significant system risks via maintainer scripts which are run with root privilege and can do anything to your system. The dpkg(1) command only protects against overwriting by the unpacking.

You can work around such broken installation by removing the old offending package, `<old-package>`, first.

$ sudo dpkg -P <old-package>

2.6.3 Fixing broken package script

When a command in the package script returns error for some reason and the script exits with error, the package management system aborts their action and ends up with partially installed packages. When a package contains bugs in its removal scripts, the package may become impossible to remove and quite nasty.

For the package script problem of "<package_name>", you should look into following package scripts.

- `"/var/lib/dpkg/info/<package_name>.preinst"
- `"/var/lib/dpkg/info/<package_name>.postinst"
- `"/var/lib/dpkg/info/<package_name>.prerm"
- `"/var/lib/dpkg/info/<package_name>.postrm"

Edit the offending package script from the root using following techniques.

- disable the offending line by preceding "#"
- force to return success by appending the offending line with "|| true"

Configure all partially installed packages with the following command.

# dpkg --configure -a

2.6.4 Rescue with the dpkg command

Since dpkg is very low level package tool, it can function under the very bad situation such as unbootable system without network connection. Let’s assume foo package was broken and needs to be replaced.

You may still find cached copies of older bug free version of foo package in the package cache directory: `/var/cache/apt/archives/`.

(If not, you can download it from archive of https://snapshot.debian.org/ or copy it from package cache of a functioning machine.)

If you can boot the system, you may install it by the following command.

# dpkg -i /path/to/foo_<old_version>_.<arch>.deb

Tip

If system breakage is minor, you may alternatively downgrade the whole system as in Section 2.7.10 using the higher level APT system.
If your system is unbootable from hard disk, you should seek other ways to boot it.

1. Boot the system using the debian-installer CD in rescue mode.
2. Mount the unbootable system on the hard disk to "/target".
3. Install older version of foo package by the following.

```
dpkg --root /target -i /path/to/foo_<old_version>_<arch>.deb
```

This example works even if the dpkg command on the hard disk is broken.

---

**Tip**

Any GNU/Linux system started by another system on hard disk, live GNU/Linux CD, bootable USB-key drive, or netboot can be used similarly to rescue broken system.

---

If attempting to install a package this way fails due to some dependency violations and you really need to do this as the last resort, you can override dependency using dpkg’s "--ignore-depends", "--force-depends" and other options. If you do this, you need to make serious effort to restore proper dependency later. See dpkg(8) for details.

---

**Note**

If your system is seriously broken, you should make a full backup of system to a safe place (see Section 10.2) and should perform a clean installation. This is less time consuming and produces better results in the end.

---

### 2.6.5 Recovering package selection data

If "/var/lib/dpkg/status" becomes corrupt for any reason, the Debian system loses package selection data and suffers severely. Look for the old "/var/lib/dpkg/status" file at "/var/lib/dpkg/status-old" or "/var/backups/dpkg.status".

Keeping "/var/backups/" in a separate partition may be a good idea since this directory contains lots of important system data.

For serious breakage, I recommend to make fresh re-install after making backup of the system. Even if everything in "/var/" is gone, you can still recover some information from directories in "/usr/share/doc/" to guide your new installation.

Reinstall minimal (desktop) system.

```bash
mkdir -p /path/to/old/system
```

Mount old system at "/path/to/old/system/".

```bash
cd /path/to/old/system/usr/share/doc
ls -l --ls1.txt
cd /usr/share/doc
ls -l --ls1.txt
cd
sort ls1.txt | uniq | less
```

Then you are presented with package names to install. (There may be some non-package names such as "texmf".)
2.7 Tips for the package management

2.7.1 How to pick Debian packages

You can seek packages which satisfy your needs with `aptitude` from the package description or from the list under "Tasks". When you encounter more than 2 similar packages and wonder which one to install without "trial and error" efforts, you should use some **common sense**. I consider following points are good indications of preferred packages.

- Essential: yes > no
- Area: main > contrib > non-free
- Priority: required > important > standard > optional > extra
- Tasks: packages listed in tasks such as "Desktop environment"
- Packages selected by the dependency package (e.g., `python2.4` by `python`)
- Popcon: higher in the vote and install number
- Changelog: regular updates by the maintainer
- BTS: No RC bugs (no critical, no grave, and no serious bugs)
- BTS: responsive maintainer to bug reports
- BTS: higher number of the recently fixed bugs
- BTS: lower number of remaining non-wishlist bugs

Debian being a volunteer project with distributed development model, its archive contains many packages with different focus and quality. You must make your own decision what to do with them.

2.7.2 Packages from mixed source of archives

---

**Caution**

Installing packages from mixed source of archives is not supported by the official Debian distribution except for officially supported particular combinations of archives such as stable with security updates and buster-updates.

---

Here is an example of operations to include specific newer upstream version packages found in unstable while tracking testing for single occasion.

1. Change the "`/etc/apt/sources.list`" file temporarily to single "unstable" entry.
2. Run "`aptitude update`".
3. Run "`aptitude install <package-name>`".
4. Recover the original "`/etc/apt/sources.list`" file for testing.
5. Run "`aptitude update`".

You do not create the "`/etc/apt/preferences`" file nor need to worry about apt-pinning with this manual approach. But this is very cumbersome.
Caution
When using mixed source of archives, you must ensure compatibility of packages by yourself since the Debian does not guarantee it. If package incompatibility exists, you may break system. You must be able to judge these technical requirements. The use of mixed source of random archives is completely optional operation and its use is not something I encourage you to use.

General rules for installing packages from different archives are the following.

• Non-binary packages ("Architecture: all") are safer to install.
  – documentation packages: no special requirements
  – interpreter program packages: compatible interpreter must be available

• Binary packages (non "Architecture: all") usually face many road blocks and are unsafe to install.
  – library version compatibility (including "libc")
  – related utility program version compatibility
  – Kernel ABI compatibility
  – C++ ABI compatibility
  – ...

Note
In order to make a package to be safer to install, some commercial non-free binary program packages may be provided with completely statically linked libraries. You should still check ABI compatibility issues etc. for them.

Note
Except to avoid broken package for a short term, installing binary packages from officially unsupported archives is generally bad idea. This is true even if you use apt-pinning (see Section 2.7.3). You should consider chroot or similar techniques (see Section 9.10) to run programs from different archives.

2.7.3 Tweaking candidate version

Without the "/etc/apt/preferences" file, APT system choses the latest available version as the candidate version using the version string. This is the normal state and most recommended usage of APT system. All officially supported combinations of archives do not require the "/etc/apt/preferences" file since some archives which should not be used as the automatic source of upgrades are marked as NotAutomatic and dealt properly.

Tip
The version string comparison rule can be verified with, e.g., "dpkg --compare-versions ver1.1 gt ver1.1-1; echo $?" (see dpkg(1)).

When you install packages from mixed source of archives (see Section 2.7.2) regularly, you can automate these complicated operations by creating the "/etc/apt/preferences" file with proper entries and tweaking the package selection rule for candidate version as described in apt_preferences(5). This is called apt-pinning.

Warning
Use of apt-pinning by a novice user is sure call for major troubles. You must avoid using apt-pinning except when you absolutely need it.
Caution
When using apt-pinning, you must ensure compatibility of packages by yourself since the Debian does not guarantee it. The apt-pinning is completely optional operation and its use is not something I encourage you to use.

Caution
Archive level Release files (see Section 2.5.3) are used for the rule of apt_preferences(5). Thus apt-pinning works only with "suite" name for normal Debian archives and security Debian archives. (This is different from Ubuntu archives.) For example, you can do "Pin: release a=unstable" but can not do "Pin: release a=sid" in the "/etc/apt/preferences" file.

Caution
When you use non-Debian archive as a part of apt-pinning, you should check what they are intended for and also check their credibility. For example, Ubuntu and Debian are not meant to be mixed.

Note
Even if you do not create the "/etc/apt/preferences" file, you can do fairly complex system operations (see Section 2.6.4 and Section 2.7.2) without apt-pinning.

Here is a simplified explanation of apt-pinning technique.

The APT system chooses the highest Pin-Priority upgrading package from available package sources defined in the "/etc/apt/sources.list" file as the candidate version package. If the Pin-Priority of the package is larger than 1000, this version restriction for upgrading is dropped to enable downgrading (see Section 2.7.10).

Pin-Priority value of each package is defined by "Pin-Priority" entries in the "/etc/apt/preferences" file or uses its default value.

<table>
<thead>
<tr>
<th>Pin-Priority</th>
<th>apt-pinning effects to the package</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>install the package even if this constitutes a downgrade of the package</td>
</tr>
<tr>
<td>990</td>
<td>used as the default for the target release archive</td>
</tr>
<tr>
<td>500</td>
<td>used as the default for the normal archive</td>
</tr>
<tr>
<td>100</td>
<td>used as the default for the NotAutomatic and ButAutomaticUpgradesarchive</td>
</tr>
<tr>
<td>100</td>
<td>used for the installed package</td>
</tr>
<tr>
<td>1</td>
<td>used as the default for the NotAutomatic archive</td>
</tr>
<tr>
<td>-1</td>
<td>never install the package even if recommended</td>
</tr>
</tbody>
</table>

Table 2.18: List of notable Pin-Priority values for apt-pinning technique.

The target release archive can be set by several methods.

- "/etc/apt/apt.conf" configuration file with "APT::Default-Release "stable";" line
- command line option, e.g., "apt-get install -t testing some-package"

The NotAutomatic and ButAutomaticUpgrades archive is set by archive server having its archive level Release file (see Section 2.5.3) containing both "NotAutomatic: yes" and "ButAutomaticUpgrades: yes". The NotAutomatic archive is set by archive server having its archive level Release file containing only "NotAutomatic: yes".

The apt-pinning situation of <package> from multiple archive sources is displayed by "apt-cache policy <package>".
• A line started with "Package pin:" lists the package version of <package> if association just with <package> is defined, e.g., "Package pin: 0.190".

• No line with "Package pin:" exists if no association just with <package> is defined.

• The Pin-Priority value associated just with <package> is listed right side of all version strings, e.g., "0.181 700".

• "0" is listed right side of all version strings if no association just with <package> is defined, e.g., "0.181 0".

• The Pin-Priority values of archives (defined as "Package: *" in the "/etc/apt/preferences" file) are listed left side of all archive paths, e.g., "100 http://deb.debian.org/debian/ buster-backports/main Packages".

2.7.4 Updates and Backports

There are buster-updates and backports.debian.org archives which provide upgrade packages for stable (buster). In order to use these archives, you list all required archives in the "/etc/apt/sources.list" file as the following.

```
deb http://deb.debian.org/debian/ buster main contrib non-free
deb http://security.debian.org/ buster/security main contrib non-free
deb http://deb.debian.org/debian/ buster-updates main contrib non-free
deb http://deb.debian.org/debian/ buster-backports main contrib non-free
```

There is no need to set Pin-Priority value explicitly in the "/etc/apt/preferences" file. When newer packages become available, the default configuration provides most reasonable upgrades (see Section 2.5.3).

• All installed older packages are upgraded to newer ones from buster-updates.

• Only manually installed older packages from buster-backports are upgraded to newer ones from buster-backports.

Whenever you wish to install a package named "<package-name>" with its dependency from buster-backports archive manually, you use following command while switching target release with "-t" option.

```
$ sudo apt-get install -t buster-backports <package-name>
```

2.7.5 Blocking packages installed by "Recommends"

If you wish not to pull in particular packages automatically by "Recommends", you must create the "/etc/apt/preferences" file and explicitly list all those packages at the top of it as the following.

```
Package: <package-1>
Pin: version *
Pin-Priority: -1

Package: <package-2>
Pin: version *
Pin-Priority: -1
```
2.7.6 Tracking testing with some packages from unstable

Here is an example of apt-pinning technique to include specific newer upstream version packages found in unstable regularly upgraded while tracking testing. You list all required archives in the "/etc/apt/sources.list" file as the following.

```
deb http://deb.debian.org/debian/ testing main contrib non-free
deb http://deb.debian.org/debian/ unstable main contrib non-free
deb http://security.debian.org/ testing/updates main contrib
```

Set the "/etc/apt/preferences" file as the following.

```
Package: *
Pin: release a=unstable
Pin-Priority: 100
```

When you wish to install a package named "<package-name>" with its dependencies from unstable archive under this configuration, you issue the following command which switches target release with "-t" option (Pin-Priority of unstable becomes 990).

```
$ sudo apt-get install -t unstable <package-name>
```

With this configuration, usual execution of "apt-get upgrade" and "apt-get dist-upgrade" (or "aptitude safe-upgrade" and "aptitude full-upgrade") upgrades packages which were installed from testing archive and packages which were installed from unstable archive using current unstable archive.

---

**Caution**

Be careful not to remove "testing" entry from the "/etc/apt/sources.list" file. Without "testing" entry in it, APT system upgrades packages using newer unstable archive.

---

**Tip**

I usually edit the "/etc/apt/sources.list" file to comment out "unstable" archive entry right after above operation. This avoids slow update process of having too many entries in the "/etc/apt/sources.list" file although this prevents upgrading packages which were installed from unstable archive using current unstable archive.

---

**Tip**

If "Pin-Priority: 1" is used instead of "Pin-Priority: 100" in the "/etc/apt/preferences" file, already installed packages having Pin-Priority value of 100 are not upgraded by unstable archive even if "testing" entry in the "/etc/apt/sources.list" file is removed.

---

If you wish to track particular packages in unstable automatically without initial "-t unstable" installation, you must create the "/etc/apt/preferences" file and explicitly list all those packages at the top of it as the following.

```
Package: <package-1>
Pin: release a=unstable
Pin-Priority: 700
```

```
Package: <package-2>
Pin: release a=unstable
Pin-Priority: 700
```
These set Pin-Priority value for each specific package. For example, in order to track the latest unstable version of this "Debian Reference" in English, you should have following entries in the "/etc/apt/preferences" file.

<table>
<thead>
<tr>
<th>Package</th>
<th>Pin: release a=unstable</th>
<th>Pin-Priority: 700</th>
</tr>
</thead>
<tbody>
<tr>
<td>debian-reference-en</td>
<td>release a=unstable</td>
<td>Pin-Priority: 700</td>
</tr>
<tr>
<td>debian-reference-common</td>
<td>release a=unstable</td>
<td>Pin-Priority: 700</td>
</tr>
</tbody>
</table>

**Tip**
This apt-pinning technique is valid even when you are tracking stable archive. Documentation packages have been always safe to install from unstable archive in my experience, so far.

### 2.7.7 Tracking unstable with some packages from experimental

Here is another example of apt-pinning technique to include specific newer upstream version packages found in experimental while tracking unstable. You list all required archives in the "/etc/apt/sources.list" file as the following.

```
deb http://deb.debian.org/debian/ unstable main contrib non-free
deb http://deb.debian.org/debian/ experimental main contrib non-free
deb http://security.debian.org/ testing/updates main contrib
```

The default Pin-Priority value for experimental archive is always 1 (<<100) since it is NotAutomatic archive (see Section 2.5.3). There is no need to set Pin-Priority value explicitly in the "/etc/apt/preferences" file just to use experimental archive unless you wish to track particular packages in it automatically for next upgrading.

### 2.7.8 Automatic download and upgrade of packages

The apt package comes with its own cron script "/etc/cron.daily/apt" to support the automatic download of packages. This script can be enhanced to perform the automatic upgrade of packages by installing the unattended-upgrades package. These can be customized by parameters in "/etc/apt/apt.conf.d/02backup" and "/etc/apt/apt.conf.d/50unattended-upgrades" as described in "/usr/share/doc/unattended-upgrades/README".

The unattended-upgrades package is mainly intended for the security upgrade for the stable system. If the risk of breaking an existing stable system by the automatic upgrade is smaller than that of the system broken by the intruder using its security hole which has been closed by the security update, you should consider using this automatic upgrade with configuration parameters as the following.

```
APT::Periodic::Update-Package-Lists "1";
APT::Periodic::Download-Upgradeable-Packages "1";
APT::Periodic::Unattended-Upgrade "1";
```

If you are running an unstable system, you do not want to use the automatic upgrade since it certainly breaks system some day. Even for such unstable case, you may still want to download packages in advance to save time for the interactive upgrade with configuration parameters as the following.

```
APT::Periodic::Update-Package-Lists "1";
APT::Periodic::Download-Upgradeable-Packages "1";
APT::Periodic::Unattended-Upgrade "0";
```
2.7.9  Limiting download bandwidth for APT

If you want to limit the download bandwidth for APT to e.g. 800Kib/sec (=100kiB/sec), you should configure APT with its configuration parameter as the following.

APT::Acquire::http::Dl-Limit "800";

2.7.10  Emergency downgrading

**Caution**

Downgrading is not officially supported by the Debian by design. It should be done only as a part of emergency recovery process. Despite of this situation, it is known to work well in many incidents. For critical systems, you should backup all important data on the system after the recovery operation and re-install the new system from the scratch.

You may be lucky to downgrade from newer archive to older archive to recover from broken system upgrade by manipulating candidate version (see Section 2.7.3). This is lazy alternative to tedious actions of many "dpkg -i <broken-package>_<old-version>.deb" commands (see Section 2.6.4).

Search lines in the "/etc/apt/sources.list" file tracking unstable as the following.

deb http://deb.debian.org/debian/ sid main contrib non-free

Replace it with the following to track testing.

deb http://deb.debian.org/debian/ bullseye main contrib non-free

Set the "/etc/apt/preferences" file as the following.

```
Package: *
Pins: release a=testing
Pin-Priority: 1010
```

Run "apt-get update; apt-get dist-upgrade" to force downgrading of packages across the system.

Remove this special "/etc/apt/preferences" file after this emergency downgrading.

**Tip**

It is a good idea to remove (not purge!) as much packages to minimize dependency problems. You may need to manually remove and install some packages to get system downgraded. Linux kernel, bootloader, udev, PAM, APT, and networking related packages and their configuration files require special attention.

2.7.11  Who uploaded the package?

Although the maintainer name listed in "/var/lib/dpkg/available" and "/usr/share/doc/package_name/changelog" provide some information on "who is behind the packaging activity", the actual uploader of the package is somewhat obscure. who-uploads(1) in the devscripts package identifies the actual uploader of Debian source packages.
2.7.12 The equivs package

If you are to compile a program from source to replace the Debian package, it is best to make it into a real local debianized package (*.deb) and use private archive.

If you chose to compile a program from source and to install them under "/usr/local" instead, you may need to use equivs as a last resort to satisfy the missing package dependency.

```
Package: equivs
Priority: optional
Section: admin
Description: Circumventing Debian package dependencies
This package provides a tool to create trivial Debian packages. Typically these packages contain only dependency information, but they can also include normal installed files like other packages do.

One use for this is to create a metapackage: a package whose sole purpose is to declare dependencies and conflicts on other packages so that these will be automatically installed, upgraded, or removed.

Another use is to circumvent dependency checking: by letting dpkg think a particular package name and version is installed when it isn ’ t, you can work around bugs in other packages’ dependencies. (Please do still file such bugs, though.)
```

2.7.13 Porting a package to the stable system

For partial upgrades of the stable system, rebuilding a package within its environment using the source package is desirable. This avoids massive package upgrades due to their dependencies.

Add the following entries to the "/etc/apt/sources.list" of a stable system.

```
deb-src http://deb.debian.org/debian unstable main contrib non-free
```

Install required packages for the compilation and download the source package as the following.

```
apt-get update
apt-get dist-upgrade
apt-get install fakeroot debscripts build-essential
apt-get build-dep foo
$ apt-get source foo
$ cd foo
```

Update some tool chain packages such as dpkg, and debhelper from the backport packages if they are required for the backporting.

Execute the following.

```
$ dch -i
```

Bump package version, e.g. one appended with "+bp1" in "debian/changelog"

Build packages and install them to the system as the following.
2.7.14 Proxy server for APT

Since mirroring whole subsection of Debian archive wastes disk space and network bandwidth, deployment of a local proxy server for APT is desirable consideration when you administer many systems on LAN. APT can be configure to use generic web (http) proxy servers such as squid (see Section 6.10) as described in apt.conf(5) and in "/usr/share/doc/apt/examples/configure-index.gz". The "$http_proxy" environment variable can be used to override proxy server setting in the "/etc/apt/apt.conf" file.

There are proxy tools specially for Debian archive. You should check BTS before using them.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>approx</td>
<td>V:0, I:0</td>
<td>4729</td>
<td>caching proxy server for Debian archive files (compiled OCaml program)</td>
</tr>
<tr>
<td>apt-cacher</td>
<td>V:1, I:1</td>
<td>289</td>
<td>Caching proxy for Debian package and source files (Perl program)</td>
</tr>
<tr>
<td>apt-cacher-ng</td>
<td>V:4, I:5</td>
<td>1421</td>
<td>Caching proxy for distribution of software packages (compiled C++ program)</td>
</tr>
</tbody>
</table>

Table 2.19: List of the proxy tools specially for Debian archive

⚠️ Caution
When Debian reorganizes its archive structure, these specialized proxy tools tend to require code rewrites by the package maintainer and may not be functional for a while. On the other hand, generic web (http) proxy servers are more robust and easier to cope with such changes.

2.7.15 Small public package archive

Tip
Setting up package archive manually is complicated. There are several repository management tools available. A comprehensive list is available online.

Here is a demo for manually creating a small public package archive compatible with the secure APT system (see Section 2.5.2). Let’s assume few things.

- Account name: “foo”
- Host name: “www.example.com”
- Required packages: apt-utils, gnupg, and other packages
- Architecture of packages: “amd64”

Create an APT archive key of Foo on your server system as the following.
$ ssh foo@www.example.com
$ gpg --gen-key
...
$ gpg -K
...
sec 1024/3A3CB5A6 2008-08-14
uid Foo (ARCHIVE KEY) <foo@www.example.com>
ssb 2048g/6856F4A7 2008-08-14
$ gpg --export -a 3A3CB5A6 >foo.public.key

Publish the archive key file “foo.public.key” with the key ID “3A3CB5A6” for Foo

Create an archive tree called “Origin: Foo” as the following.

$ umask 022
$ mkdir -p ~/public_html/debian/pool/main
$ mkdir -p ~/public_html/debian/dists/unstable/main/binary-amd64
$ mkdir -p ~/public_html/debian/dists/unstable/main/source
$ cd ~/public_html/debian
$ cat > dists/unstable/main/binary-amd64/Release << EOF
Archive: unstable
Version: 4.0
Component: main
Origin: Foo
Label: Foo
Architecture: amd64
EOF
$ cat > dists/unstable/main/source/Release << EOF
Archive: unstable
Version: 4.0
Component: main
Origin: Foo
Label: Foo
Architecture: source
EOF
$ cat > aptftp.conf <<EOF
APT::FTPArchive::Release {
  Origin "Foo";
  Label "Foo";
  Suite "unstable";
  Codename "sid";
  Architectures "amd64";
  Components "main",
  Description "Public archive for Foo";
};
EOF
$ cat > aptgenerate.conf <<EOF
Dir::ArchiveDir ".";
Dir::CacheDir ".";
TreeDefault::Directory "pool/";
TreeDefault::SrcDirectory "pool/";
Default::Packages::Extensions ".deb";
Default::Packages::Compress ", gzip bzip2"
Default::Sources::Compress ", gzip bzip2"
Default::Contents::Compress ", gzip bzip2"
BinDirectory "dists/unstable/main/binary-amd64" {
  Packages "dists/unstable/main/binary-amd64/Packages"
  Contents "dists/unstable/Contents-amd64"
  SrcPackages "dists/unstable/main/source/Sources";
}
You can automate repetitive updates of APT archive contents on your server system by configuring dupload.
Place all package files into "~/foo/public_html/debian/pool/main" by executing "dupload -t foo changes_file" in client while having "~/.dupload.conf" containing the following.

```bash
$cfg['foo'] = {
 'fqdn' => 'www.example.com',
 'method' => 'scpb',
 'incoming' => '/home/foo/public_html/debian/pool/main',
 '# The dinstall on ftp-master sends emails itself
 dinstall_runs' => 1,
};
$cfg['foo']['postupload']['changes'] = "
 echo 'cd public_html/debian;
 apt-ftparchive generate -c=aptftp.conf aptgenerate.conf;
 apt-ftparchive release -c=aptftp.conf diffs/unstable >dists/unstable/Release;
 rm -f dists/unstable/Release.gpg;
 gpg -u 3A3CB5A6 -bao dists/unstable/Release.gpg dists/unstable/Release';
 ssh foo@www.example.com 2>/dev/null;
 echo 'Package archive created!'';
```

The postupload hook script initiated by dupload(1) creates updated archive files for each upload.
You can add this small public archive to the apt-line of your client system by the following.

```bash
$ sudo bash
echo "deb http://www.example.com/~foo/debian/unstable main" \
>> /etc/apt/sources.list
apt-key add foo.public.key
```

---

**Tip**
If the archive is located on the local filesystem, you can use "deb file:///home/foo/debian/ ..." instead.

### 2.7.16 Recording and copying system configuration

You can make a local copy of the package and debconf selection states by the following.

```bash
dpkg --get-selections '*' > selection.dpkg
debconf-get-selections > selection.debconf
```

Here, "*" makes "Selection.dpkg" to include package entries for "purge" too.
You can transfer these 2 files to another computer, and install there with the following.
If you are thinking about managing many servers in a cluster with practically the same configuration, you should consider to use specialized package such as fai to manage the whole system.

### 2.7.17 Converting or installing an alien binary package

alien(1) enables the conversion of binary packages provided in Red Hat rpm, Stampede Slp, Slackware tgz, and Solaris pkg file formats into a Debian deb package. If you want to use a package from another Linux distribution than the one you have installed on your system, you can use alien to convert it from your preferred package format and install it. alien also supports LSB packages.

**Warning**

alien(1) should not be used to replace essential system packages, such as sysvinit, libc6, libpam-modules, etc. Practically, alien(1) should only be used for non-free binary-only packages which are LSB compliant or statically linked. For free softwares, you should use their source packages to make real Debian packages.

### 2.7.18 Extracting package without dpkg

The "dpkg*.deb" package contents can be extracted without using dpkg(1) on any Unix-like environment using standard ar(1) and tar(1).

```bash
ar x /path/to/dpkg_<version>_<arch>.deb
ls
```

```
total 24
-rw-r-r-- 1 bozo bozo 1320 2007-05-07 00:11 control.tar.gz
-rw-r-r-- 1 bozo bozo 12837 2007-05-07 00:11 data.tar.gz
-rw-r-r-- 1 bozo bozo 4 2007-05-07 00:11 debian-binary
```

```bash
mkdir control
mkdir data
tar xvzf control.tar.gz -C control
tar xvzf data.tar.gz -C data
```

The other "*.deb" package contents can be extracted by the dpkg-deb(1) command obtained from the "dpkg*.deb" package as above; or using standard ar(1) and newer GNU tar(1) with the xz(1) decompression support similarly as above.

You can also browse package content using the mc command.

### 2.7.19 More readings for the package management

You can learn more on the package management from following documentations.

- Primary documentations on the package management:
  - aptitude(8), dpkg(1), taskset(8), apt(8), apt-get(8), apt-config(8), apt-key(8), sources.list(5), apt.conf(5), and apt_preferences(5);
  - "/usr/share/doc/apt-doc/guide.html/index.html" and "/usr/share/doc/apt-doc/o...

• Official and detailed documentations on the Debian archive:
  – "Debian Policy Manual Chapter 2 - The Debian Archive",
  – "Debian Developer's Reference, Chapter 4 - Resources for Debian Developers 4.6 The Debian archive”, and
  – "The Debian GNU/Linux FAQ, Chapter 6 - The Debian FTP archives”.

• Tutorial for building of a Debian package for Debian users:
  – "Debian New Maintainers' Guide” (deprecated).
  – "Guide for Debian Maintainers".
Chapter 3

The system initialization

It is wise for you as the system administrator to know roughly how the Debian system is started and configured. Although the exact details are in the source files of the packages installed and their documentations, it is a bit overwhelming for most of us. I did my best to provide a quick overview of the key points of the Debian system and their configuration for your reference, based on the current and previous knowledge of mine and others. Since the Debian system is a moving target, the situation over the system may have been changed. Before making any changes to the system, you should refer to the latest documentation for each package.

Tip
bootup(7) describes the system bootup process based on systemd. (Recent Debian)

Tip
boot(7) describes the system bootup process based on UNIX System V Release 4. (Older Debian)

3.1 An overview of the boot strap process

The computer system undergoes several phases of boot strap processes from the power-on event until it offers the fully functional operating system (OS) to the user.

For simplicity, I limit discussion to the typical PC platform with the default installation.

The typical boot strap process is like a four-stage rocket. Each stage rocket hands over the system control to the next stage one.

• Section 3.1.1
• Section 3.1.2
• Section 3.1.3
• Section 3.1.4

Of course, these can be configured differently. For example, if you compiled your own kernel, you may be skipping the step with the mini-Debian system. So please do not assume this is the case for your system until you check it yourself.

Note
For non-legacy PC platform such as the SUN or the Macintosh system, the BIOS on ROM and the partition on the disk may be quite different (Section 9.5.2). Please seek the platform specific documentations elsewhere for such a case.
### 3.1.1  Stage 1: the BIOS

The **BIOS** is the 1st stage of the boot process which is started by the power-on event. The **BIOS** residing on the read only memory (ROM) is executed from the particular memory address to which the program counter of CPU is initialized by the power-on event. This BIOS performs the basic initialization of the hardware (POST: power on self test) and hands the system control to the next step which you provide. The BIOS is usually provided with the hardware.

The BIOS startup screen usually indicates what key(s) to press to enter the BIOS setup screen to configure the BIOS behavior. Popular keys used are F1, F2, F10, Esc, Ins, and Del. If your BIOS startup screen is hidden by a nice graphics screen, you may press some keys such as Esc to disable this. These keys are highly dependent on the hardware.

The hardware location and the priority of the code started by the BIOS can be selected from the BIOS setup screen. Typically, the first few sectors of the first found selected device (hard disk, floppy disk, CD-ROM, …) are loaded to the memory and this initial code is executed. This initial code can be any one of the following.

- The boot loader code
- The kernel code of the stepping stone OS such as FreeDOS
- The kernel code of the target OS if it fits in this small space

Typically, the system is booted from the specified partition of the primary hard disk partition. First 2 sectors of the hard disk on legacy PC contain the *master boot record (MBR)*. The disk partition information including the boot selection is recorded at the end of this MBR. The first boot loader code executed from the BIOS occupies the rest of this MBR.

### 3.1.2  Stage 2: the boot loader

The **boot loader** is the 2nd stage of the boot process which is started by the BIOS. It loads the system kernel image and the initrd image to the memory and hands control over to them. This initrd image is the root filesystem image and its support depends on the bootloader used.

The Debian system normally uses the Linux kernel as the default system kernel. The initrd image for the current 2.6/3.x Linux kernel is technically the *initramfs* (initial RAM filesystem) image. The basic initrd image is a compressed cpio archive of files in the root filesystem. The kernel can update microcode very early during boot before loading this basic initrd image. This is facilitated by the combined initrd image which is microcode binary blob in uncompressed cpio format followed by the basic initrd image.

**Tip**

You can inspect the content of the initrd image file using lsinitramfs(8) and unmkinitramfs(8) from the initramfs-tools-core package. See more on https://wiki.debian.org/initramfs.

The default install of the Debian system places first-stage GRUB boot loader code into the **MBR** for the PC platform. There are many boot loaders and configuration options available.

**Warning**

Do not play with boot loaders without having bootable rescue media (USB memory stick, CD or floppy) created from images in the grub-rescue-pc package. It makes you boot your system even without functioning bootloader on the hard disk.

For GRUB Legacy, the menu configuration file is located at "/boot/grub/menu.lst". For example, it has entries as the following.
### Table 3.1: List of bootloaders

<table>
<thead>
<tr>
<th>Package</th>
<th>popcon</th>
<th>Size</th>
<th>initrd</th>
<th>bootloader</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>grub-legacy</td>
<td>V:0, I:2</td>
<td>729</td>
<td>Supported</td>
<td>GRUB Legacy</td>
<td>This is smart enough to understand disk partitions and filesystems such as vfat, ext3, ⋅⋅⋅.</td>
</tr>
<tr>
<td>grub-pc</td>
<td>V:27, I:825</td>
<td>532</td>
<td>Supported</td>
<td>GRUB 2</td>
<td>This is smart enough to understand disk partitions and filesystems such as vfat, ext4, ⋅⋅⋅, (default)</td>
</tr>
<tr>
<td>grub-rescue-pc</td>
<td>V:0, I:1</td>
<td>6286</td>
<td>Supported</td>
<td>GRUB 2</td>
<td>This is GRUB 2 bootable rescue images (CD and floppy) (PC/BIOS version)</td>
</tr>
<tr>
<td>lilo</td>
<td>V:0, I:3</td>
<td>693</td>
<td>Supported</td>
<td>Lilo</td>
<td>This relies on the sector locations of data on the hard disk. (Old)</td>
</tr>
<tr>
<td>syslinux</td>
<td>V:4, I:54</td>
<td>344</td>
<td>Supported</td>
<td>Isolinux</td>
<td>This understands the ISO9660 filesystem. This is used by the boot CD.</td>
</tr>
<tr>
<td>syslinux</td>
<td>V:4, I:54</td>
<td>344</td>
<td>Supported</td>
<td>Syslinux</td>
<td>This understands the MSDOS filesystem (FAT). This is used by the boot floppy.</td>
</tr>
<tr>
<td>loadlin</td>
<td>V:0, I:1</td>
<td>83</td>
<td>Supported</td>
<td>Loadlin</td>
<td>New system is started from the FreeDOS/MSDOS system.</td>
</tr>
<tr>
<td>mbr</td>
<td>V:0, I:9</td>
<td>49</td>
<td>Not supported</td>
<td>MBR by Neil Turton</td>
<td>This is free software which substitutes MSDOS MBR. This only understands disk partitions.</td>
</tr>
</tbody>
</table>

For GRUB 2, the menu configuration file is located at "/boot/grub/grub.cfg". It is automatically generated by "/usr/sbin/update-grub" using templates from "/etc/grub.d/*" and settings from "/etc/default/grub". For example, it has entries as the following.

```plaintext
title Debian GNU/Linux
root (hd0,2)
kernel /vmlinuz root=/dev/hda3 ro
initrd /initrd.img

menuentry "Debian GNU/Linux" {
 set root=(hd0,3)
 linux /vmlinuz root=/dev/hda3
 initrd /initrd.img
}
```

For these examples, these GRUB parameters mean the following.

<table>
<thead>
<tr>
<th>GRUB parameter</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>root</td>
<td>use 3rd partition on the primary disk by setting it as &quot;(hd0, 3)&quot; in GRUB legacy or as &quot;(hd0, 3)&quot; in GRUB 2</td>
</tr>
<tr>
<td>kernel</td>
<td>use kernel located at &quot;/vmlinuz&quot; with kernel parameter: &quot;root=/dev/hda3 ro&quot;</td>
</tr>
<tr>
<td>initrd</td>
<td>use initrd/initramfs image located at &quot;/initrd.img&quot;</td>
</tr>
</tbody>
</table>

Table 3.2: The meaning of GRUB parameters

**Note**

The value of the partition number used by GRUB legacy program is one less than normal one used by Linux kernel and utility tools. GRUB 2 program fixes this problem.
**Tip**

UUID (see Section 9.5.3) may be used to identify a block special device instead of its file name such as 
"/dev/hda3", e.g. "root=UUID=81b289d5-4341-4003-9602-e254a17ac232 ro".

---

**Tip**

If GRUB is used, the kernel boot parameter is set in /boot/grub/grub.cfg. On Debian system, you should not edit /boot/grub/grub.cfg directly. You should edit the GRUB_CMDLINE_LINUX_DEFAULT value in /etc/default/grub and run update-grub(8) to update /boot/grub/grub.cfg.

---

**Tip**

You can start a boot loader from another boot loader using techniques called chain loading.

---

See "info grub" and grub-install(8).

### 3.1.3 Stage 3: the mini-Debian system

The mini-Debian system is the 3rd stage of the boot process which is started by the boot loader. It runs the system kernel with its root filesystem on the memory. This is an optional preparatory stage of the boot process.

**Note**

The term "the mini-Debian system" is coined by the author to describe this 3rd stage boot process for this document. This system is commonly referred as the inittd or initramfs system. Similar system on the memory is used by the Debian Installer.

The "/init" program is executed as the first program in this root filesystem on the memory. It is a program which initializes the kernel in user space and hands control over to the next stage. This mini-Debian system offers flexibility to the boot process such as adding kernel modules before the main boot process or mounting the root filesystem as an encrypted one.

- The "/init" program is a shell script program if initramfs was created by initramfs-tools.
  - You can interrupt this part of the boot process to gain root shell by providing "break=init" etc. to the kernel boot parameter. See the "/init" script for more break conditions. This shell environment is sophisticated enough to make a good inspection of your machine’s hardware.
  - Commands available in this mini-Debian system are stripped down ones and mainly provided by a GNU tool called busybox(1).
- The "/init" program is a binary systemd program if initramfs was created by dracut.
  - Commands available in this mini-Debian system are stripped down systemd(1) environment.

**Caution**

You need to use "-n" option for mount command when you are on the readonly root filesystem.
3.1.4 Stage 4: the normal Debian system

The normal Debian system is the 4th stage of the boot process which is started by the mini-Debian system. The system kernel for the mini-Debian system continues to run in this environment. The root filesystem is switched from the one on the memory to the one on the real hard disk filesystem.

The init program is executed as the first program with PID=1 to perform the main boot process of starting many programs. The default file path for the init program is "/sbin/init" but it can be changed by the kernel boot parameter as "init=/path/to/init_program".

The default init program has been changing:

- Debian before squeeze uses the simple SysV-style init.
- Debian wheezy improves the SysV-style init by ordering the boot sequence with LSB header and starting boot scripts in parallel.
- Debian jessie switches its default init to the systemd for the event-driven and parallel initialization.

**Tip**
The actual init command on your system can be verified by the "ps -p 1 -f" command.

**Tip**
"/sbin/init" is symlinked to "/lib/systemd/systemd" after Debian jessie.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>systemd</td>
<td>V:750</td>
<td>13484</td>
<td>event-based init(8) daemon for concurrency (alternative to sysvinit)</td>
</tr>
<tr>
<td>systemd-sysv</td>
<td>V:733</td>
<td>122</td>
<td>the manual pages and links needed for systemd to replace sysvinit</td>
</tr>
<tr>
<td>systemd-cron</td>
<td>V:0,1</td>
<td>139</td>
<td>systemd units to provide cron daemon and anacron functionality</td>
</tr>
<tr>
<td>init-system-helper</td>
<td>V:745</td>
<td>133</td>
<td>helper tools for switching between sysvinit and systemd</td>
</tr>
<tr>
<td>initscripts</td>
<td>V:188</td>
<td>213</td>
<td>scripts for initializing and shutting down the system</td>
</tr>
<tr>
<td>sysvinit-core</td>
<td>V:10</td>
<td>263</td>
<td>System-V-like init(8) utilities</td>
</tr>
<tr>
<td>sysv-rc</td>
<td>V:334</td>
<td>121</td>
<td>System-V-like runlevel change mechanism</td>
</tr>
<tr>
<td>sysvinit-util</td>
<td>V:279</td>
<td>131</td>
<td>System-V-like utilities (startpar(8), bootlogd(8), ...)</td>
</tr>
<tr>
<td>lsb-base</td>
<td>V:886</td>
<td>49</td>
<td>Linux Standard Base 3.2 init script functionality</td>
</tr>
<tr>
<td>lnsserv</td>
<td>V:403</td>
<td>148</td>
<td>tool to organize boot sequence using LSB init.d script dependencies</td>
</tr>
<tr>
<td>uswsusp</td>
<td>V:5</td>
<td>714</td>
<td>tools to use userspace software suspend provided by Linux</td>
</tr>
<tr>
<td>kexec-tools</td>
<td>V:1,1</td>
<td>271</td>
<td>kexec tool for kexec(8) reboots (warm reboot)</td>
</tr>
<tr>
<td>systemd-bootchart</td>
<td>V:0,10</td>
<td>123</td>
<td>boot process performance analyser</td>
</tr>
<tr>
<td>bootchart2</td>
<td>V:0,1</td>
<td>94</td>
<td>boot process performance analyser</td>
</tr>
<tr>
<td>pybootchartgui</td>
<td>V:0,1</td>
<td>177</td>
<td>boot process performance analyser (visualisation)</td>
</tr>
<tr>
<td>mingetty</td>
<td>V:0,1</td>
<td>35</td>
<td>console-only getty(8)</td>
</tr>
<tr>
<td>mgetty</td>
<td>V:0,1</td>
<td>319</td>
<td>smart modem getty(8) replacement</td>
</tr>
</tbody>
</table>

Table 3.3: List of boot utilities for the Debian system

**Tip**
See Debian wiki: BootProcessSpeedup for the latest tips to speed up the boot process.
3.2 Systemd init

This section describes how system is started by the systemd(1) program with PID=1 (i.e., init process).

The systemd init process spawns processes in parallel based on the unit configuration files (see systemd.unit(5)) which are written in declarative style instead of SysV-like procedural style. These are loaded from a set of paths (see systemd-system.conf(5)) as follows:

- "/lib/systemd/system": OS default configuration files
- "/etc/systemd/system": system administrator configuration files which override the OS default configuration files
- "/run/systemd/system": run-time generated configuration files which override the installed configuration files

Their inter-dependencies are specified by the directives "Wants=", "Requires=", "Before=", "After=", … (see "MAPPING OF UNIT PROPERTIES TO THEIR INVERSES" in systemd.unit(5)). The resource controls are also defined (see systemd.resource-control(5)).

The suffix of the unit configuration file encodes their types as:

- *.service describes the process controlled and supervised by systemd. See systemd.service(5).
- *.device describes the device exposed in the sysfs(5) as udev(7) device tree. See systemd.device(5).
- *.mount describes the file system mount point controlled and supervised by systemd. See systemd.mount(5).
- *.automount describes the file system auto mount point controlled and supervised by systemd. See systemd.automount(5).
- *.swap describes the swap device or file controlled and supervised by systemd. See systemd.swap(5).
- *.path describes the path monitored by systemd for path-based activation. See systemd.path(5).
- *.socket describes the socket controlled and supervised by systemd for socket-based activation. See systemd.socket(5).
- *.timer describes the timer controlled and supervised by systemd for timer-based activation. See systemd.timer(5).
- *.slice manages resources with the cgroups(7). See systemd.slice(5).
- *.scope is created programmatically using the bus interfaces of systemd to manages a set of system processes. See systemd.scope(5).
- *.target groups other unit configuration files to create the synchronization point during start-up. See systemd.target(5).

Upon system startup (i.e., init), the systemd process tries to start the "/lib/systemd/system/default.target" (normally symlinked to "graphical.target"). First, some special target units (see systemd.special(7)) such as "local-fs.target", "swap.target" and "cryptsetup.target" are pulled in to mount the filesystems. Then, other target units are also pulled in by the target unit dependencies. For details, read bootup(7).

systemd offers backward compatibility features. SysV-style boot scripts in "/etc/init.d/rc[0123456S].d/[KS]<name>" are still parsed and telinit(8) is translated into systemd unit activation requests.

Caution

Emulated runlevel 2 to 4 are all symlinked to the same "multi-user.target".

3.2.1 The hostname

The kernel maintains the system hostname. The system unit started by systemd-hostnamed.service sets the system hostname at boot time to the name stored in "/etc/hostname". This file should contain only the system hostname, not a fully qualified domain name.

To print out the current hostname run hostname(1) without an argument.
3.2.2 The filesystem

The mount options of normal disk and network filesystems are set in "/etc/fstab". See fstab(5) and Section 9.5.7. The configuration of the encrypted filesystem is set in "/etc/crypttab". See crypttab(5). The configuration of software RAID with mdadm(8) is set in "/etc/mdadm/mdadm.conf". See mdadm.conf(5).

⚠️ Warning
After mounting all the filesystems, temporary files in "/tmp", "/var/lock", and "/var/run" are cleaned for each boot up.

3.2.3 Network interface initialization

Network interfaces are typically initialized in "networking.service" for the lo interface and "NetworkManager.service" for other interfaces on modern Debian desktop system under systemd. See Chapter 5 for how to configure them.

3.2.4 The kernel message

The kernel error message displayed to the console can be configured by setting its threshold level.

```
dmesg -n3
```

<table>
<thead>
<tr>
<th>error level value</th>
<th>error level name</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>KERN_EMERG</td>
<td>system is unusable</td>
</tr>
<tr>
<td>1</td>
<td>KERN_ALERT</td>
<td>action must be taken immediately</td>
</tr>
<tr>
<td>2</td>
<td>KERN_CRIT</td>
<td>critical conditions</td>
</tr>
<tr>
<td>3</td>
<td>KERN_ERR</td>
<td>error conditions</td>
</tr>
<tr>
<td>4</td>
<td>KERN_WARNING</td>
<td>warning conditions</td>
</tr>
<tr>
<td>5</td>
<td>KERN_NOTICE</td>
<td>normal but significant condition</td>
</tr>
<tr>
<td>6</td>
<td>KERN_INFO</td>
<td>informational</td>
</tr>
<tr>
<td>7</td>
<td>KERN_DEBUG</td>
<td>debug-level messages</td>
</tr>
</tbody>
</table>

Table 3.4: List of kernel error levels

3.2.5 The system message

Under systemd, both kernel and system messages are logged by the journal service systemd-journald.service (a.k.a journald) either into a persistent binary data below "/var/log/journal" or into a volatile binary data below "/run/log/journal". These binary log data are accessed by the journalctl(1) command.

Under systemd, the system logging utility rsyslogd(8) changes its behavior to read the volatile binary log data (instead of pre-systemd default "/dev/log") and to create traditional permanent ASCII system log data.

The system message can be customized by "/etc/default/rsyslog" and "/etc/rsyslog.conf" for both the log file and on-screen display. See rsyslogd(8) and rsyslog.conf(5). See also Section 9.2.2.
### 3.2.6 System management under systemd

The `systemd` offers not only init system but also generic system management functionalities such as journal logging, login management, time management, network management, etc.

The `systemd(1)` is managed by several commands:

- the `systemctl(1)` command controls the `systemd` system and service manager (CLI),
- the `systemdsm(1)` command controls the `systemd` system and service manager (GUI),
- the `journalctl(1)` command queries the `systemd` journal,
- the `logind(1)` command controls the `systemd` login manager, and
- the `systemd-analyze(1)` analyzes system boot-up performance.

Here are a list of typical `systemd` management command snippets. For the exact meanings, please read the pertinent manpages.

Here, "$unit" in the above examples may be a single unit name (suffix such as `.service` and `.target` are optional) or, in many cases, multiple unit specifications (shell-style globs `"*", "?", "[\[]" using fnmatch(3) which will be matched against the primary names of all units currently in memory).

System state changing commands in the above examples are typically preceded by the "sudo" to attain the required administrative privilege.

The output of the "systemctl status $unit|$PID|$device" uses color of the dot ("●") to summarize the unit state at a glance.

- White "●" indicates an "inactive" or "deactivating" state.
- Red "●" indicates a "failed" or "error" state.
- Green "●" indicates an "active", "reloading" or "activating" state.

### 3.2.7 Customizing systemd

With default installation, many network services (see Chapter 6) are started as daemon processes after `network.target` at boot time by `systemd`. The "sshd" is no exception. Let's change this to on-demand start of "sshd" as a customization example.

First, disable system installed service unit.

```bash
$ sudo systemctl stop sshd.service
$ sudo systemctl mask sshd.service
```

The on-demand socket activation system of the classic Unix services was through the `inetd` superserver. Under `systemd`, the equivalent can be enabled by adding `*.socket` and `*.service` unit configuration files.

`sshd.socket` for specifying a socket to listen on

```ini
[Unit]
Description=SSH Socket for Per-Connection Servers

[Socket]
ListenStream=22
Accept=yes

[Install]
WantedBy=sockets.target
```
<table>
<thead>
<tr>
<th>Operation</th>
<th>Type</th>
<th>Command snippets</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUI for service manager</td>
<td>GUI</td>
<td>systemctl restart $unit</td>
</tr>
<tr>
<td>List all target unit configuration</td>
<td>Unit</td>
<td>systemctl list-units --type=target</td>
</tr>
<tr>
<td>List all service unit configuration</td>
<td>Unit</td>
<td>systemctl list-units --type=service</td>
</tr>
<tr>
<td>List all unit configuration types</td>
<td>Unit</td>
<td>systemctl list-units --type=help</td>
</tr>
<tr>
<td>List all socket units in memory</td>
<td>Unit</td>
<td>systemctl list-sockets</td>
</tr>
<tr>
<td>List all timer units in memory</td>
<td>Unit</td>
<td>systemctl list-timers</td>
</tr>
<tr>
<td>Start &quot;$unit&quot;</td>
<td>Unit</td>
<td>systemctl start $unit</td>
</tr>
<tr>
<td>Stop &quot;$unit&quot;</td>
<td>Unit</td>
<td>systemctl stop $unit</td>
</tr>
<tr>
<td>Reload service-specific configuration</td>
<td>Unit</td>
<td>systemctl reload $unit</td>
</tr>
<tr>
<td>Stop and start all &quot;$unit&quot;</td>
<td>Unit</td>
<td>systemctl restart $unit</td>
</tr>
<tr>
<td>List all unit configuration types</td>
<td>Unit</td>
<td>systemctl list-units --type=help</td>
</tr>
<tr>
<td>List all socket units in memory</td>
<td>Unit</td>
<td>systemctl list-sockets</td>
</tr>
<tr>
<td>List all timer units in memory</td>
<td>Unit</td>
<td>systemctl list-timers</td>
</tr>
<tr>
<td>Start &quot;$unit&quot;</td>
<td>Unit</td>
<td>systemctl start $unit</td>
</tr>
<tr>
<td>Stop &quot;$unit&quot;</td>
<td>Unit</td>
<td>systemctl stop $unit</td>
</tr>
<tr>
<td>Reload service-specific configuration</td>
<td>Unit</td>
<td>systemctl reload $unit</td>
</tr>
<tr>
<td>Stop and start all &quot;$unit&quot;</td>
<td>Unit</td>
<td>systemctl restart $unit</td>
</tr>
<tr>
<td>Start &quot;$unit&quot; and stop all others</td>
<td>Unit</td>
<td>systemctl isolate $unit</td>
</tr>
<tr>
<td>Switch to &quot;graphical&quot; (GUI system)</td>
<td>Unit</td>
<td>systemctl isolate graphical</td>
</tr>
<tr>
<td>Switch to &quot;multi-user&quot; (CLI system)</td>
<td>Unit</td>
<td>systemctl isolate multi-user</td>
</tr>
<tr>
<td>Switch to &quot;rescue&quot; (single user CLI system)</td>
<td>Unit</td>
<td>systemctl isolate rescue</td>
</tr>
<tr>
<td>Send kill signal to &quot;$unit&quot;</td>
<td>Unit</td>
<td>systemctl kill $unit</td>
</tr>
<tr>
<td>Check if &quot;$unit&quot; service is active</td>
<td>Unit</td>
<td>systemctl is-active $unit</td>
</tr>
<tr>
<td>Check if &quot;$unit&quot; service is failed</td>
<td>Unit</td>
<td>systemctl is-failed $unit</td>
</tr>
<tr>
<td>Show properties of &quot;$unit&quot;</td>
<td>Unit</td>
<td>systemctl status $unit</td>
</tr>
<tr>
<td>Show properties of &quot;$unit&quot;</td>
<td>Unit</td>
<td>systemctl status $unit</td>
</tr>
<tr>
<td>Reset failed &quot;$unit&quot;</td>
<td>Unit</td>
<td>systemctl reset-failed $unit</td>
</tr>
<tr>
<td>List dependency of all unit services</td>
<td>Unit</td>
<td>systemctl list-dependencies --all</td>
</tr>
<tr>
<td>List unit files installed on the system</td>
<td>Unit file</td>
<td>systemctl list-unit-files</td>
</tr>
<tr>
<td>Enable &quot;$unit&quot; (add symlink)</td>
<td>Unit file</td>
<td>systemctl enable $unit</td>
</tr>
<tr>
<td>Disable &quot;$unit&quot; (remove symlink)</td>
<td>Unit file</td>
<td>systemctl disable $unit</td>
</tr>
<tr>
<td>Unmask &quot;$unit&quot; (remove symlink to /dev/null)</td>
<td>Unit file</td>
<td>systemctl unmask $unit</td>
</tr>
<tr>
<td>Mask &quot;$unit&quot; (add symlink to /dev/null)</td>
<td>Unit file</td>
<td>systemctl mask $unit</td>
</tr>
<tr>
<td>Get default-target setting</td>
<td>Unit file</td>
<td>systemctl get-default</td>
</tr>
<tr>
<td>Set default-target to &quot;graphical&quot; (GUI system)</td>
<td>Unit file</td>
<td>systemctl set-default graphical</td>
</tr>
<tr>
<td>Set default-target to &quot;multi-user&quot; (CLI system)</td>
<td>Unit file</td>
<td>systemctl set-default multi-user</td>
</tr>
<tr>
<td>Show job environment</td>
<td>Environment</td>
<td>systemctl show-environment</td>
</tr>
<tr>
<td>Set job environment &quot;variable&quot; to &quot;value&quot;</td>
<td>Environment</td>
<td>systemctl set-environment variable=value</td>
</tr>
<tr>
<td>Unset job environment &quot;variable&quot;</td>
<td>Environment</td>
<td>systemctl unset-environment variable</td>
</tr>
<tr>
<td>Reload all unit files and daemons</td>
<td>Lifecycle</td>
<td>systemctl daemon-reload</td>
</tr>
<tr>
<td>Shut down the system</td>
<td>System</td>
<td>systemctl poweroff</td>
</tr>
<tr>
<td>Shut down and reboot the system</td>
<td>System</td>
<td>systemctl reboot</td>
</tr>
<tr>
<td>Suspend the system</td>
<td>System</td>
<td>systemctl suspend</td>
</tr>
<tr>
<td>Hibernate the system</td>
<td>System</td>
<td>systemctl hibernate</td>
</tr>
<tr>
<td>View job log of &quot;$unit&quot;</td>
<td>Journal</td>
<td>journalctl -u $unit</td>
</tr>
<tr>
<td>View job log of &quot;$unit&quot;(&quot;tail -f&quot; style)</td>
<td>Journal</td>
<td>journalctl -u $unit -f</td>
</tr>
<tr>
<td>Show time spent for each initialization step</td>
<td>Analyze</td>
<td>systemctl-analyze time</td>
</tr>
<tr>
<td>List of all units by the time to start</td>
<td>Analyze</td>
<td>systemctl-analyze time</td>
</tr>
<tr>
<td>Load and detect errors in &quot;$unit&quot; file</td>
<td>Analyze</td>
<td>systemctl verify $unit</td>
</tr>
<tr>
<td>Track boot process by the cgroups(7)</td>
<td>Cgroup</td>
<td>systemd-cgls</td>
</tr>
<tr>
<td>Track boot process by the cgroups(7)</td>
<td>Cgroup</td>
<td>ps xawf -eo pid,user,cgroup,args</td>
</tr>
<tr>
<td>Track boot process by the cgroups(7)</td>
<td>Cgroup</td>
<td>read sysfs under /sys/fs/cgroup/systemd/</td>
</tr>
</tbody>
</table>
sshd@.service as the matching service file of sshd.socket

[Unit]
Description=SSH Per-Connection Server

[Service]
ExecStart=/usr/sbin/sshd -i
StandardInput=socket

Then reload.

$ sudo systemctl daemon-reload

3.3 The udev system

For Linux kernel 2.6 and newer, the udev system provides mechanism for the automatic hardware discovery and initialization (see udev(7)). Upon discovery of each device by the kernel, the udev system starts a user process which uses information from the sysfs filesystem (see Section 1.2.12), loads required kernel modules supporting it using the modprobe(8) program (see Section 3.3.1), and creates corresponding device nodes.

Tip
If "/lib/modules/<kernel-version>/modules.dep" was not generated properly by depmod(8) for some reason, modules may not be loaded as expected by the udev system. Execute "depmod -a" to fix it.

The name of device nodes can be configured by udev rule files in "/etc/udev/rules.d/". Current default rules tend to create dynamically generated names resulting non-static device names except for cd and network devices. By adding your custom rules similar to what cd and network devices do, you can generate static device names for other devices such as USB memory sticks, too. See "Writing udev rules" or "/usr/share/doc/udev/writing_udev_rules/index.html".

Since the udev system is somewhat a moving target, I leave details to other documentations and describe the minimum information here.

Tip
For mounting rules in "/etc/fstab", device nodes do not need to be static ones. You can use UUID to mount devices instead of device names such as "/dev/sda". See Section 9.5.3.

3.3.1 The kernel module initialization

The modprobe(8) program enables us to configure running Linux kernel from user process by adding and removing kernel modules. The udev system (see Section 3.3) automates its invocation to help the kernel module initialization.

There are non-hardware modules and special hardware driver modules as the following which need to be pre-loaded by listing them in the "/etc/modules" file (see modules(5)).

- **TUN/TAP** modules providing virtual Point-to-Point network device (TUN) and virtual Ethernet network device (TAP),
- **netfilter** modules providing netfilter firewall capabilities (iptables(8), Section 5.10), and
- **watchdog timer** driver modules.
The configuration files for the modprobe(8) program are located under the "/etc/modprobes.d/" directory as explained in modprobe.conf(5). (If you want to avoid some kernel modules to be auto-loaded, consider to blacklist them in the "/etc/modprobes.d/" file.)

The "/lib/modules/<version>/modules.dep" file generated by the depmod(8) program describes module dependencies used by the modprobe(8) program.

**Note**
If you experience module loading issues with boot time module loading or with modprobe(8), "depmod -a" may resolve these issues by reconstructing "modules.dep".

The modinfo(8) program shows information about a Linux kernel module.
The lsmod(8) program nicely formats the contents of the "/proc/modules", showing what kernel modules are currently loaded.

**Tip**
You can identify exact hardware on your system. See Section 9.4.3.

**Tip**
You may configure hardware at boot time to activate expected hardware features. See Section 9.4.4.

**Tip**
You can probably add support for your special device by recompiling the kernel. See Section 9.9.
Chapter 4

Authentication

When a person (or a program) requests access to the system, authentication confirms the identity to be a trusted one.

⚠️ Warning
Configuration errors of PAM may lock you out of your own system. You must have a rescue CD handy or setup an alternative boot partition. To recover, boot the system with them and correct things from there.

⚠️ Warning
This chapter is getting outdated since this is based on Debian 7.0 (wheezy) released in 2013.

4.1 Normal Unix authentication

Normal Unix authentication is provided by the `pam_unix(8)` module under the PAM (Pluggable Authentication Modules). Its 3 important configuration files, with ":" separated entries, are the following.

<table>
<thead>
<tr>
<th>file</th>
<th>permission</th>
<th>user</th>
<th>group</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/passwd</td>
<td>-rw-r--r--</td>
<td>root</td>
<td>root</td>
<td>(sanitized) user account information</td>
</tr>
<tr>
<td>/etc/shadow</td>
<td>-rw-r-----</td>
<td>root</td>
<td>shadow</td>
<td>secure user account information</td>
</tr>
<tr>
<td>/etc/group</td>
<td>-rw-r--r--</td>
<td>root</td>
<td>root</td>
<td>group information</td>
</tr>
</tbody>
</table>

Table 4.1: 3 important configuration files for pam_unix(8)

"/etc/passwd" contains the following.

```
... user1:x:1000:1000:User1 Name,,,:/home/user1:/bin/bash
user2:x:1001:1001:User2 Name,,,:/home/user2:/bin/bash
...```

As explained in passwd(5), each ":" separated entry of this file means the following.

- Login name
• Password specification entry
• Numerical user ID
• Numerical group ID
• User name or comment field
• User home directory
• Optional user command interpreter

The second entry of "/etc/passwd" was used for the encrypted password entry. After the introduction of "/etc/shadow", this entry is used for the password specification entry.

<table>
<thead>
<tr>
<th>content</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(empty)</td>
<td>passwordless account</td>
</tr>
<tr>
<td>x</td>
<td>the encrypted password is in "/etc/shadow"</td>
</tr>
<tr>
<td>*</td>
<td>no login for this account</td>
</tr>
<tr>
<td>!</td>
<td>no login for this account</td>
</tr>
</tbody>
</table>

Table 4.2: The second entry content of "/etc/passwd"

"/etc/shadow" contains the following.

```
...  
user1:$1$Xop0FYH9$IfxyQwBe9b8tiyIkt2P4F:/:13262:0:99999:7:::  
user2:$1$vXGZLVbSSElyErNF/4agUDsm1DehJMS:/13261:0:99999:7:::  
...  
```

As explained in `shadow(5)`, each ":" separated entry of this file means the following.

• Login name
• Encrypted password (The initial "1" indicates use of the MD5 encryption. The "*" indicates no login.)
• Date of the last password change, expressed as the number of days since Jan 1, 1970
• Number of days the user will have to wait before she will be allowed to change her password again
• Number of days after which the user will have to change her password
• Number of days before a password is going to expire during which the user should be warned
• Number of days after a password has expired during which the password should still be accepted
• Date of expiration of the account, expressed as the number of days since Jan 1, 1970

"/etc/group" contains the following.

```
group1:x:20:user1,user2  
```

As explained in `group(5)`, each ":" separated entry of this file means the following.

• Group name
• Encrypted password (not really used)
• Numerical group ID
• "," separated list of user names

Note
"/etc/gshadow" provides the similar function as "/etc/shadow" for "/etc/group" but is not really used.

Note
The actual group membership of a user may be dynamically added if "auth optional pam_group.so" line is added to "/etc/pam.d/common-auth" and set it in "/etc/security/group.conf". See pam_group(8).

Note
The base-passwd package contains an authoritative list of the user and the group: "/usr/share/doc/base-passwd/users-and-groups.html".

4.2 Managing account and password information

Here are few notable commands to manage account information.

<table>
<thead>
<tr>
<th>command</th>
<th>function</th>
</tr>
</thead>
<tbody>
<tr>
<td>getent passwd <user_name></td>
<td>browse account information of "<user_name>"</td>
</tr>
<tr>
<td>getent shadow <user_name></td>
<td>browse shadowed account information of "<user_name>"</td>
</tr>
<tr>
<td>getent group <group_name></td>
<td>browse group information of "<group_name>"</td>
</tr>
<tr>
<td>passwd</td>
<td>manage password for the account</td>
</tr>
<tr>
<td>passwd -e</td>
<td>set one-time password for the account activation</td>
</tr>
<tr>
<td>chage</td>
<td>manage password aging information</td>
</tr>
</tbody>
</table>

Table 4.3: List of commands to manage account information

You may need to have the root privilege for some functions to work. See crypt(3) for the password and data encryption.

Note
On the system set up with PAM and NSS as the Debian salsa machine, the content of local "/etc/passwd", "/etc/group" and "/etc/shadow" may not be actively used by the system. Above commands are valid even under such environment.

4.3 Good password

When creating an account during your system installation or with the passwd(1) command, you should choose a good password which consists of at least 6 to 8 characters including one or more characters from each of the following sets according to passwd(1).

• Lower case alphabets
• Digits 0 through 9
• Punctuation marks
Warning
Do not choose guessable words for the password. Account name, social security number, phone number, address, birthday, name of your family members or pets, dictionary words, simple sequence of characters such as "12345" or "qwerty", ... are all bad choice for the password.

4.4 Creating encrypted password

There are independent tools to generate encrypted passwords with salt.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>command</th>
<th>function</th>
</tr>
</thead>
<tbody>
<tr>
<td>whois</td>
<td>V:42, I:516</td>
<td>355</td>
<td>mkpasswd</td>
<td>over-featured front end to the crypt(3) library</td>
</tr>
<tr>
<td>openssl</td>
<td>V:808, I:992</td>
<td>1452</td>
<td>openssl passwd</td>
<td>compute password hashes (OpenSSL). passwd(1ssl)</td>
</tr>
</tbody>
</table>

Table 4.4: List of tools to generate password

4.5 PAM and NSS

Modern Unix-like systems such as the Debian system provide PAM (Pluggable Authentication Modules) and NSS (Name Service Switch) mechanism to the local system administrator to configure his system. The role of these can be summarizes as the following.

- PAM offers a flexible authentication mechanism used by the application software thus involves password data exchange.
- NSS offers a flexible name service mechanism which is frequently used by the C standard library to obtain the user and group name for programs such as ls(1) and id(1).

These PAM and NSS systems need to be configured consistently.

The notable packages of PAM and NSS systems are the following.

- "System Databases and Name Service Switch” section in glibc-doc-reference is essential for learning NSS configuration.

Note
You can see more extensive and current list by "aptitude search ‘libpam-|libnss-’" command. The acronym NSS may also mean "Network Security Service" which is different from "Name Service Switch".

Note
PAM is the most basic way to initialize environment variables for each program with the system wide default value.

Under systemd, libpam-systemd package is installed to manage user logins by registering user sessions in the systemd control group hierarchy for logind. See systemd-logind(8), logind.conf(5), and pam_systemd(8).
<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>libpam-modules</td>
<td>V:842,I:999</td>
<td>1059</td>
<td>Pluggable Authentication Modules (basic service)</td>
</tr>
<tr>
<td>libpam-ldap</td>
<td>V:1,I:14</td>
<td>244</td>
<td>Pluggable Authentication Module allowing LDAP interfaces</td>
</tr>
<tr>
<td>libpam-cracklib</td>
<td>I:16</td>
<td>116</td>
<td>Pluggable Authentication Module to enable cracklib support</td>
</tr>
<tr>
<td>libpam-systemd</td>
<td>V:454,I:760</td>
<td>393</td>
<td>Pluggable Authentication Module to register user sessions for logind</td>
</tr>
<tr>
<td>libpam-doc</td>
<td>I:1</td>
<td>1031</td>
<td>Pluggable Authentication Modules (documentation in html and text)</td>
</tr>
<tr>
<td>libc6</td>
<td>V:937,I:999</td>
<td>12333</td>
<td>GNU C Library: Shared libraries which also provides “Name Service Switch” service</td>
</tr>
<tr>
<td>glibc-doc</td>
<td>I:13</td>
<td>2995</td>
<td>GNU C Library: Manpages</td>
</tr>
<tr>
<td>glibc-doc-reference</td>
<td>I:5</td>
<td>13278</td>
<td>GNU C Library: Reference manual in info, pdf and html format (non-free)</td>
</tr>
<tr>
<td>libnss-mdns</td>
<td>I:557</td>
<td>119</td>
<td>NSS module for Multicast DNS name resolution</td>
</tr>
<tr>
<td>libnss-ldap</td>
<td>I:12</td>
<td>255</td>
<td>NSS module for using LDAP as a naming service</td>
</tr>
<tr>
<td>libnss-ldapd</td>
<td>I:19</td>
<td>152</td>
<td>NSS module for using LDAP as a naming service (new fork of libnss-ldap)</td>
</tr>
</tbody>
</table>

Table 4.5: List of notable PAM and NSS systems

<table>
<thead>
<tr>
<th>configuration file</th>
<th>function</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/pam.d/<program_name></td>
<td>set up PAM configuration for the "<program_name>" program; see pam(7) and pam.d(5)</td>
</tr>
<tr>
<td>/etc/nsswitch.conf</td>
<td>set up NSS configuration with the entry for each service. See nsswitch.conf(5)</td>
</tr>
<tr>
<td>/etc/nologin</td>
<td>limit the user login by the pam_nologin(8) module</td>
</tr>
<tr>
<td>/etc/security/access.conf</td>
<td>limit the tty for the root access by the pam_security(8) module</td>
</tr>
<tr>
<td>/etc/security/group.conf</td>
<td>set group based restraint by the pam_group(8) module</td>
</tr>
<tr>
<td>/etc/security/pam_env.conf</td>
<td>set environment variables by the pam_env(8) module</td>
</tr>
<tr>
<td>/etc/environment</td>
<td>set additional environment variables by the pam_env(8) module with the "readenv=1" argument</td>
</tr>
<tr>
<td>/etc/default/locale</td>
<td>set locale by pam_env(8) module with the "readenv=1 envfile=/etc/default/locale" argument (Debian)</td>
</tr>
<tr>
<td>/etc/security/limits.conf</td>
<td>set resource restraint (ulimit, core, ...) by the pam_limits(8) module</td>
</tr>
<tr>
<td>/etc/security/time.conf</td>
<td>set time restraint by the pam_time(8) module</td>
</tr>
<tr>
<td>/etc/systemd/logind.conf</td>
<td>set systemd login manager configuration (see logind.conf(5) and systemd-logind.service(8))</td>
</tr>
</tbody>
</table>

Table 4.6: List of configuration files accessed by PAM and NSS
4.5.1 Configuration files accessed by PAM and NSS

Here are a few notable configuration files accessed by PAM and NSS.

The limitation of the password selection is implemented by the PAM modules, `pam_unix(8)` and `pam_cracklib(8)`. They can be configured by their arguments.

Tip
PAM modules use suffix ".so" for their filenames.

4.5.2 The modern centralized system management

The modern centralized system management can be deployed using the centralized Lightweight Directory Access Protocol (LDAP) server to administer many Unix-like and non-Unix-like systems on the network. The open source implementation of the Lightweight Directory Access Protocol is **OpenLDAP Software**.

The LDAP server provides the account information through the use of PAM and NSS with `libpam-ldap` and `libnss-ldap` packages for the Debian system. Several actions are required to enable this (I have not used this setup and the following is purely secondary information. Please read this in this context.).

- You set up a centralized LDAP server by running a program such as the stand-alone LDAP daemon, `slapd(8)`.
- You change the PAM configuration files in the "/etc/pam.d/" directory to use "pam_ldap.so" instead of the default "pam_unix.so".
 - Debian uses "/etc/pam_ldap.conf" as the configuration file for `libpam-ldap` and "/etc/pam_ldap.secret" as the file to store the password of the root.
- You change the NSS configuration in the "/etc/nsswitch.conf" file to use "ldap" instead of the default ("compat" or "file")
 - Debian uses "/etc/libnss-ldap.conf" as the configuration file for `libnss-ldap`.
- You must make `libpam-ldap` to use SSL (or TLS) connection for the security of password.
- You may make `libnss-ldap` to use SSL (or TLS) connection to ensure integrity of data at the cost of the LDAP network overhead.
- You should run `nscd(8)` locally to cache any LDAP search results in order to reduce the LDAP network traffic.

See documentations in `pam_ldap.conf(5)` and "/usr/share/doc/libpam-doc/html/" offered by the `libpam-doc` package and "info libc 'Name Service Switch’" offered by the `glibc-doc` package.

Similarly, you can set up alternative centralized systems with other methods.

- Integration of user and group with the Windows system.
 - Access Windows domain services by the `winbind` and `libpam_winbind` packages.
 - See `winbindd(8)` and Integrating MS Windows Networks with Samba.

- Integration of user and group with the legacy Unix-like system.
 - Access NIS (originally called YP) or NIS+ by the `nis` package.
 - See The Linux NIS(YP)/NYS/NIS+ HOWTO.
4.5.3 "Why GNU su does not support the wheel group"

This is the famous phrase at the bottom of the old "info su" page by Richard M. Stallman. Not to worry: the current su command in Debian uses PAM, so that one can restrict the ability to use su to the root group by enabling the line with "pam_wheel.so" in "/etc/pam.d/su".

4.5.4 Stricter password rule

Installing the `libpam-cracklib` package enables you to force stricter password rule, for example, by having active lines in "/etc/pam.d/common-password" as the following.

For squeeze:

```
password required pam_cracklib.so retry=3 minlen=9 difok=3
password [success=1 default=ignore] pam_unix.so use_authtok nullok md5
password requisite pam_deny.so
password required pam_permit.so
```

4.6 Other access controls

Note

See Section 9.3.15 for restricting the kernel secure attention key (SAK) feature.

4.6.1 sudo

`sudo(8)` is a program designed to allow a sysadmin to give limited root privileges to users and log root activity. `sudo` requires only an ordinary user's password. Install `sudo` package and activate it by setting options in "/etc/sudoers". See configuration example at "/usr/share/doc/sudo/examples/sudoers" and Section 1.1.12.

My usage of `sudo` for the single user system (see Section 1.1.12) is aimed to protect myself from my own stupidity. Personally, I consider using `sudo` a better alternative than using the system from the root account all the time. For example, the following changes the owner of "<some_file>" to "<my_name>".

```
$ sudo chown <my_name> <some_file>
```

Of course if you know the root password (as self-installed Debian users do), any command can be run under root from any user's account using "su -c".

4.6.2 PolicyKit

PolicyKit is an operating system component for controlling system-wide privileges in Unix-like operating systems. Newer GUI applications are not designed to run as privileged processes. They talk to privileged processes via PolicyKit to perform administrative operations.

PolicyKit limits such operations to user accounts belonging to the `sudo` group on the Debian system.

See polkit(8).
4.6.3 SELinux

Security-Enhanced Linux (SELinux) is a framework to tighten privilege model tighter than the ordinary Unix-like security model with the mandatory access control (MAC) policies. The root power may be restricted under some conditions.

4.6.4 Restricting access to some server services

For system security, it is a good idea to disable as much server programs as possible. This becomes critical for network servers. Having unused servers, activated either directly as daemon or via super-server program, are considered security risks.

Many programs, such as sshd(8), use PAM based access control. There are many ways to restrict access to some server services.

• configuration files: "/etc/default/<program_name>"
• service unit configuration for daemon
• PAM (Pluggable Authentication Modules)
 "/etc/inetd.conf" for super-server
 "/etc/hosts.deny" and "/etc/hosts.allow" for TCP wrapper, tcpd(8)
 "/etc/rpc.conf" for Sun RPC
• "/etc/at.allow" and "/etc/at.deny" for atd(8)
• "/etc/cron.allow" and "/etc/cron.deny" for crontab(1)
• Network firewall of netfilter infrastructure

See Section 3.2.6, Section 4.5.1, and Section 5.10.

Tip
Sun RPC services need to be active for NFS and other RPC based programs.

Tip
If you have problems with remote access in a recent Debian system, comment out offending configuration such as "ALL: PARANOID" in "/etc/hosts.deny" if it exists. (But you must be careful on security risks involved with this kind of action.)

4.7 Security of authentication

Note
The information here may not be sufficient for your security needs but it should be a good start.

4.7.1 Secure password on the Internet

Many popular transportation layer services communicate messages including password authentication in the plain text. It is very bad idea to transmit password in the plain text over the wild Internet where it can be intercepted. You can run these services over "Transport Layer Security" (TLS) or its predecessor, "Secure Sockets Layer" (SSL) to secure entire communication including password by the encryption.

The encryption costs CPU time. As a CPU friendly alternative, you can keep communication in plain text while securing just the password with the secure authentication protocol such as "Authenticated Post Office Protocol" (APOP) for POP and "Challenge-Response Authentication Mechanism MD5" (CRAM-MD5) for SMTP and IMAP. (For sending mail messages over the Internet to your mail server from your mail client, it is recently popular to use new message submission port 587 instead of traditional SMTP port 25 to avoid port 25 blocking by the network provider while authenticating yourself with CRAM-MD5.)
4.7.2 Secure Shell

The **Secure Shell (SSH)** program provides secure encrypted communications between two untrusted hosts over an insecure network with the secure authentication. It consists of the **OpenSSH** client, ssh(1), and the **OpenSSH** daemon, sshd(8). This SSH can be used to tunnel an insecure protocol communication such as POP and X securely over the Internet with the port forwarding feature.

The client tries to authenticate itself using host-based authentication, public key authentication, challenge-response authentication, or password authentication. The use of public key authentication enables the remote password-less login. See Section 6.9.

4.7.3 Extra security measures for the Internet

Even when you run secure services such as **Secure Shell (SSH)** and **Point-to-point tunneling protocol (PPTP)** servers, there are still chances for the break-ins using brute force password guessing attack etc. from the Internet. Use of the firewall policy (see Section 5.10) together with the following secure tools may improve the security situation.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>knockd</td>
<td>V:0, I:2</td>
<td>89</td>
<td>small port-knock daemon knockd(1) and client konck(1)</td>
</tr>
<tr>
<td>fail2ban</td>
<td>V:103, I:114</td>
<td>1735</td>
<td>ban IPs that cause multiple authentication errors</td>
</tr>
<tr>
<td>libpam-shield</td>
<td>V:0, I:0</td>
<td>115</td>
<td>lock out remote attackers trying password guessing</td>
</tr>
</tbody>
</table>

Table 4.8: List of tools to provide extra security measures

4.7.4 Securing the root password

To prevent people to access your machine with root privilege, you need to make following actions.

- Prevent physical access to the hard disk
- Lock BIOS and prevent booting from the removable media
- Set password for GRUB interactive session
- Lock GRUB menu from editing

With physical access to hard disk, resetting the password is relatively easy with following steps.

1. Move the hard disk to a PC with CD bootable BIOS.
2. Boot system with a rescue media (Debian boot disk, Knoppix CD, GRUB CD, …).
3. Mount root partition with read/write access.
4. Edit "/etc/passwd" in the root partition and make the second entry for the root account empty.

If you have edit access to the GRUB menu entry (see Section 3.1.2) for grub-rescue-pc at boot time, it is even easier with following steps.

1. Boot system with the kernel parameter changed to something like "root=/dev/hda6 rw init=/bin/sh".
2. Edit "/etc/passwd" and make the second entry for the root account empty.
3. Reboot system.

The root shell of the system is now accessible without password.

Note

Once one has root shell access, he can access everything on the system and reset any passwords on the system. Further more, he may compromise password for all user accounts using brute force password cracking tools such as john and crack packages (see Section 9.4.11). This cracked password may lead to compromise other systems.

The only reasonable software solution to avoid all these concerns is to use software encrypted root partition (or "/etc" partition) using dm-crypt and initramfs (see Section 9.8). You always need password to boot the system, though.
Chapter 5

Network setup

Tip
For general guide to the GNU/Linux networking, read the Linux Network Administrators Guide.

Tip
For modern Debian specific guide to the networking, read The Debian Administrator's Handbook — Configuring the Network.

Warning
Instead of using the traditional interface naming scheme ("eth0", "eth1", "wlan0", …), the newer systemd uses "Predictable Network Interface Names" such as "enp0s25".

Warning
This chapter is getting outdated since this is based on Debian 7.0 (wheezy) released in 2013.

Tip
Although this document still uses old ifconfig(8) with IPv4 for its network configuration examples, Debian is moving to ip(8) with IPv4+IPv6 in the wheezy release. Patches to update this document are welcomed.

Tip
Under systemd, networkd may be used to manage networks. See systemd-networkd(8).

5.1 The basic network infrastructure

Let’s review the basic network infrastructure on the modern Debian system.
<table>
<thead>
<tr>
<th>packages</th>
<th>popcon</th>
<th>size</th>
<th>type</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ifupdown</td>
<td>V:627,1:995</td>
<td>217</td>
<td>config::ifupdown</td>
<td>standardized tool to bring up and down the network (Debian specific)</td>
</tr>
<tr>
<td>ifplugd</td>
<td>V:4,1:21</td>
<td>209</td>
<td></td>
<td>manage the wired network automatically</td>
</tr>
<tr>
<td>ifupdown-extra</td>
<td>V:0,1:1</td>
<td>100</td>
<td></td>
<td>network testing script to enhance "ifupdown" package</td>
</tr>
<tr>
<td>ifmetric</td>
<td>V:0,1:1</td>
<td>37</td>
<td></td>
<td>set routing metrics for a network interface</td>
</tr>
<tr>
<td>guessnet</td>
<td>V:0,1:0</td>
<td>422</td>
<td></td>
<td>mapping script to enhance "ifupdown" package via "/etc/network/interfaces" file</td>
</tr>
<tr>
<td>lfscheme</td>
<td>V:0,1:0</td>
<td>58</td>
<td></td>
<td>mapping scripts to enhance "ifupdown" package</td>
</tr>
<tr>
<td>network-manager</td>
<td>V:380,1:471</td>
<td>11584</td>
<td>config::NM</td>
<td>NetworkManager (daemon): manage the network automatically</td>
</tr>
<tr>
<td>network-manager-</td>
<td>V:919,1:408</td>
<td>5921</td>
<td></td>
<td>NetworkManager (GNOME frontend)</td>
</tr>
<tr>
<td>wicd</td>
<td>V:1,1:31</td>
<td>35</td>
<td>config::wicd</td>
<td>wired and wireless network manager (metapackage)</td>
</tr>
<tr>
<td>wicd-cli</td>
<td>V:0,1:1</td>
<td>59</td>
<td></td>
<td>wired and wireless network manager (command-line client)</td>
</tr>
<tr>
<td>wicd-curses</td>
<td>V:0,1:4</td>
<td>175</td>
<td></td>
<td>wired and wireless network manager (Curses client)</td>
</tr>
<tr>
<td>wicd-daemon</td>
<td>V:26,1:35</td>
<td>962</td>
<td></td>
<td>wired and wireless network manager (daemon)</td>
</tr>
<tr>
<td>wicd-gtk</td>
<td>V:21,1:33</td>
<td>574</td>
<td></td>
<td>wired and wireless network manager (GTK+ client)</td>
</tr>
<tr>
<td>iptables</td>
<td>V:270,1:995</td>
<td>2569</td>
<td>config::Netfilter</td>
<td>administration tools for packet filtering and NAT (Netfilter)</td>
</tr>
<tr>
<td>iproute2</td>
<td>V:671,1:871</td>
<td>2585</td>
<td>config::iproute2</td>
<td>iproute2, IPv6 and other advanced network configuration: ip(8), tc(8), etc</td>
</tr>
<tr>
<td>ifrename</td>
<td>V:1,1:2</td>
<td>125</td>
<td></td>
<td>rename network interfaces based on various static criteria: ifrename(8)</td>
</tr>
<tr>
<td>ethtool</td>
<td>V:110,1:259</td>
<td>393</td>
<td></td>
<td>display or change Ethernet device settings</td>
</tr>
<tr>
<td>iputils-ping</td>
<td>V:254,1:996</td>
<td>100</td>
<td>test::iproute2</td>
<td>test network reachability of a remote host by <code>hostname</code> or <code>IP address</code> (iproute2)</td>
</tr>
<tr>
<td>iputils-arping</td>
<td>V:26,1:392</td>
<td>51</td>
<td></td>
<td>test network reachability of a remote host specified by the ARP address</td>
</tr>
<tr>
<td>iputils-tracepath</td>
<td>V:5,1:102</td>
<td>68</td>
<td></td>
<td>trace the network path to a remote host</td>
</tr>
<tr>
<td>net-tools</td>
<td>V:299,1:744</td>
<td>979</td>
<td>config::net-tools</td>
<td>NET-3 networking toolkit (net-tools, IPv4 network configuration): ifconfig(8) etc.</td>
</tr>
<tr>
<td>inetutils-ping</td>
<td>V:0,1:2</td>
<td>350</td>
<td>test::net-tools</td>
<td>test network reachability of a remote host by <code>hostname</code> or <code>IP address</code> (legacy, GNU)</td>
</tr>
<tr>
<td>arping</td>
<td>V:1,1:28</td>
<td>73</td>
<td></td>
<td>test network reachability of a remote host specified by the ARP address (legacy)</td>
</tr>
<tr>
<td>traceroute</td>
<td>V:63,1:960</td>
<td>154</td>
<td></td>
<td>trace the network path to a remote host (legacy, console)</td>
</tr>
<tr>
<td>isc-dhcp-client</td>
<td>V:255,1:973</td>
<td>673</td>
<td>config::low-level</td>
<td>DHCP client</td>
</tr>
<tr>
<td>wpsupplicant</td>
<td>V:310,1:539</td>
<td>3352</td>
<td></td>
<td>client support for WPA and WPA2 (IEEE 802.11i)</td>
</tr>
<tr>
<td>wpagui</td>
<td>V:0,1:3</td>
<td>786</td>
<td></td>
<td>QI GUI client for wpa_supplicant</td>
</tr>
<tr>
<td>wireless-tools</td>
<td>V:192,1:274</td>
<td>297</td>
<td></td>
<td>tools for manipulating Linux Wireless Extensions</td>
</tr>
<tr>
<td>ppp</td>
<td>V:264,1:510</td>
<td>1020</td>
<td></td>
<td>PPP/PPPoE connection with chatT</td>
</tr>
<tr>
<td>pppoeconf</td>
<td>V:0,1:9</td>
<td>290</td>
<td>config::helper</td>
<td>configuration helper for PPPPoE connection</td>
</tr>
<tr>
<td>pppconfig</td>
<td>V:1,1:2</td>
<td>805</td>
<td></td>
<td>configuration helper for PPP connection with chatT</td>
</tr>
<tr>
<td>wvdial</td>
<td>V:0,1:6</td>
<td>249</td>
<td></td>
<td>configuration helper for PPP connection with wvdial and ppp</td>
</tr>
<tr>
<td>mtr-tiny</td>
<td>V:6,1:55</td>
<td>152</td>
<td>test::low-level</td>
<td>trace the network path to a remote host (curses)</td>
</tr>
<tr>
<td>mtr</td>
<td>V:5,1:40</td>
<td>206</td>
<td></td>
<td>trace the network path to a remote host (curses and GTK+)</td>
</tr>
<tr>
<td>gnome-nettool</td>
<td>V:3,1:91</td>
<td>2105</td>
<td></td>
<td>tools for common network information operations (GNOME)</td>
</tr>
<tr>
<td>nmap</td>
<td>V:36,1:292</td>
<td>4510</td>
<td></td>
<td>network mapper / port scanner (Nmap, console)</td>
</tr>
<tr>
<td>zenmap</td>
<td>V:4,1:12</td>
<td>2939</td>
<td></td>
<td>network mapper / port scanner (GTK+)</td>
</tr>
<tr>
<td>tcpdump</td>
<td>V:21,1:200</td>
<td>1192</td>
<td></td>
<td>network traffic analyzer (Tcpdump, console)</td>
</tr>
<tr>
<td>wireshark</td>
<td>V:6,1</td>
<td>69</td>
<td></td>
<td>network traffic analyzer (Wireshark, GTK+)</td>
</tr>
<tr>
<td>tshark</td>
<td>V:3,1:35</td>
<td>398</td>
<td></td>
<td>network traffic analyzer (console)</td>
</tr>
<tr>
<td>tcptrace</td>
<td>V:0,1:1</td>
<td>392</td>
<td></td>
<td>produce a summarization of the connections from tcpdump output</td>
</tr>
</tbody>
</table>
5.1.1 The hostname resolution

The hostname resolution is currently supported by the **NSS (Name Service Switch)** mechanism too. The flow of this resolution is the following.

1. The "/etc/nsswitch.conf" file with stanza like "hosts: files dns" dictates the hostname resolution order. (This replaces the old functionality of the "order" stanza in "/etc/host.conf".)

2. The files method is invoked first. If the hostname is found in the "/etc/hosts" file, it returns all valid addresses for it and exits. (The "/etc/host.conf" file contains "multi on").

3. The dns method is invoked. If the hostname is found by the query to the Internet Domain Name System (DNS) identified by the "/etc/resolv.conf" file, it returns all valid addresses for it and exits.

For example, "/etc/hosts" looks like the following.

```
127.0.0.1 localhost
127.0.1.1 <host_name>

# The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts
```

Each line starts with a IP address and it is followed by the associated hostname.

The IP address 127.0.1.1 in the second line of this example may not be found on some other Unix-like systems. The Debian Installer creates this entry for a system without a permanent IP address as a workaround for some software (e.g., GNOME) as documented in the bug #719621.

The <host_name> matches the hostname defined in the "/etc/hostname".

For a system with a permanent IP address, that permanent IP address should be used here instead of 127.0.1.1.

For a system with a permanent IP address and a fully qualified domain name (FQDN) provided by the Domain Name System (DNS), that canonical <host_name>,<domain_name> should be used instead of just <host_name>.

The "/etc/resolv.conf" is a static file if the resolvconf package is not installed. If installed, it is a symbolic link. Either way, it contains information that initialize the resolver routines. If the DNS is found at IP="192.168.11.1", it contains the following.

```
nameserver 192.168.11.1
```

The resolvconf package makes this "/etc/resolv.conf" into a symbolic link and manages its contents by the hook scripts automatically.

For the PC workstation on the typical adhoc LAN environment, the hostname can be resolved via Multicast DNS (mDNS, Zeroconf) in addition to the basic files and dns methods.

- **Avahi** provides a framework for Multicast DNS Service Discovery on Debian.
- It is equivalent of Apple Bonjour / Apple Rendezvous.
- The **libnss-mdns** plugin package provides host name resolution via mDNS for the GNU Name Service Switch (NSS) functionality of the GNU C Library (glibc).
• The "/etc/nsswitch.conf" file should have stanza like "hosts: files mdns4_minimal [NOTFOUND=return] dns mdns4".

• Host names ending with the ".local" pseudo-top-level domain (TLD) are resolved.

• The mDNS IPv4 link-local multicast address "224.0.0.251" or its IPv6 equivalent "FF02::FB" are used to make DNS query for a name ending with ".local".

The hostname resolution via deprecated NETBios over TCP/IP used by the older Windows system can be provided by installing the winbind package. The "/etc/nsswitch.conf" file should have stanza like "hosts: files mdns4_minimal [NOTFOUND=return] dns mdns4 wins" to enable this functionality. (Modern Windows system usually use the dns method for the hostname resolution.)

Note
The expansion of generic Top-Level Domains (gTLD) in the Domain Name System is underway. Watch out for the name collision when choosing a domain name used only within LAN.

5.1.2 The network interface name

The network interface name, e.g. eth0, is assigned to each hardware in the Linux kernel through the user space configuration mechanism, udev (see Section 3.3), as it is found. The network interface name is referred as physical interface in ifup(8) and interfaces(5).

In order to ensure each network interface to be named persistently for each reboot using MAC address etc., there is a rules file "/etc/udev/rules.d/70-persistent-net.rules". This file is automatically generated by the "/lib/udev/write_net_rules" program, probably run by the "persistent-net-generator.rules" rules file. You can modify it to change naming rule.

Caution
When editing the "/etc/udev/rules.d/70-persistent-net.rules" rules file, you must keep each rule on a single line and the MAC address in lowercase. For example, if you find "FireWire device" and "PCI device" in this file, you probably want to name "PCI device" as eth0 and configure it as the primary network interface.

5.1.3 The network address range for the LAN

Let us be reminded of the IPv4 32 bit address ranges in each class reserved for use on the local area networks (LANs) by rfc1918. These addresses are guaranteed not to conflict with any addresses on the Internet proper.

<table>
<thead>
<tr>
<th>Class</th>
<th>network addresses</th>
<th>net mask</th>
<th>net mask /bits</th>
<th># of subnets</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10.x.x.x</td>
<td>255.0.0.0</td>
<td>/8</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>172.16.x.x — 172.31.x.x</td>
<td>255.255.0.0</td>
<td>/16</td>
<td>16</td>
</tr>
<tr>
<td>C</td>
<td>192.168.0.x — 192.168.255.x</td>
<td>255.255.255.0</td>
<td>/24</td>
<td>256</td>
</tr>
</tbody>
</table>

Table 5.2: List of network address ranges

Note
If one of these addresses is assigned to a host, then that host must not access the Internet directly but must access it through a gateway that acts as a proxy for individual services or else does Network Address Translation (NAT). The broadband router usually performs NAT for the consumer LAN environment.
5.1.4 The network device support

Although most hardware devices are supported by the Debian system, there are some network devices which require DFSG non-free firmware to support them. Please see Section 9.9.6.

5.2 The modern network configuration for desktop

Network interfaces are typically initialized in "networking.service" for the lo interface and "NetworkManager.service" for other interfaces on modern Debian desktop system under systemd.

Debian squeeze and newer can manage the network connection via management daemon software such as NetworkManager (NM) (network-manager and associated packages) or Wicd (wicd and associated packages).

• They come with their own GUI and command-line programs as their user interfaces.
• They come with their own daemon as their backend system.
• They allow easy connection of your system to the Internet.
• They allow easy management of wired and wireless network configuration.
• They allow us to configure network independent of the legacy ifupdown package.

Note

Do not use these automatic network configuration tools for servers. These are aimed primarily for mobile desktop users on laptops.

These modern network configuration tools need to be configured properly to avoid conflicting with the legacy ifupdown package and its configuration file "/etc/network/interfaces".

Note

Some features of these automatic network configuration tools may suffer regressions. These are not as robust as the legacy ifupdown package. Check BTS of network-manager and BTS of wicd for current issues and limitations.

5.2.1 GUI network configuration tools

Official documentations for NM and Wicd on Debian are provided in "/usr/share/doc/network-manager/README.Debian" and "/usr/share/doc/wicd/README.Debian", respectively.

Essentially, the network configuration for desktop is done as follows.

1. Make desktop user, e.g. foo, belong to group "netdev" by the following (Alternatively, do it automatically via D-bus under modern desktop environments such as GNOME and KDE).

 $ sudo adduser foo netdev

2. Keep configuration of "/etc/network/interfaces" as simple as in the following.

 auto lo
 iface lo inet loopback
3. Restart NM or Wicd by the following.

```
$ sudo /etc/init.d/network-manager restart
```

```
$ sudo /etc/init.d/wicd restart
```

4. Configure your network via GUI.

Note
Only interfaces which are **not** listed in "/etc/network/interfaces" are managed by NM or Wicd to avoid conflict with ifupdown.

Tip
If you wish to extend network configuration capabilities of NM, please seek appropriate plug-in modules and supplemental packages such as network-manager-openconnect, network-manager-openvpn-gnome, network-manager-pptp-gnome, mobile-broadband-provider-info, gnome-bluetooth, etc. The same goes for those of Wicd.

Caution
These automatic network configuration tools may not be compatible with esoteric configurations of legacy ifupdown in "/etc/network/interfaces" such as ones in Section 5.6 and Section 5.7. Check BTS of network-manager and BTS of wicd for current issues and limitations.

5.3 The modern network configuration without GUI

Under **systemd**, the network may be configured in /etc/systemd/network/ instead. See systemd-resolved(8), resolved.conf(5), and systemd-networkd(8).

This allows the modern network configuration without GUI.

A DHCP client configuration can be set up by creating "/etc/systemd/network/dhcp.network". E.g.:

```
[Match]
Name=en*

[Network]
DHCP=yes
```

A static network configuration can be set up by creating "/etc/systemd/network/static.network". E.g.:

```
[Match]
Name=en*

[Network]
Address=192.168.0.15/24
Gateway=192.168.0.1
```
5.4 The legacy network connection and configuration

When the method described in Section 5.2 does not suffice your needs, you should use the legacy network connection and configuration method which combines many simpler tools.

The legacy network connection is specific for each method (see Section 5.5).

There are 2 types of programs for the low level network configuration on Linux (see Section 5.8.1).

- Old net-tools programs (ifconfig(8), ...) are from the Linux NET-3 networking system. Most of these are obsolete now.
- New Linux iproute2 programs (ip(8), ...) are the current Linux networking system.

Although these low level networking programs are powerful, they are cumbersome to use. So high level network configuration systems have been created.

The ifupdown package is the de facto standard for such high level network configuration system on Debian. It enables you to bring up network simply by doing, e.g., "ifup eth0". Its configuration file is the "/etc/network/interfaces" file and its typical contents are the following.

```
auto lo
iface lo inet loopback

auto eth0
iface eth0 inet dhcp
```

The resolvconf package was created to supplement ifupdown system to support smooth reconfiguration of network address resolution by automating rewrite of resolver configuration file "/etc/resolv.conf". Now, most Debian network configuration packages are modified to use resolvconf package (see "/usr/share/doc/resolvconf/README.Debian").

Helper scripts to the ifupdown package such as ifplugd, guessnet, ifscheme, etc. are created to automate dynamic configuration of network environment such as one for mobile PC on wired LAN. These are relatively difficult to use but play well with existing ifupdown system.

These are explained in detail with examples (see Section 5.6 and Section 5.7).

5.5 The network connection method (legacy)

⚠️ Caution
The connection test methods described in this section are meant for testing purposes. It is not meant to be used directly for the daily network connection. You are advised to use NM, Wicd, or the ifupdown package instead (see Section 5.2 and Section 5.6).

The typical network connection method and connection path for a PC can be summarized as the following.

Here is the summary of configuration scripts for each connection method.

The network connection acronyms mean the following.

Note
The WAN connection services via cable TV are generally served by DHCP or PPPoE. The ones by ADSL and FTTP are generally served by PPPoE. You have to consult your ISP for exact configuration requirements of the WAN connection.
<table>
<thead>
<tr>
<th>PC</th>
<th>connection method</th>
<th>connection path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial port (ppp0)</td>
<td>PPP</td>
<td>modem POTS dial-up access point ISP</td>
</tr>
<tr>
<td>Ethernet port (eth0)</td>
<td>PPPoE/DHCP/Static</td>
<td>BB-modem BB service BB access point ISP</td>
</tr>
<tr>
<td>Ethernet port (eth0)</td>
<td>DHCP/Static</td>
<td>LAN BB-router with network address translation (NAT) (BB-modem ⋯)</td>
</tr>
</tbody>
</table>

Table 5.3: List of network connection methods and connection paths

<table>
<thead>
<tr>
<th>connection method</th>
<th>configuration</th>
<th>backend package(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPP</td>
<td>pppconfig to create deterministic chat</td>
<td>pppconfig, ppp</td>
</tr>
<tr>
<td>PPP (alternative)</td>
<td>wvdialconf to create heuristic chat</td>
<td>ppp, wvdial</td>
</tr>
<tr>
<td>PPPoE</td>
<td>pppoeconf to create deterministic chat</td>
<td>pppoeconf, ppp</td>
</tr>
<tr>
<td>DHCP</td>
<td>described in "/etc/dhcp/dhclient.conf"</td>
<td>isc-dhcp-client</td>
</tr>
<tr>
<td>static IP (IPv4)</td>
<td>described in "/etc/network/interfaces"</td>
<td>iproute or net-tools (obsolete)</td>
</tr>
<tr>
<td>static IP (IPv6)</td>
<td>described in "/etc/network/interfaces"</td>
<td>iproute</td>
</tr>
</tbody>
</table>

Table 5.4: List of network connection configurations

<table>
<thead>
<tr>
<th>acronym</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>POTS</td>
<td>plain old telephone service</td>
</tr>
<tr>
<td>BB</td>
<td>broadband</td>
</tr>
<tr>
<td>BB-service</td>
<td>e.g., the digital subscriber line (DSL), the cable TV, or the fiber to the premises (FTTP)</td>
</tr>
<tr>
<td>BB-modem</td>
<td>e.g., the DSL modem, the cable modem, or the optical network terminal (ONT)</td>
</tr>
<tr>
<td>LAN</td>
<td>local area network</td>
</tr>
<tr>
<td>WAN</td>
<td>wide area network</td>
</tr>
<tr>
<td>DHCP</td>
<td>dynamic host configuration protocol</td>
</tr>
<tr>
<td>PPP</td>
<td>point-to-point protocol</td>
</tr>
<tr>
<td>PPPoE</td>
<td>point-to-point protocol over Ethernet</td>
</tr>
<tr>
<td>ISP</td>
<td>Internet service provider</td>
</tr>
</tbody>
</table>

Table 5.5: List of network connection acronyms
Note
When BB-router is used to create home LAN environment, PCs on LAN are connected to the WAN via BB-router with **network address translation (NAT)**. For such case, PC’s network interfaces on the LAN are served by static IP or DHCP from the BB-router. BB-router must be configured to connect the WAN following the instruction by your ISP.

5.5.1 The DHCP connection with the Ethernet

The typical modern home and small business network, i.e. LAN, are connected to the WAN (Internet) using some consumer grade broadband router. The LAN behind this router is usually served by the **dynamic host configuration protocol (DHCP)** server running on the router.

Just install the `isc-dhcp-client` package for the Ethernet served by the **dynamic host configuration protocol (DHCP)**. See `dhclient.conf(5)`.

5.5.2 The static IP connection with the Ethernet

No special action is needed for the Ethernet served by the static IP.

5.5.3 The PPP connection with `pppconfig`

The configuration script `pppconfig` configures the **PPP** connection interactively just by selecting the following.

- The telephone number
- The ISP user name
- The ISP password
- The port speed
- The modem communication port
- The authentication method

<table>
<thead>
<tr>
<th>file</th>
<th>function</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/etc/ppp/peers/<isp_name></code></td>
<td>The <code>pppconfig</code> generated configuration file for <code>pppd</code> specific to <code><isp_name></code></td>
</tr>
<tr>
<td><code>/etc/chatscripts/<isp_name></code></td>
<td>The <code>pppconfig</code> generated configuration file for <code>chat</code> specific to <code><isp_name></code></td>
</tr>
<tr>
<td><code>/etc/ppp/options</code></td>
<td>The general execution parameter for <code>pppd</code></td>
</tr>
<tr>
<td><code>/etc/ppp/pap-secret</code></td>
<td>Authentication data for the PAP (security risk)</td>
</tr>
<tr>
<td><code>/etc/ppp/chap-secret</code></td>
<td>Authentication data for the CHAP (more secure)</td>
</tr>
</tbody>
</table>

Table 5.6: List of configuration files for the **PPP** connection with `pppconfig`

Caution
The "<isp_name>" value of "provider" is assumed if `pon` and `poff` commands are invoked without arguments.
You can test configuration using low level network configuration tools as the following.

```bash
$ sudo pon <isp_name>
...
$ sudo poff <isp_name>
```

See "/usr/share/doc/ppp/README.Debian.gz”.

5.5.4 The alternative PPP connection with wvdialconf

A different approach to using `pppd(8)` is to run it from `wvdial(1)` which comes in the `wvdial` package. Instead of `pppd` running `chat(8)` to dial in and negotiate the connection, `wvdial` does the dialing and initial negotiating and then starts `pppd` to do the rest.

The configuration script `wvdialconf` configures the PPP connection interactively just by selecting the following.

- The telephone number
- The ISP user name
- The ISP password

`wvdial` succeeds in making the connection in most cases and maintains authentication data list automatically.

<table>
<thead>
<tr>
<th>file</th>
<th>function</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/ppp/peers/wvdial</td>
<td>The <code>wvdialconf</code> generated configuration file for <code>pppd</code> specific to wvdial</td>
</tr>
<tr>
<td>/etc/wvdial.conf</td>
<td>The <code>wvdialconf</code> generated configuration file</td>
</tr>
<tr>
<td>/etc/ppp/options</td>
<td>The general execution parameter for <code>pppd</code></td>
</tr>
<tr>
<td>/etc/ppp/pap-secret</td>
<td>Authentication data for the PAP (security risk)</td>
</tr>
<tr>
<td>/etc/ppp/chap-secret</td>
<td>Authentication data for the CHAP (more secure)</td>
</tr>
</tbody>
</table>

Table 5.7: List of configuration files for the PPP connection with `wvdialconf`

You can test configuration using low level network configuration tools as the following.

```bash
$ sudo wvdial
...
$ sudo killall wvdial
```

See `wvdial(1)` and `wvdial.conf(5)`.

5.5.5 The PPPoE connection with pppoeconf

When your ISP serves you with PPPoE connection and you decide to connect your PC directly to the WAN, the network of your PC must be configured with the PPPoE. The PPPoE stand for PPP over Ethernet. The configuration script `pppoeconf` configures the PPPoE connection interactively.

The configuration files are the following.

You can test configuration using low level network configuration tools as the following.
The **pppoeconf** generated configuration file for **pppd** specific to **pppoe**

The general execution parameter for **pppd**

Authentication data for the **PAP** (security risk)

Authentication data for the **CHAP** (more secure)

Table 5.8: List of configuration files for the PPPoE connection with pppoeconf

```
$ sudo /sbin/ifconfig eth0 up
$ sudo pon dsl-provider
... $ sudo poff dsl-provider
$ sudo /sbin/ifconfig eth0 down
```

See”/usr/share/doc/pppoeconf/README.Debian”.

5.6 The basic network configuration with ifupdown (legacy)

The traditional **TCP/IP network** setup on the Debian system uses **ifupdown** package as a high level tool. There are 2 typical cases.

- For **dynamic IP** system such as mobile PCs, you should setup TCP/IP network with the **resolvconf** package and enable you to switch your network configuration easily (see Section 5.6.4).
- For **static IP** system such as servers, you should setup TCP/IP network without the **resolvconf** package and keep your system simple (see Section 5.6.5).

These traditional setup methods are quite useful if you wish to set up advanced configuration; find details in the following.

The **ifupdown** package provides the standardized framework for the high level network configuration in the Debian system. In this section, we learn the basic network configuration with **ifupdown** with simplified introduction and many typical examples.

5.6.1 The command syntax simplified

The **ifupdown** package contains 2 commands: **ifup(8)** and **ifdown(8)**. They offer high level network configuration dictated by the configuration file ”/etc/network/interfaces”.

<table>
<thead>
<tr>
<th>command</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>ifup eth0</td>
<td>bring up a network interface eth0 with the configuration eth0 if "iface eth0" stanza exists</td>
</tr>
<tr>
<td>ifdown eth0</td>
<td>bring down a network interface eth0 with the configuration eth0 if "iface eth0" stanza exists</td>
</tr>
</tbody>
</table>

Table 5.9: List of basic network configuration commands with ifupdown

⚠️ **Warning**

Do not use low level configuration tools such as ifconfig(8) and ip(8) commands to configure an interface in **up** state.
Note
There is no command ifupdown.

5.6.2 The basic syntax of "/etc/network/interfaces"

The key syntax of "/etc/network/interfaces" as explained in interfaces(5) can be summarized as the following.

<table>
<thead>
<tr>
<th>stanza</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>"auto <interface_name>"</td>
<td>start interface <interface_name> upon start of the system</td>
</tr>
<tr>
<td>"allow-auto <interface_name>"</td>
<td>..</td>
</tr>
<tr>
<td>"allow-hotplug <interface_name>"</td>
<td>start interface <interface_name> when the kernel detects a hotplug event from the interface</td>
</tr>
</tbody>
</table>

Lines started with "iface <config_name> ...", define the network configuration <config_name>.

Lines started with "mapping <interface_name_glob>" define mapping value of <config_name> for the matching <interface_name>.

A line starting with a hash "#" ignore as comments (end-of-line comments are not supported).

A line ending with a backslash "\" extend the configuration to the next line.

Table 5.10: List of stanzas in "/etc/network/interfaces"

Lines started with iface stanza has the following syntax.

```
iface <config_name> <address_family> <method_name>
<option1> <value1>
<option2> <value2>
...
```

For the basic configuration, the mapping stanza is not used and you use the network interface name as the network configuration name (See Section 5.7.5).

⚠️ Warning
Do not define duplicates of the "iface" stanza for a network interface in "/etc/network/interfaces".

5.6.3 The loopback network interface

The following configuration entry in the "/etc/network/interfaces" file brings up the loopback network interface lo upon booting the system (via auto stanza).

```
auto lo
iface lo inet loopback
```

This one always exists in the "/etc/network/interfaces" file.
5.6.4 The network interface served by the DHCP

After preparing the system by Section 5.5.1, the network interface served by the DHCP is configured by creating the configuration entry in the "/etc/network/interfaces" file as the following.

```bash
allow-hotplug eth0
iface eth0 inet dhcp
```

When the Linux kernel detects the physical interface eth0, the **allow-hotplug** stanza causes ifup to bring up the interface and the **iface** stanza causes ifup to use DHCP to configure the interface.

5.6.5 The network interface with the static IP

The network interface served by the static IP is configured by creating the configuration entry in the "/etc/network/interfaces" file as the following.

```bash
allow-hotplug eth0
iface eth0 inet static
  address 192.168.11.100
  netmask 255.255.255.0
  gateway 192.168.11.1
  dns-domain example.com
  dns-nameservers 192.168.11.1
```

When the Linux kernel detects the physical interface eth0, the **allow-hotplug** stanza causes ifup to bring up the interface and the **iface** stanza causes ifup to use the static IP to configure the interface.

Here, I assumed the following.

- IP address range of the LAN network: 192.168.11.0 - 192.168.11.255
- IP address of the gateway: 192.168.11.1
- IP address of the PC: 192.168.11.100
- The resolvconf package: installed
- The domain name: "example.com"
- IP address of the DNS server: 192.168.11.1

When the resolvconf package is not installed, DNS related configuration needs to be done manually by editing the "/etc/resolv.conf" as the following.

```bash
nameserver 192.168.11.1
domain example.com
```

⚠️ **Caution**

The IP addresses used in the above example are not meant to be copied literally. You have to adjust IP numbers to your actual network configuration.
5.6.6 The basics of wireless LAN interface

The wireless LAN (WLAN for short) provides the fast wireless connectivity through the spread-spectrum communication of unlicensed radio bands based on the set of standards called IEEE 802.11.

The WLAN interfaces are almost like normal Ethernet interfaces but require some network ID and encryption key data to be provided when they are initialized. Their high level network tools are exactly the same as that of Ethernet interfaces except interface names are a bit different like eth1, wlan0, ath0, wifi0, ... depending on the kernel drivers used.

Tip
The `wmaster0` device is the master device which is an internal device used only by SoftMAC with new `mac80211` API of Linux.

Here are some keywords to remember for the WLAN.

<table>
<thead>
<tr>
<th>acronym</th>
<th>full word</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWID</td>
<td>Network ID</td>
<td>16 bit network ID used by pre-802.11 WaveLAN network (very deprecated)</td>
</tr>
<tr>
<td>(E)SSID</td>
<td>(Extended) Service Set Identifier</td>
<td>network name of the Wireless Access Points (APs) interconnected to form an integrated 802.11 wireless LAN, Domain ID</td>
</tr>
<tr>
<td>WEP, (WEP2)</td>
<td>Wired Equivalent Privacy</td>
<td>1st generation 64-bit (128-bit) wireless encryption standard with 40-bit key (deprecated)</td>
</tr>
<tr>
<td>WPA</td>
<td>Wi-Fi Protected Access</td>
<td>2nd generation wireless encryption standard (most of 802.11i), compatible with WEP</td>
</tr>
<tr>
<td>WPA2</td>
<td>Wi-Fi Protected Access 2</td>
<td>3rd generation wireless encryption standard (full 802.11i), non-compatible with WEP</td>
</tr>
</tbody>
</table>

Table 5.11: List of acronyms for WLAN

The actual choice of protocol is usually limited by the wireless router you deploy.

5.6.7 The wireless LAN interface with WPA/WPA2

You need to install the `wpasupplicant` package to support the WLAN with the new WPA/WPA2.

In case of the DHCP served IP on WLAN connection, the "/etc/network/interfaces" file entry should be as the following.

```bash
allow-hotplug ath0
iface ath0 inet dhcp
  wpa-ssid homezone
  # hexadecimal psk is encoded from a plaintext passphrase
  wpa-psk 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f
```

See "/usr/share/doc/wpasupplicant/README.modes.gz".

5.6.8 The wireless LAN interface with WEP

You need to install the `wireless-tools` package to support the WLAN with the old WEP. (Your consumer grade router may still be using this insecure infrastructure but this is better than nothing.)
In case of the DHCP served IP on WLAN connection, the "/etc/network/interfaces” file entry should be as the following.

```plaintext
allow-hotplug eth0
iface eth0 inet dhcp
  wireless-essid Home
  wireless-key1 0123-4567-89ab-cdef
  wireless-key2 12345678
  wireless-key3 s:password
  wireless-defaultkey 2
  wireless-keymode open
```

See “/usr/share/doc/wireless-tools/README.Debian”.

5.6.9 The PPP connection

You need to configure the PPP connection first as described before (see Section 5.5.3). Then, add the "/etc/network/interfaces” file entry for the primary PPP device ppp0 as the following.

```plaintext
iface ppp0 inet ppp
  provider <isp_name>
```

5.6.10 The alternative PPP connection

You need to configure the alternative PPP connection with wvdial first as described before (see Section 5.5.4). Then, add the "/etc/network/interfaces” file entry for the primary PPP device ppp0 as the following.

```plaintext
iface ppp0 inet wvdial
```

5.6.11 The PPPoE connection

For PC connected directly to the WAN served by the PPPoE, you need to configure system with the PPPoE connection as described before (see Section 5.5.5). Then, add the "/etc/network/interfaces” file entry for the primary PPPoE device eth0 as the following.

```plaintext
allow-hotplug eth0
iface eth0 inet manual
  pre-up /sbin/ifconfig eth0 up
  up ifup ppp0=dsl
  down ifdown ppp0=dsl
  post-down /sbin/ifconfig eth0 down
# The following is used internally only
iface dsl inet ppp
  provider dsl-provider
```
5.6.12 The network configuration state of ifupdown

The "/etc/network/run/ifstate" file stores the intended network configuration states for all the currently active network interfaces managed by the ifupdown package. Unfortunately, even if the ifupdown system fails to bring up the interface as intended, the "/etc/network/run/ifstate" file lists it active.

Unless the output of the ifconfig(8) command for an interface does not have a line like following example, it cannot be used as a part of IPV4 network.

```
inet addr:192.168.11.2 Bcast:192.168.11.255 Mask:255.255.255.0
```

Note
For the Ethernet device connected to the PPPoE, the output of the ifconfig(8) command lacks a line which looks like above example.

5.6.13 The basic network reconfiguration

When you try to reconfigure the interface, e.g. eth0, you must disable it first with the "sudo ifdown eth0" command. This removes the entry of eth0 from the "/etc/network/run/ifstate" file. (This may result in some error message if eth0 is not active or it is configured improperly previously. So far, it seems to be safe to do this for the simple single user work station at any time.)

You are now free to rewrite the "/etc/network/interfaces" contents as needed to reconfigure the network interface, eth0.

Then, you can reactivate eth0 with the "sudo ifup eth0" command.

Tip
You can (re)initialize the network interface simply by "sudo ifdown eth0; sudo ifup eth0".

5.6.14 The ifupdown-extra package

The ifupdown-extra package provides easy network connection tests for use with the ifupdown package.

- The network-test(1) command can be used from the shell.
- The automatic scripts are run for each ifup command execution.

The network-test command frees you from the execution of cumbersome low level commands to analyze the network problem.

The automatic scripts are installed in "/etc/network/*" and perform the following.

- Check the network cable connection
- Check duplicate use of IP address
- Setup system’s static routes based on the "/etc/network/routes" definition
- Check if network gateway is reachable
- Record results in the "/var/log/syslog" file

This syslog record is quite useful for administration of the network problem on the remote system.
Tip
The automatic behavior of the ifupdown-extra package is configurable with the "/etc/default/network-test". Some of these automatic checks slow down the system boot-up a little bit since it takes some time to listen for ARP replies.

5.7 The advanced network configuration with ifupdown (legacy)

The functionality of the ifupdown package can be improved beyond what was described in Section 5.6 with the advanced knowledge.

The functionalities described here are completely optional. I, being lazy and minimalist, rarely bother to use these.

Caution
If you could not set up network connection by information in Section 5.6, you make situation worse by using information below.

5.7.1 The ifplugd package

The ifplugd package is an older automatic network configuration tool which can manage only Ethernet connections. This solves unplugged/replugged Ethernet cable issues for mobile PC etc. If you have NetworkManager or Wicd (see Section 5.2) installed, you do not need this package.

This package runs a daemon and replaces auto or allow-hotplug functionalities (see Table 5.10) and starts interfaces upon their connection to the network.

Here is how to use the ifplugd package for the internal Ethernet port, e.g. eth0.

1. Remove stanza in "/etc/network/interfaces": "auto eth0" or "allow-hotplug eth0".
2. Keep stanza in "/etc/network/interfaces": "iface eth0 inet …" and "mapping …".
3. Install the ifplugd package.
4. Run "sudo dpkg-reconfigure ifplugd".
5. Put eth0 as the "static interfaces to be watched by ifplugd".

Now, the network reconfiguration works as you desire.

• Upon power-on or upon hardware discovery, the interface is not brought up by itself.
 – Quick boot process without the long DHCP timeout.
 – No funny activated interface without proper IPv4 address (see Section 5.6.12).
• Upon finding the Ethernet cable, the interface is brought up.
• Upon some time after unplugging the Ethernet cable, the interface is brought down automatically.
• Upon plugging in another Ethernet cable, the interface is brought up under the new network environment.

Tip
The arguments for the ifplugd(8) command can set its behaviors such as the delay for reconfiguring interfaces.
5.7.2 The `ifmetric` package

The `ifmetric` package enables us to manipulate metrics of routes a posteriori even for DHCP.

The following sets the `eth0` interface to be preferred over the `wlan0` interface.

1. Install the `ifmetric` package.
2. Add an option line with "metric 0" just below the "iface eth0 inet dhcp" line in "`/etc/network/interfaces`".
3. Add an option line with "metric 1" just below the "iface wlan0 inet dhcp" line in "`/etc/network/interfaces`".

The metric 0 means the highest priority route and is the default one. The larger metric value means lower priority routes. The IP address of the active interface with the lowest metric value becomes the originating one. See `ifmetric(8)`.

5.7.3 The virtual interface

A single physical Ethernet interface can be configured as multiple virtual interfaces with different IP addresses. Usually the purpose is to connect an interface to several IP subnetworks. For example, IP address based virtual web hosting by a single network interface is one such application.

For example, let’s suppose the following.

- A single Ethernet interface on your host is connected to an Ethernet hub (not to the broadband router).
- The Ethernet hub is connected to both the Internet and LAN network.
- The LAN network uses subnet 192.168.0.x/24.
- Your host uses DHCP served IP address with the physical interface `eth0` for the Internet.
- Your host uses 192.168.0.1 with the virtual interface `eth0:0` for the LAN.

The following stanzas in "`/etc/network/interfaces`" configure your network.

```plaintext
iface eth0 inet dhcp
   metric 0
iface eth0:0 inet static
   address 192.168.0.1
   netmask 255.255.255.0
   network 192.168.0.0
   metric 1
```

Caution
Although this configuration example with network address translation (NAT) using netfilter/iptables (see Section 5.10) can provide cheap router for the LAN with only single interface, there is no real firewall capability with such set up. You should use 2 physical interfaces with NAT to secure the local network from the Internet.

5.7.4 The advanced command syntax

The `ifupdown` package offers advanced network configuration using the `network configuration` name and the `network interface` name. I use a terminology being slightly different from the one used in `ifup(8)` and `interfaces(5)`.

Basic network configuration commands in Section 5.6.1 require the `network configuration` name token of the `iface` stanza to match the `network interface` name in the "`/etc/network/interfaces`".

Advanced network configuration commands enables separation of the `network configuration` name and the `network interface` name in the "`/etc/network/interfaces`" as the following.
5.7.5 The mapping stanza

We skipped explaining the `mapping` stanza in the "/etc/network/interfaces” in Section 5.6.2 to avoid complication. This stanza has the following syntax.

```bash
mapping <interface_name_glob>
script <script_name>
map <script_input1>
map <script_input2>
map ...
```

This provides advanced features to the "/etc/network/interfaces” file by automating the choice of the configuration with the mapping script specified by `<script_name>`.

Let’s follow the execution of the following.

```
$ sudo ifup eth0
```

When the "<interface_name_glob>” matches "eth0", this execution produces the execution of the following command to configure eth0 automatically.

```
$ sudo ifup eth0=$(echo -e ‘<script_input1> \n <script_input2> \n ...’ | <script_name> eth0 →)
```

Here, script input lines with "map” are optional and can be repeated.

Note

The glob for `mapping` stanza works like shell filename glob (see Section 1.5.6).
5.7.6 The manually switchable network configuration

Here is how to switch manually among several network configurations without rewriting the "/etc/network/interfaces" file as in Section 5.6.13.

For all the network configuration you need to access, you create a separate stanza in "/etc/network/interfaces" file as the following.

```
auto lo
iface lo inet loopback

iface config1 inet dhcp

iface config2 inet static
  address 192.168.11.100
  netmask 255.255.255.0
  gateway 192.168.11.1
  dns-domain example.com
  dns-nameservers 192.168.11.1

iface pppoe inet manual
  pre-up /sbin/ifconfig eth0 up
  up ifup ppp0=dsl
  down ifdown ppp0=dsl
  post-down /sbin/ifconfig eth0 down

# The following is used internally only
iface dsl inet ppp
  provider dsl-provider

iface pots inet ppp
  provider provider
```

Please note the network configuration name which is the token after iface does not use the token for the network interface name. Also, there are no auto stanza nor allow-hotplug stanza to start the network interface eth0 automatically upon events.

Now you are ready to switch the network configuration.

Let’s move your PC to a LAN served by the DHCP. You bring up the network interface eth0 by assigning the network configuration name (the logical interface name) config1 to it by the following.

```
$ sudo ifup eth0=config1
Password: ...
```

The interface eth0 is up, configured by DHCP and connected to LAN.

```
$ sudo ifdown eth0=config1
...
```

The interface eth0 is down and disconnected from LAN.

Let’s move your PC to a LAN served by the static IP. You bring up the network interface eth0 by assigning the network configuration name config2 to it by the following.

```
$ sudo ifup eth0=config2
...
```
The interface eth0 is up, configured with static IP and connected to LAN. The additional parameters given as dns-* configures "/etc/resolv.conf" contents. This "/etc/resolv.conf" is better managed if the resolvconf package is installed.

The interface eth0 is down and disconnected from LAN, again.

Let's move your PC to a port on BB-modem connected to the PPPoE served service. You bring up the network interface eth0 by assigning the network configuration name pppoe to it by the following.

The interface eth0 is up, configured with PPPoE connection directly to the ISP.

The interface eth0 is down and disconnected, again.

Let's move your PC to a location without LAN or BB-modem but with POTS and modem. You bring up the network interface ppp0 by assigning the network configuration name pots to it by the following.

The interface ppp0 is up and connected to the Internet with PPP.

The interface ppp0 is down and disconnected from the Internet.

You should check the "/etc/network/run/ifstate" file for the current network configuration state of the ifupdown system.

Warning
You may need to adjust numbers at the end of eth*, ppp*, etc. if you have multiple network interfaces.

5.7.7 Scripting with the ifupdown system

The ifupdown system automatically runs scripts installed in "/etc/network/*" while exporting environment variables to scripts.

Here, each environment variable, "IFS_<OPTION>", is created from the name for the corresponding option such as <option1> and <option2> by prepending "IFS_", converting the case to the upper case, replacing hyphens to underscores, and discarding non-alphanumeric characters.
<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Value Passed</th>
</tr>
</thead>
<tbody>
<tr>
<td>"$IFACE"</td>
<td>Physical name (interface name) of the interface being processed</td>
</tr>
<tr>
<td>"$LOGICAL"</td>
<td>Logical name (configuration name) of the interface being processed</td>
</tr>
<tr>
<td>"$ADDRFAM"</td>
<td><address_family> of the interface</td>
</tr>
<tr>
<td>"$METHOD"</td>
<td><method_name> of the interface (e.g., "static")</td>
</tr>
<tr>
<td>"$MODE"</td>
<td>"start" if run from ifup, "stop" if run from ifdown</td>
</tr>
<tr>
<td>"$PHASE"</td>
<td>As per "$MODE", but with finer granularity, distinguishing the pre-up, post-up, pre-down and post-down phases</td>
</tr>
<tr>
<td>"$VERBOSITY"</td>
<td>Indicates whether "--verbose" was used; set to 1 if so, 0 if not</td>
</tr>
</tbody>
</table>
| "$PATH" | Command search path:
| | "/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin" |
| "$IF_<OPTION>" | Value for the corresponding option under the **iface** stanza |

Table 5.14: List of environment variables passed by the ifupdown system

Tip
See Section 5.6.2 for <address_family>, <method_name>, <option1> and <option2>.

The **ifupdown-extra** package (see Section 5.6.14) uses these environment variables to extend the functionality of the ifupdown package. The **ifmetric** package (see Section 5.7.2) installs the "/etc/network/if-up.d/ifmetric" script which sets the metric via the "$IF_METRIC" variable. The **guessnet** package (see Section 5.7.8), which provides simple and powerful framework for the auto-selection of the network configuration via the mapping mechanism, also uses these.

Note
For more specific examples of custom network configuration scripts using these environment variables, you should check example scripts in "/usr/share/doc/ifupdown/examples/**" and scripts used in **if实施方案** and ifupdown-scripts-zg2 packages. These additional scripts have some overlaps of functionalities with basic ifupdown-extra and guessnet packages. If you install these additional scripts, you should customize these scripts to avoid interferences.

5.7.8 Mapping with guessnet

Instead of manually choosing configuration as described in Section 5.7.6, you can use the mapping mechanism described in Section 5.7.5 to select network configuration automatically with custom scripts.

The **guessnet-ifupdown(8)** command provided by the **guessnet** package is designed to be used as a mapping script and provides powerful framework to enhance the ifupdown system.

- You list test condition as the value for **guessnet** options for each network configuration under **iface** stanza.
- Mapping choses the **iface** with first non-ERROR result as the network configuration.

This dual usage of the "/etc/network/interfaces" file by the mapping script, guessnet-ifupdown, and the original network configuration infrastructure, ifupdown, does not cause negative impacts since **guessnet** options only export extra environment variables to scripts run by the ifupdown system. See details in guessnet-ifupdown(8).

Note
When multiple **guessnet** option lines are required in "/etc/network/interfaces", use option lines started with **guessnet1, guessnet2**, and so on, since the ifupdown package does not allow starting strings of option lines to be repeated.
5.8 The low level network configuration

5.8.1 Iproute2 commands

Iproute2 commands offer complete low-level network configuration capabilities. Here is a translation table from obsolete net-tools commands to new iproute2 etc. commands.

<table>
<thead>
<tr>
<th>obsolete net-tools</th>
<th>new iproute2 etc.</th>
<th>manipulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ifconfig(8)</td>
<td>ip addr</td>
<td>protocol (IP or IPv6) address on a device</td>
</tr>
<tr>
<td>route(8)</td>
<td>ip route</td>
<td>routing table entry</td>
</tr>
<tr>
<td>arp(8)</td>
<td>ip neigh</td>
<td>ARP or NDISC cache entry</td>
</tr>
<tr>
<td>ip maddr</td>
<td>ip maddr</td>
<td>multicast address</td>
</tr>
<tr>
<td>iptunnel</td>
<td>ip tunnel</td>
<td>tunnel over IP</td>
</tr>
<tr>
<td>nameif(8)</td>
<td>ifrename(8)</td>
<td>name network interfaces based on MAC addresses</td>
</tr>
<tr>
<td>mii-tool(8)</td>
<td>ethtool(8)</td>
<td>Ethernet device settings</td>
</tr>
</tbody>
</table>

Table 5.15: Translation table from obsolete net-tools commands to new iproute2 commands

See ip(8) and IPROUTE2 Utility Suite Howto.

5.8.2 Safe low level network operations

You may use low level network commands as follows safely since they do not change network configuration.

<table>
<thead>
<tr>
<th>command</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ifconfig</td>
<td>display the link and address status of active interfaces</td>
</tr>
<tr>
<td>ip addr show</td>
<td>display the link and address status of active interfaces</td>
</tr>
<tr>
<td>route -n</td>
<td>display all the routing table in numerical addresses</td>
</tr>
<tr>
<td>ip route show</td>
<td>display all the routing table in numerical addresses</td>
</tr>
<tr>
<td>arp</td>
<td>display the current content of the ARP cache tables</td>
</tr>
<tr>
<td>ip neigh</td>
<td>display the current content of the ARP cache tables</td>
</tr>
<tr>
<td>plog</td>
<td>display ppp daemon log</td>
</tr>
<tr>
<td>ping yahoo.com</td>
<td>check the Internet connection to "yahoo.com"</td>
</tr>
<tr>
<td>whois yahoo.com</td>
<td>check who registered "yahoo.com" in the domains database</td>
</tr>
<tr>
<td>traceroute yahoo.com</td>
<td>trace the Internet connection to "yahoo.com"</td>
</tr>
<tr>
<td>tracepath yahoo.com</td>
<td>trace the Internet connection to "yahoo.com"</td>
</tr>
<tr>
<td>mtr yahoo.com</td>
<td>trace the Internet connection to "yahoo.com" (repeatedly)</td>
</tr>
<tr>
<td>dig [dns-server.com]</td>
<td>check DNS records of "example.com" by "dns-server.com"</td>
</tr>
<tr>
<td>example.com [{a</td>
<td>mx</td>
</tr>
<tr>
<td>iptables -L -n</td>
<td>check packet filter</td>
</tr>
<tr>
<td>netstat -a</td>
<td>find all open ports</td>
</tr>
<tr>
<td>netstat -L --inet</td>
<td>find listening ports</td>
</tr>
<tr>
<td>netstat -Ln --tcp</td>
<td>find listening TCP ports (numeric)</td>
</tr>
<tr>
<td>dtint example.com</td>
<td>check DNS zone information of "example.com"</td>
</tr>
</tbody>
</table>

Table 5.16: List of low level network commands

Tip
Some of these low level network configuration tools reside in "/sbin/". You may need to issue full command path such as "/sbin/ifconfig" or add "/sbin" to the "$PATH" list in your "~/.bashrc".
5.9 Network optimization

Generic network optimization is beyond the scope of this documentation. I touch only subjects pertinent to the consumer grade connection.

<table>
<thead>
<tr>
<th>packages</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>iftop</td>
<td>V:8, I:112</td>
<td>97</td>
<td>display bandwidth usage information on an network interface</td>
</tr>
<tr>
<td>iperf</td>
<td>V:4, I:54</td>
<td>197</td>
<td>Internet Protocol bandwidth measuring tool</td>
</tr>
<tr>
<td>ifstat</td>
<td>V:0, I:9</td>
<td>56</td>
<td>InterFace STATistics Monitoring</td>
</tr>
<tr>
<td>bmon</td>
<td>V:1, I:14</td>
<td>143</td>
<td>portable bandwidth monitor and rate estimator</td>
</tr>
<tr>
<td>ethstats</td>
<td>V:0, I:5</td>
<td>40</td>
<td>script that quickly measures network device throughput</td>
</tr>
<tr>
<td>bing</td>
<td>V:0, I:1</td>
<td>71</td>
<td>empirical stochastic bandwidth tester</td>
</tr>
<tr>
<td>bwm-ng</td>
<td>V:1, I:17</td>
<td>89</td>
<td>small and simple console-based bandwidth monitor</td>
</tr>
<tr>
<td>ethstats</td>
<td>V:0, I:0</td>
<td>23</td>
<td>console-based Ethernet statistics monitor</td>
</tr>
<tr>
<td>ipfm</td>
<td>V:0, I:0</td>
<td>78</td>
<td>bandwidth analysis tool</td>
</tr>
</tbody>
</table>

Table 5.17: List of network optimization tools

5.9.1 Finding optimal MTU

The Maximum Transmission Unit (MTU) value can be determined experimentally with ping(8) with "-M do" option which sends ICMP packets with data size starting from 1500 (with offset of 28 bytes for the IP+ICMP header) and finding the largest size without IP fragmentation.

For example, try the following

```
$ ping -c 1 -s $((1500-28)) -M do www.debian.org
PING www.debian.org (194.109.137.218) 1472(1500) bytes of data.
From 192.168.11.2 icmp_seq=1 Frag needed and DF set (mtu = 1454)
--- www.debian.org ping statistics ---
0 packets transmitted, 0 received, +1 errors
```

Try 1454 instead of 1500.

You see ping(8) succeed with 1454.

This process is Path MTU (PMTU) discovery (RFC1191) and the tracepath(8) command can automate this.

Tip

The above example with PMTU value of 1454 is for my previous FTTP provider which used Asynchronous Transfer Mode (ATM) as its backbone network and served its clients with the PPPoE. The actual PMTU value depends on your environment, e.g., 1500 for my new FTTP provider.

In addition to these basic guidelines, you should know the following.

- Any use of tunneling methods (VPN etc.) may reduce optimal MTU further by their overheads.
- The MTU value should not exceed the experimentally determined PMTU value.
- The bigger MTU value is generally better when other limitations are met.
<table>
<thead>
<tr>
<th>network environment</th>
<th>MTU</th>
<th>rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dial-up link (IP: PPP)</td>
<td>576</td>
<td>standard</td>
</tr>
<tr>
<td>Ethernet link (IP: DHCP or fixed)</td>
<td>1500</td>
<td>standard and default</td>
</tr>
<tr>
<td>Ethernet link (IP: PPPoE)</td>
<td>1492 (=1500-8)</td>
<td>2 bytes for PPP header and 6 bytes for PPPoE header</td>
</tr>
<tr>
<td>Ethernet link (ISP’s backbone: ATM, IP: DHCP or fixed)</td>
<td>1462 (=48*31-18-8)</td>
<td>author’s speculation: 18 bytes for Ethernet header, 8 bytes for SAR trailer</td>
</tr>
<tr>
<td>Ethernet link (ISP’s backbone: ATM, IP: PPPoE)</td>
<td>1454 (=48*31-8-18-8)</td>
<td>see “Optimal MTU configuration for PPPoE ADSL Connections” for rationale</td>
</tr>
</tbody>
</table>

Table 5.18: Basic guide lines of the optimal MTU value

5.9.2 Setting MTU

Here are examples for setting the MTU value from its default 1500 to 1454.

For the DHCP (see Section 5.6.4), you can replace pertinent `iface` stanza lines in the “/etc/network/interfaces” with the following.

```bash
iface eth0 inet dhcp
    pre-up /sbin/ifconfig $IFACE mtu 1454
```

For the static IP (see Section 5.6.5), you can replace pertinent `iface` stanza lines in the “/etc/network/interfaces” with the following.

```bash
iface eth0 inet static
    address 192.168.11.100
    netmask 255.255.255.0
    gateway 192.168.11.1
    mtu 1454
    dns-domain example.com
    dns-nameservers 192.168.11.1
```

For the direct PPPoE (see Section 5.5.5), you can replace pertinent “mtu” line in the “/etc/ppp/peers/dsl-provider” with the following.

```bash
mtu 1454
```

The maximum segment size (MSS) is used as an alternative measure of packet size. The relationship between MSS and MTU are the following.

- MSS = MTU - 40 for IPv4
- MSS = MTU - 60 for IPv6

Note
The `iptables(8)` (see Section 5.10) based optimization can clamp packet size by the MSS and is useful for the router. See "TCPMSS" in `iptables(8)".

5.9.3 WAN TCP optimization

The TCP throughput can be maximized by adjusting TCP buffer size parameters as described in ”TCP Tuning Guide” and ”TCP tuning” for the modern high-bandwidth and high-latency WAN. So far, the current Debian default settings serve well even for my LAN connected by the fast 1G bps FTTP service.
5.10 Netfilter infrastructure

Netfilter provides infrastructure for stateful firewall and network address translation (NAT) with Linux kernel modules (see Section 3.3.1).

<table>
<thead>
<tr>
<th>packages</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>iptables</td>
<td>V:270, I:995</td>
<td>2569</td>
<td>administration tools for netfilter (iptables(8) for IPv4, ip6tables(8) for IPv6)</td>
</tr>
<tr>
<td>arptables</td>
<td>V:0, I:12</td>
<td>95</td>
<td>administration tools for netfilter (arptables(8) for ARP)</td>
</tr>
<tr>
<td>ebtables</td>
<td>V:36, I:66</td>
<td>265</td>
<td>administration tools for netfilter (ebtables(8) for Ethernet bridging)</td>
</tr>
<tr>
<td>iptstate</td>
<td>V:0, I:14</td>
<td>116</td>
<td>continuously monitor netfilter state (similar to top(1))</td>
</tr>
<tr>
<td>shorewall-init</td>
<td>V:0, I:0</td>
<td>68</td>
<td>Shoreline Firewall initialization</td>
</tr>
<tr>
<td>shorewall</td>
<td>V:6, I:14</td>
<td>2456</td>
<td>Shoreline Firewall, netfilter configuration file generator</td>
</tr>
<tr>
<td>shorewall-lite</td>
<td>V:0, I:10</td>
<td>65</td>
<td>Shoreline Firewall, netfilter configuration file generator (light version)</td>
</tr>
<tr>
<td>shorewall6</td>
<td>V:1, I:2</td>
<td>779</td>
<td>Shoreline Firewall, netfilter configuration file generator (IPv6 version)</td>
</tr>
<tr>
<td>shorewall6-lite</td>
<td>V:0, I:0</td>
<td>64</td>
<td>Shoreline Firewall, netfilter configuration file generator (IPv6, light version)</td>
</tr>
</tbody>
</table>

Table 5.19: List of firewall tools

Main user space program of netfilter is iptables(8). You can manually configure netfilter interactively from shell, save its state with iptables-save(8), and restore it via init script with iptables-restore(8) upon system reboot.

Configuration helper scripts such as shorewall ease this process.

See documentations at http://www.netfilter.org/documentation/ (or in "/usr/share/doc/iptables/html/”).

- Linux Networking-concepts HOWTO
- Linux 2.4 Packet Filtering HOWTO
- Linux 2.4 NAT HOWTO

Tip
Although these were written for Linux 2.4, both iptables(8) command and netfilter kernel function apply for Linux 2.6 and 3.x kernel series.
Chapter 6

Network applications

After establishing network connectivity (see Chapter 5), you can run various network applications.

Tip
For modern Debian specific guide to the network infrastructure, read The Debian Administrator’s Handbook — Network Infrastructure.

Tip
If you enabled "2-Step Verification" with some ISP, you need to obtain an application password to access POP and SMTP services from your program. You may need to approve your host IP in advance.

6.1 Web browsers

There are many web browser packages to access remote contents with Hypertext Transfer Protocol (HTTP).

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>type</th>
<th>description of web browser</th>
</tr>
</thead>
<tbody>
<tr>
<td>chromium</td>
<td>V:58, I:148</td>
<td>183777</td>
<td>X</td>
<td>Chromium, (open-source browser from Google)</td>
</tr>
<tr>
<td>firefox</td>
<td>V:15, I:26</td>
<td>167408</td>
<td></td>
<td>Firefox, (open-source browser from Mozilla, only available in Debian Unstable)</td>
</tr>
<tr>
<td>firefox-esr</td>
<td>V:265, I:461</td>
<td>162529</td>
<td></td>
<td>Firefox ESR, (Firefox Extended Support Release)</td>
</tr>
<tr>
<td>epiphany-browser</td>
<td>V:6, I:27</td>
<td>3089</td>
<td></td>
<td>GNOME, HIG compliant, Epiphany</td>
</tr>
<tr>
<td>konqueror</td>
<td>V:21, I:108</td>
<td>21034</td>
<td></td>
<td>KDE, Konqueror</td>
</tr>
<tr>
<td>dillo</td>
<td>V:1, I:5</td>
<td>1540</td>
<td></td>
<td>Dillo, (light weight browser, FLTK based)</td>
</tr>
<tr>
<td>w3m</td>
<td>V:80, I:433</td>
<td>2323</td>
<td>text</td>
<td>w3m</td>
</tr>
<tr>
<td>lynx</td>
<td>V:20, I:103</td>
<td>1924</td>
<td></td>
<td>Lynx</td>
</tr>
<tr>
<td>elinks</td>
<td>V:10, I:29</td>
<td>1752</td>
<td></td>
<td>ELinks</td>
</tr>
<tr>
<td>links</td>
<td>V:12, I:42</td>
<td>2207</td>
<td></td>
<td>Links (text only)</td>
</tr>
<tr>
<td>links2</td>
<td>V:2, I:16</td>
<td>5486</td>
<td>graphics</td>
<td>Links (console graphics without X)</td>
</tr>
</tbody>
</table>

Table 6.1: List of web browsers

6.1.1 Browser configuration

You may be able to use following special URL strings for some browsers to confirm their settings.
• "about:"
• "about:config"
• "about:plugins"

Debian offers many free browser plugin packages in the main archive area which can handle not only Java (software platform) and Flash but also MPEG, MPEG2, MPEG4, DivX, Windows Media Video (.wmv), QuickTime (.mov), MP3 (.mp3), Ogg/Vorbis files, DVDs, VCDs, etc. Debian also offers helper programs to install non-free browser plugin packages as contrib or non-free archive area.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>area</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>icedtea-plugin</td>
<td>I:18</td>
<td>19</td>
<td>main</td>
<td>Java plugin based on OpenJDK and IcedTea</td>
</tr>
<tr>
<td>flashplugin-nonfree</td>
<td>V:2, I:58</td>
<td>71</td>
<td>contrib</td>
<td>Flash plugin helper to install Adobe Flash Player (i386, amd64 only)</td>
</tr>
</tbody>
</table>

Table 6.2: List of browser plugin packages

Tip
Although use of above Debian packages are much easier, browser plugins can be still manually enabled by installing "*.so" into plugin directories (e.g., "/usr/lib/iceweasel/plugins/”) and restarting browsers.

Some web sites refuse to be connected based on the user-agent string of your browser. You can work around this situation by spoofing the user-agent string. For example, you can do this by adding following line into user configuration files such as "~/.gnome2/epiphany/mozilla/epiphany/user.js" or "~/.mozilla/firefox/*.default/user.js".

```plaintext
user_pref("general.useragent.override","Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0) ←
    ");
```

Alternatively, you can add and reset this variable by typing "about:config" into URL and right clicking its display contents.

Caution
Spoofed user-agent string may cause bad side effects with Java.

6.2 The mail system

Caution
If you are to set up the mail server to exchange mail directly with the Internet, you should be better than reading this elementary document.

The mail system involves many server programs and many client programs running on multiple hosts. From the functionality, there are 3 types of mail agent programs:

• The mail transport agent (MTA, see Section 6.3) is a program for transferring mails between different hosts.
• The mail delivery agent (MDA, see Section 6.6) is a program for delivering messages to the users’ mailboxes within a host.
• The mail user agent (MUA, also known as email client, see Section 6.4) is the program to generate messages and to access delivered messages.

Note
The following configuration examples are only valid for the typical mobile workstation on consumer grade Internet connections.

6.2.1 Email basics

An email message consists of three components, the message envelope, the message header, and the message body.

The "To" and "From" information in the message envelope is used by the SMTP to deliver the email. (The "From" information in the message envelope is also called bounce address, From_, etc.).

The "To" and "From" information in the message header is displayed by the email client. (While it is most common for these to be the same as ones in the message envelope, such is not always the case.)

The email client (MUA) needs to interpret the message header and body data using Multipurpose Internet Mail Extensions (MIME) to deal the content data type and encoding.

6.2.2 Modern mail service basics

In order to minimize exposure to the spam (unwanted and unsolicited email) problems, many ISPs which provide consumer grade Internet connections are implementing counter measures.

• The smarthost service for their customers to send message uses the message submission port (587) specified in rfc4409 with the password (SMTP AUTH service) specified in rfc4954.

• The SMTP port (25) connection from their internal network hosts (except ISP’s own outgoing mail server) to the Internet are blocked.

• The SMTP port (25) connection to the ISP’s incoming mail server from some suspicious external network hosts are blocked. (The connection from hosts on the dynamic IP address range used by the dial-up and other consumer grade Internet connections are the first ones to be blocked.)

• **Anti-spam techniques** such as DomainKeys Identified Mail (DKIM), Sender_Policy_Framework (SPF), and Domain-based Message Authentication, Reporting and Conformance (DMARC) are widely used for the email filtering.

• The DomainKeys Identified Mail service may be provided for your mail sent through the smarthost.

• The smarthost may rewrite the source mail address to your mail account on the smarthost.

When configuring your mail system or resolving mail delivery problems, you must consider these new limitations.

Caution
It is not realistic to run SMTP server on consumer grade network to send mail directly to the remote host reliably.

Caution
It is not realistic to expect a single smarthost to send mails of unrelated source mail addresses to the remote host reliably.
Caution
A mail may be rejected by any host en route to the destination quietly. Making your mail to appear as authentic as possible is the only way to send a mail to the remote host reliably.

In light of these hostile Internet situation and limitations, some independent Internet mail ISPs such as Yahoo.com and Gmail.com offer the secure mail service which can be connected from anywhere on the Internet using Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL).

- The smarthost service on port 465 with the deprecated SMTP over SSL (SMTPS protocol).
- The smarthost service on port 587 with the STARTTLS.
- The incoming mail is accessible at the TLS/POP3 port (995) with POP3.

For the simplicity, I assume that the smarthost is located at "smtp.hostname.dom", requires SMTP Authentication, and uses the message submission port (587) with the STARTTLS in the following text.

6.2.3 The mail configuration strategy for workstation

The most simple mail configuration is that the mail is sent to the ISP’s smarthost and received from ISP’s POP3 server by the MUA (see Section 6.4) itself. This type of configuration is popular with full featured GUI based MUA such as icedove(1), evolution(1), etc. If you need to filter mail by their types, you use MUA’s filtering function. For this case, the local MTA (see Section 6.3) need to do local delivery only (when sender and receiver are on the same host).

Please note that the Debian system is the multiuser system. Even if you are the only user, there are many programs running as root and they may send you a mail.

The alternative mail configuration is that the mail is sent via local MTA to the ISP’s smarthost and received from ISP’s POP3 by the mail retriever (see Section 6.5) to the local mailbox. If you need to filter mail by their types, you use MDA with filter (see Section 6.6) to filter mail into separate mailboxes. This type of configuration is popular with simple console based MUA such as mutt(1), mew(1), etc., although this is possible with any MUAs (see Section 6.4). For this case, the local MTA (see Section 6.3) need to do both smarthost delivery and local delivery. Since mobile workstation does not have valid FQDN, you must configure the local MTA to hide and spoof the real local mail name in outgoing mail to avoid mail delivery errors (see Section 6.3.3).

Tip
You may wish to configure MUA/MDA to use Maildir for storing email messages somewhere under your home directory.

6.3 Mail transport agent (MTA)

For normal workstation, the popular choice for Mail transport agent (MTA) is either exim4-* or postfix packages. It is really up to you.

Although the popcon vote count of exim4-* looks several times popular than that of postfix, this does not mean postfix is not popular with Debian developers. The Debian server system uses both exim4 and postfix. The mail header analysis of mailing list postings from prominent Debian developers also indicate both of these MTAs are as popular.

The exim4-* packages are known to have very small memory consumption and very flexible for its configuration. The postfix package is known to be compact, fast, simple, and secure. Both come with ample documentation and are as good in quality and license.

There are many choices for mail transport agent (MTA) packages with different capability and focus in Debian archive.
Table 6.3: List of basic mail transport agent related packages for workstation

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>exim4-daemon-light</td>
<td>V:408;I:443</td>
<td>1332</td>
<td>Exim4 mail transport agent (MTA: Debian default)</td>
</tr>
<tr>
<td>exim4-base</td>
<td>V:417;I:454</td>
<td>1621</td>
<td>Exim4 documentation (text) and common files</td>
</tr>
<tr>
<td>exim4-doc-html</td>
<td>I:1</td>
<td>3575</td>
<td>Exim4 documentation (html)</td>
</tr>
<tr>
<td>exim4-doc-info</td>
<td>I:1</td>
<td>611</td>
<td>Exim4 documentation (info)</td>
</tr>
<tr>
<td>postfix</td>
<td>V:146;I:162</td>
<td>4324</td>
<td>Postfix mail transport agent (MTA: alternative)</td>
</tr>
<tr>
<td>postfix-doc</td>
<td>I:10</td>
<td>4237</td>
<td>Postfix documentation (html+text)</td>
</tr>
<tr>
<td>sasl2-bin</td>
<td>V:6;I:21</td>
<td>428</td>
<td>Cyrus SASL API implementation (supplement postfix for SMTP AUTH)</td>
</tr>
<tr>
<td>cyrus-sasl2-doc</td>
<td>I:1</td>
<td>575</td>
<td>Cyrus SASL - documentation</td>
</tr>
</tbody>
</table>

Table 6.4: List of choices for mail transport agent (MTA) packages in Debian archive

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>capability and focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>exim4-daemon-light</td>
<td>V:408;I:443</td>
<td>1332</td>
<td>full</td>
</tr>
<tr>
<td>postfix</td>
<td>V:146;I:162</td>
<td>4324</td>
<td>full (security)</td>
</tr>
<tr>
<td>exim4-daemon-heavy</td>
<td>V:8;I:19</td>
<td>1473</td>
<td>full (flexible)</td>
</tr>
<tr>
<td>sendmail-bin</td>
<td>V:12;I:13</td>
<td>1863</td>
<td>full (only if you are already familiar)</td>
</tr>
<tr>
<td>nullmailer</td>
<td>V:5;I:8</td>
<td>479</td>
<td>strip down, no local mail</td>
</tr>
<tr>
<td>ssmtplib</td>
<td>V:12;I:19</td>
<td>2</td>
<td>strip down, no local mail</td>
</tr>
<tr>
<td>courier-mta</td>
<td>V:0;I:0</td>
<td>2328</td>
<td>very full (web interface etc.)</td>
</tr>
<tr>
<td>masqmail</td>
<td>V:0;I:0</td>
<td>337</td>
<td>light</td>
</tr>
<tr>
<td>esmtp</td>
<td>V:0;I:0</td>
<td>128</td>
<td>light</td>
</tr>
<tr>
<td>esmtp-run</td>
<td>V:0;I:0</td>
<td>32</td>
<td>light (sendmail compatibility extension to esmtp)</td>
</tr>
<tr>
<td>msmtplib</td>
<td>V:2;I:6</td>
<td>434</td>
<td>light</td>
</tr>
<tr>
<td>msmtplib-mta</td>
<td>V:1;I:1</td>
<td>60</td>
<td>light (sendmail compatibility extension to msmtplib)</td>
</tr>
</tbody>
</table>

6.3.1 The configuration of exim4

Caution
Configuring exim4 to send the Internet mail via multiple corresponding smarthosts for multiple source email addresses is non-trivial. Please set up exim4 only for a single email address for the system programs such as popcon and cron and set up smtp for multiple source email addresses for the user programs such as mutt.

For the Internet mail via smarthost, you (re)configure exim4-* packages as the following.

```
$ sudo /etc/init.d/exim4 stop
$ sudo dpkg-reconfigure exim4-config
```

Select "mail sent by smarthost; received via SMTP or fetchmail" for "General type of mail configuration".
Set "System mail name:" to its default as the FQDN (see Section 5.1.1).
Set "IP-addresses to listen on for incoming SMTP connections:" to its default as "127.0.0.1 ; ::1".
Unset contents of "Other destinations for which mail is accepted:".
Unset contents of "Machines to relay mail for:".
Set "IP address or host name of the outgoing smarthost:" to "smtp.hostname.dom:587".
Select "<No>" for "Hide local mail name in outgoing mail?". (Use "/etc/email-addresses" as in Section 6.3.3, instead.)
Reply to "Keep number of DNS-queries minimal (Dial-on-Demand)?" as one of the following.

- "No" if the system is connected to the Internet while booting.
- "Yes" if the system is not connected to the Internet while booting.

Set "Delivery method for local mail:" to "mbox format in /var/mail/".
Select "<Yes>" for "Split configuration into small files:".
Create password entries for the smarthost by editing "/etc/exim4/passwd.client".

```
$ sudo vim /etc/exim4/passwd.client
...
$ cat /etc/exim4/passwd.client
^smtp.*\.hostname\.dom:username@hostname\.dom:password
```

Start exim4 by the following.

```
$ sudo /etc/init.d/exim4 start
```

The host name in "/etc/exim4/passwd.client" should not be the alias. You check the real host name with the following.

```
$ host smtp.hostname.dom
smtp.hostname.dom is an alias for smtp99.hostname.dom.
smtp99.hostname.dom has address 123.234.123.89
```

I use regex in "/etc/exim4/passwd.client" to work around the alias issue. SMTP AUTH probably works even if the ISP moves host pointed by the alias.
You can manually update exim4 configuration by the following:
• Update `exim4` configuration files in "/etc/exim4/".

 – creating "/etc/exim4/exim4.conf.localmacros" to set MACROs and editing "/etc/exim4/exim4.conf.template" (non-split configuration)
 – creating new files or editing existing files in the "/etc/exim4/exim4.conf.d" subdirectories. (split configuration)

• Run "invoke-rc.d exim4 reload".

Please read the official guide at: "/usr/share/doc/exim4-base/README.Debian.gz" and update-exim4.conf(8).

Caution
Starting `exim4` takes long time if "No" (default value) was chosen for the debconf query of "Keep number of DNS-queries minimal (Dial-on-Demand)?" and the system is **not** connected to the Internet while booting.

Warning
It is insecure to use plain text password without encryption even if your ISP allows it.

Tip
Although use of **SMTP** with **STARTTLS** on port 587 is recommended, some ISPs still use deprecated **SMTPS** (SSL on port 465). Exim4 after 4.77 supports this deprecated SMTPS protocol for both as client and as server.

Tip
If you are looking for a light weight MTA that respects "/etc/aliases" for your laptop PC, you should consider to configure `exim4(8)` with "QUEUERUNNER='queueonly'", "QUEUERUNNER='nodaemon'", etc. in "/etc/default/exim4".

6.3.2 The configuration of postfix with SASL

For the Internet mail via smarthost, you should first read postfix documentation and key manual pages.

<table>
<thead>
<tr>
<th>command</th>
<th>function</th>
</tr>
</thead>
<tbody>
<tr>
<td>postfix(1)</td>
<td>Postfix control program</td>
</tr>
<tr>
<td>postconf(1)</td>
<td>Postfix configuration utility</td>
</tr>
<tr>
<td>postconf(5)</td>
<td>Postfix configuration parameters</td>
</tr>
<tr>
<td>postmap(1)</td>
<td>Postfix lookup table maintenance</td>
</tr>
<tr>
<td>postalias(1)</td>
<td>Postfix alias database maintenance</td>
</tr>
</tbody>
</table>

Table 6.5: List of important postfix manual pages

You (re)configure postfix and sasl2-bin packages as follows.

```
$ sudo /etc/init.d/postfix stop
$ sudo dpkg-reconfigure postfix
```
Chose "Internet with smarthost".
Set "SMTP relay host (blank for none):" to "[smtp.hostname.dom]:587" and configure it by the following.

```bash
$ sudo postconf -e 'smtp_sender_dependent_authentication = yes'
$ sudo postconf -e 'smtp_sasl_auth_enable = yes'
$ sudo postconf -e 'smtp_sasl_password_maps = hash:/etc/postfix/sasl_passwd'
$ sudo postconf -e 'smtp_sasl_type = cyrus'
$ sudo vim /etc/postfix/sasl_passwd
```

Create password entries for the smarthost.

```bash
$ cat /etc/postfix/sasl_passwd
[smtp.hostname.dom]:587 username:password
$ sudo postmap hush:/etc/postfix/sasl_passwd
```

Start the postfix by the following.

```bash
$ sudo /etc/init.d/postfix start
```

Here the use of "[" and "]" in the dpkg-reconfigure dialog and "/etc/postfix/sasl_passwd" ensures not to check MX record but directly use exact hostname specified. See "Enabling SASL authentication in the Postfix SMTP client" in "/usr/share/doc/postfix/html/SASL_README.html".

6.3.3 The mail address configuration

There are a few mail address configuration files for mail transport, delivery and user agents.

<table>
<thead>
<tr>
<th>file</th>
<th>function</th>
<th>application</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/mailname</td>
<td>default host name for (outgoing) mail</td>
<td>Debian specific, mailname(5)</td>
</tr>
<tr>
<td>/etc/email-addresses</td>
<td>host name spoofing for outgoing mail</td>
<td>exim(8) specific, exim4-config_files(5)</td>
</tr>
<tr>
<td>/etc/postfix/generic</td>
<td>host name spoofing for outgoing mail</td>
<td>postfix(1) specific, activated after postmap(1) command execution.</td>
</tr>
<tr>
<td>/etc/aliases</td>
<td>account name alias for incoming mail</td>
<td>general, activated after newaliases(1) command execution.</td>
</tr>
</tbody>
</table>

Table 6.6: List of mail address related configuration files

The **mailname** in the "/etc/mailname" file is usually a fully qualified domain name (FQDN) that resolves to one of the host's IP addresses. For the mobile workstation which does not have a hostname with resolvable IP address, set this **mailname** to the value of "hostname -f". (This is safe choice and works for both exim4-* and postfix.)

Tip
The contents of "/etc/mailname" is used by many non-MTA programs for their default behavior. For mutt, set "hostname" and "from" variables in ~/.muttrc file to override the **mailname** value. For programs in the devscripts package, such as bts(1) and dch(1), export environment variables "$DEBFULLNAME" and "$DEBEMAIL" to override it.
The popularity-contest package normally send mail from root account with FQDN. You need to set MAILFROM in /etc/popularity-contest.conf as described in the /usr/share/popularity-contest/default.conf file. Otherwise, your mail will be rejected by the smarthost SMTP server. Although this is tedious, this approach is safer than rewriting the source address for all mails from root by MTA and should be used for other daemons and cron scripts.

When setting the **mailname** to "hostname -f", the spoofing of the source mail address via MTA can be realized by the following.

- "/etc/email-addresses" file for exim4 as explained in the exim4-config_files as explained in the generic
- "/etc/postfix/generic" file for postfix as explained in the generic

For postfix, the following extra steps are needed.

```
# postmap hash:/etc/postfix/generic
# postconf -e 'smtp_generic_maps = hash:/etc/postfix/generic'
# postfix reload
```

You can test mail address configuration using the following.

- exim(8) with -brw, -bf, -bF, -bV, ... options
- postmap(1) with -q option.

Tip

Exim comes with several utility programs such as exiqgrep(8) and exipick(8). See "dpkg -L exim4-base|grep man8/" for available commands.

6.3.4 Basic MTA operations

There are several basic MTA operations. Some may be performed via sendmail(1) compatibility interface.

<table>
<thead>
<tr>
<th>exim command</th>
<th>postfix command</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sendmail</td>
<td>sendmail</td>
<td>read mails from standard input and arrange for delivery (-bm)</td>
</tr>
<tr>
<td>mailq</td>
<td>mailq</td>
<td>list the mail queue with status and queue ID (-bp)</td>
</tr>
<tr>
<td>newaliases</td>
<td>newaliases</td>
<td>initialize alias database (-I)</td>
</tr>
<tr>
<td>exim4 -q</td>
<td>postqueue -f</td>
<td>flush waiting mails (-q)</td>
</tr>
<tr>
<td>exim4 -qf</td>
<td>postsuper -r ALL deferred; postqueue -f</td>
<td>flush all mails</td>
</tr>
<tr>
<td>exim4 -qff</td>
<td>postsuper -r ALL; postqueue -f</td>
<td>flush even frozen mails</td>
</tr>
<tr>
<td>exim4 -Mg queue_id</td>
<td>postsuper -h queue_id</td>
<td>freeze one message by its queue ID</td>
</tr>
<tr>
<td>exim4 -Mrm queue_id</td>
<td>postsuper -d queue_id</td>
<td>remove one message by its queue ID</td>
</tr>
<tr>
<td>N/A</td>
<td>postsuper -d ALL</td>
<td>remove all messages</td>
</tr>
</tbody>
</table>

Table 6.7: List of basic MTA operation

Tip

It may be a good idea to flush all mails by a script in "/etc/ppp/ip-up.d/*".
6.4 Mail user agent (MUA)

If you subscribe to Debian related mailing list, it may be a good idea to use such MUA as mutt and mew which are the de facto standard for the participant and known to behave as expected.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>evolution</td>
<td>V:40, I:265</td>
<td>449</td>
<td>X GUI program (GNOME3, groupware suite)</td>
</tr>
<tr>
<td>thunderbird</td>
<td>V:62, I:142</td>
<td>136737</td>
<td>X GUI program (GNOME2, unbranded Mozilla Thunderbird)</td>
</tr>
<tr>
<td>kmail</td>
<td>V:44, I:95</td>
<td>17630</td>
<td>X GUI program (KDE)</td>
</tr>
<tr>
<td>mutt</td>
<td>V:99, I:488</td>
<td>6010</td>
<td>character terminal program probably used with vim</td>
</tr>
<tr>
<td>mew</td>
<td>V:0, I:0</td>
<td>2322</td>
<td>character terminal program under (x)emacs</td>
</tr>
</tbody>
</table>

Table 6.8: List of mail user agent (MUA)

6.4.1 Basic MUA — Mutt

Customize "~/.muttrc" as the following to use mutt as the mail user agent (MUA) in combination with vim.

```
# # User configuration file to override /etc/Muttrc
#
# spoof source mail address
set use_from
set hostname=example.dom
set from="Name Surname <username@example.dom>"
set signature=""/.signature"

# vim: "gq" to reformat quotes
set editor="vim -c 'set tw=72 et ft=mail'

# "mutt" goes to Inbox, while "mutt -y" lists mailboxes
set mbox_type=Maildir # use qmail Maildir format for creating mbox
set mbox=-/Mail # keep all mail boxes in $HOME/Mail/
set spoolfile=-/inbox # mail delivered to $HOME/Mail/Inbox
set record=+/outbox # save fcc mail to $HOME/Mail/Outbox
set postponed=+postponed # keep postponed in $HOME/Mail/postponed
set move=no # do not move inbox items to mbox
set quit=ask-yes # do not quit by "q" only
set delete=yes # always delete w/o asking while exiting
set fcc_clear # store fcc as non encrypted

# Mailboxes in Maildir (automatic update)
mailboxes `cd ~/Mail; /bin/ls -1|sed -e 's/\+//g' | tr "\n" " "'
unmailboxes Maillog *.ev-summary

## Default
#set index_format="%4C %Z %{b dd} %15.15L (%4l) %s"
## Thread index with senders (collapse)
#set index_format="%4C %Z %{b dd} %15.15n %?M(%#%M)%(%4l) %s"

## Default
#set folder_format="%2C %t %N %F %2l %8.8u %-8.8g %8s %d %f"
## just folder names
set folder_format="%2C %t %N %f"
```

Add the following to "/etc/mailcap" or "~/.mailcap" to display HTML mail and MS Word attachments inline.
Tip
Mutt can be used as the IMAP client and the mailbox format converter. You can tag messages with "t", "T", etc. These tagged messages can be copied with ";C" between different mailboxes and deleted with ";d" in one action.

6.4.2 Advanced MUA — Mutt + msmtprc

Mutt can be configured to use multiple source email addresses with multiple corresponding smarthosts using msmtprc.

Tip
Msmtprc is a sendmail emulator which allows to be installed along another sendmail emulator which provides the /usr/sbin/sendmail command. So you can leave your system mail to be exim4 or postfix.

Let's think about supporting 3 email addresses as an example:

- "My Name1 <myaccount1@gmail.com>"
- "My Name2 <myaccount2@gmail.com>"
- "My Name3 <myaccount3@example.org>"

Here is an example of ~/.muttrc customization supporting 3 smarthosts for 3 different source email addresses.

```bash
set use_from
set from="My Name3 <myaccount3@example.org>"
set reverse_name
alternates myaccount1@gmail.com|myaccount1@gmail.com|myaccount3@example.org
#

# MACRO
macro compose "1" "<edit-from>^UMy Name1 myaccount1@gmail.com>\n"
macro compose "2" "<edit-from>^UMy Name2 myaccount2@gmail.com>\n"
macro compose "3" "<edit-from>^UMy Name3 myaccount3@example.org>\n"

send2-hook 'vf myaccount1@gmail.com' "set sendmail = '/usr/bin/msmtp --read-envelope-from'"
send2-hook 'vf myaccount2@gmail.com' "set sendmail = '/usr/bin/msmtp --read-envelope-from'"
send2-hook 'vf myaccount3@example.org' "set sendmail = '/usr/bin/msmtp --read-envelope-from'"
#
```

Let's install msmtprc-gnome and set ~/.msmtprc as follows.

```ini
defaulsts
logfile ~/.msmtp.log
domain myhostname.example.org
ts on
tls on
tls_starttls on
tls_certcheck on
tls_trust_file /etc/ssl/certs/ca-certificates.crt
auth on
port 587
auto_from

account myaccount1@gmail.com
host smtp.gmail.com
from myaccount1@gmail.com
user myaccount1@gmail.com

account myaccount2@gmail.com
host smtp.gmail.com
from myaccount2@gmail.com
user myaccount2@gmail.com

account myaccount3@example.org
host mail.example.org
from myaccount3@example.org
user myaccount3@example.org

account default : myaccount3@example.org
```

Then, add password data into the Gnome key ring. For example:

```
$ secret-tool store --label=msmtp \
    host smtp.gmail.com \
    service smtp \
    user myaccount1@gmail.com
...
```

Tip
If you don't wish to use the Gnome key ring, you can install `msmtp` package instead and add an entry such as "password secret123" to each account in `~/.msmtprc`. See `msmtp documentation` for more.

6.5 The remote mail retrieval and forward utility

Instead of running a MUA to access remote mails and to process them manually, you may wish to automate such process to have all the mails delivered to the local host. The remote mail retrieval and forward utility is the tool for you.

Although `fetchmail(1)` has been de facto standard for the remote mail retrieval on GNU/Linux, the author likes `getmail(1)` now. If you want to reject mail before downloading to save bandwidth, `mailfilter` or `mpop` may be useful. Whichever mail retriever utilities are used, it is a good idea to configure system to deliver retrieved mails to MDA, such as `maildrop`, via pipe.

6.5.1 getmail configuration

getmail(1) configuration is described in `getmail documentation`. Here is my set up to access multiple POP3 accounts as user. Create "/usr/local/bin/getmails" as the following.
Debian Reference

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fetchmail</td>
<td>V:6,I:19</td>
<td>2376</td>
<td>mail retriever (POP3, APOP, IMAP) (old)</td>
</tr>
<tr>
<td>getmail</td>
<td>V:0,I:0</td>
<td>661</td>
<td>mail retriever (POP3, IMAP4, and SDPS) (simple, secure, and reliable)</td>
</tr>
<tr>
<td>mailfilter</td>
<td>V:0,I:0</td>
<td>271</td>
<td>mail retriever (POP3) with regex filtering capability</td>
</tr>
<tr>
<td>mpop</td>
<td>V:0,I:0</td>
<td>373</td>
<td>mail retriever (POP3) and MDA with filtering capability</td>
</tr>
</tbody>
</table>

Table 6.9: List of remote mail retrieval and forward utilities

#!/bin/sh
set -e
if [-f $HOME/.getmail/running]; then
echo "getmail is already running ... (if not, remove $HOME/.getmail/running)" >&2
pgrep -l "getmail[1]"
exit 1
else
 echo "getmail has not been running ... " >&2
fi
if [-f $HOME/.getmail/stop]; then
echo "do not run getmail ... (if not, remove $HOME/.getmail/stop)" >&2
exit
fi
if ["x$1" = "x-l"]; then
 exit
fi
rcfiles="/usr/bin/getmail"
for file in $HOME/.getmail/config/* ; do
 rcfiles="$rcfiles --rcfile $file"
done
date -u > $HOME/.getmail/running
eval "$rcfiles $@
rm $HOME/.getmail/running

Configure it as the following.

$ sudo chmod 755 /usr/local/bin/getmails
$ mkdir -m 0750 $HOME/.getmail
$ mkdir -m 0700 $HOME/.getmail/config
$ mkdir -m 0700 $HOME/.getmail/log

Create configuration files "$HOME/.getmail/config/pop3_name" for each POP3 accounts as the following.

[retriever]
type = SimplePOP3SSLRetriever
server = pop.example.com
username = pop3_name@example.com
password = <your-password>

[destination]
type = MDA_external
path = /usr/bin/maildrop
unixfrom = True

[options]
verbose = 0
delete = True
Configure it as the following.

```bash
$ chmod 0600 $HOME/.getmail/config/*
```

Schedule "/usr/local/bin/getmails" to run every 15 minutes with cron(8) by executing "sudo crontab -e -u <user_name>" and adding following to user’s cron entry.

```bash
5,20,35,50 * * * * /usr/local/bin/getmails --quiet
```

Tip
Problems of POP3 access may not come from getmail. Some popular free POP3 services may be violating the POP3 protocol and their SPAM filter may not be perfect. For example, they may delete messages just after receiving RETR command before receiving DELE command and may quarantined messages into Spam mailbox. You should minimize damages by configuring them to archive accessed messages and not to delete them. See also "Some mail was not downloaded".

6.5.2 fetchmail configuration

fetchmail(1) configuration is set by "'/etc/default/fetchmail'","'/etc/fetchmailrc'" and "$HOME/.fetchmailrc". See its example in "'/usr/share/doc/fetchmail/examples/fetchmailrc.example'".

6.6 Mail delivery agent (MDA) with filter

Most MTA programs, such as postfix and exim4, function as MDA (mail delivery agent). There are specialized MDA with filtering capabilities.

Although procmail(1) has been de facto standard for MDA with filter on GNU/Linux, author likes maildrop(1) now. Whichever filtering utilities are used, it is a good idea to configure system to deliver filtered mails to a qmail-style Maildir.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>procmail</td>
<td>V:54, I:432</td>
<td>300</td>
<td>MDA with filter (old)</td>
</tr>
<tr>
<td>mailagent</td>
<td>V:0, I:8</td>
<td>1283</td>
<td>MDA with Perl filter</td>
</tr>
<tr>
<td>maildrop</td>
<td>V:1, I:3</td>
<td>1141</td>
<td>MDA with structured filtering language</td>
</tr>
</tbody>
</table>

Table 6.10: List of MDA with filter

6.6.1 maildrop configuration

maildrop(1) configuration is described in maildropfilter documentation. Here is a configuration example for "$HOME/.mailfilter".

```bash
# Local configuration
MAILROOT="$HOME/Mail"
# set this to /etc/mailname contents
MAILHOST="example.dom"
```
logfile $HOME/.maildroplog

rules are made to override the earlier value by the later one.

mailing list mails?
if (/^Precedence:.list:.h || /^Precedence:.bulk:.h)
{
 # rules for mailing list mails
 # default mailbox for mails from mailing list
 MAILBOX="Inbox-list"
 # default mailbox for mails from debian.org
 if (/\(\(Sender|Resent-From|Resent-Sender\): .debian.org/.h)
 {
 MAILBOX="service.debian.org"
 }
 # default mailbox for mails from bugs.debian.org (BTS)
 if (/\(\(Sender|Resent-From|Resent-sender\): .@bugs.debian.org/.h)
 {
 MAILBOX="bugs.debian.org"
 }
 # mailbox for each properly maintained mailing list with "List-Id: foo" or "List-Id: ←...<foo.bar>"
 if (/^List-Id: \([^<]*<\)?\([^<\>]*?\)?>/h)
 {
 MAILBOX="$MATCH2"
 }
}
else
{
 # rules for non-mailing list mails
 # default incoming box
 MAILBOX="Inbox-unusual"
 # local mails
 if (/Envelope-to:.@$MAILHOST/h)
 {
 MAILBOX="Inbox-local"
 }
 # html mails (99% spams)
 if (/\DOCTYPEText/html/||
 /\^Content-Type: text/html/)
 {
 MAILBOX="Inbox-html"
 }
 # blacklist rule for spams
 if (/^X-Advertisement:.h ||
 /^Subject:.BUSINESS PROPOSAL:.h ||
 /^Subject:.URGENT.*ASISTANCE:.h ||
 /^Subject:.I NEED YOUR ASSISTANCE/.h)
 {
 MAILBOX="Inbox-trash"
 }
 # whitelist rule for normal mails
 if (/^From:.@debian.org/:h ||
 /\(\(Sender|Resent-From|Resent-sender\): .debian.org/:h ||
 /^Subject:.\(\(debian|bug|PATCH\)/:h)
 {
 MAILBOX="Inbox"
 }
 # whitelist rule for BTS related mails
 if (/^Subject:.\(Bug\#:.*:h ||
 /\(To\|Cc\): .@bugs.debian.org/:h)
 {
 }
}
MAILBOX="bugs.debian.org"

whitelist rule for getmails cron mails
if (/^Subject: Cron.*getmails/.h)
{
 MAILBOX="Inbox-getmails"
}

check existence of $MAILBOX
'test -d $MAILROOT/$MAILBOX'
if ($RETURNCODE == 1)
{
 # create maildir mailbox for $MAILBOX
 'maildirmake $MAILROOT/$MAILBOX'
}
deliver to maildir $MAILBOX
to "$MAILROOT/$MAILBOX/"
exit

⚠️ Warning
Unlike procmail, maildrop does not create missing maildir directories automatically. You must create them manually using maildirmake(1) in advance as in the example "$HOME/.mailfilter".

6.6.2 procmail configuration

Here is a similar configuration with "$HOME/.procmailrc" for procmail(1).

MAILDIR=$HOME/Maildir
DEFAULT=$MAILDIR/Inbox/
LOGFILE=$MAILDIR/Maillog
clearly bad looking mails: drop them into X-trash and exit
:0
 ^1^0 ^X-Advertisement
 ^1^0 ^Subject:."BUSINESS PROPOSAL"
 ^1^0 ^Subject:."URGENT.*ASISSTANCE"
 ^1^0 ^Subject: *I NEED YOUR ASSISTANCE
X-trash/

Delivering mailinglist messages
:0
 ^1^0 ^Precedence:."list
 ^1^0 ^Precedence:."bulk
 ^1^0 ^List-
 ^1^0 ^X-Distribution:."bulk
{
 :0
 ^1^0 ^Return-path:."debian-devel-admin@debian.or.jp
jp-debian-devel/
:0
 ^Resent-Sender.*debian-user-request@lists.debian.org
debian-user/
:0
6.6.3 Redeliver mbox contents

You need to manually deliver mails to the sorted mailboxes in your home directory from "/var/mail/<username>" if your home directory became full and procmail(1) failed. After making disk space in the home directory, run the following.

```
# /etc/init.d/$(MAILDAEMON) stop
# formail -s procmail </var/mail/<username>
# /etc/init.d/$(MAILDAEMON) start
```

6.7 POP3/IMAP4 server

If you are to run a private server on LAN, you may consider to run POP3 / IMAP4 server for delivering mail to LAN clients.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>type</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>courier-pop</td>
<td>V:3, I:4</td>
<td>288</td>
<td>POP3</td>
<td>Courier mail server - POP3 server (mailldir format only)</td>
</tr>
<tr>
<td>cyrus-pop3d</td>
<td>V:0, I:0</td>
<td>153</td>
<td>POP3</td>
<td>Cyrus mail system (POP3 support)</td>
</tr>
<tr>
<td>courier-imap</td>
<td>V:4, I:6</td>
<td>564</td>
<td>IMAP</td>
<td>Courier mail server - IMAP server (mailldir format only)</td>
</tr>
<tr>
<td>cyrus-imapd</td>
<td>V:1, I:1</td>
<td>466</td>
<td>IMAP</td>
<td>Cyrus mail system (IMAP support)</td>
</tr>
</tbody>
</table>

Table 6.11: List of POP3/IMAP4 servers

6.8 The print server and utilities

In the old Unix-like system, the BSD Line printer daemon was the standard. Since the standard print out format of the free software is PostScript on the Unix like system, some filter system was used along with Ghostscript to enable printing to the non-PostScript printer.

Recently, Common UNIX Printing System (CUPS) is the new de facto standard. The CUPS uses Internet Printing Protocol (IPP). The IPP is now supported by other OSs such as Windows XP and Mac OS X and has become new cross-platform de facto standard for remote printing with bi-directional communication capability.

The standard printable data format for the application on the Debian system is the PostScript (PS) which is a page description language. The data in PS format is fed into the Ghostscript PostScript interpreter to produce the printable data specific to the printer. See Section 11.4.1.
Thanks to the file format dependent auto-conversion feature of the CUPS system, simply feeding any data to the \texttt{lpr} command should generate the expected print output. (In CUPS, \texttt{lpr} can be enabled by installing the \texttt{cups-bsd} package.)

The Debian system has some notable packages for the print servers and utilities.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>port</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{lpr}</td>
<td>V:5, I:6</td>
<td>362</td>
<td>printer (515)</td>
<td>BSD lpr/lpd (Line printer daemon)</td>
</tr>
<tr>
<td>\texttt{lprng}</td>
<td>V:1, I:1</td>
<td>8352</td>
<td>, ,</td>
<td>, , (Enhanced)</td>
</tr>
<tr>
<td>\texttt{cups}</td>
<td>V:252, I:432</td>
<td>1127</td>
<td>IPP (631)</td>
<td>Internet Printing CUPS server</td>
</tr>
<tr>
<td>\texttt{cups-client}</td>
<td>V:60, I:493</td>
<td>523</td>
<td>, ,</td>
<td>System V printer commands for CUPS: lp(1), lpstat(1), lq(1), lqoptions(1), cancel(1), lpmove(8), lqinfo(8), lqadmin(8), ...</td>
</tr>
<tr>
<td>\texttt{cups-bsd}</td>
<td>V:38, I:423</td>
<td>127</td>
<td>, ,</td>
<td>BSD printer commands for CUPS: lpr(1), lpq(1), lprm(1), lpc(8)</td>
</tr>
<tr>
<td>\texttt{printer-driver-gutenprint}</td>
<td>V:133, I:420</td>
<td>930</td>
<td>Not applicable</td>
<td>printer drivers for CUPS</td>
</tr>
</tbody>
</table>

Table 6.12: List of print servers and utilities

\textbf{Tip}

You can configure CUPS system by pointing your web browser to "\texttt{http://localhost:631}".

6.9 The remote access server and utilities (SSH)

The \textit{Secure SHell} (SSH) is the \textbf{secure} way to connect over the Internet. A free version of SSH called \textit{OpenSSH} is available as \texttt{openssh-client} and \texttt{openssh-server} packages in Debian.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>tool</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{openssh-client}</td>
<td>V:811, I:994</td>
<td>3545</td>
<td>ssh(1)</td>
<td>Secure shell client</td>
</tr>
<tr>
<td>\texttt{openssh-server}</td>
<td>V:686, I:813</td>
<td>1449</td>
<td>sshd(8)</td>
<td>Secure shell server</td>
</tr>
<tr>
<td>\texttt{ssh-askpass-fullscreen}</td>
<td>V:0, T:1</td>
<td>42</td>
<td>ssh-askpass-fullscreen(1)</td>
<td>asks user for a pass phrase for ssh-add (GNOME2)</td>
</tr>
<tr>
<td>\texttt{ssh-askpass}</td>
<td>V:3, I:40</td>
<td>101</td>
<td>ssh-askpass(1)</td>
<td>asks user for a pass phrase for ssh-add (plain X)</td>
</tr>
</tbody>
</table>

Table 6.13: List of remote access server and utilities

\textbf{Caution}

See Section 4.7.3 if your SSH is accessible from the Internet.

\textbf{Tip}

Please use the screen(1) program to enable remote shell process to survive the interrupted connection (see Section 9.1).
6.9.1 Basics of SSH

Warning

"/etc/ssh/sshd_not_to_be_run" must not be present if one wishes to run the OpenSSH server.

SSH has two authentication protocols.

<table>
<thead>
<tr>
<th>SSH protocol</th>
<th>SSH method</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSH-1</td>
<td>"RSAAuthentication"</td>
<td>RSA identity key based user authentication</td>
</tr>
<tr>
<td>.</td>
<td>"RhostsAuthentication"</td>
<td>".rhosts" based host authentication (insecure, disabled)</td>
</tr>
<tr>
<td>.</td>
<td>"RhostsRSAAuthentication"</td>
<td>".rhosts" based host authentication combined with RSA host key (disabled)</td>
</tr>
<tr>
<td>.</td>
<td>"PasswordAuthentication"</td>
<td>password based authentication</td>
</tr>
<tr>
<td>SSH-2</td>
<td>"PubkeyAuthentication"</td>
<td>public key based user authentication</td>
</tr>
<tr>
<td>.</td>
<td>"HostbasedAuthentication"</td>
<td>"~/.rhosts" or "/etc/hosts.equiv" based host authentication combined with public key client host authentication (disabled)</td>
</tr>
<tr>
<td>.</td>
<td>"ChallengeResponseAuthentication"</td>
<td>challenge-response authentication</td>
</tr>
<tr>
<td>.</td>
<td>"PasswordAuthentication"</td>
<td>password based authentication</td>
</tr>
</tbody>
</table>

Table 6.14: List of SSH authentication protocols and methods

Caution

Be careful about these differences if you are using a non-Debian system.

See "/usr/share/doc/ssh/README.Debian.gz", ssh(1), ssdh(8), ssh-agent(1), and ssh-keygen(1) for details.

Following are the key configuration files.

<table>
<thead>
<tr>
<th>configuration file</th>
<th>description of configuration file</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/ssh/ssh_config</td>
<td>SSH client defaults, see ssh_config(5)</td>
</tr>
<tr>
<td>/etc/ssh/sshd_config</td>
<td>SSH server defaults, see ssdh_config(5)</td>
</tr>
<tr>
<td>~/.ssh/authorized_keys</td>
<td>default public SSH keys that clients use to connect to this account on this SSH server</td>
</tr>
<tr>
<td>~/.ssh/identity</td>
<td>secret SSH-1 RSA key of the user</td>
</tr>
<tr>
<td>~/.ssh/id_rsa</td>
<td>secret SSH-2 RSA key of the user</td>
</tr>
<tr>
<td>~/.ssh/id_dsa</td>
<td>secret SSH-2 DSA key of the user</td>
</tr>
</tbody>
</table>

Table 6.15: List of SSH configuration files

Tip

See ssh-keygen(1), ssh-add(1) and ssh-agent(1) for how to use public and secret SSH keys.
Tip
Make sure to verify settings by testing the connection. In case of any problem, use "ssh -v".

Tip
You can change the pass phrase to encrypt local secret SSH keys later with "ssh-keygen -p".

Tip
You can add options to the entries in "~/.ssh/authorized_keys" to limit hosts and to run specific commands.
See sshd(8) for details.

The following starts an ssh(1) connection from a client.

<table>
<thead>
<tr>
<th>command</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssh username@hostname.domain.ext</td>
<td>connect with default mode</td>
</tr>
<tr>
<td>ssh -v username@hostname.domain.ext</td>
<td>connect with default mode with debugging messages</td>
</tr>
<tr>
<td>ssh -1 username@hostname.domain.ext</td>
<td>force to connect with SSH version 1</td>
</tr>
<tr>
<td>ssh -1 -o RSAAuthentication=no -l username hostname.domain.ext</td>
<td>force to use password with SSH version 1</td>
</tr>
<tr>
<td>ssh -o PreferredAuthentications=password -l username hostname.domain.ext</td>
<td>force to use password with SSH version 2</td>
</tr>
</tbody>
</table>

Table 6.16: List of SSH client startup examples

If you use the same user name on the local and the remote host, you can eliminate typing "username@". Even if you use different user name on the local and the remote host, you can eliminate it using "~/.ssh/config". For Debian Salsa service with account name "foo-guest", you set "~/.ssh/config" to contain the following.

```bash
Host salsa.debian.org people.debian.org
  User foo-guest
```

For the user, ssh(1) functions as a smarter and more secure telnet(1). Unlike telnet command, ssh command does not stop on the telnet escape character (initial default CTRL-\).

6.9.2 Port forwarding for SMTP/POP3 tunneling

To establish a pipe to connect to port 25 of remote-server from port 4025 of localhost, and to port 110 of remote-server from port 4110 of localhost through ssh, execute on the local host as the following.

```bash
# ssh -q -L 4025:remote-server:25 4110:remote-server:110 username@remote-server
```

This is a secure way to make connections to SMTP/POP3 servers over the Internet. Set the "AllowTcpForwarding" entry to "yes" in "/etc/ssh/sshd_config" of the remote host.
6.9.3 Connecting without remote passwords

One can avoid having to remember passwords for remote systems by using "RSAAuthentication" (SSH-1 protocol) or "PubkeyAuthentication" (SSH-2 protocol).

On the remote system, set the respective entries, "RSAAuthentication yes" or "PubkeyAuthentication yes", in "/etc/ssh/sshd_config".

Generate authentication keys locally and install the public key on the remote system by the following.

- "$ RSAAuthentication": RSA key for SSH-1 (deprecated because it is superseded.)

```bash
$ ssh-keygen
$ cat .ssh/identity.pub | ssh user1@remote "cat - >>.ssh/authorized_keys"
```

- "$ PubkeyAuthentication": RSA key for SSH-2

```bash
$ ssh-keygen -t rsa
$ cat .ssh/id_rsa.pub | ssh user1@remote "cat - >>.ssh/authorized_keys"
```

- "$ PubkeyAuthentication": DSA key for SSH-2 (deprecated because it is slow.)

```bash
$ ssh-keygen -t dsa
$ cat .ssh/id_dsa.pub | ssh user1@remote "cat - >>.ssh/authorized_keys"
```

Tip

Use of DSA key for SSH-2 is deprecated because key is smaller and slow. There are no more reasons to work around RSA patent using DSA since it has been expired. DSA stands for Digital Signature Algorithm and is slow. Also see DSA-1571-1.

Note

For "HostbasedAuthentication" to work in SSH-2, you must adjust the settings of "HostbasedAuthentication" to "yes" in both "/etc/ssh/sshd_config" on the server host and "/etc/ssh/ssh_config" or "~/.ssh/config" on the client host.

6.9.4 Dealing with alien SSH clients

There are some free SSH clients available for other platforms.

6.9.5 Setting up ssh-agent

It is safer to protect your SSH authentication secret keys with a pass phrase. If a pass phrase was not set, use "ssh-keygen -p" to set it.

Place your public SSH key (e.g. "~/.ssh/id_rsa.pub") into "~/.ssh/authorized_keys" on a remote host using a password-based connection to the remote host as described above.
Table 6.17: List of free SSH clients for other platforms

<table>
<thead>
<tr>
<th>Environment</th>
<th>Free SSH program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mac OS X</td>
<td>OpenSSH; use <code>ssh</code> in the Terminal application (GPL)</td>
</tr>
</tbody>
</table>

```bash
$ ssh-agent bash
$ ssh-add ~/.ssh/id_rsa
Enter passphrase for /home/<username>/.ssh/id_rsa:
Identity added: /home/<username>/.ssh/id_rsa (/home/<username>/.ssh/id_rsa)
```

No remote password needed from here on for the next command.

```bash
$ scp foo <username>@remote.host:foo
```

Press ^D to terminating ssh-agent session.

For the X server, the normal Debian startup script executes `ssh-agent` as the parent process. So you only need to execute `ssh-add` once. For more, read `ssh-agent(1)` and `ssh-add(1)`.

6.9.6 How to shutdown the remote system on SSH

You need to protect the process doing "`shutdown -h now`" (see Section 1.1.8) from the termination of SSH using the `at(1)` command (see Section 9.3.13) by the following.

```
# echo "shutdown -h now" | at now
```

Running "`shutdown -h now`" in `screen(1)` (see Section 9.1) session is another way to do the same.

6.9.7 Troubleshooting SSH

If you have problems, check the permissions of configuration files and run `ssh` with the "`-v`" option.

Use the "`-p`" option if you are root and have trouble with a firewall; this avoids the use of server ports 1 — 1023.

If `ssh` connections to a remote site suddenly stop working, it may be the result of tinkering by the sysadmin, most likely a change in "`host_key`" during system maintenance. After making sure this is the case and nobody is trying to fake the remote host by some clever hack, one can regain a connection by removing the "`host_key`" entry from "`~/.ssh/known_hosts`" on the localhost.

6.10 Other network application servers

Here are other network application servers.

Common Internet File System Protocol (CIFS) is the same protocol as Server Message Block (SMB) and is used widely by Microsoft Windows.

Tip

See Section 4.5.2 for integration of server systems.
Table 6.18: List of other network application servers

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>protocol</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>telnetd</td>
<td>V:1, I:3</td>
<td>115</td>
<td>TELNET</td>
<td>TELNET server</td>
</tr>
<tr>
<td>telnetd-ssl</td>
<td>V:0, I:0</td>
<td>165</td>
<td>..</td>
<td>..(SSL support)</td>
</tr>
<tr>
<td>nfs-kernel-server</td>
<td>V:35, I:83</td>
<td>345</td>
<td>NFS</td>
<td>Unix file sharing</td>
</tr>
<tr>
<td>samba</td>
<td>V:104, I:171</td>
<td>15967</td>
<td>SMB</td>
<td>Windows file and printer sharing</td>
</tr>
<tr>
<td>netatalk</td>
<td>V:2, I:4</td>
<td>1805</td>
<td>ATP</td>
<td>Apple/Mac file and printer sharing (AppleTalk)</td>
</tr>
<tr>
<td>proftpd-basic</td>
<td>V:30, I:38</td>
<td>5189</td>
<td>FTP</td>
<td>General file download</td>
</tr>
<tr>
<td>apache2</td>
<td>V:250, I:340</td>
<td>598</td>
<td>HTTP</td>
<td>General web server</td>
</tr>
<tr>
<td>squid</td>
<td>V:13, I:16</td>
<td>8374</td>
<td>..</td>
<td>General web proxy server</td>
</tr>
<tr>
<td>squid3</td>
<td>V:7, I:14</td>
<td>239</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>bind9</td>
<td>V:54, I:73</td>
<td>2144</td>
<td>DNS</td>
<td>IP address for other hosts</td>
</tr>
<tr>
<td>isc-dhcp-server</td>
<td>V:23, I:60</td>
<td>1434</td>
<td>DHCP</td>
<td>IP address of client itself</td>
</tr>
</tbody>
</table>

Tip
The hostname resolution is usually provided by the DNS server. For the host IP address dynamically assigned by DHCP, Dynamic DNS can be set up for the hostname resolution using bind9 and isc-dhcp-server as described in the DDNS page on the Debian wiki.

Tip
Use of proxy server such as squid is much more efficient for saving bandwidth than use of local mirror server with the full Debian archive contents.

6.11 Other network application clients

Here are other network application clients.

6.12 The diagnosis of the system daemons

The telnet program enables manual connection to the system daemons and its diagnosis.

For testing plain POP3 service, try the following:

```
$ telnet mail.ispname.net pop3
```

For testing the TLS/SSL enabled POP3 service by some ISPs, you need TLS/SSL enabled telnet client by the telnet-ssl or openssl packages.

```
$ telnet -z ssl pop.gmail.com 995
```

```
$ openssl s_client -connect pop.gmail.com:995
```

The following RFCs provide required knowledge to each system daemon.

The port usage is described in "/etc/services".
<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>protocol</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>netcat</td>
<td>1.35</td>
<td>16</td>
<td>TCP/IP</td>
<td>TCP/IP Swiss army knife</td>
</tr>
<tr>
<td>openssl</td>
<td>V:808, I:992</td>
<td>1452</td>
<td>SSL</td>
<td>Secure Socket Layer (SSL) binary and related cryptographic tools</td>
</tr>
<tr>
<td>stunnel4</td>
<td>V:4, I:18</td>
<td>487</td>
<td></td>
<td>universal SSL Wrapper</td>
</tr>
<tr>
<td>telnet</td>
<td>V:64, I:907</td>
<td>163</td>
<td>TELNET</td>
<td>TELNET client</td>
</tr>
<tr>
<td>telnet-ssl</td>
<td>V:1, I:6</td>
<td>209</td>
<td></td>
<td>,(SSL support)</td>
</tr>
<tr>
<td>nfs-common</td>
<td>V:248, I:454</td>
<td>758</td>
<td>NFS</td>
<td>Unix file sharing</td>
</tr>
<tr>
<td>smbclient</td>
<td>V:17, I:187</td>
<td>1798</td>
<td>SMB</td>
<td>MS Windows file and printer sharing client</td>
</tr>
<tr>
<td>cifs-utils</td>
<td>V:35, I:120</td>
<td>231</td>
<td></td>
<td>mount and umount commands for remote MS Windows file</td>
</tr>
<tr>
<td>ftp</td>
<td>V:24, I:430</td>
<td>137</td>
<td>FTP</td>
<td>FTP client</td>
</tr>
<tr>
<td>lftp</td>
<td>V:6, I:39</td>
<td>2254</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ncftp</td>
<td>V:4, I:26</td>
<td>1486</td>
<td></td>
<td>full screen FTP client</td>
</tr>
<tr>
<td>wget</td>
<td>V:383, I:998</td>
<td>3257</td>
<td>HTTP and FTP</td>
<td>web downloader</td>
</tr>
<tr>
<td>curl</td>
<td>V:136, I:490</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>axel</td>
<td>V:2, I:5</td>
<td>190</td>
<td></td>
<td>accelerated downloader</td>
</tr>
<tr>
<td>aria2</td>
<td>V:2, I:18</td>
<td>1848</td>
<td></td>
<td>accelerated downloader with BitTorrent and Metalink supports</td>
</tr>
<tr>
<td>bind9-host</td>
<td>V:442, I:952</td>
<td>358</td>
<td>DNS</td>
<td>host(1) from bind9,"Priority: standard"</td>
</tr>
<tr>
<td>dnsutils</td>
<td>V:71, I:591</td>
<td>719</td>
<td></td>
<td>dig(1) from bind,"Priority: standard"</td>
</tr>
<tr>
<td>isc-dhcp-client</td>
<td>V:255, I:973</td>
<td>673</td>
<td>DHCP</td>
<td>obtain IP address</td>
</tr>
<tr>
<td>ldap-utils</td>
<td>V:17, I:76</td>
<td>709</td>
<td>LDAP</td>
<td>obtain data from LDAP server</td>
</tr>
</tbody>
</table>

Table 6.19: List of network application clients

<table>
<thead>
<tr>
<th>RFC</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rfc1939 and rfc2449</td>
<td>POP3 service</td>
</tr>
<tr>
<td>rfc3501</td>
<td>IMAP4 service</td>
</tr>
<tr>
<td>rfc2821 (rfc821)</td>
<td>SMTP service</td>
</tr>
<tr>
<td>rfc2822 (rfc822)</td>
<td>Mail file format</td>
</tr>
<tr>
<td>rfc2045</td>
<td>Multipurpose Internet Mail Extensions (MIME)</td>
</tr>
<tr>
<td>rfc819</td>
<td>DNS service</td>
</tr>
<tr>
<td>rfc2616</td>
<td>HTTP service</td>
</tr>
<tr>
<td>rfc2396</td>
<td>URI definition</td>
</tr>
</tbody>
</table>

Table 6.20: List of popular RFCs
Chapter 7

The X Window System

⚠️ Warning
This chapter is getting outdated since this is based on Debian 7.0 (wheezy) released in 2013.

The X Window System on the Debian system is based on the source from X.Org.

7.1 Key packages

There are a few (meta)packages provided to ease installation.

<table>
<thead>
<tr>
<th>(meta)package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xorg</td>
<td>I:500</td>
<td>52</td>
<td>X libraries, an X server, a set of fonts, and a group of basic X clients</td>
</tr>
<tr>
<td>xorg-xserver</td>
<td>V:83, I:538</td>
<td>238</td>
<td>full suite of the X server and its configuration</td>
</tr>
<tr>
<td>xorg-xlib</td>
<td>I:38</td>
<td>46</td>
<td>miscellaneous assortment of X clients (metapackage)</td>
</tr>
<tr>
<td>xorg-x11</td>
<td>V:424, I:792</td>
<td>305</td>
<td>filesystem infrastructure for the X Window System</td>
</tr>
<tr>
<td>xorg-docs</td>
<td>I:7</td>
<td>2032</td>
<td>miscellaneous documentation for the X.Org software suite</td>
</tr>
<tr>
<td>xorg-docs</td>
<td>I:7</td>
<td>2032</td>
<td>miscellaneous documentation for the X.Org software suite</td>
</tr>
<tr>
<td>menu</td>
<td>V:73, I:246</td>
<td>1435</td>
<td>generate the Debian menu for all menu-aware applications</td>
</tr>
<tr>
<td>menu-xdg</td>
<td>V:35, I:129</td>
<td>27</td>
<td>convert the Debian menu structure to the freedesktop.org xdg menu structure</td>
</tr>
<tr>
<td>xdg-utils</td>
<td>V:260, I:559</td>
<td>327</td>
<td>utilities to integrate desktop environment provided by the freedesktop.org</td>
</tr>
<tr>
<td>task-gnome-desktop</td>
<td>I:202</td>
<td>6</td>
<td>standard GNOME desktop environment (metapackage)</td>
</tr>
<tr>
<td>task-kde-desktop</td>
<td>I:69</td>
<td>6</td>
<td>core KDE desktop environment (metapackage)</td>
</tr>
<tr>
<td>task-xfce-desktop</td>
<td>I:111</td>
<td>6</td>
<td>Xfce lightweight desktop environment (metapackage)</td>
</tr>
<tr>
<td>task-lxde-desktop</td>
<td>I:44</td>
<td>6</td>
<td>LXDE lightweight desktop environment (metapackage)</td>
</tr>
<tr>
<td>fluxbox</td>
<td>V:2, I:11</td>
<td>3860</td>
<td>Fluxbox: package for highly configurable and low resource X window manager</td>
</tr>
</tbody>
</table>

Table 7.1: List of key (meta)packages for X Window

For the basics of X, refer to X(7) and the LDP XWindow-User-HOWTO.
7.2 Setting up desktop environment

A desktop environment is usually a combination of a X window manager, a file manager, and a suite of compatible utility programs.

You can setup a full desktop environment such as GNOME, KDE, Xfce, or LXDE, from the aptitude under the task menu.

Tip
Task menu may be out of sync with the latest package transition state under Debian unstable/testing environment. In such situation, you need to deselect some (meta)packages listed under aptitude(8) task menu to avoid package conflicts. When deselecting (meta)packages, you must select certain packages providing their dependencies manually to avoid them deleted automatically.

You may alternatively setup a simple environment manually just with a X window manager such as Fluxbox.
See Window Managers for X for the guide to the X window manager and the desktop environment.

7.2.1 Debian menu

Debian menu system provides a general interface for both text- and X-oriented programs with update-menus(1) from the menu package. Each package installs its menu data in the "/usr/share/menu/" directory. See "/usr/share/menu/README".

7.2.2 Freedesktop.org menu

Each package which is compliant to Freedesktop.org’s xdg menu system installs its menu data provided by “*.desktop” under "/usr/share/applications/". Modern desktop environments which are compliant to Freedesktop.org standard use these data to generate their menu using the xdg-utils package. See "/usr/share/doc/xdg-utils/README".

7.2.3 Debian menu from Freedesktop.org menu

In order to access the traditional Debian menu from the Freedesktop.org menu compliant window manager environment such as GNOME and KDE, you must install the menu-xdg package.

7.3 The server/client relationship

The X Window System is activated as a combination of the server and client programs. The meaning for the words server and client with respect to the words local and remote requires attention here.

<table>
<thead>
<tr>
<th>type</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X server</td>
<td>a program run on a local host connected to the user’s display and input devices.</td>
</tr>
<tr>
<td>X client</td>
<td>a program run on a remote host that processes data and talks to the X server.</td>
</tr>
<tr>
<td>application server</td>
<td>a program run on a remote host that processes data and talks to the application clients.</td>
</tr>
<tr>
<td>application client</td>
<td>a program run on a local host connected to the user’s display and input devices.</td>
</tr>
</tbody>
</table>

Table 7.2: List of server/client terminology

Modern X servers have the MIT Shared Memory Extension and communicate with their local X clients using the local shared memory. This bypasses the network transparent Xlib interprocess communication channel and gains performance for large images.
7.4 The X server

See xorg(1) for X server information.

7.4.1 The (re)configuration of the X server

The following (re)configures an X server.

```bash
# dpkg-reconfigure --priority=low x11-common
```

Note
Recent Linux kernels have good graphics and input device supports with DRM, KMS, and udev. X server is rewritten to use them. So "/etc/X11/xorg.conf" is usually not present on your system. These parameters are configured by the kernel. See "fb/modedb.txt" in the Linux kernel documentation.

For the large high resolution CRT monitor, it is a good idea to set the refresh rate as high as your monitor can handle (85 Hz is great, 75 Hz is OK) to reduce flicker. For the LCD monitor, slower standard refresh rate (60Hz) is usually fine due to its slow response.

Note
Be careful not to use too high refresh rate which may cause fatal hardware failure of your monitor system.

7.4.2 The connection methods to the X server

There are several ways of getting the "X server" (display side) to accept connections from an "X client" (application side).

Warning
Do not use remote TCP/IP connection over unsecured network for X connection unless you have very good reason such as use of encryption. A remote TCP/IP socket connection without encryption is prone to the eavesdropping attack and is disabled by default on the Debian system. Use "ssh -X".

Warning
Do not use XDMCP connection over unsecured network either. It sends data via UDP/IP without encryption and is prone to the eavesdropping attack.

Tip
LTSP stands for Linux Terminal Server Project.
<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>user</th>
<th>encryption</th>
<th>method</th>
<th>pertinent use</th>
</tr>
</thead>
<tbody>
<tr>
<td>xbase-clients</td>
<td>I:38</td>
<td>46</td>
<td>unchecked</td>
<td>no</td>
<td>xhost command</td>
<td>deprecated</td>
</tr>
<tr>
<td>xbase-clients</td>
<td>I:38</td>
<td>46</td>
<td>checked</td>
<td>no</td>
<td>xauth command</td>
<td>local connection via pipe</td>
</tr>
<tr>
<td>openssh-client</td>
<td>V:811, I:994</td>
<td>3545</td>
<td>checked</td>
<td>yes</td>
<td>ssh -X command</td>
<td>remote network connection</td>
</tr>
<tr>
<td>gdm3</td>
<td>V:189, I:263</td>
<td>4791</td>
<td>checked</td>
<td>no (XDMCP)</td>
<td>GNOME display manager</td>
<td>local connection via pipe</td>
</tr>
<tr>
<td>sddm</td>
<td>V:46, I:82</td>
<td>1830</td>
<td>checked</td>
<td>no (XDMCP)</td>
<td>KDE display manager</td>
<td>local connection via pipe</td>
</tr>
<tr>
<td>xdm</td>
<td>V:3, I:7</td>
<td>665</td>
<td>checked</td>
<td>no (XDMCP)</td>
<td>X display manager</td>
<td>local connection via pipe</td>
</tr>
<tr>
<td>wdm</td>
<td>V:80, I:433</td>
<td>2323</td>
<td>checked</td>
<td>no (XDMCP)</td>
<td>WindowMaker display manager</td>
<td>local connection via pipe</td>
</tr>
<tr>
<td>ldm</td>
<td>V:0, I:1</td>
<td>414</td>
<td>checked</td>
<td>yes</td>
<td>LTSP display manager</td>
<td>remote SSH network connection (thin client)</td>
</tr>
</tbody>
</table>

Table 7.3: List of connection methods to the X server

7.5 Starting the X Window System

The X Window System is usually started as an X session which is the combination of an X server and connecting X clients. For the normal desktop system, both of them are executed on a workstation.

The X session is started by one of the following.

- `startx` command started from the command line
- One of the X display manager daemon programs *dm started by systemd based on the dependency of "graphical.target".

Tip
The start up script for the display manager daemons checks the content of the "/etc/X11/default-display-manager" file before actually executing themselves. This ensures to have only one X display manager daemon program activated.

Tip
See Section 8.4.5 for initial environment variables of the X display manager.

Essentially, all these programs execute the "/etc/X11/Xsession" script. Then the "/etc/X11/Xsession" script performs run-parts(8) like action to execute scripts in the "/etc/X11/Xsession.d/" directory. This is essentially an execution of the first program which is found in the following order by the `exec` builtin command.

1. The script specified as the argument of "/etc/X11/Xsession" by the X display manager, if it is defined.
2. The "~/.xsession" or "~/.Xsession" script, if it is defined.
3. The "/usr/bin/x-session-manager" command, if it is defined.
4. The "/usr/bin/x-window-manager" command, if it is defined.
5. The "/usr/bin/x-terminal-emulator" command, if it is defined.

This process is affected by the content of "/etc/X11/Xsession.options". The exact programs to which these "/usr/bin/x-*" commands point, are determined by the Debian alternatives system and changed by "update-alternatives --config x-session-manager", etc.

See Xsession(5) for details.

7.5.1 Starting X session with gdm3

gdm3(1) lets you select the session type (or desktop environment: Section 7.2), and language (or locale: Section 8.4) of the X session from its menu. It keeps the selected default value in "~/.dmrc" as the following.

```ini
[Desktop]
Session=default
Language=ja_JP.UTF-8
```

7.5.2 Customizing the X session (classic method)

On a system where "/etc/X11/Xsession.options" contains a line "allow-user-xsession" without preceding "#" characters, any user who defines "~/.xsession" or "~/.Xsession" is able to customize the action of "/etc/X11/Xsession" by completely overriding the system code. The last command in the "~/.xsession" file should use form of "exec some-window/session-manager" to start your favorite X window/session managers.

If this feature is used, the selection of the display (or login) manager (DM), session manager or window manager (WM) by the system utility is ignored.

7.5.3 Customizing the X session (new method)

Here are new methods to customize the X session without completely overriding the system code as above.

- The display manager gdm3 can select a specific session and set it as the argument of "/etc/X11/Xsession".

 - "/etc/profile", "~/.profile", "/etc/xprofile", and "~/.xprofile" files are executed as a part of gdm3 start up process.

- The "~/.xsessionrc" file is executed as a part of start up process. (desktop independent)

 - "#allow-user-xsession" in "/etc/X11/Xsession.options" does not restrict execution of the "~/.xsessionrc" file.

- The "~/.gnomerc" file is executed as a part of start up process. (GNOME desktop only)

The selection of the display (or login) manager (DM), session manager or window manager (WM) by the system utility is respected.

These configuration files should not have "exec ..." nor "exit" in them.
7.5.4 Connecting a remote X client via SSH

The use of "ssh -X" enables a secure connection from a local X server to a remote application server. Set "X11Forwarding" entries to "yes" in "/etc/ssh/sshd_config" of the remote host, if you want to avoid "-X" command-line option.

Start the X server on the local host.

Open an xterm in the local host.

Run ssh(1) to establish a connection with the remote site as the following.

```
localname @ localhost $ ssh -q -X loginname@remotehost.domain
Password:
```

Run an X application command, e.g. "gimp", on the remote site as the following.

```
loginname @ remotehost $ gimp &
```

This method can display the output from a remote X client as if it were locally connected through a local UNIX domain socket.

7.5.5 Secure X terminal via the Internet

Secure X terminal via the Internet, which displays remotely run entire X desktop environment, can easily achieved by using specialized package such as ldm. Your local machine becomes a secure thin client to the remote application server connected via SSH.

7.6 Fonts in the X Window

Fontconfig 2.0 was created to provide a distribution independent library for configuring and customizing font access in 2002. Debian after squeeze uses Fontconfig 2.0 for its font configuration.

Font supports on X Window System can be summarized as follows.

• Legacy X server side font support system
 – The original core X11 font system provides backward compatibility for older version of X client applications.
 – The original core X11 fonts are installed on the X server.

• Modern X client side font support system
 – The modern X system supports all fonts listed below (Section 7.6.1, Section 7.6.2, and Section 7.6.3) with advanced features such as anti-aliasing.
 – Xft 2.0 connects modern X applications such as ones from GNOME, KDE, and LibreOffice with FreeType 2.0 library.
 – FreeType 2.0 provides font rasterization library.
 – Fontconfig provides resolution of the font specification for Xft 2.0. See fonts.conf(5) for its configuration.
 – All modern X applications using Xft 2.0 can talk to modern X server using the X Rendering Extension.
 – The X Rendering Extension moves font access and glyph image generation from the X server to the X client.

You can check font configuration information by the following.

• "xset q" for core X11 font path
<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xfonts-utils</td>
<td>V:67,I:593</td>
<td>415</td>
<td>X Window System font utility programs</td>
</tr>
<tr>
<td>libxft2</td>
<td>V:102,I:712</td>
<td>122</td>
<td>Xft, a library that connects X applications with the FreeType font rasterization library</td>
</tr>
<tr>
<td>libfreetype6</td>
<td>V:476,I:995</td>
<td>841</td>
<td>FreeType 2.0 font rasterization library</td>
</tr>
<tr>
<td>fontconfig-config</td>
<td>V:406,I:902</td>
<td>441</td>
<td>Fontconfig, a generic font configuration library — configuration data</td>
</tr>
</tbody>
</table>

Table 7.4: Table of packages to support X Window font systems

- "fc-match" for fontconfig font default
- "fc-list" for available fontconfig fonts

Tip
The Penguin and Unicode is a good overview of modern X Window System. Other documentations at http://unifont.org/ should provide good information on Unicode fonts, Unicode-enabled software, internationalization, and Unicode usability issues on free/libre/open source (FLOSS) operating systems.

7.6.1 Basic fonts

There are 2 major types of computer fonts.

- Bitmap fonts (good for low resolution rasterization)
- Outline/stroke fonts (good for high resolution rasterization)

While scaling of bitmap fonts causes jugged image, scaling of outline/stroke fonts produces smooth image.

Bitmap fonts on the Debian system are usually provided by compressed X11 pcf bitmap font files having their file extension ".pcf.gz".

Outline fonts on the Debian system are provided by the following.

- **PostScript** Type 1 font files having their file extension ".pfb" (binary font file) and ".afm" (font metrics file).
- **TrueType** (or **OpenType**) font files usually having their file extension ".ttf".

Tip
OpenType is intended to supersede both **TrueType** and **PostScript** Type 1.

Tip
DejaVu fonts are based on and superset of *Bitstream Vera* fonts.

7.6.2 Additional fonts

aptitude(8) helps you find additional fonts easily.

- The short package list under "Tasks" → "Localization"
<table>
<thead>
<tr>
<th>font package</th>
<th>popcon</th>
<th>size</th>
<th>sans-serif font</th>
<th>serif font</th>
<th>monospace font</th>
<th>source of font</th>
</tr>
</thead>
<tbody>
<tr>
<td>PostScript</td>
<td>N/A</td>
<td>N/A</td>
<td>Helvetica</td>
<td>Times</td>
<td>Courier</td>
<td>Adobe</td>
</tr>
<tr>
<td>gsfons</td>
<td>1:677</td>
<td>4439</td>
<td>Nimbus Sans L.</td>
<td>Nimbus Roman No9 L</td>
<td>Nimbus Mono L</td>
<td>URW (Adobe compatible size)</td>
</tr>
<tr>
<td>gsfons-x11</td>
<td>1:109</td>
<td>95</td>
<td>Nimbus Sans L.</td>
<td>Nimbus Roman No9 L</td>
<td>Nimbus Mono L</td>
<td>X font support with PostScript Type 1 fonts.</td>
</tr>
<tr>
<td>t1-cyrillic</td>
<td>1:22</td>
<td>4884</td>
<td>Free Helvetican</td>
<td>Free Times</td>
<td>Free Courier</td>
<td>URW extended (Adobe compatible size)</td>
</tr>
<tr>
<td>lmodern</td>
<td>1:130</td>
<td>33270</td>
<td>LMSans*</td>
<td>LMRoman*</td>
<td>LMTypewrite</td>
<td>scalable PostScript and OpenType fonts based on Computer Modern (from TeX)</td>
</tr>
</tbody>
</table>

Table 7.5: Table of corresponding PostScript Type 1 fonts

<table>
<thead>
<tr>
<th>font package</th>
<th>popcon</th>
<th>size</th>
<th>sans-serif font</th>
<th>serif font</th>
<th>monospace font</th>
<th>source of font</th>
</tr>
</thead>
<tbody>
<tr>
<td>ttf-mscorefonts-installer</td>
<td>V:1, I:77</td>
<td>92</td>
<td>Arial</td>
<td>Times New Roman</td>
<td>Courier New</td>
<td>Microsoft (Adobe compatible size) (This installs non-free data)</td>
</tr>
<tr>
<td>fonts-liberation</td>
<td>1:559</td>
<td>2093</td>
<td>Liberation Sans</td>
<td>Liberation Serif</td>
<td>Liberation Mono</td>
<td>Liberation Fonts project (Microsoft compatible size)</td>
</tr>
<tr>
<td>fonts-freefont-ttf</td>
<td>V:44, I:345</td>
<td>10750</td>
<td>FreeSans</td>
<td>FreeSerif</td>
<td>FreeMono</td>
<td>GNU freefont (Microsoft compatible size)</td>
</tr>
<tr>
<td>fonts-dejavu</td>
<td>1:513</td>
<td>39</td>
<td>DejaVu Sans</td>
<td>DejaVu Serif</td>
<td>DejaVu Sans Mono</td>
<td>DejaVu, Bitstream Vera with Unicode coverage</td>
</tr>
<tr>
<td>fonts-dejavu-core</td>
<td>V:306, I:796</td>
<td>2954</td>
<td>DejaVu Sans</td>
<td>DejaVu Serif</td>
<td>DejaVu Sans Mono</td>
<td>DejaVu, Bitstream Vera with Unicode coverage (sans, sans-bold, serif, serif-bold, mono, mono-bold)</td>
</tr>
<tr>
<td>fonts-dejavu-extra</td>
<td>1:543</td>
<td>7217</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>DejaVu, Bitstream Vera with Unicode coverage (oblique, italic, bold-oblique, bold-italic, condensed)</td>
</tr>
<tr>
<td>ttf-unifont</td>
<td>1:23</td>
<td>17654</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>GNU Unifont, with all printable character code in Unicode 5.1 Basic Multilingual Plane (BMP)</td>
</tr>
</tbody>
</table>

Table 7.6: Table of corresponding TrueType fonts
• The filtered flat package list of font data with regex on debtag: "~Gmade-of::data:font"
• The filtered flat package list of the BDF (bitmap) font packages with regex on package name: "~nxfonts-"
• The filtered flat package list of the TrueType (outline) font packages with regex on package name: "~nttf- | ~nfonts-

Since Free fonts are sometimes limited, installing or sharing some commercial TrueType fonts is an option for a Debian users. In order to make this process easy for the user, some convenience packages have been created.

• mathematica-fonts
• fonts-mscorefonts-installer
You’ll have a really good selection of TrueType fonts at the expense of contaminating your Free system with non-Free fonts.

7.6.3 CJK fonts

Here are some key points focused on fonts of CJK characters.

<table>
<thead>
<tr>
<th>font type</th>
<th>Japanese font name</th>
<th>Chinese font name</th>
<th>Korean font name</th>
</tr>
</thead>
<tbody>
<tr>
<td>sans-serif</td>
<td>gothic, ゴチック</td>
<td>hei, gothic</td>
<td>dodum, gulim, gothic</td>
</tr>
<tr>
<td>serif</td>
<td>mincho, 明朝</td>
<td>song, ming</td>
<td>batang</td>
</tr>
</tbody>
</table>

Table 7.7: Table of key words used in CJK font names to indicate font types

Font name such as "VL PGothic" with "P" is a proportional font which corresponds to the fixed width "VL Gothic" font. For example, Shift_JIS code table comprises 7070 characters. They can be grouped as the following.

• JIS X 0201 single-byte characters (191 characters, a.k.a. half-width characters)
• JIS X 0208 double-byte characters (6879 characters, a.k.a. full-width characters)

Double-byte characters occupy double width on console terminals which uses CJK fixed width fonts. In order to cope with such situation, Hanzi Bitmap Font (HBF) File with file extension ".hbf" may be deployed for fonts containing single-byte and double-byte characters.

In order to save space for TrueType font files, TrueType font collection file with file extension ".ttc" may be used.

In order to cover complicated code space of characters, CID keyed PostScript Type 1 font is used with CMap files starting themselves with "%!PS-Adobe-3.0 Resource-CMap". This is rarely used for normal X display but used for PDF rendering etc. (see Section 7.7.2).

Tip
The multiple glyphs are expected for some Unicode code points due to Han unification. One of the most annoying ones are "U+3001 IDEOGRAPHIC COMMA" and "U+3002 IDEOGRAPHIC FULL STOP" whose character positions differ among CJK countries. Configuring priority of Japanese centric fonts over Chinese ones using "~/fonts.conf" should give peace of minds to Japanese.

7.7 X applications

7.7.1 X office applications

Here is a list of basic office applications (LO is LibreOffice).
<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>package size</th>
<th>type</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>libreoffice-writer</td>
<td>V:318, I:478</td>
<td>31712</td>
<td>LO</td>
<td>word processor</td>
</tr>
<tr>
<td>libreoffice-calc</td>
<td>V:315, I:473</td>
<td>29409</td>
<td>LO</td>
<td>spreadsheet</td>
</tr>
<tr>
<td>libreoffice-impress</td>
<td>V:312, I:469</td>
<td>4175</td>
<td>LO</td>
<td>presentation</td>
</tr>
<tr>
<td>libreoffice-base</td>
<td>V:297, I:445</td>
<td>9211</td>
<td>LO</td>
<td>database management</td>
</tr>
<tr>
<td>libreoffice-draw</td>
<td>V:313, I:470</td>
<td>9960</td>
<td>LO</td>
<td>vector graphics editor (draw)</td>
</tr>
<tr>
<td>libreoffice-math</td>
<td>V:315, I:475</td>
<td>1469</td>
<td>LO</td>
<td>mathematical equation/formula editor</td>
</tr>
<tr>
<td>abiword</td>
<td>V:3, I:14</td>
<td>5074</td>
<td>GNOME</td>
<td>word processor</td>
</tr>
<tr>
<td>gnumeric</td>
<td>V:13, I:25</td>
<td>9758</td>
<td>GNOME</td>
<td>spreadsheet</td>
</tr>
<tr>
<td>gimp</td>
<td>V:85, I:489</td>
<td>19016</td>
<td>GTK</td>
<td>bitmap graphics editor (paint)</td>
</tr>
<tr>
<td>inkscape</td>
<td>V:129, I:332</td>
<td>78502</td>
<td>GNOME</td>
<td>vector graphics editor (draw)</td>
</tr>
<tr>
<td>dia</td>
<td>V:18, I:37</td>
<td>3824</td>
<td>GTK</td>
<td>flowchart and diagram editor</td>
</tr>
<tr>
<td>planner</td>
<td>V:3, I:7</td>
<td>1151</td>
<td>GNOME</td>
<td>project management</td>
</tr>
<tr>
<td>calligrawords</td>
<td>V:1, I:8</td>
<td>5837</td>
<td>KDE</td>
<td>word processor</td>
</tr>
<tr>
<td>calligrasheets</td>
<td>V:0, I:6</td>
<td>1128</td>
<td>KDE</td>
<td>spreadsheet</td>
</tr>
<tr>
<td>calligrastage</td>
<td>V:0, I:6</td>
<td>5064</td>
<td>KDE</td>
<td>presentation</td>
</tr>
<tr>
<td>calligraplan</td>
<td>V:0, I:6</td>
<td>15402</td>
<td>KDE</td>
<td>project management</td>
</tr>
<tr>
<td>kexi</td>
<td>V:0, I:6</td>
<td>7547</td>
<td>KDE</td>
<td>database management</td>
</tr>
<tr>
<td>karbon</td>
<td>V:1, I:7</td>
<td>4318</td>
<td>KDE</td>
<td>vector graphics editor (draw)</td>
</tr>
</tbody>
</table>

Table 7.8: List of basic X office applications

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>package size</th>
<th>type</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>evince</td>
<td>V:170, I:405</td>
<td>936</td>
<td>GNOME</td>
<td>document(pdf) viewer</td>
</tr>
<tr>
<td>okular</td>
<td>V:69, I:122</td>
<td>13136</td>
<td>KDE</td>
<td>document(pdf) viewer</td>
</tr>
<tr>
<td>calibre</td>
<td>V:8, I:39</td>
<td>51670</td>
<td>KDE</td>
<td>e-book converter and library management</td>
</tr>
<tr>
<td>fbreader</td>
<td>V:2, I:18</td>
<td>3030</td>
<td>GTK</td>
<td>e-book reader</td>
</tr>
<tr>
<td>evolution</td>
<td>V:40, I:265</td>
<td>449</td>
<td>GNOME</td>
<td>Personal information Management (groupware and email)</td>
</tr>
<tr>
<td>kontakt</td>
<td>V:2, I:19</td>
<td>2071</td>
<td>KDE</td>
<td>Personal information Management (groupware and email)</td>
</tr>
<tr>
<td>scribus</td>
<td>V:3, I:28</td>
<td>19995</td>
<td>KDE</td>
<td>desktop page layout editor</td>
</tr>
<tr>
<td>glabels</td>
<td>V:0, I:4</td>
<td>1417</td>
<td>GNOME</td>
<td>label editor</td>
</tr>
<tr>
<td>gnucash</td>
<td>V:3, I:13</td>
<td>22199</td>
<td>GNOME</td>
<td>personal accounting</td>
</tr>
<tr>
<td>homebank</td>
<td>V:0, I:3</td>
<td>949</td>
<td>GTK</td>
<td>personal accounting</td>
</tr>
<tr>
<td>kmymoney</td>
<td>V:0, I:3</td>
<td>12975</td>
<td>KDE</td>
<td>personal accounting</td>
</tr>
<tr>
<td>shotwell</td>
<td>V:20, I:224</td>
<td>6096</td>
<td>GTK</td>
<td>digital photo organizer</td>
</tr>
<tr>
<td>xsane</td>
<td>V:19, I:190</td>
<td>935</td>
<td>GTK</td>
<td>scanner frontend</td>
</tr>
</tbody>
</table>

Table 7.9: List of basic X utility applications
7.7.2 X utility applications

Here is a list of basic utility applications which caught my eyes.

Caution

The poppler-data package (previously non-free, see Section 11.4.1) needs to be installed for evince and okular to display CJK PDF documents using Cmap data (Section 7.6.3).

Note

Installing softwares such as scribus (KDE) on GNOME desktop environment are quite acceptable since corresponding functionality is not available under GNOME desktop environment. But installing too many packages with duplicated functionalities clutter your menu.

7.8 The X trivia

7.8.1 Clipboard

The X selection using 3 mouse buttons is the native clipboard feature of X (see Section 1.4.4).

Tip

Shift-Insert can work as the equivalent of the middle-mouse-button click.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>package size</th>
<th>type</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xsel</td>
<td>V:11, I:45</td>
<td>51</td>
<td>X</td>
<td>command line interface to X selections</td>
</tr>
<tr>
<td>xclip</td>
<td>V:9, I:40</td>
<td>64</td>
<td>X</td>
<td>command line interface to X selections</td>
</tr>
</tbody>
</table>

Table 7.10: List of basic X selection programs

The modern Desktop Environments (GNOME, KDE, ...) offer different clipboard system for the cut, copy, and paste using the left mouse button and keys (CTRL-X, CRTL-C, and CTRL-V).

7.8.2 Keymaps and pointer button mappings in X

xmodmap(1) is a utility for modifying keymaps and pointer button mappings in the X Window System. To get the keycode, run xev(1) in the X and press keys. To get the meaning of keysym, look into the MACRO definition in "/usr/include/X11/keysymdef.h" file (x11proto-core-dev package). All "#define" statements in this file are named as "XK_" prepended to keysym names.

7.8.3 Classic X clients

Most traditional X client programs, such as xterm(1), can be started with a set of standard command line options to specify geometry, font, and display.

They also use the X resource database to configure their appearance. The system-wide defaults of X resources are stored in "/etc/X11/Xresources/*" and application defaults of them are stored in "/etc/X11/app-defaults/*". Use these settings as the starting points.
The "~/.Xresources" file is used to store user resource specifications. This file is automatically merged into the default X resources upon login. To make changes to these settings and make them effective immediately, merge them into the database using the following command.

```
$ xrdb -merge ~/.Xresources
```

See x(7) and xrdb(1).

7.8.4 The X terminal emulator — xterm

Learn everything about xterm(1) at http://dickey.his.com/xterm/xterm.faq.html.

7.8.5 Running X clients as root

Warning

Never start the X display/session manager under the root account by typing in `root` to the prompt of the display manager such as gdm3 because it is considered unsafe (insecure), even when you plan to perform administrative activities. The entire X architecture is considered insecure if run as root. You must always use the lowest privilege level possible, like a regular user account.

Easy ways to run a particular X client, e.g. "foo" as root is to use sudo(8) etc. as the following.

```
$ sudo foo &
```

```
$ sudo -s
# foo &
```

```
$ ssh -X root@localhost
# foo &
```

Caution

Use of ssh(1) just for this purpose as above is waste of resource.

In order for the X client to connect to the X server, please note the following.

- Values of the old user’s "$XAUTHORITY" and "$DISPLAY" environment variables must be copied to the new user’s ones.
- The file pointed by value of the "$XAUTHORITY" environment variable must be readable by the new user.
Chapter 8

I18N and L10N

Multilingualization (M17N) or Native Language Support for an application software is done in 2 steps.

- Internationalization (I18N): To make a software potentially handle multiple locales.
- Localization (L10N): To make a software handle an specific locale.

Tip
There are 17, 18, or 10 letters between "m" and "n", "i" and "n", or "l" and "n" in multilingualization, internationalization, and localization which correspond to M17N, I18N, and L10N.

The modern software such as GNOME and KDE are multilingualized. They are internationalized by making them handle UTF-8 data and localized by providing their translated messages through the gettext(1) infrastructure. Translated messages may be provided as separate localization packages. They can be selected simply by setting pertinent environment variables to the appropriate locale.

The simplest representation of the text data is ASCII which is sufficient for English and uses less than 127 characters (representable with 7 bits). In order to support much more characters for the international support, many character encoding systems have been invented. The modern and sensible encoding system is UTF-8 which can handle practically all the characters known to the human (see Section 8.4.1).

See Introduction to i18n for details.

The international hardware support is enabled with localized hardware configuration data.

Warning
This chapter is getting outdated since this is based on Debian 7.0 (wheezy) released in 2013.

8.1 The keyboard input

The Debian system can be configured to work with many international keyboard arrangements using the keyboard-configuration and console-setup packages.

```bash
# dpkg-reconfigure keyboard-configuration
# dpkg-reconfigure console-setup
```
This configures the keyboard for the Linux console and the X Window updates configuration parameters in "/etc/default/keyboard" and "/etc/default/console-setup". This also configures the Linux console font.

Many non-ASCII characters including accented characters used by many European languages can be made available with dead key, AltGr key, and compose key.

For Asian languages, you need more complicated input method support such as IBus discussed next.

8.1.1 The input method support with IBus

Multilingual input to the application is processed as:

```
[Keyboard]|                          [Application]
        |                          |
        +-> Linux kernel        ^
        |                        |
        +-> Input method       |
                          +-> Gtk, Qt, or X
```

Setup of multilingual input for the Debian system is simplified by using the IBus family of packages with the `im-config` package. The list of IBus packages are the following.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>supported locale</th>
</tr>
</thead>
<tbody>
<tr>
<td>ibus</td>
<td>V:8,I:12</td>
<td>45417</td>
<td>input method framework using dbus</td>
</tr>
<tr>
<td>ibus-mozc</td>
<td>V:1,I:2</td>
<td>897</td>
<td>Japanese</td>
</tr>
<tr>
<td>ibus-anthy</td>
<td>V:0,I:1</td>
<td>8500</td>
<td>,,</td>
</tr>
<tr>
<td>ibus-kkc</td>
<td>V:0,I:0</td>
<td>214</td>
<td>,,</td>
</tr>
<tr>
<td>ibus-skk</td>
<td>V:0,I:0</td>
<td>244</td>
<td>,,</td>
</tr>
<tr>
<td>ibus-pinyin</td>
<td>V:0,I:1</td>
<td>1425</td>
<td>Chinese (for zh_CN)</td>
</tr>
<tr>
<td>ibus-chewing</td>
<td>V:0,I:0</td>
<td>415</td>
<td>,, (for zh_TW)</td>
</tr>
<tr>
<td>ibus-hangul</td>
<td>V:0,I:1</td>
<td>218</td>
<td>Korean</td>
</tr>
<tr>
<td>ibus-table</td>
<td>V:0,I:1</td>
<td>979</td>
<td>table engine for IBus</td>
</tr>
<tr>
<td>ibus-table-thai</td>
<td>I:0</td>
<td>46</td>
<td>Thai</td>
</tr>
<tr>
<td>ibus-unikey</td>
<td>V:0,I:0</td>
<td>256</td>
<td>Vietnamese</td>
</tr>
<tr>
<td>ibus-m17n</td>
<td>V:0,I:0</td>
<td>154</td>
<td>Multilingual: Indic, Arabic and others</td>
</tr>
</tbody>
</table>

Table 8.1: List of input method supports with IBus

The `input2` method and other locale dependent Asian classic input methods still exist but are not recommended for the modern UTF-8 X environment. The SCIM and uim tool chains are an slightly older approach for the international input method for the modern UTF-8 X environment.

8.1.2 An example for Japanese

I find the Japanese input method started under English environment ("en_US.UTF-8") very useful. Here is how I did this with IBus for GNOME3:

1. Install the Japanese input tool package `ibus-anthy` with its recommended packages such as `im-config`.
2. Execute "`im-config`" from user's shell and select "`ibus`" as the input method.
3. Select "Settings" → "Keyboard" → "Input Sources" → click in "Input Sources" → "Japanese" → "Japanese (anthy)" and click "Add".
4. Select "Japanese" and click "Add" to support the Japanese layout keyboard without character conversion. (You may chose as many input sources.)
5. Relogin to user's account.
6. Verify setting by "im-config".

7. Setup input source by right clicking the GUI toolbar icon.

8. Switch among installed input sources by SUPER-SPACE. (SUPER is normally the Windows key.)

Please note the following.

- im-config(8) behaves differently if command is executed from root or not.
- im-config(8) enables the best input method on the system as default without any user actions.
- The GUI menu entry for im-config(8) is disabled as default to prevent cluttering.

8.1.3 Disabling the input method

If you wish to input without going through XIM (mechanism used by the X), set "$XMODIFIERS" value to "none" while starting a program. This may be the case if you use Japanese input infrastructure egg on emacs(1) while disabling ibus. From shell, execute as the following.

```bash
$ XMODIFIERS=none emacs
```

In order to adjust the command executed by the Debian menu, place customized configuration in "/etc/menu/" following method described in "/usr/share/doc/menu/html".

8.2 The display output

Linux console can only display limited characters. (You need to use special terminal program such as jfbterm(1) to display non-European languages on the non-X console.)

X Window can display any characters in the UTF-8 as long as required font data exists. (The encoding of the original font data is taken care by the X Window System and transparent to the user.)

8.3 East Asian Ambiguous Character Width Characters

Under the East Asian locale, the box drawing, Greek, and Cyrillic characters may be displayed wider than your desired width to cause the unaligned terminal output (see Unicode Standard Annex #11).

You can work around this problem:

- **gnome-terminal**: Edit → Preferences → Profiles → Edit → Compatibility → Ambiguous-wide characters → Narrow
- **ncurses**: Set environment `export NCURSES_NO_UTF8_ACS=0`

8.4 The locale

The following focuses on the locale for applications run under X Window environment started from gdm3(1).
8.4.1 Basics of encoding

The environment variable "LANG=xx_YY.ZZZZ" sets the locale to language code "xx", country code "yy", and encoding "ZZZZ" (see Section 1.5.2).

The current Debian system normally sets the locale as "LANG=xx_YY.UTF-8". This uses the UTF-8 encoding with the Unicode character set. This UTF-8 encoding system is a multibyte code system and uses code points smartly. The ASCII data, which consist only with 7-bit range codes, are always valid UTF-8 data consisting only with 1 byte per character.

The previous Debian system used to set the locale as "LANG=C" or "LANG=xx_YY" (without ".UTF-8").

- The ASCII character set is used for "LANG=C" or "LANG=POSIX".
- The traditional encoding system in Unix is used for "LANG=xx_YY".

Actual traditional encoding system used for "LANG=xx_YY" can be identified by checking "/usr/share/i18n/SUPPORTED". For example, "en_US" uses "ISO-8859-1" encoding and "fr_FR@euro" uses "ISO-8859-15" encoding.

Tip
For meaning of encoding values, see Table 11.2.

8.4.2 Rationale for UTF-8 locale

Unicode character set can represent practically all characters known to human with code point range from 0 to 10FFFF in hexadecimal notation. Its storage requires at least 21 bits.

Text encoding system UTF-8 fits Unicode code points into a sensible 8 bit data stream compatible with the ASCII data processing system. UTF stands for Unicode Transformation Format.

I recommend to use UTF-8 locale for your desktop, e.g., "LANG=en_US.UTF-8". The first part of the locale determines messages presented by applications. For example, gedit(1) (text editor for the GNOME Desktop) under "LANG=fr_FR.UTF-8" locale can display and edit Chinese character text data while presenting menus in French, as long as required fonts and input methods are installed.

I also recommend to set the locale only using the "$LANG" environment variable. I do not see much benefit of setting a complicated combination of "LC_"*" variables (see locale(1)) under UTF-8 locale.

Even plain English text may contain non-ASCII characters, e.g. slightly curly left and right quotation marks are not available in ASCII.

```
"double quoted text" is not "double quoted ASCII"
‘single quoted text’ is not ‘single quoted ASCII’
```

When ASCII plain text data is converted to UTF-8 one, it has exactly the same content and size as the original ASCII one. So you lose nothing by deploying UTF-8 locale.

Some programs consume more memory after supporting I18N. This is because they are coded to use UTF-32(UCS4) internally to support Unicode for speed optimization and consume 4 bytes per each ASCII character data independent of locale selected. Again, you lose nothing by deploying UTF-8 locale.

The vendor specific old non-UTF-8 encoding systems tend to have minor but annoying differences on some characters such as graphic ones for many countries. The deployment of the UTF-8 system by the modern OSs practically solved these conflicting encoding issues.
8.4.3 The reconfiguration of the locale

In order for the system to access a particular locale, the locale data must be compiled from the locale database. (The Debian system does not come with all available locales pre-compiled unless you installed the locales-all package.) The full list of supported locales available for compiling is available in "/usr/share/i18n/SUPPORTED". This lists all the proper locale names. The following lists all the available UTF-8 locales already compiled to the binary form.

```
$ locale -a | grep utf8
```

The following command execution reconfigures the locales package.

```
# dpkg-reconfigure locales
```

This process involves 3 steps.

1. Update the list of available locales
2. Compile them into the binary form
3. Set the system wide default locale value in "/etc/default/locale" for use by PAM (see Section 4.5)

The list of available locale should include "en_US.UTF-8" and all the interesting languages with "UTF-8".

The recommended default locale is "en_US.UTF-8" for US English. For other languages, please make sure to chose locale with "UTF-8". Any one of these settings can handle any international characters.

Note

Although setting locale to "C" uses US English message, it handles only ASCII characters.

8.4.4 The value of the "$LANG" environment variable

The value of the "$LANG" environment variable is set and changed by many applications.

- Set initially by the PAM mechanism of login(1) for the local Linux console programs
- Set initially by the PAM mechanism of the display manager for all X programs
- Set initially by the PAM mechanism of ssh(1) for the remote console programs
- Changed by some display manager such as gdm3(1) for all X programs
- Changed by the X session startup code via ".xsessionrc" for all X programs
- Changed by the shell startup code, e.g. ".bashrc", for all console programs

Tip

It is a good idea to install system wide default locale as "en_US.UTF-8" for maximum compatibility.
8.4.5 Specific locale only under X Window

You can choose specific locale only under X Window irrespective of your system wide default locale using PAM customization (see Section 4.5) as follows.

This environment should provide you with your best desktop experience with stability. You have access to the functioning character terminal with readable messages even when the X Window System is not working. This becomes essential for languages which use non-roman characters such as Chinese, Japanese, and Korean.

Note
There may be another way available as the improvement of X session manager package but please read following as the generic and basic method of setting the locale. For gdm3(1), I know you can select the locale of X session via its menu.

The following line defines file location of the language environment in the PAM configuration file, such as `/etc/pam.d/gdm3`.

```bash
auth  required  pam_env.so read_env=1 envfile=/etc/default/locale
```

Change this to the following.

```bash
auth  required  pam_env.so read_env=1 envfile=/etc/default/locale-x
```

For Japanese, create a `/etc/default/locale-x` file with `-rw-r--r-- 1 root root` permission containing the following.

```
LANG="ja_JP.UTF-8"
```

Keep the default `/etc/default/locale` file for other programs as the following.

```
LANG="en_US.UTF-8"
```

This is the most generic technique to customize locale and makes the menu selection dialog of gdm3(1) itself to be localized. Alternatively for this case, you may simply change locale using the `~/.xsessionrc` file.

8.4.6 Filename encoding

For cross platform data exchanges (see Section 10.1.7), you may need to mount some filesystem with particular encodings. For example, mount(8) for vfat filesystem assumes CP437 if used without option. You need to provide explicit mount option to use UTF-8 or CP932 for filenames.

Note
When auto-mounting a hot-pluggable USB memory stick under modern desktop environment such as GNOME, you may provide such mount option by right clicking the icon on the desktop, click "Drive" tab, click to expand "Setting", and entering "utf8" to "Mount options:". The next time this memory stick is mounted, mount with UTF-8 is enabled.

Note
If you are upgrading system or moving disk drives from older non-UTF-8 system, file names with non-ASCII characters may be encoded in the historic and deprecated encodings such as ISO-8859-1 or eucJP. Please seek help of text conversion tools to convert them to UTF-8. See Section 11.1.
Samba uses Unicode for newer clients (Windows NT, 200x, XP) but uses CP850 for older clients (DOS and Windows 9x/Me) as default. This default for older clients can be changed using "dos charset" in the "/etc/samba/smb.conf" file, e.g., to CP932 for Japanese.

8.4.7 Localized messages and translated documentation

Translations exist for many of the text messages and documents that are displayed in the Debian system, such as error messages, standard program output, menus, and manual pages. **GNU gettext(1) command tool chain** is used as the backend tool for most translation activities.

Under "Tasks" → "Localization" aptitude(8) provides an extensive list of useful binary packages which add localized messages to applications and provide translated documentation.

For example, you can obtain the localized message for manpage by installing the `manpages-<LANG>` package. To read the Italian-language manpage for `<programname>` from "/usr/share/man/it/", execute as the following.

```sh
LANG=it_IT.UTF-8 man <programname>
```

8.4.8 Effects of the locale

The sort order of characters with sort(1) is affected by the language choice of the locale. Spanish and English locale sort differently. The date format of ls(1) is affected by the locale. The date format of "LANG=C ls -l" and "LANG=en_US.UTF-8" are different (see Section 9.2.5).

Number punctuation are different for locales. For example, in English locale, one thousand one point one is displayed as "1,000.1" while in German locale, it is displayed as "1.000,1". You may see this difference in spreadsheet program.
Chapter 9

System tips

Here, I describe basic tips to configure and manage systems, mostly from the console.

9.1 The screen program

screen(1) is a very useful tool for people to access remote sites via unreliable or intermittent connections since it supports interrupted network connections.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>screen</td>
<td>V:195, I:283</td>
<td>995</td>
<td>terminal multiplexer with VT100/ANSI terminal emulation</td>
</tr>
<tr>
<td>tmux</td>
<td>V:31, I:118</td>
<td>681</td>
<td>terminal multiplexer alternative (Use "Control-B" instead)</td>
</tr>
</tbody>
</table>

Table 9.1: List of programs to support interrupted network connections

9.1.1 The use scenario for screen(1)

screen(1) not only allows one terminal window to work with multiple processes, but also allows remote shell process to survive interrupted connections. Here is a typical use scenario of screen(1).

1. You login to a remote machine.
2. You start screen on a single console.
3. You execute multiple programs in screen windows created with ^A c ("Control-A" followed by "c").
4. You switch among the multiple screen windows by ^A n ("Control-A" followed by "n").
5. Suddenly you need to leave your terminal, but you don’t want to lose your active work by keeping the connection.
6. You may detach the screen session by any methods.
 • Brutally unplug your network connection
 • Type ^A d ("Control-A" followed by "d") and manually logging out from the remote connection
 • Type ^A DD ("Control-A" followed by "DD") to have screen detach and log you out
7. You log in again to the same remote machine (even from a different terminal).
8. You start screen as "screen -r".
9. **screen** magically **reattaches** all previous **screen** windows with all actively running programs.

Tip
You can save connection fees with **screen** for metered network connections such as dial-up and packet ones, because you can leave a process active while disconnected, and then re-attach it later when you connect again.

9.1.2 Key bindings for the screen command

In a **screen** session, all keyboard inputs are sent to your current window except for the command keystroke. All **screen** command keystrokes are entered by typing \(^A\) ("Control-A") plus a single key [plus any parameters]. Here are important ones to remember.

<table>
<thead>
<tr>
<th>key binding</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^A) ?</td>
<td>show a help screen (display key bindings)</td>
</tr>
<tr>
<td>(^A) c</td>
<td>create a new window and switch to it</td>
</tr>
<tr>
<td>(^A) n</td>
<td>go to next window</td>
</tr>
<tr>
<td>(^A) p</td>
<td>go to previous window</td>
</tr>
<tr>
<td>(^A) 0</td>
<td>go to window number 0</td>
</tr>
<tr>
<td>(^A) 1</td>
<td>go to window number 1</td>
</tr>
<tr>
<td>(^A) w</td>
<td>show a list of windows</td>
</tr>
<tr>
<td>(^A) a</td>
<td>send a Ctrl-A to current window as keyboard input</td>
</tr>
<tr>
<td>(^A) h</td>
<td>write a hardcopy of current window to file</td>
</tr>
<tr>
<td>(^A) H</td>
<td>begin/end logging current window to file</td>
</tr>
<tr>
<td>(^A) ^X</td>
<td>lock the terminal (password protected)</td>
</tr>
<tr>
<td>(^A) d</td>
<td>detach screen session from the terminal</td>
</tr>
<tr>
<td>(^A) DD</td>
<td>detach screen session and log out</td>
</tr>
</tbody>
</table>

Table 9.2: List of key bindings for screen

See screen(1) for details.

9.2 Data recording and presentation

9.2.1 The log daemon

Many programs record their activities under the "/var/log/" directory.

- The system log daemon: rsyslogd(8)

See Section 3.2.5 and Section 3.2.4.

9.2.2 Log analyzer

Here are notable log analyzers ("~Gsecurity::log-analyzer" in aptitude(8)).

Note

CRM114 provides language infrastructure to write fuzzy filters with the TRE regex library. Its popular use is spam mail filter but it can be used as log analyzer.
9.2.3 Recording the shell activities cleanly

The simple use of `script(1)` (see Section 1.4.9) to record shell activity produces a file with control characters. This can be avoided by using `col(1)` as the following.

```bash
$ script
Script started, file is typescript

Do whatever … and press Ctrl-D to exit `script`

$ col -bx <typescript >cleanedfile
$ vim cleanedfile
```

If you don’t have `script` (for example, during the boot process in the initramfs), you can use the following instead.

```bash
$ sh -i 2>&1 | tee typescript
```

Tip
Some x-terminal-emulator such as gnome-terminal can record. You may wish to extend line buffer for scrollback.

Tip
You may use `screen(1)` with "^A H" (see Section 9.1.2) to perform recording of console.

Tip
You may use `emacs(1)` with "M-x shell", "M-x eshell", or "M-x term" to perform recording of console. You may later use "C-x C-w" to write the buffer to a file.
9.2.4 Customized display of text data

Although pager tools such as more(1) and less(1) (see Section 1.4.5) and custom tools for highlighting and formatting (see Section 11.1.8) can display text data nicely, general purpose editors (see Section 1.4.6) are most versatile and customizable.

Tip
For vim(1) and its pager mode alias view(1), ":set hls" enables highlighted search.

9.2.5 Customized display of time and date

The default display format of time and date by the "ls -l" command depends on the locale (see Section 1.2.6 for value). The "$LANG" variable is referred first and it can be overridden by the "$LC_TIME" variable.

The actual default display format for each locale depends on the version of the standard C library (the libc6 package) used. I.e., different releases of Debian had different defaults.

If you really wish to customize this display format of time and date beyond the locale, you should set the time style value by the "-t-time-style" argument or by the "$TIME_STYLE" value (see ls(1), date(1), "info coreutils ’ls invocation’").

<table>
<thead>
<tr>
<th>time style value</th>
<th>locale</th>
<th>display of time and date</th>
</tr>
</thead>
<tbody>
<tr>
<td>iso</td>
<td>any</td>
<td>01-19 00:15</td>
</tr>
<tr>
<td>long-iso</td>
<td>any</td>
<td>2009-01-19 00:15</td>
</tr>
<tr>
<td>full-iso</td>
<td>any</td>
<td>2009-01-19 00:15:16.000000000 +0900</td>
</tr>
<tr>
<td>locale</td>
<td>C</td>
<td>Jan 19 00:15</td>
</tr>
<tr>
<td>locale</td>
<td>en_US.UTF-8</td>
<td>Jan 19 00:15</td>
</tr>
<tr>
<td>locale</td>
<td>es_ES.UTF-8</td>
<td>ene 19 00:15</td>
</tr>
<tr>
<td>+%d.%m.%y %H:%M</td>
<td>any</td>
<td>19.01.09 00:15</td>
</tr>
<tr>
<td>+%d.%b.%y %H:%M</td>
<td>en_US.UTF-8</td>
<td>19.Jan.09 00:15</td>
</tr>
<tr>
<td>+%d.%b.%y %H:%M</td>
<td>es_ES.UTF-8</td>
<td>19.ene.09 00:15</td>
</tr>
</tbody>
</table>

Table 9.4: Display examples of time and date for the "ls -l" command for wheezy

Tip
You can eliminate typing long option on commandline using command alias, e.g. "alias ls=’ls -t-time-style=+%d.%m.%y\ %H:%M’" (see Section 1.5.9).

Tip
ISO 8601 is followed for these iso-formats.

9.2.6 Colorized shell echo

Shell echo to most modern terminals can be colorized using ANSI escape code (see "/usr/share/doc/xterm/ctlseqs.txt.gz").

For example, try the following

```bash
$ RED=$(printf "\x1b[31m")
$ NORMAL=$(printf "\x1b[0m")
$ REVERSE=$(printf "\x1b[7m")
$ echo "$(RED)RED-TEXT$(NORMAL) $(REVERSE)REVERSE-TEXT$(NORMAL)"
```
9.2.7 Colorized commands

Colorized commands are handy for inspecting their output in the interactive environment. I include the following in my "~/.bashrc".

```bash
if [ "$TERM" != "dumb" ]; then
    eval "'dircolors -b'"
    alias ls='ls --color=always'
    alias ll='ls --color=always -l'
    alias la='ls --color=always -A'
    alias less='less -R'
    alias ls='ls --color=always'
    alias grep='grep --color=always'
    alias egrep='egrep --color=always'
    alias fgrep='fgrep --color=always'
    alias zgrep='zgrep --color=always'
else
    alias ll='ls -l'
    alias la='ls -A'
fi
```

The use of alias limits color effects to the interactive command usage. It has advantage over exporting environment variable "export GREP_OPTIONS='--color=auto'" since color can be seen under pager programs such as less(1). If you wish to suppress color when piping to other programs, use "--color=auto" instead in the above example for "~/.bashrc".

Tip
You can turn off these colorizing aliases in the interactive environment by invoking shell with "TERM=dumb bash".

9.2.8 Recording the editor activities for complex repeats

You can record the editor activities for complex repeats.

For **Vim**, as follows.

- "qa": start recording typed characters into named register "a".
- "qa": editor activities
- "q": end recording typed characters.
- "qa": execute the contents of register "a".

For **Emacs**, as follows.

- "C-x (": start defining a keyboard macro.
- "C-x (": editor activities
- "C-x)": end defining a keyboard macro.
- "C-x e": execute a keyboard macro.

9.2.9 Recording the graphic image of an X application

There are few ways to record the graphic image of an X application, including an xterm display.
9.2.10 Recording changes in configuration files

There are specialized tools to record changes in configuration files with help of DVCS system.

I recommend to use the `etckeeper` package with `git(1)` which put entire "/etc" under VCS control. Its installation guide and tutorial are found in "/usr/share/doc/etckeeper/README.gz".

Essentially, running "sudo etckeeper init" initializes the git repository for "/etc" just like the process explained in Section 10.6.5 but with special hook scripts for more thorough setups.

As you change your configuration, you can use `git(1)` normally to record them. It automatically records changes nicely every time you run package management commands, too.

Tip

You can browse the change history of "/etc" by executing "sudo GIT_DIR=/etc/.git gitk" with clear view for new installed packages, removed packages, and version changes of packages.

9.3 Monitoring, controlling, and starting program activities

Program activities can be monitored and controlled using specialized tools.

Tip

The `procps` packages provide very basics of monitoring, controlling, and starting program activities. You should learn all of them.

9.3.1 Timing a process

Display time used by the process invoked by the command.

```bash
# time some_command > /dev/null
real 0m0.035s # time on wall clock (elapsed real time)
user 0m0.000s # time in user mode
sys 0m0.020s # time in kernel mode
```
9.3.2 The scheduling priority

A nice value is used to control the scheduling priority for the process.

<table>
<thead>
<tr>
<th>nice value</th>
<th>scheduling priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>lowest priority process (nice)</td>
</tr>
<tr>
<td>0</td>
<td>very high priority process for user</td>
</tr>
<tr>
<td>-20</td>
<td>very high priority process for root (not-nice)</td>
</tr>
</tbody>
</table>

Table 9.8: List of nice values for the scheduling priority

Sometimes an extreme nice value does more harm than good to the system. Use this command carefully.

```bash
# nice -19 top  # very nice
# nice --20 wodim -v -eject speed=2 dev=0,0 disk.img # very fast
```

9.3.3 The ps command

The ps(1) command on a Debian system support both BSD and SystemV features and helps to identify the process activity statically.

<table>
<thead>
<tr>
<th>style</th>
<th>typical command</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSD</td>
<td>ps aux</td>
<td>display %CPU %MEM</td>
</tr>
<tr>
<td>System V</td>
<td>ps -efH</td>
<td>display PPID</td>
</tr>
</tbody>
</table>

Table 9.9: List of ps command styles

For the zombie (defunct) children process, you can kill them by the parent process ID identified in the "PPID" field.

The pstree(1) command display a tree of processes.
9.3.4 The top command

top(1) on the Debian system has rich features and helps to identify what process is acting funny dynamically. It is an interactive full screen program. You can get its usage help press by pressing the "h"-key and terminate it by pressing the "q"-key.

9.3.5 Listing files opened by a process

You can list all files opened by a process with a process ID (PID), e.g. 1, by the following.

```
$ sudo lsof -p 1
```

PID=1 is usually the init program.

9.3.6 Tracing program activities

You can trace program activity with strace(1), ltrace(1), or xtrace(1) for system calls and signals, library calls, or communication between X11 client and server.

You can trace system calls of the ls command as the following.

```
$ sudo strace ls
```

9.3.7 Identification of processes using files or sockets

You can also identify processes using files by fuser(1), e.g. for "/var/log/mail.log" by the following.

```
$ sudo fuser -v /var/log/mail.log
```

```
USER   PID ACCESS COMMAND
/var/log/mail.log: root 2946 F.... rsyslogd
```

You see that file "/var/log/mail.log" is open for writing by the rsyslogd(8) command.

You can also identify processes using sockets by fuser(1), e.g. for "smtp/tcp" by the following.

```
$ sudo fuser -v smtp/tcp
```

```
USER   PID ACCESS COMMAND
smtp/tcp: Debian-exim 3379 F.... exim4
```

Now you know your system runs exim4(8) to handle TCP connections to SMTP port (25).

9.3.8 Repeating a command with a constant interval

watch(1) executes a program repeatedly with a constant interval while showing its output in fullscreen.

```
$ watch w
```

This displays who is logged on to the system updated every 2 seconds.
9.3.9 Repeating a command looping over files

There are several ways to repeat a command looping over files matching some condition, e.g. matching glob pattern ".ext".

• Shell for-loop method (see Section 12.1.4):

```bash
for x in *.ext; do if [ -f "$x" ]; then command "$x" ; fi; done
```

• `find(1)` and `xargs(1)` combination:

```bash
find . -type f -maxdepth 1 -name '*.ext' -print0 | xargs -0 -n 1 command
```

• `find(1)` with "-exec" option with a command:

```bash
find . -type f -maxdepth 1 -name '*.ext' -exec command '{}' \;
```

• `find(1)` with "-exec" option with a short shell script:

```bash
find . -type f -maxdepth 1 -name '*.ext' -exec sh -c "command '{}' && echo 'successful'" \;
```

The above examples are written to ensure proper handling of funny file names such as ones containing spaces. See Section 10.1.5 for more advance uses of `find(1)`.

9.3.10 Starting a program from GUI

For the command-line interface (CLI), the first program with the matching name found in the directories specified in the $PATH environment variable is executed. See Section 1.5.3.

For the graphical user interface (GUI) compliant to the freedesktop.org standards, the *.desktop files in the /usr/share/applications directory provide necessary attributes for the GUI menu display of each program. See Section 7.2.2.

For example, the `chromium.desktop` file defines attributes for the "Chromium Web Browser" such as "Name" for the program name, "Exec" for the program execution path and arguments, "Icon" for the icon used, etc. (see the Desktop Entry Specification) as follows:

```
[Desktop Entry]
Version=1.0
Name=Chromium Web Browser
GenericName=Web Browser
Comment=Access the Internet
Comment[fr]=Explorer le Web
Exec=/usr/bin/chromium %U
Terminal=false
X-MultipleArgs=false
Type=Application
Icon=chromium
Categories=Network;WebBrowser;
MimeType=text/html;text/xml;application/xhtml_xml;x-scheme-handler/http;x-scheme-handler/←https;
StartupWMClass=Chromium
StartupNotify=true
```
This is an oversimplified description. The *.desktop files are scanned as follows.
The desktop environment sets $XDG_DATA_HOME and $XDG_DATA_DIR environment variables. For example, under the GNOME 3:

- $XDG_DATA_HOME is unset. (The default value of $HOME/.local/share is used.)
- $XDG_DATA_DIRS is set to /usr/share/gnome:/usr/local/share::/usr/share/.

So the base directories (see XDG Base Directory Specification) and the applications directories are as follows.

- $HOME/.local/share/ → $HOME/.local/share/applications/
- /usr/share/gnome/ → /usr/share/gnome/applications/
- /usr/local/share/ → /usr/local/share/applications/
- /usr/share/ → /usr/share/applications/

The *.desktop files are scanned in these applications directories in this order.

Tip
A user custom GUI menu entry can be created by adding a *.desktop file in the $HOME/.local/share/applications/ directory.

Tip
Similarly, if a *.desktop file is created in the autostart directory under these base directories, the specified program in the *.desktop file is executed automatically when the desktop environment is started. See Desktop Application Autostart Specification.

Tip
Similarly, if a *.desktop file is created in the $HOME/Desktop directory and the Desktop environment is configured to support the desktop icon launcher feature, the specified program in it is executed upon clicking the icon. Please note that the actual name of the $HOME/Desktop directory is locale dependent. See xdg-user-dirs-update(1).

9.3.11 Customizing program to be started

Some programs start another program automatically. Here are check points for customizing this process.

- Application configuration menu:
 - GNOME3 desktop: "Settings" → "System" → "Details" → "Default Applications"
 - KDE desktop: "K" → "Control Center" → "KDE Components" → "Component Chooser"
 - Iceweasel browser: "Edit" → "Preferences" → "Applications"
 - mc(1): "/etc/mc/mc.ext"

- Environment variables such as "$BROWSER", "$EDITOR", "$VISUAL", and "$PAGER" (see environ(7))

- The update-alternatives(1) system for programs such as "editor", "view", "x-www-browser", "gnome-www-browser", and "www-browser" (see Section 1.4.7)

- the "~/.mailcap" and "/etc/mailcap" file contents which associate MIME type with program (see mailcap(5))
• The "~/.mime.types" and "/etc/mime.types" file contents which associate file name extension with MIME type (see run-mailcap(1))

Tip
update-mime(8) updates the "/etc/mailcap" file using "/etc/mailcap.order" file (see mailcap.order(5)).

Tip
The debianutils package provides sensible-browser(1), sensible-editor(1), and sensible-pager(1) which make sensible decisions on which editor, pager, and web browser to call, respectively. I recommend you to read these shell scripts.

Tip
In order to run a console application such as mutt under X as your preferred application, you should create an X application as following and set "/usr/local/bin/mutt-term" as your preferred application to be started as described.

```bash
# cat /usr/local/bin/mutt-term <<EOF
#!/bin/sh
 gnome-terminal -e "mutt $@
EOF
chmod 755 /usr/local/bin/mutt-term
```

9.3.12 Killing a process

Use `kill(1)` to kill (or send a signal to) a process by the process ID.

Use `killall(1)` or `pkill(1)` to do the same by the process command name and other attributes.

<table>
<thead>
<tr>
<th>signal value</th>
<th>signal name</th>
<th>function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HUP</td>
<td>restart daemon</td>
</tr>
<tr>
<td>15</td>
<td>TERM</td>
<td>normal kill</td>
</tr>
<tr>
<td>9</td>
<td>KILL</td>
<td>kill hard</td>
</tr>
</tbody>
</table>

Table 9.10: List of frequently used signals for kill command

9.3.13 Scheduling tasks once

Run the `at(1)` command to schedule a one-time job by the following.

```bash
$ echo 'command -args'| at 3:40 monday
```
9.3.14 Scheduling tasks regularly

Use cron(8) to schedule tasks regularly. See crontab(1) and crontab(5).

You can schedule to run processes as a normal user, e.g. foo by creating a crontab(5) file as "/var/spool/cron/crontabs/foo" with "crontab -e" command.

Here is an example of a crontab(5) file.

```
# use /bin/sh to run commands, no matter what /etc/passwd says
SHELL=/bin/sh
# mail any output to paul, no matter whose crontab this is
MAILTO=paul
# Min Hour DayOfMonth DayOfWeek command (Day... are OR’ed)
# run at 00:05, every day
5 0 * * * $HOME/bin/daily.job >> $HOME/tmp/out 2>&1
# run at 14:15 on the first of every month -- output mailed to paul
15 14 1 * * $HOME/bin/monthly
# run at 22:00 on weekdays(1-5), annoy Joe. % for newline, last % for cc:
0 22 * 1-5 mail -s "It’s 10pm" joe%Joe,%%where are your kids?,%%
23 */2 1 2 * echo "run 23 minutes after 0am, 2am, 4am ..., on Feb 1"
5 4 * * sun echo "run at 04:05 every Sunday"
# run at 03:40 on the first Monday of each month
40 3 1-7 * * [ "$DATE +%a" == "Mon" ] && command -args
```

Tip

For the system not running continuously, install the anacron package to schedule periodic commands at the specified intervals as closely as machine-uptime permits. See anacron(8) and anacrontab(5).

Tip

For scheduled system maintenance scripts, you can run them periodically from root account by placing such scripts in "/etc/cron.hourly/", "/etc/cron.daily/", "/etc/cron.weekly/", or "/etc/cron.monthly/". Execution timings of these scripts can be customized by "/etc/crontab" and "/etc/anacrontab".

9.3.15 Alt-SysRq key

Insurance against system malfunction is provided by the kernel compile option "Magic SysRq key" (SAK key) which is now the default for the Debian kernel. Pressing Alt-SysRq followed by one of the following keys does the magic of rescuing control of the system.

<table>
<thead>
<tr>
<th>key following Alt-SysRq</th>
<th>description of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>restore the keyboard from raw mode after X crashes</td>
</tr>
<tr>
<td>θ</td>
<td>change the console loglevel to 0 to reduce error messages</td>
</tr>
<tr>
<td>k</td>
<td>kill all processes on the current virtual console</td>
</tr>
<tr>
<td>e</td>
<td>send a SIGTERM to all processes, except for init(8)</td>
</tr>
<tr>
<td>l</td>
<td>send a SIGKILL to all processes, except for init(8)</td>
</tr>
<tr>
<td>s</td>
<td>sync all mounted filesystems to avoid data corruption</td>
</tr>
<tr>
<td>u</td>
<td>remount all mounted filesystems read-only (umount)</td>
</tr>
<tr>
<td>b</td>
<td>reboot the system without syncing or unmounting</td>
</tr>
</tbody>
</table>

Table 9.11: List of SAK command keys
Tip
Read the signal(7), kill(1), and sync(1) manpages to understand the description above.

The combination of "Alt-SysRq s", "Alt-SysRq u", and "Alt-SysRq r" is good for getting out of really bad situations and gaining usable keyboard access without stopping the system.

See "/usr/share/doc/linux-doc-3.*/Documentation/sysrq.txt.gz".

Caution
The Alt-SysRq feature may be considered a security risk by allowing users access to root-privileged functions. Placing "echo 0 > /proc/sys/kernel/sysrq" in "/etc/rc.local" or "kernel.sysrq = 0" in "/etc/sysctl.conf" disables the Alt-SysRq feature.

Tip
From SSH terminal etc., you can use the Alt-SysRq feature by writing to the "/proc/sysrq-trigger". For example, "echo s > /proc/sysrq-trigger; echo u > /proc/sysrq-trigger" from the root shell prompt syncs and umounts all mounted filesystems.

9.4 System maintenance tips

9.4.1 Who is on the system?

You can check who is on the system by the following.

- who(1) shows who is logged on.
- w(1) shows who is logged on and what they are doing.
- last(1) shows listing of last logged in user.
- lastb(1) shows listing of last bad logged in users.

Tip
"/var/run/utmp", and "/var/log/wtmp" hold such user information. See login(1) and utmp(5).

9.4.2 Warning everyone

You can send message to everyone who is logged on to the system with wall(1) by the following.

$ echo "We are shutting down in 1 hour" | wall

9.4.3 Hardware identification

For the PCI-like devices (AGP, PCI-Express, CardBus, ExpressCard, etc.), lspci(8) (probably with "-nn" option) is a good start for the hardware identification.

Alternatively, you can identify the hardware by reading contents of "/proc/bus/pci/devices" or browsing directory tree under "/sys/bus/pci" (see Section 1.2.12).
9.4.4 Hardware configuration

Although most of the hardware configuration on modern GUI desktop systems such as GNOME and KDE can be managed through accompanying GUI configuration tools, it is a good idea to know some basics methods to configure them.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pciutils</td>
<td>V:158,I:1994</td>
<td>1220</td>
<td>Linux PCI Utilities: lspci(8)</td>
</tr>
<tr>
<td>usbutils</td>
<td>V:94,I:866</td>
<td>312</td>
<td>Linux USB utilities: lsusb(8)</td>
</tr>
<tr>
<td>pcmciautils</td>
<td>V:18,I:30</td>
<td>105</td>
<td>PCMCIA utilities for Linux: pccardctl(8)</td>
</tr>
<tr>
<td>scsitools</td>
<td>V:0,I:3</td>
<td>365</td>
<td>collection of tools for SCSI hardware management: lsscsi(8)</td>
</tr>
<tr>
<td>procinfo</td>
<td>V:0,I:15</td>
<td>123</td>
<td>system information obtained from "/proc": lsdev(8)</td>
</tr>
<tr>
<td>lshw</td>
<td>V:10,I:89</td>
<td>763</td>
<td>information about hardware configuration: lshw(1)</td>
</tr>
<tr>
<td>discover</td>
<td>V:39,I:945</td>
<td>90</td>
<td>hardware identification system: discover(lshw(1))</td>
</tr>
</tbody>
</table>

Table 9.12: List of hardware identification tools

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>console-setup</td>
<td>V:280,I:951</td>
<td>417</td>
<td>Linux console font and keytable utilities</td>
</tr>
<tr>
<td>x11-xserver-utils</td>
<td>V:354,I:575</td>
<td>511</td>
<td>X server utilities: xset(1), xmodmap(1)</td>
</tr>
<tr>
<td>acpid</td>
<td>V:262,I:484</td>
<td>146</td>
<td>daemon to manage events delivered by the Advanced Configuration and Power Interface (ACPI)</td>
</tr>
<tr>
<td>acpi</td>
<td>V:23,I:463</td>
<td>45</td>
<td>utility to display information on ACPI devices</td>
</tr>
<tr>
<td>sleepd</td>
<td>V:0,I:10</td>
<td>86</td>
<td>daemon to put a laptop to sleep during inactivity</td>
</tr>
<tr>
<td>hdparm</td>
<td>V:435,I:653</td>
<td>255</td>
<td>hard disk access optimization (see Section 9.5.9)</td>
</tr>
<tr>
<td>smartmontools</td>
<td>V:127,I:191</td>
<td>1846</td>
<td>control and monitor storage systems using S.M.A.R.T.</td>
</tr>
<tr>
<td>setserial</td>
<td>V:5,I:10</td>
<td>117</td>
<td>collection of tools for serial port management</td>
</tr>
<tr>
<td>memtest86+</td>
<td>V:1,I:33</td>
<td>2391</td>
<td>collection of tools for memory hardware management</td>
</tr>
<tr>
<td>scsitools</td>
<td>V:0,I:3</td>
<td>365</td>
<td>collection of tools for SCSI hardware management</td>
</tr>
<tr>
<td>setcd</td>
<td>V:0,I:1</td>
<td>35</td>
<td>compact disc drive access optimization</td>
</tr>
<tr>
<td>big-cursor</td>
<td>l:1</td>
<td>27</td>
<td>larger mouse cursors for X</td>
</tr>
</tbody>
</table>

Table 9.13: List of hardware configuration tools

Here, ACPI is a newer framework for the power management system than APM.

Tip

CPU frequency scaling on modern system is governed by kernel modules such as `acpi_cpufreq`.

9.4.5 System and hardware time

The following sets system and hardware time to MM/DD hh:mm, CCYY.

```
# date MMDDhhmmCCYY
# hwclock --utc --systohc
# hwclock --show
```

Times are normally displayed in the local time on the Debian system but the hardware and system time usually use **UTC(GMT)**. If the hardware (BIOS) time is set to UTC, change the setting to "UTC=yes" in the "/etc/default/rcS". The following reconfigure the timezone used by the Debian system.
If you wish to update system time via network, consider to use the NTP service with the packages such as ntp, ntpdate, and chrony.

Tip
Under systemd, use systemd-timesyncd for the network time synchronization instead. See systemd-timesyncd(8).

See the following.
- Managing Accurate Date and Time HOWTO
- NTP Public Services Project
- The ntp-doc package

Tip
ntptrace(8) in the ntp package can trace a chain of NTP servers back to the primary source.

9.4.6 The terminal configuration

There are several components to configure character console and ncurses(3) system features.

- The "/etc/terminfo/*/*" file (terminfo(5))
- The "$TERM" environment variable (term(7))
- setterm(1), stty(1), tic(1), and toe(1)

If the terminfo entry for xterm doesn't work with a non-Debian xterm, change your terminal type, "$TERM", from "xterm" to one of the feature-limited versions such as "xterm-r6" when you log in to a Debian system remotely. See "/usr/share/doc/libncurses5/FAQ" for more. "dumb" is the lowest common denominator for "$TERM".

9.4.7 The sound infrastructure

Device drivers for sound cards for current Linux are provided by Advanced Linux Sound Architecture (ALSA). ALSA provides emulation mode for previous Open Sound System (OSS) for compatibility.

Tip
Use "cat /dev/urandom > /dev/audio" or speaker-test(1) to test speaker (^C to stop).

Tip
If you cannot get sound, your speaker may be connected to a muted output. Modern sound system has many outputs. alsamixer(1) in the alsa-utils package is useful to configure volume and mute settings.

Application softwares may be configured not only to access sound devices directly but also to access them via some standardized sound server system.

There is usually a common sound engine for each popular desktop environment. Each sound engine used by the application can choose to connect to different sound servers.
<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alsa-utils</td>
<td>V:393, I:519</td>
<td>2253</td>
<td>utilities for configuring and using ALSA</td>
</tr>
<tr>
<td>oss-compat</td>
<td>V:2, I:35</td>
<td>20</td>
<td>OSS compatibility under ALSA preventing "/dev/dsp not found" errors</td>
</tr>
<tr>
<td>jackd</td>
<td>V:5, I:27</td>
<td>9</td>
<td>JACK Audio Connection Kit. (JACK) server (low latency)</td>
</tr>
<tr>
<td>libjack0</td>
<td>V:0, I:14</td>
<td>337</td>
<td>JACK Audio Connection Kit. (JACK) library (low latency)</td>
</tr>
<tr>
<td>nas</td>
<td>V:0, I:10</td>
<td>239</td>
<td>Network Audio System (NAS) server</td>
</tr>
<tr>
<td>libaudio2</td>
<td>I:541</td>
<td>161</td>
<td>Network Audio System (NAS) library</td>
</tr>
<tr>
<td>pulseaudio</td>
<td>V:387, I:504</td>
<td>6411</td>
<td>PulseAudio server, replacement for ESD</td>
</tr>
<tr>
<td>libpULSE0</td>
<td>V:278, I:646</td>
<td>968</td>
<td>PulseAudio client library, replacement for ESD</td>
</tr>
<tr>
<td>libgstreamer1.0-0</td>
<td>V:256, I:549</td>
<td>5063</td>
<td>GStreamer: GNOME sound engine</td>
</tr>
<tr>
<td>libphonon4</td>
<td>I:192</td>
<td>680</td>
<td>Phonon: KDE sound engine</td>
</tr>
</tbody>
</table>

Table 9.14: List of sound packages

9.4.8 Disabling the screen saver

For disabling the screen saver, use following commands.

<table>
<thead>
<tr>
<th>environment</th>
<th>command</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Linux console</td>
<td><code>setterm -powersave off</code></td>
</tr>
<tr>
<td>The X Window (turning off screensaver)</td>
<td><code>xset s off</code></td>
</tr>
<tr>
<td>The X Window (disabling dpms)</td>
<td><code>xset -dpms</code></td>
</tr>
<tr>
<td>The X Window (GUI configuration of screensaver)</td>
<td><code>xscreensaver-command -prefs</code></td>
</tr>
</tbody>
</table>

Table 9.15: List of commands for disabling the screen saver

9.4.9 Disabling beep sounds

One can always unplug the PC speaker to disable beep sounds. Removing `pcspkr` kernel module does this for you.

The following prevents the readline(3) program used by bash(1) to beep when encountering an alert character (ASCII=7).

```
$ echo "set bell-style none">> ~/.inputrc
```

9.4.10 Memory usage

There are 2 resources available for you to get the memory usage situation.

- The kernel boot message in the "/var/log/dmesg" contains the total exact size of available memory.
- `free(1)` and `top(1)` display information on memory resources on the running system.

Here is an example.

```
# grep '
]' Memory' /var/log/dmesg
[ 0.004000] Memory: 990528k/1016784k available (1975k kernel code, 25868k reserved, 931k -->
data, 296k init)
```
9.4.11 System security and integrity check

Poor system maintenance may expose your system to external exploitation.

For system security and integrity check, you should start with the following.

- The **debsums** package, see debsums(1) and Section 2.5.2.
- The **chkrootkit** package, see chkrootkit(1).
- The **clamav** package family, see clamscan(1) and freshclam(1).
- **Debian security FAQ**.
- **Securing Debian Manual**.

Table 9.16: List of memory sizes reported

<table>
<thead>
<tr>
<th>report</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total size in dmesg</td>
<td>1016784k = 1GB - 31792k</td>
</tr>
<tr>
<td>Free in dmesg</td>
<td>990528k</td>
</tr>
<tr>
<td>Total under shell</td>
<td>997184k</td>
</tr>
<tr>
<td>Free under shell</td>
<td>20256k (but effectively 321780k)</td>
</tr>
</tbody>
</table>

Table 9.17: List of tools for system security and integrity check

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logcheck</td>
<td>V:10, I:12</td>
<td>102</td>
<td>daemon to mail anomalies in the system log files to the administrator</td>
</tr>
<tr>
<td>debsums</td>
<td>V:6, I:40</td>
<td>120</td>
<td>utility to verify installed package files against MD5 checksums</td>
</tr>
<tr>
<td>chkrootkit</td>
<td>V:6, I:26</td>
<td>934</td>
<td>rootkit detector</td>
</tr>
<tr>
<td>clamav</td>
<td>V:14, I:65</td>
<td>727</td>
<td>anti-virus utility for Unix - command-line interface</td>
</tr>
<tr>
<td>tiger</td>
<td>V:3, I:3</td>
<td>2485</td>
<td>report system security vulnerabilities</td>
</tr>
<tr>
<td>tripwire</td>
<td>V:2, I:3</td>
<td>12055</td>
<td>file and directory integrity checker</td>
</tr>
<tr>
<td>john</td>
<td>V:2, I:13</td>
<td>449</td>
<td>active password cracking tool</td>
</tr>
<tr>
<td>aide</td>
<td>V:2, I:2</td>
<td>2063</td>
<td>Advanced Intrusion Detection Environment - static binary</td>
</tr>
<tr>
<td>integrit</td>
<td>V:0, I:10</td>
<td>329</td>
<td>file integrity verification program</td>
</tr>
<tr>
<td>crack</td>
<td>V:0, I:1</td>
<td>128</td>
<td>password guessing program</td>
</tr>
</tbody>
</table>

Here is a simple script to check for typical world writable incorrect file permissions.

```bash
# find / -perm 777 -a ! -type s -a ! -type l -a ! -type d -a -perm 1777 
```
9.5 Data storage tips

Booting your system with Linux live CDs or debian-installer CDs in rescue mode makes it easy for you to reconfigure data storage on your boot device.

9.5.1 Disk space usage

The disk space usage can be evaluated by programs provided by the `mount`, `coreutils`, and `xdu` packages:

- `mount(8)` reports all mounted filesystems (= disks).
- `df(1)` reports the disk space usage for the file system.
- `du(1)` reports the disk space usage for the directory tree.

Tip
You can feed the output of `du(8)` to `xdu(1x)` to produce its graphical and interactive presentation with "du \ -k .\n| xdu", "sudo du \ -k \ -x / \ | xdu", etc.

9.5.2 Disk partition configuration

For disk partition configuration, although `fdisk(8)` has been considered standard, `parted(8)` deserves some attention. "Disk partitioning data", "partition table", "partition map", and "disk label" are all synonyms.

Most PCs use the classic Master Boot Record (MBR) scheme to hold disk partitioning data in the first sector, i.e., LBA sector 0 (512 bytes).

Note
Some new PCs with Extensible Firmware Interface (EFI), including Intel-based Macs, use GUID Partition Table (GPT) scheme to hold disk partitioning data not in the first sector.

Although `fdisk(8)` has been standard for the disk partitioning tool, `parted(8)` is replacing it.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>GPT</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>util-linux</td>
<td>V:891, I:999</td>
<td>4327</td>
<td>Not supported</td>
<td>miscellaneous system utilities including fdisk(8) and cfdisk(8)</td>
</tr>
<tr>
<td>parted</td>
<td>V:391, I:579</td>
<td>286</td>
<td>Supported</td>
<td>GNU Parted disk partition resizing program</td>
</tr>
<tr>
<td>gparted</td>
<td>V:22, I:144</td>
<td>7537</td>
<td>Supported</td>
<td>GNOME partition editor based on libparted</td>
</tr>
<tr>
<td>gdisk</td>
<td>V:71, I:515</td>
<td>811</td>
<td>Supported</td>
<td>partition editor for the GPT disk</td>
</tr>
<tr>
<td>kpartx</td>
<td>V:15, I:26</td>
<td>89</td>
<td>Supported</td>
<td>program to create device mappings for partitions</td>
</tr>
</tbody>
</table>

Table 9.18: List of disk partition management packages
Caution
Although parted(8) claims to create and to resize filesystem too, it is safer to do such things using best maintained specialized tools such as mkfs(8) (mkfs.msdos(8), mkfs.ext2(8), mkfs.ext3(8), mkfs.ext4(8), …) and resize2fs(8).

Note
In order to switch between GPT and MBR, you need to erase first few blocks of disk contents directly (see Section 9.7.6) and use "parted /dev/sdx mklabel gpt" or "parted /dev/sdx mklabel msdos" to set it. Please note "msdos" is use here for MBR.

9.5.3 Accessing partition using UUID

Although reconfiguration of your partition or activation order of removable storage media may yield different names for partitions, you can access them consistently. This is also helpful if you have multiple disks and your BIOS doesn’t give them consistent device names.

- mount(8) with "-U" option can mount a block device using UUID, instead of using its file name such as "/dev/sda3".
- "/etc/fstab" (see fstab(5)) can use UUID.
- Boot loaders (Section 3.1.2) may use UUID too.

Tip
You can probe UUID of a block special device with blkid(8).

Tip
Device nodes of devices such as removable storage media can be made static by using udev rules, if needed. See Section 3.3.

9.5.4 LVM2

LVM2 is a logical volume manager for the Linux kernel. With LVM2, disk partitions can be created on logical volumes instead of the physical harddisks.

LVM requires the following.

- device-mapper support in the Linux kernel (default for Debian kernels)
- the userspace device-mapper support library (libdevmapper* package)
- the userspace LVM2 tools (lvm2 package)

Please start learning LVM2 from the following manpages.

- lvm(8): Basics of LVM2 mechanism (list of all LVM2 commands)
- lvm.conf(5): Configuration file for LVM2
- lvs(8): Report information about logical volumes
- vgs(8): Report information about volume groups
- pvs(8): Report information about physical volumes
9.5.5 Filesystem configuration

For ext4 filesystem, the e2fsprogs package provides the following.

- mkfs.ext4(8) to create new ext4 filesystem
- fsck.ext4(8) to check and to repair existing ext4 filesystem
- tune2fs(8) to configure superblock of ext4 filesystem
- debugfs(8) to debug ext4 filesystem interactively. (It has undelete command to recover deleted files.)

The mkfs(8) and fsck(8) commands are provided by the e2fsprogs package as front-ends to various filesystem dependent programs (mkfs.fstype and fsck.fstype). For ext4 filesystem, they are mkfs.ext4(8) and fsck.ext4(8) (they are symlinked to mke2fs(8) and e2fsck(8)).

Similar commands are available for each filesystem supported by Linux.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>e2fsprogs</td>
<td>V:598, I:999</td>
<td>1419</td>
<td>utilities for the ext2/ext3/ext4 filesystems</td>
</tr>
<tr>
<td>reiserfsprogs</td>
<td>V:13, I:26</td>
<td>923</td>
<td>utilities for the Reiserfs filesystem</td>
</tr>
<tr>
<td>dosfstools</td>
<td>V:114, I:556</td>
<td>235</td>
<td>utilities for the FAT filesystem. (Microsoft: MS-DOS, Windows)</td>
</tr>
<tr>
<td>xfsprogs</td>
<td>V:18, I:92</td>
<td>3349</td>
<td>utilities for the XFS filesystem. (SGI: IRIX)</td>
</tr>
<tr>
<td>ntfs-3g</td>
<td>V:273, I:548</td>
<td>1471</td>
<td>utilities for the NTFS filesystem. (Microsoft: Windows NT, ...)</td>
</tr>
<tr>
<td>jfsutils</td>
<td>V:1, I:13</td>
<td>1561</td>
<td>utilities for the JFS filesystem. (IBM: AIX, OS/2)</td>
</tr>
<tr>
<td>reiser4progs</td>
<td>V:0, I:4</td>
<td>1325</td>
<td>utilities for the Reiser4 filesystem</td>
</tr>
<tr>
<td>hfsprogs</td>
<td>V:0, I:8</td>
<td>303</td>
<td>utilities for HFS and HFS Plus filesystem. (Apple: Mac OS)</td>
</tr>
<tr>
<td>btrfs-progs</td>
<td>V:32, I:48</td>
<td>3314</td>
<td>utilities for the Btrfs filesystem</td>
</tr>
<tr>
<td>zerofree</td>
<td>V:2, I:74</td>
<td>25</td>
<td>program to zero free blocks from ext2/3/4 filesystems</td>
</tr>
</tbody>
</table>

Table 9.19: List of filesystem management packages

Tip

Ext4 filesystem is the default filesystem for the Linux system and strongly recommended to use it unless you have some specific reasons not to.

Tip

Btrfs filesystem is available in Linux kernel 3.2 (Debian wheezy). It is expected to be the next default filesystem after the ext4 filesystem.

Warning

You should not use the Btrfs filesystem for your critical data yet before it acquires the live kernel space fsck(8) feature and the boot loader support.

Tip

Some tools allow access to filesystem without Linux kernel support (see Section 9.7.2).
9.5.6 Filesystem creation and integrity check

The mkfs(8) command creates the filesystem on a Linux system. The fsck(8) command provides the filesystem integrity check and repair on a Linux system.

Debian now defaults to no periodic fsck after filesystem creation.

⚠️ Caution

It is generally not safe to run fsck on mounted filesystems.

Tip

You can run the fsck(8) command safely on all filesystems including root filesystem on reboot by setting "enable_periodic_fsck" in "/etc/mke2fs.conf" and the max mount count to 0 using "tune2fs -c0 /dev/<partition_name>". See mke2fs.conf(5) and tune2fs(8).

Tip

Check files in "/var/log/fsck/" for the result of the fsck(8) command run from the boot script.

9.5.7 Optimization of filesystem by mount options

The basic static filesystem configuration is given by "/etc/fstab". For example,

```
# <file system> <mount point> <type> <options> <dump> <pass>
proc /proc proc defaults 0 0
UUID=709cbe4c-80c1-56db-8ab1-dbce3146d2f7 /ext4 noatime,errors=remount-ro 0 1
UUID=817bae6b-45d2-5aca-4d2a-1267ab46ac23 none swap sw 0 0
/dev/scd0 /media/cdrom0 udf,iso9660 user,noauto 0 0
```

Tip

UUID (see Section 9.5.3) may be used to identify a block device instead of normal block device names such as "/dev/sda1", "/dev/sda2", ...

Performance and characteristics of a filesystem can be optimized by mount options used on it (see fstab(5) and mount(8)). Notable ones are the following.

- "defaults" option implies default options: "rw, suid, dev, exec, auto, nouser, async". (general)
- "noatime" or "relatime" option is very effective for speeding up the read access. (general)
- "user" option allows an ordinary user to mount the filesystem. This option implies "noexec, nosuid, nodev" option combination. (general, used for CDs or usb storage devices)
- "noexec, nodev, nosuid" option combination is used to enhance security. (general)
- "noauto" option limits mounting by explicit operation only. (general)
- "data=journal" option for ext3fs can enhance data integrity against power failure with some loss of write speed.

Tip

You need to provide kernel boot parameter (see Section 3.1.2), e.g. "rootflags=data=journal" to deploy a non-default journaling mode for the root filesystem. For lenny, the default jounaling mode is "rootflags=data=ordered". For squeeze, it is "rootflags=data=writeback".
9.5.8 Optimization of filesystem via superblock

Characteristics of a filesystem can be optimized via its superblock using the `tune2fs(8)` command.

- Execution of “`sudo tune2fs -l /dev/hda1`” displays the contents of the filesystem superblock on “/dev/hda1”.
- Execution of “`sudo tune2fs -c 50 /dev/hda1`” changes frequency of filesystem checks (`fsck` execution during boot-up) to every 50 boots on “/dev/hda1”.
- Execution of “`sudo tune2fs -j /dev/hda1`” adds journaling capability to the filesystem, i.e. filesystem conversion from `ext2` to `ext3` on “/dev/hda1”. (Do this on the unmounted filesystem.)
- Execution of “`sudo tune2fs -O extents,uninit_bg,dir_index /dev/hda1 && fsck -pf /dev/hda1`” converts it from `ext3` to `ext4` on “/dev/hda1”. (Do this on the unmounted filesystem.)

Tip
Despite its name, `tune2fs(8)` works not only on the `ext2` filesystem but also on the `ext3` and `ext4` filesystems.

9.5.9 Optimization of hard disk

⚠️ **Warning**
Please check your hardware and read manpage of `hdparm(8)` before playing with hard disk configuration because this may be quite dangerous for the data integrity.

You can test disk access speed of a hard disk, e.g. “/dev/hda”, by “`hdparm -tT /dev/hda`”. For some hard disk connected with (E)IDE, you can speed it up with “`hdparm -q -c3 -d1 -u1 -m16 /dev/hda`” by enabling the “(E)IDE 32-bit I/O support”, enabling the “using_dma flag”, setting “interrupt-unmask flag”, and setting the “multiple 16 sector I/O” (dangerous!).

You can test write cache feature of a hard disk, e.g. “/dev/sda”, by “`hdparm -W /dev/sda`”. You can disable its write cache feature with “`hdparm -W 0 /dev/sda`”.

You may be able to read badly pressed CDROMs on modern high speed CD-ROM drive by slowing it down with “`setcd -x 2`”.

9.5.10 Optimization of solid state drive

Performance and disk wear of the solid state drive (SSD) can be optimized as follows.

- Use the latest Linux kernel. (>= 3.2)
- Reduce disk writes for read disk accesses.
 - Set “`noatime`” or “`relatime`” mount option in `/etc/fstab`.
- Enable the TRIM command.
 - Set “`discard`” mount option in `/etc/fstab` for the ext4 filesystem, swap partition, Btrfs, etc. See `fstab(5)`.
 - Set “`discard`” option in `/etc/lvm/lvm.conf` for LVM. See `lvm.conf(5)`.
 - Set “`discard`” option in `/etc/crypttab` for dm-crypt. See `crypttab(5)`.
- Enable the SSD optimized disk space allocation scheme.
 - Set “`ssd`” mount option in `/etc/fstab` for the Btrfs.
• Make system flush data to the disk every 10 minutes for laptop PCs.
 – Set "commit=600" mount option in /etc/fstab. See fstab(5).
 – Set pm-utils to use laptop-mode even under AC operation. See Debian BTS #659260.

⚠️ **Warning**
Changing flushing interval from normal 5 seconds to 10 minutes makes your data vulnerable to the power failure.

9.5.11 Using SMART to predict hard disk failure

You can monitor and log your hard disk which is compliant to SMART with the smartd(8) daemon.

1. Enable SMART feature in BIOS.
2. Install the smartmontools package.
3. Identify your hard disk drives by listing them with df(1).
 - Let’s assume a hard disk drive to be monitored as "/dev/hda".
4. Check the output of "smartctl -a /dev/hda" to see if SMART feature is actually enabled.
 - If not, enable it by "smartctl -s on -a /dev/hda".
5. Enable smartd(8) daemon to run by the following.
 - uncomment "start_smartd=yes" in the "/etc/default/smartmontools" file.
 - restart the smartd(8) daemon by "sudo /etc/init.d/smartmontools restart".

Tip
The smartd(8) daemon can be customized with the /etc/smartd.conf file including how to be notified of warnings.

9.5.12 Specify temporary storage directory via $TMPDIR

Applications create temporary files normally under the temporary storage directory "/tmp". If "/tmp" does not provide enough space, you can specify such temporary storage directory via the $TMPDIR variable for well-behaving programs.

9.5.13 Expansion of usable storage space via LVM

For partitions created on Logical Volume Manager (LVM) (Linux feature) at install time, they can be resized easily by concatenating extents onto them or truncating extents from them over multiple storage devices without major system reconfiguration.
9.5.14 Expansion of usable storage space by mounting another partition

If you have an empty partition (e.g., "/dev/sdx"), you can format it with mkfs.ext4(1) and mount(8) it to a directory where you need more space. (You need to copy original data contents.)

```
$ sudo mv work-dir old-dir
$ sudo mkfs.ext4 /dev/sdx
$ sudo mount -t ext4 /dev/sdx work-dir
$ sudo cp -a old-dir/* work-dir
$ sudo rm -rf old-dir
```

Tip
You may alternatively mount an empty disk image file (see Section 9.6.5) as a loop device (see Section 9.6.3). The actual disk usage grows with the actual data stored.

9.5.15 Expansion of usable storage space by bind-mounting another directory

If you have an empty directory (e.g., "/path/to/emp-dir") on another partition with usable space, you can mount(8) it with "--bind" option to a directory (e.g., "work-dir") where you need more space.

```
$ sudo mount --bind /path/to/emp-dir work-dir
```

9.5.16 Expansion of usable storage space by overlay-mounting another directory

If you have usable space in another partition (e.g., "/path/to/empty" and "/path/to/work"), you can create a directory in it and stack that on to an old directory (e.g., "/path/to/old") where you need space using the OverlayFS for Linux kernel 3.18 or newer (Debian Stretch 9.0 or newer).

```
$ sudo mount -t overlay overlay \
-olowerdir=/path/to/old-dir,upperdir=/path/to/empty,workdir=/path/to/work
```

Here, "/path/to/empty" and "/path/to/work" should be on the RW-enabled partition to write on "/path/to/old".

9.5.17 Expansion of usable storage space using symlink

Caution
This is a deprecated method. Some software may not function well with "symlink to a directory". Instead, use the "mounting" approaches described in the above.

If you have an empty directory (e.g., "/path/to/emp-dir") in another partition with usable space, you can create a symlink to the directory with ln(8).
$ sudo mv work-dir old-dir
$ sudo mkdir -p /path/to/emp-dir
$ sudo ln -sf /path/to/emp-dir work-dir
$ sudo cp -a old-dir/* work-dir
$ sudo rm -rf old-dir

Warning
Do not use "symlink to a directory" for directories managed by the system such as "/opt". Such a symlink may be overwritten when the system is upgraded.

9.6 The disk image

Here, we discuss manipulations of the disk image.

9.6.1 Making the disk image file

The disk image file, "disk.img", of an unmounted device, e.g., the second SCSI or serial ATA drive "/dev/sdb", can be made using cp(1) or dd(1) by the following.

```
# cp /dev/sdb disk.img
# dd if=/dev/sdb of=disk.img
```

The disk image of the traditional PC’s master boot record (MBR) (see Section 9.5.2) which reside on the first sector on the primary IDE disk can be made by using dd(1) by the following.

```
# dd if=/dev/hda of=mbr.img bs=512 count=1
# dd if=/dev/hda of=mbr-nopart.img bs=446 count=1
# dd if=/dev/hda of=mbr-part.img skip=446 bs=1 count=66
```

- "mbr.img": The MBR with the partition table
- "mbr-nopart.img": The MBR without the partition table
- "mbr-part.img": The partition table of the MBR only

If you have an SCSI or serial ATA device as the boot disk, substitute "/dev/hda" with "/dev/sda". If you are making an image of a disk partition of the original disk, substitute "/dev/hda" with "/dev/hda1" etc.

9.6.2 Writing directly to the disk

The disk image file, "disk.img" can be written to an unmounted device, e.g., the second SCSI drive "/dev/sdb" with matching size, by the following.

```
# dd if=disk.img of=/dev/sdb
```

Similarly, the disk partition image file, "partition.img" can be written to an unmounted partition, e.g., the first partition of the second SCSI drive "/dev/sdb1" with matching size, by the following.

```
# dd if=partition.img of=/dev/sdb1
```
9.6.3 Mounting the disk image file

The disk image "partition.img" containing a single partition image can be mounted and unmounted by using the loop device as follows.

```
# losetup -v -f partition.img
Loop device is /dev/loop0
# mkdir -p /mnt/loop0
# mount -t auto /dev/loop0 /mnt/loop0
...hack...hack...hack
# umount /dev/loop0
# losetup -d /dev/loop0
```

This can be simplified as follows.

```
# mkdir -p /mnt/loop
# mount -t auto -o loop partition.img /mnt/loop0
...hack...hack...hack
# umount partition.img
```

Each partition of the disk image "disk.img" containing multiple partitions can be mounted by using the loop device. Since the loop device does not manage partitions by default, we need to reset it as follows.

```
# modinfo -p loop # verify kernel capability
max_part:Maximum number of partitions per loop device
max_loop:Maximum number of loop devices
# losetup -a # verify nothing using the loop device
# rmmod loop
# modprobe loop max_part=16
```

Now, the loop device can manage up to 16 partitions.

```
# losetup -v -f disk.img
Loop device is /dev/loop0
# fdisk -l /dev/loop0
```

```
Disk /dev/loop0: 5368 MB, 5368709120 bytes
255 heads, 63 sectors/track, 652 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0x452b6464

Device Boot Start   End    Blocks   Id  System
/dev/loop0p1  1     600  4819468+ 83  Linux
/dev/loop0p2  601  652  417690  83  Linux
```

```
# mkdir -p /mnt/loop0p1
# mount -t ext4 /dev/loop0p1 /mnt/loop0p1
# mkdir -p /mnt/loop0p2
# mount -t ext4 /dev/loop0p2 /mnt/loop0p2
...hack...hack...hack
# umount /dev/loop0p1
# umount /dev/loop0p2
# losetup -d /dev/loop0
```

Alternatively, similar effects can be done by using the device mapper devices created by kpartx(8) from the kpartx package as follows.
Note
You can mount a single partition of such disk image with loop device using offset to skip MBR etc., too. But this is more error prone.

9.6.4 Cleaning a disk image file
A disk image file, "disk.img" can be cleaned of all removed files into clean sparse image "new.img" by the following.

```bash
# mkdir old; mkdir new
# mount -t auto -o loop disk.img old
# dd bs=1 count=0 if=/dev/zero of=new.img seek=5G
# mount -t auto -o loop new.img new
# cd old
# cp -a --sparse=always ./../new/
# cd ..
# umount new.img
# umount disk.img
```

If "disk.img" is in ext2, ext3 or ext4, you can also use zerofree(8) from the zerofree package as follows.

```bash
# losetup -f -v disk.img
Loop device is /dev/loop3
# zerofree /dev/loop3
# cp --sparse=always disk.img new.img
```

9.6.5 Making the empty disk image file
The empty disk image "disk.img" which can grow up to 5GiB can be made using dd(1) as follows.

```
$ dd bs=1 count=0 if=/dev/zero of=disk.img seek=5G
```

You can create an ext4 filesystem on this disk image "disk.img" using the loop device as follows.

```bash
# losetup -f -v disk.img
Loop device is /dev/loop1
# mkfs.ext4 /dev/loop1
...hack...hack...hack
# losetup -d /dev/loop1
$ du --apparent-size -h disk.img
```
5.0G disk.img
$ du -h disk.img
 83M disk.img

For "disk.img", its file size is 5.0 GiB and its actual disk usage is mere 83MiB. This discrepancy is possible since ext4 can hold sparse file.

Tip
The actual disk usage of sparse file grows with data which are written to it.

Using similar operation on devices created by the loop device or the device mapper devices as Section 9.6.3, you can partition this disk image "disk.img" using parted(8) or fdisk(8), and can create filesystem on it using mkfs.ext4(8), mkswap(8), etc.

9.6.6 Making the ISO9660 image file

The ISO9660 image file, "cd.iso", from the source directory tree at "source_directory" can be made using genisoimage(1) provided by cdrkit by the following.

```
# genisoimage  -r  -J  -T  -V  volume_id  -o  cd.iso  source_directory
```

Similarly, the bootable ISO9660 image file, "cdboot.iso", can be made from debian-installer like directory tree at "source_directory" by the following.

```
# genisoimage  -r  -o  cdboot.iso  -V  volume_id  
  -b  isolinux/isolinux.bin  -c  isolinux/boot.cat  
  -no-emul-boot  -boot-load-size 4  -boot-info-table  source_directory
```

Here Isolinux boot loader (see Section 3.1.2) is used for booting.

You can calculate the md5sum value and make the ISO9660 image directly from the CD-ROM device as follows.

```
$ isoinfo  -d  -i  /dev/cdrom
CD-ROM is in ISO 9660 format
...
Logical block size is: 2048
Volume size is: 23150592
...
# dd if=/dev/cdrom bs=2048 count=23150592 conv=notrunc,noerror | md5sum
# dd if=/dev/cdrom bs=2048 count=23150592 conv=notrunc,noerror > cd.iso
```

Warning
You must carefully avoid ISO9660 filesystem read ahead bug of Linux as above to get the right result.

9.6.7 Writing directly to the CD/DVD-R/RW

Tip
DVD is only a large CD to wodim(1) provided by cdrkit.
You can find a usable device by the following.

```
# wodim --devices
```

Then the blank CD-R is inserted to the CD drive, and the ISO9660 image file, "cd.iso" is written to this device, e.g., "/dev/hda", using wodim(1) by the following.

```
# wodim -v -eject dev=/dev/hda cd.iso
```

If CD-RW is used instead of CD-R, do this instead by the following.

```
# wodim -v -eject blank=fast dev=/dev/hda cd.iso
```

Tip
If your desktop system mounts CDs automatically, unmount it by "sudo umount /dev/hda" from console before using wodim(1).

9.6.8 Mounting the ISO9660 image file

If "cd.iso" contains an ISO9660 image, then the following manually mounts it to "/cdrom".

```
# mount -t iso9660 -o ro,loop cd.iso /cdrom
```

Tip
Modern desktop system may mount removable media such as ISO9660 formatted CD automatically (see Section 10.1.7).

9.7 The binary data

Here, we discuss direct manipulations of the binary data on storage media.

9.7.1 Viewing and editing binary data

The most basic viewing method of binary data is to use "od -t x1" command.

Tip
HEX is used as an acronym for hexadecimal format with radix 16. OCTAL is for octal format with radix 8. ASCII is for American Standard Code for Information Interchange, i.e., normal English text code. EBCDIC is for Extended Binary Coded Decimal Interchange Code used on IBM mainframe operating systems.

9.7.2 Manipulating files without mounting disk

There are tools to read and write files without mounting disk.
9.7.3 Data redundancy

Software RAID systems offered by the Linux kernel provide data redundancy in the kernel filesystem level to achieve high levels of storage reliability.

There are tools to add data redundancy to files in application program level to achieve high levels of storage reliability, too.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mtools</td>
<td>V:10, I:93</td>
<td>384</td>
<td>utilities for MSDOS files without mounting them</td>
</tr>
<tr>
<td>hfsutils</td>
<td>V:0, I:7</td>
<td>1771</td>
<td>utilities for HFS and HFS+ files without mounting them</td>
</tr>
</tbody>
</table>

Table 9.21: List of packages to manipulate files without mounting disk

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>par2</td>
<td>V:1, I:9</td>
<td>246</td>
<td>Parity Archive Volume Set, for checking and repair of files</td>
</tr>
<tr>
<td>dvddisaster</td>
<td>V:0, I:2</td>
<td>1737</td>
<td>data loss/scratch/aging protection for CD/DVD media</td>
</tr>
<tr>
<td>dvbackup</td>
<td>V:0, I:0</td>
<td>412</td>
<td>backup tool using MiniDV camcorders (providing rsbep(1))</td>
</tr>
<tr>
<td>vdmfec</td>
<td>V:0, I:0</td>
<td>97</td>
<td>recover lost blocks using Forward Error Correction</td>
</tr>
</tbody>
</table>

Table 9.22: List of tools to add data redundancy to files

9.7.4 Data file recovery and forensic analysis

There are tools for data file recovery and forensic analysis.

Tip

You can undelete files on the ext2 filesystem using `list_deleted_inodes` and `undel` commands of `debugfs(8)` in the `e2fsprogs` package.

9.7.5 Splitting a large file into small files

When a data is too big to backup as a single file, you can backup its content after splitting it into, e.g. 2000MiB chunks and merge those chunks back into the original file later.

```bash
$ split -b 2000m large_file
$ cat x* > large_file
```
<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>testdisk</td>
<td>V:3, I:39</td>
<td>1339</td>
<td>utilities for partition scan and disk recovery</td>
</tr>
<tr>
<td>magicrescue</td>
<td>V:0, I:3</td>
<td>254</td>
<td>utility to recover files by looking for magic bytes</td>
</tr>
<tr>
<td>scalpel</td>
<td>V:0, I:4</td>
<td>87</td>
<td>frugal, high performance file carver</td>
</tr>
<tr>
<td>myrescue</td>
<td>V:0, I:3</td>
<td>82</td>
<td>rescue data from damaged harddisks</td>
</tr>
<tr>
<td>extundelete</td>
<td>V:1, I:11</td>
<td>148</td>
<td>utility to undelete files on the ext3/4 filesystem</td>
</tr>
<tr>
<td>ext4magic</td>
<td>V:0, I:4</td>
<td>233</td>
<td>utility to undelete files on the ext3/4 filesystem</td>
</tr>
<tr>
<td>ext3grep</td>
<td>V:0, I:3</td>
<td>281</td>
<td>tool to help recover deleted files on the ext3 filesystem</td>
</tr>
<tr>
<td>scrounge-ntfs</td>
<td>V:0, I:3</td>
<td>49</td>
<td>data recovery program for NTFS filesystems</td>
</tr>
<tr>
<td>gzrt</td>
<td>V:0, I:0</td>
<td>57</td>
<td>gzip recovery toolkit</td>
</tr>
<tr>
<td>sleuthkit</td>
<td>V:2, I:18</td>
<td>1212</td>
<td>tools for forensics analysis. (Sleuthkit)</td>
</tr>
<tr>
<td>autopsy</td>
<td>V:0, I:2</td>
<td>1021</td>
<td>graphical interface to SleuthKit</td>
</tr>
<tr>
<td>foremost</td>
<td>V:0, I:7</td>
<td>100</td>
<td>forensics application to recover data</td>
</tr>
<tr>
<td>guymager</td>
<td>V:0, I:1</td>
<td>1067</td>
<td>forensic imaging tool based on Qt</td>
</tr>
<tr>
<td>dfldd</td>
<td>V:0, I:5</td>
<td>95</td>
<td>enhanced version of dd for forensics and security</td>
</tr>
</tbody>
</table>

Table 9.23: List of packages for data file recovery and forensic analysis

⚠️ **Caution**

Please make sure you do not have any files starting with "x" to avoid name crashes.

9.7.6 Clearing file contents

In order to clear the contents of a file such as a log file, do not use rm(1) to delete the file and then create a new empty file, because the file may still be accessed in the interval between commands. The following is the safe way to clear the contents of the file.

```bash
$ :>file_to_be_cleared
```

9.7.7 Dummy files

The following commands create dummy or empty files.

```bash
$ dd if=/dev/zero of=5kb.file bs=1k count=5
$ dd if=/dev/urandom of=7mb.file bs=1M count=7
$ touch zero.file
$ : > alwayszero.file
```

You should find following files.

- "5kb.file" is 5KB of zeros.
- "7mb.file" is 7MB of random data.
- "zero.file" may be a 0 byte file. If it existed, its mtime is updated while its content and its length are kept.
- "alwayszero.file" is always a 0 byte file. If it existed, its mtime is updated and its content is reset.
9.7.8 Erasing an entire hard disk

There are several ways to completely erase data from an entire hard disk like device, e.g., USB memory stick at "/dev/sda".

Caution
Check your USB memory stick location with mount(8) first before executing commands here. The device pointed by "/dev/sda" may be SCSI hard disk or serial-ATA hard disk where your entire system resides.

Erase all the disk content by resetting data to 0 with the following.

```
# dd if=/dev/zero of=/dev/sda
```

Erase everything by overwriting with random data as follows.

```
# dd if=/dev/urandom of=/dev/sda
```

Erase everything by overwriting with random data very efficiently as follows.

```
# shred -v -n 1 /dev/sda
```

Since dd(1) is available from the shell of many bootable Linux CDs such as Debian installer CD, you can erase your installed system completely by running an erase command from such media on the system hard disk, e.g., "/dev/hda", "/dev/sda", etc.

9.7.9 Erasing unused area of an hard disk

Unused area on an hard disk (or USB memory stick), e.g. "/dev/sdb1" may still contain erased data themselves since they are only unlinked from the filesystem. These can be cleaned by overwriting them.

```
# mount -t auto /dev/sdb1 /mnt/foo
# cd /mnt/foo
# dd if=/dev/zero of=junk
dd: writing to ‘junk’: No space left on device
...
# sync
# umount /dev/sdb1
```

Warning
This is usually good enough for your USB memory stick. But this is not perfect. Most parts of erased filenames and their attributes may be hidden and remain in the filesystem.
9.7.10 Undeleting deleted but still open files

Even if you have accidentally deleted a file, as long as that file is still being used by some application (read or write mode), it is possible to recover such a file.

For example, try the following:

```
$ echo foo > bar
$ less bar
$ ps aux | grep ' less[ ]'
bozo 4775 0.0 0.0 92200 884 pts/8   S+   00:18   0:00 less bar
$ rm bar
$ ls -l /proc/4775/fd | grep bar
lr-x------ 1 bozo bozo 64 2008-05-09 00:19 4 -> /home/bozo/bar (deleted)
$ cat /proc/4775/fd/4 > bar
$ ls -l
-rw-r--r-- 1 bozo bozo 4 2008-05-09 00:25 bar
$ cat bar
foo
```

Execute on another terminal (when you have the `lsop` package installed) as follows.

```
$ ls -li bar
2228329 -rw-r--r-- 1 bozo bozo 4 2008-05-11 11:02 bar
$ lsop |grep bar|grep less
less 4775 bozo 4r REG 8,3 4 2228329 /home/bozo/bar
$ rm bar
$ lsop |grep bar|grep less
less 4775 bozo 4r REG 8,3 4 2228329 /home/bozo/bar (deleted)
$ cat /proc/4775/fd/4 > bar
$ ls -li bar
2228302 -rw-r--r-- 1 bozo bozo 4 2008-05-11 11:05 bar
$ cat bar
foo
```

9.7.11 Searching all hardlinks

Files with hardlinks can be identified by "ls -li".

```
$ ls -li
total 0
2738405 -rw-r--r-- 1 root root 0 2008-09-15 20:21 bar
2738404 -rw-r--r-- 2 root root 0 2008-09-15 20:21 baz
2738404 -rw-r--r-- 2 root root 0 2008-09-15 20:21 foo
```

Both "baz" and "foo" have link counts of "2" (>1) showing them to have hardlinks. Their `inode` numbers are common "2738404". This means they are the same hardlinked file. If you do not happen to find all hardlinked files by chance, you can search it by the `inode`, e.g., "2738404" as the following.

```
# find /path/to/mount/point -xdev -inum 2738404
```
9.7.12 Invisible disk space consumption

All deleted but open files consume disk space although they are not visible from normal du(1). They can be listed with their size by the following.

```
# lsof -s -X / | grep deleted
```

9.8 Data encryption tips

With physical access to your PC, anyone can easily gain root privilege and access all the files on your PC (see Section 4.7.4). This means that login password system cannot secure your private and sensitive data against possible theft of your PC. You must deploy data encryption technology to do it. Although GNU privacy guard (see Section 10.3) can encrypt files, it takes some user efforts.

dm-crypt and eCryptfs facilitates automatic data encryption natively via Linux kernel modules with minimal user efforts.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cryptsetup</td>
<td>V:32, I:80</td>
<td>67</td>
<td>utilities for encrypted block device (dm-crypt / LUKS)</td>
</tr>
<tr>
<td>cryptmount</td>
<td>V:3, I:5</td>
<td>228</td>
<td>utilities for encrypted block device (dm-crypt / LUKS) with focus on mount/unmount by normal users</td>
</tr>
<tr>
<td>ecryptfs-utils</td>
<td>V:5, I:8</td>
<td>396</td>
<td>utilities for encrypted stacked filesystem (eCryptfs)</td>
</tr>
</tbody>
</table>

Table 9.24: List of data encryption utilities

Dm-crypt is a cryptographic filesystem using device-mapper. Device-mapper maps one block device to another.

eCryptfs is another cryptographic filesystem using stacked filesystem. Stacked filesystem stacks itself on top of an existing directory of a mounted filesystem.

⚠️ Caution
Data encryption costs CPU time etc. Please weigh its benefits and costs.

Note
Entire Debian system can be installed on a encrypted disk by the debian-installer (lenny or newer) using dm-crypt/LUKS and initramfs.

Tip
See Section 10.3 for user space encryption utility: GNU Privacy Guard.

9.8.1 Removable disk encryption with dm-crypt/LUKS

You can encrypt contents of removable mass devices, e.g. USB memory stick on "/dev/sdx", using dm-crypt/LUKS. You simply format it as the following.
badblocks -c 1024 -s -w -t random -v /dev/sdx
fdisk /dev/sdx
... "n" "p" "1" "return" "return" "w"
cryptsetup luksFormat /dev/sdx1
...
cryptsetup open --type luks /dev/sdx1 sdx1
...
ls -l /devmapper/
total 0
 crw-rw---- 1 root root 10, 60 2008-10-04 18:44 control
 brw-rw---- 1 root disk 254, 0 2008-10-04 23:55 sdx1
mkfs.vfat /dev/mapper/sdx1
...
cryptsetup luksClose sdx1

Then, it can be mounted just like normal one on to "/media/<disk_label>", except for asking password (see Section 10.1.7) under modern desktop environment, such as GNOME using gnome-mount(1). The difference is that every data written to it is encrypted. You may alternatively format media in different filesystem, e.g., ext4 with "mkfs.ext4 /dev/mapper/sdx1".

Note
If you are really paranoid for the security of data, you may need to overwrite multiple times (the "badblocks" command in the above example). This operation is very time consuming though.

9.8.2 Encrypted swap partition with dm-crypt

Let's assume that your original "/etc/fstab" contains the following.

```
/dev/sda7 swap sw 0 0
```

You can enable encrypted swap partition using dm-crypt by as the following.

```
# aptitude install cryptsetup
# swapoff -a
# echo "cswap /dev/sda7 /dev/urandom swap" >> /etc/crypttab
# perl -i -p -e "s$/dev/sda7$/dev/mapper/cswap" /etc/fstab
# /etc/init.d/cryptdisks restart
...
# swapon -a
```

9.8.3 Mounting encrypted disk with dm-crypt/LUKS

An encrypted disk partition created with dm-crypt/LUKS on "/dev/sdc5" can be mounted onto "/mnt" as follows:

```
$ sudo cryptsetup open /dev/sdc5 ninja --type luks
Enter passphrase for /dev/sdc5: ****
$ sudo lvremove
lvm> lvscan
inactive '/dev/ninja-vg/root' [13.52 GiB] inherit
inactive '/dev/ninja-vg/swap_1' [640.00 MiB] inherit
ACTIVE '/dev/goofy/root' [180.00 GiB] inherit
ACTIVE '/dev/goofy/swap' [9.70 GiB] inherit
```
9.8.4 Automatically encrypting files with eCryptfs

You can encrypt files written under "~/.Private/" automatically using eCryptfs and the ecryptfs-utils package.

- Run ecryptfs-setup-private(1) and set up "~/.Private/" by following prompts.
- Activate "~/.Private/" by running ecryptfs-mount-private(1).
- Move sensitive data files to "~/.Private/" and make symlinks as needed.
- Move sensitive data directories to a subdirectory in "~/.Private/" and make symlinks as needed.
 - Candidates: "~/.gnupg" and other directories with "go-rwx"
- Create symlink from "~/.Desktop/Private/" to "~/.Private/" for easier desktop operations.
- Deactivate "~/.Private/" by running ecryptfs-umount-private(1).
- Activate "~/.Private/" by issuing "ecryptfs-mount-private" as you need encrypted data.

Tip
Since eCryptfs selectively encrypt only the sensitive files, its system cost is much less than using dm-crypt on the entire root or "/home" device. It does not require any special on-disk storage allocation effort but cannot keep all filesystem metadata confidential.

9.8.5 Automatically mounting eCryptfs

If you use your login password for wrapping encryption keys, you can automate mounting eCryptfs via PAM (Pluggable Authentication Modules).

Insert the following line just before "pam_permit.so" in "/etc/pam.d/common-auth".

```bash
auth required pam_ecryptfs.so unwrap
```

Insert the following line just at the last line in "/etc/pam.d/common-session".

```bash
session optional pam_ecryptfs.so unwrap
```

Insert the following line at first active line in "/etc/pam.d/common-password".

```bash
password required pam_ecryptfs.so
```

This is quite convenient.
Warning
Configuration errors of PAM may lock you out of your own system. See Chapter 4.

Caution
If you use your login password for wrapping encryption keys, your encrypted data are as secure as your user login password (see Section 4.3). Unless you are careful to set up a **strong password**, your data is at risk when someone runs **password cracking** software after stealing your laptop (see Section 4.7.4).

9.9 The kernel

Debian distributes modularized **Linux kernel** as packages for supported architectures.

9.9.1 Linux kernel 2.6/3.x

There are few notable features on Linux kernel 2.6/3.x compared to 2.4.

- Devices are created by the udev system (see Section 3.3).
- Read/write accesses to IDE CD/DVD devices do not use the **ide-scsi** module.
- Network packet filtering functions use **iptables** kernel modules.

The version bump from Linux 2.6.39 to Linux 3.0 is not about major technological changes but about the 20th anniversary.

9.9.2 Kernel parameters

Many Linux features are configurable via kernel parameters as follows.

- Kernel parameters initialized by the bootloader (see Section 3.1.2)
- Kernel parameters changed by sysctl(8) at runtime for ones accessible via sysfs (see Section 1.2.12)
- Module parameters set by arguments of modprobe(8) when a module is activated (see Section 9.6.3)

See "kernel-parameters.txt(.gz)" and other related documents in the Linux kernel documentation ("/usr/share/doc/linux-doc-3.*/Documentation/filesystems/*") provided by the **linux-doc-3.** package.

9.9.3 Kernel headers

Most **normal programs** don't need kernel headers and in fact may break if you use them directly for compiling. They should be compiled against the headers in "/usr/include/linux" and "/usr/include/asm" provided by the **libc6-dev** package (created from the **glibc** source package) on the Debian system.

Note
For compiling some kernel-specific programs such as the kernel modules from the external source and the automounter daemon (amd), you must include path to the corresponding kernel headers, e.g. "-I/usr/src/linux-particular-version/include/", to your command line. **module-assistant(8)** (or its short form **m-a**) helps users to build and install module package(s) easily for one or more custom kernels.
9.9.4 Compiling the kernel and related modules

Debian has its own method of compiling the kernel and related modules.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>build-essential</td>
<td>I:454</td>
<td>20</td>
<td>essential packages for building Debian packages: make, gcc, …</td>
</tr>
<tr>
<td>bzip2</td>
<td>V:178, I:953</td>
<td>196</td>
<td>compress and decompress utilities for bz2 files</td>
</tr>
<tr>
<td>libncurses5-dev</td>
<td>V:13, I:139</td>
<td>6</td>
<td>developer’s libraries and docs for ncurses</td>
</tr>
<tr>
<td>git</td>
<td>V:301, I:458</td>
<td>35266</td>
<td>git: distributed revision control system used by the Linux kernel</td>
</tr>
<tr>
<td>fakeroot</td>
<td>V:31, I:501</td>
<td>215</td>
<td>provide fakeroot environment for building package as non-root</td>
</tr>
<tr>
<td>initramfs-tools</td>
<td>V:367, I:990</td>
<td>111</td>
<td>tool to build an initramfs (Debian specific)</td>
</tr>
<tr>
<td>dkms</td>
<td>V:89, I:214</td>
<td>278</td>
<td>dynamic kernel module support (DKMS) (generic)</td>
</tr>
<tr>
<td>devscripts</td>
<td>V:8, I:62</td>
<td>2485</td>
<td>helper scripts for a Debian Package maintainer (Debian specific)</td>
</tr>
</tbody>
</table>

Table 9.25: List of key packages to be installed for the kernel recompilation on the Debian system

If you use initrd in Section 3.1.2, make sure to read the related information in initramfs-tools(8), update-initramfs(8), mkinitramfs(8) and initramfs.conf(5).

Warning

Do not put symlinks to the directories in the source tree (e.g. "/usr/src/linux") from "/usr/include/linux" and "/usr/include/asm" when compiling the Linux kernel source. (Some outdated documents suggest this.)

Note

When compiling the latest Linux kernel on the Debian stable system, the use of backported latest tools from the Debian unstable may be needed.

Note

The *dynamic kernel module support (DKMS)* is a new distribution independent framework designed to allow individual kernel modules to be upgraded without changing the whole kernel. This is used for the maintenance of out-of-tree modules. This also makes it very easy to rebuild modules as you upgrade kernels.

9.9.5 Compiling the kernel source: Debian Kernel Team recommendation

For building custom kernel binary packages from the upstream kernel source, you should use the "deb-pkg" target provided by it.

```
$ sudo apt-get build-dep linux
$ cd /usr/src
$ tar -xjvf linux-<version>.tar.bz2
$ cd linux-<version>
$ cp /boot/config-<version> .config
$ make menuconfig
...  
$ make deb-pkg
```
The `linux-source-<version>` package provides the Linux kernel source with Debian patches as "/usr/src/linux-<version>.tar.bz2".

For building specific binary packages from the Debian kernel source package, you should use the "binary-arch_<architecture>_<featureset>_flavour" targets in "debian/rules.gen".

```
$ sudo apt-get build-dep linux
$ apt-get source linux
$ cd linux-3.*
$ fakeroot make -f debian/rules.gen binary-arch_i386_none_686
```

See further information:

- Debian Wiki: [KernelFAQ](https://wiki.debian.org/KernelFAQ)
- Debian Wiki: [DebianKernel](https://wiki.debian.org/DebianKernel)

9.9.6 Hardware drivers and firmware

The hardware driver is the code running on the target system. Most hardware drivers are available as free software now and are included in the normal Debian kernel packages in the main area.

- **GPU driver**
 - Intel GPU driver (main)
 - AMD/ATI GPU driver (main)
 - NVIDIA GPU driver (main for nouveau driver, and non-free for binary-only drivers supported by the vendor.)
- **Softmodem** driver
 - martian-modem and sl-modem-dkms packages (non-free)

The firmware is the code or data loaded on the device (e.g., CPU microcode, rendering code running on GPU, or FPGA / CPLD data, ...) Some firmware packages are available as free software but many firmware packages are not available as free software since they contain sourceless binary data.

- firmware-linux-free (main)
- firmware-linux-nonfree (non-free)
- firmware-linux-* (non-free)
- *-firmware (non-free)
- intel-microcode (non-free)
- amd64-microcode (non-free)

Please note that non-free and contrib packages are not part of the Debian system. The access configuration to enable and to disable the non-free and contrib areas is described in Section 2.1.4. You should be aware of negatives associated with the use of the non-free and contrib packages as described in Section 2.1.5.
9.10 Virtualized system

Use of virtualized system enables us to run multiple instances of system simultaneously on a single hardware.

Tip

9.10.1 Virtualization tools

There are several system virtualization and emulation related packages in Debian beyond simple chroot. Some packages also help you to setup such system.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>schroot</td>
<td>V:7,I:10</td>
<td>2728</td>
<td>specialized tool for executing Debian binary packages in chroot</td>
</tr>
<tr>
<td>sbuild</td>
<td>V:1,I:4</td>
<td>298</td>
<td>tool for building Debian binary packages from Debian sources</td>
</tr>
<tr>
<td>pbuilder</td>
<td>V:1,I:16</td>
<td>966</td>
<td>personal package builder for Debian packages</td>
</tr>
<tr>
<td>debootstrap</td>
<td>V:6,I:63</td>
<td>283</td>
<td>bootstrap a basic Debian system (written in sh)</td>
</tr>
<tr>
<td>cdebootstrap</td>
<td>V:0,I:3</td>
<td>116</td>
<td>bootstrap a Debian system (written in C)</td>
</tr>
<tr>
<td>virt-manager</td>
<td>V:9,I:34</td>
<td>6770</td>
<td>Virtual Machine Manager: desktop application for managing virtual machines</td>
</tr>
<tr>
<td>libvirt-clients</td>
<td>V:30,I:51</td>
<td>2139</td>
<td>programs for the libvirt library</td>
</tr>
<tr>
<td>bochs</td>
<td>V:0,I:1</td>
<td>6706</td>
<td>Bochs: IA-32 PC emulator</td>
</tr>
<tr>
<td>qemu</td>
<td>I:35</td>
<td>95</td>
<td>QEMU: fast generic processor emulator</td>
</tr>
<tr>
<td>qemu-system</td>
<td>I:32</td>
<td>96</td>
<td>QEMU: full system emulation binaries</td>
</tr>
<tr>
<td>qemu-user</td>
<td>V:2,I:30</td>
<td>84481</td>
<td>QEMU: user mode emulation binaries</td>
</tr>
<tr>
<td>qemu-utils</td>
<td>V:9,I:97</td>
<td>5536</td>
<td>QEMU: utilities</td>
</tr>
<tr>
<td>qemu-kvm</td>
<td>V:16,I:70</td>
<td>105</td>
<td>KVM: full virtualization on x86 hardware with the hardware-assisted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>virtualization</td>
</tr>
<tr>
<td>virtualbox</td>
<td>V:33,I:41</td>
<td>127956</td>
<td>VirtualBox: x86 virtualization solution on i386 and amd64</td>
</tr>
<tr>
<td>xen-tools</td>
<td>V:0,I:5</td>
<td>704</td>
<td>tools to manage debian XEN virtual server</td>
</tr>
<tr>
<td>wine</td>
<td>V:21,I:95</td>
<td>189</td>
<td>Wine: Windows API Implementation (standard suite)</td>
</tr>
<tr>
<td>dosbox</td>
<td>V:2,I:19</td>
<td>2778</td>
<td>DOSBox: x86 emulator with Tandy/Herc/CGA/EGA/VGA/SVGA graphics, sound and DOS</td>
</tr>
<tr>
<td>dosemu</td>
<td>V:0,I:3</td>
<td>4891</td>
<td>DOSEMU: The Linux DOS Emulator</td>
</tr>
<tr>
<td>vzctl</td>
<td>V:1,I:12</td>
<td>1112</td>
<td>OpenVZ server virtualization solution - control tools</td>
</tr>
<tr>
<td>vzquota</td>
<td>V:1,I:2</td>
<td>236</td>
<td>OpenVZ server virtualization solution - quota tools</td>
</tr>
<tr>
<td>lxc</td>
<td>V:9,I:14</td>
<td>2412</td>
<td>Linux containers user space tools</td>
</tr>
</tbody>
</table>

Table 9.26: List of virtualization tools

See Wikipedia article [Comparison of platform virtual machines](http://en.wikipedia.org/wiki/Comparison_of_platformirtualizations) for detail comparison of different platform virtualization solutions.

9.10.2 Virtualization work flow

Note
Some functionalities described here are only available in squeeze or later.

Note
Default Debian kernels support KVM since lenny.
Typical work flow for virtualization involves several steps.

- Create an empty filesystem (a file tree or a disk image).
 - The file tree can be created by "`mkdir -p /path/to/chroot`".
 - The raw disk image file can be created with `dd(1)` (see Section 9.6.1 and Section 9.6.5).
 - `qemu-img(1)` can be used to create and convert disk image files supported by QEMU.
 - The raw and VMDK file format can be used as common format among virtualization tools.

- Mount the disk image with `mount(8)` to the filesystem (optional).
 - For the raw disk image file, mount it as loop device or device mapper devices (see Section 9.6.3).
 - For disk images supported by QEMU, mount them as network block device (see Section 9.10.3).

- Populate the target filesystem with required system data.
 - The use of programs such as debootstrap and cdebootstrap helps with this process (see Section 9.10.4).
 - Use installers of OSs under the full system emulation.

- Run a program under a virtualized environment.
 - `chroot` provides basic virtualized environment enough to compile programs, run console applications, and run daemons in it.
 - QEMU provides cross-platform CPU emulation.
 - QEMU with KVM provides full system emulation by the hardware-assisted virtualization.
 - VirtualBox provides full system emulation on i386 and amd64 with or without the hardware-assisted virtualization.

9.10.3 Mounting the virtual disk image file

For other virtual disk image files, you can use `qemu-nbd(8)` to export them using network block device protocol and mount them using the nbd kernel module.

`qemu-nbd(8)` supports disk formats supported by QEMU: QEMU supports following disk formats: raw, qcow2, qcow, vmdk, vdi, bochs, cow (user-mode Linux copy-on-write), parallels, dmg, cloop, vpc, vfat (virtual VFAT), and host_device.

The network block device can support partitions in the same way as the loop device (see Section 9.6.3). You can mount the first partition of "disk.img" as follows.

```bash
# modprobe nbd max_part=16
# qemu-nbd -v -c /dev/nbd0 disk.img
...
# mkdir /mnt/part1
# mount /dev/nbd0p1 /mnt/part1
```

Tip

You may export only the first partition of "disk.img" using "-P 1" option to qemu-nbd(8).
9.10.4 Chroot system

chroot(8) offers most basic way to run different instances of the GNU/Linux environment on a single system simultaneously without rebooting.

⚠️ **Caution**
Examples below assumes both parent system and chroot system share the same CPU architecture.

You can learn how to setup and use chroot(8) by running pbuilder(8) program under script(1) as follows.

```
$ sudo mkdir /sid-root
$ sudo pbuilder --create --no-targz --debug --buildplace /sid-root
```

You see how debootstrap(8) or cdebootstrap(1) populate system data for sid environment under "'/sid-root".

Tip
These debootstrap(8) or cdebootstrap(1) are used to install Debian by the Debian Installer. These can also be used to install Debian to a system without using a Debian install disk, but instead from another GNU/Linux distribution.

```
$ sudo pbuilder --login --no-targz --debug --buildplace /sid-root
```

You see how a system shell running under sid environment is created as the following.

1. Copy local configuration ("'/etc/hosts","'/etc/hostname","'/etc/resolv.conf")
2. Mount "'/proc" filesystem
3. Mount "'/dev/pts" filesystem
4. Create "'/usr/sbin/policy-rc.d" which always exits with 101
5. Run "chroot /sid-root bin/bash -c 'exec -a -bash bin/bash'"

Note
Some programs under chroot may require access to more files from the parent system to function than pbuilder provides. For example, "/sys","'/etc/passwd","'/etc/group","'/var/run/utmp","'/var/log/wtmp", etc. may need to be bind-mounted or copied.

Note
The "/usr/sbin/policy-rc.d" file prevents daemon programs to be started automatically on the Debian system. See "/usr/share/doc/sysv-rc/README.policy-rc.d.gz".

Tip
The original purpose of the specialized chroot package, pbuilder is to construct a chroot system and builds a package inside the chroot. It is an ideal system to use to check that a package's build-dependencies are correct, and to be sure that unnecessary and wrong build dependencies do not exist in the resulting package.

Tip
Similar schroot package may give you an idea to run 1386 chroot system under amd64 parent system.
9.10.5 Multiple desktop systems

I recommend you to use **QEMU** or **VirtualBox** on a Debian stable system to run multiple desktop systems safely using virtualization. These enable you to run desktop applications of Debian unstable and testing without usual risks associated with them.

Since pure **QEMU** is very slow, it is recommended to accelerate it with **KVM** when the host system support it.

The virtual disk image "**virtdisk.qcow2**" containing a Debian system for **QEMU** can be created using [debian-installer: Small CDs](http://cdimage.debian.org/debian-cd/5.0.3/amd64/iso-cd/debian-503-amd64-netinst.iso) as follows.

```sh
$ wget http://cdimage.debian.org/debian-cd/5.0.3/amd64/iso-cd/debian-503-amd64-netinst.iso
$ qemu-img create -f qcow2 virtdisk.qcow2 5G
$ qemu -hda virtdisk.qcow2 -cdrom debian-503-amd64-netinst.iso -boot d -m 256
...```

See more tips at [Debian wiki: QEMU](http://www.debian.org/wiki/Debianwiki:QEMU).

**VirtualBox** comes with Qt GUI tools and quite intuitive. Its GUI and command line tools are explained in [VirtualBox User Manual](http://www.virtualbox.org/manual/) and [VirtualBox User Manual (PDF)](http://www.virtualbox.org/downloads/manual/en-US.pdf).

---

**Tip**

Running other GNU/Linux distributions such as **Ubuntu** and **Fedora** under virtualization is a great way to learn configuration tips. Other proprietary OSs may be run nicely under this GNU/Linux virtualization, too.
Chapter 10

Data management

Tools and tips for managing binary and text data on the Debian system are described.

10.1 Sharing, copying, and archiving

Warning
The uncoordinated write access to actively accessed devices and files from multiple processes must not be done to avoid the race condition. File locking mechanisms using flock(1) may be used to avoid it.

The security of the data and its controlled sharing have several aspects.

• The creation of data archive
• The remote storage access
• The duplication
• The tracking of the modification history
• The facilitation of data sharing
• The prevention of unauthorized file access
• The detection of unauthorized file modification

These can be realized by using some combination of tools.

• Archive and compression tools
• Copy and synchronization tools
• Network filesystems
• Removable storage media
• The secure shell
• The authentication system
• Version control system tools
• Hash and cryptographic encryption tools
10.1.1 Archive and compression tools

Here is a summary of archive and compression tools available on the Debian system.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>extension</th>
<th>command</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>tar</td>
<td>V:916, I:999</td>
<td>2880</td>
<td>.tar</td>
<td>tar(1)</td>
<td>the standard archiver (de facto standard)</td>
</tr>
<tr>
<td>cpio</td>
<td>V:464, I:999</td>
<td>989</td>
<td>.cpio</td>
<td>cpio(1)</td>
<td>Unix System V style archiver, use with find(1)</td>
</tr>
<tr>
<td>binutils</td>
<td>V:186, I:694</td>
<td>93</td>
<td>.ar</td>
<td>ar(1)</td>
<td>archiver for the creation of static libraries</td>
</tr>
<tr>
<td>fastjar</td>
<td>V:4, I:45</td>
<td>172</td>
<td>.jar</td>
<td>fastjar(1)</td>
<td>archiver for Java (zip like)</td>
</tr>
<tr>
<td>pax</td>
<td>V:14, I:36</td>
<td>164</td>
<td>.pax</td>
<td>pax(1)</td>
<td>new POSIX standard archiver, compromise between tar and cpio</td>
</tr>
<tr>
<td>gzip</td>
<td>V:888, I:999</td>
<td>243</td>
<td>.gz</td>
<td>gzip(1), zcat(1), ...</td>
<td>GNU LZ77 compression utility (de facto standard)</td>
</tr>
<tr>
<td>bzip2</td>
<td>V:178, I:953</td>
<td>196</td>
<td>.bz2</td>
<td>bzip2(1), bzcat(1), ...</td>
<td>Burrows-Wheeler block-sorting compression utility with higher compression ratio than gzip(1) (slower than gzip but with similar syntax)</td>
</tr>
<tr>
<td>lzma</td>
<td>V:3, I:39</td>
<td>141</td>
<td>.lzma</td>
<td>lzma(1)</td>
<td>LZMA compression utility with higher compression ratio than gzip(1) (deprecated)</td>
</tr>
<tr>
<td>xz-utils</td>
<td>V:434, I:964</td>
<td>442</td>
<td>.xz</td>
<td>xz(1), xzdec(1), ...</td>
<td>XZ compression utility with higher compression ratio than bzip2(1) (slower than gzip but faster than bzip2; replacement for LZMA compression utility)</td>
</tr>
<tr>
<td>p7zip</td>
<td>V:88, I:439</td>
<td>986</td>
<td>.7z</td>
<td>7zr(1), p7zip(1)</td>
<td>7-Zip file archiver with high compression ratio (LZMA compression)</td>
</tr>
<tr>
<td>p7zip-full</td>
<td>V:131, I:521</td>
<td>4659</td>
<td>.7z</td>
<td>7z(1), 7za(1)</td>
<td>7-Zip file archiver with high compression ratio (LZMA compression and others)</td>
</tr>
<tr>
<td>lzop</td>
<td>V:6, I:51</td>
<td>97</td>
<td>.lzo</td>
<td>lzop(1)</td>
<td>LZO compression utility with higher compression and decompression speed than gzip(1) (lower compression ratio than gzip with similar syntax)</td>
</tr>
<tr>
<td>zip</td>
<td>V:50, I:442</td>
<td>608</td>
<td>.zip</td>
<td>zip(1)</td>
<td>InfoZIP: DOS archive and compression tool</td>
</tr>
<tr>
<td>unzip</td>
<td>V:250, I:804</td>
<td>554</td>
<td>.zip</td>
<td>unzip(1)</td>
<td>InfoZIP: DOS unarchive and decompression tool</td>
</tr>
</tbody>
</table>

Table 10.1: List of archive and compression tools

⚠️ Warning
Do not set the "$TAPE" variable unless you know what to expect. It changes tar(1) behavior.

Note
The gzipped tar(1) archive uses the file extension ".tgz" or ".tar.gz".

Note
The xz-compressed tar(1) archive uses the file extension ".txz" or ".tar.xz".
Note
Popular compression method in FOSS tools such as tar(1) has been moving as follows: gzip → bzip2 → xz

Note
cp(1), scp(1) and tar(1) may have some limitation for special files. cpio(1) is most versatile.

Note
cpio(1) is designed to be used with find(1) and other commands and suitable for creating backup scripts since the file selection part of the script can be tested independently.

Note
Internal structure of Libreoffice data files are ".jar" file which can be opened also by unzip.

Note
The de-facto cross platform archive tool is zip. Use it as "zip -rX" to attain the maximum compatibility. Use also the "-s" option, if the maximum file size matters.

10.1.2 Copy and synchronization tools
Here is a summary of simple copy and backup tools available on the Debian system.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>tool</th>
<th>function</th>
</tr>
</thead>
<tbody>
<tr>
<td>coreutils</td>
<td>V:888, I:999</td>
<td>15719</td>
<td>GNU cp</td>
<td>locally copy files and directories (&quot;-a&quot; for recursive)</td>
</tr>
<tr>
<td>openssh-client</td>
<td>V:811, I:994</td>
<td>3545</td>
<td>scp</td>
<td>remotely copy files and directories (client, &quot;-r&quot; for recursive)</td>
</tr>
<tr>
<td>openssh-server</td>
<td>V:686, I:813</td>
<td>1449</td>
<td>sshd</td>
<td>remotely copy files and directories (remote server)</td>
</tr>
<tr>
<td>rsync</td>
<td>V:365, I:628</td>
<td>729</td>
<td>-</td>
<td>1-way remote synchronization and backup</td>
</tr>
<tr>
<td>unison</td>
<td>V:3, I:18</td>
<td>3457</td>
<td>-</td>
<td>2-way remote synchronization and backup</td>
</tr>
</tbody>
</table>

Table 10.2: List of copy and synchronization tools

Copying files with rsync(8) offers richer features than others.
• delta-transfer algorithm that sends only the differences between the source files and the existing files in the destination
• quick check algorithm (by default) that looks for files that have changed in size or in last-modified time
• "--exclude" and "--exclude-from" options similar to tar(1)
• "a trailing slash on the source directory" syntax that avoids creating an additional directory level at the destination.

Tip
Execution of the bkup script mentioned in Section 10.2.3 with the "-gl" option under cron(8) should provide very similar functionality as Plan9's dumpfs for the static data archive.

Tip
Version control system (VCS) tools in Table 10.11 can function as the multi-way copy and synchronization tools.
10.1.3 Idioms for the archive

Here are several ways to archive and unarchive the entire content of the directory "/source" using different tools.

**GNU tar(1):**

```
$ tar -cvJf archive.tar.xz ./source
$ tar -xvJf archive.tar.xz
```

Alternatively, by the following,

```
$ find ./source -xdev -print0 | tar -cvJf archive.tar.xz --null -F -
```

**cpio(1):**

```
$ find ./source -xdev -print0 | cpio -ov --null > archive.cpio; xz archive.cpio
$ zcat archive.cpio.xz | cpio -i
```

10.1.4 Idioms for the copy

Here are several ways to copy the entire content of the directory "/source" using different tools.

- **Local copy**: "/source" directory → "/dest" directory
- **Remote copy**: "/source" directory at local host → "/dest" directory at "user@host.dom" host

**rsync(8):**

```
cd ./source; rsync -aHAXSv . /dest
cd ./source; rsync -aHAXSv . user@host.dom:/dest
```

You can alternatively use "a trailing slash on the source directory" syntax.

```
rsync -aHAXSv ./source/ /dest
rsync -aHAXSv ./source/ user@host.dom:/dest
```

Alternatively, by the following,

```
cd ./source; find . -print0 | rsync -aHAXSv0 --files-from=- . /dest
cd ./source; find . -print0 | rsync -aHAXSv0 --files-from=- . user@host.dom:/dest
```

**GNU cp(1) and openSSH scp(1):**

```
cd ./source; cp -a . /dest
cd ./source; scp -pr . user@host.dom:/dest
```

**GNU tar(1):**
# (cd ./source & tar cf - .) | (cd /dest & tar xvfp - )
# (cd ./source & tar cf - .) | ssh user@host.dom `(cd /dest & tar xvfp - )`

cpio(1):

# cd ./source; find . -print0 | cpio -pvdm --null --sparse /dest

You can substitute "." with "foo" for all examples containing "." to copy files from "./source/foo" directory to "/dest/foo" directory.

You can substitute "." with the absolute path "/path/to/source/foo" for all examples containing "." to drop "cd ./source;".

These copy files to different locations depending on tools used as follows.

- "/dest/foo": rsync(8), GNU cp(1), and scp(1)
- "/dest/path/to/source/foo": GNU tar(1), and cpio(1)

Tip
rsync(8) and GNU cp(1) have option "-u" to skip files that are newer on the receiver.

10.1.5 Idioms for the selection of files

find(1) is used to select files for archive and copy commands (see Section 10.1.3 and Section 10.1.4) or for xargs(1) (see Section 9.3.9). This can be enhanced by using its command arguments.

Basic syntax of find(1) can be summarized as the following.

- Its conditional arguments are evaluated from left to right.
- This evaluation stops once its outcome is determined.
- "Logical OR" (specified by "-o" between conditionals) has lower precedence than "logical AND" (specified by "-a" or nothing between conditionals).
- "Logical NOT" (specified by "!" before a conditional) has higher precedence than "logical AND".
- "-prune" always returns logical TRUE and, if it is a directory, searching of file is stopped beyond this point.
- "-name" matches the base of the filename with shell glob (see Section 1.5.6) but it also matches its initial "." with metacharacters such as "*" and "?". (New POSIX feature)
- "-regex" matches the full path with emacs style BRE (see Section 1.6.2) as default.
- "-size" matches the file based on the file size (value preceded with "+" for larger, preceded with "-" for smaller)
- "-newer" matches the file newer than the one specified in its argument.
- "-print0" always returns logical TRUE and print the full filename (null terminated) on the standard output.

find(1) is often used with an idiomatic style as the following.

```
find /path/to \n -xdev -regextype posix-extended \n -type f -regex ".*\.cpio|.*" -prune -o \n -type d -regex ".*\.git" -prune -o \n -type f -size +99M -prune -o \n -type f -newer /path/to/timestamp .-print0
```
This means to do following actions.

1. Search all files starting from "/path/to"
2. Globally limit its search within its starting filesystem and uses ERE (see Section 1.6.2) instead
3. Exclude files matching regex of ".*\.cpio" or ".*~" from search by stop processing
4. Exclude directories matching regex of ".*/\.git" from search by stop processing
5. Exclude files larger than 99 Megabytes (units of 1048576 bytes) from search by stop processing
6. Print filenames which satisfy above search conditions and are newer than "/path/to/timestamp"

Please note the idiomatic use of "-prune -o" to exclude files in the above example.

**Note**
For non-Debian Unix-like system, some options may not be supported by find(1). In such a case, please consider to adjust matching methods and replace "-print0" with "-print". You may need to adjust related commands too.

### 10.1.6 Archive media

When choosing computer data storage media for important data archive, you should be careful about their limitations. For small personal data backup, I use CD-R and DVD-R by the brand name company and store in a cool, shaded, dry, clean environment. (Tape archive media seem to be popular for professional use.)

**Note**
A fire-resistant safe are meant for paper documents. Most of the computer data storage media have less temperature tolerance than paper. I usually rely on multiple secure encrypted copies stored in multiple secure locations.

Optimistic storage life of archive media seen on the net (mostly from vendor info).

- 100+ years: Acid free paper with ink
- 100 years: Optical storage (CD/DVD, CD/DVD-R)
- 30 years: Magnetic storage (tape, floppy)
- 20 years: Phase change optical storage (CD-RW)

These do not count on the mechanical failures due to handling etc.

Optimistic write cycle of archive media seen on the net (mostly from vendor info).

- 250,000+ cycles: Harddisk drive
- 10,000+ cycles: Flash memory
- 1,000 cycles: CD/DVD-RW
- 1 cycles: CD/DVD-R, paper

**Caution**
Figures of storage life and write cycle here should not be used for decisions on any critical data storage. Please consult the specific product information provided by the manufacture.
Tip
Since CD/DVD-R and paper have only 1 write cycle, they inherently prevent accidental data loss by overwriting. This is advantage!

Tip
If you need fast and frequent backup of large amount of data, a hard disk on a remote host linked by a fast network connection, may be the only realistic option.

10.1.7 Removable storage device

Removable storage devices may be any one of the following.

• USB flash drive
• Hard disk drive
• Optical disc drive
• Digital camera
• Digital music player

They may be connected via any one of the following.

• USB
• IEEE 1394 / FireWire
• PC Card

Modern desktop environments such as GNOME and KDE can mount these removable devices automatically without a matching "/etc/fstab" entry.

• udisks package provides a daemon and associated utilities to mount and unmount these devices.
• D-bus creates events to initiate automatic processes.
• PolicyKit provides required privileges.

Tip
Automounted devices may have the "uhelper=" mount option which is used by umount(8).

Tip
Automounting under modern desktop environment happens only when those removable media devices are not listed in "/etc/fstab".

Mount point under modern desktop environment is chosen as "/media/<disk_label>" which can be customized by the following.

• mlabel(1) for FAT filesystem
• genisoimage(1) with "-V" option for ISO9660 filesystem
• tune2fs(1) with "-L" option for ext2/ext3/ext4 filesystem

**Tip**
The choice of encoding may need to be provided as mount option (see Section 8.4.6).

**Tip**
The use of the GUI menu to unmount a filesystem may remove its dynamically generated device node such as "/dev/sdc". If you wish to keep its device node, unmount it with the umount(8) command from the shell prompt.

### 10.1.8 Filesystem choice for sharing data

When sharing data with other system via removable storage device, you should format it with common filesystem supported by both systems. Here is a list of filesystem choices.

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>Description of typical usage scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAT12</td>
<td>cross platform sharing of data on the floppy disk (&lt;32MiB)</td>
</tr>
<tr>
<td>FAT16</td>
<td>cross platform sharing of data on the small hard disk like device (&lt;2GiB)</td>
</tr>
<tr>
<td>FAT32</td>
<td>cross platform sharing of data on the large hard disk like device (&lt;8TiB, supported by newer than MS Windows95 OSR2)</td>
</tr>
<tr>
<td>NTFS</td>
<td>cross platform sharing of data on the large hard disk like device (supported natively on MS Windows NT and later version, and supported by NTFS-3G via FUSE on Linux)</td>
</tr>
<tr>
<td>ISO96600</td>
<td>cross platform sharing of static data on CD-R and DVD+/-R</td>
</tr>
<tr>
<td>UDF</td>
<td>incremental data writing on CD-R and DVD+/-R (new)</td>
</tr>
<tr>
<td>MINIX filesystem</td>
<td>space efficient unix file data storage on the floppy disk</td>
</tr>
<tr>
<td>ext2 filesystem</td>
<td>sharing of data on the hard disk like device with older Linux systems</td>
</tr>
<tr>
<td>ext3 filesystem</td>
<td>sharing of data on the hard disk like device with older Linux systems</td>
</tr>
<tr>
<td>ext4 filesystem</td>
<td>sharing of data on the hard disk like device with current Linux systems</td>
</tr>
</tbody>
</table>

Table 10.3: List of filesystem choices for removable storage devices with typical usage scenarios

**Tip**
See Section 9.8.1 for cross platform sharing of data using device level encryption.

The FAT filesystem is supported by almost all modern operating systems and is quite useful for the data exchange purpose via removable hard disk like media.

When formatting removable hard disk like devices for cross platform sharing of data with the FAT filesystem, the following should be safe choices.

• Partitioning them with fdisk(8), cfdisk(8) or parted(8) (see Section 9.5.2) into a single primary partition and to mark it as the following.
  – Type "6" for FAT16 for media smaller than 2GB.
  – Type "c" for FAT32 (LBA) for larger media.

• Formatting the primary partition with mkfs.vfat(8) with the following.
  – Just its device name, e.g. "/dev/sda1" for FAT16
  – The explicit option and its device name, e.g. "-F 32 /dev/sda1" for FAT32
When using the FAT or ISO9660 filesystems for sharing data, the following should be the safe considerations.

- Archiving files into an archive file first using `tar(1)`, or `cpio(1)` to retain the long filename, the symbolic link, the original Unix file permission and the owner information.
- Splitting the archive file into less than 2 GiB chunks with the `split(1)` command to protect it from the file size limitation.
- Encrypting the archive file to secure its contents from the unauthorized access.

**Note**
For FAT filesystems by its design, the maximum file size is \(2^{32} - 1\) bytes = \((4\text{GiB} - 1\text{byte})\). For some applications on the older 32 bit OS, the maximum file size was even smaller \((2^{31} - 1\text{bytes}) = (2\text{GiB} - 1\text{byte})\). Debian does not suffer the latter problem.

**Note**
Microsoft itself does not recommend to use FAT for drives or partitions of over 200 MB. Microsoft highlights its short comings such as inefficient disk space usage in their "Overview of FAT, HPFS, and NTFS File Systems". Of course, we should normally use the ext4 filesystem for Linux.

**Tip**
For more on filesystems and accessing filesystems, please read "Filesystems HOWTO".

### 10.1.9 Sharing data via network

When sharing data with other system via network, you should use common service. Here are some hints.

<table>
<thead>
<tr>
<th>network service</th>
<th>description of typical usage scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMB/CIFS network mounted filesystem with Samba</td>
<td>sharing files via &quot;Microsoft Windows Network&quot;, see smb.conf(5) and The Official Samba 3.x.x HOWTO and Reference Guide or the samba-doc package</td>
</tr>
<tr>
<td>NFS network mounted filesystem with the Linux kernel</td>
<td>sharing files via &quot;Unix/Linux Network&quot;, see exports(5) and Linux NFS-HOWTO</td>
</tr>
<tr>
<td>HTTP service</td>
<td>sharing file between the web server/client</td>
</tr>
<tr>
<td>HTTPS service</td>
<td>sharing file between the web server/client with encrypted Secure Sockets Layer (SSL) or Transport Layer Security (TLS)</td>
</tr>
<tr>
<td>FTP service</td>
<td>sharing file between the FTP server/client</td>
</tr>
</tbody>
</table>

Table 10.4: List of the network service to chose with the typical usage scenario

Although these filesystems mounted over network and file transfer methods over network are quite convenient for sharing data, these may be insecure. Their network connection must be secured by the following.

- Encrypt it with SSL/TLS
- Tunnel it via SSH
- Tunnel it via VPN
- Limit it behind the secure firewall

See also Section 6.10 and Section 6.11.
10.2 Backup and recovery

We all know that computers fail sometime or human errors cause system and data damages. Backup and recovery operations are the essential part of successful system administration. All possible failure modes hit you some day.

**Tip**
Keep your backup system simple and backup your system often. Having backup data is more important than how technically good your backup method is.

There are 3 key factors which determine actual backup and recovery policy.

1. Knowing what to backup and recover.
   - Data files directly created by you: data in "/~/
   - Data files created by applications used by you: data in "/var/" (except "/var/cache/", "/var/run/", and "/var/tmp/")
   - System configuration files: data in "/etc/"
   - Local softwares: data in "/usr/local/" or "/opt/"
   - System installation information: a memo in plain text on key steps (partition, ⋮)
   - Proven set of data: confirmed by experimental recovery operations in advance

2. Knowing how to backup and recover.
   - Secure storage of data: protection from overwrite and system failure
   - Frequent backup: scheduled backup
   - Redundant backup: data mirroring
   - Fool proof process: easy single command backup

3. Assessing risks and costs involved.
   - Value of data when lost
   - Required resources for backup: human, hardware, software, ⋮
   - Failure mode and their possibility

**Note**
Do not back up the pseudo-filesystem contents found on "/proc", "/sys", "/tmp", and "/run" (see Section 1.2.12 and Section 1.2.13). Unless you know exactly what you are doing, they are huge useless data.

As for secure storage of data, data should be at least on different disk partitions preferably on different disks and machines to withstand the filesystem corruption. Important data are best stored on a write-once media such as CD/DVD-R to prevent overwrite accidents. (See Section 9.7 for how to write to the storage media from the shell commandline. GNOME desktop GUI environment gives you easy access via menu: "Places → CD/DVD Creator").

**Note**
You may wish to stop some application daemons such as MTA (see Section 6.3) while backing up data.
Note
You should pay extra care to the backup and restoration of identity related data files such as
"/etc/ssh/ssh_host_dsa_key", "/etc/ssh/ssh_host_rsa_key", "/.gnupg/*", "/~/.ssh/*", "/etc/passwd", "/etc/shadow", "/etc/fetchmailrc", "/popularity-contest.conf", "/etc/ppp/pap-secrets", and "/etc/exim4/passwd.client". Some of these data can not be regen-
erated by entering the same input string to the system.

Note
If you run a cron job as a user process, you must restore files in "/var/spool/cron/crontabs" directory and
restart cron(8). See Section 9.3.14 for cron(8) and crontab(1).

10.2.1 Backup utility suites

Here is a select list of notable backup utility suites available on the Debian system.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dump</td>
<td>V:1,I:6</td>
<td>340</td>
<td>4.4 BSD dump(8) and restore(8) for ext2/ext3/ext4 filesystems</td>
</tr>
<tr>
<td>xfdump</td>
<td>V:0,I:10</td>
<td>834</td>
<td>dump and restore with xfdump(8) and xfsrestore(8) for XFS</td>
</tr>
<tr>
<td>backupninja</td>
<td>V:4,I:4</td>
<td>355</td>
<td>lightweight, extensible meta-backup system</td>
</tr>
<tr>
<td>bacula-common</td>
<td>V:10,I:17</td>
<td>2369</td>
<td>Bacula: network backup, recovery and verification - common support files</td>
</tr>
<tr>
<td>bacula-client</td>
<td>I:4</td>
<td>175</td>
<td>Bacula: network backup, recovery and verification - client meta-package</td>
</tr>
<tr>
<td>bacula-console</td>
<td>V:1,I:6</td>
<td>75</td>
<td>Bacula: network backup, recovery and verification - text console</td>
</tr>
<tr>
<td>bacula-server</td>
<td>I:1</td>
<td>175</td>
<td>Bacula: network backup, recovery and verification - server meta-package</td>
</tr>
<tr>
<td>amanda-common</td>
<td>V:1,I:2</td>
<td>9890</td>
<td>Amanda: Advanced Maryland Automatic Network Disk Archiver (Libs)</td>
</tr>
<tr>
<td>amanda-client</td>
<td>V:1,I:2</td>
<td>1133</td>
<td>Amanda: Advanced Maryland Automatic Network Disk Archiver (Client)</td>
</tr>
<tr>
<td>amanda-server</td>
<td>V:0,I:0</td>
<td>1089</td>
<td>Amanda: Advanced Maryland Automatic Network Disk Archiver (Server)</td>
</tr>
<tr>
<td>backup-manager</td>
<td>V:1,I:2</td>
<td>571</td>
<td>command-line backup tool</td>
</tr>
<tr>
<td>backup2l</td>
<td>V:0,I:1</td>
<td>114</td>
<td>low-maintenance backup/restore tool for mountable media (disk based)</td>
</tr>
<tr>
<td>backuppc</td>
<td>V:4,I:4</td>
<td>2284</td>
<td>BackupPC is a high-performance, enterprise-grade system for backing up PCs (disk based)</td>
</tr>
<tr>
<td>duplicity</td>
<td>V:8,I:15</td>
<td>1609</td>
<td>(remote) incremental backup</td>
</tr>
<tr>
<td>Flexbackup</td>
<td>V:0,I:0</td>
<td>243</td>
<td>(remote) incremental backup</td>
</tr>
<tr>
<td>rdiff-backup</td>
<td>V:8,I:16</td>
<td>704</td>
<td>(remote) incremental backup</td>
</tr>
<tr>
<td>restic</td>
<td>V:0,I:1</td>
<td>22182</td>
<td>(remote) incremental backup</td>
</tr>
<tr>
<td>rsnapshot</td>
<td>V:6,I:11</td>
<td>452</td>
<td>(remote) incremental backup</td>
</tr>
<tr>
<td>slbackup</td>
<td>V:0,I:0</td>
<td>152</td>
<td>(remote) incremental backup</td>
</tr>
</tbody>
</table>

Table 10.5: List of backup suite utilities

Backup tools have their specialized focuses.

- **Mondo Rescue** is a backup system to facilitate restoration of complete system quickly from backup CD/DVD etc. without going through normal system installation processes.

- Regular backups of user data can be realized by a simple script (Section 10.2.2) and cron(8).
• Bacula, Amanda, and BackupPC are full featured backup suite utilities which are focused on regular backups over network.

Basic tools described in Section 10.1.1 and Section 10.1.2 can be used to facilitate system backup via custom scripts. Such script can be enhanced by the following.

• The restic package enables incremental (remote) backups.
• The rdiff-backup package enables incremental (remote) backups.
• The dump package helps to archive and restore the whole filesystem incrementally and efficiently.

**Tip**
See files in "/usr/share/doc/dump/" and "Is dump really deprecated?" to learn about the dump package.

### 10.2.2 An example script for the system backup

For a personal Debian desktop system running unstable suite, I only need to protect personal and critical data. I reinstall system once a year anyway. Thus I see no reason to backup the whole system or to install a full featured backup utility.

I use a simple script to make a backup archive and burn it into CD/DVD using GUI. Here is an example script for this.

```bash
#!/bin/sh -e
Copyright (C) 2007-2008 Osamu Aoki <osamu@debian.org>, Public Domain
BUUID=1000; USER=osamu # UID and name of a user who accesses backup files
BUDIR="~/var/backups"
XDIR0=".+/Mail|.+/Desktop"
XDIR1=".+/\.[^\s].*%|.+/\.[^\s].*%|.+/?\.[^\s].*%|.+[/\s].*%|.+[/\s].*%|.+[/\s].*%
XDIR2=".+/\.[^\s].*%|.+[/\s].*%|.+[/\s].*%
XSFX0=".+\.[^\s].*%|.+\.[^\s].*%|.+\.[^\s].*%
XSFX1=".+\.[^\s].*%|.+\.[^\s].*%|.+\.[^\s].*%
XSFX2=".+\.[^\s].*%|.+\.[^\s].*%|.+\.[^\s].*%
XSFX3=".+\.[^\s].*%
XSFX4=".+\.[^\s].*%
XSFX5=".+\.[^\s].*%
XSFX6=".+\.[^\s].*%
XSFX7=".+\.[^\s].*%
XSFX8=".+\.[^\s].*%
XSFX9=".+\.[^\s].*%
XSFX10=".+\.[^\s].*%
XSFX11=".+\.[^\s].*%
XSFX12=".+\.[^\s].*%
XSFX13=".+\.[^\s].*%
XSFX14=".+\.[^\s].*%
XSFX15=".+\.[^\s].*%
XSFX16=".+\.[^\s].*%
XSFX17=".+\.[^\s].*%
XSFX18=".+\.[^\s].*%
XSFX19=".+\.[^\s].*%
XSFX20=".+\.[^\s].*%
XSFX21=".+\.[^\s].*%
XSFX22=".+\.[^\s].*%
XSFX23=".+\.[^\s].*%
XSFX24=".+\.[^\s].*%
XSFX25=".+\.[^\s].*%
XSFX26=".+\.[^\s].*%
XSFX27=".+\.[^\s].*%
XSFX28=".+\.[^\s].*%
XSFX29=".+\.[^\s].*%
XSFX30=".+\.[^\s].*%
XSFX31=".+\.[^\s].*%
XSFX32=".+\.[^\s].*%
XSFX33=".+\.[^\s].*%
XSFX34=".+\.[^\s].*%
XSFX35=".+\.[^\s].*%
XSFX36=".+\.[^\s].*%
XSFX37=".+\.[^\s].*%
XSFX38=".+\.[^\s].*%
XSFX39=".+\.[^\s].*%
XSFX40=".+\.[^\s].*%
XSFX41=".+\.[^\s].*%
XSFX42=".+\.[^\s].*%
XSFX43=".+\.[^\s].*%
XSFX44=".+\.[^\s].*%
XSFX45=".+\.[^\s].*%
XSFX46=".+\.[^\s].*%
XSFX47=".+\.[^\s].*%
XSFX48=".+\.[^\s].*%
XSFX49=".+\.[^\s].*%
XSFX50=".+\.[^\s].*%
XSFX51=".+\.[^\s].*%
XSFX52=".+\.[^\s].*%
XSFX53=".+\.[^\s].*%
XSFX54=".+\.[^\s].*%
XSFX55=".+\.[^\s].*%
XSFX56=".+\.[^\s].*%
XSFX57=".+\.[^\s].*%
XSFX58=".+\.[^\s].*%
XSFX59=".+\.[^\s].*%
XSFX60=".+\.[^\s].*%
XSFX61=".+\.[^\s].*%
XSFX62=".+\.[^\s].*%
XSFX63=".+\.[^\s].*%
XSFX64=".+\.[^\s].*%
XSFX65=".+\.[^\s].*%
XSFX66=".+\.[^\s].*%
XSFX67=".+\.[^\s].*%
XSFX68=".+\.[^\s].*%
XSFX69=".+\.[^\s].*%
XSFX70=".+\.[^\s].*%
XSFX71=".+\.[^\s].*%
XSFX72=".+\.[^\s].*%
XSFX73=".+\.[^\s].*%
XSFX74=".+\.[^\s].*%
XSFX75=".+\.[^\s].*%
XSFX76=".+\.[^\s].*%
XSFX77=".+\.[^\s].*%
XSFX78=".+\.[^\s].*%
XSFX79=".+\.[^\s].*%
XSFX80=".+\.[^\s].*%
XSFX81=".+\.[^\s].*%
XSFX82=".+\.[^\s].*%
XSFX83=".+\.[^\s].*%
XSFX84=".+\.[^\s].*%
XSFX85=".+\.[^\s].*%
XSFX86=".+\.[^\s].*%
XSFX87=".+\.[^\s].*%
XSFX88=".+\.[^\s].*%
XSFX89=".+\.[^\s].*%
XSFX90=".+\.[^\s].*%
XSFX91=".+\.[^\s].*%
XSFX92=".+\.[^\s].*%
XSFX93=".+\.[^\s].*%
XSFX94=".+\.[^\s].*%
XSFX95=".+\.[^\s].*%
XSFX96=".+\.[^\s].*%
XSFX97=".+\.[^\s].*%
XSFX98=".+\.[^\s].*%
XSFX99=".+\.[^\s].*%
XSFX100=".+\.[^\s].*%"$DATE>Email "$SEND" "$MCR" "$MCR2" "$MCR3" "$MCR4"
[-d "$BUDIR"] || mkdir -p "$BUDIR"
umask 077
dpkg --get-selections |* > /var/lib/dpkg/dpkg-selections.list
dpkg-get-selections > /var/cache/dpkgcache/dpkgcache-
find /etc /usr/local /opt /var/lib/dpkg/dpkg-selections.list
|-- /var/cache/dpkgcache/dpkgcache-selections -xdev -print0
 find/home/$USER /root -xdev -regextype posix-extended
 -type d -regex "$XDIR0|$XDIR1" -prune -o -type f -regex "$XSFX" -prune -o
 -type f -size "$SIZE" -prune -o -print0
 find /home/$USER/Mail/Inbox /home/$USER/Mail/Outbox -print0
 find /home/$USER/Desktope -xdev -regextype posix-extended
 -type d -regex "$XDIR2" -prune -o -type f -regex "$XSFX" -prune -o
 -type f -size "$SIZE" -prune -o -print0
 } | cpio -ov --null -o "$BUDIR/$BUUID/$DATE".cpio
cpio -ov --null -o "$BUDIR/$BUUID/$DATE".cpio
chown "$BUUID" "$BUDIR/$BUUID/$DATE".cpio
touch "$BUDIR/backup.stamp"
```

This is meant to be a script example executed from root.
I expect you to change and execute this as follows.

• Edit this script to cover all your important data (see Section 10.1.5 and Section 10.2).
• Replace "find " with "find -newer " and "find " -print0" to make a incremental backup.
• Transfer backup files to the remote host using scp(1) or rsync(1) or burn them to CD/DVD for extra data security. (I use GNOME desktop GUI for burning CD/DVD. See Section 12.1.8 for extra redundancy.)

Keep it simple!

---

**Tip**

You can recover debconf configuration data with "debconf-set-selections debconf-selections" and dpkg selection data with "dpkg --set-selection <dpkg-selections.list".

---

### 10.2.3 A copy script for the data backup

For the set of data under a directory tree, the copy with "cp -a" provides the normal backup.

For the set of large non-overwritten static data under a directory tree such as the one under the ""/var/cache/apt/packages/"" directory, hardlinks with "cp -a" provide an alternative to the normal backup with efficient use of the disk space.

Here is a copy script, which I named as bkpup, for the data backup. This script copies all (non-VCS) files under the current directory to the dated directory on the parent directory or on a remote host.

```bash
#!/bin/sh

Copyright (C) 2007-2008 Osamu Aoki <osamu@debian.org>, Public Domain

fdoit(){ find . -type d \(-iname ".*" -o -iname "CVS" \) -prune -o -print0;}
fall(){ [find . -print0;]

mkdircd(){ mkdir -p "$1"; chmod 700 "$1"; cd "$1";/dev/null;}

FIND="fdoit";OPT="-a";MODE="CPIOI"

HOST="";EXTP="";

MAGIC NUMBER FOR DEBFIND
BBUP="$basenamex$($pwd)".bup";TIME="$(date +%Y%m%d-%H%M%S)";BU="$BBUP/$TIME"

while getopts gCpiode: OPTION; host; do case $f in
g) MODE="GNUCP"; # cp (GNU)
c) MODE="CPIOI"; # cpio -p
C) MODE="CPIOSSH"; # cpio/ssh
s) MODE="CPIOSHSSH"; # cpio/ssh
T) MODE="TAILSSH"; # tar/ssh
r) OPT="-alv"; # hardlink (GNU cp)
L) OPT="-av"; # copy (GNU cp)
a) FIND="fall"; # find all
A) FIND="fdoit"; # find non CVS/ .??/
x) set -x; # trace
e) EXTP="$OPTARG"; # hostname -f
h) HOST="$OPTARG"; # user@remotestar.example.com
T) MODE="TEST"; # test find mode

) echo "use -x for trace."

esac; done

shift $(expr $OPTIND - 1)

if [$# -gt 0]; then
 for x in $@; do cp $OPT $x.$TIME; done
else if [$MODE = GNUCP]; then
 mkdir -p "./$BU"; chmod 700 "./$BU"; cp $OPT "./$BU"
else if [$MODE = CPIOI]; then
 mkdir -p "./$BU"; chmod 700 "./$BU"
 $FIND[cpio --null --sparse -pvd ../$BU
else if [$MODE = CPIOSSH]; then
 $FIND[cpio -ov --null | (mkdircd "./$BU"&&cpio -i)
else if [$MODE = CPIOSHSSH]; then
 $FIND[cpio -ov --null | ssh -C $HOST "$(mkdircd "$EXTP/$BU"&&cpio -i)"
else if [$MODE = TARSSH]; then
 (tar cvf .)ssh -C $HOST "$(mkdircd "$EXTP/$BU"&& tar xvf -)"
else if [$MODE = RSYNCSSH]; then
 # ... (missing part)

```
```bash
rsync -aHAXSv ./ "${HOST}:${EXTP}-${BKUP}-${TIME}"
else
echo "Any other idea to backup?"
$FIND | xargs -0 -n 1 echo
fi
```

This is meant to be command examples. Please read script and edit it by yourself before using it.

---

**Tip**
I keep this `bkup` in my "/usr/local/bin/" directory. I issue this `bkup` command without any option in the working directory whenever I need a temporary snapshot backup.

---

**Tip**
For making snapshot history of a source file tree or a configuration file tree, it is easier and space efficient to use `git(7)` (see Section 10.6.5).

---

### 10.3 Data security infrastructure

The data security infrastructure is provided by the combination of data encryption tool, message digest tool, and signature tool.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>command</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gnupg</td>
<td>V:737, I:996</td>
<td>727</td>
<td>gpg(1)</td>
<td>GNU Privacy Guard - OpenPGP encryption and signing tool</td>
</tr>
<tr>
<td>gpgv</td>
<td>V:880, I:999</td>
<td>840</td>
<td>gpgv(1)</td>
<td>GNU Privacy Guard - signature verification tool</td>
</tr>
<tr>
<td>paperkey</td>
<td>V:0, I:6</td>
<td>58</td>
<td>paperkey(1)</td>
<td>extract just the secret information out of OpenPGP secret keys</td>
</tr>
<tr>
<td>cryptsetup</td>
<td>V:32, I:80</td>
<td>67</td>
<td>cryptsetup(8),...</td>
<td>utilities for dm-crypto block device encryption supporting LUKS</td>
</tr>
<tr>
<td>ecryptfs-utils</td>
<td>V:5, I:8</td>
<td>396</td>
<td>ecryptfs(7),...</td>
<td>utilities for ecryptfs stacked filesystem encryption</td>
</tr>
<tr>
<td>coreutils</td>
<td>V:888, I:999</td>
<td>15719</td>
<td>md5sum(1)</td>
<td>compute and check MD5 message digest</td>
</tr>
<tr>
<td>coreutils</td>
<td>V:888, I:999</td>
<td>15719</td>
<td>shalsum(1)</td>
<td>compute and check SHA1 message digest</td>
</tr>
<tr>
<td>openssl</td>
<td>V:808, I:992</td>
<td>1452</td>
<td>openssl(1ssl)</td>
<td>compute message digest with &quot;openssl dgst&quot; (OpenSSL)</td>
</tr>
</tbody>
</table>

Table 10.6: List of data security infrastructure tools

See Section 9.8 on `dm-crypto` and `ecryptfs` which implement automatic data encryption infrastructure via Linux kernel modules.

#### 10.3.1 Key management for GnuPG

Here are GNU Privacy Guard commands for the basic key management.

Here is the meaning of the trust code.

The following uploads my key "1DD8D791" to the popular keyserver "hkp://keys.gnupg.net".

```bash
$ gpg --keyserver hkp://keys.gnupg.net --send-keys 1DD8D791
```

A good default keyserver set up in "~/.gnupg/gpg.conf" (or old location "~/.gnupg/options") contains the following.
Table 10.7: List of GNU Privacy Guard commands for the key management

<table>
<thead>
<tr>
<th>command</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gpg --gen-key</td>
<td>generate a new key</td>
</tr>
<tr>
<td>gpg --gen-revoke my_user_ID</td>
<td>generate revoke key for my_user_ID</td>
</tr>
<tr>
<td>gpg --edit-key user_ID</td>
<td>edit key interactively, “help” for help</td>
</tr>
<tr>
<td>gpg --o file --export</td>
<td>export all keys to file</td>
</tr>
<tr>
<td>gpg --import file</td>
<td>import all keys from file</td>
</tr>
<tr>
<td>gpg --send-keys user_ID</td>
<td>send key of user_ID to keyserver</td>
</tr>
<tr>
<td>gpg --recv-keys user_ID</td>
<td>recv. key of user_ID from keyserver</td>
</tr>
<tr>
<td>gpg --list-keys user_ID</td>
<td>list keys of user_ID</td>
</tr>
<tr>
<td>gpg --list-sigs user_ID</td>
<td>list sig. of user_ID</td>
</tr>
<tr>
<td>gpg --check-sigs user_ID</td>
<td>check sig. of user_ID</td>
</tr>
<tr>
<td>gpg --fingerprint user_ID</td>
<td>check fingerprint of user_ID</td>
</tr>
<tr>
<td>gpg --refresh-keys</td>
<td>update local keyring</td>
</tr>
</tbody>
</table>

Table 10.8: List of the meaning of the trust code

<table>
<thead>
<tr>
<th>code</th>
<th>description of trust</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>no owner trust assigned / not yet calculated</td>
</tr>
<tr>
<td>e</td>
<td>trust calculation failed</td>
</tr>
<tr>
<td>q</td>
<td>not enough information for calculation</td>
</tr>
<tr>
<td>n</td>
<td>never trust this key</td>
</tr>
<tr>
<td>m</td>
<td>marginally trusted</td>
</tr>
<tr>
<td>f</td>
<td>fully trusted</td>
</tr>
<tr>
<td>u</td>
<td>ultimately trusted</td>
</tr>
</tbody>
</table>

keyserver hkp://keys.gnupg.net

The following obtains unknown keys from the keys server.

```
$ gpg --list-sigs --with-colons | grep '^sig.*\([User ID not found]\)' \
 cut -d '::' -f 5 | sort | uniq | xargs gpg --recv-keys
```

There was a bug in OpenPGP Public Key Server (pre version 0.9.6) which corrupted key with more than 2 sub-keys. The newer gnupg (>1.2.1-2) package can handle these corrupted subkeys. See gpg(1) under "--repair-pks-subkey-bug" option.

### 10.3.2 Using GnuPG on files

Here are examples for using GNU Privacy Guard commands on files.

### 10.3.3 Using GnuPG with Mutt

Add the following to "/~/.muttrc" to keep a slow GnuPG from automatically starting, while allowing it to be used by typing "S" at the index menu.

```
macro index S ":toggle pgp_verify_sig\n"
set pgp_verify_sig=no
```
<table>
<thead>
<tr>
<th>command</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>gpg -a -s file</code></td>
<td>sign file into ASCII armored file.asc</td>
</tr>
<tr>
<td><code>gpg --armor --sign file</code></td>
<td>..</td>
</tr>
<tr>
<td><code>gpg --clearsign file</code></td>
<td>clear-sign message</td>
</tr>
<tr>
<td><code>gpg --clearsign file@mail foo@example.org</code></td>
<td>mail a clear-signed message to <a href="mailto:foo@example.org">foo@example.org</a></td>
</tr>
<tr>
<td><code>gpg --clearsign --not-dash-escaped patchfile</code></td>
<td>clear-sign patchfile</td>
</tr>
<tr>
<td><code>gpg --verify file</code></td>
<td>verify clear-signed file</td>
</tr>
<tr>
<td><code>gpg -o file.sig -b file</code></td>
<td>create detached signature</td>
</tr>
<tr>
<td><code>gpg -o file.sig --detach-sig file</code></td>
<td>..</td>
</tr>
<tr>
<td><code>gpg --verify file.sig file</code></td>
<td>verify file with file.sig</td>
</tr>
<tr>
<td><code>gpg -o crypt_file.gpg -r name -e file</code></td>
<td>public-key encryption intended for name from file to binary crypt_file.gpg</td>
</tr>
<tr>
<td><code>gpg -o crypt_file.gpg --recipient name --encrypt file</code></td>
<td>..</td>
</tr>
<tr>
<td><code>gpg -o crypt_file.asc -a -r name -e file</code></td>
<td>public-key encryption intended for name from file to ASCII armored crypt_file.asc</td>
</tr>
<tr>
<td><code>gpg -o crypt_file.gpg -c file</code></td>
<td>symmetric encryption from file to crypt_file.gpg</td>
</tr>
<tr>
<td><code>gpg -o crypt_file.gpg --symmetric file</code></td>
<td>..</td>
</tr>
<tr>
<td><code>gpg -o crypt_file.asc -a -c file</code></td>
<td>symmetric encryption intended for name from file to ASCII armored crypt_file.asc</td>
</tr>
<tr>
<td><code>gpg -o file -d crypt_file.gpg -r name</code></td>
<td>decryption</td>
</tr>
<tr>
<td><code>gpg -o file --decrypt crypt_file.gpg</code></td>
<td>..</td>
</tr>
</tbody>
</table>

Table 10.9: List of GNU Privacy Guard commands on files
10.3.4 Using GnuPG with Vim

The `gnupg` plugin let you run GnuPG transparently for files with extension ".gpg", ".asc", and ".ppg".

```
aptitude install vim-scripts vim-addon-manager
$ vim-addons install gnupg
```

10.3.5 The MD5 sum

`md5sum(1)` provides utility to make a digest file using the method in `rfc1321` and verifying each file with it.

```
$ md5sum foo bar >baz.md5
$ cat baz.md5
d3b07384d119edec49eaa6238ad5ff00 foo
c157a79031e1c40f85931029bc5fc552 bar
$ md5sum -c baz.md5
 foo: OK
 bar: OK
```

**Note**
The computation for the MD5 sum is less CPU intensive than the one for the cryptographic signature by GNU Privacy Guard (GnuPG). Usually, only the top level digest file is cryptographically signed to ensure data integrity.

10.4 Source code merge tools

There are many merge tools for the source code. Following commands caught my eyes.

10.4.1 Extracting differences for source files

The following procedures extract differences between two source files and create unified diff files "file.patch0" or "file.patch1", depending on the file location.

```
$ diff -u file.old file.new > file.patch0
$ diff -u old/file new/file > file.patch1
```

10.4.2 Merging updates for source files

The diff file (alternatively called patch file) is used to send a program update. The receiving party applies this update to another file by the following.

```
$ patch -p0 file < file.patch0
$ patch -p1 file < file.patch1
```
<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>command</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>diffutils</td>
<td>V:874,I:987</td>
<td>1574</td>
<td>diff(1)</td>
<td>compare files line by line</td>
</tr>
<tr>
<td>diffutils</td>
<td>V:874,I:987</td>
<td>1574</td>
<td>diff3(1)</td>
<td>compare and merges three files line by line</td>
</tr>
<tr>
<td>vim</td>
<td>V:119,I:395</td>
<td>2799</td>
<td>vimdiff(1)</td>
<td>compare 2 files side by side in vim</td>
</tr>
<tr>
<td>patch</td>
<td>V:115,I:779</td>
<td>243</td>
<td>patch(1)</td>
<td>apply a diff file to an original</td>
</tr>
<tr>
<td>dpatch</td>
<td>V:1,I:13</td>
<td>191</td>
<td>dpatch(1)</td>
<td>manage series of patches for Debian package</td>
</tr>
<tr>
<td>diffstat</td>
<td>V:17,I:179</td>
<td>69</td>
<td>diffstat(1)</td>
<td>produce a histogram of changes by the diff</td>
</tr>
<tr>
<td>patchutils</td>
<td>V:19,I:173</td>
<td>223</td>
<td>combinediff(1)</td>
<td>create a cumulative patch from two incremental patches</td>
</tr>
<tr>
<td>patchutils</td>
<td>V:19,I:173</td>
<td>223</td>
<td>dehtmldiff(1)</td>
<td>extract a diff from an HTML page</td>
</tr>
<tr>
<td>patchutils</td>
<td>V:19,I:173</td>
<td>223</td>
<td>filterdiff(1)</td>
<td>extract or excludes diffs from a diff file</td>
</tr>
<tr>
<td>patchutils</td>
<td>V:19,I:173</td>
<td>223</td>
<td>fixcvsdiff(1)</td>
<td>fix diff files created by CVS that patch(1) mis-interprets</td>
</tr>
<tr>
<td>patchutils</td>
<td>V:19,I:173</td>
<td>223</td>
<td>flipdiff(1)</td>
<td>exchange the order of two patches</td>
</tr>
<tr>
<td>patchutils</td>
<td>V:19,I:173</td>
<td>223</td>
<td>grepdiff(1)</td>
<td>show which files are modified by a patch matching a regex</td>
</tr>
<tr>
<td>patchutils</td>
<td>V:19,I:173</td>
<td>223</td>
<td>interdiff(1)</td>
<td>show differences between two unified diff files</td>
</tr>
<tr>
<td>patchutils</td>
<td>V:19,I:173</td>
<td>223</td>
<td>lsdiff(1)</td>
<td>show which files are modified by a patch</td>
</tr>
<tr>
<td>patchutils</td>
<td>V:19,I:173</td>
<td>223</td>
<td>recountdiff(1)</td>
<td>recompute counts and offsets in unified context diffs</td>
</tr>
<tr>
<td>patchutils</td>
<td>V:19,I:173</td>
<td>223</td>
<td>rediff(1)</td>
<td>fix offsets and counts of a hand-edited diff</td>
</tr>
<tr>
<td>patchutils</td>
<td>V:19,I:173</td>
<td>223</td>
<td>splitdiff(1)</td>
<td>separate out incremental patches</td>
</tr>
<tr>
<td>patchutils</td>
<td>V:19,I:173</td>
<td>223</td>
<td>unwrappdiff(1)</td>
<td>demangle patches that have been word-wrapped</td>
</tr>
<tr>
<td>quilt</td>
<td>V:0,I:0</td>
<td>174</td>
<td>wiggle(1)</td>
<td>apply rejected patches</td>
</tr>
<tr>
<td>meld</td>
<td>V:3,I:38</td>
<td>785</td>
<td>quilt(1)</td>
<td>manage series of patches</td>
</tr>
<tr>
<td>meld</td>
<td>V:17,I:42</td>
<td>2942</td>
<td>meld(1)</td>
<td>compare and merge files (GTK)</td>
</tr>
<tr>
<td>dirdiff</td>
<td>V:0,I:2</td>
<td>161</td>
<td>dirdiff(1)</td>
<td>display differences and merge changes between directory trees</td>
</tr>
<tr>
<td>docdiff</td>
<td>V:0,I:0</td>
<td>573</td>
<td>docdiff(1)</td>
<td>compare two files word by word / char by char</td>
</tr>
<tr>
<td>imediff</td>
<td>V:0,I:0</td>
<td>157</td>
<td>imediff(1)</td>
<td>interactive full screen 2/3-way merge tool</td>
</tr>
<tr>
<td>makepatch</td>
<td>V:0,I:0</td>
<td>102</td>
<td>makepatch(1)</td>
<td>generate extended patch files</td>
</tr>
<tr>
<td>makepatch</td>
<td>V:0,I:0</td>
<td>102</td>
<td>appypatch(1)</td>
<td>apply extended patch files</td>
</tr>
<tr>
<td>wdiff</td>
<td>V:8,I:77</td>
<td>644</td>
<td>wdiff(1)</td>
<td>display word differences between text files</td>
</tr>
</tbody>
</table>

Table 10.10: List of source code merge tools
10.4.3 Updating via 3-way-merge

If you have three versions of a source code, you can perform 3-way-merge effectively using `diff3(1)` by the following.

```
$ diff3 -m file.mine file.old file.yours > file
```

10.5 Version control systems

Here is a summary of the version control systems (VCS) on the Debian system.

**Note**

If you are new to VCS systems, you should start learning with **Git**, which is growing fast in popularity.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>tool</th>
<th>VCS type</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>cscsc</td>
<td>V:0, I:2</td>
<td>2035</td>
<td>CSSC</td>
<td>local</td>
<td>clone of the Unix SCCS (deprecated)</td>
</tr>
<tr>
<td>rcs</td>
<td>V:3, I:21</td>
<td>555</td>
<td>RCS</td>
<td>local</td>
<td>&quot;Unix SCCS done right&quot;</td>
</tr>
<tr>
<td>cvs</td>
<td>V:5, I:49</td>
<td>4596</td>
<td>CVS</td>
<td>remote</td>
<td>previous standard remote VCS</td>
</tr>
<tr>
<td>subversion</td>
<td>V:27, I:131</td>
<td>4809</td>
<td>Subversion</td>
<td>remote</td>
<td>&quot;CVS done right&quot;, the new de facto standard remote VCS</td>
</tr>
<tr>
<td>git</td>
<td>V:301, I:458</td>
<td>35266</td>
<td>Git</td>
<td>distributed</td>
<td>fast DVCS in C (used by the Linux kernel and others)</td>
</tr>
<tr>
<td>mercurial</td>
<td>V:11, I:56</td>
<td>913</td>
<td>Mercurial</td>
<td>distributed</td>
<td>DVCS in Python and some C</td>
</tr>
<tr>
<td>bzr</td>
<td>V:3, I:20</td>
<td>74</td>
<td>Bazaar</td>
<td>distributed</td>
<td>DVCS influenced by Tla written in Python (used by Ubuntu)</td>
</tr>
<tr>
<td>darcs</td>
<td>V:0, I:8</td>
<td>27950</td>
<td>Darcs</td>
<td>distributed</td>
<td>DVCS with smart algebra of patches (slow)</td>
</tr>
<tr>
<td>tla</td>
<td>V:0, I:6</td>
<td>1011</td>
<td>GNU arch</td>
<td>distributed</td>
<td>DVCS mainly by Tom Lord (Historic)</td>
</tr>
<tr>
<td>monotone</td>
<td>V:0, I:0</td>
<td>5815</td>
<td>Monotone</td>
<td>distributed</td>
<td>DVCS in C++</td>
</tr>
<tr>
<td>tkcvs</td>
<td>V:0, I:1</td>
<td>1498</td>
<td>CVS, ***</td>
<td>remote</td>
<td>GUI display of VCS (CVS, Subversion, RCS) repository tree</td>
</tr>
<tr>
<td>gitz</td>
<td>V:8, I:47</td>
<td>1539</td>
<td>Git</td>
<td>distributed</td>
<td>GUI display of VCS (Git) repository tree</td>
</tr>
</tbody>
</table>

Table 10.11: List of version control system tools

VCS is sometimes known as revision control system (RCS), or software configuration management (SCM).

Distributed VCS such as Git is the tool of choice these days. CVS and Subversion may still be useful to join some existing open source program activities.

Debian provides free Git services via Debian Salsa service. Its documentation can be found at [https://wiki.debian.org/Salsa](https://wiki.debian.org/Salsa).

**Caution**

Debian has closed its old alioth services and the old alioth service data are available at [alioth-archive](https://alioth-archive) as tarballs.

There are few basics for creating a shared access VCS archive.

- Use "umask 002" (see Section 1.2.4)
- Make all VCS archive files belonging to a pertinent group
- Enable set group ID on all VCS archive directories (BSD-like file creation scheme, see Section 1.2.3)
- Make user sharing the VCS archive belonging to the group
10.5.1 Comparison of VCS commands

Here is an oversimplified comparison of native VCS commands to provide the big picture. The typical command sequence may require options and arguments.

<table>
<thead>
<tr>
<th>Git</th>
<th>CVS</th>
<th>Subversion</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>git init</td>
<td>cvs init</td>
<td>svn create</td>
<td>create the (local) repository</td>
</tr>
<tr>
<td>git clone</td>
<td>cvs co</td>
<td>svn co</td>
<td>check out the remote repository as the working tree</td>
</tr>
<tr>
<td>git pull</td>
<td>cvs up</td>
<td>svn up</td>
<td>update the working tree by merging the remote repository</td>
</tr>
<tr>
<td>git add .</td>
<td>cvs add</td>
<td>svn add</td>
<td>add file(s) in the working tree to the VCS</td>
</tr>
<tr>
<td>git rm</td>
<td>cvs rm</td>
<td>svn rm</td>
<td>remove file(s) in working tree from the VCS</td>
</tr>
<tr>
<td>git commit -a</td>
<td>-</td>
<td>-</td>
<td>commit changes to the local repository</td>
</tr>
<tr>
<td>git push</td>
<td>cvs push</td>
<td>svn push</td>
<td>update the remote repository by the local repository</td>
</tr>
<tr>
<td>git status</td>
<td>cvs status</td>
<td>svn status</td>
<td>display the working tree status from the VCS</td>
</tr>
<tr>
<td>git diff</td>
<td>cvs diff</td>
<td>svn diff</td>
<td>diff &lt;reference_repository&gt; &lt;working_tree&gt;</td>
</tr>
<tr>
<td>git repack -a -d; git prune</td>
<td>-</td>
<td>-</td>
<td>repack the local repository into single pack</td>
</tr>
<tr>
<td>gitk</td>
<td>tkcvs</td>
<td>tkcvs</td>
<td>GUI display of VCS repository tree</td>
</tr>
</tbody>
</table>

Table 10.12: Comparison of native VCS commands

Caution
Invoking a git subcommand directly as "git-xyz" from the command line has been deprecated since early 2006.

Tip
If there is a executable file git-foo in the path specified by $PATH, entering "git foo" without hyphen to the command line invokes this git-foo. This is a feature of the git command.

Tip
GUI tools such as tkcvs(1) and gitk(1) really help you with tracking revision history of files. The web interface provided by many public archives for browsing their repositories is also quite useful, too.

Tip
Git can work directly with different VCS repositories such as ones provided by CVS and Subversion, and provides the local repository for local changes with git-cvs and git-svn packages. See git for CVS users, and Section 10.6.4.

Tip
Git has commands which have no equivalents in CVS and Subversion: "fetch", "rebase", "cherry-pick", …
10.6 Git

Git can do everything for both local and remote source code management. This means that you can record the source code changes without needing network connectivity to the remote repository.

10.6.1 Configuration of Git client

You may wish to set several global configuration in "~/.gitconfig" such as your name and email address used by Git by the following.

$ git config --global user.name "Name Surname"
$ git config --global user.email yourname@example.com

If you are too used to CVS or Subversion commands, you may wish to set several command aliases by the following.

$ git config --global alias.ci "commit -a"
$ git config --global alias.co checkout

You can check your global configuration by the following.

$ git config --global --list

10.6.2 Git references

See the following.

- manpage: git(1) (/usr/share/doc/git-doc/git.html)
- A tutorial introduction to git (/usr/share/doc/git-doc/gittutorial.html)
- A tutorial introduction to git: part two (/usr/share/doc/git-doc/gittutorial-2.html)
- Everyday GIT With 20 Commands Or So (/usr/share/doc/git-doc/everyday.html)
- git for CVS users (/usr/share/doc/git-doc/gitcvs-migration.html)
- This also describes how to set up server like CVS and extract old data from CVS into Git.
- Other git resources available on the web
  - Git - SVN Crash Course

git-gui(1) and gitk(1) commands make using Git very easy.

---

⚠️ Warning

Do not use the tag string with spaces in it even if some tools such as gitk(1) allow you to use it. It may choke some other git commands.
10.6.3 Git commands

Even if your upstream uses different VCS, it may be a good idea to use git(1) for local activity since you can manage your local copy of source tree without the network connection to the upstream. Here are some packages and commands used with git(1).

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>command</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>git-doc</td>
<td>I:18</td>
<td>11118</td>
<td>N/A</td>
<td>official documentation for Git</td>
</tr>
<tr>
<td>gitmagic</td>
<td>I:1</td>
<td>719</td>
<td>N/A</td>
<td>&quot;Git Magic&quot;, easier to understand guide for Git</td>
</tr>
<tr>
<td>git</td>
<td>V:301, I:458</td>
<td>35266</td>
<td>git(7)</td>
<td>Git, the fast, scalable, distributed revision control system</td>
</tr>
<tr>
<td>gikt</td>
<td>V:8, I:47</td>
<td>1539</td>
<td>gikt(1)</td>
<td>GUI Git repository browser with history</td>
</tr>
<tr>
<td>git-gui</td>
<td>V:2, I:27</td>
<td>2266</td>
<td>git-gui(1)</td>
<td>GUI for Git (No history)</td>
</tr>
<tr>
<td>git-svn</td>
<td>V:2, I:26</td>
<td>1037</td>
<td>git-svnimport(1)</td>
<td>import the data out of Subversion into Git</td>
</tr>
<tr>
<td>git-svn</td>
<td>V:2, I:26</td>
<td>1037</td>
<td>git-svn(1)</td>
<td>provide bidirectional operation between the Subversion and Git</td>
</tr>
<tr>
<td>git-cvs</td>
<td>V:0, I:12</td>
<td>1172</td>
<td>git-cvsimport(1)</td>
<td>import the data out of CVS into Git</td>
</tr>
<tr>
<td>git-cvs</td>
<td>V:0, I:12</td>
<td>1172</td>
<td>git-cvsexportcommit(1)</td>
<td>export a commit to a CVS checkout from Git</td>
</tr>
<tr>
<td>git-cvs</td>
<td>V:0, I:12</td>
<td>1172</td>
<td>git-cvsserver(1)</td>
<td>CVS server emulator for Git</td>
</tr>
<tr>
<td>git-email</td>
<td>V:0, I:13</td>
<td>860</td>
<td>git-send-email(1)</td>
<td>send a collection of patches as email from the Git</td>
</tr>
<tr>
<td>stgit</td>
<td>V:0, I:10</td>
<td>1535</td>
<td>stg(1)</td>
<td>quilt on top of git (Python)</td>
</tr>
<tr>
<td>git-buildpackage</td>
<td>V:2, I:12</td>
<td>3928</td>
<td>git-buildpackage(1)</td>
<td>automate the Debian packaging with the Git</td>
</tr>
<tr>
<td>guilt</td>
<td>V:0, I:10</td>
<td>146</td>
<td>guilt(7)</td>
<td>quilt on top of git (SH/AWK/SED/… )</td>
</tr>
</tbody>
</table>

Table 10.13: List of git related packages and commands

---

**Tip**

With git(1), you work on a local branch with many commits and use something like "git rebase -i master" to reorganize change history later. This enables you to make clean change history. See git-rebase(1) and git-cherry-pick(1).

---

**Tip**

When you want to go back to a clean working directory without losing the current state of the working directory, you can use "git stash". See git-stash(1).

---

10.6.4 Git for the Subversion repository

You can check out a Subversion repository at "svn+ssh://svn.example.org/project/module/trunk" to a local Git repository at "/dest" and commit back to the Subversion repository. E.g:

```
$ git svn clone -s -rHEAD svn+ssh://svn.example.org/project dest
$ cd dest
... make changes
$ git commit -a
... keep working locally with git
$ git svn dcommit
```
Tip
The use of "-rHEAD" enables us to avoid cloning entire historical contents from the Subversion repository.

10.6.5 Git for recording configuration history

You can manually record chronological history of configuration using Git tools. Here is a simple example for your practice to record "/etc/apt/" contents.

```
$ cd /etc/apt/
$ sudo git init
$ sudo chmod 700 .git
$ sudo git add .
$ sudo git commit -a
```

Commit configuration with description.
Make modification to the configuration files.

```
$ cd /etc/apt/
$ sudo git commit -a
```

Commit configuration with description and continue your life.

```
$ cd /etc/apt/
$ sudo gitk --all
```

You have full configuration history with you.

**Note**
sudo(8) is needed to work with any file permissions of configuration data. For user configuration data, you may skip sudo.

**Note**
The "chmod 700 .git" command in the above example is needed to protect archive data from unauthorized read access.

**Tip**
For more complete setup for recording configuration history, please look for the etckeeper package: Section 9.2.10.

10.7 CVS

CVS is an older version control system before Subversion and Git.

**Caution**
Many URLs found in the below examples for CVS don’t exist any more.
See the following.

- `cvs(1)`
- `"/usr/share/doc/cvs/html-cvscient"`
- `"/usr/share/doc/cvs/html-info"`
- `"/usr/share/doc/cvsbook"`
- `"info cvs"

### 10.7.1 Configuration of CVS repository

The following configuration allows commits to the CVS repository only by a member of the "src" group, and administration of CVS only by a member of the "staff" group, thus reducing the chance of shooting oneself.

```bash
cd /var/lib; umask 002; mkdir cvs
export CVSROOT=/srv/cvs/project
cd $CVSROOT
chown root:src .
chmod 2775 .
cvs -d $CVSROOT init
cd CVSROOT
chown -R root:staff .
chmod 2775 .
touch val-tags
chmod 664 history val-tags
chown root:src history val-tags
```

**Tip**

You may restrict creation of new project by changing the owner of "$CVSROOT" directory to "root:staff" and its permission to "3775".

### 10.7.2 Local access to CVS

The default CVS repository is pointed by "$CVSROOT". The following sets up "$CVSROOT" for the local access.

```bash
$ export CVSROOT=/srv/cvs/project
```

### 10.7.3 Remote access to CVS with pserver

Many public CVS servers provide read-only remote access to them with account name "anonymous" via pserver service. For example, Debian web site contents were maintained by `webwml project` via CVS at Debian alioth service. The following was used to set up "$CVSROOT" for the remote access to this old CVS repository.

```bash
$ export CVSROOT=:pserver:anonymous@anonscm.debian.org:/cvs/webwml
$ cvs login
```

**Note**

Since pserver is prone to eavesdropping attack and insecure, write access is usually disable by server administrators.
10.7.4 Remote access to CVS with ssh

The following was used to set up "$CVS_RSH" and "$CVSR00T" for the remote access to the old CVS repository by webwml project with SSH.

```bash
$ export CVS_RSH=ssh
$ export CVSR00T=:ext:account@cvs.alioth.debian.org:/cvs/webwml
```

You can also use public key authentication for SSH which eliminates the remote password prompt.

10.7.5 Importing a new source to CVS

Create a new local source tree location at "~/path/to/module1" by the following.

```bash
$ mkdir -p ~/path/to/module1; cd ~/path/to/module1
```

Populate a new local source tree under "~/path/to/module1" with files.

Import it to CVS with the following parameters.

- Module name: "module1"
- Vendor tag: "Main-branch" (tag for the entire branch)
- Release tag: "Release-initial" (tag for a specific release)

```bash
$ cd ~/path/to/module1
$ cvs import -m "Start module1" module1 Main-branch Release-initial
$ rm -Rf . # optional
```

10.7.6 File permissions in CVS repository

CVS does not overwrite the current repository file but replaces it with another one. Thus, write permission to the repository directory is critical. For every new module for "module1" in repository at "~/srv/cvs/project", run the following to ensure this condition if needed.

```bash
cd /srv/cvs/project
chown -R root:src module1
chmod -R ug+rwX module1
chmod 2775 module1
```

10.7.7 Work flow of CVS

Here is an example of typical work flow using CVS.

Check all available modules from CVS project pointed by "$CVSR00T" by the following.
$ cvs rls
CVSROOT
module1
module2
...

Checkout "module1" to its default directory "./module1" by the following.

$ cd ~/path/to
$ cvs co module1
$ cd module1

Make changes to the content as needed.

Check changes by making "diff -u [repository] [local]" equivalent by the following.

$ cvs diff -u

You find that you broke some file "file_to_undo" severely but other files are fine.

Overwrite "file_to_undo" file with the clean copy from CVS by the following.

$ cvs up -C file_to_undo

Save the updated local source tree to CVS by the following.

$ cvs ci -m "Describe change"

Create and add "file_to_add" file to CVS by the following.

$ vi file_to_add
$ cvs add file_to_add
$ cvs ci -m "Added file_to_add"

Merge the latest version from CVS by the following.

$ cvs up -d

Watch out for lines starting with "C filename" which indicates conflicting changes.
Look for unmodified code in "./filename.version".
Search for "<<<<<<<" and ">>>>>>>" in files for conflicting changes.
Edit files to fix conflicts as needed.

Add a release tag "Release-1" by the following.

$ cvs ci -m "last commit for Release-1"
$ cvs tag Release-1
Edit further.
Remove the release tag "Release-1" by the following.

```bash
$ cvs tag -d Release-1
```

Check in changes to CVS by the following.

```bash
$ cvs ci -m "real last commit for Release-1"
```

Re-add the release tag "Release-1" to updated CVS HEAD of main by the following.

```bash
$ cvs tag Release-1
```

Create a branch with a sticky branch tag "Release-initial-bugfixes" from the original version pointed by the tag "Release-initial" and check it out to "~/path/to/old" directory by the following.

```bash
$ cvs rtag -b -r Release-initial Release-initial-bugfixes module1
$ cd ~/path/to
$ cvs co -r Release-initial-bugfixes -d old module1
$ cd old
```

**Tip**
Use "-D 2005-12-20" (ISO 8601 date format) instead of "-r Release-initial" to specify particular date as the branch point.

Work on this local source tree having the sticky tag "Release-initial-bugfixes" which is based on the original version. Work on this branch by yourself … until someone else joins to this "Release-initial-bugfixes" branch.

Sync with files modified by others on this branch while creating new directories as needed by the following.

```bash
$ cvs up -d
```

Edit files to fix conflicts as needed.
Check in changes to CVS by the following.

```bash
$ cvs ci -m "checked into this branch"
```

Update the local tree by HEAD of main while removing sticky tag ("-A") and without keyword expansion ("-kk") by the following.

```bash
$ cvs up -d -kk -A
```

Update the local tree (content = HEAD of main) by merging from the "Release-initial-bugfixes" branch and without keyword expansion by the following.

```bash
$ cvs up -d -kk -A
```
Fix conflicts with editor.
Check in changes to CVS by the following.

```
$ cvs up -d -kk -j Release-initial-bugfixes
```

Make archive by the following.

```
$ cd ..
$ mv old old-module1-bugfixes
$ tar -cvzf old-module1-bugfixes.tar.gz old-module1-bugfixes
$ rm -rf old-module1-bugfixes
```

**Tip**
"cvs up" command can take "-d" option to create new directories and "-P" option to prune empty directories.

**Tip**
You can checkout only a sub directory of "module1" by providing its name as "cvs co module1/subdir".

<table>
<thead>
<tr>
<th>option</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>-n</td>
<td>dry run, no effect</td>
</tr>
<tr>
<td>-t</td>
<td>display messages showing steps of cvs activity</td>
</tr>
</tbody>
</table>

Table 10.14: Notable options for CVS commands (use as first argument(s) to cvs(1))

### 10.7.8 Latest files from CVS

To get the latest files from CVS, use "tomorrow" by the following.

```
$ cvs ex -D tomorrow module_name
```

### 10.7.9 Administration of CVS

Add module alias "mx" to a CVS project (local server) by the following.

```
$ export CVSDIR=/srv/cvs/project
$ cvs co CVSDIR/modules
$ cd CVSDIR
$ echo "mx -a module1" >> modules
$ cvs ci -m "Now mx is an alias for module1"
$ cvs release -d .
```
Now, you can check out "module1" (alias: "mx") from CVS to "new" directory by the following.

```
$ cvs co -d new mx
$ cd new
```

**Note**
In order to perform above procedure, you should have appropriate file permissions.

### 10.7.10 Execution bit for CVS checkout

When you checkout files from CVS, their execution permission bit is retained.

Whenever you see execution permission problems in a checked out file, e.g. "filename", change its permission in the corresponding CVS repository by the following to fix it.

```
chmod ugo-x filename
```

### 10.8 Subversion

Subversion is an older version control system before Git but after CVS. It lacks tagging and branching features found in CVS and Git.

You need to install subversion, libapache2-mod-svn and subversion-tools packages to set up a Subversion server.

#### 10.8.1 Configuration of Subversion repository

Currently, the subversion package does not set up a repository, so one must set it up manually. One possible location for a repository is in "/srv/svn/project".

Create a directory by the following.

```
mkdir -p /srv/svn/project
```

Create the repository database by the following.

```
svnadmin create /srv/svn/project
```

#### 10.8.2 Access to Subversion via Apache2 server

If you only access Subversion repository via Apache2 server, you just need to make the repository only writable by the WWW server by the following.

```
chown -R www-data:www-data /srv/svn/project
```
Add (or uncomment) the following in "/etc/apache2/mods-available/dav_svn.conf" to allow access to the repository via user authentication.

```xml
<Location /project>
 DAV svn
 SVNPath /srv/svn/project
 AuthType Basic
 AuthName "Subversion repository"
 AuthUserFile /etc/subversion/passwd
 <LimitExcept GET PROPFIND OPTIONS REPORT>
 Require valid-user
 </LimitExcept>
</Location>
```

Create a user authentication file with the command by the following.

```
htpasswd2 -c /etc/subversion/passwd some-username
```

Restart Apache2.

Your new Subversion repository is accessible at URL "http://localhost/project" and "http://example.com/project" from `svn(1)` (assuming your URL of web server is "http://example.com/").

### 10.8.3 Local access to Subversion by group

The following sets up Subversion repository for the local access by a group, e.g. `project`.

```
chmod 2775 /srv/svn/project
chown -R root.src /srv/svn/project
chmod -R ug+rwX /srv/svn/project
```

Your new Subversion repository is group accessible at URL "file:///localhost/srv/svn/project" or "file:///srv/svn/project" from `svn(1)` for local users belonging to `project` group. You must run commands, such as `svn`, `svnserv`, `svnlook`, and `svnadmin` under "umask 002" to ensure group access.

### 10.8.4 Remote access to Subversion via SSH

A group accessible Subversion repository is at URL "example.com:/srv/svn/project" for SSH, you can access it from `svn(1)` at URL "svn+ssh://example.com:/srv/svn/project".

### 10.8.5 Subversion directory structure

Many projects uses directory tree similar to the following for Subversion to compensate its lack of branches and tags.

```
----- module1
 | |-- branches
 | | |-- tags
 | | | |-- release-1.0
 | | | |-- release-2.0
 | | | `-- trunk
 | | `-- file1
```
Debian Reference

10.8.6 Importing a new source to Subversion

Create a new local source tree location at "~/path/to/module1" by the following.

```sh
$ mkdir -p ~/path/to/module1; cd ~/path/to/module1
```

Populate a new local source tree under "~/path/to/module1" with files.

Import it to Subversion with the following parameters.

- Module name: "module1"
- Subversion site URL: "file:///srv/svn/project"
- Subversion directory: "module1/trunk"
- Subversion tag: "module1/tags/Release-initial"

```sh
$ cd ~/path/to/module1
$ svn import file:///srv/svn/project/module1/trunk -m "Start module1"
$ svn cp file:///srv/svn/project/module1/trunk file:///srv/svn/project/module1/tags/Release ←-initial
```

Alternatively, by the following.

```sh
$ svn import -/path/to/module1 file:///srv/svn/project/module1/trunk -m "Start module1"
$ svn cp file:///srv/svn/project/module1/trunk file:///srv/svn/project/module1/tags/Release ←-initial
```

**Tip**

You can replace URLs such as "file:///..." by any other URL formats such as "http://..." and "svn+ssh://...".

10.8.7 Work flow of Subversion

Here is an example of typical work flow using Subversion with its native client.

**Tip**

Client commands offered by the git-svn package may offer alternative work flow of Subversion using the git command. See Section 10.6.4.
Check all available modules from Subversion project pointed by URL "file:///srv/svn/project" by the following.

```
$ svn list file:///srv/svn/project
module1
module2
...
```

Checkout "module1/trunk" to a directory "module1" by the following.

```
$ cd ~/path/to
$ svn co file:///srv/svn/project/module1/trunk module1
$ cd module1
```

Make changes to the content as needed.

Check changes by making "diff -u [repository] [local]" equivalent by the following.

```
$ svn diff
```

You find that you broke some file "file_to_undo" severely but other files are fine.

Overwrite "file_to_undo" file with the clean copy from Subversion by the following.

```
$ svn revert file_to_undo
```

Save the updated local source tree to Subversion by the following.

```
$ svn ci -m "Describe change"
```

Create and add "file_to_add" file to Subversion by the following.

```
$ vi file_to_add
$ svn add file_to_add
$ svn ci -m "Added file_to_add"
```

Merge the latest version from Subversion by the following.

```
$ svn up
```

Watch out for lines starting with "C filename" which indicates conflicting changes.

Look for unmodified code in, e.g., "filename.r6", "filename.r9", and "filename.mine".

Search for "<<<<<<<" and ">>>>>>>" in files for conflicting changes.

Edit files to fix conflicts as needed.

Add a release tag "Release-1" by the following.

```
$ svn ci -m "last commit for Release-1"
$ svn cp file:///srv/svn/project/module1/trunk file:///srv/svn/project/module1/tags/Release ←-1
```
Edit further.
Remove the release tag "Release-1" by the following.

$ svn rm file://srv/svn/project/module1/tags/Release-1

Check in changes to Subversion by the following.

$ svn ci -m "real last commit for Release-1"

Re-add the release tag "Release-1" from updated Subversion HEAD of trunk by the following.

$ svn cp file://srv/svn/project/module1/trunk file://srv/svn/project/module1/tags/Release-1

Create a branch with a path "module1/branches/Release-initial-bugfixes" from the original version pointed by the path "module1/tags/Release-initial" and check it out to "~/path/to/old" directory by the following.

$ cd ~/path/to
$ svn co file://srv/svn/project/module1/branches/Release-initial-bugfixes old
$ cd old

Tip
Use "module1/trunk@{2005-12-20}" (ISO 8601 date format) instead of "module1/tags/Release-initial" to specify particular date as the branch point.

Work on this local source tree pointing to branch "Release-initial-bugfixes" which is based on the original version. Work on this branch by yourself … until someone else joins to this "Release-initial-bugfixes" branch.
Sync with files modified by others on this branch by the following.

$ svn up

Edit files to fix conflicts as needed.
Check in changes to Subversion by the following.

$ svn ci -m "checked into this branch"

Update the local tree with HEAD of trunk by the following.

$ svn switch file://srv/svn/project/module1/trunk

Update the local tree (content = HEAD of trunk) by merging from the "Release-initial-bugfixes" branch by the following.
$ svn merge file:///srv/svn/project/module1/branches/Release-initial-bugfixes

Fix conflicts with editor.
Check in changes to Subversion by the following.

$ svn ci -m "merged Release-initial-bugfixes"

Make archive by the following.

$ cd ..
$ mv old old-module1- bugfixes
$ tar -cvzf old-module1- bugfixes.tar.gz old-module1- bugfixes
$ rm -rf old-module1- bugfixes

**Tip**
You can replace URLs such as "file:///..." by any other URL formats such as "http://..." and "svn+ssh:// ...".

**Tip**
You can checkout only a sub directory of "module1" by providing its name as "svn co file:///srv/svn/project/module1/trunk/subdir module1/subdir", etc.

<table>
<thead>
<tr>
<th>option</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>--dry-run</td>
<td>dry run, no effect</td>
</tr>
<tr>
<td>-v</td>
<td>display detail messages of svn activity</td>
</tr>
</tbody>
</table>

Table 10.15: Notable options for Subversion commands (use as first argument(s) to svn(1))
Chapter 11

Data conversion

Tools and tips for converting data formats on the Debian system are described.

Standard based tools are in very good shape but support for proprietary data formats are limited.

11.1  Text data conversion tools

Following packages for the text data conversion caught my eyes.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>keyword</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>libc6</td>
<td>V:937, I:999</td>
<td>12333</td>
<td>charset</td>
<td>text encoding converter between locales by iconv(1) (fundamental)</td>
</tr>
<tr>
<td>recode</td>
<td>V:4, I:28</td>
<td>608</td>
<td>charset+eol</td>
<td>text encoding converter between locales (versatile, more aliases and features)</td>
</tr>
<tr>
<td>konwert</td>
<td>V:1, I:57</td>
<td>123</td>
<td>charset</td>
<td>text encoding converter between locales (fancy)</td>
</tr>
<tr>
<td>nkf</td>
<td>V:0, I:11</td>
<td>357</td>
<td>charset</td>
<td>character set translator for Japanese</td>
</tr>
<tr>
<td>tcs</td>
<td>V:0, I:10</td>
<td>518</td>
<td>charset</td>
<td>character set translator</td>
</tr>
<tr>
<td>unaccent</td>
<td>V:0, I:0</td>
<td>29</td>
<td>charset</td>
<td>replace accented letters by their unaccented equivalent</td>
</tr>
<tr>
<td>tofroodos</td>
<td>V:2, I:30</td>
<td>55</td>
<td>eol</td>
<td>text format converter between DOS and Unix: fromdosis(1) and todos(1)</td>
</tr>
<tr>
<td>macutils</td>
<td>V:0, I:1</td>
<td>298</td>
<td>eol</td>
<td>text format converter between Macintosh and Unix: frommac(1) and tomac(1)</td>
</tr>
</tbody>
</table>

Table 11.1: List of text data conversion tools

11.1.1  Converting a text file with iconv

Tip
iconv(1) is provided as a part of the libc6 package and it is always available on practically all Unix-like systems to convert the encoding of characters.

You can convert encodings of a text file with iconv(1) by the following.

$ iconv -f encoding1 -t encoding2 input.txt >output.txt
<table>
<thead>
<tr>
<th>encoding value</th>
<th>usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII</td>
<td>American Standard Code for Information Interchange, 7 bit code w/o accented characters</td>
</tr>
<tr>
<td>UTF-8</td>
<td>current multilingual standard for all modern OSs</td>
</tr>
<tr>
<td>ISO-8859-1</td>
<td>old standard for western European languages, ASCII + accented characters</td>
</tr>
<tr>
<td>ISO-8859-2</td>
<td>old standard for eastern European languages, ASCII + accented characters</td>
</tr>
<tr>
<td>ISO-8859-15</td>
<td>old standard for western European languages, ISO-8859-1 with euro sign</td>
</tr>
<tr>
<td>CP850</td>
<td>code page 850, Microsoft DOS characters with graphics for western European languages, ISO-8859-1 variant</td>
</tr>
<tr>
<td>CP932</td>
<td>code page 932, Microsoft Windows style Shift-JIS variant for Japanese</td>
</tr>
<tr>
<td>CP936</td>
<td>code page 936, Microsoft Windows style GB2312, GBK or GB18030 variant for Simplified Chinese</td>
</tr>
<tr>
<td>CP949</td>
<td>code page 949, Microsoft Windows style EUC-KR or Unified Hangul Code variant for Korean</td>
</tr>
<tr>
<td>CP950</td>
<td>code page 950, Microsoft Windows style Big5 variant for Traditional Chinese</td>
</tr>
<tr>
<td>CP1251</td>
<td>code page 1251, Microsoft Windows style encoding for the Cyrillic alphabet</td>
</tr>
<tr>
<td>CP1252</td>
<td>code page 1252, Microsoft Windows style ISO-8859-15 variant for western European languages</td>
</tr>
<tr>
<td>KOI8-R</td>
<td>old Russian UNIX standard for the Cyrillic alphabet</td>
</tr>
<tr>
<td>ISO-2022-JP</td>
<td>standard encoding for Japanese email which uses only 7 bit codes</td>
</tr>
<tr>
<td>eucJP</td>
<td>old Japanese UNIX standard 8 bit code and completely different from Shift-JIS</td>
</tr>
<tr>
<td>Shift-JIS</td>
<td>JIS X 0208 Appendix 1 standard for Japanese (see CP932)</td>
</tr>
</tbody>
</table>

Table 11.2: List of encoding values and their usage
Encoding values are case insensitive and ignore "-" and "_" for matching. Supported encodings can be checked by the "iconv -U" command.

**Note**
Some encodings are only supported for the data conversion and are not used as locale values (Section 8.4.1).

For character sets which fit in single byte such as ASCII and ISO-8859 character sets, the character encoding means almost the same thing as the character set.

For character sets with many characters such as JIS X 0213 for Japanese or Universal Character Set (UCS, Unicode, ISO-10646-1) for practically all languages, there are many encoding schemes to fit them into the sequence of the byte data.

- EUC and ISO/IEC 2022 (also known as JIS X 0202) for Japanese
- UTF-8, UTF-16/UCS-2 and UTF-32/UCS-4 for Unicode

For these, there are clear differentiations between the character set and the character encoding.

The code page is used as the synonym to the character encoding tables for some vendor specific ones.

**Note**
Please note most encoding systems share the same code with ASCII for the 7 bit characters. But there are some exceptions. If you are converting old Japanese C programs and URLs data from the casually-called shift-JIS encoding format to UTF-8 format, use "CP932" as the encoding name instead of "shift-JIS" to get the expected results: 0x5C → "\" and 0x7E → "~". Otherwise, these are converted to wrong characters.

**Tip**
recode(1) may be used too and offers more than the combined functionality of iconv(1), fromdos(1), todos(1), frommac(1), and tomac(1). For more, see "info recode".

### 11.1.2 Checking file to be UTF-8 with iconv

You can check if a text file is encoded in UTF-8 with iconv(1) by the following.

```
$ iconv -f utf8 -t utf8 input.txt >/dev/null || echo "non-UTF-8 found"
```

**Tip**
Use "-v" option in the above example to find the first non-UTF-8 character.

### 11.1.3 Converting file names with iconv

Here is an example script to convert encoding of file names from ones created under older OS to modern UTF-8 ones in a single directory.

```
#!/bin/sh
ENCDN=iso-8859-1
for x in *;
do
 mv "$x" "$(echo "$x" | iconv -f $ENCDN -t utf-8)"
done
```
The "$ENCODN" variable specifies the original encoding used for file names under older OS as in Table 11.2.

For more complicated case, please mount a filesystem (e.g. a partition on a disk drive) containing such file names with proper encoding as the mount(8) option (see Section 8.4.6) and copy its entire contents to another filesystem mounted as UTF-8 with "cp -a" command.

### 11.1.4 EOL conversion

The text file format, specifically the end-of-line (EOL) code, is dependent on the platform.

<table>
<thead>
<tr>
<th>platform</th>
<th>EOL code</th>
<th>control</th>
<th>decimal</th>
<th>hexadecimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debian (unix)</td>
<td>LF</td>
<td>^J</td>
<td>10</td>
<td>0A</td>
</tr>
<tr>
<td>MSDOS and Windows</td>
<td>CR-LF</td>
<td>^M^J</td>
<td>13 10</td>
<td>0D 0A</td>
</tr>
<tr>
<td>Apple’s Macintosh</td>
<td>CR</td>
<td>^M</td>
<td>13</td>
<td>0D</td>
</tr>
</tbody>
</table>

Table 11.3: List of EOL styles for different platforms

The EOL format conversion programs, fromdos(1), todos(1), frommac(1), and tomac(1), are quite handy. recode(1) is also useful.

**Note**
Some data on the Debian system, such as the wiki page data for the python-moinmoin package, use MSDOS style CR-LF as the EOL code. So the above rule is just a general rule.

**Tip**
The use of "sed -e '/\r$/!s/$/\r/' instead of todos(1) is better when you want to unify the EOL style to the MSDOS style from the mixed MSDOS and Unix style. (e.g., after merging 2 MSDOS style files with diff3(1).) This is because todos adds CR to all lines.

### 11.1.5 TAB conversion

There are few popular specialized programs to convert the tab codes.

<table>
<thead>
<tr>
<th>function</th>
<th>bsdmainutils</th>
<th>coreutils</th>
</tr>
</thead>
<tbody>
<tr>
<td>expand tab to spaces</td>
<td>&quot;col -x&quot;</td>
<td>expand</td>
</tr>
<tr>
<td>unexpand tab from spaces</td>
<td>&quot;col -h&quot;</td>
<td>unexpand</td>
</tr>
</tbody>
</table>

Table 11.4: List of TAB conversion commands from bsdmainutils and coreutils packages

indent(1) from the indent package completely reformats whitespaces in the C program.

Editor programs such as vim and emacs can be used for TAB conversion, too. For example with vim, you can expand TAB with "":set expandtab" and "":%retab" command sequence. You can revert this with "":set noexpandtab" and "":%retab!" command sequence.
11.1.6 Editors with auto-conversion

Intelligent modern editors such as the vim program are quite smart and copes well with any encoding systems and any file formats. You should use these editors under the UTF-8 locale in the UTF-8 capable console for the best compatibility.

An old western European Unix text file, "u-file.txt", stored in the latin1 (iso-8859-1) encoding can be edited simply with vim by the following.

```bash
$ vim u-file.txt
```

This is possible since the auto detection mechanism of the file encoding in vim assumes the UTF-8 encoding first and, if it fails, assumes it to be latin1.

An old Polish Unix text file, "pu-file.txt", stored in the latin2 (iso-8859-2) encoding can be edited with vim by the following.

```bash
$ vim '+e ++enc=latin2 pu-file.txt'
```

An old Japanese unix text file, "ju-file.txt", stored in the eucJP encoding can be edited with vim by the following.

```bash
$ vim '+e ++enc=eucJP ju-file.txt'
```

An old Japanese MS-Windows text file, "jw-file.txt", stored in the so called shift-JIS encoding (more precisely: CP932) can be edited with vim by the following.

```bash
$ vim '+e ++enc=CP932 ++ff=dos jw-file.txt'
```

When a file is opened with "++enc" and "++ff" options, ":w" in the Vim command line stores it in the original format and overwrite the original file. You can also specify the saving format and the file name in the Vim command line, e.g., ":w ++enc=utf8 new.txt".

Please refer to the mbyte.txt "multi-byte text support" in vim on-line help and Table 11.2 for locale values used with "++enc".

The emacs family of programs can perform the equivalent functions.

11.1.7 Plain text extraction

The following reads a web page into a text file. This is very useful when copying configurations off the Web or applying basic Unix text tools such as grep(1) on the web page.

```bash
$ w3m -dump http://www.remote-site.com/help-info.html >textfile
```

Similarly, you can extract plain text data from other formats using the following.

11.1.8 Highlighting and formatting plain text data

You can highlight and format plain text data by the following.
### 11.2 XML data

The Extensible Markup Language (XML) is a markup language for documents containing structured information. See introductory information at XML.COM.

- "What is XML?"
- "What Is XSLT?"
- "What Is XSL-FO?"
- "What Is XLink?"

#### 11.2.1 Basic hints for XML

XML text looks somewhat like HTML. It enables us to manage multiple formats of output for a document. One easy XML system is the docbook-xsl package, which is used here.

Each XML file starts with standard XML declaration as the following.

```xml
<?xml version="1.0" encoding="UTF-8"?>
```

The basic syntax for one XML element is marked up as the following.

```xml
<name attribute="value">content</name>
```

XML element with empty content is marked up in the following short form.

```xml
<name attribute="value"/>
```
<table>
<thead>
<tr>
<th>package</th>
<th>popup</th>
<th>size</th>
<th>keyword</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vim-runtime</td>
<td>V:19</td>
<td>29624</td>
<td>highlight</td>
<td>Vim MACRO to convert source code to HTML with &quot;:source $VIMRUNTIME/syntax/html.vim&quot;</td>
</tr>
<tr>
<td>cxref</td>
<td>V:0</td>
<td>1182</td>
<td>c→html</td>
<td>converter for the C program to latex and HTML (C language)</td>
</tr>
<tr>
<td>src2tex</td>
<td>V:0</td>
<td>622</td>
<td>highlight</td>
<td>convert many source codes to TeX (C language)</td>
</tr>
<tr>
<td>source-highlight</td>
<td>V:0</td>
<td>2019</td>
<td>highlight</td>
<td>convert many source codes to HTML, XHTML, LaTeX, Texinfo, ANSI color escape sequences and DocBook files with highlight (C++)</td>
</tr>
<tr>
<td>highlight</td>
<td>V:1</td>
<td>1043</td>
<td>highlight</td>
<td>convert many source codes to HTML, XHTML, RTF, LaTeX, TeX or XSL-FO files with highlight (C++)</td>
</tr>
<tr>
<td>grc</td>
<td>V:0</td>
<td>188</td>
<td>text→color</td>
<td>generic colouriser for everything (Python)</td>
</tr>
<tr>
<td>txt2html</td>
<td>V:0</td>
<td>254</td>
<td>text→html</td>
<td>text to HTML converter (Perl)</td>
</tr>
<tr>
<td>markdown</td>
<td>V:0</td>
<td>57</td>
<td>text→html</td>
<td>markdown text document formatter to (X)HTML (Perl)</td>
</tr>
<tr>
<td>asciidoc</td>
<td>I:13</td>
<td>80</td>
<td>text→any</td>
<td>Asciidoc text document formatter to XML/HTML (Python)</td>
</tr>
<tr>
<td>pandoc</td>
<td>V:6</td>
<td>113143</td>
<td>text→any</td>
<td>general markup converter (Haskell)</td>
</tr>
<tr>
<td>python-docutils</td>
<td>V:32</td>
<td>1752</td>
<td>text→any</td>
<td>ReStructured Text document formatter to XML (Python)</td>
</tr>
<tr>
<td>txt2tags</td>
<td>V:0</td>
<td>813</td>
<td>text→any</td>
<td>document conversion from text to HTML, SGML, LaTeX, man page, MoinMoin, Magic Point and PageMaker (Python)</td>
</tr>
<tr>
<td>udo</td>
<td>V:0</td>
<td>564</td>
<td>text→any</td>
<td>universal document - text processing utility (C language)</td>
</tr>
<tr>
<td>stx2any</td>
<td>V:0</td>
<td>264</td>
<td>text→any</td>
<td>document converter from structured plain text to other formats (m4)</td>
</tr>
<tr>
<td>rest2web</td>
<td>V:0</td>
<td>527</td>
<td>text→html</td>
<td>document converter from ReStructured Text to html (Python)</td>
</tr>
<tr>
<td>aft</td>
<td>V:0</td>
<td>235</td>
<td>text→any</td>
<td>“free form” document preparation system (Perl)</td>
</tr>
<tr>
<td>yodl</td>
<td>V:0</td>
<td>615</td>
<td>text→any</td>
<td>pre-document language and tools to process it (C language)</td>
</tr>
<tr>
<td>sdf</td>
<td>V:0</td>
<td>1445</td>
<td>text→any</td>
<td>simple document parser (Perl)</td>
</tr>
<tr>
<td>sisu</td>
<td>V:0</td>
<td>5341</td>
<td>text→any</td>
<td>document structuring, publishing and search framework (Ruby)</td>
</tr>
</tbody>
</table>

Table 11.6: List of tools to highlight plain text data
The "attribute="value"" in the above examples are optional. The comment section in XML is marked up as the following.

```xml
<!-- comment -->
```

Other than adding markups, XML requires minor conversion to the content using predefined entities for following characters.

<table>
<thead>
<tr>
<th>predefined entity</th>
<th>character to be converted into</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;</td>
<td>&quot; : quote</td>
</tr>
<tr>
<td>'</td>
<td>’ : apostrophe</td>
</tr>
<tr>
<td>&lt;</td>
<td>&lt; : less-than</td>
</tr>
<tr>
<td>&gt;</td>
<td>&gt; : greater-than</td>
</tr>
<tr>
<td>&amp;</td>
<td>&amp; : ampersand</td>
</tr>
</tbody>
</table>

Table 11.7: List of predefined entities for XML

⚠️ Caution
"<" or "&" can not be used in attributes or elements.

Note
When SGML style user defined entities, e.g. "&some-tag;", are used, the first definition wins over others. The entity definition is expressed in "<!ENTITY some-tag "entity value">".

Note
As long as the XML markup are done consistently with certain set of the tag name (either some data as content or attribute value), conversion to another XML is trivial task using Extensible Stylesheet Language Transformations (XSLT).

### 11.2.2 XML processing

There are many tools available to process XML files such as [the Extensible Stylesheet Language (XSL)](https://www.w3.org/Style/XSL). Basically, once you create well formed XML file, you can convert it to any format using Extensible Stylesheet Language Transformations (XSLT).

The Extensible Stylesheet Language for Formatting Objects (XSL-FO) is supposed to be solution for formatting. The `fop` package is new to the Debian main archive due to its dependence to the Java programing language. So the LaTeX code is usually generated from XML using XSLT and the LaTeX system is used to create printable file such as DVI, PostScript, and PDF.

Since XML is subset of [Standard Generalized Markup Language (SGML)](https://www.w3.org/MarkUp), it can be processed by the extensive tools available for SGML, such as Document Style Semantics and Specification Language (DSSSL).

Tip
GNOME’s `yelp` is sometimes handy to read DocBook XML files directly since it renders decently on X.
### Table 11.8: List of XML tools

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>keyword</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>docbook-xml</td>
<td>I:488</td>
<td>2131</td>
<td>xml</td>
<td>XML document type definition (DTD) for DocBook</td>
</tr>
<tr>
<td>xsltproc</td>
<td>V:17, I:109</td>
<td>154</td>
<td>xslt</td>
<td>XSLT command line processor (XML → XML, HTML, plain text, etc.)</td>
</tr>
<tr>
<td>docbook-xsl</td>
<td>V:13, I:208</td>
<td>14998</td>
<td>xml/xslt</td>
<td>XSL stylesheets for processing DocBook XML to various output formats with XSLT</td>
</tr>
<tr>
<td>xmlto</td>
<td>V:2, I:29</td>
<td>130</td>
<td>xml/xslt</td>
<td>XML-to-any converter with XSLT</td>
</tr>
<tr>
<td>dbtoepub</td>
<td>V:0, I:0</td>
<td>71</td>
<td>xml/xslt</td>
<td>DocBook XML to .epub converter</td>
</tr>
<tr>
<td>dblatex</td>
<td>V:6, I:20</td>
<td>4648</td>
<td>xml/xslt</td>
<td>convert Docbook files to DVI, PostScript, PDF documents with XSLT</td>
</tr>
<tr>
<td>fop</td>
<td>V:2, I:44</td>
<td>291</td>
<td>xml/xsl-fo</td>
<td>convert Docbook XML files to PDF</td>
</tr>
</tbody>
</table>

### Table 11.9: List of DSSSL tools

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>keyword</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>openjade</td>
<td>V:2, I:43</td>
<td>988</td>
<td>dsssl</td>
<td>ISO/IEC 10179:1996 standard DSSSL processor (latest)</td>
</tr>
<tr>
<td>docbook-dsssl</td>
<td>V:1, I:28</td>
<td>2604</td>
<td>xml/dsssl</td>
<td>DSSSL stylesheets for processing DocBook XML to various output formats with DSSSL</td>
</tr>
<tr>
<td>docbook-utils</td>
<td>V:1, I:20</td>
<td>281</td>
<td>xml/dsssl</td>
<td>utilities for DocBook files including conversion to other formats (HTML, RTF, PS, man, PDF) with docbook2* commands with DSSSL</td>
</tr>
<tr>
<td>sgml2x</td>
<td>V:0, I:0</td>
<td>90</td>
<td>SGML/dsssl</td>
<td>converter from SGML and XML using DSSSL stylesheets</td>
</tr>
</tbody>
</table>

### Table 11.10: List of XML data extraction tools

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>keyword</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wv</td>
<td>V:4, I:8</td>
<td>717</td>
<td>MSWord → any</td>
<td>document converter from Microsoft Word to HTML, LaTeX, etc.</td>
</tr>
<tr>
<td>texi2html</td>
<td>V:0, I:9</td>
<td>1832</td>
<td>texi → html</td>
<td>converter from Texinfo to HTML</td>
</tr>
<tr>
<td>man2html</td>
<td>V:0, I:3</td>
<td>141</td>
<td>manpage → html</td>
<td>converter from manpage to HTML (CGI support)</td>
</tr>
<tr>
<td>unrtf</td>
<td>V:1, I:4</td>
<td>148</td>
<td>rtf → html</td>
<td>document converter from RTF to HTML, etc</td>
</tr>
<tr>
<td>info2www</td>
<td>V:2, I:3</td>
<td>156</td>
<td>info → html</td>
<td>converter from GNU info to HTML (CGI support)</td>
</tr>
<tr>
<td>oooo2dbk</td>
<td>V:0, I:0</td>
<td>217</td>
<td>sxw → xml</td>
<td>converter from OpenOffice.org SXW documents to DocBook XML</td>
</tr>
<tr>
<td>wp2x</td>
<td>V:0, I:0</td>
<td>215</td>
<td>WordPerfect → any</td>
<td>WordPerfect 5.0 and 5.1 files to TeX, LaTeX, troff, GML and HTML</td>
</tr>
<tr>
<td>doclifter</td>
<td>V:0, I:0</td>
<td>451</td>
<td>troff → xml</td>
<td>converter from troff to DocBook XML</td>
</tr>
</tbody>
</table>
11.2.3 The XML data extraction

You can extract HTML or XML data from other formats using followings.

For non-XML HTML files, you can convert them to XHTML which is an instance of well formed XML. XHTML can be processed by XML tools.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>keyword</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>libxml2-utils</td>
<td>V:22, I:289</td>
<td>173</td>
<td>xml ↔ html ↔ xhtml</td>
<td>command line XML tool with xmllint(1) (syntax check, reformat, lint, ...)</td>
</tr>
<tr>
<td>tidy</td>
<td>V:1, I:16</td>
<td>84</td>
<td>xml ↔ html ↔ xhtml</td>
<td>HTML syntax checker and reformatter</td>
</tr>
</tbody>
</table>

Table 11.11: List of XML pretty print tools

Once proper XML is generated, you can use XSLT technology to extract data based on the mark-up context etc.

11.3 Type setting

The Unix troff program originally developed by AT&T can be used for simple typesetting. It is usually used to create manpages. TeX created by Donald Knuth is a very powerful type setting tool and is the de facto standard. LaTeX originally written by Leslie Lamport enables a high-level access to the power of TeX.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>keyword</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>texlive</td>
<td>V:6, I:60</td>
<td>70</td>
<td>(La)TeX</td>
<td>TeX system for typesetting, previewing and printing</td>
</tr>
<tr>
<td>groff</td>
<td>V:4, I:91</td>
<td>11818</td>
<td>troff</td>
<td>GNU troff text-formatting system</td>
</tr>
</tbody>
</table>

Table 11.12: List of type setting tools

11.3.1 roff typesetting

Traditionally, roff is the main Unix text processing system. See roff(7), groff(7), groff(1), grotty(1), troff(1), groff_mdoc(7), groff_man(7), groff_ms(7), groff_me(7), groff_mm(7), and "info groff".

You can read or print a good tutorial and reference on "-me" macro in "/usr/share/doc/ligroff/" by installing the groff package.

**Tip**

"groff -Tascii -me -" produces plain text output with ANSI escape code. If you wish to get manpage like output with many "^H" and "_", use "GROFF_NO_SGR=1 groff -Tascii -me -" instead.

**Tip**

To remove "^H" and "_" from a text file generated by groff, filter it by "col -b -x".

11.3.2 TeX/LaTeX

The TeX Live software distribution offers a complete TeX system. The texlive metapackage provides a decent selection of the TeX Live packages which should suffice for the most common tasks.

There are many references available for TeX and LaTeX.
This is the most powerful typesetting environment. Many SGML processors use this as their back end text processor. Lyx provided by the lyx package and GNU TeXmacs provided by the texmacs package offer nice WYSIWYG editing environment for LaTeX while many use Emacs and Vim as the choice for the source editor.

There are many online resources available.

- A Simple Guide to Latex/Lyx
- Word Processing Using LaTeX
- Local User Guide to teTeX/LaTeX

When documents become bigger, sometimes TeX may cause errors. You must increase pool size in "/etc/texmf/texmf.cnf" (or more appropriately edit "/etc/texmf/texmf.d/95NonPath" and run update-texmf) to fix this.

Note
The TeX source of "The TeXbook" is available at http://tug.ctan.org/tex-archive/systems/knuth/dist/tex/texbook.tex. This file contains most of the required macros. I heard that you can process this document with tex(1) after commenting lines 7 to 10 and adding "\input manmac \proofmodefalse". It's strongly recommended to buy this book (and all other books from Donald E. Knuth) instead of using the online version but the source is a great example of TeX input!

11.3.3 Pretty print a manual page

You can print a manual page in PostScript nicely by one of the following commands.

```
$ man -Tps some_manpage | lpr
```

11.3.4 Creating a manual page

Although writing a manual page (manpage) in the plain troff format is possible, there are few helper packages to create it.

11.4 Printable data

Printable data is expressed in the PostScript format on the Debian system. Common Unix Printing System (CUPS) uses Ghostscript as its rasterizer backend program for non-PostScript printers.
### Table 11.13: List of packages to help creating the manpage

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>keyword</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>docbook-to-man</td>
<td>V:0, I:15</td>
<td>187</td>
<td>SGML → manpage converter from DocBook SGML into roff man macros</td>
<td></td>
</tr>
<tr>
<td>help2man</td>
<td>V:0, I:10</td>
<td>480</td>
<td>text → manpage</td>
<td>automatic manpage generator from --help</td>
</tr>
<tr>
<td>info2man</td>
<td>V:0, I:10</td>
<td>134</td>
<td>info → manpage</td>
<td>converter from GNU info to POD or man pages</td>
</tr>
<tr>
<td>txt2man</td>
<td>V:0, I:1</td>
<td>92</td>
<td>text → manpage</td>
<td>convert flat ASCII text to manpage format</td>
</tr>
</tbody>
</table>

### 11.4.1 Ghostscript

The core of printable data manipulation is the Ghostscript PostScript (PS) interpreter which generates raster image.

The latest upstream Ghostscript from Artifex was re-licensed from AFPL to GPL and merged all the latest ESP version changes such as CUPS related ones at 8.60 release as unified release.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ghostscript</td>
<td>V:173, I:665</td>
<td>225</td>
<td>The GPL Ghostscript PostScript/PDF interpreter</td>
</tr>
<tr>
<td>ghostscript-x</td>
<td>V:26, I:70</td>
<td>219</td>
<td>GPL Ghostscript PostScript/PDF interpreter - X display support</td>
</tr>
<tr>
<td>libpoppler82</td>
<td>V:28, I:68</td>
<td>3652</td>
<td>PDF rendering library forked from the xdvi PDF viewer</td>
</tr>
<tr>
<td>libpoppler-glib8</td>
<td>V:199, I:522</td>
<td>421</td>
<td>PDF rendering library (GLib-based shared library)</td>
</tr>
<tr>
<td>poppler-data</td>
<td>V:133, I:666</td>
<td>12219</td>
<td>CMaps for PDF rendering library (for CJK support: Adobe-*)</td>
</tr>
</tbody>
</table>

Table 11.14: List of Ghostscript PostScript interpreters

Tip
"gs -h" can display the configuration of Ghostscript.

### 11.4.2 Merge two PS or PDF files

You can merge two PostScript (PS) or Portable Document Format (PDF) files using `gs(1)` of Ghostscript.

```
$ gs -q -dNOPAUSE -dBATCH -sDEVICE=pswrite -sOutputFile=bla.ps -f foo1.ps foo2.ps
$ gs -q -dNOPAUSE -dBATCH -sDEVICE=pdfwrite -sOutputFile=bla.pdf -f foo1.pdf foo2.pdf
```

Note
The PDF, which is a widely used cross-platform printable data format, is essentially the compressed PS format with few additional features and extensions.

Tip
For command line, `psmerge(1)` and other commands from the `psutils` package are useful for manipulating PostScript documents. `pdftk(1)` from the `pdftk` package is useful for manipulating PDF documents, too.

### 11.4.3 Printable data utilities

The following packages for the printable data utilities caught my eyes.
### 11.4.4 Printing with CUPS

Both `lp(1)` and `lpr(1)` commands offered by Common Unix Printing System (CUPS) provides options for customized printing the printable data.

You can print 3 copies of a file collated using one of the following commands.

```bash
$ lp -n 3 -o Collate=True filename
```

```bash
$ lpr -#3 -o Collate=True filename
```

You can further customize printer operation by using printer option such as `-o number-up=2`, `-o page-set=even`, `-o page-set=odd`, `-o scaling=200`, `-o natural-scaling=200`, etc., documented at [Command-Line Printing and Options](#).

### 11.5 The mail data conversion

The following packages for the mail data conversion caught my eyes.

---

**Tip**

The Internet Message Access Protocol version 4 (IMAP4) server (see Section 6.7) may be used to move mails out from proprietary mail systems if the mail client software can be configured to use IMAP4 server too.
### 11.5.1 Mail data basics

Mail (SMTP) data should be limited to series of 7 bit data. So binary data and 8 bit text data are encoded into 7 bit format with the Multipurpose Internet Mail Extensions (MIME) and the selection of the charset (see Section 8.4.1).

The standard mail storage format is mbox formatted according to RFC2822 (updated RFC822). See mbox(5) (provided by the mutt package).

For European languages, "Content-Transfer-Encoding: quoted-printable" with the ISO-8859-1 charset is usually used for mail since there are not much 8 bit characters. If European text is encoded in UTF-8, "Content-Transfer-Encoding: quoted-printable" is likely to be used since it is mostly 7 bit data.

For Japanese, traditionally "Content-Type: text/plain; charset=ISO-2022-JP" is usually used for mail to keep text in 7 bits. But older Microsoft systems may send mail data in Shift-JIS without proper declaration. If Japanese text is encoded in UTF-8, Base64 is likely to be used since it contains many 8 bit data. The situation of other Asian languages is similar.

**Note**

If your non-Unix mail data is accessible by a non-Debian client software which can talk to the IMAP4 server, you may be able to move them out by running your own IMAP4 server (see Section 6.7).

**Note**

If you use other mail storage formats, moving them to mbox format is the good first step. The versatile client program such as mutt(1) may be handy for this.

You can split mailbox contents to each message using procmail(1) and formail(1).

Each mail message can be unpacked using munpack(1) from the mpack package (or other specialized tools) to obtain the MIME encoded contents.

### 11.6 Graphic data tools

The following packages for the graphic data conversion, editing, and organization tools caught my eyes.

**Tip**

Search more image tools using regex "~Gworks-with::image" in aptitude(8) (see Section 2.2.6).

Although GUI programs such as gimp(1) are very powerful, command line tools such as imagemagick(1) are quite useful for automating image manipulation via scripts.
<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>keyword</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gimp</td>
<td>V:85,1:489</td>
<td>19016</td>
<td>image(bitmap)</td>
<td>GNU Image Manipulation Program</td>
</tr>
<tr>
<td>imagemagick</td>
<td>V:43,1:549</td>
<td>209</td>
<td>image(bitmap)</td>
<td>image manipulation programs</td>
</tr>
<tr>
<td>graphicsmagick</td>
<td>V:6,1:17</td>
<td>5252</td>
<td>image(bitmap)</td>
<td>image manipulation programs (fork of imagemagick)</td>
</tr>
<tr>
<td>xsane</td>
<td>V:19,1:190</td>
<td>935</td>
<td>image(bitmap)</td>
<td>GTK+-based X11 frontend for SANE (Scanner Access Now Easy)</td>
</tr>
<tr>
<td>netpbm</td>
<td>V:35,1:552</td>
<td>4302</td>
<td>image(bitmap)</td>
<td>graphics conversion tools</td>
</tr>
<tr>
<td>icoutils</td>
<td>V:15,1:153</td>
<td>220</td>
<td>png ↔ ic bitmap</td>
<td>convert MS Windows icons and cursors to and from PNG formats (favicon.ico)</td>
</tr>
<tr>
<td>scribus</td>
<td>V:3,1:28</td>
<td>19995</td>
<td>ps/pdf/SVG/...</td>
<td>Scribus DTP editor</td>
</tr>
<tr>
<td>libreoffice-draw</td>
<td>V:313,1:470</td>
<td>9960</td>
<td>image(vector)</td>
<td>LibreOffice suite - drawing</td>
</tr>
<tr>
<td>inkscape</td>
<td>V:129,1:332</td>
<td>78502</td>
<td>image(vector)</td>
<td>SVG (Scalable Vector Graphics) editor</td>
</tr>
<tr>
<td>dia</td>
<td>V:18,1:37</td>
<td>3824</td>
<td>image(vector)</td>
<td>diagram editor (Gtk)</td>
</tr>
<tr>
<td>xfig</td>
<td>V:10,1:18</td>
<td>1793</td>
<td>image(vector)</td>
<td>Facility for Interactive Generation of figures under X11</td>
</tr>
<tr>
<td>pstoedit</td>
<td>V:6,1:159</td>
<td>992</td>
<td>ps/pdf → image(vector)</td>
<td>PostScript and PDF files to editable vector graphics converter (SVG)</td>
</tr>
<tr>
<td>libwmf-bin</td>
<td>V:11,1:335</td>
<td>113</td>
<td>Windows/image(vector)</td>
<td>Windows metafile (vector graphic data) conversion tools</td>
</tr>
<tr>
<td>fig2sxd</td>
<td>V:0,1:40</td>
<td>149</td>
<td>fig → sxd(vector)</td>
<td>Convert XFig files to OpenOffice.org Draw format</td>
</tr>
<tr>
<td>unpaper</td>
<td>V:2,1:17</td>
<td>460</td>
<td>image → image</td>
<td>post-processing tool for scanned pages for OCR</td>
</tr>
<tr>
<td>tesseract-ocr</td>
<td>V:6,1:32</td>
<td>1119</td>
<td>image → text</td>
<td>free OCR software based on the HP's commercial OCR engine</td>
</tr>
<tr>
<td>tesseract-ocr-eng</td>
<td>1:33</td>
<td>4032</td>
<td>image → text</td>
<td>OCR engine data: tesseract-ocr language files for English text</td>
</tr>
<tr>
<td>gocr</td>
<td>V:1,1:19</td>
<td>527</td>
<td>image → text</td>
<td>free OCR software</td>
</tr>
<tr>
<td>ocrad</td>
<td>V:0,1:6</td>
<td>303</td>
<td>image → text</td>
<td>free OCR software</td>
</tr>
<tr>
<td>eog</td>
<td>V:87,1:301</td>
<td>11807</td>
<td>image(Exif)</td>
<td>Eye of GNOME graphics viewer program</td>
</tr>
<tr>
<td>gthumb</td>
<td>V:12,1:23</td>
<td>3532</td>
<td>image(Exif)</td>
<td>image viewer and browser (GNOME)</td>
</tr>
<tr>
<td>geeqie</td>
<td>V:12,1:22</td>
<td>12814</td>
<td>image(Exif)</td>
<td>image viewer using GTK+</td>
</tr>
<tr>
<td>shotwell</td>
<td>V:20,1:224</td>
<td>6096</td>
<td>image(Exif)</td>
<td>digital photo organizer (GNOME)</td>
</tr>
<tr>
<td>gtkam</td>
<td>V:0,1:6</td>
<td>1154</td>
<td>image(Exif)</td>
<td>application for retrieving media from digital cameras (GTK+)</td>
</tr>
<tr>
<td>gphoto2</td>
<td>V:0,1:13</td>
<td>965</td>
<td>image(Exif)</td>
<td>The gphoto2 digital camera command-line client</td>
</tr>
<tr>
<td>gwenview</td>
<td>V:31,1:104</td>
<td>11266</td>
<td>image(Exif)</td>
<td>image viewer (KDE)</td>
</tr>
<tr>
<td>kamera</td>
<td>I:103</td>
<td>748</td>
<td>image(Exif)</td>
<td>digital camera support for KDE applications</td>
</tr>
<tr>
<td>digikam</td>
<td>V:3,1:15</td>
<td>3644</td>
<td>image(Exif)</td>
<td>digital photo management application for KDE</td>
</tr>
<tr>
<td>exiv2</td>
<td>V:4,1:53</td>
<td>239</td>
<td>image(Exif)</td>
<td>EXIF/ IPTC metadata manipulation tool</td>
</tr>
<tr>
<td>exiftran</td>
<td>V:1,1:23</td>
<td>70</td>
<td>image(Exif)</td>
<td>transform digital camera jpeg images</td>
</tr>
<tr>
<td>jhead</td>
<td>V:1,1:12</td>
<td>113</td>
<td>image(Exif)</td>
<td>manipulate the non-image part of Exif compliant JPEG (digital camera photo)</td>
</tr>
<tr>
<td>dcread</td>
<td>V:2,1:22</td>
<td>535</td>
<td>image(Raw)</td>
<td>read metadata from digital pictures</td>
</tr>
<tr>
<td>findimagdupes</td>
<td>V:0,1:1</td>
<td>78</td>
<td>image → fingerprint</td>
<td>print visually similar or duplicate images</td>
</tr>
<tr>
<td>ale</td>
<td>V:0,1:0</td>
<td>753</td>
<td>image → image</td>
<td>merge images to increase fidelity or create mosaics</td>
</tr>
<tr>
<td>imageindex</td>
<td>V:0,1:0</td>
<td>145</td>
<td>image(Exif)</td>
<td>generate static HTML galleries from images</td>
</tr>
<tr>
<td>outguess</td>
<td>V:0,1:2</td>
<td>260</td>
<td>jpeg, png</td>
<td>universal Steganographic tool</td>
</tr>
<tr>
<td>libbreed</td>
<td>V:9,1:19</td>
<td>8201</td>
<td>DXF</td>
<td>CAD data editor (KDE)</td>
</tr>
<tr>
<td>blender</td>
<td>V:4,1:35</td>
<td>107121</td>
<td>blend, TIFF, VRML, ...</td>
<td>3D content editor for animation etc</td>
</tr>
<tr>
<td>mm3d</td>
<td>V:0,1:0</td>
<td>3900</td>
<td>ms3d, obj, dxf, ...</td>
<td>OpenGL based 3D model editor</td>
</tr>
<tr>
<td>open-font-design-toolkit</td>
<td>10</td>
<td>91</td>
<td>ttf, ps, ...</td>
<td>metapackage for open font design</td>
</tr>
<tr>
<td>fontforge</td>
<td>V:0,1:8</td>
<td>876</td>
<td>ttf</td>
<td>font editor for PS, TrueType and OpenType fonts</td>
</tr>
<tr>
<td>xgridfit</td>
<td>V:0,1:0</td>
<td>876</td>
<td>ttf</td>
<td>program for gridfitting and hinting TrueType fonts</td>
</tr>
</tbody>
</table>
The de facto image file format of the digital camera is the Exchangeable Image File Format (EXIF) which is the JPEG image file format with additional metadata tags. It can hold information such as date, time, and camera settings.

The Lempel-Ziv-Welch (LZW) lossless data compression patent has been expired. Graphics Interchange Format (GIF) utilities which use the LZW compression method are now freely available on the Debian system.

**Tip**
Any digital camera or scanner with removable recording media works with Linux through USB storage readers since it follows the Design rule for Camera Filesystem and uses FAT filesystem. See Section 10.1.7.

### 11.7 Miscellaneous data conversion

There are many other programs for converting data. Following packages caught my eyes using regex "~Guse::converting" in aptitude(8) (see Section 2.2.6).

<table>
<thead>
<tr>
<th>package</th>
<th>popup</th>
<th>size</th>
<th>keyword</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alien</td>
<td>V:3, I:45</td>
<td>166</td>
<td>rpm/tgz → deb</td>
<td>converter for the foreign package into the Debian package</td>
</tr>
<tr>
<td>freepwing</td>
<td>V:0, I:0</td>
<td>421</td>
<td>EB → EPWING</td>
<td>converter from “Electric Book” (popular in Japan) to a single JIS X 4081 format (a subset of the EPWING V1)</td>
</tr>
<tr>
<td>calibre</td>
<td>V:8, I:39</td>
<td>51670</td>
<td>any → EPUB</td>
<td>e-book converter and library management</td>
</tr>
</tbody>
</table>

Table 11.18: List of miscellaneous data conversion tools

You can also extract data from RPM format with the following.

```
$ rpm2cpio file.src.rpm | cpio --extract
```
Chapter 12
Programming

I provide some pointers for people to learn programming on the Debian system enough to trace the packaged source code. Here are notable packages and corresponding documentation packages for programming.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>autoconf</td>
<td>V:38, I:259</td>
<td>1868</td>
<td>&quot;info autoconf&quot; provided by autoconf-doc</td>
</tr>
<tr>
<td>automake</td>
<td>V:37, I:265</td>
<td>1784</td>
<td>&quot;info automake&quot; provided by automake1.10-doc</td>
</tr>
<tr>
<td>bash</td>
<td>V:826, I:999</td>
<td>6462</td>
<td>&quot;info bash&quot; provided by bash-doc</td>
</tr>
<tr>
<td>bison</td>
<td>V:11, I:109</td>
<td>2253</td>
<td>&quot;info bison&quot; provided by bison-doc</td>
</tr>
<tr>
<td>cpp</td>
<td>V:389, I:790</td>
<td>42</td>
<td>&quot;info cpp&quot; provided by cpp-doc</td>
</tr>
<tr>
<td>ddd</td>
<td>V:0, I:12</td>
<td>3929</td>
<td>&quot;info ddd&quot; provided by ddd-doc</td>
</tr>
<tr>
<td>exuberant-ctags</td>
<td>V:7, I:42</td>
<td>333</td>
<td>exuberant-ctags(1)</td>
</tr>
<tr>
<td>flex</td>
<td>V:10, I:98</td>
<td>1225</td>
<td>&quot;info flex&quot; provided by flex-doc</td>
</tr>
<tr>
<td>gawk</td>
<td>V:443, I:535</td>
<td>2412</td>
<td>&quot;info gawk&quot; provided by gawk-doc</td>
</tr>
<tr>
<td>gcc</td>
<td>V:173, I:598</td>
<td>8989</td>
<td>&quot;info gcc&quot; provided by gcc-doc</td>
</tr>
<tr>
<td>gdb</td>
<td>V:17, I:124</td>
<td>2253</td>
<td>&quot;info gdb&quot; provided by gdb-doc</td>
</tr>
<tr>
<td>gettext</td>
<td>V:52, I:345</td>
<td>6594</td>
<td>&quot;info gettext&quot; provided by gettext-doc</td>
</tr>
<tr>
<td>gfortran</td>
<td>V:8, I:79</td>
<td>16</td>
<td>&quot;info gfortran&quot; provided by gfortran-doc(Fortran 95)</td>
</tr>
<tr>
<td>fpc</td>
<td>I:4</td>
<td>2306</td>
<td>help provided via menu (UI Builder)</td>
</tr>
<tr>
<td>glade</td>
<td>V:1, I:9</td>
<td>120</td>
<td>fpc(1) and html by fp-docs (Pascal)</td>
</tr>
<tr>
<td>libc6</td>
<td>V:937, I:999</td>
<td>12333</td>
<td>&quot;info libc&quot; provided by glibc-doc and glibc-doc-reference</td>
</tr>
<tr>
<td>make</td>
<td>V:169, I:604</td>
<td>1296</td>
<td>&quot;info make&quot; provided by make-doc</td>
</tr>
<tr>
<td>xutils-dev</td>
<td>V:1, I:14</td>
<td>1466</td>
<td>imake(I), xmkml(I), etc.</td>
</tr>
<tr>
<td>mawk</td>
<td>V:342, I:998</td>
<td>183</td>
<td>mawk(I)</td>
</tr>
<tr>
<td>perl</td>
<td>V:618, I:994</td>
<td>575</td>
<td>perl(I) and html pages provided by perl-doc and perl-doc-html</td>
</tr>
<tr>
<td>python</td>
<td>V:578, I:986</td>
<td>68</td>
<td>python(I) and html pages provided by python-doc</td>
</tr>
<tr>
<td>tcl</td>
<td>V:30, I:442</td>
<td>22</td>
<td>tcl(3) and detail manual pages provided by tcl-doc</td>
</tr>
<tr>
<td>tk</td>
<td>V:31, I:433</td>
<td>22</td>
<td>tk(3) and detail manual pages provided by tk-doc</td>
</tr>
<tr>
<td>ruby</td>
<td>V:173, I:341</td>
<td>37</td>
<td>ruby(I) and interactive reference provided by ri</td>
</tr>
<tr>
<td>vim</td>
<td>V:119, I:395</td>
<td>2799</td>
<td>help(F1) menu provided by vim-doc</td>
</tr>
<tr>
<td>susv2</td>
<td>I:0</td>
<td>16</td>
<td>fetch &quot;The Single UNIX Specifications v2&quot;</td>
</tr>
<tr>
<td>susv3</td>
<td>I:0</td>
<td>16</td>
<td>fetch &quot;The Single UNIX Specifications v3&quot;</td>
</tr>
</tbody>
</table>

Table 12.1: List of packages to help programming

Online references are available by typing "man name" after installing manpages and manpages-dev packages. Online references for the GNU tools are available by typing "info program_name" after installing the pertinent documentation.
packages. You may need to include the contrib and non-free archives in addition to the main archive since some GFDL documentations are not considered to be DFSG compliant.

---

**Warning**
Do not use "test" as the name of an executable test file. "test" is a shell builtin.

---

**Caution**
You should install software programs directly compiled from source into "/usr/local" or "/opt" to avoid collision with system programs.

---

**Tip**
Code examples of creating "Song 99 Bottles of Beer" should give you good ideas of practically all the programming languages.

---

### 12.1 The shell script

The shell script is a text file with the execution bit set and contains the commands in the following format.

```bash
#!/bin/sh
... command lines
```

The first line specifies the shell interpreter which read and execute this file contents.

Reading shell scripts is the best way to understand how a Unix-like system works. Here, I give some pointers and reminders for shell programming. See "Shell Mistakes" (http://www.greenend.org.uk/rjk/2001/04/shell.html) to learn from mistakes.

Unlike shell interactive mode (see Section 1.5 and Section 1.6), shell scripts frequently use parameters, conditionals, and loops.

#### 12.1.1 POSIX shell compatibility

Many system scripts may be interpreted by any one of POSIX shells (see Table 1.13). The default shell for the system is "/bin/sh" which is a symlink pointing to the actual program.

- bash(1) for lenny or older
- dash(1) for squeeze or newer

Avoid writing a shell script with bashisms or zshisms to make it portable among all POSIX shells. You can check it using checkbashisms(1).

The "echo" command must be used with following cares since its implementation differs among shell builtin and external commands.

- Avoid using any command options except "-n".
- Avoid using escape sequences in the string since their handling varies.
Good: POSIX

| if [ "$foo" = "$bar" ]; then ... | if [ "$foo" == "$bar" ]; then ...
| diff -u file.c.orig file.c | diff -u file.c{.orig,}
| mkdir /foobar /foobaz | mkdir /foo{bar,baz}
| fucname() { ... } | function funcname() { ... }
| octal format: "\377" | hexadecimal format: "\xff"

Table 12.2: List of typical bashisms

**Note**
Although "-n" option is **not** really POSIX syntax, it is generally accepted.

**Tip**
Use the "printf" command instead of the "echo" command if you need to embed escape sequences in the output string.

### 12.1.2 Shell parameters

Special shell parameters are frequently used in the shell script.

<table>
<thead>
<tr>
<th>shell parameter</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0</td>
<td>name of the shell or shell script</td>
</tr>
<tr>
<td>$1</td>
<td>first (1st) shell argument</td>
</tr>
<tr>
<td>$9</td>
<td>ninth (9th) shell argument</td>
</tr>
<tr>
<td>$#</td>
<td>number of positional parameters</td>
</tr>
<tr>
<td>&quot;$*&quot;</td>
<td>&quot;$1 &quot;$2 &quot;$3 &quot;$4 ...&quot;</td>
</tr>
<tr>
<td>&quot;$@&quot;</td>
<td>&quot;$1&quot; &quot;$2&quot; &quot;$3&quot; &quot;$4&quot; ...</td>
</tr>
<tr>
<td>?</td>
<td>exit status of the most recent command</td>
</tr>
<tr>
<td>$$</td>
<td>PID of this shell script</td>
</tr>
<tr>
<td>$!</td>
<td>PID of most recently started background job</td>
</tr>
</tbody>
</table>

Table 12.3: List of shell parameters

Basic **parameter expansions** to remember are as follows.

<table>
<thead>
<tr>
<th>parameter expression form</th>
<th>value if var is set</th>
<th>value if var is not set</th>
</tr>
</thead>
<tbody>
<tr>
<td>${var:-string}</td>
<td>&quot;$var&quot;</td>
<td>&quot;string&quot;</td>
</tr>
<tr>
<td>${var:+string}</td>
<td>&quot;string&quot;</td>
<td>&quot;null&quot;</td>
</tr>
<tr>
<td>${var:=string}</td>
<td>&quot;$var&quot;</td>
<td>&quot;string&quot;(and run &quot;var=string&quot;)</td>
</tr>
<tr>
<td>${var:?string}</td>
<td>&quot;$var&quot;</td>
<td>echo &quot;String&quot; to stderr(and exit with error)</td>
</tr>
</tbody>
</table>

Table 12.4: List of shell parameter expansions

Here, the colon ":" in all of these operators is actually optional.

- **with "::"** = operator test for **exist** and not **null**
- **without "::"** = operator test for **exist** only
<table>
<thead>
<tr>
<th>parameter substitution form</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>${var%suffix}</code></td>
<td>remove smallest suffix pattern</td>
</tr>
<tr>
<td><code>${var%%suffix}</code></td>
<td>remove largest suffix pattern</td>
</tr>
<tr>
<td><code>${var#prefix}</code></td>
<td>remove smallest prefix pattern</td>
</tr>
<tr>
<td><code>${var##prefix}</code></td>
<td>remove largest prefix pattern</td>
</tr>
</tbody>
</table>

Table 12.5: List of key shell parameter substitutions

12.1.3 Shell conditionals

Each command returns an exit status which can be used for conditional expressions.

- Success: 0 ("True")
- Error: non 0 ("False")

**Note**

"0" in the shell conditional context means "True", while "0" in the C conditional context means "False".

**Note**

"[" is the equivalent of the test command, which evaluates its arguments up to "]" as a conditional expression.

Basic conditional idioms to remember are the following.

- "<command> && <if_success_run_this_command_too> || true"
- "<command> || <if_not_success_run_this_command_too> || true"
- A multi-line script snippet as the following

```bash
if [<conditional_expression>]; then
 <if_success_run_this_command>
else
 <if_not_success_run_this_command>
fi
```

Here trailing "|| true" was needed to ensure this shell script does not exit at this line accidentally when shell is invoked with "-e" flag.

<table>
<thead>
<tr>
<th>equation</th>
<th>condition to return logical true</th>
</tr>
</thead>
<tbody>
<tr>
<td>-e &lt;file&gt;</td>
<td>&lt;file&gt; exists</td>
</tr>
<tr>
<td>-d &lt;file&gt;</td>
<td>&lt;file&gt; exists and is a directory</td>
</tr>
<tr>
<td>-f &lt;file&gt;</td>
<td>&lt;file&gt; exists and is a regular file</td>
</tr>
<tr>
<td>-w &lt;file&gt;</td>
<td>&lt;file&gt; exists and is writable</td>
</tr>
<tr>
<td>-x &lt;file&gt;</td>
<td>&lt;file&gt; exists and is executable</td>
</tr>
<tr>
<td>&lt;file1&gt; -nt &lt;file2&gt;</td>
<td>&lt;file1&gt; is newer than &lt;file2&gt; (modification)</td>
</tr>
<tr>
<td>&lt;file1&gt; -ot &lt;file2&gt;</td>
<td>&lt;file1&gt; is older than &lt;file2&gt; (modification)</td>
</tr>
<tr>
<td>&lt;file1&gt; -ef &lt;file2&gt;</td>
<td>&lt;file1&gt; and &lt;file2&gt; are on the same device and the same inode number</td>
</tr>
</tbody>
</table>

Table 12.6: List of file comparison operators in the conditional expression

Arithmetic integer comparison operators in the conditional expression are ":-eq", ":-ne", ":-lt", ":-le", ":-gt", and ":-ge".

### 12.1.4 Shell loops

There are several loop idioms to use in POSIX shell.

- "for x in foo1 foo2 …; do command; done" loops by assigning items from the list "foo1 foo2 …" to variable "x" and executing "command".
- "while condition; do command; done" repeats "command" while "condition" is true.
- "until condition; do command; done" repeats "command" while "condition" is not true.
- "break" enables to exit from the loop.
- "continue" enables to resume the next iteration of the loop.

**Tip**
The C-language like numeric iteration can be realized by using `seq(1)` as the "foo1 foo2 …" generator.

**Tip**
See Section 9.3.9.

### 12.1.5 The shell command-line processing sequence

The shell processes a script roughly as the following sequence.

- The shell reads a line.
- The shell groups a part of the line as **one token** if it is within "" or ’’.
- The shell splits other part of a line into **tokens** by the following.
  - Whitespaces: `<space>` `<tab>` `<newline>`
  - Metacharacters: `< >` `|` `;` `&` `( )`
- The shell checks the **reserved word** for each token to adjust its behavior if not within "" or ’’.
  - **reserved word**: if then elif else fi for in while unless do done case esac
- The shell expands **alias** if not within "" or ’’.
- The shell expands **tilde** if not within "" or ’’.
  - "~" → current user’s home directory
  - "~<user>" → <user>’s home directory
• The shell expands `parameter` to its value if not within `'...'`.
  – `parameter`: "$PARAMETER" or "${PARAMETER}"

• The shell expands `command substitution` if not within `'...'`.
  – "$\{(\text{command})\}" → the output of "command"
  – "\`\text{command}\`" → the output of "command"

• The shell expands `pathname glob` to matching file names if not within "‘…’" or ‘…’.
  – * → any characters
  – ? → one character
  – [⋯] → any one of the characters in "⋯"

• The shell looks up `command` from the following and execute it.
  – `function` definition
  – `builtin` command
  – `executable file` in "$PATH"

• The shell goes to the next line and repeats this process again from the top of this sequence.

Single quotes within double quotes have no effect.

Executing "`set -x`" in the shell or invoking the shell with "-x" option make the shell to print all of commands executed. This is quite handy for debugging.

### 12.1.6 Utility programs for shell script

In order to make your shell program as portable as possible across Debian systems, it is a good idea to limit utility programs to ones provided by `essential` packages.

• "`aptitude search ~E`" lists `essential` packages.

• "`dpkg -L <package_name> | grep '/man/man.*/'`" lists manpages for commands offered by `<package_name>` package.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>coreutils</code></td>
<td>V:888,1:999</td>
<td>15719</td>
<td>GNU core utilities</td>
</tr>
<tr>
<td><code>debianutils</code></td>
<td>V:941,1:999</td>
<td>226</td>
<td>miscellaneous utilities specific to Debian</td>
</tr>
<tr>
<td><code>bsdmainutils</code></td>
<td>V:861,1:999</td>
<td>587</td>
<td>collection of more utilities from FreeBSD</td>
</tr>
<tr>
<td><code>bsdutils</code></td>
<td>V:866,1:999</td>
<td>293</td>
<td>basic utilities from 4.4BSD-Lite</td>
</tr>
<tr>
<td><code>moreutils</code></td>
<td>V:5,1:24</td>
<td>237</td>
<td>additional Unix utilities</td>
</tr>
</tbody>
</table>

Table 12.8: List of packages containing small utility programs for shell scripts

**Tip**

Although `moreutils` may not exist outside of Debian, it offers interesting small programs. Most notable one is `sponge(8)` which is quite useful when you wish to overwrite original file.
### 12.1.7 Shell script dialog

The user interface of a simple shell program can be improved from dull interaction by `echo` and `read` commands to more interactive one by using one of the so-called dialog program etc.

### 12.1.8 Shell script example with zenity

Here is a simple script which creates ISO image with RS02 data supplemented by dvdisaster(1).

```bash
#!/bin/sh
#
gmkrs02 : Copyright (C) 2007 Osamu Aoki <osamu@debian.org>, Public Domain
#
#set -x
error_exit()
{
 echo "$1" >&2
 exit 1
}

Initialize variables
DATA_ISO="$HOME/Desktop/iso-$$.img"
LABEL="$\((date +%Y%m%d-%H%M%S-%Z)\)"
if [$# != 0] && [-d "$1"]; then
 DATA_SRC="$1"
else
 DATA_SRC=""
fi

Select directory for creating ISO image from folder on desktop
if [$$$]
 DATA_SRC=$(zenity --file-selection --directory --title="Select the directory tree root to create ISO image")
else
 DATA_SRC=""
fi

debug_message "$1"@@

Check size of archive
xterm -T "Check size $DATA_SRC" -e du -s $DATA_SRC/
SIZE=$(($((du -s $DATA_SRC | awk '{print $1}')/1024))
if [$SIZE -le 520]
 zenity --info --title="Dvdisaster RS02" --width 640 --height 400
 --text="The data size is good for CD backup:\n\n$SIZE MB"
elif [$SIZE -le 3500]
 zenity --info --title="Dvdisaster RS02" --width 640 --height 400
 --text="The data size is good for DVD backup :\n\n$SIZE MB"
else
 zenity --info --title="Dvdisaster RS02" --width 640 --height 400
 --text="The data size is too big to backup :\n\n$SIZE MB"
error_exit "The data size is too big to backup :\n\n$SIZE MB"
fi

only xterm is sure to have working -e option
Create raw ISO image
rm -f "DATA_ISO" || true
xterm -T "genisoimage $DATA_ISO" \
```

Table 12.9: List of user interface programs

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x11-utils</td>
<td></td>
<td>631</td>
<td>xmessage(1): display a message or query in a window (X)</td>
</tr>
<tr>
<td>whiptail</td>
<td></td>
<td>70</td>
<td>displays user-friendly dialog boxes from shell scripts (newt)</td>
</tr>
<tr>
<td>dialog</td>
<td></td>
<td>369</td>
<td>display graphical dialog boxes from shell scripts (ncurses)</td>
</tr>
<tr>
<td>zenity</td>
<td></td>
<td>639</td>
<td>displays user-friendly dialog boxes from shell scripts (gtk2.0)</td>
</tr>
<tr>
<td>ssft</td>
<td></td>
<td>75</td>
<td>Shell Scripts Frontend Tool (wrapper for zenity, kdialog, and dialog with gettext)</td>
</tr>
<tr>
<td>gettext</td>
<td></td>
<td>6594</td>
<td>&quot;/usr/bin/gettext.sh&quot;: translate message</td>
</tr>
</tbody>
</table>

The data size is too big to backup: **$SIZE MB**
You may wish to create launcher on the desktop with command set something like “/usr/local/bin/gmkrs02 %d”.

12.2 Make

Make is a utility to maintain groups of programs. Upon execution of make(1), make read the rule file, ”Makefile”, and updates a target if it depends on prerequisite files that have been modified since the target was last modified, or if the target does not exist. The execution of these updates may occur concurrently.

The rule file syntax is the following.

target: [ prerequisites ... ]

[TAB] command1
[TAB] -command2 # ignore errors
[TAB] @command3 # suppress echoing

Here ”[TAB]” is a TAB code. Each line is interpreted by the shell after make variable substitution. Use ”\” at the end of a line to continue the script. Use ”$$” to enter ”$” for environment values for a shell script.

Implicit rules for the target and prerequisites can be written, for example, by the following.

%.o: %.c header.h

Here, the target contains the character ”%” (exactly one of them). The ”%” can match any nonempty substring in the actual target filenames. The prerequisites likewise use ”%” to show how their names relate to the actual target name.

<table>
<thead>
<tr>
<th>automatic variable</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$@</td>
<td>target</td>
</tr>
<tr>
<td>$&lt;</td>
<td>first prerequisite</td>
</tr>
<tr>
<td>$?</td>
<td>all newer prerequisites</td>
</tr>
<tr>
<td>$^</td>
<td>all prerequisites</td>
</tr>
<tr>
<td>$*</td>
<td>”%” matched stem in the target pattern</td>
</tr>
</tbody>
</table>

Table 12.10: List of make automatic variables

<table>
<thead>
<tr>
<th>variable expansion</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>foo1 := bar</td>
<td>one-time expansion</td>
</tr>
<tr>
<td>foo2 = bar</td>
<td>recursive expansion</td>
</tr>
<tr>
<td>foo3 += bar</td>
<td>append</td>
</tr>
</tbody>
</table>

Table 12.11: List of make variable expansions

Run ”make -p -f/dev/null” to see automatic internal rules.
12.3 C

You can set up proper environment to compile programs written in the C programming language by the following.

```
apt-get install glibc-doc manpages-dev libc6-dev gcc build-essential
```

The libc6-dev package, i.e., GNU C Library, provides C standard library which is collection of header files and library routines used by the C programming language.

See references for C as the following.

- "info libc" (C library function reference)
- gcc(1) and "info gcc"
- each_C_library_function_name(3)

12.3.1 Simple C program (gcc)

A simple example "example.c" can compiled with a library "libm" into an executable "run_example" by the following.

```
$ cat > example.c << EOF
#include <stdio.h>
#include <math.h>
#include <string.h>

int main(int argc, char **argv, char **envp){
 double x;
 char y[11];
 x=sqrt(argc+7.5);
 strncpy(y, argv[0], 10); /* prevent buffer overflow */
 y[10] = '\0'; /* fill to make sure string ends with '\0' */
 printf("%5i, %5.3f, %10s, %10s\n", argc, x, y, argv[1]);
 return 0;
}
EOF
$ gcc -Wall -g -o run_example example.c -lm
$./run_example
 1, 2.915, ./run_exam, (null)
 2, 3.082, ./run_exam, 1234567890qwerty
```

Here, "-lm" is needed to link library "/usr/lib/libm.so" from the libc6 package for sqrt(3). The actual library is in "/lib/" with filename "libm.so.6", which is a symlink to "libm-2.7.so".

Look at the last parameter in the output text. There are more than 10 characters even though "%10s" is specified.

The use of pointer memory operation functions without boundary checks, such as sprintf(3) and strcpy(3), is deprecated to prevent buffer overflow exploits that leverage the above overrun effects. Instead, use snprintf(3) and strncpy(3).

12.4 Debug

Debug is important part of programing activities. Knowing how to debug programs makes you a good Debian user who can produce meaningful bug reports.
12.4.1 Basic gdb execution

Primary debugger on Debian is gdb(1) which enables you to inspect a program while it executes. Let's install gdb and related programs by the following.

```
apt-get install gdb gdb-doc build-essential devscripts
```

Good tutorial of gdb is provided by “info gdb” or found elsewhere on the web. Here is a simple example of using gdb(1) on a "program" compiled with the "-g" option to produce debugging information.

```
$ gdb program
(gdb) b 1 # set break point at line 1
(gdb) run args # run program with args
(gdb) next # next line
...
(gdb) step # step forward
...
(gdb) p parm # print parm
...
(gdb) p parm=12 # set value to 12
...
(gdb) quit
```

Tip
Many gdb(1) commands can be abbreviated. Tab expansion works as in the shell.

12.4.2 Debugging the Debian package

Since all installed binaries should be stripped on the Debian system by default, most debugging symbols are removed in the normal package. In order to debug Debian packages with gdb(1), either corresponding *-dbg packages or *-dbgsym packages need to be installed (e.g. libc6-dbgsym in the case of libc6, coreutils-dbgsym in the case of coreutils).

Old-style packages would provide its corresponding *-dbg package. It is placed directly inside Debian main archive alongside of the original package itself. For newer packages, they may generate *-dbgsym packages automatically when built and those debug packages are placed separately in debian-debug archive. Please refer to articles on Debian Wiki for more information.

If a package to be debugged does not provide either its *-dbg package or its *-dbgsym package, you need to install it after rebuilding it by the following.

```
$ mkdir /path/new ; cd /path/new
$ sudo apt-get update
$ sudo apt-get dist-upgrade
$ sudo apt-get install fakeroot devscripts build-essential
$ apt-get source package_name
$ cd package_name*
$ sudo apt-get build-dep ./
```

Fix bugs if needed.

Bump package version to one which does not collide with official Debian versions, e.g. one appended with "*debug1" when recompiling existing package version, or one appended with "~pre1" when compiling unreleased package version by the following.
Compile and install packages with debug symbols by the following.

```bash
$ dch -i

$ export DEB_BUILD_OPTIONS="nostrip noopt"
$ debuild
$ cd..
$ sudo debi package_name*..changes
```

You need to check build scripts of the package and ensure to use "CFLAGS=-g -Wall" for compiling binaries.

### 12.4.3 Obtaining backtrace

When you encounter program crash, reporting bug report with cut-and-pasted backtrace information is a good idea.

The backtrace can be obtained by the following steps.

- Run the program under `gdb(1)`.
- Reproduce crash.
  - It causes you to be dropped back to the `gdb` prompt.
- Type "bt" at the `gdb` prompt.

In case of program freeze, you can crash the program by pressing `Ctrl-C` in the terminal running `gdb` to obtain `gdb` prompt.

**Tip**

Often, you see a backtrace where one or more of the top lines are in "malloc()" or "g_malloc()". When this happens, chances are your backtrace isn't very useful. The easiest way to find some useful information is to set the environment variable "$MALLOC_CHECK_" to a value of 2 (malloc(3)). You can do this while running `gdb` by doing the following.

```bash
$ MALLOC_CHECK_=2 gdb hello
```

### 12.4.4 Advanced gdb commands

<table>
<thead>
<tr>
<th>command</th>
<th>description for command objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>(gdb) thread apply all bt</code></td>
<td>get a backtrace for all threads for multi-threaded program</td>
</tr>
<tr>
<td><code>(gdb) bt full</code></td>
<td>get parameters came on the stack of function calls</td>
</tr>
<tr>
<td><code>(gdb) thread apply all bt full</code></td>
<td>get a backtrace and parameters as the combination of the preceding options</td>
</tr>
<tr>
<td><code>(gdb) thread apply all bt full 10</code></td>
<td>get a backtrace and parameters for top 10 calls to cut off irrelevant output</td>
</tr>
<tr>
<td><code>(gdb) set logging on</code></td>
<td>write log of <code>gdb</code> output to a file (the default is “gdb.txt”)</td>
</tr>
</tbody>
</table>

Table 12.12: List of advanced `gdb` commands
12.4.5 Debugging X Errors

If a GNOME program `preview1` has received an X error, you should see a message as follows.

```
The program 'preview1' received an X Window System error.
```

If this is the case, you can try running the program with `"--sync"`, and break on the "gdk_x_error" function in order to obtain a backtrace.

12.4.6 Check dependency on libraries

Use `ldd(1)` to find out a program’s dependency on libraries by the followings.

```
$ ldd /bin/ls
 librt.so.1 => /lib/librt.so.1 (0x401e000)
 libc.so.6 => /lib/libc.so.6 (0x4000000)
 libpthread.so.0 => /lib/libpthread.so.0 (0x4015300)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x4000000)
```

For `ls(1)` to work in a `chroot` environment, the above libraries must be available in your `chroot` environment. See Section 9.3.6.

12.4.7 Memory leak detection tools

There are several memory leak detection tools available in Debian.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>libc6-dev</td>
<td>V:276</td>
<td>18939</td>
<td>mtrace(1): malloc debugging functionality in glibc</td>
</tr>
<tr>
<td>valgrind</td>
<td>V:7, I:52</td>
<td>80468</td>
<td>memory debugger and profiler</td>
</tr>
<tr>
<td>electric-fence</td>
<td>V:0, I:5</td>
<td>70</td>
<td>malloc(3) debugger</td>
</tr>
<tr>
<td>leaktracer</td>
<td>V:0, I:3</td>
<td>56</td>
<td>memory-leak tracer for C++ programs</td>
</tr>
<tr>
<td>libdmalloc5</td>
<td>V:0, I:3</td>
<td>393</td>
<td>debug memory allocation library</td>
</tr>
</tbody>
</table>

Table 12.13: List of memory leak detection tools

12.4.8 Static code analysis tools

There are `lint` like tools for static code analysis.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>splint</td>
<td>V:0, I:4</td>
<td>2239</td>
<td>tool for statically checking C programs for bugs</td>
</tr>
<tr>
<td>flawfinder</td>
<td>V:0, I:0</td>
<td>175</td>
<td>tool to examine C/C++ source code and looks for security weaknesses</td>
</tr>
<tr>
<td>perl</td>
<td>V:618, I:994</td>
<td>575</td>
<td>interpreter with internal static code checker: B::Lint(3perl)</td>
</tr>
<tr>
<td>pylint</td>
<td>V:6, I:18</td>
<td>2668</td>
<td>Python code static checker</td>
</tr>
<tr>
<td>weblint-perl</td>
<td>V:0, I:1</td>
<td>32</td>
<td>syntax and minimal style checker for HTML</td>
</tr>
<tr>
<td>linklint</td>
<td>V:0, I:0</td>
<td>343</td>
<td>fast link checker and web site maintenance tool</td>
</tr>
<tr>
<td>libxml2-utils</td>
<td>V:22, I:289</td>
<td>173</td>
<td>utilities with xmllint(1) to validate XML files</td>
</tr>
</tbody>
</table>

Table 12.14: List of tools for static code analysis
### 12.4.9 Disassemble binary

You can disassemble binary code with `objdump(1)` by the following.

```
$ objdump -m i386 -b binary -D /usr/lib/grub/x86_64-pc/stage1
```

Note: `gdb(1)` may be used to disassemble code interactively.

### 12.5 Flex — a better Lex

Flex is a Lex-compatible fast lexical analyzer generator. Tutorial for `flex(1)` can be found in "info flex".

You need to provide your own "main()" and "yywrap()". Otherwise, your flex program should look like this to compile without a library. This is because that "yywrap" is a macro and "%option main" turns on "%option noyywrap" implicitly.

```
%option main
%
% |
%
ECHO ;
%
```

Alternatively, you may compile with the "-lfl" linker option at the end of your `cc(1)` command line (like AT&T-Lex with "-ll"). No "%option" is needed in this case.

### 12.6 Bison — a better Yacc

Several packages provide a Yacc-compatible lookahead LR parser or LALR parser generator in Debian.

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bison</td>
<td>V:11, I:109</td>
<td>2253</td>
<td>GNU LALR parser generator</td>
</tr>
<tr>
<td>byacc</td>
<td>V:0, I:6</td>
<td>160</td>
<td>Berkeley LALR parser generator</td>
</tr>
<tr>
<td>btyacc</td>
<td>V:0, I:0</td>
<td>207</td>
<td>backtracking parser generator based on byacc</td>
</tr>
</tbody>
</table>

Table 12.15: List of Yacc-compatible LALR parser generators

Tutorial for `bison(1)` can be found in "info bison".

You need to provide your own "main()" and "yyerror()". "main()" calls "yyparse()" which calls "yylex()", usually created with Flex.

```
%
%`
12.7 Autoconf

Autoconf is a tool for producing shell scripts that automatically configure software source code packages to adapt to many kinds of Unix-like systems using the entire GNU build system.

autoconf(1) produces the configuration script "configure". "configure" automatically creates a customized "Makefile" using the "Makefile.in" template.

12.7.1 Compile and install a program

```
$ cd src
$ ./configure --prefix=/usr/local
$ make
$ make install # this puts the files in the system
```

Warning

Do not overwrite system files with your compiled programs when installing them.

Debian does not touch files in "/usr/local/" or "/opt". So if you compile a program from source, install it into "/usr/local/" so it does not interfere with Debian.

12.7.2 Uninstall program

If you have the original source and it uses autoconf(1)/automake(1) and if you can remember how you configured it, execute as follows to uninstall the program.

```
$ ./configure "all-of-the-options-you-gave-it"
# make uninstall
```

Alternatively, if you are absolutely sure that the install process puts files only under "/usr/local/" and there is nothing important there, you can erase all its contents by the following.

```
# find /usr/local -type f -print0 | xargs -0 rm -f
```

If you are not sure where files are installed, you should consider using checkinstall(8) from the checkinstall package, which provides a clean path for the uninstall. It now supports to create a Debian package with "-D" option.

12.8 Perl short script madness

Although any **AWK** scripts can be automatically rewritten in **Perl** using a2p(1), one-liner AWK scripts are best converted to one-liner Perl scripts manually.

Let’s think following AWK script snippet.

```
awk '($2=="1957") { print $3 }' |
```
This is equivalent to any one of the following lines.

```perl
perl -ne '@f = split; if ($f[1] eq "1957") { print "$f[2]\n" }' |
```

```perl
perl -ne 'if ((@f = split)[1] eq "1957") { print "$f[2]\n" }' |
```

```perl
```

```perl
```

```perl
```

The last one is a riddle. It took advantage of following Perl features.

- The whitespace is optional.
- The automatic conversion exists from number to the string.

See `perlr(1)` for the command-line options. For more crazy Perl scripts, Perl Golf may be interesting.

12.9 Web

Basic interactive dynamic web pages can be made as follows.

- Queries are presented to the browser user using HTML forms.
- Filling and clicking on the form entries sends one of the following URL string with encoded parameters from the browser to the web server.
 - "http://www.foo.dom/cgi-bin/program.pl?VAR1=VAL1&VAR2=VAL2&VAR3=VAL3"
 - "http://www.foo.dom/cgi-bin/program.py?VAR1=VAL1&VAR2=VAL2&VAR3=VAL3"
 - "http://www.foo.dom/program.php?VAR1=VAL1&VAR2=VAL2&VAR3=VAL3"
- "%nn" in URL is replaced with a character with hexadecimal nn value.
- The environment variable is set as: "QUERY_STRING="VAR1=VAL1_VAR2=VAL2_VAR3=VAL3"".
- CGI program (any one of "program.*") on the web server executes itself with the environment variable "$QUERY_STRING".
- `stdout` of CGI program is sent to the web browser and is presented as an interactive dynamic web page.

For security reasons it is better not to hand craft new hacks for parsing CGI parameters. There are established modules for them in Perl and Python. PHP comes with these functionalities. When client data storage is needed, HTTP cookies are used. When client side data processing is needed, Javascript is frequently used.

For more, see the Common Gateway Interface, The Apache Software Foundation, and JavaScript.

Searching "CGI tutorial" on Google by typing encoded URL `http://www.google.com/search?hl=en&ie=UTF-8&q=CGI+tutorial` directly to the browser address is a good way to see the CGI script in action on the Google server.
Table 12.16: List of source code translation tools

<table>
<thead>
<tr>
<th>package</th>
<th>popcon</th>
<th>size</th>
<th>keyword</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>perl</td>
<td>V:618, I:994</td>
<td>575</td>
<td>AWK → PERL</td>
<td>convert source codes from AWK to PERL: a2p(1)</td>
</tr>
<tr>
<td>f2c</td>
<td>V:0, I:8</td>
<td>430</td>
<td>FORTRAN → C</td>
<td>convert source codes from FORTRAN 77 to C/C++: f2c(1)</td>
</tr>
<tr>
<td>intel2gas</td>
<td>V:0, I:0</td>
<td>174</td>
<td>intel → gas</td>
<td>converter from NASM (Intel format) to the GNU Assembler (GAS)</td>
</tr>
</tbody>
</table>

12.10 The source code translation

There are programs to convert source codes.

12.11 Making Debian package

If you want to make a Debian package, read followings.

- Chapter 2 to understand the basic package system
- Section 2.7.13 to understand basic porting process
- Section 9.10.4 to understand basic chroot techniques
- debuild(1), pbuilder(1) and pdebuild(1)
- Section 12.4.2 for recompiling for debugging
- Debian New Maintainers’ Guide as tutorial (the maint-guide package)
- Debian Developer’s Reference (the developers-reference package)
- Debian Policy Manual (the debian-policy package)
- Guide for Debian Maintainers (the debmake-doc package)

There are packages such as debmake, dh-make, dh-make-perl, etc., which help packaging.
Appendix A

Appendix

Here are backgrounds of this document.

A.1 The Debian maze

The Linux system is a very powerful computing platform for a networked computer. However, learning how to use all its capabilities is not easy. Setting up the LPR printer queue with a non-PostScript printer was a good example of stumble points. (There are no issues anymore since newer installations use the new CUPS system.)

There is a complete, detailed map called the "SOURCE CODE". This is very accurate but very hard to understand. There are also references called HOWTO and mini-HOWTO. They are easier to understand but tend to give too much detail and lose the big picture. I sometimes have a problem finding the right section in a long HOWTO when I need a few commands to invoke.

I hope this "Debian Reference (version 2.76)" (2019-03-21 15:39:20 UTC) provides a good starting direction for people in the Debian maze.

A.2 Copyright history

The Debian Reference was initiated by me, Osamu Aoki <osamu at debian dot org>, as a personal system administration memo. Many contents came from the knowledge I gained from the debian-user mailing list and other Debian resources.

Following a suggestion from Josip Rodin, who was very active with the Debian Documentation Project (DDP), "Debian Reference (version 1, 2001-2007)" was created as a part of DDP documents.

After 6 years, I realized that the original "Debian Reference (version 1)" was outdated and started to rewrite many contents. New "Debian Reference (version 2)" is released in 2008.

The tutorial contents can trace its origin and its inspiration in followings.

- "Linux User’s Guide" by Larry Greenfield (December 1996)
 - obsoleted by "Debian Tutorial"

- "Debian Tutorial" by Havoc Pennington. (11 December, 1998)
 - partially written by Oliver Elphick, Ole Tetlie, James Treacy, Craig Sawyer, and Ivan E. Moore II
 - obsoleted by "Debian GNU/Linux: Guide to Installation and Usage"

- "Debian GNU/Linux: Guide to Installation and Usage" by John Goerzen and Ossama Othman (1999)
 - obsoleted by "Debian Reference (version 1)"
The package and archive description can trace some of their origin and their inspiration in following.

- "Debian FAQ" (March 2002 version, when this was maintained by Josip Rodin)

The other contents can trace some of their origin and their inspiration in following.

- "Debian Reference (version 1)" by Osamu Aoki (2001–2007)
 - obsoleted by the newer "Debian Reference (version 2)" in 2008.

The previous "Debian Reference (version 1)" was created with many contributors.

- the major contents contribution on network configuration topics by Thomas Hood
- significant contents contribution on X and VCS related topics by Brian Nelson
- the help on the build scripts and many content corrections by Jens Seidel
- extensive proofreading by David Sewell
- many contributions by the translators, contributors, and bug reporters

Many manual pages and info pages on the Debian system were used as the primary references to write this document. To the extent Osamu Aoki considered within the fair use, many parts of them, especially command definitions, were used as phrase pieces after careful editorial efforts to fit them into the style and the objective of this document.

The gdb debugger description was expanded using Debian wiki contents on backtrace with consent by Ari Pollak, Loïc Minier, and Dafydd Harries.

Contents of the current "Debian Reference (version 2.76)" (2019-03-21 15:39:20 UTC) are mostly my own work except as mentioned above. These has been updated by the contributors too.

The author, Osamu Aoki, thanks all those who helped make this document possible.

A.3 Document format

The source of the English original document is currently written in AsciiDoc text files. AsciiDoc is used as convenience only since it is less typing than straight XML and supports table in the very intuitive format. You should think XML and PO files as real source files. Via build script, it is converted to DocBook XML format and automatically generated data are inserted to form a final Docbook XML source. This final Docbook XML source can be converted to HTML, epub, plain text, PostScript, and PDF. (Some formats may be skipped for distribution.)