
 Debian New Maintainers' Guide

 Table of Contents

 	

 1. Getting started The Right Way

 	

 	

 1.1. Social dynamics of Debian

 	

 1.2. Programs needed for development

 	

 1.3. Documentation needed for development

 	

 1.4. Where to ask for help

 	

 2. First steps

 	

 	

 2.1. Debian package building workflow

 	

 2.2. Choose your program

 	

 2.3. Get the program, and try it out

 	

 2.4. Simple build systems

 	

 2.5. Popular portable build systems

 	

 2.6. Package name and version

 	

 2.7. Setting up dh_make

 	

 2.8. Initial non-native Debian package

 	

 3. Modifying the source

 	

 	

 3.1. Setting up quilt

 	

 3.2. Fixing upstream bugs

 	

 3.3. Installation of files to their destination

 	

 3.4. Differing libraries

 	

 4. Required files under the debian directory

 	

 	

 4.1. control

 	

 4.2. copyright

 	

 4.3. changelog

 	

 4.4. rules

 	

 	

 4.4.1. Targets of the rules file

 	

 4.4.2. Default rules file

 	

 4.4.3. Customization of rules file

 	

 5. Other files under the debian directory

 	

 	

 5.1. README.Debian

 	

 5.2. compat

 	

 5.3. conffiles

 	

 5.4. package.cron.*

 	

 5.5. dirs

 	

 5.6. package.doc-base

 	

 5.7. docs

 	

 5.8. emacsen-*

 	

 5.9. package.examples

 	

 5.10. package.init and package.default

 	

 5.11. install

 	

 5.12. package.info

 	

 5.13. package.links

 	

 5.14. {package.,source/}lintian-overrides

 	

 5.15. manpage.*

 	

 	

 5.15.1. manpage.1.ex

 	

 5.15.2. manpage.sgml.ex

 	

 5.15.3. manpage.xml.ex

 	

 5.16. package.manpages

 	

 5.17. NEWS

 	

 5.18. {pre,post}{inst,rm}

 	

 5.19. package.symbols

 	

 5.20. TODO

 	

 5.21. watch

 	

 5.22. source/format

 	

 5.23. source/local-options

 	

 5.24. source/options

 	

 5.25. patches/*

 	

 6. Building the package

 	

 	

 6.1. Complete (re)build

 	

 6.2. Autobuilder

 	

 6.3. debuild command

 	

 6.4. pbuilder package

 	

 6.5. git-buildpackage command and similar

 	

 6.6. Quick rebuild

 	

 6.7. Command hierarchy

 	

 7. Checking the package for errors

 	

 	

 7.1. Suspicious changes

 	

 7.2. Verifying a package's installation

 	

 7.3. Verifying a package's maintainer scripts

 	

 7.4. Using lintian

 	

 7.5. The debc command

 	

 7.6. The debdiff command

 	

 7.7. The interdiff command

 	

 7.8. The mc command

 	

 8. Updating the package

 	

 	

 8.1. New Debian revision

 	

 8.2. Inspection of the new upstream release

 	

 8.3. New upstream release

 	

 8.4. Updating the packaging style

 	

 8.5. UTF-8 conversion

 	

 8.6. Reminders for updating packages

 	

 9. Uploading the package

 	

 	

 9.1. Uploading to the Debian archive

 	

 9.2. Including orig.tar.gz for upload

 	

 9.3. Skipped uploads

 	

 A. Advanced packaging

 	

 	

 A.1. Shared libraries

 	

 A.2. Managing debian/package.symbols

 	

 A.3. Multiarch

 	

 A.4. Building a shared library package

 	

 A.5. Native Debian package

 Debian New Maintainers' Guide

 Josip Rodin
original contents <joy-mg@debian.org>

 Osamu Aoki
updated contents <osamu@debian.org>

 version 1.2.47

 Copyright © 1998-2002 Josip Rodin

 Copyright © 2005-2015 Osamu Aoki

 Copyright © 2010 Craig Small

 Copyright © 2010 Raphaël Hertzog

This document may be used under the terms of the GNU General Public License
version 2 or higher.

This document was made using these two documents as examples:

 	

Making a Debian Package (AKA the Debmake Manual), copyright © 1997 Jaldhar
Vyas.

 	

The New-Maintainer's Debian Packaging Howto, copyright © 1997 Will Lowe.

 2021-11-21 05:14:48 UTC

 Chapter 1. Getting started The Right Way

The rewrite of this tutorial document with updated contents and more practical examples is available as Guide for Debian Maintainers. Please use this new tutorial as the primary tutorial document.

This document tries to describe the building of a Debian package to ordinary
Debian users and prospective developers. It uses fairly non-technical language, and
it's well covered with working examples. There is an old Latin saying:
Longum iter est per praecepta, breve et efficax per
exempla (It's a long way by the rules, but short and efficient with
examples).

This document is made available for the Debian Buster release since this offers many translations. This document will be dropped in the following releases since contents are getting outdated.
[1]

One of the things that makes Debian such a top-notch distribution is its
package system. While there is a vast quantity of software already in the
Debian format, sometimes you need to install software that isn't. You may be
wondering how you can make your own packages; and perhaps you think it is a very
difficult task. Well, if you are a real novice on Linux, it is hard, but if
you were a rookie, you wouldn't be reading this document now :-)
You do need to know a little about Unix programming but you certainly
don't need to be a wizard.
[2]

One thing is certain, though: to properly create and maintain Debian packages
takes many hours. Make no mistake, for our system to work the maintainers
need to be both technically competent and diligent.

If you need some help with packaging, please read Section 1.4, “Where to ask for help”.

Newer versions of this document should always be available online at
http://www.debian.org/doc/maint-guide/ and in the
maint-guide package.
The translations may be available in packages such as
maint-guide-es.
Please note that this documentation may be slightly outdated.

Since this is a tutorial, I choose to explain each detailed step for some
important topics. Some of them may look irrelevant to you. Please be patient.
I have also intentionally skipped some corner cases and provided only pointers
to keep this document simple.

 1.1. Social dynamics of Debian

Here are some observations of Debian's social dynamics, presented in the hope
that it will prepare you for interactions with Debian:

 	
 We all are volunteers.

 	
 You cannot impose on others what to do.

 	
 You should be motivated to do things by yourself.

 	
 Friendly cooperation is the driving force.

 	
 Your contribution should not overstrain others.

 	
 Your contribution is valuable only when others appreciate it.

 	
 Debian is not your school where you get automatic attention of teachers.

 	
 You should be able to learn many things by yourself.

 	
 Attention from other volunteers is a very scarce resource.

 	
 Debian is constantly improving.

 	
 You are expected to make high quality packages.

 	
 You should adapt yourself to change.

There are several types of people interacting around Debian with different
roles:

 	

upstream author: the person who made the
original program.

 	

upstream maintainer: the person who
currently maintains the program.

 	

maintainer: the person making the Debian
package of the program.

 	

sponsor: a person who helps maintainers to
upload packages to the official Debian package archive (after checking their
contents).

 	

mentor: a person who helps novice
maintainers with packaging etc.

 	

Debian Developer (DD): a member of
the Debian project with full upload rights to the official Debian package
archive.

 	

Debian Maintainer (DM): a person with
limited upload rights to the official Debian package archive.

Please note that you cannot become an official
Debian Developer (DD) overnight, because it
takes more than technical skill. Please do not be discouraged by this. If it
is useful to others, you can still upload your package either as a
maintainer through a
sponsor or as a
Debian Maintainer.

Please note that you do not need to create any new package to become an
official Debian Developer. Contributing to the existing packages can provide a
path to becoming an official Debian Developer too. There are many packages
waiting for good maintainers (see Section 2.2, “Choose your program”).

Since we focus only on technical aspects of packaging in this document,
please refer to the following to learn how Debian functions and how you can get involved:

 	
 Debian: 17 years of Free Software, "do-ocracy", and democracy (Introductory slides)

 	
 How can you help Debian? (official)

 	
 The Debian GNU/Linux FAQ, Chapter 13 - "Contributing to the Debian Project" (semi-official)

 	
 Debian Wiki, HelpDebian (supplemental)

 	
 Debian New Member site (official)

 	
 Debian Mentors FAQ (supplemental)

 1.2. Programs needed for development

Before you start anything, you should make sure that you have properly
installed some additional packages needed for development. Note that the list
doesn't contain any packages marked essential or
required - we expect that you have those installed already.

The following packages come with the standard Debian installation, so you
probably have them already (along with any additional packages they depend on).
Still, you should check them with aptitude show
package
or with dpkg -s package.

The most important package to install on your development system is the
build-essential package. Once you try
to install that, it will pull in other packages required to
have a basic build environment.

For some types of packages, that is all you will require; however, there is
another set of packages that while not essential for all package builds are
useful to have installed or may be required by your package:

 	

autoconf, automake, and autotools-dev - many newer programs use configure
scripts and Makefile files preprocessed with the help of
programs like these (see info autoconf, info
automake). autotools-dev
keeps up-to-date versions of certain auto files and has documentation about the
best way to use those files.

 	

debhelper and
dh-make -
dh-make is necessary to create
the skeleton of our example package, and it will use some of the
debhelper tools for creating
packages. They are not essential for this purpose, but are
highly recommended for new maintainers. It makes
the whole process very much easier to start, and to control afterwards.
(See dh_make(8), debhelper(1).) [3]

The new debmake may be used as the alternative to the standard dh-make.
It does more and comes with HTML documentation with extensive packaging examples in debmake-doc.

 	

devscripts - this package contains some
useful scripts that can be helpful for maintainers, but they are also
not necessary for building packages. Packages recommended and suggested
by this package are worth looking into. (See /usr/share/doc/devscripts/README.gz.)

 	

fakeroot - this utility lets you
emulate being root, which is necessary for some parts of the build process.
(See fakeroot(1).)

 	

file - this handy program can determine
what type a file is. (See file(1).)

 	

gfortran - the GNU Fortran 95 compiler,
necessary if your program is written in Fortran. (See gfortran(1).)

 	

git - this package provides a popular
version control system designed to handle very large projects with speed and
efficiency; it is used for many high profile open source projects, most notably
the Linux kernel. (See git(1),
git Manual (/usr/share/doc/git-doc/index.html).)

 	

gnupg - a tool that enables you to
digitally sign packages. This is especially important if
you want to distribute packages to other people, and you will certainly be doing that
when your work gets included in the Debian distribution. (See gpg(1).)

 	

gpc - the GNU Pascal compiler,
necessary if your program is written in Pascal. Worthy of note here is
fp-compiler, the Free Pascal Compiler,
which is also good at this task. (See gpc(1),
ppc386(1).)

 	

lintian - this is the Debian package
checker, which lets you know of any common mistakes after you build the
package and explains the errors found. (See lintian(1),
Lintian User's Manual.)

 	

patch - this very useful utility will
take a file containing a difference listing (produced by the
diff program) and apply it to the original file, producing a
patched version. (See patch(1).)

 	

patchutils - this package contains some
utilities to work with patches such as the lsdiff,
interdiff and filterdiff commands.

 	

pbuilder - this package contains
programs which are used for creating and maintaining a chroot
environment. Building a Debian package in this chroot
environment verifies the proper build dependency and avoids FTBFS (Fails To
Build From Source) bugs. (see pbuilder(8) and pdebuild(1))

 	

perl - Perl is one of the most used
interpreted scripting languages on today's Unix-like systems, often referred to
as Unix's Swiss Army Chainsaw. (See perl(1).)

 	

python - Python is another of the most
used interpreted scripting languages on the Debian system, combining
remarkable power with very clear syntax. (See python(1).)

 	

quilt - this package helps you to
manage large numbers of patches by keeping track of the changes each patch
makes. Patches can be applied, un-applied, refreshed, and more. (See
quilt(1),
and /usr/share/doc/quilt/quilt.pdf.gz.)

 	

xutils-dev - some programs, usually
those made for X11, also use these programs to generate
Makefile files from sets of macro functions. (See
imake(1), xmkmf(1).)

The short descriptions that are given above only serve to introduce you to what
each package does. Before continuing please read the documentation
of each relevant program including ones installed through the package dependency such as
make, at least, for the standard usage. It may seem like heavy
going now, but later on you'll be very glad you read it.
If you have specific questions later, I would suggest re-reading the documents
mentioned above.

 1.3. Documentation needed for development

The following is the very important documentation which
you should read along with this document:

 	

debian-policy - the Debian Policy
Manual includes explanations of the structure and contents of the
Debian archive, several OS design issues, the Filesystem Hierarchy Standard
(FHS, which says where each file and directory should be), etc. For you, the most
important thing is that it describes requirements that each package must
satisfy to be included in the distribution. (See the local copies of
/usr/share/doc/debian-policy/policy.pdf.gz and /usr/share/doc/debian-policy/fhs/fhs-3.0.pdf.gz.)

 	

developers-reference
- the Debian Developer's Reference
describes all matters not specifically about the technical
details of packaging, like the structure of the archive, how to rename, orphan,
or adopt packages, how to do NMUs, how to manage bugs, best packaging practices,
when and where to upload, etc. (See the local copy of
/usr/share/doc/developers-reference/developers-reference.pdf.)

The following is the important documentation which
you should read along with this document:

 	

Autotools
Tutorial provides a very good tutorial for the GNU Build System known
as the GNU Autotools, whose most important components are Autoconf,
Automake, Libtool, and gettext.

 	

gnu-standards - this package contains
two pieces of documentation from the GNU project:
GNU Coding Standards, and
Information for Maintainers of GNU Software.
Although Debian does not require these to
be followed, these are still helpful as guidelines and common sense.
(See the local copies of
/usr/share/doc/gnu-standards/standards.pdf.gz and
/usr/share/doc/gnu-standards/maintain.pdf.gz.)

If this document contradicts any of the documents mentioned above, they
are correct. Please file a bug report on the
maint-guide package using
reportbug.

The following is an alternative tutorial document that you may
read along with this document:

 	

 Debian Packaging Tutorial

 1.4. Where to ask for help

Before you decide to ask your question in some public place, please read this fine documentation:

 	

files in /usr/share/doc/package for all pertinent packages

 	

contents of man command for all pertinent commands

 	

contents of info command for all pertinent commands

 	

contents of debian-mentors@lists.debian.org mailing list archive

 	

contents of debian-devel@lists.debian.org mailing list archive

You can use web search engines more effectively by including search strings
such as site:lists.debian.org to limit the domain.

Making a small test package is a good way to learn details of packaging.
Inspecting existing well maintained packages is the best way to learn how other
people make packages.

If you still have questions about packaging that you couldn't find answers to
in the available documentation and web resources, you can ask them interactively:

 	

debian-mentors@lists.debian.org mailing list. (This mailing list is for the novice.)

 	

debian-devel@lists.debian.org mailing list. (This mailing list is for the expert.)

 	

IRC such as #debian-mentors.

 	

Teams focusing on a specific set of packages. (Full list at https://wiki.debian.org/Teams)

 	

Language-specific mailing lists such as debian-devel-{french,italian,portuguese,spanish}@lists.debian.org or debian-devel@debian.or.jp. (Full listing at https://lists.debian.org/devel.html and https://lists.debian.org/users.html)

The more experienced Debian developers will gladly help you, if you ask
properly after making your required efforts.

When you receive a bug report (yes, actual bug reports!), you will know that it
is time for you to dig into the
Debian Bug Tracking System
and read the documentation there, to be able to
deal with the reports efficiently. I highly recommend reading the
Debian Developer's Reference, 5.8.
"Handling bugs".

Even if it all worked well, it's time to start praying. Why? Because in just
a few hours (or days) users from all around the world will start to use your
package, and if you made some critical error you'll get mailbombed by numerous
angry Debian users… Just kidding. :-)

Relax and be ready for bug reports, because there is a lot more work to be done
before your package will be fully in line with Debian policies and its best
practice guidelines (once again, read the real
documentation for details). Good luck!

 [1] The document assumes you are using a
jessie or newer system. If you need to follow this
text in an older system (including an older Ubuntu system etc.), you must
install backported dpkg and
debhelper packages, at least.

 [2]
You can learn about the basic handling of a Debian system from the
Debian Reference. It contains some pointers to
learn about Unix programming, too.

 [3] There are also some more specialized
but similar packages such as
dh-make-perl,
dh-make-php, etc.

 Chapter 2. First steps

The rewrite of this tutorial document with updated contents and more practical examples is available as Guide for Debian Maintainers. Please use this new tutorial as the primary tutorial document.

Let's start by creating a package of your own (or, even better,
adopting an existing one).

 2.1. Debian package building workflow

If you are making a Debian package with an upstream program, the
typical workflow of Debian package building involves generating several
specifically named files for each step as follows:

 	
 Get a copy of the upstream software, usually in a compressed tar format.

 	
 package-version.tar.gz

 	

Add Debian-specific packaging modifications to the upstream program under the
debian directory, and create a non-native source package
(that is, the set of input files used for Debian package building) in
3.0 (quilt) format.

 	
 package_version.orig.tar.gz

 	
 package_version-revision.debian.tar.gz

 [4]

 	
 package_version-revision.dsc

 	

Build Debian binary packages, which are ordinary installable package files in .deb format (or .udeb format, used by the Debian Installer) from the Debian source package.

 	
 package_version-revision_arch.deb

Please note that the character separating
package and
version was changed from
- (hyphen) in the tarball name to
_ (underscore) in the Debian package filenames.

In the file names above, replace
the package part with the package name,
the version part with the upstream version,
the revision part with the Debian revision,
and the arch part with the package architecture,
as defined in the Debian Policy Manual.
[5]

Each step of this outline is explained with detailed examples in later sections.

 2.2. Choose your program

You have probably chosen the package you want to create. The first thing you
need to do is check if the package is in the distribution archive already by
using the following:

 	
 the aptitude command

 	
 the Debian packages web page

 	
 the Debian Package Tracker web page

If the package already exists, well, install it! :-) If it happens to be
orphaned (that is, if its
maintainer is set to Debian QA Group),
you may be able to pick it up if it's still available. You may also
adopt a package whose maintainer has filed a Request for Adoption
(RFA).[6]

There are several package ownership status resources:

 	
 The wnpp-alert command from the devscripts package

 	
 Work-Needing and Prospective Packages

 	
 Debian Bug report logs: Bugs in pseudo-package wnpp in unstable

 	
 Debian Packages that Need Lovin'

 	
 Browse wnpp bugs based on debtags

As a side note, it's important to point out that Debian already has packages
for most kinds of programs, and the number of packages already in the Debian
archive is much larger than that of contributors with upload rights. Thus,
contributions to packages already in the archive are far more appreciated (and
more likely to receive sponsorship) by other developers [7]. You can contribute in various ways:

 	

taking over orphaned, yet actively used, packages

 	

joining packaging teams

 	

triaging bugs of very popular packages

 	

preparing QA or NMU uploads

If you are able to adopt the package, get the sources (with something like
apt-get source packagename) and
examine them. This document unfortunately doesn't include comprehensive
information about adopting packages. Thankfully you shouldn't have a hard time
figuring out how the package works since someone has already done the initial
setup for you. Keep reading, though; a lot of the advice below will still be
applicable to your case.

If the package is new, and you decide you'd like to see it in Debian, proceed
as follows:

 	

First, you must know that the program works, and have tried it for some time to
confirm its usefulness.

 	

You must check that no one else is already working on the package on the
Work-Needing and Prospective Packages site.
If no one else is working on it, file an ITP (Intent
To Package) bug report to the wnpp
pseudo-package using reportbug. If someone's already on it,
contact them if you feel you need to. If not — find another interesting
program that nobody is maintaining.

 	

The software must have a license.

 	

For the main section, Debian Policy requires it
to be fully compliant with the Debian Free Software
Guidelines (DFSG)
and not to require a package outside of
main for compilation or execution. This
is the desired case.

 	

For the contrib section, it must comply with the
DFSG but it may require a package outside of main for
compilation or execution.

 	

For the non-free section, it may be non-compliant
with the DFSG but it must be distributable.

 	

If you are unsure about where it should go, post the license text on
debian-legal@lists.debian.org
and ask for advice.

 	

The program should not introduce security
and maintenance concerns into the Debian system.

 	

The program should be well documented and its code needs to be understandable
(i.e., not obfuscated).

 	

You should contact the program's author(s) to check if they agree with packaging it
and are amicable to Debian. It is important to be able to consult with the author(s)
in case of any problems with the program, so don't try to package
unmaintained software.

 	

The program certainly should not run setuid
root, or even better, it shouldn't need to be setuid or setgid to anything.

 	

The program should not be a daemon, or go in an
*/sbin directory, or open a port as root.

Of course, the last one is just a safety measure, and is intended to save you from
enraging users if you do something wrong in some setuid daemon… When you gain
more experience in packaging, you'll be able to package such software.

As a new maintainer, you are encouraged to get some experience in packaging
with easier packages and discouraged from creating complicated packages.

 	
 Simple packages

 	
 single binary package, arch = all (collection of data such as wallpaper graphics)

 	
 single binary package, arch = all (executables written in an interpreted language such as POSIX shell)

 	
 Intermediate complexity packages

 	
 single binary package, arch = any (ELF binary executables compiled from languages such as C and C++)

 	
 multiple binary packages, arch = any + all (packages for ELF binary executables + documentation)

 	
 upstream source in a format other than tar.gz or tar.bz2

 	
 upstream source containing undistributable contents

 	
 High complexity packages

 	
 interpreter module package used by other packages

 	
 generic ELF library package used by other packages

 	
 multiple binary packages including an ELF library package

 	
 source package with multiple upstream sources

 	
 kernel module packages

 	
 kernel patch packages

 	
 any package with non-trivial maintainer scripts

Packaging high complexity packages is not too hard, but it requires a bit more
knowledge. You should seek specific guidance for every complex feature. For
example, some languages have their own sub-policy documents:

 	

 Perl policy

 	

 Python policy

 	

 Java policy

There is another old Latin saying: fabricando fit faber
(practice makes perfect). It is highly recommended to
practice and experiment with all the steps of Debian packaging with simple packages
while reading this tutorial. A trivial upstream tarball,
hello-sh-1.0.tar.gz, created as follows may offer
a good starting point:[8]

$ mkdir -p hello-sh/hello-sh-1.0; cd hello-sh/hello-sh-1.0
$ cat > hello <<EOF
#!/bin/sh
(C) 2011 Foo Bar, GPL2+
echo "Hello!"
EOF
$ chmod 755 hello
$ cd ..
$ tar -cvzf hello-sh-1.0.tar.gz hello-sh-1.0

 2.3. Get the program, and try it out

So the first thing to do is to find and download the original source code.
Presumably you already have the source file that you picked up at the
author's homepage. Sources for free Unix programs usually come in
tar+gzip format with the extension
.tar.gz,
tar+bzip2 format with the extension
.tar.bz2, or
tar+xz format with the extension
.tar.xz. These usually contain a directory called
package-version
with all the sources inside.

If the latest version of the source is available through a Version Control System
(VCS) such as Git, Subversion, or CVS, you need to get it with git
clone, svn co, or cvs co and
repack it into tar+gzip format yourself
by using the --exclude-vcs option.

If your program's source comes as some other sort of archive (for instance, the
filename ends in .Z or
.zip[9]), you should also unpack it with the
appropriate tools and repack it.

If your program's source comes with some contents which do not comply with
DFSG, you should also unpack it to remove such contents and repack it with a
modified upstream version containing dfsg.

As an example, I'll use a program called gentoo, a GTK+
file manager.
[10]

Create a subdirectory under your home directory named
debian or deb or anything you find
appropriate (e.g. just ~/gentoo would do fine in this
case). Place the downloaded archive in it, and extract it (with tar
xzf gentoo-0.9.12.tar.gz). Make sure there are no warning
messages, even irrelevant ones, because other
people's unpacking tools may or may not ignore these anomalies, so they
may have problems unpacking them. Your shell command line may look
something like this:

$ mkdir ~/gentoo ; cd ~/gentoo
$ wget http://www.example.org/gentoo-0.9.12.tar.gz
$ tar xvzf gentoo-0.9.12.tar.gz
$ ls -F
gentoo-0.9.12/
gentoo-0.9.12.tar.gz

Now you have another subdirectory, called gentoo-0.9.12.
Change to that directory and thoroughly read the provided
documentation. Usually there are files named README*,
INSTALL*, *.lsm or
*.html. You must find instructions on how to
compile and install the program (most probably they'll assume you want to
install to the /usr/local/bin directory; you won't be doing
that, but more on that later in Section 3.3, “Installation of files to their destination”).

You should start packaging with a completely clean (pristine) source directory,
or simply with freshly unpacked sources.

 2.4. Simple build systems

Simple programs usually come with a Makefile and can
be compiled just by invoking make.[11] Some of them support
make check, which runs included self-tests. Installation
to the destination directories is usually done with make
install.

Now try to compile and run your program, to make sure it works properly and
doesn't break something else while it's installing or running.

Also, you can usually run make clean (or better
make distclean) to clean up the build directory. Sometimes
there's even a make uninstall which can be used to remove
all the installed files.

 2.5. Popular portable build systems

A lot of free software programs are written in the C and
C++ languages. Many of these use Autotools or
CMake to make them portable across different platforms. These build tools need
to be used to generate the Makefile and other
required source files first. Then, such programs are built using the usual
make; make install.

Autotools is the GNU build
system comprising Autoconf,
Automake,
Libtool, and
gettext. You can recognize
such sources by the configure.ac,
Makefile.am, and Makefile.in files.
[12]

The first step of the Autotools workflow is usually that upstream runs
autoreconf -i -f in the source directory and
distributes the generated files along with the source.

configure.ac-----+-> autoreconf -+-> configure
Makefile.am -----+ | +-> Makefile.in
src/Makefile.am -+ | +-> src/Makefile.in
 | +-> config.h.in
 automake
 aclocal
 aclocal.m4
 autoheader

Editing configure.ac and Makefile.am
files requires some knowledge of autoconf and
automake. See info autoconf and
info automake.

The second step of the Autotools workflow is usually that the user obtains this
distributed source and runs ./configure && make in
the source directory to compile the program into an executable command
binary.

Makefile.in -----+ +-> Makefile -----+-> make -> binary
src/Makefile.in -+-> ./configure -+-> src/Makefile -+
config.h.in -----+ +-> config.h -----+
 |
 config.status -+
 config.guess --+

You can change many things in the Makefile; for
instance you can change the default location for file installation
using the option ./configure --prefix=/usr.

Although it is not required, updating the configure and
other files with autoreconf -i -f may improve
the compatibility of the source.
[13]

CMake is an alternative
build system. You can recognize such sources by the
CMakeLists.txt file.

 2.6. Package name and version

If the upstream source comes as gentoo-0.9.12.tar.gz, you can
take gentoo as the (source) package name
and 0.9.12 as the upstream version.
These are used in the debian/changelog file described later in
Section 4.3, “changelog”, too.

Although this simple approach works most of the time, you may need to adjust
package name and
upstream version by renaming the upstream
source to follow Debian Policy and existing convention.

You must choose the package name
to consist only of lower case letters (a-z), digits
(0-9), plus (+) and minus
(-) signs, and periods (.). It must be
at least two characters long, must start with an alphanumeric character, and
must not be the same as existing packages.
It is a good idea to keep its length within 30 characters.
[14]

If upstream uses some generic term such as test-suite for
its name, it is a good idea to rename it to identify its contents explicitly and avoid namespace pollution.
[15]

You should choose the upstream version
to consist only of
alphanumerics (0-9A-Za-z), plus signs (+),
tildes (~), and periods (.). It must
start with a digit (0-9). [16]
It is good idea to keep its length within 8 characters if possible.
[17]

If upstream does not use a normal versioning scheme such as
2.30.32 but uses some kind of date such as
11Apr29, a random codename string, or a VCS hash value as part
of the version, make sure to remove them from the
upstream version. Such information can be
recorded in the debian/changelog file. If you need to
invent a version string, use the YYYYMMDD format such as
20110429 as upstream version. This ensures that
dpkg interprets later versions correctly as upgrades.
If you need to ensure smooth transition to the normal version scheme such as
0.1 in the future, use the 0~YYMMDD format
such as 0~110429 as the upstream version.

Version strings [18]
can be compared using dpkg(1) as follows:

$ dpkg --compare-versions ver1 op ver2

The version comparison rule can be summarized as:

 	
 Strings are compared from the head to the tail.

 	
 Letters are larger than digits.

 	
 Numbers are compared as integers.

 	
 Letters are compared in ASCII code order.

 	
 There are special rules for period
(.), plus (+), and tilde
(~) characters, as follows:

0.0 <
0.5 <
0.10 <
0.99 <
1 <
1.0~rc1 <
1.0 <
1.0+b1 <
1.0+nmu1 <
1.1 <
2.0

One tricky case occurs when upstream releases
gentoo-0.9.12-ReleaseCandidate-99.tar.gz as the
pre-release of gentoo-0.9.12.tar.gz. You need to make
sure that the upgrade works properly by renaming the upstream source to
gentoo-0.9.12~rc99.tar.gz.

 2.7. Setting up dh_make

Set up the shell environment variables $DEBEMAIL and
$DEBFULLNAME so that various Debian maintenance
tools recognize your email address and name to use for packages. [19]

$ cat >>~/.bashrc <<EOF
DEBEMAIL="your.email.address@example.org"
DEBFULLNAME="Firstname Lastname"
export DEBEMAIL DEBFULLNAME
EOF
$. ~/.bashrc

 2.8. Initial non-native Debian package

Normal Debian packages are non-native Debian packages made from upstream
programs. If you wish to create a non-native Debian package of an upstream
source gentoo-0.9.12.tar.gz, you can create an initial
non-native Debian package for it by issuing the dh_make
command as follows:

$ cd ~/gentoo
$ wget http://example.org/gentoo-0.9.12.tar.gz
$ tar -xvzf gentoo-0.9.12.tar.gz
$ cd gentoo-0.9.12
$ dh_make -f ../gentoo-0.9.12.tar.gz

Of course, replace the filename with the name of your original source archive.
[20] See
dh_make(8) for details.

You should see some output asking you what sort of package you want
to create. Gentoo is a single binary package — it creates only one binary package, i.e.,
one .deb file — so we will select the first option
(with the s key), check the information on the screen, and
confirm by pressing ENTER.
[21]

This execution of dh_make creates a copy of the upstream
tarball as gentoo_0.9.12.orig.tar.gz in the
parent directory to accommodate the creation of the non-native Debian source
package with the name debian.tar.gz later:

$ cd ~/gentoo ; ls -F
gentoo-0.9.12/
gentoo-0.9.12.tar.gz
gentoo_0.9.12.orig.tar.gz

Please note two key features of this filename
gentoo_0.9.12.orig.tar.gz:

 	

Package name and version are separated by the character _
(underscore).

 	

The string .orig is inserted before the
.tar.gz.

You should also notice that many template files are created in the source under
the debian directory. These will be explained in
Chapter 4, Required files under the debian directory and Chapter 5, Other files under the debian directory. You should also understand
that packaging cannot be a fully automated process. You will need to modify the upstream
source for Debian (see Chapter 3, Modifying the source). After this, you need to
use the proper methods for building Debian packages (Chapter 6, Building the package),
testing them (Chapter 7, Checking the package for errors), and uploading them (Chapter 9, Uploading the package).
All the steps will be explained.

If you accidentally erased some template files while working on them, you can
recover them by running dh_make with the
--addmissing option again in a Debian package source tree.

Updating an existing package may get complicated since it may be using older
techniques. While learning the basics, please stick to creating a fresh
package; further explanations are given in Chapter 8, Updating the package.

Please note that the source file does not need to contain any build system
discussed in Section 2.4, “Simple build systems” and Section 2.5, “Popular portable build systems”. It
could be just a collection of graphical data, etc. Installation of files may be
carried out using only debhelper configuration
files such as debian/install (see
Section 5.11, “install”).

 [4] For the older style of non-native Debian source packages in 1.0 format,
package_version-revision.diff.gz
is used instead.

 [5] See
5.6.1 "Source",
5.6.7 "Package", and
5.6.12 "Version".
The package architecture follows the
Debian Policy Manual, 5.6.8 "Architecture"
and is automatically assigned by the package build process.

 [6] See
Debian Developer's Reference 5.9.5
"Adopting a package".

 [7] Having
said that, there will of course always be new programs that are worth
packaging.

 [8] Do not worry about the missing
Makefile. You can install the hello
command by simply using debhelper as in
Section 5.11, “install”, or by modifying the upstream source to add a new
Makefile with the install target as in
Chapter 3, Modifying the source.

 [9] You can identify the archive format
using the file command when the file extension is not
enough.

 [10] This program is already packaged. The
current version uses Autotools as its
build structure and is substantially different from the following examples,
which were based on version 0.9.12.

 [11]
Many modern programs come with a script named configure, which
when executed creates a Makefile customized for
your system.

 [12] Autotools is too big to deal with in this small tutorial. This
section is meant to provide keywords and references only. Please make sure to read the
Autotools Tutorial and
the local copy of /usr/share/doc/autotools-dev/README.Debian.gz,
if you need to use it.

 [13] You can automate this by using
dh-autoreconf package.
See Section 4.4.3, “Customization of rules file”.

 [14] The default package name field length of aptitude is 30. For more than 90% of packages, the package name is less than 24 characters.

 [15] If you follow the
Debian Developer's Reference 5.1. "New packages",
the ITP process will usually catch this kind of issue.

 [16] This stricter
rule should help you avoid confusing file names.

 [17] The default version field length of aptitude is 10. The Debian revision with preceding hyphen usually consumes 2. For more than 80% of packages, the upstream version is less than 8 characters and the Debian revision is less than 2 characters. For more than 90% of packages, the upstream version is less than 10 characters and the Debian revision is less than 3 characters.

 [18] Version strings may be
upstream version
(version),
Debian revision
(revision), or
version
(version-revision).
See Section 8.1, “New Debian revision” for how the
Debian revision is incremented.

 [19] The
following text assumes you are using Bash as your login shell. If you use
some other login shell such as Z shell, use their corresponding
configuration files instead of ~/.bashrc.

 [20] If the upstream source provides the
debian directory and its contents, run the
dh_make command with the extra option
--addmissing. The new source 3.0 (quilt) format is
robust enough not to break even for these packages. You may need to update the contents
provided by the upstream version for your Debian package.

 [21] There are several choices here: s for
Single binary package, i for arch-Independent package, m for
Multiple binary packages, l for Library package, k for
Kernel module package, n for kernel patch package, and b
for cdbs package. This document focuses on the
use of the dh command (from the package
debhelper) to create a single binary package,
but also touches on how to use it for arch-independent or
multiple binary packages. The package
cdbs offers an alternative packaging script
infrastructure to the dh command and is outside the scope of
this document.

 Chapter 3. Modifying the source

The rewrite of this tutorial document with updated contents and more practical examples is available as Guide for Debian Maintainers. Please use this new tutorial as the primary tutorial document.

Please note that there isn't space here to go into all the
details of fixing upstream sources, but here are some basic steps and problems
people often run across.

 3.1. Setting up quilt

The program quilt offers a basic method for recording
modifications to the upstream source for Debian packaging. It's
useful to have a slightly customized default, so let's create an alias
dquilt for Debian packaging by adding the following
lines to ~/.bashrc. The second line provides the same
shell completion feature of the quilt command to the
dquilt command:

alias dquilt="quilt --quiltrc=${HOME}/.quiltrc-dpkg"
complete -F _quilt_completion -o filenames dquilt

Then let's create ~/.quiltrc-dpkg as follows:

d=. ; while [! -d $d/debian -a $(readlink -e $d) != /]; do d=$d/..; done
if [-d $d/debian] && [-z $QUILT_PATCHES]; then
 # if in Debian packaging tree with unset $QUILT_PATCHES
 QUILT_PATCHES="debian/patches"
 QUILT_PATCH_OPTS="--reject-format=unified"
 QUILT_DIFF_ARGS="-p ab --no-timestamps --no-index --color=auto"
 QUILT_REFRESH_ARGS="-p ab --no-timestamps --no-index"
 QUILT_COLORS="diff_hdr=1;32:diff_add=1;34:diff_rem=1;31:diff_hunk=1;33:diff_ctx=35:diff_cctx=33"
 if ! [-d $d/debian/patches]; then mkdir $d/debian/patches; fi
fi

See quilt(1) and
/usr/share/doc/quilt/quilt.pdf.gz on how to use
quilt.

 3.2. Fixing upstream bugs

Let's assume you find an error in the upstream Makefile
as follows, where install: gentoo should have been
install: gentoo-target.

install: gentoo
 install ./gentoo $(BIN)
 install icons/* $(ICONS)
 install gentoorc-example $(HOME)/.gentoorc

Let's fix this and record it with the dquilt command as
fix-gentoo-target.patch: [22]

$ mkdir debian/patches
$ dquilt new fix-gentoo-target.patch
$ dquilt add Makefile

You change the Makefile file as follows:

install: gentoo-target
 install ./gentoo $(BIN)
 install icons/* $(ICONS)
 install gentoorc-example $(HOME)/.gentoorc

Ask dquilt to generate the patch to create
debian/patches/fix-gentoo-target.patch and add its
description following DEP-3: Patch Tagging Guidelines:

$ dquilt refresh
$ dquilt header -e
... describe patch

 3.3. Installation of files to their destination

Most third-party software installs itself in the /usr/local
directory hierarchy. On Debian this is reserved for private use
by the system administrator, so packages must not use directories such
as /usr/local/bin but should instead use system
directories such as /usr/bin, obeying the
Filesystem Hierarchy Standard (FHS).

Normally, make(1) is used to automate building the
program, and executing make install installs programs
directly to the desired destination (following the
install target in the
Makefile). In order for Debian to provide
pre-built installable packages, it modifies the build system to install
programs into a file tree image created under a temporary directory
instead of the actual destination.

These two differences between normal program installation on one hand and the
Debian packaging system on the other can be transparently addressed by the
debhelper package through the
dh_auto_configure and dh_auto_install
commands if the following conditions are met:

 	

The Makefile must follow GNU conventions and
support the $(DESTDIR) variable.
[23]

 	

The source must follow the Filesystem Hierarchy Standard (FHS).

Programs that use GNU autoconf follow the GNU conventions
automatically, so they can be trivial to package. On the basis of
this and other heuristics, it is estimated that the
debhelper package will work for
about 90% of packages without making any intrusive changes to their
build system. So packaging is not as complicated as it may seem.

If you need to make changes in the Makefile, you
should be careful to support the $(DESTDIR)
variable. Although it is unset by default, the $(DESTDIR)
variable is prepended to each file path used for the program
installation. The packaging script will set
$(DESTDIR) to the temporary directory.

For a source package generating a single binary package, the temporary directory used
by the dh_auto_install command will be set to
debian/package.
[24] Everything that is contained in the temporary directory
will be installed on users' systems when they install your package; the only
difference is that dpkg will be installing the
files to paths relative to the root directory rather than your working
directory.

Bear in mind that even though your program installs in
debian/package, it still needs
to behave correctly when installed from the .deb
package under the root directory. So you must not allow the build
system to hardcode strings like
/home/me/deb/package-version/usr/share/package
into files in the package.

Here's the relevant part of gentoo's
Makefile[25]:

Where to put executable commands on 'make install'?
BIN = /usr/local/bin
Where to put icons on 'make install'?
ICONS = /usr/local/share/gentoo

We see that the files are set to install under /usr/local.
As explained above, that directory hierarchy is reserved for local use on
Debian, so change those paths as follows:

Where to put executable commands on 'make install'?
BIN = $(DESTDIR)/usr/bin
Where to put icons on 'make install'?
ICONS = $(DESTDIR)/usr/share/gentoo

The exact locations that should be used for binaries, icons,
documentation, etc. are specified in the Filesystem Hierarchy Standard
(FHS). You should browse through it and read the sections relevant to
your package.

So, we should install executable commands in /usr/bin instead of
/usr/local/bin, the manual page in
/usr/share/man/man1 instead of
/usr/local/man/man1, and so on. Notice how there's no manual
page mentioned in gentoo's
Makefile, but since Debian Policy requires that every
program has one, we'll make one later and install it in
/usr/share/man/man1.

Some programs don't use Makefile variables to define paths
such as these. This means you might have to edit some real C sources in order
to fix them to use the right locations. But where to search, and exactly what
for? You can find this out by issuing:

$ grep -nr --include='*.[c|h]' -e 'usr/local/lib' .

grep will run recursively through the source tree and tell
you the filename and the line number for all matches.

Edit those files and in those lines replace usr/local/lib
with usr/lib. This can be done automatically as follows:

$ sed -i -e 's#usr/local/lib#usr/lib#g' \
 $(find . -type f -name '*.[c|h]')

If you want to confirm each substitution instead, this can be done interactively as follows:

$ vim '+argdo %s#usr/local/lib#usr/lib#gce|update' +q \
 $(find . -type f -name '*.[c|h]')

Next you should find the install target (searching
for the line that starts with install: will usually
work) and rename all references to directories other than ones defined
at the top of the Makefile.

Originally, gentoo's
install target said:

install: gentoo-target
 install ./gentoo $(BIN)
 install icons/* $(ICONS)
 install gentoorc-example $(HOME)/.gentoorc

Let's fix this upstream bug and record it with the dquilt command as
debian/patches/install.patch.

$ dquilt new install.patch
$ dquilt add Makefile

In your editor, change this for the Debian package as follows:

install: gentoo-target
 install -d $(BIN) $(ICONS) $(DESTDIR)/etc
 install ./gentoo $(BIN)
 install -m644 icons/* $(ICONS)
 install -m644 gentoorc-example $(DESTDIR)/etc/gentoorc

You'll have noticed that there's now an install -d command
before the other commands in the rule. The original
Makefile didn't have it because usually
/usr/local/bin and other directories already exist on the
system where you are running make install. However, since we will
be installing into a newly created private directory tree, we will have to
create each and every one of those directories.

We can also add in other things at the end of the rule, like the installation
of additional documentation that the upstream authors sometimes omit:

 install -d $(DESTDIR)/usr/share/doc/gentoo/html
 cp -a docs/* $(DESTDIR)/usr/share/doc/gentoo/html

Check carefully, and if everything is okay, ask dquilt to
generate the patch to create debian/patches/install.patch
and add its description:

$ dquilt refresh
$ dquilt header -e
... describe patch

Now you have a series of patches.

 	

Upstream bug fix: debian/patches/fix-gentoo-target.patch

 	

Debian specific packaging modification:
debian/patches/install.patch

Whenever you make changes that are not specific to the Debian package
such as debian/patches/fix-gentoo-target.patch, be sure to
send them to the upstream maintainer so they can be included in the next
version of the program and be useful to everyone else. Also remember
to avoid making your fixes specific to Debian or Linux — or even Unix!
Make them portable. This will make your fixes much easier to apply.

Note that you don't have to send the debian/* files
upstream.

 3.4. Differing libraries

There is one other common problem: libraries are often different from platform
to platform. For example, a Makefile can contain a
reference to a library that doesn't exist on the Debian system. In that case, we
need to change it to a library that does exist in Debian, and serves the same
purpose.

Let's assume a line in your program's Makefile (or
Makefile.in) as the following.

LIBS = -lfoo -lbar

If your program doesn't compile since the foo library
doesn't exist and its equivalent is provided by the foo2
library on the Debian system, you can fix this build problem as
debian/patches/foo2.patch by changing
foo into foo2:[26]

$ dquilt new foo2.patch
$ dquilt add Makefile
$ sed -i -e 's/-lfoo/-lfoo2/g' Makefile
$ dquilt refresh
$ dquilt header -e
... describe patch

 [22] The
debian/patches directory should exist now if you ran
dh_make as described before. This example operation creates
it just in case you are updating an existing package.

 [23] See GNU Coding Standards: 7.2.4 DESTDIR: Support for Staged Installs.

 [24] For a source package generating multiple binary packages, the
dh_auto_install command uses debian/tmp
as the temporary directory while the dh_install command with
the help of
debian/package-1.install and
debian/package-2.install files
will split the contents of debian/tmp into
debian/package-1 and
debian/package-2 temporary
directories, to create
package-1_*.deb and
package-2_*.deb binary
packages.

 [25] This is just an example to
show what a Makefile should look like. If the
Makefile is created by the
./configure command, the correct way to fix this kind of
Makefile is to execute ./configure
from the dh_auto_configure command with default
options including --prefix=/usr.

 [26] If there
are API changes from the foo library to the
foo2 library, required changes to the source code need to be
made to match the new API.

 Chapter 4. Required files under the debian directory

The rewrite of this tutorial document with updated contents and more practical examples is available as Guide for Debian Maintainers. Please use this new tutorial as the primary tutorial document.

There is a new subdirectory under the program's source directory, called
debian. There are a number of files in this directory
that we should edit in order to customize the behavior of the package. The
most important of them are control,
changelog, copyright, and
rules, which are required for all packages.
[27]

 4.1. control

This file contains various values which dpkg,
dselect, apt-get,
apt-cache, aptitude, and other package
management tools will use to manage the package. It is defined by the
Debian Policy Manual, 5 "Control files and their fields".

Here is the control file dh_make
created for us:

 1 Source: gentoo
 2 Section: unknown
 3 Priority: optional
 4 Maintainer: Josip Rodin <joy-mg@debian.org>
 5 Build-Depends: debhelper (>=10)
 6 Standards-Version: 4.0.0
 7 Homepage: <insert the upstream URL, if relevant>
 8
 9 Package: gentoo
10 Architecture: any
11 Depends: ${shlibs:Depends}, ${misc:Depends}
12 Description: <insert up to 60 chars description>
13 <insert long description, indented with spaces>

(I've added the line numbers.)

Lines 1–7 are the control information for the source package.
Lines 9–13 are the control information for the binary package.

Line 1 is the name of the source package.

Line 2 is the section of the distribution the source package goes into.

As you may have noticed, the Debian archive is divided into multiple areas:
main (the free software), non-free (the
not really free software) and contrib (free software that
depends on non-free software). Each of these is divided into sections that
classify packages into rough categories. So we have admin
for administrator-only programs,
devel for programmer tools, doc for
documentation, libs for libraries, mail
for email readers and daemons, net for network apps and
daemons, x11 for X11 programs that don't fit anywhere else,
and many more.
[28]

Let's change it then to x11. (A main/ prefix is implied so
we can omit it.)

Line 3 describes how important it is that the user installs this package.
[29]

 	

The optional priority will usually work for new packages
that do not conflict with others claiming required,
important, or standard priority.

Section and priority are used by front-ends like aptitude
when they sort packages and select defaults. Once you upload the package to
Debian, the value of these two fields can be overridden by the archive
maintainers, in which case you will be notified by email.

As this is a normal priority package and doesn't conflict with anything else,
we will change the priority to optional.

Line 4 is the name and email address of the maintainer. Make sure that this
field includes a valid To header for email, because after
you upload it, the bug tracking system will use it to deliver bug emails to
you. Avoid using commas, ampersands, or parentheses.

Line 5 includes the list of packages required to build your package as
the Build-Depends field. You can also have the
Build-Depends-Indep field as an additional line here.
[30]
Some packages like
gcc and
make which are required by the
build-essential package are implied. If you need
to have other tools to build your package, you should add them to these fields.
Multiple entries are separated with commas; read on for the explanation of
binary package dependencies to find out more about the syntax of these lines.

 	

For all packages packaged with the dh command in the
debian/rules file, you must have debhelper
(>=9) in the Build-Depends field to
satisfy the Debian Policy requirement for the clean target.

 	

Source packages which have binary packages with Architecture:
any are rebuilt by the autobuilder. Since this autobuilder
procedure installs only the packages listed in the
Build-Depends field before running
debian/rules build (see Section 6.2, “Autobuilder”), the Build-Depends field
needs to list practically all the required packages, and
Build-Depends-Indep is rarely used.

 	

For source packages with binary packages all of which are Architecture:
all, the Build-Depends-Indep field may list all
the required packages unless they are already listed in the
Build-Depends field to satisfy the Debian Policy requirement
for the clean target.

If you are not sure which one should be used, use the
Build-Depends field to be on the safe side.
[31]

To find out what packages your package needs to be built run the command:

$ dpkg-depcheck -d ./configure

To manually find exact build dependencies for
/usr/bin/foo, execute

$ objdump -p /usr/bin/foo | grep NEEDED

and for each library listed (e.g., libfoo.so.6), execute

$ dpkg -S libfoo.so.6

Then just take the -dev version of every package as a
Build-Depends entry. If you use ldd for
this purpose, it will report indirect lib dependencies as well, resulting in
the problem of excessive build dependencies.

gentoo also happens to require
xlibs-dev, libgtk1.2-dev and libglib1.2-dev to build, so we'll add them here
next to debhelper.

Line 6 is the version of the Debian Policy
Manual standards this package follows, the one you read while making
your package.

On line 7 you can put the URL of the software's upstream homepage.

Line 9 is the name of the binary package. This is usually the same as the name
of the source package, but it doesn't necessarily have to be that way.

Line 10 describes the architectures the binary package can be compiled for.
This value is usually one of the following depending
on the type of the binary package:
[32]

 	

 Architecture: any

 	
 The generated binary package is an architecture dependent one
usually in a compiled language.

 	

 Architecture: all

 	
 The generated binary package is an architecture independent
one usually consisting of text, images, or scripts in an interpreted
language.

We leave line 10 as is since this is written in C.
dpkg-gencontrol(1)
will fill in the appropriate architecture value for any machine this source
package gets compiled on.

If your package is architecture independent (for example, a shell or Perl
script, or a document), change this to all, and read later
in Section 4.4, “rules” about using the binary-indep rule
instead of binary-arch for building the package.

Line 11 shows one of the most powerful features of the Debian packaging system.
Packages can relate to each other in various ways. Apart from
Depends, other relationship fields are
Recommends, Suggests,
Pre-Depends, Breaks,
Conflicts, Provides, and
Replaces.

The package management tools usually behave the same way when dealing with
these relations; if not, it will be explained. (See dpkg(8),
dselect(8), apt(8), aptitude(1), etc.)

Here is a simplified description of package relationships:
[33]

 	

Depends

The package will not be installed unless the packages it depends on are
installed. Use this if your program absolutely will not run (or will cause
severe breakage) unless a particular package is present.

 	

Recommends

Use this for packages that are not strictly necessary but are typically used
with your program. When a user installs your program, all front-ends will
probably prompt them to install the recommended packages.
aptitude and apt-get install recommended
packages along with your package by default (but the user can disable this
behavior). dpkg will ignore this field.

 	

Suggests

Use this for packages which will work nicely with your program but are not at
all necessary. When a user installs your program, they will probably not be
prompted to install suggested packages. aptitude can
be configured to install suggested packages along with your package but this is
not its default. dpkg and apt-get will
ignore this field.

 	

Pre-Depends

This is stronger than Depends. The package will not be
installed unless the packages it pre-depends on are installed and
correctly configured. Use this very
sparingly and only after discussing it on the debian-devel@lists.debian.org
mailing list. Read: don't use it at all. :-)

 	

Conflicts

The package will not be installed until all the packages it conflicts with have
been removed. Use this if your program absolutely will not run or will cause
severe problems if a particular package is present.

 	

Breaks

When installed the package will break all the listed packages.
Normally a Breaks entry specifies that it applies to versions earlier than a certain value.
The resolution is generally to use higher-level package management tools to upgrade the listed packages.

 	

Provides

For some types of packages where there are multiple alternatives, virtual names
have been defined. You can get the full list in the
virtual-package-names-list.txt.gz
file. Use this if your program provides a function of an existing virtual
package.

 	

Replaces

Use this when your program replaces files from another package, or completely
replaces another package (used in conjunction with
Conflicts). Files from the named packages will be
overwritten with the files from your package.

All these fields have uniform syntax. They are a list of package names
separated by commas. These package names may also be lists of alternative
package names, separated by vertical bar symbols | (pipe
symbols).

The fields may restrict their applicability to particular versions of each
named package. The restriction of each individual package is listed in
parentheses after its name, and should contain a relation from the list below
followed by a version number value.
The relations allowed are: <<,
<=, =, >=, and
>> for strictly lower, lower or equal, exactly equal,
greater or equal, and strictly greater, respectively. For example,

Depends: foo (>= 1.2), libbar1 (= 1.3.4)
Conflicts: baz
Recommends: libbaz4 (>> 4.0.7)
Suggests: quux
Replaces: quux (<< 5), quux-foo (<= 7.6)

The last feature you need to know about is
${shlibs:Depends}, ${perl:Depends},
${misc:Depends}, etc.

dh_shlibdeps(1) calculates shared library dependencies
for binary packages. It generates a list of ELF executables and shared
libraries it has found for each binary package. This list is used for
substituting ${shlibs:Depends}.

dh_perl(1) calculates Perl dependencies. It generates a list of a
dependencies on perl or perlapi for each binary package. This list is used for
substituting ${perl:Depends}.

Some debhelper commands may cause the
generated package to depend on some additional packages. All such commands
generate a list of required packages for each binary package.
This list is used for substituting ${misc:Depends}.

dh_gencontrol(1) generates
DEBIAN/control for each binary package while
substituting ${shlibs:Depends},
${perl:Depends}, ${misc:Depends}, etc.

Having said all that, we can leave the Depends field exactly
as it is now, and insert another line after it saying Suggests:
file, because gentoo can use
some features provided by the file
package.

 Line 9 is the Homepage URL. Let's assume this to be at
http://www.obsession.se/gentoo/.

Line 12 is the short description. Terminals are conventionally 80 columns wide so
this shouldn't be longer than about 60 characters. I'll change it to
fully GUI-configurable, two-pane X file manager.

Line 13 is where the long description goes. This should be a paragraph which
gives more details about the package. Column 1 of each line should be empty.
There must be no blank lines, but you can put a single .
(dot) in a column to simulate that. Also, there must be no more than one blank
line after the long description. [34]

We can insert Vcs-* fields to document the Version Control
System (VCS) location between lines 6 and 7.
[35]
Let's assume that the gentoo
package has its VCS located in the Debian Alioth Git Service at
git://git.debian.org/git/collab-maint/gentoo.git.

Finally, here is the updated control file:

 1 Source: gentoo
 2 Section: x11
 3 Priority: optional
 4 Maintainer: Josip Rodin <joy-mg@debian.org>
 5 Build-Depends: debhelper (>=10), xlibs-dev, libgtk1.2-dev, libglib1.2-dev
 6 Standards-Version: 4.0.0
 7 Vcs-Git: https://anonscm.debian.org/git/collab-maint/gentoo.git
 8 Vcs-browser: https://anonscm.debian.org/git/collab-maint/gentoo.git
 9 Homepage: http://www.obsession.se/gentoo/
10
11 Package: gentoo
12 Architecture: any
13 Depends: ${shlibs:Depends}, ${misc:Depends}
14 Suggests: file
15 Description: fully GUI-configurable, two-pane X file manager
16 gentoo is a two-pane file manager for the X Window System. gentoo lets the
17 user do (almost) all of the configuration and customizing from within the
18 program itself. If you still prefer to hand-edit configuration files,
19 they're fairly easy to work with since they are written in an XML format.
20 .
21 gentoo features a fairly complex and powerful file identification system,
22 coupled to an object-oriented style system, which together give you a lot
23 of control over how files of different types are displayed and acted upon.
24 Additionally, over a hundred pixmap images are available for use in file
25 type descriptions.
26 .
29 gentoo was written from scratch in ANSI C, and it utilizes the GTK+ toolkit
30 for its interface.

(I've added the line numbers.)

 4.2. copyright

This file contains information about the copyright and license of the upstream sources.
Debian Policy Manual, 12.5 "Copyright information"
dictates its content and
DEP-5: Machine-parseable debian/copyright
provides guidelines for its format.

dh_make can give you a template
copyright file. Let's use the --copyright
gpl2 option here to get a template file for the gentoo package released under GPL-2.

You must fill in missing information to complete this file, such as the place you got the package
from, the actual copyright notice, and the license. For certain
common free software licenses (GNU GPL-1, GNU GPL-2, GNU GPL-3,
LGPL-2, LGPL-2.1, LGPL-3, GNU FDL-1.2, GNU FDL-1.3, Apache-2.0,
3-Clause BSD, CC0-1.0, MPL-1.1, MPL-2.0 or the Artistic
license), you can just refer to the appropriate file in the
/usr/share/common-licenses/ directory that exists on every
Debian system. Otherwise, you must include the complete license.

In short, here's what gentoo's
copyright file should look like:

 1 Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
 2 Upstream-Name: gentoo
 3 Upstream-Contact: Emil Brink <emil@obsession.se>
 4 Source: http://sourceforge.net/projects/gentoo/files/
 5
 6 Files: *
 7 Copyright: 1998-2010 Emil Brink <emil@obsession.se>
 8 License: GPL-2+
 9
10 Files: icons/*
11 Copyright: 1998 Johan Hanson <johan@tiq.com>
12 License: GPL-2+
13
14 Files: debian/*
15 Copyright: 1998-2010 Josip Rodin <joy-mg@debian.org>
16 License: GPL-2+
17
18 License: GPL-2+
19 This program is free software; you can redistribute it and/or modify
20 it under the terms of the GNU General Public License as published by
21 the Free Software Foundation; either version 2 of the License, or
22 (at your option) any later version.
23 .
24 This program is distributed in the hope that it will be useful,
25 but WITHOUT ANY WARRANTY; without even the implied warranty of
26 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 GNU General Public License for more details.
28 .
29 You should have received a copy of the GNU General Public License along
30 with this program; if not, write to the Free Software Foundation, Inc.,
31 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
32 .
33 On Debian systems, the full text of the GNU General Public
34 License version 2 can be found in the file
35 '/usr/share/common-licenses/GPL-2'.

(I've added the line numbers.)

Please follow the HOWTO provided by the ftpmasters and sent to
debian-devel-announce: http://lists.debian.org/debian-devel-announce/2006/03/msg00023.html.

 4.3. changelog

This is a required file, which has a special format described in
Debian Policy Manual, 4.4 "debian/changelog".
This format is used by dpkg and other programs to obtain the
version number, revision, distribution, and urgency of your package.

For you, it is also important, since it is good to have documented all changes
you have done. It will help people downloading your package to see whether
there are issues with the package that they should know about. It will be
saved as /usr/share/doc/gentoo/changelog.Debian.gz in the
binary package.

dh_make created a default one, and this is what it looks
like:

1 gentoo (0.9.12-1) unstable; urgency=medium
2
3 * Initial release. (Closes: #nnnn) <nnnn is the bug number of your ITP>
4
5 -- Josip Rodin <joy-mg@debian.org> Mon, 22 Mar 2010 00:37:31 +0100
6

(I've added the line numbers.)

Line 1 is the package name, version, distribution, and urgency. The name must
match the source package name; distribution should be
unstable, and urgency should be set to medium unless there
is any particular reason for other values.

Lines 3-5 are a log entry, where you document changes made in this package
revision (not the upstream changes — there is a special file for that purpose,
created by the upstream authors, which you will later install as
/usr/share/doc/gentoo/changelog.gz). Let's assume your
ITP (Intent To Package) bug report number was 12345. New
lines must be inserted just below the uppermost line that begins with
* (asterisk). You can do it with dch(1).
You can edit this manually with a text editor as long as you follow the
formatting convention used by the dch(1).

In order to prevent a package being accidentally uploaded before completing the
package, it is a good idea to change the distribution value to an invalid
distribution value of UNRELEASED.

You will end up with something like this:

1 gentoo (0.9.12-1) UNRELEASED; urgency=low
2
3 * Initial Release. Closes: #12345
4 * This is my first Debian package.
5 * Adjusted the Makefile to fix $(DESTDIR) problems.
6
7 -- Josip Rodin <joy-mg@debian.org> Mon, 22 Mar 2010 00:37:31 +0100
8

(I've added the line numbers.)

Once you are satisfied with all the changes and documented them in
changelog, you should change the distribution value from
UNRELEASED to the target distribution value
unstable (or even experimental). [36]

You can read more about updating the changelog file later
in Chapter 8, Updating the package.

 4.4. rules

Now we need to take a look at the exact rules that dpkg-buildpackage(1) will use to actually create the package. This file is in fact
another Makefile, but different from the one(s) in the
upstream source. Unlike other files in debian, this one
is marked as executable.

 4.4.1. Targets of the rules file

Every rules file, like any other
Makefile, consists of several rules, each of
which defines a target and how it is carried out.
[37]
A new rule begins with its target declaration in the first column. The
following lines beginning with the TAB code (ASCII 9) specify the recipe for
carrying out that target.
Empty lines and lines beginning with # (hash) are treated as
comments and ignored.
[38]

A rule that you want to execute is invoked by its target name as a command line argument. For
example, debian/rules build and
fakeroot make -f debian/rules binary
execute rules for build and
binary targets, respectively.

Here is a simplified explanation of the targets:

 	

clean target: to clean all compiled, generated, and useless
files in the build-tree. (Required)

 	

build target: to build the source into compiled programs and
formatted documents in the build-tree. (Required)

 	

build-arch target: to build the source into arch-dependent
compiled programs in the build-tree. (Required)

 	

build-indep target: to build the source into
arch-independent formatted documents in the build-tree. (Required)

 	

install target: to install files into a file tree for each
binary package under the debian directory. If defined,
binary* targets effectively depend on this target.
(Optional)

 	

binary target: to create all binary packages (effectively
a combination of binary-arch and
binary-indep targets). (Required)[39]

 	

binary-arch target: to create arch-dependent
(Architecture: any) binary packages in the parent directory.
(Required)[40]

 	

binary-indep target: to create arch-independent
(Architecture: all) binary packages in the parent directory.
(Required)[41]

 	

get-orig-source target: to obtain the most recent version of
the original source package from an upstream archive. (Optional)

You are probably overwhelmed by now, but things are much simpler upon examination of the
rules file that dh_make gives us as a
default.

 4.4.2. Default rules file

Newer dh_make generates a very simple but powerful default
rules file using the dh command:

 1 #!/usr/bin/make -f
 2 # See debhelper(7) (uncomment to enable)
 3 # output every command that modifies files on the build system.
 4 #DH_VERBOSE = 1
 5
 6 # see FEATURE AREAS in dpkg-buildflags(1)
 7 #export DEB_BUILD_MAINT_OPTIONS = hardening=+all
 8
 9 # see ENVIRONMENT in dpkg-buildflags(1)
10 # package maintainers to append CFLAGS
11 #export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
12 # package maintainers to append LDFLAGS
13 #export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed
14
15
16 %:
17 dh $@

(I've added the line numbers and trimmed some comments. In the actual rules file,
the leading spaces are a TAB code.)

You are probably familiar with lines like line 1 from shell and Perl scripts.
It tells the operating system that this file is to be processed with
/usr/bin/make.

Line 4 can be uncommented to set the DH_VERBOSE variable to 1,
so that the dh command outputs which
dh_* commands it is executing.
You can also add a line export DH_OPTIONS=-v here,
so that each dh_* command outputs which commands it
is executing. This helps you to understand
exactly what is going on behind this simple rules file and
to debug its problems. This new dh is designed to form a core part of the
debhelper tools, and not to hide
anything from you.

Lines 16 and 17 are where all the work is done with an implicit rule using the pattern rule. The percent sign means "any
targets", which then call a single program, dh, with the target
name. [42] The dh command is a wrapper
script that runs appropriate sequences of dh_* programs
depending on its argument. [43]

 	

debian/rules clean runs dh clean, which
in turn runs the following:

dh_testdir
dh_auto_clean
dh_clean

 	

debian/rules build runs dh build, which
in turn runs the following:

dh_testdir
dh_auto_configure
dh_auto_build
dh_auto_test

 	

fakeroot debian/rules binary runs fakeroot dh
binary, which in turn runs the following[44]:

dh_testroot
dh_prep
dh_installdirs
dh_auto_install
dh_install
dh_installdocs
dh_installchangelogs
dh_installexamples
dh_installman
dh_installcatalogs
dh_installcron
dh_installdebconf
dh_installemacsen
dh_installifupdown
dh_installinfo
dh_installinit
dh_installmenu
dh_installmime
dh_installmodules
dh_installlogcheck
dh_installlogrotate
dh_installpam
dh_installppp
dh_installudev
dh_installwm
dh_installxfonts
dh_bugfiles
dh_lintian
dh_gconf
dh_icons
dh_perl
dh_usrlocal
dh_link
dh_compress
dh_fixperms
dh_strip
dh_makeshlibs
dh_shlibdeps
dh_installdeb
dh_gencontrol
dh_md5sums
dh_builddeb

 	

fakeroot debian/rules binary-arch runs fakeroot dh
binary-arch, which in turn runs the same sequence as
fakeroot dh binary but with the -a option
appended for each command.

 	

fakeroot debian/rules binary-indep runs fakeroot dh
binary-indep, which in turn runs almost the same sequence as
fakeroot dh binary but excluding
dh_strip, dh_makeshlibs, and
dh_shlibdeps with the -i option appended
for each remaining command.

The functions of dh_* commands are largely self-evident from
their names. [45] There
are a few notable ones that are worth giving (over)simplified explanations here assuming
a typical build environment based on a Makefile:
[46]

 	

dh_auto_clean usually executes the following if a
Makefile exists with the distclean
target. [47]

make distclean

 	

dh_auto_configure usually executes the following if
./configure exists (arguments abbreviated for
readability).

./configure --prefix=/usr --sysconfdir=/etc --localstatedir=/var ...

 	

dh_auto_build usually executes the following to execute the
first target of Makefile if it exists.

make

 	

dh_auto_test usually executes the following if a
Makefile exists with the test target.
[48]

make test

 	

dh_auto_install usually executes the following if a
Makefile exists with the install target
(line folded for readability).

make install \
 DESTDIR=/path/to/package_version-revision/debian/package

All targets which require the fakeroot command will contain
dh_testroot, which exits with an error if you are not
using this command to pretend to be root.

The important part to know about the rules file created by
dh_make is that it is just a suggestion. It will work for
most packages but for more complicated ones, don't be afraid to customize it to
fit your needs.

Although install is not a required target, it is supported.
fakeroot dh install behaves like fakeroot dh
binary but stops after dh_fixperms.

 4.4.3. Customization of rules file

There are many ways to customize the rules file created
with the new dh command.

The dh $@ command can be customized as follows:
[49]

 	

Add support for the dh_python2 command. (The best choice
for Python.) [50]

 	

Include the python package in
Build-Depends.

 	

Use dh $@ --with python2.

 	

This handles Python modules using the python framework.

 	

Add support for the dh_pysupport command. (deprecated)

 	

Include the python-support package in
Build-Depends.

 	

Use dh $@ --with pysupport.

 	

This handles Python modules using the python-support framework.

 	

Add support for the dh_pycentral command. (deprecated)

 	

Include the python-central package in
Build-Depends.

 	

Use dh $@ --with python-central instead.

 	

This also deactivates the dh_pysupport command.

 	

This handles Python modules using the python-central framework.

 	

Add support for the dh_installtex command.

 	

Include the tex-common package in
Build-Depends.

 	

Use dh $@ --with tex instead.

 	

This registers Type 1 fonts, hyphenation patterns, and formats with TeX.

 	

Add support for the dh_quilt_patch and
dh_quilt_unpatch commands.

 	

Include the quilt package in
Build-Depends.

 	

Use dh $@ --with quilt instead.

 	

This applies and un-applies patches to the upstream source from files in the
debian/patches directory for a source package in the 1.0 format.

 	

This is not needed if you use the new 3.0 (quilt) source
package format.

 	

Add support for the dh_dkms command.

 	

Include the dkms package in
Build-Depends.

 	

Use dh $@ --with dkms instead.

 	

This correctly handles DKMS usage by kernel module packages.

 	

Add support for the dh_autotools-dev_updateconfig and
dh_autotools-dev_restoreconfig commands.

 	

Include the autotools-dev package in
Build-Depends.

 	

Use dh $@ --with autotools-dev instead.

 	

This updates and restores config.sub and
config.guess.

 	

Add support for the dh_autoreconf and
dh_autoreconf_clean commands.

 	

Include the dh-autoreconf package in
Build-Depends.

 	

Use dh $@ --with autoreconf instead.

 	

This updates the GNU Build System files and restores them after the build.

 	

Add support for the dh_girepository command.

 	

Includes the gobject-introspection package in
Build-Depends.

 	

Use dh $@ --with gir instead.

 	

This computes dependencies for packages shipping GObject introspection data and
generates the ${gir:Depends} substitution variable for the package dependency.

 	

Add support for the bash completion feature.

 	

Includes the bash-completion package in
Build-Depends.

 	

Use dh $@ --with bash-completion instead.

 	

This installs bash completions using a configuration file at
debian/package.bash-completion.

Many dh_* commands invoked by the new dh
command can be customized by the corresponding configuration files in the
debian directory. See Chapter 5, Other files under the debian directory and the
manpage of each command for the customization of such features.

You may need to run dh_* commands invoked via the new dh
with added arguments, or to run additional commands with them, or to skip them.
For such cases, you create an
override_dh_foo target with its
rule in the rules file defining an
override_dh_foo target for the
dh_foo command you want to
change. It basically says run me instead.
[51]

Please note that the dh_auto_* commands tend to do more than
what has been discussed in this (over)simplified explanation to take care of all the
corner cases. It is a bad idea to use override_dh_* targets
to substitute simplified equivalent commands (except for the
override_dh_auto_clean target) since it may
bypass such smart debhelper features.

So, for instance, if you want to store system configuration data in the
/etc/gentoo directory instead of the usual
/etc directory for the recent
gentoo package using Autotools, you can override the default
--sysconfig=/etc argument given by the
dh_auto_configure command to the
./configure command by the following:

override_dh_auto_configure:
 dh_auto_configure -- --sysconfig=/etc/gentoo

The arguments given after -- are appended to the default
arguments of the auto-executed program to override them. Using the
dh_auto_configure command is better than directly invoking the
./configure command here since it will only override the
--sysconfig argument and retain any other, benign arguments
to the ./configure command.

If the Makefile in the source for gentoo requires you to specify
build as its target to build it [52], you
create an override_dh_auto_build target to enable this.

override_dh_auto_build:
 dh_auto_build -- build

This ensures $(MAKE) is run with all the default arguments given by the
dh_auto_build command plus the build argument.

If the Makefile in the source for gentoo requires you to specify the
packageclean target to clean it for the Debian package instead
of using distclean or clean targets,
you can create an
override_dh_auto_clean target to enable it.

override_dh_auto_clean:
 $(MAKE) packageclean

If the Makefile in the source for gentoo contains a test target
which you do not want to run for the Debian package building process, you can
use an empty override_dh_auto_test target to skip it.

override_dh_auto_test:

If gentoo has an unusual upstream
changelog file called FIXES,
dh_installchangelogs will not install that file by default.
The dh_installchangelogs command requires
FIXES as its argument to install it. [53]

override_dh_installchangelogs:
 dh_installchangelogs FIXES

When you use the new dh command, use of explicit targets
such as the ones listed in Section 4.4.1, “Targets of the rules file”, other than the
get-orig-source target, may make it difficult to understand
their exact effects. Please limit explicit targets to
override_dh_* targets and completely independent ones, if
possible.

 [27]
In this chapter, files in the debian directory are
referred to without the leading debian/ for simplicity whenever
the meaning is obvious.

 [28] See
Debian Policy Manual, 2.4 "Sections" and
List of sections in sid.

 [29] See
Debian Policy Manual, 2.5 "Priorities".

 [30] See
Debian Policy Manual, 7.7 "Relationships between source and binary packages - Build-Depends, Build-Depends-Indep, Build-Conflicts, Build-Conflicts-Indep".

 [31] This somewhat strange situation is a feature well documented
in the Debian Policy
Manual, Footnotes 55. This is not due to the use of the
dh command in the debian/rules file but
due to how the dpkg-buildpackage works. The same situation
applies to the auto build system
for Ubuntu.

 [32] See
Debian Policy Manual, 5.6.8 "Architecture"
for exact details.

 [33] See
Debian Policy Manual, 7 "Declaring relationships between packages".

 [34] These descriptions are in
English. Translations of these descriptions are provided by
The Debian Description Translation Project - DDTP.

 [35] See
Debian Developer's Reference, 6.2.5. "Version Control System location".

 [36] If you
use the dch -r command to make this last change, please
make sure to save the changelog file explicitly by the
editor.

 [37] You can start learning how to write a Makefile from
Debian Reference, 12.2. "Make".
The full documentation is available as
http://www.gnu.org/software/make/manual/html_node/index.html or as the
make-doc package in the non-free archive area.

 [38] Debian
Policy Manual, 4.9 "Main building script: debian/rules" explains the
details.

 [39] This
target is used by dpkg-buildpackage as in Section 6.1, “Complete (re)build”.

 [40] This target is used by dpkg-buildpackage
-B as in Section 6.2, “Autobuilder”.

 [41] This target is used by dpkg-buildpackage
-A.

 [42] This uses the new debhelper v7+ features. Its design concepts are
explained in Not Your
Grandpa's Debhelper presented at DebConf9 by the debhelper upstream. Under
lenny, dh_make created a much more
complicated rules file with explicit rules
and many dh_* scripts listed for each one, most of
which are now unnecessary (and show the package's age). The new dh command is
simpler and frees us from doing the routine work "manually". You still have full power to
customize the process with override_dh_* targets. See Section 4.4.3, “Customization of rules file”. It is based only on the debhelper package and does not obfuscate the
package building process as the cdbs
package tends to do.

 [43] You can verify the actual sequences of
dh_* programs invoked for a given
target without really running them by invoking dh target
--no-act or debian/rules --
'target --no-act'.

 [44] The following
example assumes your debian/compat has a value equal or
more than 9 to avoid invoking any python support commands automatically.

 [45] For complete information on what all these
dh_* scripts do exactly, and what their other options are,
please read their respective manual pages and the debhelper documentation.

 [46] These commands support other build environments, such as
setup.py, which can be listed by executing
dh_auto_build --list in a package source directory.

 [47] It actually looks for the first available target
in the Makefile out of
distclean, realclean, or
clean, and executes that.

 [48] It actually looks for the first available target in
the Makefile out of test or
check, and executes that.

 [49] If a package installs the
/usr/share/perl5/Debian/Debhelper/Sequence/custom_name.pm
file, you should activate its customization function by dh $@ --with
custom-name.

 [50] Use of the dh_python2 command
is preferred over use of dh_pysupport or
dh_pycentral commands. Do not use the
dh_python command.

 [51] Under lenny, if you wanted to change the
behavior of a dh_* script you found the relevant line in the
rules file and adjusted it.

 [52]
dh_auto_build without any arguments will execute the first
target in the Makefile.

 [53] The
debian/changelog and debian/NEWS
files are always automatically installed. The upstream changelog is found
by converting filenames to lower case and matching them against
changelog, changes,
changelog.txt, and changes.txt.

 Chapter 5. Other files under the debian directory

The dh_make command had major updates since this old document was written. So some parts of this document aren't applicable any more.

The rewrite of this tutorial document with updated contents and more practical examples is available as Guide for Debian Maintainers. Please use this new tutorial as the primary tutorial document.

The debmake command is used in place of the dh_make command in my new Guide for Debian Maintainers.

To control most of what debhelper does
while building the package, you put optional configuration files under the
debian directory. This chapter will provide an overview of
what each of these does and its format. Please read the Debian Policy
Manual and Debian Developer's
Reference for guidelines for packaging.

The dh_make command will create some template configuration
files under the debian directory.
Take a look at all of them.

In this chapter, files in the debian directory are
referred to without the leading debian/ for simplicity whenever
the meaning is obvious.

Some template configuration files for debhelper
may not be created by the dh_make command. In
such cases, you need to create them with an editor.

If you wish or need to activate any of these, please do the following:

 	

rename the configuration files to use the actual binary package
name in place of package;

 	

modify template file contents to suit your needs;

 	

remove template files which you do not need;

 	

modify the control file (see Section 4.1, “control”),
if necessary;

 	

modify the rules file (see Section 4.4, “rules”), if
necessary.

Any debhelper configuration files
without a package prefix, such as
install, apply to the first binary package. When there are
many binary packages, their configurations can be specified by prefixing their
name to their configuration filenames such as
package-1.install,
package-2.install, etc.

 5.1. README.Debian

Any extra details or discrepancies between the original package and your Debian
version should be documented here.

dh_make created a default one; this is what it looks like:

gentoo for Debian

<possible notes regarding this package - if none, delete this file>
 -- Josip Rodin <joy-mg@debian.org>, Wed, 11 Nov 1998 21:02:14 +0100

If you have nothing to be documented, remove this file. See dh_installdocs(1).

 5.2. compat

The compat file defines the debhelper compatibility level. Currently, you
should set it to the debhelper v10 as
follows:

$ echo 10 > debian/compat

You may use compat level v9 in certain circumstances for compatibility with
older systems. However, using any level below v9 is not recommended
and should be avoided for new packages.

 5.3. conffiles

One of the most annoying things about software is when you spend a great deal
of time and effort customizing a program, only to have an upgrade stomp all
over your changes. Debian solves this problem by marking such configuration files as conffiles.
[54]
When you upgrade a package, you'll be asked whether you want to keep
your old configuration files or not.

dh_installdeb(1) automatically flags any files under
the /etc directory as conffiles, so if your program only
has conffiles there you do not need to specify them in this file. For most
package types, the only place conffiles should ever be is under
/etc, and so this file doesn't need to exist.

If your program uses configuration files but also rewrites them on its own,
it's best not to make them conffiles because dpkg will
then prompt users to verify the changes all the time.

If the program you're packaging requires every user to modify the configuration
files in the /etc directory, there are two popular ways to
arrange for them to not be conffiles, keeping dpkg quiet:

 	

Create a symlink under the /etc directory pointing to a
file under the /var directory generated by the
maintainer scripts.

 	

Create a file generated by the maintainer scripts under the /etc directory.

For information on maintainer scripts, see Section 5.18, “{pre,post}{inst,rm}”.

 5.4. package.cron.*

If your package requires regularly scheduled tasks to operate properly, you can
use these files to set that up. You can set up regular tasks that either happen
hourly, daily, weekly, or monthly, or alternatively happen at any other time that
you wish. The filenames are:

 	

package.cron.hourly - Installed as
/etc/cron.hourly/package; run
once an hour.

 	

package.cron.daily - Installed as
/etc/cron.daily/package; run
once a day.

 	

package.cron.weekly - Installed as
/etc/cron.weekly/package; run
once a week.

 	

package.cron.monthly - Installed as
/etc/cron.monthly/package: run
once a month.

 	

package.cron.d - Installed as
/etc/cron.d/package: for any
other time.

Most of these files are shell scripts, with the exception of
package.cron.d which follows
the format of crontab(5).

No explicit cron.* file is needed to set up log rotation;
for that, see
dh_installlogrotate(1) and
logrotate(8).

 5.5. dirs

This file specifies any directories which we need but which are not created by the normal installation
procedure (make install DESTDIR=... invoked by
dh_auto_install). This generally
means there is a problem with the Makefile.

Files listed in an install file don't need their
directories created first. See Section 5.11, “install”.

It is best to try to run the installation first and only use this if you
run into trouble. There is no preceding slash on the directory names listed in
the dirs file.

 5.6. package.doc-base

If your package has documentation other than manual and info pages, you
should use the doc-base file to
register it, so the user can find it with e.g. dhelp(1),
dwww(1), or doccentral(1).

This usually includes HTML, PS and PDF files, shipped in
/usr/share/doc/packagename/.

This is what gentoo's doc-base file
gentoo.doc-base looks like:

Document: gentoo
Title: Gentoo Manual
Author: Emil Brink
Abstract: This manual describes what Gentoo is, and how it can be used.
Section: File Management
Format: HTML
Index: /usr/share/doc/gentoo/html/index.html
Files: /usr/share/doc/gentoo/html/*.html

For information on the file format, see install-docs(8) and the Debian doc-base
manual at the local copy /usr/share/doc/doc-base/doc-base.html/index.html provided by the
doc-base package.

For more details on installing additional documentation, look in Section 3.3, “Installation of files to their destination”.

 5.7. docs

This file specifies the file names of documentation files we can have
dh_installdocs(1) install into the temporary directory
for us.

By default, it will include all existing files in the top-level source
directory that are called BUGS,
README*, TODO etc.

For gentoo, some other files
are also included:

BUGS
CONFIG-CHANGES
CREDITS
NEWS
README
README.gtkrc
TODO

 5.8. emacsen-*

If your package supplies Emacs files that can be bytecompiled at package
installation time, you can use these files to set it up.

They are installed into the temporary directory by dh_installemacsen(1).

If you don't need these, remove them.

 5.9. package.examples

The dh_installexamples(1) command installs files and directories
listed in this file as example files.

 5.10. package.init and package.default

If your package is a daemon that needs to be run at system start-up, you've
obviously disregarded my initial recommendation, haven't you? :-)

Please read dh_installinit(1) dh_installsystemd(1) to provide startup script.

The package.default file will
be installed as
/etc/default/package. This
file sets defaults that are sourced by the init script. This
package.default file
is most often used to set some default flags or
timeouts. If your init script has certain configurable
features, you can set them in the package.default file,
instead of in the init script itself.

If your upstream program provides a file for the init script, you can either use it or not. If you
don't use their init script then create a new one in
package.init. However
if the upstream init script looks fine and installs in the right place you
still need to set up the rc* symlinks. To do this you will
need to override dh_installinit in the
rules file with the following lines:

override_dh_installinit:
 dh_installinit --onlyscripts

If you don't need this, remove the files.

 5.11. install

If there are files that need to be installed into your package but your
standard make install won't do it, put the filenames and
destinations into this install file. They are installed
by dh_install(1).[55] You should first check that
there is not a more specific tool to use. For example, documents should be in
the docs file and not in this one.

This install file has one line per file installed, with
the name of the file (relative to the top build directory) then a space then
the installation directory (relative to the install directory). One example of where this is used is if a binary src/bar is left uninstalled; the
install file might look like:

src/bar usr/bin

This means when this package is installed, there will be an executable command
/usr/bin/bar.

Alternatively, this install can have the name of the file
only without the installation directory when the relative directory path does
not change. This format is usually used for a large package that splits the
output of its build into multiple binary packages using
package-1.install,
package-2.install, etc.

The dh_install command will fall back to looking in
debian/tmp for files, if it doesn't find them in the
current directory (or wherever you've told it to look using
--sourcedir).

 5.12. package.info

If your package has info pages, you should install them using dh_installinfo(1) by listing them in a
package.info file.

 5.13. package.links

If you need to create additional symlinks in package build directories as package maintainer, you should install them using dh_link(1) by listing their full paths of source and destination files in a
package.links file.

 5.14. {package.,source/}lintian-overrides

If lintian reports an erroneous
diagnostic for a case where Debian policy allows exceptions to some rule, you can
use package.lintian-overrides
or source/lintian-overrides to quieten it. Please read
the Lintian User's Manual (https://lintian.debian.org/manual/index.html) and refrain
from abusing this.

package.lintian-overrides is
for the binary package named package and is installed
into
usr/share/lintian/overrides/package
by the dh_lintian command.

source/lintian-overrides is for the source package. This
is not installed.

 5.15. manpage.*

Your program(s) should have a manual page. If they don't, you should create
them. The dh_make command creates some template files for
manual pages. These need to be copied and edited for each command missing its
manual page. Please make sure to remove unused templates.

 5.15.1. manpage.1.ex

Manual pages are normally written in nroff(1).
The manpage.1.ex template is written in
nroff, too. See the man(7)
manual page for a brief description of how to edit such a file.

The final manual page file name should give the name of the program it is
documenting, so we will rename it from manpage to
gentoo. The file name also includes .1
as the first suffix, which means it's a manual page for a user command. Be
sure to verify that this section is indeed the correct one. Here's a short
list of manual page sections:

 	Section
 	Description
 	Notes

 	1
 	User commands
 	Executable commands or scripts

 	2
 	System calls
 	Functions provided by the kernel

 	3
 	Library calls
 	Functions within system libraries

 	4
 	Special files
 	Usually found in /dev

 	5
 	File formats
 	E.g. /etc/passwd's format

 	6
 	Games
 	Games or other frivolous programs

 	7
 	Macro packages
 	Such as man macros

 	8
 	System administration
 	Programs typically only run by root

 	9
 	Kernel routines
 	Non-standard calls and internals

So gentoo's man page should be called
gentoo.1. If there was no gentoo.1
man page in the original source, you should create it by renaming the
manpage.1.ex template to gentoo.1 and
editing it using information from the example and from the upstream docs.

You can use the help2man command to generate a man page out
of the --help and --version output of each
program, too. [56]

 5.15.2. manpage.sgml.ex

If on the other hand you prefer writing SGML instead of
nroff, you can use the manpage.sgml.ex
template. If you do this, you have to:

 	

rename the file to something like gentoo.sgml.

 	

install the docbook-to-man package

 	

add docbook-to-man to the Build-Depends
line in the control file

 	

add an override_dh_auto_build target to your
rules file:

override_dh_auto_build:
 docbook-to-man debian/gentoo.sgml > debian/gentoo.1
 dh_auto_build

 5.15.3. manpage.xml.ex

If you prefer XML over SGML, you can use the manpage.xml.ex
template. If you do this, you have to:

 	

rename the source file to something like gentoo.1.xml

 	

install the docbook-xsl package and an
XSLT processor like xsltproc
(recommended)

 	

add the docbook-xsl, docbook-xml, and
xsltproc packages to the Build-Depends
line in the control file

 	

add an override_dh_auto_build target to your
rules file:

override_dh_auto_build:
 xsltproc --nonet \
 --param make.year.ranges 1 \
 --param make.single.year.ranges 1 \
 --param man.charmap.use.subset 0 \
 -o debian/ \
http://docbook.sourceforge.net/release/xsl/current/manpages/docbook.xsl\
 debian/gentoo.1.xml
 dh_auto_build

 5.16. package.manpages

If your package has manual pages, you should install them using dh_installman(1) by listing them in a
package.manpages file.

To install docs/gentoo.1 as a manpage for the gentoo package, create a
gentoo.manpages file as follows:

docs/gentoo.1

 5.17. NEWS

The dh_installchangelogs(1) command installs this.

 5.18. {pre,post}{inst,rm}

These postinst, preinst,
postrm, and prerm files
[57] are
called maintainer scripts. They are scripts which are put
in the control area of the package and run by dpkg when your
package is installed, upgraded, or removed.

As a novice maintainer, you should avoid any manual editing of
maintainer scripts because they are problematic. For more
information refer to the Debian
Policy Manual, 6 "Package maintainer scripts and installation
procedure", and take a look at the example files provided by
dh_make.

If you did not listen to me and have created custom maintainer
scripts for a package, you should make sure to test them not only
for install and
upgrade but also for
remove and
purge.

Upgrades to the new version should be silent and non-intrusive (existing users
should not notice the upgrade except by discovering that old bugs have been
fixed and perhaps that there are new features).

When the upgrade is necessarily intrusive (eg., config files scattered through
various home directories with totally different structure), you may
consider as the last resort switching the package to a safe fallback state
(e.g., disabling a service) and providing the proper documentation
required by policy (README.Debian and
NEWS.Debian). Don't bother the user with
debconf notes invoked from these maintainer scripts
for upgrades.

The ucf package provides a
conffile-like handling infrastructure to preserve user
changes for files that may not be labeled as conffiles such
as those managed by the maintainer scripts. This should
minimize issues associated with them.

These maintainer scripts are among the Debian enhancements that
explain why people choose Debian. You must
be very careful not to turn them into a source of annoyance.

 5.19. package.symbols

Packaging of a library is not easy for a novice maintainer and should be avoided. Having said it, if your package has libraries, you should have debian/package.symbols files. See Section A.2, “Managing debian/package.symbols”.

 5.20. TODO

The dh_installdocs(1) command installs this.

 5.21. watch

The watch file format is documented in the uscan(1)
manpage. The watch file configures the
uscan program (in the devscripts package) to watch the site where you
originally got the source. This is also used by the
Debian Package Tracker service.

Here are its contents:

watch control file for uscan
version=3
http://sf.net/gentoo/gentoo-(.+)\.tar\.gz debian uupdate

Normally with a watch file, the URL at
http://sf.net/gentoo is downloaded and searched for links of
the form . The basename (just the part
after the final /) of each linked URL is compared against
the Perl regular expression pattern (see perlre(1))
gentoo-(.+)\.tar\.gz. Out of the files that match, the one with
the greatest version number is downloaded and the uupdate
program is run to create an updated source tree.

Although this is true for other sites, the SourceForge download service at
http://sf.net is an exception. When the
watch file has a URL matching the Perl regexp
^http://sf\.net/, the uscan program
replaces it with http://qa.debian.org/watch/sf.php/ and
then applies this rule. The URL redirector service at http://qa.debian.org/ is designed to offer
a stable redirect service to the desired file for any
watch pattern of the form
http://sf.net/project/tar-name-(.+)\.tar\.gz.
This solves issues related to periodically changing SourceForge URLs.

If the upstream offers the cryptographic signature of the tarball, it is
recommended to verify its authenticity using the
pgpsigurlmangle option as described in uscan(1).

 5.22. source/format

In the debian/source/format file, there should be a single
line indicating the desired format for the source package (check dpkg-source(1) for an exhaustive list). After squeeze, it
should say either:

 	

3.0 (native) for native Debian packages or

 	

3.0 (quilt) for everything else.

The newer 3.0 (quilt) source format records modifications in
a quilt patch series within
debian/patches. Those changes are then automatically
applied during extraction of the source package. [58] The Debian modifications are simply stored in a
debian.tar.gz archive containing all files under the
debian directory. This new format supports inclusion of
binary files such as PNG icons by the package maintainer without requiring
tricks. [59]

When dpkg-source extracts a source package in 3.0
(quilt) source format, it automatically applies all patches listed in
debian/patches/series. You can avoid applying patches at
the end of the extraction with the --skip-patches option.

 5.23. source/local-options

When you want to manage Debian packaging activities under a VCS, you typically
create one branch (e.g., upstream) tracking the upstream
source and another branch (e.g., typically master for Git)
tracking the Debian package. For the latter, you usually want to have
unpatched upstream source with your debian/* files for the
Debian packaging to ease merging of the new upstream source.

After you build a package, the source is normally left patched. You need to
unpatch it manually by running dquilt pop -a before
committing to the master branch. You can automate this by
adding the optional debian/source/local-options file
containing unapply-patches. This file is not included in
the generated source package and changes the local build behavior only. This
file may contain abort-on-upstream-changes, too (see
dpkg-source(1)).

unapply-patches
abort-on-upstream-changes

 5.24. source/options

The autogenerated files in the source tree can be quite annoying for packaging
since they generate meaningless large patch files. There are custom modules
such as dh_autoreconf to ease this problem as described in
Section 4.4.3, “Customization of rules file”.

You can provide a Perl regular expression to the
--extend-diff-ignore option argument of dpkg-source(1) to ignore changes made to the autogenerated files while
creating the source package.

As a general solution to address this problem of the autogenerated files,
you can store such a dpkg-source option argument in the
source/options file of the source package. The following
will skip creating patch files for config.sub,
config.guess, and Makefile.

extend-diff-ignore = "(^|/)(config\.sub|config\.guess|Makefile)$"

 5.25. patches/*

The old 1.0 source format created a single large
diff.gz file containing package maintenance files in
debian and patch files for the source. Such a package is a
bit cumbersome to inspect and understand for each source tree modification
later. This is not so nice.

The newer 3.0 (quilt) source format stores patches in
debian/patches/* files using the quilt
command. These patches and other package data which are all contained under
the debian directory are packaged as the
debian.tar.gz file. Since the
dpkg-source command can handle quilt
formatted patch data in the 3.0 (quilt) source without the
quilt package, it does not need a
Build-Depends on quilt.
[60]

The quilt command is explained in quilt(1).
It records modifications to the source as a stack of -p1
patch files in the debian/patches directory and the source
tree is untouched outside of the debian directory. The
order of these patches is recorded in the
debian/patches/series file. You can apply (=push),
un-apply (=pop), and refresh patches easily. [61]

For Chapter 3, Modifying the source, we created three patches in
debian/patches.

Since Debian patches are located in debian/patches, please
make sure to set up the dquilt command properly as described
in Section 3.1, “Setting up quilt”.

When anyone (including yourself) provides a patch
foo.patch to the source later,
modifying a 3.0 (quilt) source package is
quite simple:

$ dpkg-source -x gentoo_0.9.12.dsc
$ cd gentoo-0.9.12
$ dquilt import ../foo.patch
$ dquilt push
$ dquilt refresh
$ dquilt header -e
... describe patch

The patches stored in the newer 3.0 (quilt) source format
must be fuzz free. You can ensure this with dquilt
pop -a; while dquilt push; do dquilt refresh; done.

 [54] See dpkg(1) and
Debian Policy Manual, "D.2.5 Conffiles".

 [55] This replaces the
deprecated dh_movefiles(1) command which is configured by the
files file.

 [56] Note that help2man's
placeholder man page will claim that more detailed documentation is
available in the info system. If the command is missing an
info page, you
should manually edit the man page created by the
help2man command.

 [57] Despite this use of the bash
shorthand expression {pre,post}{inst,rm} to indicate these
filenames, you should use pure POSIX syntax for these maintainer scripts for
compatibility with dash as the system shell.

 [58] See
DebSrc3.0 for a summary on the switch to the new 3.0
(quilt) and 3.0 (native) source formats.

 [59] Actually, this new format also supports multiple
upstream tarballs and more compression methods. These are beyond the scope of
this document.

 [60] Several methods of patch set maintenance have been proposed and are in use for Debian
packages. The quilt system is the preferred maintenance
system in use. Others include dpatch,
dbs, and cdbs. Many of these keep such
patches as debian/patches/* files.

 [61] If you are
asking a sponsor to upload your package, this kind of clear separation and
documentation of your changes is very important to expedite the package review
by your sponsor.

 Chapter 6. Building the package

The rewrite of this tutorial document with updated contents and more practical examples is available as Guide for Debian Maintainers. Please use this new tutorial as the primary tutorial document.

We should now be ready to build the package.

 6.1. Complete (re)build

In order to perform a complete (re)build of a package properly, you
need to make sure you have installed

 	

the build-essential package,

 	

packages listed in the Build-Depends field (see Section 4.1, “control”), and

 	

packages listed in the Build-Depends-indep field (see Section 4.1, “control”).

Then you issue the following command in the source directory:

$ dpkg-buildpackage -us -uc

This will do everything to make full binary and source packages for you. It
will:

 	

clean the source tree (debian/rules clean)

 	

build the source package (dpkg-source -b)

 	

build the program (debian/rules build)

 	

build binary packages (fakeroot debian/rules binary)

 	

make the .dsc file

 	

make the .changes file, using
dpkg-genchanges

If the build result is satisfactory, sign the .dsc and
.changes files with your private GPG key using the
debsign command. You need to enter your secret pass
phrase, twice.
[62]

For a non-native Debian package, e.g.,
gentoo, you will see the following
files in the parent directory (~/gentoo) after building
packages:

 	

gentoo_0.9.12.orig.tar.gz

This is the original upstream source code tarball, merely renamed to the above so that
it adheres to the Debian standard. Note that this was created initially by the command
dh_make -f ../gentoo-0.9.12.tar.gz.

 	

gentoo_0.9.12-1.dsc

This is a summary of the contents of the source code. The file is generated
from your control file, and is used when unpacking the
source with dpkg-source(1).

 	

gentoo_0.9.12-1.debian.tar.gz

This compressed tarball contains your debian directory
contents. Each and every addition you made to the original source code is
stored as a quilt patch in
debian/patches.

If someone else wants to re-create your package from scratch, they can easily
do so using the above three files. The extraction procedure is trivial: just
copy the three files somewhere else and run dpkg-source -x
gentoo_0.9.12-1.dsc. [63]

 	

gentoo_0.9.12-1_i386.deb

This is your completed binary package. You can use dpkg to
install and remove this just like any other package.

 	

gentoo_0.9.12-1_i386.changes

This file describes all the changes made in the current package revision;
it is used by the Debian FTP archive maintenance programs to install the binary
and source packages. It is partly generated from the
changelog file and the .dsc file.

As you keep working on the package, its behavior will change and new features will
be added. People downloading your package can look at this file and quickly
see what has changed. Debian archive maintenance programs will also post the
contents of this file to the debian-devel-changes@lists.debian.org
mailing list.

The gentoo_0.9.12-1.dsc and
gentoo_0.9.12-1_i386.changes files must be signed using
the debsign command with your private GPG key in the
~/.gnupg/ directory, before uploading them to the Debian
FTP archive. The GPG signature provides the proof that these files are really
yours, using your public GPG key.

The debsign command can be made to sign with your specified secret GPG key ID (good for
sponsoring packages) with the following in the ~/.devscripts file:

DEBSIGN_KEYID=Your_GPG_keyID

The long strings of numbers in the .dsc and
.changes files are SHA1/SHA256 checksums for the files
mentioned. Anyone downloading your files can test them with sha1sum(1) or sha256sum(1) and if the numbers don't match,
they'll know the file is corrupt or has been tampered with.

 6.2. Autobuilder

Debian supports many ports
with the autobuilder
network running buildd daemons on computers
of many different architectures. Although you do not need to do this yourself, you
should be aware of what will happen to your packages. Let's look into roughly
how they rebuild your packages for multiple architectures.
[64]

For Architecture: any packages, the autobuilder system
performs a rebuild. It ensures the installation of

 	

the build-essential package, and

 	

packages listed in the Build-Depends field (see Section 4.1, “control”).

Then it issues the following command in the source directory:

$ dpkg-buildpackage -B

This will do everything to make architecture dependent binary packages on
another architecture. It will:

 	

clean the source tree (debian/rules clean)

 	

build the program (debian/rules build)

 	

build architecture dependent binary packages (fakeroot debian/rules
binary-arch)

 	

sign the source .dsc file, using gpg

 	

create and sign the upload .changes file, using
dpkg-genchanges and gpg

This is why you see your package for other architectures.

Although packages listed in the Build-Depends-Indep field
are required to be installed for our normal packaging work (see
Section 6.1, “Complete (re)build”), they are not required to be installed for the
autobuilder system since it builds only architecture dependent binary packages.
[65] This distinction between normal packaging and autobuilding
procedures is what dictates whether you should record such required
packages in the Build-Depends or
Build-Depends-Indep fields of the
debian/control file (see Section 4.1, “control”).

 6.3. debuild command

You can automate the build activity around executing the dpkg-buildpackage command
package further with the debuild command. See debuild(1).

The debuild command executes the lintian command to make a static check after building the Debian package.
The lintian command can be customized with the following in the ~/.devscripts file:

DEBUILD_DPKG_BUILDPACKAGE_OPTS="-us -uc -I -i"
DEBUILD_LINTIAN_OPTS="-i -I --show-overrides"

Cleaning the source and rebuilding the package from your user account is as simple as:

$ debuild

You can clean the source tree as simply as:

$ debuild -- clean

 6.4. pbuilder package

For a clean room (chroot) build environment to verify the
build dependencies, the pbuilder
package is very useful. [66] This ensures a clean build from the source
under the sid auto-builder for different architectures and
avoids a severity serious FTBFS (Fails To Build From Source) bug which is
always in the RC (release critical) category.
[67]

Let's customize the pbuilder package as
follows:

 	

setting the /var/cache/pbuilder/result directory writable by your user account.

 	

creating a directory, e.g.
/var/cache/pbuilder/hooks,
writable by the user, to place hook scripts in.

 	

configuring ~/.pbuilderrc or
/etc/pbuilderrc to include the following.

AUTO_DEBSIGN=${AUTO_DEBSIGN:-no}
HOOKDIR=/var/cache/pbuilder/hooks

First let's initialize the local pbuilder chroot system as
follows:

$ sudo pbuilder create

If you already have a completed source package, issue the following commands
in the directory where the
foo.orig.tar.gz,
foo.debian.tar.gz, and
foo.dsc files exist to update
the local pbuilder
chroot system and to build binary packages in it:

$ sudo pbuilder --update
$ sudo pbuilder --build foo_version.dsc

The newly built packages without the GPG signatures will be located in
/var/cache/pbuilder/result/ with non-root ownership.

The GPG signatures on the .dsc file and the
.changes file can be generated as:

$ cd /var/cache/pbuilder/result/
$ debsign foo_version_arch.changes

If you have an updated source tree but have not generated the matching
source package, issue the following commands in the source directory where the
debian directory exists, instead:

$ sudo pbuilder --update
$ pdebuild

You can log into its chroot environment with the
pbuilder --login --save-after-login command and configure it
as you wish. This environment can be saved by leaving its shell prompt with
^D (Control-D).

The latest version of the lintian command can be executed in
the chroot environment using the hook script
/var/cache/pbuilder/hooks/B90lintian
configured as follows: [68]

#!/bin/sh
set -e
install_packages() {
 apt-get -y --allow-downgrades install "$@"
 }
install_packages lintian
echo "+++ lintian output +++"
su -c "lintian -i -I --show-overrides /tmp/buildd/*.changes" - pbuilder
use this version if you don't want lintian to fail the build
#su -c "lintian -i -I --show-overrides /tmp/buildd/*.changes; :" - pbuilder
echo "+++ end of lintian output +++"

You need to have access to the latest sid environment to
build packages properly for sid. In practice,
sid may be experiencing issues which makes it undesirable
for you to migrate your whole system. The pbuilder package can help you to cope with this
kind of situation.

You may need to update your stable packages after their
release for stable-proposed-updates,
stable/updates, etc. [69] For such occasions, the fact that you may be running a sid
system is not a good enough excuse for failing to update them promptly. The pbuilder package can help you to access
environments of almost any Debian derivative distribution of the same
architecture.

See http://www.netfort.gr.jp/~dancer/software/pbuilder.html,
pdebuild(1), pbuilderrc(5), and pbuilder(8).

 6.5. git-buildpackage command and similar

If your upstream uses a source code management system (VCS)
[70]
to maintain their code, you should consider using it as well. This makes merging
and cherry-picking upstream patches much easier. There are several specialized
wrapper script packages for Debian package building for each VCS.

 	

git-buildpackage: a suite to help with
Debian packages in Git repositories.

 	

svn-buildpackage: helper programs to
maintain Debian packages with Subversion.

 	

cvs-buildpackage: a set of Debian
package scripts for CVS source trees.

Use of git-buildpackage is becoming quite popular for Debian Developers to manage Debian packages with the Git server on alioth.debian.org. [71] This package offers many commands to automate packaging activities:

 	
 gbp-import-dsc(1): import a previous Debian package to a Git repository.

 	
 gbp-import-orig(1): import a new upstream tar to a Git repository.

 	
 gbp-dch(1): generate the Debian changelog from Git commit messages.

 	
 git-buildpackage(1): build Debian packages from a Git repository.

 	
 git-pbuilder(1): build Debian packages from a Git repository using pbuilder/cowbuilder.

These commands use 3 branches to track packaging activity:

 	
 main for Debian package source tree.

 	
 upstream for upstream source tree.

 	
 pristine-tar for upstream tarball generated by the --pristine-tar option.[72]

You can configure git-buildpackage with ~/.gbp.conf. See gbp.conf(5).
[73]

 6.6. Quick rebuild

With a large package, you may not want to rebuild from scratch every time while
you're tuning details in debian/rules. For testing purposes,
you can make a .deb file without rebuilding the upstream
sources like this[74]:

$ fakeroot debian/rules binary

Or simply do the following to see if it builds or not:

$ fakeroot debian/rules build

Once you are finished with your tuning, remember to rebuild following the
proper procedure. You may not be able to upload correctly if you try to upload
.deb files built this way.

 6.7. Command hierarchy

Here is a quick summary of how many commands to build packages fit together in the command hierarchy. There are many ways to do the same thing.

 	
 debian/rules = maintainer script for the package building

 	
 dpkg-buildpackage = core of the package building tool

 	
 debuild = dpkg-buildpackage + lintian (build under the sanitized environment variables)

 	
 pbuilder = core of the Debian chroot environment tool

 	
 pdebuild = pbuilder + dpkg-buildpackage (build in the chroot)

 	
 cowbuilder = speed up the pbuilder execution

 	
 git-pbuilder = the easy-to-use commandline syntax for pdebuild (used by gbp buildpackage)

 	
 gbp = manage the Debian source under the git repo

 	
 gbp buildpackage = pbuilder + dpkg-buildpackage + gbp

Although use of higher level commands such as gbp buildpackage and pbuilder ensures the perfect package building environment, it is essential to understand how lower level commands such as debian/rules and dpkg-buildpackage are executed under them.

 [62]
This GPG key must be signed by a Debian developer to get connected to the web
of trust and must be registered to the Debian
keyring. This enables your uploaded packages to be accepted to the
Debian archives. See
Creating a new GPG key and
Debian Wiki on Keysigning.

 [63] You can avoid applying
quilt patches in the 3.0 (quilt) source
format at the end of the extraction with the --skip-patches
option. Alternatively, you can run dquilt pop -a after
normal operation.

 [64] The actual autobuilder system involves much more complicated
schemes than the one documented here. Such details are beyond the scope of
this document.

 [65] Unlike under the pbuilder package, the chroot
environment under the sbuild package
used by the autobuilder system does not enforce the use of a minimal
system and may have many leftover packages installed.

 [66] Since the pbuilder package is still evolving, you should
check the actual configuration situation by consulting the latest official
documentation.

 [67] See http://buildd.debian.org/ for more on
Debian package auto-building.

 [68] This assumes
HOOKDIR=/var/cache/pbuilder/hooks. You can find many
examples of hook scripts in the
/usr/share/doc/pbuilder/examples directory.

 [69] There are some
restrictions for such updates of your stable package.

 [70] See Version control systems for more.

 [71] Debian wiki Alioth documents how to use the alioth.debian.org service.

 [72] The --pristine-tar option invokes the pristine-tar command, which can regenerate an exact copy of a pristine upstream tarball using only a small binary delta file and the contents of the tarball that are typically kept in an upstream branch in the VCS.

 [73] Here are some web resources available for advanced audiences.

 	
 Building Debian Packages with git-buildpackage (/usr/share/doc/git-buildpackage/manual-html/gbp.html)

 	
 debian packages in git

 	
 Using Git for Debian Packaging

 	
 git-dpm: Debian packages in Git manager

 [74] Environment variables that are normally
configured to proper values are not set by this method. Never create real
packages to be uploaded using this quick
method.

 Chapter 7. Checking the package for errors

The rewrite of this tutorial document with updated contents and more practical examples is available as Guide for Debian Maintainers. Please use this new tutorial as the primary tutorial document.

There are some techniques you should know for checking a package for errors
before uploading it to the public archives.

It's also a good idea to carry out testing on a machine other than your own. You must watch
closely for any warnings or errors for all the tests described here.

 7.1. Suspicious changes

If you find a new autogenerated patch file such as
debian-changes-* in the
debian/patches directory after building your non-native
Debian package in 3.0 (quilt) format, chances are you
changed some files by accident or the build script modified the upstream
source. If it is your mistake, fix it. If it is caused by the build script,
fix the root cause with dh-autoreconf as in
Section 4.4.3, “Customization of rules file” or work around it with
source/options as in Section 5.24, “source/options”.

 7.2. Verifying a package's installation

You must test your package for whether it installs without problems. The debi(1)
command helps you to test installing all the generated binary packages.

$ sudo debi gentoo_0.9.12-1_i386.changes

To prevent installation problems on different systems, you must make
sure that there are no filenames conflicting with other existing packages,
using the
Contents-i386 file downloaded
from the Debian archive.
The apt-file command may be handy for this task. If there
are collisions, please take action to avoid this real problem, whether by
renaming the file, moving a common file to a separate package that
multiple packages can depend on, using the alternatives mechanism (see
update-alternatives(1)) in coordination with the
maintainers of other affected packages, or declaring a
Conflicts relationship in the
debian/control file.

 7.3. Verifying a package's maintainer scripts

All maintainer scripts (that is,
preinst, prerm,
postinst, and postrm files) are
hard to write correctly unless they are auto-generated by the
debhelper programs. So do not use them if you are
a novice maintainer (see Section 5.18, “{pre,post}{inst,rm}”).

If the package makes use of these non-trivial maintainer scripts, be sure to test not only for install but also for remove,
purge, and upgrade processes. Many maintainer script bugs show up
when packages are removed or purged. Use the dpkg command
as follows to test them:

$ sudo dpkg -r gentoo
$ sudo dpkg -P gentoo
$ sudo dpkg -i gentoo_version-revision_i386.deb

This should be done with sequences such as the following:

 	

install the previous version (if needed).

 	

upgrade it from the previous version.

 	

downgrade it back to the previous version (optional).

 	

purge it.

 	

install the new package.

 	

remove it.

 	

install it again.

 	

purge it.

If this is your first package, you should create dummy packages with different
versions to test your package in advance to prevent future problems.

Bear in mind that if your package has previously been released in Debian,
people will often be upgrading to your package from the version that was in the
last Debian release. Remember to test upgrades from that version too.

Although downgrading is not officially supported, supporting it is a
friendly gesture.

 7.4. Using lintian

Run lintian(1) on your .changes
file. The lintian command runs many test scripts to check
for many common packaging errors. [75]

$ lintian -i -I --show-overrides gentoo_0.9.12-1_i386.changes

Of course, replace the filename with the name of the
.changes file generated for your package. The output of
the lintian command uses the following flags:

 	

E: for error; a sure policy violation or packaging error.

 	

W: for warning; a possible policy violation or packaging
error.

 	

I: for info; information on certain aspects of packaging.

 	

N: for note; a detailed message to help your debugging.

 	

O: for overridden; a message overridden by the
lintian-overrides files but displayed by the
--show-overrides option.

When you see warnings, tune the package to avoid them or verify that the warnings are
spurious. If spurious, set up lintian-overrides files as
described in Section 5.14, “{package.,source/}lintian-overrides”.

Note that you can build the package with dpkg-buildpackage
and run lintian on it in one command, if you use debuild(1)
or pdebuild(1).

 7.5. The debc command

You can list files in the binary Debian package with the debc(1)
command.

$ debc package.changes

 7.6. The debdiff command

You can compare file contents in two source Debian packages with the
debdiff(1) command.

$ debdiff old-package.dsc new-package.dsc

You can also compare file lists in two sets of binary Debian packages with the
debdiff(1) command.

$ debdiff old-package.changes new-package.changes

These are useful to identify what has been changed in the source packages
and to check for inadvertent changes made when updating binary
packages, such as unintentionally misplacing or removing files.

 7.7. The interdiff command

You can compare two diff.gz files with the interdiff(1) command. This is useful for verifying that no inadvertent
changes were made to the source by the maintainer when updating packages in the
old 1.0 source format.

$ interdiff -z old-package.diff.gz new-package.diff.gz

The new 3.0 source format stores changes in multiple patch
files as described in Section 5.25, “patches/*”. You can trace changes of each
debian/patches/* file using interdiff, too.

 7.8. The mc command

Many of these file inspection operations can be made into an intuitive process
by using a file manager like mc(1) which will let you browse not only the
contents of *.deb package files but also
*.udeb, *.debian.tar.gz,
*.diff.gz, and *.orig.tar.gz files.

Be on the lookout for extra unneeded files or zero length files, both in the
binary and source package. Often cruft doesn't get cleaned up properly; adjust
your rules file to compensate for this.

 [75] You do not need to provide
the lintian option -i -I --show-overrides
if you customized /etc/devscripts.conf or
~/.devscripts as described in Section 6.3, “debuild command”.

 Chapter 8. Updating the package

The rewrite of this tutorial document with updated contents and more practical examples is available as Guide for Debian Maintainers. Please use this new tutorial as the primary tutorial document.

After you release a package, you will soon need to update it.

 8.1. New Debian revision

Let's say that a bug report was filed against your package as
#654321, and it describes a problem that you can solve.
Here's what you need to do to create a new Debian revision of the package:

 	

If this is to be recorded as a new patch, do the following:

 	

dquilt new bugname.patch to set
the patch name;

 	

dquilt add buggy-file to declare
the file to be modified;

 	

Correct the problem in the package source for the upstream bug;

 	

dquilt refresh to record it to
bugname.patch;

 	

dquilt header -e to add its description;

 	

If this is to update an existing patch, do the following:

 	

dquilt pop foo.patch to recall
the existing foo.patch;

 	

Correct the problem in the old
foo.patch;

 	

dquilt refresh to update
foo.patch;

 	

dquilt header -e to update its description;

 	

while dquilt push; do dquilt refresh; done to apply all
patches while removing fuzz;

 	

Add a new revision at the top of the Debian changelog
file, for example with dch -i, or explicitly with
dch -v
version-revision
and then insert the comments using your preferred editor. [76]

 	

Include a short description of the bug and the solution in the changelog entry,
followed by Closes: #654321. That way, the bug report will
be automagically closed by the archive maintenance
software the moment your package gets accepted into the Debian archive.

 	

Repeat what you did in the above to fix more bugs while updating the Debian
changelog file with dch as needed.

 	

Repeat what you did in Section 6.1, “Complete (re)build” and Chapter 7, Checking the package for errors.

 	

Once you are satisfied, you should change the distribution value in changelog from
UNRELEASED to the target distribution value
unstable (or even experimental).[77]

 	

Upload the package as in Chapter 9, Uploading the package. The difference is that
this time, the original source archive won't be included, as it hasn't been
changed and it already exists in the Debian archive.

One tricky case can occur when you make a local package, to experiment with
the packaging before uploading the normal version to the official archive,
e.g.,
1.0.1-1.
For smoother upgrades, it is a good idea to create a
changelog entry with a version string such as
1.0.1-1~rc1.
You may unclutter changelog
by consolidating such local change entries into a single entry for the official package.
See Section 2.6, “Package name and version” for the order of version strings.

 8.2. Inspection of the new upstream release

When preparing packages of a new upstream release for the Debian archive, you
must check the new upstream release first.

Start by reading the upstream changelog,
NEWS, and whatever other documentation they may have
released with the new version.

You can then inspect changes between the old and new upstream sources as follows,
watching out for anything suspicious:

$ diff -urN foo-oldversion foo-newversion

Changes to some auto-generated files by Autotools such as
missing, aclocal.m4,
config.guess, config.h.in,
config.sub, configure,
depcomp, install-sh,
ltmain.sh, and Makefile.in may be
ignored. You may delete them before running diff on the
source for inspection.

 8.3. New upstream release

If a package foo is properly packaged
in the newer 3.0 (native) or 3.0 (quilt)
formats, packaging a new upstream version is essentially moving the old
debian directory to the new source. This can be done by
running tar xvzf
/path/to/foo_oldversion.debian.tar.gz
in the new extracted source. [78] Of
course, you need to do some obvious chores:

 	

Create a copy of the upstream source as the
foo_newversion.orig.tar.gz file.

 	

Update the Debian changelog file with dch -v
newversion-1.

 	

Add an entry with New upstream release.

 	

Describe concisely the changes in the new upstream release
that fix reported bugs and close those bugs by adding Closes: #bug_number.

 	

Describe concisely the changes to the new upstream release
by the maintainer that fix reported bugs and close those bugs by adding Closes: #bug_number.

 	

while dquilt push; do dquilt refresh; done to apply all
patches while removing fuzz.

If the patch/merge did not apply cleanly, inspect the situation (clues are left
in .rej files).

 	

If a patch you applied to the source was integrated into the upstream source,

 	

dquilt delete to remove it.

 	

If a patch you applied to the source conflicted with new changes in the
upstream source,

 	

dquilt push -f to apply old patches while forcing rejects as
baz.rej.

 	

Edit the baz file manually to
bring about the intended effect of
baz.rej.

 	

dquilt refresh to update the patch.

 	

Continue as usual with while dquilt push; do dquilt refresh; done.

This process can be automated using the uupdate(1)
command as follows:

$ apt-get source foo
...
dpkg-source: info: extracting foo in foo-oldversion
dpkg-source: info: unpacking foo_oldversion.orig.tar.gz
dpkg-source: info: applying foo_oldversion-1.debian.tar.gz
$ ls -F
foo-oldversion/
foo_oldversion-1.debian.tar.gz
foo_oldversion-1.dsc
foo_oldversion.orig.tar.gz
$ wget http://example.org/foo/foo-newversion.tar.gz
$ cd foo-oldversion
$ uupdate -v newversion ../foo-newversion.tar.gz
$ cd ../foo-newversion
$ while dquilt push; do dquilt refresh; done
$ dch
... document changes made

If you set up a debian/watch file as described in Section 5.21, “watch”, you can skip the wget command. You
simply run uscan(1) in the
foo-oldversion
directory instead of the uupdate command. This will
automagically look for the updated source, download it,
and run the uupdate command. [79]

You can release this updated source by repeating what you did in Section 6.1, “Complete (re)build”, Chapter 7, Checking the package for errors, and Chapter 9, Uploading the package.

 8.4. Updating the packaging style

Updating the package style is not a required activity for the update of a
package. However, doing so lets you use the full capabilities of the modern
debhelper system and the 3.0
source format. [80]

 	

If you need to recreate deleted template files for any reason, you can run
dh_make again in the same Debian package source tree with
the --addmissing option. Then edit them appropriately.

 	

If the package has not been updated to use the debhelper v7+ dh syntax for the
debian/rules file, update it to use dh.
Update the debian/control file accordingly.

 	

If you want to update the rules file created with the
Makefile inclusion mechanism of the Common Debian Build
System (cdbs) to the
dh syntax, see the following to understand its
DEB_* configuration variables.

 	
 local copy of /usr/share/doc/cdbs/cdbs-doc.pdf.gz

 	

 The Common Debian Build System (CDBS), FOSDEM 2009

 	

If you have a 1.0 source package without the
foo.diff.gz file, you can
update it to the newer 3.0 (native) source format by
creating debian/source/format with 3.0
(native). The rest of the debian/* files can just be
copied.

 	

If you have a 1.0 source package with the
foo.diff.gz file, you can
update it to the newer 3.0 (quilt) source format by creating
debian/source/format with 3.0 (quilt).
The rest of the debian/* files can just be copied. Import the
big.diff file generated by the command filterdiff -z -x
'*/debian/*' foo.diff.gz > big.diff
to your quilt system, if needed. [81]

 	

If it was packaged using another patch system such as dpatch, dbs, or cdbs with -p0,
-p1, or -p2, convert it to
quilt using
deb3 at http://bugs.debian.org/581186.

 	

If it was packaged with the dh command with the
--with quilt option or with the
dh_quilt_patch and dh_quilt_unpatch
commands, remove these and make it use the newer 3.0
(quilt) source format.

You should check DEP - Debian Enhancement Proposals and adopt ACCEPTED proposals.

You need to do the other tasks described in Section 8.3, “New upstream release”, too.

 8.5. UTF-8 conversion

If upstream documents are encoded in old encoding schemes, converting them to UTF-8 is a good idea.

 	

Use iconv(1) to convert encodings of plain text files.

iconv -f latin1 -t utf8 foo_in.txt > foo_out.txt

 	

Use w3m(1) to convert from HTML files to UTF-8 plain text files. When you do this, make sure to execute it under UTF-8 locale.

LC_ALL=en_US.UTF-8 w3m -o display_charset=UTF-8 \
 -cols 70 -dump -no-graph -T text/html \
 < foo_in.html > foo_out.txt

 8.6. Reminders for updating packages

Here are a few reminders for updating packages:

 	

Preserve old changelog entries (sounds obvious, but there
have been cases of people typing dch when they should have typed
dch -i.)

 	

Existing Debian changes need to be reevaluated; throw away stuff that upstream
has incorporated (in one form or another) and remember to keep stuff that
hasn't been incorporated by upstream, unless there is a compelling reason not
to.

 	

If any changes were made to the build system (hopefully you'd know from
inspecting upstream changes) then update the debian/rules
and debian/control build dependencies if necessary.

 	

Check the Debian Bug Tracking
System (BTS) to see if someone has provided patches to bugs that are
currently open.

 	

Check the contents of the .changes file to make sure you
are uploading to the correct distribution, the proper bug closures are listed
in the Closes field, the Maintainer and
Changed-By fields match, the file is GPG-signed, etc.

 [76] To
get the date in the required format, use LANG=C date -R.

 [77] If you
use the dch -r command to make this last change, please
make sure to save the changelog file explicitly by the
editor.

 [78] If a package foo is packaged in the
old 1.0 format, this can be done by running zcat
/path/to/foo_oldversion.diff.gz|patch
-p1 in the new extracted source, instead.

 [79] If the
uscan command downloads the updated source but it does not
run the uupdate command, you should correct the
debian/watch file to have debian
uupdate at the end of the URL.

 [80] If your sponsor or other
maintainers object to updating the existing packaging style, don't bother
arguing. There are more important things to do.

 [81]
You can split big.diff into many small incremental patches
using the splitdiff command.

 Chapter 9. Uploading the package

The rewrite of this tutorial document with updated contents and more practical examples is available as Guide for Debian Maintainers. Please use this new tutorial as the primary tutorial document.

Now that you have tested your new package thoroughly, you want to release it to
a public archive to share it.

 9.1. Uploading to the Debian archive

Once you become an official developer,
[82]
you can upload the package to the Debian archive.
[83]
You can do this manually, but it's easier to use the existing
automated tools, like dupload(1) or dput(1).
We'll describe how it's done with dupload. [84]

First you have to set up dupload's config file. You can
either edit the system-wide /etc/dupload.conf file, or
have your own ~/.dupload.conf file override the few things
you want to change.

You can read the dupload.conf(5) manual page to understand what each of
these options means.

The $default_host option determines which of the upload
queues will be used by default. anonymous-ftp-master is the
primary one, but it's possible that you will want to use another one.
[85]

While connected to the Internet, you can upload your package as follows:

$ dupload gentoo_0.9.12-1_i386.changes

dupload checks that the SHA1/SHA256 file checksums
match those listed in the .changes file. If they do not
match, it will warn you to rebuild it as described in Section 6.1, “Complete (re)build” so it can be properly uploaded.

If you encounter an upload problem at ftp://ftp.upload.debian.org/pub/UploadQueue/, you can fix this
by manually uploading a GPG-signed *.commands file to there
with ftp. [86] For example, using
hello.commands:

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1
Uploader: Foo Bar <Foo.Bar@example.org>
Commands:
 rm hello_1.0-1_i386.deb
 mv hello_1.0-1.dsx hello_1.0-1.dsc
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.10 (GNU/Linux)

[...]
-----END PGP SIGNATURE-----

 9.2. Including orig.tar.gz for upload

When you first upload the package to the archive, you need to include the
original orig.tar.gz source, too. If the Debian revision
number of this package is neither 1 nor
0, you must provide the dpkg-buildpackage
option -sa.

For the dpkg-buildpackage command:

$ dpkg-buildpackage -sa

For the debuild command:

$ debuild -sa

For the pdebuild command:

$ pdebuild --debbuildopts -sa

On the other hand, the -sd option will force the exclusion
of the original orig.tar.gz source.

 9.3. Skipped uploads

If you created multiple entries in debian/changelog by
skipping uploads, you must create a proper *_.changes file
that includes all changes since the last upload.
This can be done by specifying the dpkg-buildpackage option
-v with the version, e.g.,
1.2.

For the dpkg-buildpackage command:

$ dpkg-buildpackage -v1.2

For the debuild command:

$ debuild -v1.2

For the pdebuild command:

$ pdebuild --debbuildopts "-v1.2"

 [82]
See Section 1.1, “Social dynamics of Debian”.

 [83]
There are publicly accessible archives such as http://mentors.debian.net/
which work almost the same way as the Debian archive and provide an upload area for
non-DDs. You can set up an equivalent archive by yourself using the tools
listed at http://wiki.debian.org/HowToSetupADebianRepository. So this section is useful for
non-DDs, too.

 [84]
The dput package seems to come with
more features and to be becoming more popular than the dupload package. It uses the
file /etc/dput for its global configuration and the
file ~/.dput.cf for per-user configuration. It supports
Ubuntu-related services out-of-the-box, too.

 [85] See Debian Developer's Reference 5.6, "Uploading a package".

 [86] See ftp://ftp.upload.debian.org/pub/UploadQueue/README. Alternatively, you can
use the dcut command from the dput package.

 Appendix A. Advanced packaging

The rewrite of this tutorial document with updated contents and more practical examples is available as Guide for Debian Maintainers. Please use this new tutorial as the primary tutorial document.

Here are some hints and pointers for advanced packaging topics that you are most likely to deal with.
You are strongly advised to read all the references suggested here.

You may need to manually edit the packaging template files generated by the dh_make command to address topics covered in this chapter. The newer debmake command should address these topics better.

 A.1. Shared libraries

Before packaging shared libraries, you should read the following primary references in detail:

 	

Debian Policy Manual, 8 "Shared libraries"

 	

Debian Policy Manual, 9.1.1 "File System Structure"

 	

Debian Policy Manual, 10.2 "Libraries"

Here are some oversimplified hints for you to get started:

 	

Shared libraries are ELF object files containing compiled code.

 	

Shared libraries are distributed as *.so files. (Neither *.a files nor *.la files)

 	

Shared libraries are mainly used to share common codes among multiple executables with the ld mechanism.

 	

Shared libraries are sometimes used to provide multiple plugins to an executable with the dlopen mechanism.

 	

Shared libraries export symbols, which represent compiled objects such as variables, functions, and classes; and enable access to them from the linked executables.

 	

The SONAME of a shared library libfoo.so.1: objdump -p libfoo.so.1 | grep SONAME
[87]

 	

The SONAME of a shared library usually matches the library file name (but not always).

 	

The SONAME of shared libraries linked to /usr/bin/foo: objdump -p /usr/bin/foo | grep NEEDED
[88]

 	

libfoo1: the library package for the shared library libfoo.so.1 with the SONAME ABI version 1.[89]

 	

The package maintainer scripts of the library package must call ldconfig under the specific circumstances to create the necessary symbolic links for the SONAME.[90]

 	

libfoo1-dbg: the debugging symbols package that contains the debugging symbols for the shared library package libfoo1.

 	

libfoo-dev: the development package that contains the header files etc. for the shared library libfoo.so.1.[91]

 	

Debian packages should not contain *.la Libtool archive files in general.[92]

 	

Debian packages should not use RPATH in general.[93]

 	

Although it is somewhat outdated and is only a secondary reference, Debian Library Packaging Guide may still be useful.

 A.2. Managing debian/package.symbols

When you package a shared library, you should create a debian/package.symbols file to manage the minimal version associated with each symbol for backward-compatible ABI changes under the same SONAME of the library for the same shared library package name.[94] You should read the following primary references in detail:

 	

Debian Policy Manual, 8.6.3 "The symbols system"[95]

 	

dh_makeshlibs(1)

 	

dpkg-gensymbols(1)

 	

dpkg-shlibdeps(1)

 	

deb-symbols(5)

Here is a rough example of how to create the libfoo1 package from the upstream version 1.3 with the proper debian/libfoo1.symbols file:

 	

Prepare the skeleton debianized source tree using the upstream libfoo-1.3.tar.gz file.

 	

If this is the first packaging of the libfoo1 package, create the debian/libfoo1.symbols file with empty content.

 	

If the previous upstream version 1.2 was packaged as the libfoo1 package with the proper debian/libfoo1.symbols in its source package, use it again.

 	

If the previous upstream version 1.2 was not packaged with debian/libfoo1.symbols, create it as the symbols file from all available binary packages of the same shared library package name containing the same SONAME of the library, for example, versions 1.1-1 and 1.2-1.
[96]

$ dpkg-deb -x libfoo1_1.1-1.deb libfoo1_1.1-1
$ dpkg-deb -x libfoo1_1.2-1.deb libfoo1_1.2-1
$: > symbols
$ dpkg-gensymbols -v1.1 -plibfoo1 -Plibfoo1_1.1-1 -Osymbols
$ dpkg-gensymbols -v1.2 -plibfoo1 -Plibfoo1_1.2-1 -Osymbols

 	

Make trial builds of the source tree with tools such as debuild and pdebuild. (If this fails due to missing symbols etc., there were some backward-incompatible ABI changes that require you to bump the shared library package name to something like libfoo1a and you should start over again.)

$ cd libfoo-1.3
$ debuild
...
dpkg-gensymbols: warning: some new symbols appeared in the symbols file: ...
 see diff output below
--- debian/libfoo1.symbols (libfoo1_1.3-1_amd64)
+++ dpkg-gensymbolsFE5gzx 2012-11-11 02:24:53.609667389 +0900
@@ -127,6 +127,7 @@
 foo_get_name@Base 1.1
 foo_get_longname@Base 1.2
 foo_get_type@Base 1.1
+ foo_get_longtype@Base 1.3-1
 foo_get_symbol@Base 1.1
 foo_get_rank@Base 1.1
 foo_new@Base 1.1
...

 	

If you see the diff printed by the dpkg-gensymbols as above, extract the proper updated symbols file from the generated binary package of the shared library.
[97]

$ cd ..
$ dpkg-deb -R libfoo1_1.3_amd64.deb libfoo1-tmp
$ sed -e 's/1\.3-1/1\.3/' libfoo1-tmp/DEBIAN/symbols \
 >libfoo-1.3/debian/libfoo1.symbols

 	

Build release packages with tools such as debuild and pdebuild.

$ cd libfoo-1.3
$ debuild -- clean
$ debuild
...

In addition to the above examples, we need to check the ABI compatibility further and bump versions for some symbols manually as needed.
[98]

Although it is only a secondary reference, Debian wiki UsingSymbolsFiles and its linked web pages may be useful.

 A.3. Multiarch

The multiarch feature introduced to Debian wheezy integrates support for cross-architecture installation of binary packages (particularly i386<->amd64, but also other combinations) in dpkg and apt. You should read the following references in detail:

 	

Ubuntu wiki MultiarchSpec (upstream)

 	

Debian wiki Multiarch/Implementation (Debian situation)

It uses the triplet such as i386-linux-gnu and x86_64-linux-gnu for the install path of shared libraries. The actual triplet path is dynamically set into the $(DEB_HOST_MULTIARCH) variable using the dpkg-architecture(1) command for each binary package build. For example, the path to install multiarch libraries are changed as follows:[99]

 	Old path
 	i386 multiarch path
 	amd64 multiarch path

 	
 /lib/

 	
 /lib/i386-linux-gnu/

 	
 /lib/x86_64-linux-gnu/

 	
 /usr/lib/

 	
 /usr/lib/i386-linux-gnu/

 	
 /usr/lib/x86_64-linux-gnu/

Here are some typical multiarch package split scenario examples for the following:

 	

a library source libfoo-1.tar.gz

 	

a tool source bar-1.tar.gz written in a compiled language

 	

a tool source baz-1.tar.gz written in an interpreted language

 	Package
 	Architecture:
 	Multi-Arch:
 	Package content

 	
 libfoo1

 	any
 	same
 	
the shared library, co-installable

 	
 libfoo1-dbg

 	any
 	same
 	
the shared library debug symbols, co-installable

 	
 libfoo-dev

 	any
 	same
 	
the shared library header files etc., co-installable

 	
 libfoo-tools

 	any
 	foreign
 	
the run-time support programs, not co-installable

 	
 libfoo-doc

 	all
 	foreign
 	
the shared library documentation files

 	

 bar

 	any
 	foreign
 	
the compiled program files, not co-installable

 	
 bar-doc

 	all
 	foreign
 	
the documentation files for the program

 	

 baz

 	all
 	foreign
 	
the interpreted program files

Please note that the development package should contain a symlink for the associated shared library without a version number. E.g.: /usr/lib/x86_64-linux-gnu/libfoo.so -> libfoo.so.1

 A.4. Building a shared library package

You can build a Debian library package enabling multiarch support using dh(1) as follows:

 	

Update debian/control.

 	

Add Build-Depends: debhelper (>=10) for the source package section.

 	

Add Pre-Depends: ${misc:Pre-Depends} for each shared library binary package.

 	

Add Multi-Arch: stanza for each binary package section.

 	

Set debian/compat to "10".

 	

Adjust the path from the normal /usr/lib/ to the multiarch /usr/lib/$(DEB_HOST_MULTIARCH)/ for all packaging scripts.

 	

Call DEB_HOST_MULTIARCH ?= $(shell dpkg-architecture -qDEB_HOST_MULTIARCH) in debian/rules to set the DEB_HOST_MULTIARCH variable first.

 	

Replace /usr/lib/ with /usr/lib/$(DEB_HOST_MULTIARCH)/ in debian/rules.

 	

If ./configure is used in part of the override_dh_auto_configure target in debian/rules, make sure to replace it with dh_auto_configure -- .
[100]

 	

Replace all occurrences of /usr/lib/ with /usr/lib/*/ in debian/foo.install files.

 	

Generate files like debian/foo.links from debian/foo.links.in dynamically by adding a script to the override_dh_auto_configure target in debian/rules.

override_dh_auto_configure:
 dh_auto_configure
 sed 's/@DEB_HOST_MULTIARCH@/$(DEB_HOST_MULTIARCH)/g' \
 debian/foo.links.in > debian/foo.links

Please make sure to verify that the shared library package contains only the expected files, and that your -dev package still works.

All files installed simultaneously as the multiarch package to the same file path should have exactly the same file content. You must be careful of differences generated by the data byte order and by the compression algorithm.

 A.5. Native Debian package

If a package is maintained only for Debian or possibly only for local use, its source may contain all the debian/* files in it. There are 2 ways to package it.

You can make the upstream tarball by excluding the debian/* files and package it as a non-native Debian package as in Section 2.1, “Debian package building workflow”. This is the normal way, which some people encourage using.

The alternative is the workflow of the native Debian package.

 	

Create a native Debian source package in the 3.0 (native)
format using a single compressed tar file in which all files are included.

 	
 package_version.tar.gz

 	
 package_version.dsc

 	

Build Debian binary packages from the native Debian source package.

 	
 package_version_arch.deb

For example, if you have source files in ~/mypackage-1.0
without the debian/* files, you can create a native Debian
package by issuing the dh_make command as follows:

$ cd ~/mypackage-1.0
$ dh_make --native

Then the debian directory and its contents are created
just like in Section 2.8, “Initial non-native Debian package”. This does not create a tarball,
since this is a native Debian package. But that is the only difference.
The rest of the packaging activities are practically the same.

After execution of the dpkg-buildpackage command, you will see the following files in the parent directory:

 	

mypackage_1.0.tar.gz

This is the source code tarball created from the
mypackage-1.0 directory by the
dpkg-source command. (Its suffix is not orig.tar.gz.)

 	

mypackage_1.0.dsc

This is a summary of the contents of the source code, as in the non-native
Debian package. (There is no Debian revision.)

 	

mypackage_1.0_i386.deb

This is your completed binary package, as in the non-native Debian package.
(There is no Debian revision.)

 	

mypackage_1.0_i386.changes

This file describes all the changes made in the current package version as in
the non-native Debian package. (There is no Debian revision.)

 [87]
Alternatively: readelf -d libfoo.so.1 | grep SONAME

 [88]
Alternatively: readelf -d libfoo.so.1 | grep NEEDED

 [89] See Debian Policy Manual, 8.1 "Run-time shared libraries".

 [90] See Debian Policy Manual, 8.1.1 "ldconfig".

 [91] See Debian Policy Manual, 8.3 "Static libraries" and Debian Policy Manual, 8.4 "Development files".

 [92] See Debian wiki ReleaseGoals/LAFileRemoval.

 [93] See Debian wiki RpathIssue.

 [94] Backward-incompatible ABI changes normally require you to update the SONAME of the library and the shared library package name to new ones.

 [95] For C++ libraries and other cases where tracking individual symbols is too difficult, follow Debian Policy Manual, 8.6.4 "The shlibs system", instead.

 [96]
All previous versions of Debian packages are available at http://snapshot.debian.org/. The Debian revision is dropped from the version to make it easier to backport the package: 1.1 << 1.1-1~bpo70+1 << 1.1-1 and 1.2 << 1.2-1~bpo70+1 << 1.2-1

 [97]
The Debian revision is dropped from the version to make it easier to backport the package: 1.3 << 1.3-1~bpo70+1 << 1.3-1

 [98]
See Debian Policy Manual, 8.6.2 "Shared library ABI changes".

 [99] Old special purpose library paths such as /lib32/ and /lib64/ are not used anymore.

 [100]
Alternatively, you can add --libdir=\$${prefix}/lib/$(DEB_HOST_MULTIARCH) and --libexecdir=\$${prefix}/lib/$(DEB_HOST_MULTIARCH) arguments to ./configure. Please note that --libexecdir specifies the default path to install executable programs run by other programs rather than by users. Its Autotools default is /usr/libexec/ but its Debian default is /usr/lib/.

