Debian GNU/Linux — instalační příručka

14. října 2021
Tento manuál je volně šířitelný; můžete ho distribuovat nebo pozměnit za podmínek uvedených v licenci GNU General Public Licence. Text licence naleznete v F.
Obsah

1 **Vítejte v Debianu**
 1.1 Co je Debian? .. 1
 1.2 Co je GNU/Linux? .. 1
 1.3 Co je Debian GNU/Linux? ... 2
 1.4 Získání Debianu ... 3
 1.5 Získání nejnovější verze této příručky 3
 1.6 Organizace příručky .. 3
 1.7 O licenčních ujednáních ... 3

2 **Požadavky na počítač**
 2.1 Podporovaná zařízení .. 5
 2.1.1 Podporované počítačové architektury 5
 2.1.2 Tři hlavní ARM porty .. 6
 2.1.3 Různé návrhy ARM procesorů a náročnost podpory 6
 2.1.4 Platformy podporované v Debian/arm64 6
 2.1.4.1 Ostatní platformy .. 6
 2.1.5 Platformy a zařízení dále nepodporované v Debian/armel 7
 2.1.6 Viceprocesorové systémy ... 7
 2.1.7 Podpora grafických karet ... 7
 2.1.8 Hardware pro připojení k sítě 7
 2.1.9 Ostatní zařízení .. 7
 2.2 Ovladače vyžadující firmware ... 7
 2.3 Hardware určený pro GNU/Linux 8
 2.3.1 Vyvarujte se uzavřených technologií 8
 2.4 Instalační média .. 8
 2.4.1 CD-ROM/DVD-ROM/BD-ROM 8
 2.4.2 USB Memory Stick .. 9
 2.4.3 Síť ... 9
 2.4.4 Pevný disk .. 9
 2.4.5 Un*x nebo systém GNU ... 9
 2.4.6 Podporovaná datová média 9
 2.5 Požadavky na operační paměť a diskový prostor 9

3 **Než začnete s instalací**
 3.1 Přehled instalačního procesu .. 10
 3.2 Zálohujte si svá data! ... 11
 3.3 Dále budete potřebovat .. 11
 3.3.1 Dokumentace .. 11
 3.3.1.1 Instalační manuál ... 11
 3.3.1.2 Domumentace k hardwaru 11
 3.3.2 Hledání zdrojů informací o hardwaru 11
 3.3.3 Hardwarová kompatibilita 12
 3.3.3.1 Testování kompatibility hardware pomocí Live systému ... 12
 3.3.4 Nastavení sítě ... 13
 3.4 Splnění minimálních hardwarových požadavků 13
 3.5 Předrozdělení disku pro více operačních systémů 14
 3.6 Než začnete s instalací .. 14
 3.6.1 Výběr zaváděcího zařízení 14
 3.6.2 ARM firmware ... 14
 3.6.3 Nastavení ethernetové MAC adresy v U-Bootu 15
 3.6.4 Problemy s přesunem jádéra/initrd/stromu zařízení v U-Bootu ... 15
4 Získání instalačních médií
 4.1 Oficiální sada CD/DVD-ROM 16
 4.2 Stažení souborů ze zrcadel Debianu 16
 4.2.1 Kde se nalézají instalační obrazy? 16
 4.3 Příprava souborů pro zavedení z USB zařízení 16
 4.3.1 Příprava USB klíčenky s hybridním CD/DVD obrazem 17
 4.3.2 Ruční kopírování souborů 18
 4.3.3 Ruční kopírování souborů — pružná cesta 18
 4.4 Příprava souborů pro zavedení ze sítě pomocí TFTP 18
 4.4.1 Nastavení RARP serveru 18
 4.4.2 Nastavení DHCP serveru 18
 4.4.3 Nastavení BOOTP serveru 19
 4.4.4 Povolení TFTP serveru 19
 4.4.5 Přesun TFTP obrazů na místo 20
 4.5 Automatická Instalace 20
 4.5.1 debian-installer 20

5 Zavedení instaláčního systému 21
 5.1 Zavedení instalátoru na 64-bit ARM 21
 5.1.1 Nastavení konzoly 21
 5.1.2 Instalace na Juno 21
 5.1.3 Instalace na Applied Micro Mustang 21
 5.1.4 Zavedení z TFTP 22
 5.1.4.1 Zavedení z TFTP přes U-Boot 22
 5.1.5 Zavedení z USB klíčenky přes UEFI 23
 5.2 Zpřístupnění .. 23
 5.2.1 Uživatelské rozhraní instaláčního systému 23
 5.2.2 Zařízení připojená rovnou na sběrnici 23
 5.2.3 Kontrastní téma 23
 5.2.4 Změna velikosti písm a 24
 5.2.5 Záchranný režim, expertní a automatizované instalace 24
 5.2.6 Zpřístupnění v nainstalovaném systému 24
 5.3 Zaváděcí parametry 24
 5.3.1 Zaváděcí konzole 24
 5.3.2 Parametry instaláčního programu 24
 5.3.3 Použití zaváděcích parametrů pro zodpovězení otázek 26
 5.3.4 Předávání parametrů jaderným modulům 27
 5.3.5 Zapsání jaderných modulů na černou listinu 27
 5.4 Problémy s instaláčním systémem 27
 5.4.1 Spolehlivost CD 27
 5.4.1.1 Běžné problémy 28
 5.4.1.2 Jak zjistit o problému co nejvíce (a možná jej vyřešit) 28
 5.4.2 Zaváděcí konfigurace 29
 5.4.3 Význam hlášek při zavádění jádra 29
 5.4.4 Hlášení problémů s instalací 29
 5.4.5 Pošlete nám zprávu o instalaci 29

6 Používáme instalační program Debianu 31
 6.1 Základní principy 31
 6.1.1 Používání grafického instalátoru 31
 6.2 Úvod do komponent 32
 6.3 Použití jednotlivých komponent 33
 6.3.1 Nastavení instaláčního programu a rozpoznání hardwaru 33
 6.3.1.1 Kontrola dostupné paměti / nízkopaměťový režim 33
 6.3.1.2 Výběr místního prostředí 34
 6.3.1.3 Výběr klávesnice 34
 6.3.1.4 Hledání instaláčního ISO obrazu 34
 6.3.1.5 Nastavení sítě 35
 6.3.1.5.1 Automatické nastavení sítě 35
D.3.4.1	Vytvoření souborů zařízení	85
D.3.4.2	Připojení oblastí	85
D.3.4.3	Nastavení časového pásma	86
D.3.4.4	Nastavení sítě	86
D.3.4.5	Nastavení APT	87
D.3.4.6	Nastavení místního prostředí a klávesnice	87
D.3.5	Instalace jádra	88
D.3.6	Nastavení zavaděče	88
D.3.7	Vzdálený přístup: Instalace SSH a nastavení přístupu	88
D.3.8	Závěrečné kroky	88
D.4	Jak nainstalovat Debian GNU/Linux pomocí PPP přes Ethernet (PPPoE)	89

E Administrativa

E.1	O tomto dokumentu	90
E.2	Jak přispět k tomuto návodu	90
E.3	Hlavní spoluautoři	90
E.4	Český překlad	91
E.5	Ochranné známky	91

F Český překlad GNU General Public License

F.1	Preambule	94
F.2	GNU GENERAL PUBLIC LICENSE	94
F.3	Jak uplatnit tato ustanovení na vaše nové programy	96
Seznam tabulek

3 Než začnete s instalací
 3.1 Hardwarové informace užitečné pro instalaci ... 12
 3.2 Doporučené minimální požadavky ... 13
Abstrakt
Dokument obsahuje návod na instalaci systému Debian GNU/Linux 10 (kódové označení „buster“), pro počítače 64-bit ARM („arm64“). Kromě návodu zde naleznete odkazy na další dokumentaci, která vám pomůže s detailnějším nastavením a vyladěním nového systému.

Varování
Tento překlad instalační příručky není aktuální a momentálně na něm nikdo nepracuje. Při čtení tedy mějte na paměti, že může obsahovat zastaralé nebo mylné informace. Jste-li na pochybách, konzultujte anglickou verzi. Můžete-li nám pomoci s překladem, kontaktujte prosím debian-boot@lists.debian.org nebo českou překladatelskou diskusní skupinu debian-l10n-czech. Děkujeme.
Instalace systému Debian GNU/Linux 10 na architektuře arm64

Jsme potěšeni, že jste se rozhodli vyzkoušet právě Debian. Poznáte, že je mezi distribucemi operačních systémů zcela výjimečný. Debian GNU/Linux přináší kvalitní svobodný software z celého světa a spojuje jej do koherentního celku. Věříme, že zjistíte, že i zde platí pravidlo synergie: přínos softwaru v distribuci Debian je mnohem vyšší než celkový přínos samostatných programů.

Chápeme, že mnoho čtenářů bude chtít přeskočit tuto příručku a začít rovnou s instalací (a instalační program se snaží, aby to bylo možné). Pokud tedy nemáte čas číst celou instalační příručku, přečtěte si alespoň krátký dokument nazvaný „Jak na instalaci“, který vás provede základní instalací. Pro případ, že se něco pokazí, nebo pro popis složitějších technik, v něm naleznete odkazy do této instalační příručky. Krátký dokument se nalézá v A.

Ve světle řečeného doufáme, že si naleznete čas přečíst většinu této příručky, protože získáte nejen zajímavé informace, ale také budete mít z instalace lepší zážitek.
Kapitola 1

Vítejte v Debianu

V této kapitole se stručně seznámité s historií projektu Debian a s distribucí Debian GNU/Linux. Pokud jste nedočkaví a chcete přejít rovnou k instalaci, přeskočte klidně na následující kapitolu.

1.1 Co je Debian?

Debian je výhradně dobrovolnická organizace venující se vývoji svobodného softwaru a šíření myšlenek Free Software Foundation. Debian vznikl v roce 1993, když se Ian Murdock rozhodl vytvořit kompletní a jednotnou softwarovou distribuci založenou na relativně novém jádře Linux. Ian rozeslal otevřenou výzvu softwarovým vývojářům, kteří by chtěli k projektu přispívat. Relativně malá skupina zasvěcených nadšenců, původně financovaná Free Software Foundation a ovlivněna filosofií GNU, se během let rozrostla do organizace sestávající z asi 1000 vývojářů.

Vývojáři jsou zapojeni do mnoha aktivit zahrnujících správu služeb WWW a FTP, vytváření grafického designu, právní analýzy softwarových licencí, psaní dokumentace a samořečně správu softwarových balíků. V zájmu sdělování své filosofie a přilákání vývojářů, kteří věří tomu, co Debian reprezentuje, jsme publikovali množství dokumentů, které vysvětlují naše hodnoty a slouží jako návody těm, kteří se chcí stát debianími vývojáři.

• Novým vývojářem se může stát kdokoli, kdo souhlasí se závazky plynoucími z Debian Social Contract. Každý vývojář může k distribuci připojit další softwarový balík za předpokladu, že program je podle našich kritérií volně šiřitelný a balík splňuje naše standardy kvality.

• Dokument Debian Free Software Guidelines je jasný a výstižný souhrn kritérií, která Debian klade na svobodný software. Tento dokument má ve světě svobodného softwaru velký vliv a je základem pro The Open Source Definition.

• Debian má rozsáhlé specifikace standardů kvality obsažené v Debian Policy Manual. Dokument určuje podmínky, které musí splňovat každý balík v naší distribuci.

Vývojáři Debianu jsou rovněž zainteresováni v řadě dalších projektů, z nichž některé úzce souvisí přímo s Debianem, jiné se dotýkají celé linuxové komunity. Například:

• Přispívání do Linux Standard Base (LSB). Projekt LSB se zaměřuje na standardizaci základního systému GNU/Linuxu, což umožní vývojářům softwaru a hardwaru třetích stran vyvíjet pro GNU/Linux takové programy a zařízení, které budou fungovat v Linuxu obecně na ne jen v konkrétních vybraných distribucích.

• Projekt Filesystem Hierarchy Standard (FHS) se snaží standardizovat umístění souborů v linuxovém systému. Softwaroví vývojáři se tak budou moci plně koncentrovat na vývoj svých programů a nebudou se muset dále starat o to, zda jejich balík bude fungovat na jiné distribuci GNU/Linuxu.

• Debian Jr. je interní projekt Debianu zaměřený především na naše nejmenší uživatele. Pokud se chcete o Debianu dozvědět víc, podívejte se na Debian FAQ.

1.2 Co je GNU/Linux?

Linux je operační systém, což je skupina programů, které vám mimo jiné umožňují komunikovat s počítačem a spouštět další programy.
KAPITOLA 1. VÍTEJTE V DEBIANU

1.3. CO JE DEBIAN GNU/Linux?

Operační systém se skládá z řady základních programů, které potřebuje každý počítač, aby byl vůbec schopen pracovat s různými periferiemi (např. pracovat s daty na dischách a páskách, obsluhovat tiskárny, přidělovat paměť,...), komunikovat s uživatelem a spouštět programy. Nejdůležitější částí operačního systému je jádro, což je v systému GNU/Linux právě Linux. Zbytek systému okolo jádra je tvořen nejrůznějšími programy, z nichž spousta byla napsána v rámci projektu GNU. Protože jádro samotné netvoří funkční operační systém, preferujeme pro označení takového systému termín „GNU/Linux“. (Lidé obvykle říkají „Linux“, ale mají tam na mysli GNU/Linux.)

Linux byl od počátku navržen jako operační systém unixového typu s podporou současně práce více uživatelů, kteří mohou mít najednou spuštěno několik programů (multitasking). Na rozdíl od některých jiných operačních systémů Linux nikdo nevněstí a velkou měrou se na jeho vývoji podílí neplacení dobrovolníci.

Počátky toho, co se později stalo GNU/Linuxem, sahají do roku 1984, když Free Software Foundation zahájila vývoj svobodného operačního systému podobného Unixu nazvaného GNU. Projekt GNU vytvořil úplnou sadu svobodných softwarových nástrojů použitelných s operačním systémem Unix™ a systémy Unix podobnými, jako je třeba Linux. Tyto nástroje umožňují uživateli provádět celou škálu úkolů, od samostatného překládání programů až po zábavné programování a překlad programů.

Přestože k vývoji Linuxu přispělo mnoho skupin i jednotlivců, největším přispěvatelem je stále Free Software Foundation (FSF), která nejen že vytvořila většinu nástrojů používaných v Linuxu, ale také dala vzniknout filozofii a komunitě vývojářů, bez kterých by se Linux nikdy nerozšířil.

Debian GNU/Linux právě Linux. Distribuci Debian tvoří Kombinace filosofie a metodologie Debianu spolu s nástroji GNU, jádrem Linux a dalším svobodným softwarem.

1.3.1 Co je Debian GNU/Linux?

Debian GNU/Linux byl první Linuxovou distribucí, která obsahovala systém pro správu balíků, čímž se stala instalační programy triviální záležitostí. Debian byl také první Linuxovou distribucí, kterou je možné aktualizovat bez přeinstalování celého systému.

Debian byl například první Linuxovou distribucí, která obsahovala systém pro správu balíků, čímž se stala instalace programů triviální záležitostí. Debian byl také první Linuxovou distribucí, kterou je možné aktualizovat bez přeinstalování celého systému.

Debian byl například první Linuxovou distribucí, která obsahovala systém pro správu balíků, čímž se stala instalace programů triviální záležitostí. Debian byl také první Linuxovou distribucí, kterou je možné aktualizovat bez přeinstalování celého systému.

Debian byl například první Linuxovou distribucí, která obsahovala systém pro správu balíků, čímž se stala instalace programů triviální záležitostí. Debian byl také první Linuxovou distribucí, kterou je možné aktualizovat bez přeinstalování celého systému.

Debian byl například první Linuxovou distribucí, která obsahovala systém pro správu balíků, čímž se stala instalace programů triviální záležitostí. Debian byl také první Linuxovou distribucí, kterou je možné aktualizovat bez přeinstalování celého systému.

Debian byl například první Linuxovou distribucí, která obsahovala systém pro správu balíků, čímž se stala instalace programů triviální záležitostí. Debian byl také první Linuxovou distribucí, kterou je možné aktualizovat bez přeinstalování celého systému.

Debian byl například první Linuxovou distribucí, která obsahovala systém pro správu balíků, čímž se stala instalace programů triviální záležitostí. Debian byl také první Linuxovou distribucí, kterou je možné aktualizovat bez přeinstalování celého systému.

Debian byl například první Linuxovou distribucí, která obsahovala systém pro správu balíků, čímž se stala instalace programů triviální záležitostí. Debian byl také první Linuxovou distribucí, kterou je možné aktualizovat bez přeinstalování celého systému.
Pokud chcete získat podporu pro svůj systém s Debian GNU/Linuxem, nebo jen chcete komunikovat s vývojáři distribuce, můžete tak učinit pomocí více jak 317 diskusních klubů, které Debian spravuje. Pro přihlášení do některého z nich stačí vyplnit formulář na přihlašovací stránce.

1.4 Získání Debianu

Informace o stažení systému Debian GNU/Linux z Internetu nebo seznam míst dodávajících oficiální CD s Debianem můžete nalézt na distribuční stránce. Seznam zrcadel Debianu obsahuje kompletní seznam oficiálních serverů, ze kterých si můžete Debian stáhnout.

Aktualizace Debianu je velmi jednoduchá, protože systém je navržený tak, aby jej nebylo třeba přeinstalovávat. S prvotním nastavením systému pro budoucí aktualizace vám pomůže instalace programu.

1.5 Získání nejnovější verze této příručky

Tato příručka je živý dokument — stále se mění, aktualizuje a zlepšuje. Nejčerstvější informace o systému Debian GNU/Linux verze 10, které se objevily až po oficiálním vydání, můžete najít na stránkách pro Debian 10. Aktualizovaná verze této příručky je rovněž k dispozici na stránkách oficiálního instalacího manuálu.

1.6 Organizace příručky

Tato příručka si klade za cíl sloužit jako manuál pro nové uživatele Debianu a od čtenáře neočekává žádné speciální znalosti a zkušenosti. Předpokládá však, že máte obecnou představu o tom, jak funguje váš hardware.

Také uživatelské experti mohou v tomto dokumentu najít zajímavé informace jako např. velikost minimální instalace, detaily týkající se hardwaru podporovaného instalací systému Debianu apod. Zkušeným uživatelům doporučujeme některé pasáže přeskočit.

Obecně lze říci, že tento dokument pojat přímočaře a provede vás instalací krok za krokem. Následující seznam zachycuje jednotlivé kroky instalace a kapitoly, které se jimi zabývají.

2. Záloha dat, naplánování instalace a konfigurace hardwaru předcházející instalaci systému, viz 3. Jestliže se chystáte instalovat na pevný disk s více operačními systémy, budete možná muset pro Debian vytvořit místo na diskovou oblast.
4. 5 popisuje zavedení instalací systému. Zde také naleznete různé rady jak postupovat, pokud zavedení systému selže.
5. Samotnou instalací vás provede 6. To zahrnuje výběr jazyka, nastavení modulů zařízení, zprovoznění sítě, aby se zbývající instalací soubory mohly stáhnout ze serveru poskytujícího Debian (pokud tedy neinstalujete z CD/DVD), rozdělení disku, instalaci základního systému a výběr a instalaci úloh. (Technickými detaily pro nastavení diskových oblastí se zabývá C.)

Jakmile nainstalujete systém, měli byste si přečíst 8. Tato kapitola vysvětluje, kam se máte podívat po dalších informacích o Unixu a Debianu a jak aktualizovat jádro systému.

Konečně informace o tomto dokumentu a způsobu, jak do něj přispět, obsahuje E.

1.7 O licenčních ujednáních

Licenční podmínky většiny programů opravňují k používání programu pouze na jednom počítači. Debian GNU/Linux taková omezení nemá. Budeme rádi, pokud ho nainstalujete na další počítače ve škole či zaměstnání, zapůjčíte známým a pomůžete jim s instalací. Můžete dokonce vyrobit tisícekopí a prodávat je. Stačí dodržet jistá pravidla. To všechno je možné díky tomu, že Debian je založen na svobodném softwaru.

Slovo svobodný neznamená, že software postrádá copyright, nebo že se distribuuje zdarma na CD. Znamená to, že licence jednotlivých programů nevyžadují poplatek za právo program kopírovat. Kdokoli může program rozšířit, přizpůsobit, pozměnit a výsledné dílo šířit dál.
Hodně programů v systému je licencovaných podle GNU General Public License (obecná veřejná licence) nebo krátce GPL. Licence GPL vyžaduje, abyste kdykoliv, když distribuujete kopii programu, zajistili dostupnost zdrojových kódů programu; to zaručuje, že vy, jakožto uživatelé, můžete dále modifikovat kód a přizpůsobit si software svým potřebám. Proto jsou ke všem takovým programům v systému Debian dostupné i zdrojové kódy.

Některé programy v Debianu používají i jiná licenční ujednání. Autorská práva a licenční ujednání ke každému balíku lze nalézt v souboru /usr/share/doc/jméno-balíku/copyright.

Pokud se chcete dozvědět více o licencích a o tom, co Debian pokládá za svobodný software, podívejte se na Debian Free Software Guidelines.

Nejdůležitější právní poznámka je, že tento software je bez jakékoliv záruk. Programátoři, kteří vytvořili tento software, to udělali pro prospěch celé komunity. Nezaručujeme, že software se bude hodit pro dané účely. Na druhou stranu, jelikož se jedná o svobodný software, můžete jej měnit tak, aby odpovídal vašim potřebám — a využívat kódu ostatních, kteří stejným způsobem rozšiřují tento software.

¹Pokud se chcete dozvědět více o tom, jak vyhledat a rozbalit zdrojové balíky, podívejte se do Debian FAQ na část „Basics of the Debian Package Management System“.
Kapitola 2

Požadavky na počítač

V této kapitole se dozvíte informace o hardwarových požadavcích distribuce a také zde naleznete odkazy na další informace o zařízeních podporovaných jádrem Linux a GNU programy.

2.1 Podporovaná zařízení

Debian neklade na hardware jiná omezení než ta, která jsou dána jádrem Linuxu nebo kFreeBSD a programy GNU. Tedy na libovolné počítačové architektuře, na kterou bylo přeneseno jádro Linuxu nebo kFreeBSD, knihovna libc, překladač gcc atd., a pro kterou existuje port Debianu, můžete Debian nainstalovat. Viz stránka s porty (https://www.debian.org/ports/arm/).

Než abychom se snažili popsat všechny podporované konfigurace hardwaru pro architekturu 64-bit ARM, zaměříme se spíše na obecné informace a uvedeme odkazy na doplňující dokumentaci.

2.1.1 Podporované počítačové architektury

Debian GNU/Linux 10 podporuje deset hlavních počítačových architektur a několik jejich variant.

<table>
<thead>
<tr>
<th>Architektura</th>
<th>Označení v Debianu</th>
<th>Podarchitektura</th>
<th>Varianta</th>
</tr>
</thead>
<tbody>
<tr>
<td>založené na Intel x86</td>
<td>i386</td>
<td>standardní počítače x86</td>
<td>výchozí</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xen PV</td>
<td>xen</td>
</tr>
<tr>
<td>AMD64 & Intel 64</td>
<td>amd64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARM</td>
<td>armel</td>
<td>Marvell Kirkwood a Orion</td>
<td>marvell</td>
</tr>
<tr>
<td>ARM s hardwarovým FPU</td>
<td>armhf</td>
<td>multiplatformní</td>
<td>armmp</td>
</tr>
<tr>
<td>64 bitové ARM</td>
<td>arm64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 bitové MIPS (big endian)</td>
<td>mips</td>
<td>MIPS Malta</td>
<td>4kc-malta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td>64 bitové MIPS (little-endian)</td>
<td>mips64el</td>
<td>MIPS Malta</td>
<td>5kc-malta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loongson 3</td>
<td>loongson-3</td>
</tr>
<tr>
<td>32bit MIPS (little endian)</td>
<td>mipsel</td>
<td>MIPS Malta</td>
<td>4kc-malta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td>Loongson 3</td>
<td>loongson-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Systems</td>
<td>ppc64el</td>
<td>IBM POWER8 nebo novější</td>
<td></td>
</tr>
<tr>
<td>64 bitové IBM S/390</td>
<td>s390x</td>
<td>IPL z VM-reader a DASD</td>
<td>generic</td>
</tr>
</tbody>
</table>

Tato verze dokumentu se zabývá instalací Debianu s jádrem Linux na architektuře 64-bit ARM. Pro ostatní podporované architektury jsou návody na stránkách Debian-Ports.

Toto je první oficiální vydání systému Debian GNU/Linux pro architekturu 64-bit ARM. K vydání došlo, protože jsme přesvědčeni, že stav distribuce pro tuto architekturu je již uspokojivý a distribuce může být oficiálně uvolněna k
širšímu použití. Jelikož jde o první verzi distribuce podporující tuto architekturu, nebyla distribuce prověřena širokou uživatelskou základnou a proto se v ní mohou vyskytovat chyby. Jakékoli problémy, prosím, nahlasejte na Bug Tracking System a nezapomeňte napsat, že chyba se týká platformy 64-bit ARM s jádrem Linux. Také bude užitečné sledovat diskuzní list debian-arm

2.1.2 Tři hlavní ARM porty

Architektura ARM se vyvíjí a moderní ARM procesory nabízejí možnosti, které nejsou na starších modelech dostupné. Debian proto nabízí tři základní ARM porty pro nejlepší podporu širokého spektra systémů:

• Debian/armel cílí na starší 32 bitové ARM procesory bez hardwarové podpory výpočtů s plovoucí desetinnou čárkou (nemají FPU)

• Debian/armhf běží jen na novějších 32 bitových ARM procesorech, které implementují alespoň architekturu ARMv7 s 3. verzi ARM specifikace pro vektorové výpočty s plovoucí desetinnou čárkou (VFPv3). Debian/armhf využívá tyto rozšířené možnosti a vyšší výkon nových modelů.

• Debian/arm64 funguje na 64 bitových ARM procesorech implementujících alespoň architekturu ARMv8.

Technicky mohou všechny aktuálně dostupné ARM procesory běžet v obou režimech adresování („little-endian“ i „big-endian“), avšak v praxi používá dětivá většina ARM systémů adresování „little-endian“. V tomto duchu podporuje Debian/arm64, Debian/armhf i Debian/armel pouze systémy „little-endian“.

2.1.3 Různé návrhy ARM procesorů a náročnost podpory

Systémy ARM jsou mnohem různorodější, než systémy založené na architektuře i386/amd64, takže podpora může být složitější. Architektura ARM se používá hlavně v řešeních vše v jednom, tzv. SoC („system-on-chip“). Tyto SoC navrhuje spousta společností z nejrůznějších hardwarových součástí, které se liší i v tak základní funkcionalitě, jako je zavedení systému.

Na rozdíl od starších verzí ARM architektury je architektura ARMv8 (arm64) mnohem více standardizovaná a tudíž jednodušší podporovatelná jak ze strany linuxového jádra, tak ostatního softwaru.

Serverové verze ARMv8 hardwareu se typicky konfiguruje s využitím standardů UEFI (Unified Extensible Firmware Interface) a ACPI (Advanced Configuration and Power Interface), které poskytují jednotný, na zařízení nezávislý způsob inicializace počítačového hardwaru. Oba standardy jsou běžné ve světě počítačů x86.

2.1.4 Platformy podporované v Debian/arm64

Arm64/AArch64/ARMv8 hardware se stal dostupným v pozdní fázi vývojového cyklu Debianu Buster, tudíž se do jádra používaného v tomto vydání dostala podpora jen málo platform. Debian/arm64 v tomto vydání podporuje následující platformy. (Všechny uvedené platformy jsou podporovány jediným jádrem).

Applied Micro (APM) Mustang/X-Gene

APM Mustang byl první ARMv8 systém použitelný v Linuxu. Používá SoC X-gene SoC, který je nyní používán i v dalších počítačích. Jedná se o ošejúdravý procesor, s ethernetem, USB a sériovým rozhraním. Vzhledově vypadá jako běžný deskstopový počítač, nicméně je očekáváno mnoho dalších verzí. Většina hardwaru je podporována přímo oficiálním jádrem, ale v jádře dostupném v Buster kulhá podpora USB.

Vývojová platforma ARM Juno

Juno je vývojářská deska s šestijádrovým procesorem ARMv8-A 800MHz (2xA57, 4xA53), grafikou Mali (T624), 8GB DDR3 RAM, ethernetem, USB a sériovým rozhraním. Jelikož je deska zaměřena na vývojáře, aby se seznámili s touto platformou, není ani malá, ani levná, ale jedná se o jednu z prvních dostupných desek a jádro v Buster podporuje všechny integrované hardware.

Při použití debian-installer na systémech bez UEFI se možná budete muset na konci instalace přepnout do shellu a ručně zadat několik příkazů pro nastavení zavádění nově nainstalovaného systému. flash-kernel ví, jak nastavit zavádění systému X-Gene pomocí U-Boot.

2.1.4.1 Ostatní platformy

Díky multiplatformní podpoře v linuxovém jádře je možné, že debian-installer poběží i na arm64 systémech zde explicitně neuvědomených. Stačí, aby jádro podporovalo komponenty instalovaného systému a byl dostupný soubor popisující strom zařízení daného systému. V případě použití UEFI by se mělo ve vstupním nainstalovaném systému automaticky nastavit i zavádění. Na systémech bez UEFI se možná budete muset na konci instalace přepnout do shellu a ručně zadat několik příkazů pro nastavení zavádění.
KAPITOLA 2. POŽADAVKY NA POČÍTAČ

2.2. OVLAĎÁČE VYŽADUJÍCÍ FIRMWARE

2.1.5 Platformy a zařízení dále nepodporované v Debian/armel

Orion5x S Debianiem 9 byla z platformy Orion5x odebrána podpora pro zařízení D-Link DNS-323 a Conceptronic CH3SNAS, protože se linuxové jádro na těchto zařízeních již nevešlo do flash paměti. Ostatní Orion zařízení jako Buffalo Kurobox a HP mv2120 jsou nadále podporovány.

2.1.6 Víceprocesorové systémy

Tato architektura umožňuje využití více procesorů — tzv. symetrický multiprocesing (SMP). Vice procesorů v počítači bylo původně doménou výkonných serverů, ale s uvedením konceptu vícejádrových procesorů, kdy jeden fyzický čip obsahuje několik procesorových jednotek, tzv. „jader“, se s nimi dnes setkáváme prakticky vše.

Standardní jádro v distribuci Debian GNU/Linux 10 bylo sestaveno s podporou SMP, což by nemělo vadit ani při instalaci na jednoprocesorový počítač.

2.1.7 Podpora grafických karet

Podpora grafických karet v grafickém režimu závisí na tom, zda pro kartu existuje ovladač v projektu X.Org a v jádru. Základní podpora grafického framebufferu je poskytována jádrem, desktopová prostředí používají X.org. Podpora pokročilých vlastností, jako je hardwarová akcelerace 3D a videa, závisí na použitém hardwaru a v některých případech i na instalaci dodatečného „firmware“ (viz 2.2).

Téměř všechny ARMové počítače mají grafický hardware zabudovaný přímo v sobě. Počítače se slotem pro zasunutí samostatné grafické karty existují, ale je jich jako safránu. Naopak celkem běžný je hardware navržený zcela bez grafického výstupu. Základní zobrazování přes jáderný framebuffer by mělo fungovat na všech zařízeních s grafickým hardwarové a avšak rychlá 3D grafika nutně vyžaduje binární ovladače. Situace se mění docela rychle, ale v době vydání běžný je hardwarová grafika zabudovaná přímo v jádru. Ostatní hardware vyžaduje nesvobodné ovladače třetích stran.

Podrobnosti o podporovaných grafických kartách a ukazovacích zařízeních naleznete na https://wiki.freedesktop.org/xorg/. Debian GNU/Linux 10 je dodáván se systémem X.Org verze 7.7.

2.1.8 Hardware pro připojení k síti

Libovolná síťová karta (NIC) podporovaná jádrem Linux by měla být podporována i instaláčním systémem. Ovladače by se měly zavádět automaticky.

Na architektuře 64-bit ARM je podporována většina integrovaných ethernetových zařízení a dostupné jsou i moduly pro přídavná PCI a USB zařízení.

2.1.9 Ostatní zařízení

Linux umožňuje používat nejrůznější hardwarové vybavení jako myši, tiskárny, scannery, televizní karty a zařízení PCMCIA/CardBus/ExpressCard a USB. Většina z nich však není pro instalaci nutná.

2.2 Ovladače vyžadující firmware

Některý hardware vyžaduje kromě samotného ovladače zařízení také firmware nebo mikrokód, který je třeba do zařízení před použitím nahrát. Nejčastěji se s tím setkáte u síťových karet (obzvláště bezdrátových), ale jsou známa i některá USB zařízení a dokonce řadiče disků. U mnoha grafických karet je základní funkčnost dostupná i bez dodatečného firmware, nicméně pro využití pokročilejších vlastností je třeba mít v systému nachystaný příslušný soubor s firmwarem.

Ve starších zařízeních býval firmware nahrán permanentně v EEPROM nebo Flash paměti zařízení přímo od výrobce. To už se dnes přišlo nenosí a proto je nutné soubor s firmwarem do zařízení nahrát při každém startu počítače. Naštěstí to nemusíme dělat ručně, ale postará se o to operační systém.

Ve většině případů je firmware dle definice Debianiu nesvobodný a tudíž nelze zařadit ani do distribuce, ani do instaláčního systému. Jestliže je ovladač samostatný součástí Debianiu a firmware je možno legálně distribuovat, je možné, že ho naleznete jako samostatný balík v sekci non-free.
2.3 Hardware určený pro GNU/Linux

V současnosti již někteří prodejci dodávají počítače s nainstalovaným Debianem, případně jinou distribucí GNU/Linuxu. Patně si za tuto výhodu něco připlatíte, ale zbavíte se starostí, poněvadž máte jistotu, že hardware počítače je se systémem GNU/Linux plně kompatibilní.

Ať už zakoupíte počítač s GNU/Linux nebo bez něj, je důležité se přesvědčit, že je hardware podporován jádrem operačního systému. Zkontrolujte si, jestli jsou všechna zařízení v počítači uvedena ve výše zmíněných odkazech jako podporovaná. Při nákupu se netajte tím, že kupujete počítač, na kterém poběží Linux. Dejte přednost zboží, jehož výrobci Linux podporují.

2.3.1 Vyvarujte se uzavřených technologií

Někteří výrobci hardwaru nám neposkytují informace potřebné k napsání ovladačů pro Linux, případně požadují podepsat smlouvu o uchování těchto informací v tajnosti před třetími osobami, což znemožňuje uveřejnění zdrojového kódu pro takový ovladač.

Z důvodu nedostupnosti dokumentace pro tento hardware neexistují ovladače pro Linux.

V mnoha případech existují standardy (nebo alespoň nepsané standardy), které popisují, jak má operační systém komunikovat s určitou skupinou zařízení. Všechna zařízení, která takový (nepsaný) standard dodržují, mohou být obsluhovala jedním společným ovladačem. Konkrétním příkladem skupin zařízení, kde to funguje extrémně dobře, jsou třeba USB Human Interface Devices (klávesnice, myši, herní ovladače) nebo USB Mass Storage Devices (USB klíčenky a čtečky paměťových karet), kde prakticky každé zařízení na trhu odpovídá standardům.

Naproti tomu třeba v oblasti tiskáren je situace výrazně horší. I když existují tiskárny, které se dají ovládat některými standardními ovládacími jazyky a tudíž je lze zpřístupnit v téměř libovolném operativním systému, existuje dost modelů, které rozumí pouze proprietárním příkazům, ke kterým neexistuje žádná dostupná dokumentace. Takové tiskárny se ve svobodných operačních systémech buď nedají používat vůbec, nebo pouze s uzavřeným ovladačem od výrobce.

V případě existence uzavřeného ovladače od výrobce mějte na paměti, že praktická životnost takového zařízení je omezena na dobu, po kterou je dostupný ovladač. Se zkracováním životního cyklu výrobku není neobyčejné, že výrobce přestane aktualizovat ovladač krátce po ukončení výroby daného zařízení. Pokud po aktualizaci systému přestane uzavřený ovladač fungovat, stává se tím jinak funkční zařízení hromadou nepoužitelného šrotu. Takovému hardwaru je dobré se zdáleka vyhnout a to bez ohledu na operační systém, se kterým je chce zařízení provozovat.

Pomoci můžete tím, že výrobce uzavřeného hardwaru požádáte o uvolnění nezbytné dokumentace, podle které můžeme napsat svobodné ovladače pro jejich hardware.

2.4 Instalační média

Tato podkapitola popisuje různé druhy instalačních médií, které můžete použít pro instalaci Debiana. Výhody a nevýhody jednotlivých médií pak podrobněji rozebírá kapitola 4.
Většina architektur umožňuje instalaci z CD. I v případě, že váš počítač neumí zavádět systém přímo z CD, můžete CD-ROM využít po počátečním zavedení systému z jiného média, viz 5.

2.4.2 USB Memory Stick
USB flash disky (těž „klíčenky“) se staly běžně používanými a levnými úložišti. Většina moderních počítačů z nich umí zavádět a obzvláště u netbooků a tenkých notebooků bez CD mechaniky se předpokládá, že k instalaci operačního systému použijete právě USB klíčenku.

2.4.3 Síť
Během instalace můžete pro stažení potřebných souborů použít síť (konkrétně služby HTTP nebo FTP). To, zda se síť použije, závisí na typu instalace, který si zvolíte, a na vašich odpovědích během instalace. Instalační systém podporuje většinu typů síťových připojení včetně PPPoE, výjimkou jsou ISDN nebo PPP. Po instalaci můžete svůj systém nastavit i pro tato připojení.

Instalační systém také můžete zavést ze síť bez použití dalšího média jako CD/DVD nebo USB klíčenky.

Příjemnou možností je bezdisková instalace. Systém se zavede z lokální sítě a všechny lokální souborové systémy se připojí přes NFS.

2.4.4 Pevný disk
Pro mnoho architektur je také zajímavá možnost zavedení instalačního systému z pevného disku. To však vyžaduje jiný operační systém, pomocí kterého nahrajete na disk instalační program.

2.4.5 Un*x nebo systém GNU
Pokud používáte jiný unixový systém, můžete jej využít pro instalaci Debianu a úplně tak obejít debian-installer popisovaný ve zbytku příručky. Tento způsob instalace je vhodný zejména pro uživatele s podivným hardwarem, který jinak není podporován instalačními médiemi, nebo na počítačích, které si nemohou dovolit prostoje. Jestliže vás zmíněná technika zajímá, přeskočte na D.3.

2.4.6 Podporovaná datová média
Zaváděcí disky Debianu obsahují jádro s velkým množstvím ovladačů, aby fungovaly na co nejširší škále počítačů.

2.5 Požadavky na operační paměť a diskový prostor

Instalace na systémech s menší pamětí nebo dostupným místem na disku se může podařit, ale je doporučena pouze pro zkušené uživatele.
Kapitola 3

Než začnete s instalací

Tato kapitola se zabývá přípravou pro instalaci Debianu ještě před zavedením instalačního programu. To zahrnuje zazálohování dat, zjištění informací o hardwaru a další nezbytné kroky.

3.1 Přehled instalačního procesu

Jenom na okraj bychom chtěli poznamenat, že kompletní reinstalace Debianu je velmi výjimečná událost, kterou má nejčastěji na svědomí mechanická závada pevného disku.

Na rozdíl od mnoha známých operačních systémů, které musíte při přechodu na novější verzi instalovat úplně znovu, nebo alespoň přeinstalovat aplikace, Debian GNU/Linux se umí aktualizovat za běhu. Pokud by nová verze programu vyžadovala nové verze ostatních balíků, nebo byla nějakým způsobem konfliktní s jiným programem, balíčkovací systém Debianu se o vše postará. Protože máte k dispozici mocné aktualizační nástroje, měli byste o kompletní reinstalaci uvažovat pouze jako o poslední možnosti. Instalační systém není navržen aktualizaci staršího systému.

Následuje stručný přehled instalačního procesu:

1. Nejprve si zazálohujete všechna důležitá data (hlavně dokumenty).
2. Poté posbíráte co nejvíce informací o svém počítači a seženete si potřebnou dokumentaci (např. dokumenty odkazované z této příručky).
3. Na pevném disku vytvoříte volné rozdělitelné místo (pro Debian).
4. Stáhnete si soubory instalačního systému, potřebné ovladače a soubory s firmwarem.
5. Připravíte si zaváděcí média jako CD/DVD/USB klíčenky, nebo vytvoříte síťovou infrastrukturu pro zavedení instalace ze sítě.
7. Zvolíte jazyk pro instalaci.
8. Nastavíte síťové připojení.
9. Vytvoříte a připojte oblasti pro Debian.
10. Můžete pozorovat automatické stažení, instalaci a nastavení základního systému. V sobě obsahuje několik balíků, které nainstalujete a nastavíte.
11. Volitelně můžete nainstalovat další software pomocí předpřipravených úloh.
12. Nainstalujete zaváděč, kterým budete spouštět Debian GNU/Linux (případně i původní operační systém).

Pokud máte s některým instalovačním krokem problémy, je dobré vědět, který balík je za danou situaci zodpovědný. Nuže, představujeme vám hlavní softwarové role v tomto instalacním dramatu:

debian-installer (instalační program) je hlavní náplní této příručky. Rozpoznává hardware a nahrává správné ovladače, rozděluje disky, instaluje jádro systému a dohlíží na programy dhcp-client, aby nastavil síťové připojení, debootstrap, aby nainstaloval balíky základního systému a tasksel, aby doinstaloval dodatečný...
software. V této fázi instalace hraje své epizodní role mnohem více herců, ale úloha debian-installeru končí s prvním zavedením nového systému.

Díky programu tasksel, si můžete jednoduše doinstallovat celé skupiny programů jako „webový server“ nebo „desktopové prostředí“ a přizpůsobit si tak systém svým potřebám.

Pro začínajícího uživatele je jedním z důležitých rozhodnutí během instalace instalace desktopového grafického prostředí, se skládá ze systému X Window a jednoho z populárních desktopových prostředí. Pokud desktopové prostředí nenainstalujete, budete mít k dispozici relativně jednoduchý systém ovládaný z příkazové řádky. Grafické prostředí je volitelné proto, protože hodně systémů Debian GNU/Linux slouží jako servery, a ty ke své činnosti grafické rozhraní nepotřebují.

Vezměte, prosím, na vědomí, že X Window System je od instalací úplně oddělen a protože je mnohem více komplikovaný, nezabýváme se jím ani v této příručce.

3.2 Zálohujte si svá data!

Před instalací si vytvořte zálohu všech souborů, které máte na disku, protože byste o ně při instalaci mohli přijít. Je totiž velmi pravděpodobné, že budete muset přerozdělit pevný disk, abyste si pro Debian GNU/Linux udělali místo. Při rozdělování disku byste vždy měli počítat se všech data. Instalační programy jsou docela spolehlivé a většina z nich je prověřena lety používání, ale jedna chybná odpověď by se vám mohla zle vymstí. I po uchování obsahu disků budete opatrní a promyslete si odpovědi a kroky při instalaci. Dvě minuty přemýšlení mohou ušetřit hodiny zbytečné práce.

Jestliže budete instalovat Linux na počítač, kde již máte jiný operační systém, přesvědčte se, že máte po ruce média pro jeho instalaci. Obvykle to není potřeba, ale zvlášť v případě, kdy byste se chystali přerozdělit systémový disk, by se vám mohlo stát, že bude nutné znovu nainstalovat zavaděč původního systému, nebo dokonce celý systém.

3.3 Dále budete potřebovat

3.3.1 Dokumentace

3.3.1.1 Instalační manuál

Dokument, který právě čtete, je oficiální verze instalační příručky pro vydání Debianu buster a je dostupný v různých formátech a jazykových verzích.

3.3.1.2 Domumentace k hardwaru

Obsahuje spusty užitečných informací o konfiguraci resp. provozování různého hardwaru.

3.3.2 Hledání zdrojů informací o hardwaru

V mnoha případech umí instalační program rozpoznat hardware automaticky, ale podle hesla „vždy připraven“ doporučujeme, abyste se před instalací se svým hardwarem seznámili poněkud důvěrněji.

Informace o hardwaru můžete získat:

- Z manuálů, které jste získali spolu s příslušným hardwarem.
- Z BIOSu vašeho počítače. K těmto informacím se dostanete, když během startu počítače stisknete určitou kombinaci kláves. Často to bývá klávesa Delete nebo F2. Obvykle je tato klávesa zmíněna na obrazovce při startu počítače, nebo v příručce k základní desce.
- Z krabic, ve kterých byly části hardware zabaleny.
- Ze systémových příkazů nebo nástrojů původního operačního systému. Zvláště užitečné informace jsou o pevném disku a paměti RAM.
- Od vašeho správce nebo poskytovatele Internetu. Tyto informace vám mohou pomoci při nastavení sítě a elektronické pošty.
3.3.3 HARDVAROVÁ KOMPATIBILITA

Mnoho výrobků pracuje v operačním systému Linux bez problémů a podpora hardwaru pro něj se zlepšuje každým dnem. Přes to všechno Linux nepodporuje tolik typů hardwaru jako některé jiné operační systémy.

Ovladače v jádře Linux většinou nejsou psány pro konkrétní „výrobek“ nebo „značku“, ale pro konkrétní čipovou sadu. Mnoho na první pohled odlišných zařízení/značek bývá založeno na stejném hardwaru, často při pome na tzv. referenčním návrhu, který poskytuje výrobce čip u a ostatní firmy jej pak prodávají pod svými vlastními názvy.

To má výhody i nevýhody. Výhodou je, že ovladač pro jednu čipovou sadu funguje se širokou škálu zařízení od různých výrobců. Nevýhodou je, že často není jednoduché poznat, který čip je v jakém zařízení použit, protože některé výrobci občas změní hardwar produktu bez změny názvu zařízení, nebo alespoň verze. Může se tak stát, že stejný výrobek koupený později, může mít zcela jiný hardwar, pro který je potřeba použít jiný ovladač, nebo pro něj dokonce ani ovladač existovat nemusí.

Pro USB a PCI/PCI-Express/ExpressCard zařízení se dá zjistit identifikační číslo zařízení (ID) a podle něj pak dohledat čipovou sadu, na které je výrobek založen.

V Linuxu můžete tato ID zjistit příkazem `lsusb` pro USB zařízení, nebo příkazem `lspci -nn` pro zařízení PCI/PCI-Express/ExpressCard. ID obvykle vypadá jako dvě čísla v šestnáctkové soustavě oddělená dvojtečkou, např. „1d6b:0001“, kde „1d6b“ je ID výrobce a „0001“ je ID zařízení.

Příklady výstupů obou příkazů:

```
# lsusb
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
```

```
# lspci -nn
03:00.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8111/8168B ⚫ PCI Express Gigabit Ethernet controller [10ec:8168] (rev 06)
04:00.0 VGA compatible controller [0300]: Advanced Micro Devices [AMD] nee ATI ⚫ RV710 [Radeon HD 4350] [1002:954f]
```

Na druhém příkladu vidíme dvě zařízení - síťovou kartu o výrobce s ID „10ec“ a grafickou kartu o výrobce s ID „1002“.

Na systémech Windows můžete zjistit ID zařízení ve Správce zařízení na záložce „Podrobnosti“. ID výrobce má předponu „VEN_“. ID zařízení pak předponu „DEV_“. U Windows 7 a novějších navíc musíte na záložce Podrobnosti vybrat ze seznamu vlastnost „Hardwarová ID“, jelikož jinak byste ID neviděli.

Vyzbrojeni ID pak můžete vyrazit do hlubin Internetu a pátrat po informacích ohledně ovladače pro danou čipovou sadu. Nebudete-li úspěšní, můžete zkusit hledat podle kódových jmen čipů, která jsou také vidět ve výpisu příkazů `lsusb` a `lspci`. V našem případě to je „RTL8111“/„RTL8168B“ pro síťovou kartu a „RV710“ pro kartu grafickou.

3.3.3.1 TESTOVÁNÍ KOMpatibilita hardware pomocí Live systému

Debian GNU/Linux je též na některých architekturách dostupný ve formě tzv. „live systému“. Jedná se o předpřipravené obrazy systému, které se daří spustit přímo z USB klíčenky, CD nebo DVD a bez dalšího nastavování okamžitě používat. Výhodou je, že se v takovém systému ve výchozím nastavení nic nezapíše na disk, vše se odehřává jen v operační paměti a po restartu počítače se vše vrátí do původního stavu. Nejvýhodnější cestou je zjistění, zda je daný hardware systémem Debian GNU/Linux podporován, je tedy spustit Debian live a zkusit ho chvíli používat.
Při používání live systému je třeba mít na paměti několik omezení. Jelikož se vše odehrává v paměti počítače, je třeba mít dostatek paměti. Dalším omezením pro testování hardwarové kompatibility může být fakt, že oficiální live obrazy systému Debian GNU/Linux obsahují pouze svobodné součásti, což znamená, že na nich nenalezníte například nesvobodný firmware. Ten sice můžete následně doinstalovat ručně, ale nebude to tak automatické, jako když se debian-installer sám dotázel po chybějících souborech s firmwarem.

Podrobnější informace o dostupných obrazech Debian live můžete nalézt na stránce Debian Live.

3.3.4 Nastavení sítě

Pokud bude váš počítač trvale připojen do sítě (mysli se ethernetové a obdobné připojení, ne PPP), kterou spravuje někdo jiný, potřebujete si od správce síť následující informace.

- Název počítače (možná si počítač pojmenujete sami).
- Název vaší domény.
- IP adresu vašeho počítače.
- Síťovou masku.
- IP adresu brány tj. počítače spojující vaši síť s dalším internetem, pokud na vaší síti existuje ou.
- IP adresu jmenného serveru, který zprostředkovává převod názvů počítačů na IP adresy (DNS).

Pokud daná síť používá DHCP pro nastavení parametrů DHCP (Dynamic Host Configuration Protocol), nemusíte tyto informace zjišťovat, protože DHCP server nastaví vaš počítač automaticky.

Při připojení přes DSL nebo kabelovou televizi obvykle dostanete router, přes který se připojujete, a na kterém obvykle bývá DHCP zapnuto.

Používáte-li bezdrátové připojení, měli byste navíc zjistit:

- ESSID jméno vaší bezdrátové sítě.
- Bezpečnostní klíč WEP nebo WPA/WPA2 pro přístup k síti (pokud jej používáte).

3.4 Splnění minimálních hardwarových požadavků

Porovnejte seznam svého hardware s následující tabulkou, ve které zjistíte, zda můžete použít zamýšlený typ instalace.

Skutečné minimální požadavky mohou být nižší než uvádí tabulka, ale většina uživatelů by asi nebyla spokojena s rychlostí systému. Vždy záleží na konkrétních požadavcích a možnostech.

<table>
<thead>
<tr>
<th>Tabulka 3.2</th>
<th>Doporučené minimální požadavky</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ instalace</td>
<td>RAM (minimální)</td>
</tr>
<tr>
<td>Bez desktopového prostředí</td>
<td>128 MB</td>
</tr>
<tr>
<td>Desktopové prostředí</td>
<td>256 MB</td>
</tr>
</tbody>
</table>

Konkrétní minimální paměťové požadavky jsou o něco nižší, čisla uváděná v tabulce. Podle architektury je možné instalovat Debian s pouhými 60MB RAM (na amd64). Něco podobného platí i pro požadavky na diskový prostor a hodně závisí na tom, které aplikace si nainstalujete. Více informací naleznete v tabulce D.2.

I na starších systémech je možné provozovat grafické desktopové prostředí, ale v takovém případě je doporučeno nainstalovat méně náročné prostředí než KDE Plasma nebo GNOME. Mezi populární alternativy patří xfce4, icewm a wmaker, ale na výběr máte i přehliďte dalších.

Pro serverové nasazení je téměř nemožné určit paměťové nebo diskové požadavky, protože ty se liší podle konkrétního nasazení.

3.5 Předrozdělení disku pro více operačních systémů

Rozdělením disku se na disku vytvoří několik vzájemně nezávislých oddílů (angl. partition). Každý oddíl je nezávislý na ostatních. Dá se to přirovnat k bytu rozčleněnému zdmi — přidání nábytku do jedné místnosti nemá na ostatní mítnosti žádný vliv.

Jestliže už na počítači máte nějaký operační systém a chcete na stejný disk přidat Debian, patrně si nevyhnute přerozdělení disku. Debian pro sebe potřebuje vlastní diskové oblasti a nemůže být nainstalován na oblasti systému Windows nebo třeba MacOS X. Je sice možné sdílet některé oblasti s jinými systémy, ale popis je mimo rozsah tohoto dokumentu. Minimalně budete potřebovat jednu oblast pro kořenový souborový systém.

Informace o aktuálním rozdělení disku můžete získat dělicím programem svého stávajícího operačního systému. Každý dělicí nástroj umožňuje prohlížet oblasti bez jejich modifikace.

Obecně změna oddílu, na kterém je souborový systém, znamená ztrátu dat, takže si raději disk před změnami do tabulky diskových oddílů zazálohujte. Podle analogie s bytem a zdmi, z bytu také raději vynesete veškerý nábytek, než budete přestavovat zdi.

Přestože některé moderní operační systémy zvládají přesun a změnu velikosti některých oddílů bez zníčení obsahu, takže by se dalo vytvořit místo pro Debian beze ztrát dat, jedná se o inherentně nebezpečnou operaci a proto byste to měli spáchat až po kompletní záloze všech dat.

Přestože některé moderní operační systémy zvládají přesun a změnu velikosti některých oddílů bez zníčení obsahu, takže by se dalo vytvořit místo pro Debian beze ztrát dat, jedná se o inherentně nebezpečnou operaci a proto byste to měli spáchat až po kompletní záloze všech dat.

VAROVÁNÍ
Pokud startujete instalační systém z pevného disku a potom tento disk rozdělíte, smažete si všetky soubory a musíte doufat, že se instalace povede napodvě. (Minimalně v tomto případě je dobré mít u sebe nástroje pro oživení počítače, jako jsou výchozí disky nebo CD s původním systémem.)

I když s diskovými oblastmi mohou manipulovat jak debian-installer, tak nástroje ve stávajícím operačním systému, vždy bývá nejlépe, když si své oblasti vytváříte vždy ten systém, který je bude používat, protože sám nejlepší ví, co mu chutná. To znamená, že oblasti pro Debian GNU/Linux měli vytvořit v debian-installer.

Jestliže budete mít na počítači více operačních systémů, měli byste tyto systémy instalovat před Debianem. Instalační prostory Windows a jiných systémů by mohly zabránit startu Debianu nebo vás navést k přehodnotování některých důležitých oblastí.

Tyto problémy můžete úspěšně vyřešit, případně se jim úplně vyhnout, ale nejistější je instalovat Debian jako poslední systém.

3.6 Než začnete s instalací ...

Tato část vás provede nastavením hardwaru, který je občas potřeba před vlastní instalací mírně připravit. Obecně se tím mysli kontrola a případná změna nastavení BIOSu/systémového firmware. „BIOS“ nebo „systémový firmware“ je nejnižší úroveň softwaru, který je využíván zařízeními v počítači, a rozhodujícím způsobem ovlivňuje start počítače po jeho zapnutí.

3.6.1 Výběr zaváděcího zařízení
3.6.2 ARM firmware

Jak jsme již zmínilí dříve, na systémech ARM bohužel neexistuje standard pro systémový firmware a proto se různé systémy, které nynomálně používají stejný firmware, mohou chovat zcela odlišně. To pramení z faktu, že se ARM architektura používá hlavně v embeded zařízeních, pro které výrobci vytváří vlastní upravené firmware a přidávají záplavy pro konkrétní zařízení. Výrobci bohužel často zapomenou zaslat své úpravy zpět vývojářům původního firmware, a také se jejich změny neobjeví v novějších verzích daného firmware.

Výsledkem je, že i nové systémy často používají firmware, který je založený na nějaké prehistorické verzí firmware, kterou si výrobci kdysi upřesnili, přičemž vývoj původního firmware mezitím pokračoval a nyní nabízí nové vlastnosti, nebo v některých ohledech jiné chování. Výrobců upravených firmwarů navíc nepojmenovávají integrovanou zařízení konzistentně, takže i když se jedná o stejný základní firmware, je na platné ARM tématě nemožné poskytnout obecné platné informace.
3.6.3 Nastavení ethernetové MAC adresy v U-Bootu

MAC adresa každého ethernetového rozhraní by měla být celosvětově unikátní, resp. musí být unikátní minimálně v rámci dané ethernetové broadcastovací domény. Výrobce si pro sebe obvykle alokuje blok MAC adres z centrálně spravované zásoby (za což zaplatí nějaký poplatek) a pak příslušně nakonfiguruje každé vyrobené zařízení tak, aby mělo unikátní adresu.

V případě vývojářských desek se chce někdy výrobce vyhnout placení poplatků a proto unikátní MAC adresu na ethernetové zařízení nenastaví. V takových případech musí MAC adresu nastavit uživatel. Některé ovladače síťových karet, když zjistí, že MAC adresa není přiřazena, vygenerují náhodnou MAC adresu, která se může při každém restartu měnit. Pro uživatele to pak vypadá, že síťování v zásadě funguje, ale některé služby nemusí být zrovna spolehlivé, jako třeba přiřazování semi-statických IP adres pomocí DHCP na základě MAC adresy.

Aby se předešlo konfliktům se stávajícími, oficiálně přiřazenými MAC adresami, existuje blok adres, které je rezervován pro takzvaně „místně spravované“ adresy. Blok je definován hodnotou dvou konkrétních bitů v prvním bajtu adresy. V praxi to znamená, že se jako lokálně spravovaná adresa dá použít například libovolná adresa začínající hexadecimálním \texttt{ca} (jako třeba \texttt{ca:ff:ee:12:34:56}.

Na systémech používajících jako firmware U-Boot je ethernetová MAC adresa umístěna v proměnné prostředí \texttt{ethaddr}. Adresu můžete zkontrolovat v promptu U-Bootu příkazem \texttt{printenv ethaddr} a nastavit příkazem \texttt{setenv ethaddr ca:ff:ee:12:34:56}. Po nastavení proměnné můžete hodnotu trvale uložit příkazem \texttt{saveenv}.

3.6.4 Problémy s přesunem jádra/initrd/stromu zařízení v U-Bootu

Na některých systémech se starší verzi U-Bootu se mohou objevit problémy s korektním přesunem linuxového jádra, úvodního ramdisku a binárky se stromem zařízení během zavádění. Projevuje se to tak, že U-Boot vypíše hlášku \texttt{Starting kernel ...}, ale systém dál zamrzne bez jakéhokoliv výstupu. Problém byl vyřešen v novějších verzích U-Bootu, tj. od verze v2014.07 dále.

Problém se může projevit i v případě, že systém původně používal verzi U-Bootu starší než v2014.07 a teprv následně byl aktualizován. Aktualizace U-Bootu totiž obvykle nemění stávající proměnné prostředí a oprava problému vyžaduje, aby se nastavila nová proměnná prostředí \texttt{bootm_size}, což U-Boot provádí automaticky pouze u nových instalací v čistém prostředí. Ručně tuto novou proměnnou nastavíte v promptu U-Bootu příkazem \texttt{env default bootm_size; saveenv}.

Jinou možností, jak obejít problém s přesunem, je v promptu U-Bootu spustit příkaz \texttt{setenv fdt_high ffffffff; setenv initrd_high 0xffffffff; saveenv}, kterým zcela zakážete přesun úvodního ramdisku a binárky se stromem zařízení.
Kapitola 4

Získání instalačních médií

4.1 Oficiální sada CD/DVD-ROM

Nejsnadnější cesta k instalaci Debianu vede přes oficiální sadu CD/DVD s Debianem (viz seznam dodavatelů). Pokud máte rychlé připojení k síti a vypalovací mechaniku, můžete si stáhnout obrazy CD/DVD z debianích zrcadel a vyrobít si vlastní sadu. (Postup naleznete na webové stránce debianích CD.) Jestliže již CD máte a váš počítač z nich umí zavést systém, můžete přeskočit rovnou na 5. Přestože Debian zabírá mnoho CD, je nepravděpodobné, že byste potřebovali všechny disky, protože balíky jsou na nich seřazeny podle oblíbenosti, takže většinu programů nainstalujete z prvního CD. Také můžete použít DVD verzi, která vám ušetří místo na poličce a navíc se vyhnute diskžokejské práci s hromadou CD.

Poznámka

Poznamenejme, že obě hlavní desktopová prostředí GNOME a KDE jsou tak rozsáhla, že se nevejdou na jediné CD a proto při instalaci počítejte s tím, že budete muset použít více CD, nebo nechat stáhnout zbývající balíky ze sítě.

Pokud sice CD máte, ale váš počítač nepodporuje zavádění z CD-ROM, můžete zavádění instalaci zavedením instalace systému z usb klíčenky, ze sítě, nebo ručním zavedením jádra ze sítě. Soubory, které potřebujete k zvedání instalace systému alternativními cestami, se rovněž nacházejí na CD. Organizace adresářů na CD je shodná se strukturou debianího archivu na Internetu, takže cesty k souborům uváděné dále v dokumentu můžete jednoduše vyhledat jak na CD, tak i v síti.

Po zavedení instalace systému do paměti se již budou všechny potřebné soubory kopírovány z CD.

Pokud sadu CD nemáte, budete si muset stáhnout soubory instalace systému ze sítě a nakopírovat je na USB klíčenku nebo na připojený počítač tak, aby se z nich mohl zavést instalaci systému.

4.2 Stažení souborů ze zrcadel Debianu

Nejbližší (a tedy pravděpodobně nejrychlejší) zrcadlo naleznete v seznamu zrcadel Debianu.

Budete-li stahovat soubory z debianího zrcadla pomocí FTP, použijte binární mód, ne textový nebo automatický.

4.2.1 Kde se nalézají instalace obrazy?

Instalační obrazy jsou umístěny na každém zrcadle Debianu v adresáři debian/dists/buster/main/installer-arm64/current/images/. Význam jednotlivých obrazů popisuje soubor MANIFEST.

4.3 Příprava souborů pro zavedení z USB zařízení

Pro přípravu USB zařízení budete potřebovat počítač s nainstalovaným GNU/Linuxem a podporou USB. Dnešní systémy GNU/Linuxu by měly USB klíčenku rozpoznat automaticky. Pokud tomu tak není, ověřte, zda je nahráný jednámodul usb-storage. Po zasunutí USB klíčenky ji systém naváže na zařízení /dev/sdX, kde X je písmeno
z rozsahu a-z. Přesný název zařízení zjistíte z příkazu `dmesg`, kde by měl být o zasunutí a rozpoznání USB zařízení záznam. Pokud klíčenka obsahuje ochranu proti zápisu, vypněte ji.

VAROVÁNÍ

Postupem popsáným dále v kapitole si smažete všechna data, která se na zařízení nachází! Před spuštěním příkazů se raději několikrát ujistěte, že jste zařízení zadali správně, protože i drobný překlep může způsobit, že si smažete data na pevném disku.

4.3.1 Příprava USB klíčenky s hybridním CD/DVD obrazem

Obrazy debianích CD/DVD mohou být zapsány přímo na USB klíčenku, což je nejjednodušší způsob vytvoření zásobního USB zařízení. Stačí si podle 4.1 stáhnout některý z obrazů, který se vejde na vaši USB klíčenku.

Jestliže máte opravdu malou klíčenku v řádu megabajtů, můžete z adresáře `netboot` stáhnout obraz `mini.iso` (viz kapitola 4.2.1), nicméně tato varianta zavede pouze minimální instalační systém a zbytek stahuje ze sítě.

Zvolený obraz CD/DVD byste měli zapsat přímo na USB klíčenku, čímž přepíšete všechna data, která na ní byla. Například na systému s GNU/Linuxem můžete obraz CD/DVD zapsat na USB klíčenku následovně (ujistěte se, že žádný souborový systém z klíčenky není připojený):

```bash
# cp debian.iso /dev/sdX
# sync
```

Na systémech s Windows můžete pro zápis obrazu použít nástroj `win32diskimager`.

DŮLEŽITÉ

Obraz je nutno zapsat na celé zařízení, ne jen do případné oblasti, tj. například do `/dev/sdb` a ne `/dev/sdb1`. Také nepoužívejte nástroje jako `unetbootin`, které zapisovaný obraz mění.

DŮLEŽITÉ

Vytvoření instalačního USB klíčenky tímto způsobem by mělo fungovat většinou uživatelů. Ostatní možnosti popsané níže slouží spíše lidem se speciálními požadavky.

Hybridní obraz na USB klíčence obvykle nezabírá veškerý prostor, což přímo vyhýbí použití volného místa pro uložení potřebných souborů s firmwarem, speciálních balíků, nebo jiných souborů. Veškeré soubory jsou pak pěkně pohromadě na jednom médii.

Stačí na USB klíčence vytvořit druhou oblast typu FAT, připojit ji a nakopírovat nebo rozbalit do ní příslušné soubory s firmwarem (viz 6.4). Například takto:

```bash
# mount /dev/sdX2 /mnt
# cd /mnt
# tar zxvf /cesta/k/firmware.tar.gz
# cd /mnt
# umount /mnt
```

Jestliže jste na USB klíčenku nakopírovali obraz `mini.iso`, nemusíte druhou oblast vytvářet, protože už je tam předchystaná. Po odpojení a novém zasunutí USB klíčenky by se měly objevit obě dvě oblasti.
4.3.2 Ruční kopírování souborů

Jiný způsob vytvoření instalací USB klíčenky je ruční nakopírování instalacího systému a obrazu malého instalačního CD. USB klíčenka by měla mít velikost alespoň 1 GB. Menší velikosti jsou podporovány pouze při ruční výrobě podle 4.3.3.

K dispozici máte soubor `hd-media/boot.img.gz`, který obsahuje všechny instalací soubory (včetně jádra), zavaděč a jeho konfigurační soubor.

I když je tento způsob vytvoření zaváděcího USB média pohodlný, má jednu zásadní nevýhodu: logická velikost zařízení bude vždy omezena na 1 GB, i když je skutečná kapacita USB klíčenky mnohonásobně větší. Budete-li ji chlouň elegantní bude jako jedna velká oblast typu Připojte ji (mount /mnt) a nakopírujte na ni ISO obraz instalacího CD. Nyní stačí klíčenku odpojíte (umount /mnt) a je hotovo.

4.3.3 Ruční kopírování souborů — pružná cesta

Pokud máte rádi více pružnosti, nebo jen chcete zjistit „co se děje za oponou“, můžete použít následující metodu.

4.4 Příprava souborů pro zavedení ze sítě pomocí TFTP

Pokud je váš počítač připojen do lokální sítě, můžete jej zavést ze sítě pomocí TFTP. Jestliže chcete pomocí TFTP zavést instalací systému, musíte na vzdáleném počítači nakopírovat zaváděcí soubory do specifických adresářů a povolit zavádění vaší stanice.

Musíte nastavit TFTP server a často i DHCP server nebo RARP nebo BOOTP server.

Klientovi můžete sdělit jeho IP adresu protokolem RARP (Reverse Address Resolution Protocol) nebo BOOTP. BOOTP je IP protokol, který informuje počítač o jeho IP adrese a prozradí mu, odkud si má stáhnout zaváděcí obraz. DHCP (Dynamic Host Configuration Protocol) je flexibilnější, zpětně kompatibilní rozšíření protokolu BOOFTP. Některé systémy mohou být nastaveny pouze pomocí DHCP.

Pro přenos zaváděcího obrazu ke klientovi se používá protokol TFTP (Trivial File Transfer Protocol). Teoreticky můžete použít server na libovolné platformě, která zavádíči obraz. Klientovi můžete sdělit jeho IP adresu protokolum RARP nebo BOOTP. DHCP je IP protokol, který informuje počítač o jeho IP adrese a prozradí mu, odkud si má stáhnout zaváděcí obraz. DHCP (Dynamic Host Configuration Protocol) je flexibilnější, zpětně kompatibilní rozšíření protokolu BOOFTP. Některé systémy mohou být nastaveny pouze pomocí DHCP.

4.4.1 Nastavení RARP serveru

Pro úspěšné nastavení RARP serveru potřebujete znát ethernetovou adresu klienta (stanice, kterou zavádíte), jinými slovy MAC adresu. Pokud tuto informaci nemáte k dispozici, můžete jej zařízení do záchranného (rescue) režimu (např. pomocí záchranné diskety) a použít příkaz `ip addr show dev eth0`.

Na lidských systémích, případně na systémech SunOS/Solaris máte k dispozici program `rarpd`. Nejprve musíte zaručit, že ethernetová adresa klienta bude zaznamenána v databázích „ethers“ (tj. bud v souboru `/etc/ethers` nebo pomocí NIS/NIS+) a „hosts“. Pak můžete spustit RARP démon. Na většině lidských systémů a na SunOS 5 (Solaris 2) to provedete (jako superuživatel root) příkazem `/usr/sbin/rarpd -a`, na jiných systémech příkazem `/usr/sbin/in.rarpd -a` a na SunOS 4 (Solaris 1) příkazem `/usr/etc/rarpd -a`.

4.4.2 Nastavení DHCP serveru

Jedním ze svobodných DHCP serverů je ISC `dhcpd`. Debian GNU/Linux jej obsahuje jako balík `isc-dhcp-server`. Následuje ukázka jednoduchého konfiguračního souboru (obykle `/etc/dhcp/dhcpd.conf`):

```plaintext
option domain-name "prikлад.cz";
option domain-name-servers ns1.priklad.cz;
option subnet-mask 255.255.255.0;
default-lease-time 600;
max-lease-time 7200;
server-name "karel";

subnet 192.168.1.0 netmask 255.255.255.0 {
    range 192.168.1.200 192.168.1.253;
    option routers 192.168.1.1;
}
```
host clientname {
 filename */tftpboot.img;
 server-name "karel";
 next-server dalsiserver.priklad.cz;
 hardware ethernet 01:23:45:67:89:AB;
 fixed-address 192.168.1.90;
}

V tomto příkladu máme jeden server jménem karel, který obstarává práci DHCP a TFTP serveru a také slouží jako brána do sítě. Ve svém nastavení si musíte změnit alespoň doménové jméno, jméno serveru a hardwarovou adresu klienta. Položka filename by měla obsahovat název souboru, který si klient stáhne přes TFTP.

Po úpravách konfiguračního souboru musíte restartovat dhcpd příkazem /etc/init.d/isc-dhcp-server restart.

4.4.3 Nastavení BOOTP serveru

V GNU/Linuxu můžete použít v zásadě dva BOOTP servery. Jednak je to CMU bootpd a druhý je vlastně DHCP server — ISC dhcpd. V distribuci Debian GNU/Linux jsou k dispozici v balících bootp a isc-dhcp-server.

Pokud chcete použít CMU bootpd, musíte nejprve odkomentovat (nebo přidat) jeden důležitý řádek v souboru /etc/inetd.conf. V systému Debian GNU/Linux můžete spustit update-inetd --enable bootps a následně restartovat inetd pomocí /etc/init.d/inetd reload. V jiných systémech přidejte řádku, která bude vypadat zhruba takto:

```
bootps dgram udp wait root /usr/sbin/bootpd bootpd -i -t 120
```

Nyní musíte vytvořit soubor /etc/bootptab. Jeho struktura je velmi podobná té, co používají staré dobré soubory printcap, termcap a disktab ze systému BSD. Blížší informace jsou v manuálové stránce bootptab. Pokud používáte CMU bootpd, musíte rovněž znát hardwarovou (MAC) adresu klienta. Následuje příklad souboru /etc/bootptab:

```
client:
    hd=/tftpboot:
    bf=tftpboot.img:\
    ip=192.168.1.90:\
    sm=255.255.255.0:\
    sa=192.168.1.1:\
    ha=0123456789AB:
```

Z příkladu budete muset změnit minimálně volbu „ha“, která značí hardwarovou adresu klienta. Volba „bf“ specifikuje soubor, který si klient stáhne protokolem TFTP, viz 4.4.5.

4.4.4 Povolení TFTP serveru

Aby vám TFTP server fungoval, měli byste nejprve zkontrolovat, zda je tftp povolen.

4.5 Automatická Instalace

Pokud spravujete více obdobných počítačů, můžete využít plně automatickou instalaci. Příslušné balíky se jmenují fai-quickstart a samozřejmě debian-installer. Více informací o FAI naleznete na domovské stránce FAI.

4.5.1 debian-installer

Instalační program Debianu podporuje automatické instalace pomocí předkonfiguračních souborů. Předkonfigurační soubor obsahuje odpovědi na otázky, které se debian-installer ptá během instalace. Tento soubor můžete nahrát ze sítě nebo z vyměnitelného média.

Kompletní dokumentaci o přednastavení včetně funkčního příkladu naleznete v B.
Kapitola 5

Zavedení instalačního systému

5.1 Zavedení instalátoru na 64-bit ARM

5.1.1 Nastavení konzoly
Na architektuře arm64 nemají obrazy debian-installeru pro Stretch povolen grafický instalátor, tudíž se používá sériová konzole. Firmware by měl konzoli rozpoznat automaticky, avšak pokud automatika selže, po zavedení Linuxu z GRUBu uvidíte hlášku `Booting Linux` a dále už nic.

Jestliže to je i váš případ, musíte parametry konzoly nastavit ručně. V nabídce GRUBu stiskněte klávesu `e` pro editaci příkazové řádky a upravte část

```plaintext
--- quiet
do podoby

console=zařízení,rychlost
například:

```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
metody. Pro ovládání instalačního systému budete muset použít sériovou konzoli, protože grafická instalace není na architektuře amd64 povolena.

Doporučený postup instalace je pomocí openembedded systému dodávaného s počítačem nakopírovat debian-installer, jádro a initrd na pevný disk a pak z těchto souborů zavést instalaci podle jednotlivých konfigurací (viz část 5.1.4.1). Po dokončení instalace je třeba ručně zásah, aby bylo možno nově nainstalovaný systém zavést.

Spusťte sériovou konzoli s rychlostí 115200, 8 bitů bez parity a počítač zapněte. Restartujte počítač a až se zobrazí hláška **Hit any key to stop autoboot**, stiskněte libovolnou klávesu. Objeví se výzva **Mustang#**, kde můžete použít příkazy U-Bootu pro nahráni a zavedení jádra, initrd a initrtd.

5.1.4 Zavedení z TFTP

Zavedení se sítě vyžaduje síťové připojení, funkční TFTP server a nejspíš i DHCP, RARP nebo BOOTP server pro automatické nastavení sítě.

Nastavení zavádění ze sítě je popsáno v **4.4**.

5.1.4.1 Zavedení z TFTP přes U-Boot

Zavedení ze sítě přes firmware U-Boot se skládá ze tří kroků: nastavení sítě, zavedení obrazů jádra, initrd a dtb do paměti a konečné spuštění nahráného jádra.

Síť můžete nastavit buď automaticky pomocí DHCP:

```bash
setenv autoload no
dhcp
```

nebo ručně nastavením několika proměnných:

```bash
setenv ipaddr ip_adresa_klienta
setenv netmask maska
setenv serverip ip_adresa_TFTP_serveru
setenv dnsip ip_adresa_DNS_serveru
setenv gatewayip ip_adresa_výchozí_brány
```

Budete-li chtít toto nastavení uložit trvale, použijte příkaz

```bash
saveenv
```

Nyní musíte nahrát obrazy jádra, initrd a dtb do paměti, což se provádí příkazem `tftpboot`. jako parametr příkazu musíte zadanou adresu v paměti, na kterou má obraz nahrát. Bohužel, mapa paměti se liší systém od systému a proto zde nemůžeme vypsat pevné adresy platné pro všechny.

Na některých systémech si U-Boot předdefinovává proměnné prostředí s vhodnými adresemí. Jsou to proměnné `kernel_addr_r`, `ramdisk_addr_r` a `fdt_addr_r`. Zda jsou ve vašem případě nastaveny, a připraveny k použití, si můžete ověřit příkazem

```bash
printenv kernel_addr_r ramdisk_addr_r fdt_addr_r
```

Nejsou-li definovány, budete si muset konkrétní hodnoty zjistit v dokumentaci k vašemu systému a nastavit je ručně. Například na systémech založených na SOC Allwinner SunXi (třeba Allwinner A10, architektura „sun4i“ nebo Allwinner A20, architektura „sun7i“) můžete použít následující hodnoty:

```bash
setenv kernel_addr_r 0x46000000
setenv fdt_addr_r 0x47000000
setenv ramdisk_addr_r 0x48000000
```

Po nastavení adres můžete stáhnout obrazy z dříve definovaného TFTP serveru a nahrát je do paměti příkazy:

```bash
tftpboot ${kernel_addr_r} název_souboru_s_obrazem_jádra
tftpboot ${fdt_addr_r} název_souboru_s_dtb
tftpboot ${ramdisk_addr_r} název_souboru_s_obrazem_initrd
```
Nyní zbývá nastavit parametry jádra a spustit ho. U-Boot předá jádru parametry přes proměnnou prostředí `bootargs`, takže do ní nastavte veškeré potřebné parametry jádra a instaláčního systému, jako je třeba konzole (5.3.1) nebo přednastavení (5.3.2.a.B). Například:

```
setenv bootargs console=ttyS0,115200 rootwait panic=10
```

Samotné spuštění jádra závisí na použitém formátu. Pro ulmage/ulntrd vypadá příkaz následovně:

```
bootm ${kernel_addr_r} ${ramdisk_addr_r} ${fdt_addr_r}
```

a pro nativní linuxový formát takto:

```
bootz ${kernel_addr_r} ${ramdisk_addr_r}:${filesize} ${fdt_addr_r}
```

POZNÁMKA

Při zavádění standardních linuxových obrazů je důležité nahrát obraz úvodního ramdisku až po jádru a dtb, jelikož U-Boot automaticky uloží do proměnné `filesize` velikost posledně nahraného souboru. Aby příkaz `bootz` fungoval správně, potřebuje znát velikost ramdisku, kterou mu předáte právě z proměnné `filesize`. Jestliže zaváděte jádro sestavené pro konkrétní platformu (tj. bez stromu zařízení), jednoduše vynechte parametr `${fdt_addr_r}`.

5.1.5 Zavenění z USB klíčenky přes UEFI

Předpokládejme, že jste si připravili vše nezbytné z 3.6.1 a 4.3. Nyní jednoduše zapojte klíčenku do volného USB portu a restartujte počítač. Systém by měl nastartovat a měl by zobrazit úvodní obrazovku s grafickou nabídkou¹. Zde si můžete vybrat z různých možností instaláčního systému, nebo prostě zmáčknout `Enter`.

5.2 Zpřístupnění

Někteří uživatelé mohou vyžadovat speciální podporu, například při zvětšování textu pro zrakově postižené. Většinu zpřístupňujících vlastností je třeba zapnout ručně. Zavaděče na většině architektur interpretují klávesnici jako QWERTY.

5.2.1 Uživatelské rozhraní instaláčního systému

Instalační systém Debianu podporuje několik rozhraní pro komunikaci s uživatelem, které se liší v míře zpřístupnění. Například rozhraní `text` používá čistý text, zatímco rozhraní `newt` využívá textová dialogová okna. Konkrétní rozhraní si můžete zvolit před zavedením instaláčního systému, jak je popsáno v dokumentaci proměnné `DEBIAN_FRONTEND` v kapitole 5.3.2.

5.2.2 Zařízení připojená rovnou na sběrnici

Některá zařízení pro zpřístupnění jsou dodávána jako karty zapojené uvnitř počítače, které čtou text přímo z videopaměti. Aby tyto karty fungovaly, musíte vypnout framebuffer zaváděcím parametrem `fb=false`. Tím však také snížíte počet dostupných jazyků.

5.2.3 Kontrastní téma

Uživatelé se zhoršeným zrakem mohou při instalaci použít vysoce kontrastní téma, které by mělo zlepšit čitelnost. Pro zapnutí stačí přidat zaváděcí parametr `theme=dark`.

¹Jestliže to hardware podporuje a pokud jste nepoužili pružný způsob vytvoření klíčenky a tuto možnost nezakázeli.
5.2.4 změna velikosti písma

5.2.5 Záchranný režim, expertní a automatizované instalace

Zpřístupnění funguje i v režimech Expert, Rescue a Automatizovaná instalace. V zaváděcí menu je naleznete pod nabídkou "Advanced options", do které se dostanete stiskem klávesy a. Na systémech s BIOSem (v zaváděním menu se ozvalo jedno pípnutí) musíte každou volbu potvrdit ještě klávesou Enter. Pro povolení syntézy hlasu stiskněte klávesu Enter. Na systémech s BIOSem (v zaváděním menu se ozvalo jedno pípnutí) musíte každou volbu potvrdit ještě klávesou Enter. Zde můžete použít klávesy x pro expertní režim, a pro záchranný režim nebo a pro automatizovaný režim.

Volba automatizované instalace umožňuje nainstalovat Debian zcela automaticky pomocí přednastavení. Tomuto způsobu se podrobně věnuje kapitola B.

5.2.6 Zpřístupnění v nainstalovaném systému

Problematikou zpřístupnění v nainstalovaném systému se zabývá wiki stránka Debian Accessibility.

5.3 Zaváděcí parametry

Parametry pro zavádění jsou vlastně parametry pro jádro Linuxu, které se používají v případech, kdy chceme zajistit, aby jádro korektně pracovalo s neposlušnými zařízeními. Ve většině je jádro schopno rozpoznat všechna zařízení automaticky, ale v některých speciálních případech mu musíte trochu pomoci.

Při prvním zavádění systému zkuste, zdali systém rozpozná všechna potřebné zařízení jen s implicitními parametry (tj. nenastavujte pro začátek žádné vlastní hodnoty). Systém obvykle naběhne. V případě, že se tak nestane, můžete systém zavést později poté, co zjistíte, jaké parametry je potřeba zadat, aby jádro korektně rozpoznalo váš hardware.

Poznámky o nejrůznějších zaváděcích parametrech a podivných zařízeních jsou k nalezení v Linux BootPrompt HOWTO. Následující text obsahuje popis jen stěžejních parametrů. Vybrané problémy popisuje 5.4.

5.3.1 Zaváděcí konzole

Jádro by mělo být schopno rozpoznat, že zavádíte systém ze sériové konzoly. Pokud máte v zaváděném počítači rovněž grafickou kartu (framebuffer) a připojenou klávesnici, měli byste při zavádění zadat parametr console=zařízení, kde zařízení je vaše sériové zařízení, což je obvykle něco jako ttyS0.

Někdy je potřeba zadat konkrétní parametry sériového portu, jako je jeho rychlost a parita, např. console=ttys0,9600n8.

Další obvyklé rychlosti bývají 57600 a 115200. Ujistěte se, že tento parametr přidáte až za "--", aby se toto nastavení zkopírovalo i do konfigurace zaváděče v instalovaném systému. (Pokud to instalátor pro daný zaváděč umožňuje.)

5.3.2 Parametry instalačního programu

Instalační systém rozpoznává několik užitečných parametrů.

Mnoho parametrů má i svou zkrácenou formu, která usnadňuje zadávání a také pomáhá obejít omezení příkazové řádky jádra. Pokud má parametr zkrácenou formu, bude uvedena v závorce za dlouhou podobu. Krátkou formu preferujeme i v příkladech této příručce.

debconf/priority (priority)

Nastavením tohoto parametru můžete změnit nejnižší prioritu zobrazených otázek.

Standardní instalace používá nastavení priority=high, což znamená, že se zobrazí jak kritické, tak důležité hlášky, ale normální a nevýznamné zprávy jsou přeskočeny. Jestliže se vyskytne problém, instalátor upraví priority otázek podle potřeb.

² aktuálními jádry (od verze 2.6.9) lze použít až 32 parametrů a 32 proměnných prostředí. Pokud tato čísla překročíte, jádro zpanikaří. Další omezení je, že se celá příkazová řádku jádra musí vejít do 255 znaků. Cokoliv nad tuto délku může být v tichosti oříznuto.
Když použijete parametr priority=medium, zobrazí se instalační menu a získáte nad instalací větší kontrolu. Při použití priority=low, nic se nepřeskakuje a zobrazí se všechny hlášky instalačního programu (to je ekvivalentní zaváděcí metodě expert). Hodnotou priority=critical se potlačí všechny zprávy a otázky se stupněm důležitosti menším než kritickým. Pro tyto potlačené otázky se použijí přednastavené hodnoty.

DEBIAN_FRONTEND Ovlivňuje uživatelské rozhraní, ve kterém bude instalace probíhat. Dostupné volby jsou:

- **DEBIAN_FRONTEND=noninteractive**
- **DEBIAN_FRONTEND=text**
- **DEBIAN_FRONTEND=newt**
- **DEBIAN_FRONTEND=gtk**

Výchozí rozhraní je **DEBIAN_FRONTEND=newt**. Pro instalaci přes sériovou konzolu může být vhodnější **DEBIAN_FRONTEND=text**. Některé specializované typy instalačních médií mohou nabízet jen omezený výběr rozhraní, nicméně rozhraní newt a text by měla být dostupná na většině instalačních médií. Na architekturách, kde to je možné, využívá grafický instalátor rozhraní gtk.

BOOT_DEBUG Tímto parametrem můžete kontrolovat množství zpráv, které se zapisují do instalačního logu.

- **BOOT_DEBUG=0** Toto je standardní hodnota.
- **BOOT_DEBUG=1** Uповídanější než obvykle.
- **BOOT_DEBUG=2** Spousty ladících informací.
- **BOOT_DEBUG=3** Pro opravdu detailní ladění se během zavádění několikrát spustí shell, ve kterém můžete kontrolovat a ovlivňovat náběh systému. Když shell ukončíte, bude zavádění pokračovat.

INSTALL_MEDIA_DEV Hodnota tohoto parametru zadává cestu k zařízení, ze kterého se má nahrát instalační systém, například **INSTALL_MEDIA_DEV=/dev/floppy/0**

Normálně se totiž zaváděcí disketa snaží najít kořenovou disketu na všech dostupných disketových mechanikách. Tímto parametrem jí sdělíte, že se má používat jenom na zadané zařízení.

log_host, log_port Způsobí, že instalátor nebude ukládat logovací hlášky jen do lokálního souboru, ale bude je také posílat přes síť vzdálenému syslogu běžícímu na zadaném počítači a portu. Jestliže parametr log_port vynecháte, bude se předpokládat standardní port syslogu 514.

lowmem Může vynutit, aby instalátor použil agresivnější nízkopaměťový režim, než by nastavil podle skutečně dostupné paměti. Možné hodnoty jsou 1 a 2. Více naleznete v 6.3.1.1.

noshell Zabrání instalátoru, aby na druhé a třetí virtuální konzoli nabízel interaktivní shell, což je užitečné při automatizovaných vzdálených instalacích, kdy je fyzická bezpečnost omezena.

debian-installer/framebuffer (fb) Některé architektury využívají pro instalaci v různých jazycích jaderný framebuffer (grafická konzole). Pokud na svém systému zaznamenáte symptomy jako chybové hlášky o btermu a boglu, černou obrazovku nebo zamrznutí instalace po několika minutách od spuštění, můžete framebuffer vypnout parametrem fb=false.

debian-installer/theme (theme) Téma určuje vzhled uživatelského rozhraní instalačního systému (barvy, ikony, atd.). Dostupná témata se liší podle použitého rozhraní. Rozhraní newt i gtk nyní podporují pouze alternativní téma „dark“, které bylo navrženo pro zrakově postižené uživatele. Téma můžete nastavit zaváděcím parametrem theme=dark.

netcfg/disable_autoconfig Standardně se debian-installer snaží získat nastavení sítě přes automatické nastavení sítě IPv6 a DHCP. Je-li získáno nějaké nastavení, instalační systém se na nic nebude ptát a automaticky bude používat nastavení zaváděcího parametru. Máte-li tedy na místní síti DHCP server nebo IPv6 router, ale z nějakého důvodu jej nechcete použít (protože např. pro účely instalace vrácí špatné hodnoty), můžete použít parametr netcfg/disable_autoconfig=true, kterým zabráníte automatickému nastavení sítě (ať už verze 4 nebo 6) a rovnou budete požádáni o ruční nastavení síťových údajů.
hw-detect/start_pcmcia Pokud chcete zabránit startu PCMCIA služeb, nastavte tento parametr na hodnotu false. Některé notebooky jsou totiž nechvalně známé tím, že při startu PCMCIA služeb zaseknou celý systém.

preseed/url (url) Zde můžete zadat url k souboru s přednastavením, podle kterého se má provést automatická instalace, viz 4.5.

preseed/file (file) Zde můžete zadat soubor s přednastavením, podle kterého se má provést automatická instalace, viz 4.5.

preseed/interactive Nastavením na hodnotu true se zobrazí i otázky, které byly přednastaveny. To může být užitečné pro testování nebo ladění souboru s přednastavením. Nastavení se neprojeví u otázek, které byly zadány jako parametry při zavádění systému. Pro ty však existuje speciální syntaxe, viz B.5.2.

auto-install/enable (auto) Při nastavení na hodnotu true odsune otázky obvykle zobrazované před začátkem přednastavení do nového systému. Podrobnosti o automatizaci instalaci pomocí této možnosti naleznete v části B.2.3.

finish-install/keep-consoles Během instalaci skrze sériovou nebo správcovskou konzoli jsou tradiční virtuální konzoly (VT1-VT6) v souboru /etc/inittab zakázány. Chcete-li tomu zabránit, nastavte na hodnotu true.

cdrom-detect/eject Před restartem debian-installer do nového systému se implicitně vysune optické médium použité během instalace. To někdy není potřeba (např. systém není nastaven pro automatické zavádění z CD-ROM) a v některých případech může být vysunutí dokonce nežádoucí. Například pokud mechanika neumí nahrát médium sama a uživatel zrovna není na místě, aby to provedl ručně. Příkladem takovýchto mechanik jsou mechaniky v přenosných počítačích a mechaniky se štěrbinovým podáváním. Pro zakázání automatického vysunutí nastavte parametr na hodnotu false.

base-installer/install-recommends (recommends) Nastavením na hodnotu false se systém pro správu balíků nebude pokoušet o instalaci doporučených balíků jak během instalace, tak později v nainstalovaném systému. Více naleznete v kapitole 6.3.4. Použitím této volby můžete získat štíhlejší systém, ale také je možné, že zmizí některé vlastnosti, které byste normálně od systému očekávali. Pro získání požadované funkčnosti pak můžete ručně doinstalovat některé vybrané doporučené balíky, nicméně musíte vědět, které balíky potřebujete a proto to by tuto možnost měli používat pouze zkušené harcovníci.

rescue/enable Nastavte-li tento parametr na hodnotu true, spustí se místo běžné instalace záchranný režim. Viz 8.7.

5.3.3 Použití zaváděcích parametrů pro zodpovězení otázek

Na stejném místě, kam se zadávají parametry pro jádro nebo instalaci program, můžete zadat odpověď na téměř každou otázku, se kterou se můžete při instalaci potkat. Tato možnost se využívá spíše ve specifických případech a je zde vypsáno jen několik příkladů. Podrobnější informace naleznete v dodatku B.2.2.

Druhou, pružnější, možností je zadat jazyk (language) a zemi (country) samostatně, přičemž můžete volitelně použít i parametr locale, kterým nastavíte výchozí locale instalovaného systému. Například můžete systému sdělit, že se nacházíte v Německu, ale rádi byste používali anglické prostředí v jeho britském standardu: language=en country=DE locale=en_GB.UTF-8.
KAPITOLA 5. ZAVEDENÍ INSTALAČNÍHO SYSTÉMU 5.4. PROBLÉMY S INSTALAČNÍM SYSTÉMEM

Anna/choose_modules (modules) Pomocí tohoto parametru můžete nechat automaticky nahrát komponenty instalačního systému, které se implicitně nenahrávají. Příkladem užitečných komponent jsou openssh-client-udeb (během instalace můžete užívat scp) a ppp-udeb (podporuje nastavení PPPoE, viz D.4).

Mirror/protocol (protocol) Instalační systém standardně používá pro stažení souborů ze zrcadel Debianu protokol http a při standardní prioritě otázek nelze za běhu změnit na ftp, nastavením tohoto parametru na hodnotu ftp můžete instalátor donutit, aby použil právě tento protokol. FTP zradači nemůžete vybrat z připraveného seznamu, vždy jej musíte zadat ručně.

Taskset/taskset/first (tasks) Tímto parametrem můžete nainstalovat úlohy, které nejsou při instalaci v interaktivním seznamu úloh dostupné. Příkladem budiž úloha kde-desktop. Více informací naleznete v části 6.3.5.2.

5.3.4 Předávání parametrů jaderným modulům

Jestliže jsou ovladače zakompilovány přímo do jádra, můžete jim předávat parametry tak, jak je popsáno v dokumentaci k jádru. Pokud však jsou ovladače zakompilovány jako moduly, znamená to, že jsou při instalaci zadány za důlibným způsobem než při zavádění nainstalovaného systému a nemůžete jim předat parametry klasickým postupem.

Musíte použít speciální syntaxi, kterou instalátor rozpozná a zařídí, aby se tyto parametry uložily do příslušných konfiguračních souborů a posléze se v pravý čas použily. Tyto parametry se automaticky přenesou i do nainstalovaného systému.

Poznamenejme, že v dnešní době je používání parametrů modulů téměř raritou, protože jádro ve většině případů správně rozpozná přítomný hardware a nastaví pro něj vhodné hodnoty automaticky. Pokud tomu tak není, stále můžete použít ruční nastavení.

Syntaxe pro nastavení parametrů modulu je následující:

```
název_modulu.název_parametru=hodnota
```

Potřebuji-li modulu předat několik parametrů, stačí syntaxi několikrát zopakovat. Například pro nastavení staré sítové karty 3Com, aby používala konektor BNC (koaxiální) a IRQ 10, zadali-byste:

```
3c509.xcvr=3 3c509.irq=10
```

5.3.5 Zapsání jaderných modulů na černou listinu

Někdy je nutné zánest modul na černou listinu a zabránit tak jádru a udevu, aby jej automaticky zavedli. Jedním z důvodů bývá ten, že modul způsobuje na vašem hardwaru problémy. Někdy také jádro registruje pro jedno zařízení dva ovladače, což může vytvářet problémy v případech, kdy jsou tyto ovladače navzájem konkureční, nebo pokud zařízení funguje správně jen s jedním z ovladačů a jádro nejprve zavede ten chybný ovladač.

Moduly můžete na černou listinu přidat následovně: jméno_modulu.blacklist=yes. Prakticky to znamená, že se modul zapíše do souboru /etc/modprobe.d/blacklist.local, což ho vyřadí jak během instalace, tak v nově nainstalovaném systému.

Poznamenejme, že modul stále může být zaveden explicitně přímo instaláčním systémem. Předejít tomu můžete instalácí v expertním režimu a odebráním modulu ze seznamu modulů, který se zobrazuje během několika fází rozpoznávání hardwaru.

5.4 Problémy s instalačním systémem

5.4.1 Spolehlivost CD

Občas, obzvláště se staršími CD mechanikami, se nemusí podařit zavést instalační systém. Dokonce je možné, že se systém zavede, ale poté již CD mechaniku nenalezne, nebo během instalace bude čtení vracet chyby.

Možných příčin je spoustu a můžeme zde vypsat jen ty nejběžnější, resp. můžeme zmínit obecné postupy. Zbytek je na vás.

Nejprve byste měli vyzkoušet dvě nejjednodušší věci.

• Pokud z CD nejde zavést, zkonztrukujte, že je disk vložen správně a že není špinavý.

• Pokud systém síce naběhne, ale rozpoznání CD selže, zkuste z menu opakovaně vybrat možnost Rozpoznat a připojit CD-ROM. Je známo, že se tím vyřeší některé problémy s DMA mužedních CD mechanik.
Jestliže to stále nepomohlo, zkuste některý z návrhů níže. Většina návrhů platí jak pro CD mechaniky, tak pro DVD, Blu-Ray a podobné mechaniky. Jako poslední záchrana zde stále existuje možnost zvolit instalaci z jiného média, např. ze sítě.

5.4.1.1 Běžné problémy

- Některé starší CD mechaniky nepodporují čtení disků vypálených na novějších vypalovačkách vyššími rychlostmi.
- Některé hodně staré CD mechaniky nefungují správně při povoleném DMA „direct memory access“.

5.4.1.2 Jak zjistit o problému co nejvíce (a možná jej vyřešit)
Pokud se nedaří z CD zavést systém, zkuste následující.

- Zkontrolujte, zda je v BIOSu povoleno zavádění z CD a že vaše CD mechanika podporuje média, která používáte.
- Pokud jste si stáhli iso obraz, zkontrolujte, že souhlasí kontrolní součet s tím, který se nachází v souboru MD5SUMS. Soubor by měl ležet na stejném místě, ze kterého jste stáhli obraz.

```bash
$ md5sum debian-testing-i386-netinst.iso
a20391b12f7ff22ef705cee4059c6b92 debian-testing-i386-netinst.iso
```

Dále zkонтrolujte, že kontrolová součet souhlasí i po vypálení obrazu.

```bash
$ dd if=/dev/cdrom | \\
> head -c `stat --format=%s debian-testing-i386-netinst.iso` | \\
> md5sum
a20391b12f7ff22ef705cee4059c6b92 - 
262668+0 records in
262668+0 records out
134486016 bytes (134 MB) copied, 97.474 seconds, 1.4 MB/s
```

Pokud se podařilo zavést instalační systém, ale ten už CD nerozpozná, postačí někdy z hlavního instalačního menu znovu spustit krok rozpoznání CD. Máte-li více mechanik, zkuste použít nějakou jinou. Jestliže to nepomáhá, nebo se při čtení objevují chyby, zkuste některou z rad níže. Pro následující kroky je třeba základní znalost jádra Linux.

- Zkontrolujte podezřelé hlášky na čtvrté virtuální konzoli, nebo si editorem nano prohlédněte obsah souboru /var/log/syslog. Poté zkonzolujte výstup příkazu dmesg.
- Ve výpisu příkazu dmesg se podívejte, zda byla vaše CD mechanika nalezena. Měli byste tam vidět něco podobného (ne nutně v tomto pořadí):

```bash
ata1.00: ATAPI: MATSHITADVD-ROM UJ-822S, 1,61, max UDMA/33
ata1.00: configured for UDMA/33
scsi 0:0:0:0: CD-ROM MATSHITA DVD-ROM UJ-822S 1.61 PQ: 0 ANSI: 5
sr0: scsi3-mmc drive: 24x/24x writer dvd-ram cd/rw xa/form2 cdda tray
cdrom: Uniform CD-ROM driver Revision: 5.20
```

Nevidíte-li nic podobného, je možné, že řadič, ke kterému je vaše CD mechanika připojena, nebyl rozpoznán, nebo není podporován. Jestliže víte, který ovladač je vyžadován pro váš řadič, můžete jej zkusit nahrát ručně příkazem modprobe.

- Zkontrolujte, zda se v adresáři /dev/ vytvořil soubor zařízení odpovídající vaší CD mechanice. Podle výše uvedeného příkladu by to byl soubor /dev/sr0. Také by měl existovat symbolický odkaz /dev/cdrom.
- Příkazem mount se přesvědčete, zda je CD připojeno. Pokud ne, zkuste je připojit ručně.
KAPITOLA 5. ZAVEDEŇÍ INSTALAČNÍHÍ SYSTÉMU

5.4. PROBLÉMY S INSTALAČNÍM SYSTÉMEM

5.4. PROBLÉMY S INSTALAČNÍM SYSTÉMEM

5.4.1 Instalace problémy

$ mount /dev/hdc /cdrom

Podívejte se, zda tento příkaz nevyvolal nějaká chybové hlášení.

- Zkontrolujte, zda je DMA zapnuté:

$ cd /proc/ide
$ grep using_dma settings

Číslo „1“ v prvním sloupci za textem using_dma znamená, že je DMA povoleno. Pokud je, zkuste je vypnout:

$ echo -n "using_dma:0" >settings

Před spuštěním příkazu se ujistěte, že jste v adresáři zařízení, které odpovídá vaší CD mechanice.

- Pokud se během instalace vyskytnou problémy, zkuste zkontrolovat integritu média pomocí volby v hlavním menu instalacího systému. Toto menu můžete použít jako rozumný test, zda je možné spolehlivě přečíst celé CD.

5.4.2 Zaváděcí konfigurace

Pokud se jádro zasekne během zavádění, nerozezná připojená zařízení, nebo disky nejsou korektně rozpoznány, v prvé řadě zkontrolujte parametry jádra, kterými se zabývá 5.3.

V některých případech může za nefunkčnost zařízení chybějící firmware, jak popisují části 2.2 a 6.4.

5.4.3 Význam hlášek při zavádění jádra

Během zavádění systému můžete vidět spoustu hlášení typu can’t find not present, can’t initialize ... nebo this driver release depends on Většina těchto hlášení je neškodná. Vy je vidíte proto, že jádro instalacího systému je přeloženo tak, aby mohlo běžet na počítačích s odlišnými hardwarovými konfiguracemi a mnoha různými periferními zařízeními. Samozřejmě že žádný počítač asi nebudete mít všechna zařízení, tudíž systém nahlásí několik nenalezených zařízení. Také se může stát, že se zavádění na chvíli zastaví. To se stává při čekání na odpověď od zařízení, které v systému chybí. Pokud se vám zdá doba, za kterou systém naběhne, příliš dlouhá, můžete si později vytvořit vlastní jádro (viz 8.6).

5.4.4 Hlášení problémů s instalací

Jestliže se dostanete přes úvodní fázi zavedení systému, ale nemůžete instalaci dokončit, můžete použít menu Uložit záznamy pro pozdější ladění. Toto menu můžete použít při spuštění instalace, aby vám umožnilo uložit všechna data, která vám mohou pomoci při řešení problémů.

Další užitečné informace můžete najít během instalace v adresáři /var/log/ a později v novém systému ve /var/log/installer/.

5.4.5 Pošlete nám zprávu o instalaci

Pokud problém přetrvává, prosíme vás o zaslání zprávy o průběhu instalace. Zprávu o instalaci můžete zaslat i v případě, že vše proběhlo bez problémů — získáme tak přehled o nejrůznějších hardwarových konfiguracích.

Zprávu o instalaci budou publikovány v našem systému sledování čidla (BTS, Bug Tracking System) a budou přeposkytovány do veřejného diskusního listu. Proto se ujistěte, že použijete emailovou adresu, u které vám nevadí, že bude zveřejněna.

Máte-li funkční systém s Debianem, je nejlepší odesílat zprávu pomocí balíku reportbug. Nainstalujte si potřebné balíky (apt install installation-report reportbug), nastavte reportbug podle kapitoly 8.5.2 a spustěte příkaz reportbug installation-reports.

Při psaní zprávy můžete využít následující šablony, kterou pak zašlete jako zprávu o chybě vůči pseudobalíku installation-report na adresu submit@bugs.debian.org.
KAPITOLA 5. ZAVEDENÍ INSTALAČNÍHO SYSTÉMU
5.4. PROBLÉMY S INSTALAČNÍM SYSTÉMEM

Package: installation-reports

Boot method: <Jak jste zavedli instalaci? CD? Disketa? Sít?>
Image version: <Celé url, odkud jste stáhli obraz(y)>
Date: <Datum a čas instalace>

Machine: <Popis počítače (např. IBM Thinkpad T41)>
Processor:
Memory:
Partitions: <Výstup příkazu df -Tl;>

Output of lspci -knn (or lspci -nn):

Base System Installation Checklist:
[O] = OK, [E] = Error (please elaborate below), [] = didn’t try it

Initial boot: []
Detect network card: []
Configure network: []
Detect CD: []
Load installer modules: []
Detect hard drives: []
Partition hard drives: []
Install base system: []
Clock/timezone setup: []
User/password setup: []
Install tasks: []
Install boot loader: []
Overall install: []

Comments/Problems:

<Zde se můžete rozepsat o způsobu instalace, zmínit nápady a postřehy, které vás napadly během instalace.>

V samotné zprávě podrobně popište problém, včetně posledních viditelných hlášek jádra v okamžiku zaseknutí počítače. Také nezapomeňte popsat kroky, kterými jste se do problémové části dostali.
Kapitola 6

Používáme instalační program Debianu

6.1 Základní principy

Instalační program Debianu se skládá z mnoha malých, jednoúčelových komponent. Každá komponenta má na starosti jeden krok instalace (od úvodního dialogu pro výběr jazyka až po závěrečný restart do nového systému). Komponenty se snaží pracovat samostatně, ale pokud je to nutné, zeptají se uživatele na další postup.

Otázky samotné mají přiřazené různé priority. Uživatel si může nastavit úroveň zobrazených otázek, takže uživatel začátečník se nemusí zatěžovat nepodstatnými věcmi (instalační program dosáhne „rozumně“ hodnoty). Implicitně se debian-installer ptá pouze na otázky s vysokou prioritou, což vede k poměrně automatickému procesu s minimem uživatelských zásahů.

Pokud se vyskytne problém, zobrazí se chybová obrazovka s popisem problému a následně se objeví hlavní menu instaláčního programu, kde můžete situaci napravit. V ideálním případě uživatel menu vůbec neuvítí a bude pouze odpovídat na otázky jednotlivých komponent. Oznámení o vážných problémech mají nastavenou „kritickou“ prioritu, tudíž budou zobrazeny vždy.

Některá výchozí nastavení instaláčního programu lze změnit pomocí zaváděcích parametrů při startu debian-installeru. Například pokud si chcete vynutit statické nastavení síť (implicitně se používá DHCP nebo automatické nastavení IPv6), použijte parametr netcfg/disable_autoconfig=true. Seznam dostupných parametrů naleznete v kapitole 5.3.2.

Pokročilí uživatelé jistě ocení přístup do (standardně skrytého) menu, ve kterém mohou kontrolovat každý krok instalace. Menu vyvoláte tak, že při startu přidáte zaváděcí parametr priority=medium. Jestliže váš hardware vyžaduje zadat při instalaci jaderných modulů nějaké parametry, je nutné spustit instaláční program v „expertním“ režimu. Toho docílíte tak, že spustíte instalátor příkazem expert, nebo použijete zaváděcí parametr priority=low. Expertní režim vám dá plnou kontrolu nad instaláčním procesem.

Některé dialogy mohou obsahovat podrobnější nápovědu, což je indikováno ve spodním řádku obrazovky textem „F1 nápověda“. Chybové hláskys jsou přesměrovány na čtvrtou konzolu (známou jako tty4). Do této konzoly se můžete přepnout klávesami Levý Alt-F4 (držte levou klávesu Alt a stiskněte funkční klávesu F4). Zpět do instaláčního programu se vrátíte stiskem Levý Alt-F1.

6.1.1 Používání grafického instalátoru

Grafický instalátor pracuje úplně stejně jako instalátor textový a tedy můžete pro instalaci plně využít informací sepsaných v zbytku příručky.

Preferujete-li ovládání pomocí klávesnice, měli byste vědět dvě věci. Pro rozbalení/sbalení seznamu (např. při výběru continentů a zemí) můžete použít klávesy + a -. U otázek, kde můžete vybrat více než jednu možnost (např.
6.2 Úvod do komponent

V následujícím seznamu komponent instalačního programu je uveden pouze stručný popis komponenty. Detaily použití konkrétní komponenty jsou v 6.3.

localechooser Umožní uživateli výběr jazyka, země a národního prostředí, které se použijí jak během instalace, tak v novém systému. Za předpokladu, že je překlad kompletní, bude instalační program zobrazovat zprávy ve vybraném jazyce. Pokud není, některé texty se zobrazí anglicky.

cdrom-detect Vyhledá a připojí instalaci CD Debianu.

netcfg Nastaví síťová připojení, aby se mohl zbytek systému instalovat ze sítě.

choose-mirror Předloží seznam zrcadel s debianími archivy, ze kterého si můžete vybrat, odkud se balíky stáhnou.

cdrom-checker Zkontroluje integritu CD-ROM. Takto si můžete ověřit, že instalací CD-ROM nejsou poškozená.

lowmem Lowmem se snaží rozpoznat systémy s malou operační pamětí a poté se v určitých okamžicích snaží z paměti odstranit nepotřebné části.

base-installer Nainstaluje základní množinu balíků, které jsou potřeba pro samostatný běh Debianu.
KAPITOLA 6. POUŽÍVÁME INSTALAČNÍ... 6.3. POUŽITÍ JEDNOTLIVÝCH KOMPONENT

apt-setup Nastaví apt, což se většinou děje automaticky na základě média, ze kterého je spuštěn instalační systém.

pkgsel Umožní vybrat a nainstalovat dodatečný software pomocí nástroje tasksel.

os-prober Umí rozpoznat operační systémy nainstalované na počítači. Tuto informaci pak předá následující komponente (bootloader-installer), která vám může nabídnout možnost přidat objevené operační systémy do startovacího menu zavaděče. Takto si můžete při startu počítače vybrat, který operační systém chcete zavést.

bootsloader-installer Nainstaluje na disk některý z dostupných zavaděčů. Tento krok je důležitý, protože bez něj byste museli Debian zavádět z diskety nebo CD-ROM. Mnoho zavaděčů vám při startu nabídne možnost zavést i jiné operační systémy.

shell Umožní vám spustit shell (buď z menu, nebo na druhé konzoli).

save-logs Umí na disketu, síť, pevný disk nebo jiné médium uložit informace, které se vám mohou hodit při analyzování případného problému.

6.3 Použití jednotlivých komponent

V této části podrobně popišeme každou komponentu instalacičního programu. Komponenty jsou seskupeny do celků podle kontextu, ve kterém se během instalace vyskytují. Poznamenejme, že při instalaci se nemusí vždy využít všechny komponenty — to závisí na způsobu instalace a na dostupném hardwaru.

6.3.1 Nastavení instalacičního programu a rozpoznání hardwaru

Předpokládejme, že debian-installer úspěšně nastartoval a nyní se díváte na jeho první obrazovku. V tento okamžik je debian-installer ještě poměrně hloupý a nepoužitelný. Neví nic o hardwaru vašeho počítače, nezná váš preferovaný jazyk a dokonce ani netuší, jaký úkol mu byl přidělen. Ale nebojte se. Jako správný průzkumník začne debian-installer zkoumat své okolí a po nějaké dobře bude mít slušný přehled o okolním hardwaru. Poté se pokusí nalézt zbytek svých komponent a sám sebe přemění ve schopnou, dobře vychovanou firmu a Bohužel, stále existují věci, se kterými si debian-installer nedokáže poradit a proto mu musíte trochu pomoci (například vybrat jazyk, ve kterém má instalace probíhat, odsouhlasit rozložení klávesnice a podobné).

Během této fáze si jistě všimnete, že debian-installer několikrát rozpoznává hardware. Poprvé je úzce zaměřen na hardware, který by mohl obsahovat další části instalacičního programu, tj. CD mechaniky nebo síťové karty. Další rozpoznávání hardwaru probíhá později, když se hledají pevné disky, protože před prvním rozpoznáváním ještě nemusí být k dispozici všechny ovladače.

Při rozpoznávání hardwaru si debian-installer kontroluje, zda ovladače pro nalezený hardware vyžadují zavedení firmware. Jestliže požadovaný firmware není dostupný, zobrazí se nabídka na jeho nahrání z výměnného média. Podrobnosti naleznete v části 6.4.

6.3.1.1 Kontrola dostupné paměti / nízkopaměťový režim

Jednou z prvních věcí, které debian-installer zkontroluje, je velikost operační paměti. Pokud má váš systém málo paměti, tak se tato komponenta pokusí provést změny v instalacičním procesu tak, aby byla instalace možná i na tomto počítači.

Prvním krokem ke snížení paměťové náročnosti je vyhození všech překladů, což znamená že instalace bude probíhat pouze v angličtině. Samozřejmě, že po dokončení instalace si můžete systém lokalizovat dle potřeb (viz Lokalizace Debianu).

Pokud to nestačí, instalace přejde na dietu, při které nahraje pouze ty komponenty, které jsou nezbytné pro dokončení základní instalace. Tím se o něco sníží funkčnost systému. Sice budete mít možnost nahrát dodatečné komponenty ručně, ale můžete na paměti, že každá komponenta znamená další paměť a proto se může stát, že instalace se stále. Když instalace probíhá v nízkopaměťovém režimu, je doporučeno vytvořit odkládací oblast o velikosti nejméně (64–128 MB). Odkládací oblast se použije jako virtuální paměť a tedy zvýšíva dostupnost paměti. Instalační systém se pokusí aktivovat odkládací oblast co nejdříve. Intenzivní využívání odkládací oblasti výrazně zvýší diskovou aktivitu a sníží výkon celého systému.

Podrobnosti naleznete v části 6.4.

33
Důraznější nízkopaměťový režim lze vynutit i v případech, kdy by podle dostupné paměti měla fungovat jeho mírnější varianta nebo dokonce i běžná instalace. Stačí použít parametr „lowmem“, jak popisuje část 5.3.2.

6.3. Výběr místního prostředí

První uživateli viditelný krok instalace slouží k výběru národního prostředí, které se použije jak během instalace, tak později v novém systému. Nastavení se skládá z výběru jazyka, geografického umístění a tzv. locales.

Nejprve se tedy zobrazí seznam dostupných jazyků, ze kterého si vyberete jazyk, ve kterém má instalace probíhat¹. Jednotlivé položky v seznamu se skládají z anglického názvu (vlevo) a lokálního názvu v daném jazyce (napravo). Pro češtinu vypadá záznam nějak takto:

<table>
<thead>
<tr>
<th>Czech</th>
<th>Čeština</th>
</tr>
</thead>
</table>

Některé jazyky mají k dispozici více variant (např. portugalská a brazilská portugalskština). Seznam je seřazen abecedně podle levého sloupce (anglických názvů). Drobnou výjimkou z řazení je položka “C” na počátku seznamu.²

POZNÁMKA

Vyberete-li ze seznamu položku „C“, bude instalace pokračovat v angličtině a instalovaný systém nebude mít podporu pro národní prostředí, protože se nenainstaluje balík locales. Tato volba může být zajímavá pro některé správce, kteří tvrdí, že lokalizace nemá na serveru co dělat.

Zvolíte-li jazyk, který je veden jako oficiální v několika zemích², budete v další otázce dotázaní na výběr konkrétní země. Pokud vám nabídnojte seznam zemí nebude vyhovovat, můžete zvolit položku Jiná, což vám nabídne seznam kontinentů. Po výběru kontinentu se zobrazí seznam zemí, které se na něm nachází.

Jestliže je s jazykem svázána pouze jediná země, bude automaticky předvybrána, ale nic vám nebrání si výběr popsaným způsobem zvolit zemi, ve které se právě nacházíte, nebo ve které skutečně žijete.

Proč je výběr geografického umístění tak důležitý? Protože se tato odpověď použije později v instalaci pro výběr výchozího časového pásma a také pro výběr vhodného sítového zrcadla s archivem Debianu, které by mělo ležet co nejblíže. Správné nastavení země může hrát i drobnou roli při výběru klávesnice.

Na základě zvolené kombinace jazyka a umístění se vytvoří výchozí místní prostředí (locale). Pokud pro takové prostředí neexistuje definice souboru, zobrazí se nabídka všech dostupných prostředí pro daný jazyk a budete vyzváni k výběru jednoho z nich.

Všechna prostředí automaticky používají jako výchozí kódování UTF-8.

Instalujete-li s nízkou prioritou otázek, bude vám nabídnuta možnost výběru dodatečných prostředí (nezávislých na předchozí volbě jazyka a umístění) a také možnost instalace zastaralých prostředí³. Jestliže vyberete více prostředí, budete ještě dotázaní, které z nich se má použít jako výchozi.

6.3.1.3 Výběr klávesnice

Klávesnice bývají obvykle přizpůsobeny znakům používaným v daném jazyce. Vyberte klávesnici, která odpovídá vašemu národnímu rozložení, nebo je alespoň velmi podobná. Po skončení instalace si můžete vybrat vhodné klávesové rozložení z mnohem většího spektra (jako uživatel root spusťte příkaz dpkg-reconfigure keyboard-configuration).

Šipkami přesuňte kurzor na vybrané klávesové rozložení a stiskněte Enter. (Šipky by měly být na všech klávesnicích na stejném místě, takže jsou nezajímavé na zvoleném rozložení.)

6.3.1.4 Hledání instalačního ISO obrazu

Při instalaci metodou hd-media nastane okamžik, kdy budete muset instalaci program navést k ISO obrazu instalačního systému Debianu, na kterém se nachází zbytek instalací souborů. Abyste obraz nemuseli hledat ručně,

¹Ve výjimečných případech se může stát, že ve vybraném jazyce nebudou některé texty instalace přeloženy — pak se zobrazí anglicky.

²Technicky řečeno: pokud k jazyku existuje více locales s různými kódy zemí.

Používáme instalační komponenty

6.3. POUŽITÍ JEDNOTLIVÝCH KOMPONENT

Pomůže vám tímto úkolem komponenta iso-scan.

iso-scan nejprve připojí všechna bloková zařízení (např. diskové oblasti), na kterých se nachází známý souborový systém a poté na nich hledá soubory končící příponou .iso (resp. .ISO). Po nalezení každého iso obrazu si **iso-scan** zkонтroluje jeho obsah a zjistí, zda se jedná o plánový obraz instalacího CD. Pokud ano, máme vyhráno a instalace může pokračovat. V opačném případě se hledá další obraz. Pokud toto hledání neuspěje, ještě není vše ztraceno. První pokus totiž kvůli rychlosti prohledává pouze kořenový adresář a první úrovní jeho podadresářů. Tzn. naleze

Selhalo-li tedy první hledání, **iso-scan** se zeptá, zda chcete spustit důkladnější proces. Tento druhý pokus se nedivá pouze do nejvyšších adresářů, ale opravdu prohledá celý disk.

Pokud **iso-scan** neuspěje ani na druhý pokus, vratí se zpět do původního operačního systému a zkonzultuje, zda má soubor správnou příponu (končící na .iso), zda je umístěn na souborovém systému, který umí debian-installer rozpoznat a zda není iso obraz poškozený (zkontroluje kontrolní součet). Zkušenější unixoví uživatelé mohou vše provést bez restartu počítače na druhé konzoli.

6.3.1.5 Nastavení sítě

Pokud na začátku toho kroku instalátor zjistí, že máte více síťových rozhraní, budete si muset vybrat jedno, které použijete jako hlavní, tj. to, ze kterého budete instalovat. Zbylá rozhraní zůstanou nenastavena a budete je muset nastavit po skončení instalace ručně — viz manuálová stránka interfaces(5).

6.3.1.5.1 Automatické nastavení sítě

6.3.1.5.2 Ruční nastavení sítě

Při ručním nastavení sítě vás netcfg vyvze k zadání údajů z 3.3 (IP adresa, Sítová maska, Brána, Adresy jmenných serverů a Název počítače). Pokud k instalaci používáte bezdrátové připojení, budete dotáčané ještě na Bezdrátové ESSID (název bezdrátové sítě) a WEP klíč nebo přístupovou frázi WPA/WPA2.

6.3.1.5.3 IPv4 a IPv6

6.3.1.6 Výběr síťového zrcadla

Tato komponenta se spustí pouze v případě, že instalací se snaží nahrát své další komponenty nebo základní systém ze sítě.
Nejprve se zobrazí seznam zemí se zrcadly Debianu, přičemž předvolena bude země, kterou jste vybrali na začátku instalace.

- Po výběru země se nabídne seznam zrcadel v dané zemi. Dobrou volbou bývají „hlavní“ zrcadla, která mají tvar ftp.kód_země.debian.org.
- Pokud nechcete použít oficiální zrcadlo, vyberte v seznamu zemí možnost **zadat informace ručně**. Budete dotázaní na jméno počítače, ze kterého se mají části Debianu stáhnout. Zajímavou volbou může být zrcadlo httpredir.debian.org, což je ve skutečnosti jen alias na jedno z oficiálních zrcadel, které by vám zrovna mělo být nejbližší.

Další otázka se bude ptát na nastavení proxy serveru. Proxy server slouží jako prostředník mezi vámi a Internetem — místo abyste se obrátili přímo na server v Internetu, komunikujete se svým proxy serverem. Proxy server předává vaše dotazy cílovému serveru v Internetu, vyzvedne od něj odpověď a tu pak předá vašemu počítači. Většina domácích uživatelů zde nemusí nastavovat nic, proxy server se obvykle vyskytuje jako součást firewallu pro větší nebo podnikové síti.

Na závěr se zvolené zrcadlo otestuje a automaticky se z něj stáhnou potřebné balíky. Pokud se vyskytne problém (server není dostupný, neobsahuje zvolenou verzi Debianu, apod.), můžete si ze seznamu vybrat jiné zrcadlo⁴, případně zkusit jiné nastavení proxy serveru.

6.3.1.7 Nastavení hodin a časového pásma
Instalační systém se nejprve pokusí získat přesný čas z některého časového serveru na Internetu (protokolem NTP). Pokud se to nepovede, bude debian-installer předpokládat, že čas získaný ze systémových hodin při zavádění instalace je správný. Během instalace není možné nastavit čas ručně.

Podle země vybrané na začátku instalace se může zobrazit seznam časových pásů dostupných v daném místě. Existuje-li pro zadané místo pouze jediné časové pásma, optáčka se nezobrazí.

Instaluji-li v expertním režimu, nebo pokud snížíte prioritu otázek na střední, budete moci navíc zvolit časové pásma UTC (Univerzální koordinovaný čas).

Pokud z nějakého důvodu chcete pro instalovaný systém použít časové pásmo, které neodpovídá zvolenému místu, máte dvě možnosti.

1. Nej jednodušší možností je počkat s výběrem jiného časového pásma až po dokončení instalace. V nainstalovaném systému pak stačí spustit příkaz:

   ```bash
   # dpkg-reconfigure tzdata
   ```

2. Alternativně můžete zadat časové pásmo na úplném začátku instalace předáním zaváděcího parametru time/zone= hodnota

 kde hodnota je město platné časové pásma, například Europe/Prague nebo UTC.

 Pro automatizované instalace můžete požadované časové pásmo nastavit také pomocí přednastavení (viz dodatek B, přesněji část B.4.6).

6.3.2 Nastavení uživatelů a hesel
Těsně před nastavením hodin vám instalací systém umožní nastavit účet „root“ a/nebo účet pro prvního uživatele. Další uživatelské účty můžete vytvořit po dokončení instalace.

6.3.2.1 Nastavení rootova hesla
Účet **root** je účtem pro **superuživatele**, na kterého se nevztahují bezpečnostní omezení. Měli byste ho používat pouze, když provádějete správu systému, a jen na dobu nezbytně nutnou.

Uživatelská hesla by měla být sestavena z alespoň 6 písmen, obsahovat malá a velká písmena včetně dalších znaků (jako , .). Speciální pozornost věnujte výběru hesla pro roota, protože je to velmi mocný účet. Vyhněte se slovům ze slovníků, jménům oblibených postav, jakýmkoliv osobním údajům, prostě čemukoliv, co se dá lehce uhodnout.

⁴Je-li zvolené zrcadlo dlouhodobě nedostupné, je možné, že již neexistuje, protože seznam zrcadel se vytváří před vyjitrím stabilní verze Debianu, což mohlo být před několika měsíci (a v některých případech i před několika lety).
Jestliže vám někdo bude tvrdit, že potřebuje heslo vašeho rootovského účtu, buďte velice ostražití. V žádném případě bude někdo heslo prozrazovat! Jedná se o daný stroj spravuje více spolu-administrátorů.

Jestliže heslo pro uživatele root nezadáte, bude tento účet zablokován. Aby bylo možné nový systém spravovat, musíte později instalovat nástroj `sudo`, pomocí kterého budete moci první vytvořený uživatel získat oprávnění uživatele root.

6.3.2 Vytvoření uživatelského účtu

Systém se zeptá, zda nyní chcete vytvořit uživatelský účet. (Účet je právo k používání počítače, tvoří ho jméno uživatele a jeho heslo). Tento účet můžete používat ke každodenní práci. Jak již bylo řečeno, nepoužívejte účet superuživatele pro běžné úkoly.

Pokud budete chtít vytvořit další účet, můžete to udělat kdykoliv po skončení instalace programem `adduser`.

6.3.3 Rozdělení disku a výběr přípojných bodů

Nyní, po posledním rozpoznavání hardwaru, by již měl být `debian-installer` v plné síle, připraven na instalaci podle uživatelských požadavků a připraven na opravdu všem. Jak praví název této části, bude se několik následujících komponent zabývat rozdělením disků, vytvořením souborových systémů, přiřazením přípojných bodů a volitelně na-stavením souvisejících zařízení.

Nyní nastal čas rozdělit pevné disky. Pokud se při dělení disků zrovna necítíte silní v kramflecích, nebo pokud chtěte přiřadit další úložné zařízení, lze to udělat kdykoliv po skončení instalace programem `adduser`.

Instalační systém umožňuje použít různé druhy pokročilého dělení disků a zajímavých úložních zařízení, často i kombinováno.

- **Logical Volume Management (LVM)**
- **Softwarový RAID**
 - Podporované jsou RAID úrovni 0, 1, 4, 5, 6 a 10.
- **Šifrování**
- **Multipath (experimentální)**
 - Podpora pro multipath je dostupná pouze pokud jste používali při zavádění instalačního systému. Více informací naleznete na naší [Wiki](https://example.com/wiki).

Podporované jsou následující souborové systémy.

- **ext2r0, ext2, ext3, ext4**
 - Výchozí souborový systém je většinou případů `ext4`. Při použití automatického dělení se pro `/boot` oblast implicitně použije `ext2`.

37
KAPITOLA 6. POUŽÍVÁME INSTALAČNÍ…

6.3. POUŽITÍ JEDNOTLIVÝCH KOMPONENT

• jfs (není dostupný na všech architekturách)
• xfs (není dostupný na všech architekturách)
• reiserfs (volitelný, není dostupný na všech architekturách)

Podpora pro souborový systém Reiser již není dostupná automaticky, ale můžete ji povolit při spuštění instalace se střední nebo nízkou úrovní otázek tak, že necháte nahrát komponentu partman-reiserfs. Podporována je pouze verze 3.

• jffs2
Na některých systémech se používá pro čtení flash paměti. Není možné vytvářet nové souborové systémy tohoto typu.
• FAT16, FAT32

6.3.3.2 Asistované dělení

Zvolíte-li automatické rozdělování, měli byste mít na výběr několik možností: vytvořit oblasti přímo na disku (klasický způsob), použít Logical Volume Management (LVM), nebo použít šifrované LVM⁵. Ve druhém a třetím případě vytvoří instalátor většinu oblastí uvnitř jedné veliké; výhoda je ta, že oblasti uvnitř této veliké oblasti pak můžete relativně jednoduše zvětšovat a případně zmenšovat. U šifrovaného LVM bude tato veliká oblast šifrovaná a pro přístup k datům na ni uloženým budete muset znát přístupovou frázi. Šifrované LVM má ještě jednu výhodu, a to tu, že před použitím se celá oblast přepíše náhodnými daty, takže nebude možné rozeznat, které části oblasti se aktivně používají, a také tím zrušíte stopy po předchozích instalacích. Musíte však počítat s tím, že mazání zabere určitý čas, který může být u větších oblastí docela značný.

POZNÁMKA

(Šifrované) LVM nemusí být k dispozici na všech architekturách.

POZNÁMKA

Při automatickém rozdělení pomocí LVM (nebo šifrovaného LVM), se budou muset na zvolený disk zapsat některé změny provedené v tabulce oblastí. Tyto změny z disku efektivně smažou všechna stávající data a tento krok nebudete moci vrátit zpět. Před samotným zápisem však budete pro jistotu dotázáni.

<table>
<thead>
<tr>
<th>Způsob dělení</th>
<th>Minimální místo</th>
<th>Vytvořené oblasti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Všechny soubory v jedné oblasti</td>
<td>600MB</td>
<td>/, swap</td>
</tr>
<tr>
<td>Samostatná oblast pro /home</td>
<td>500MB</td>
<td>/, /home, swap</td>
</tr>
<tr>
<td>Samostatné oblasti pro /home, /var a /tmp</td>
<td>1GB</td>
<td>/, /home, /var, /tmp, swap</td>
</tr>
</tbody>
</table>

⁵Instalátor zašifruje skupinu svazků pomocí 256 bitového klíče AES a využije pro to „dm-crypt“, který je součástí linuxového jádra.
Pokud jste zvolili automatické rozdělení pomocí (šifrovaného) LVM, vytvoří se také malá oblast pro `/boot`. Ostatní oblasti, včetně okrajové, budou vytvořeny uvnitř LVM.

Jestliže jste instalaci na architektuře 64-bit ARM zavedli v režimu EFI, pak se při automatickém rozdělení disku vytvoří malá zaváděcí oblast pro zavaděč EFI, formátovaná souborovým systémem FAT32. Tato oblast je známa jako „EFI System Partition (ESP)“. Při ručním dělení disku přibude ve formátovacím menu položka Použít oblast jako: systémová oblast EFI.

Na další obrazovce se zobrazí tabulka rozdělení disku(ů) společně s informacemi o souborových systémech a připojných bodech. Seznam oblastí může vypadat třeba takto:

<table>
<thead>
<tr>
<th>Disku</th>
<th>Pos</th>
<th>Formát</th>
<th>Velikost</th>
<th>Zajímavý parameter</th>
<th>Souborový systém</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCSI1</td>
<td>(0,0,0) (sda)</td>
<td>6.4 GB</td>
<td>WDC AC36400L</td>
<td>/boot</td>
<td>ext2</td>
</tr>
<tr>
<td></td>
<td>1. primární</td>
<td>32.4 MB</td>
<td>B f</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. primární</td>
<td>551.0 MB</td>
<td>swap</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. primární</td>
<td>5.8 GB</td>
<td>ntfs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pří/log</td>
<td>8.2 MB</td>
<td>VOLNÉ MÍSTO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCSI2</td>
<td>(1,0,0) (hdb)</td>
<td>80.0 GB</td>
<td>ST380021A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. primární</td>
<td>15.9 MB</td>
<td>ext3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. primární</td>
<td>996.0 MB</td>
<td>fat16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. primární</td>
<td>3.9 GB</td>
<td>xfs</td>
<td></td>
<td>/home</td>
</tr>
<tr>
<td></td>
<td>4. logická</td>
<td>6.0 GB</td>
<td>f ext4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. logická</td>
<td>498.8 MB</td>
<td>f ext3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. logická</td>
<td>551.5 MB</td>
<td>f swap</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. logická</td>
<td>65.8 GB</td>
<td>ext3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. logická</td>
<td>1.0 GB</td>
<td>f ext4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. logická</td>
<td>68.5 GB</td>
<td>ext3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tímto je automatické rozdělení disků u konce. Pokud jste s navrženým rozdělením spokojeni, stačí z nabídky vybrat Ukončit rozdělování. V opačném případě můžete zvolit možnost Vrátit zpět změny provedené na oblastech a znovu spustit automatické rozdělování, případně podle návodu níže ručně doladit změny v navrhovaném rozdělení disku.

Ruční dělení

Zvolíte-li ruční rozdělení disků, objeví se podobná obrazovka jako o dva odstavce výše, ale zatím nebude mít přiřazené příipojné body.

Pokud chcete v tabulce něco změnit, vyberte ze seznamu objekt, který chcete upravit a stiskněte Enter. Objektm je míněn disk, oblast nebo volné místo. S každým objektem můžete provádět různé akce.

Jestliže vyberete dosud nedotčený disk, na kterém nejsou ani oblasti ani volné místo, bude vám nabídнутa možnost vytvoření nové tabulky oblastí (to je nutné k tomu, abyste mohli vytvářet oblasti). Po této akci se pod vybraným diskem zobrazí řádka nadepsaná „VOLNÉ MÍSTO“.

Nejdlouhší volbou Použit jako: můžete umístit novou oblast (primární nebo logická) na disku jako část rozdělení prostor a vytvořit softwarový RAID, LVM nebo jiné výběr. Poté budete mít možnost upravit položky umístění a přípojení,的颜色

Pokud se rozhodnete, že chcete něco změnit na stávající oblasti, jednoduše ji vyberte a stiskněte Enter. Ocitnete se v tabulce rozdělení disků, které můžete upravit podle výše uvedeného postupu.

Pokud se nezodpověděte a disk stále nebudete používat, můžete dál vytvářet a upravovat oblasti. Pokud vám chybí něco na konci disku, můžete přidat novou oblast i umístit na jiném disku než je přiřazený.
Jestliže budete ve vytváření své tabulky oblastí příliš kreativní a uvedete ji do nepoužitelného stavu, můžete se vždy vrátit do výchozího bodu volbou Vrátit zpět změny provedené na oblastech⁶.

partman samotný je poměrně malý a hloupý program, avšak jeho schopnosti mohou být rozšiřovány moduly instalačního programu. Pokud tedy nevidíte všechny slabované vlastnosti, přesvědčte se, že máte nahrány příslušné moduly (např. partman-ext3, partman-xfs nebo partman-lvm) a že jsou tyto podporovány vaší architekturou.

Až budete s rozdělením disků hotovi, vyberte z nabídky Ukončit rozdělování a zapsat změny na disk. Zobrazí se seznam provedených změn a budete požádáni o potvrzení, zda opravdu chcete vytvořit nové souborové systémy.

6.3.3.4 Nastavení vicediskových zařízení (Softwarový RAID)

Jestliže máte ve svém počítači více než jeden pevný disk⁷, můžete využít této skutečnosti nastavit disky pro větší výkon a/nebo pro větší bezpečnost dat. Výsledek se nazývá Vicediskové zařízení - MD (nebo podle své nejznámější variancy softwarový RAID).

Jednoduše řečeno je MD množina oblastí umístěných na různých discích. Tyto oblasti se v mdcfg spojí dohromady a vytvoří logické zařízení. Toto zařízení pak můžete používat jako běžnou oblast (například v partmanu ji můžete zformátovat, přiřadit jí připojný bod atd.).

Co vám tato operace přinese, závisí na typu vicediskového zařízení, které vytváříte. Momentálně jsou podporovány:

RAID0
Je hlavně zamešen na rychlost. RAID0 rozdělí všechna příchozí data na *proužky* (stripes) a ty pak rovnoměrně rozmístí na každý disk v poli. To může zvýšit rychlost čtení a zápisu, ovšem pokud jeden z disků odejde do věčných lovišť, odejdou s ním všechna data (část informace je stále na zdravém disku (discích), zbývající část byla na vadném disku).

Typicky se RAID0 používá pro oblast na stříhání videa.

RAID1
Je vhodný systém, kde je spolehlivost na prvním místě. Skládá se z několika (obvykle dvou) stejně velkých oblastí, kde každá oblast obsahuje naprosto shodná data. Prakticky to znamená tři věci. Za prvé, pokud jedn z disků selže, stále máte data zrcadlena na zbývajících discích. Za druhé, k dispozici máte pouze část celkové kapacity (přesněji to je velikost nejmenší oblasti v poli). Za třetí, pokud se vyskytne větší počet požadavků na čtení, mohou se tyto rovnoměrně rozdělit mezi jednotlivé disky, což může přinést zajímavé zrychlení u serverů, kde převažují čtecí operace na zápisovým.

Volitelně můžete mít v poli rezervní disk, který se normálně nevyužívá a v případě výpadku jednoho z disků okamžitě nahradí jeho místo.

RAID5
Je rozumným kompromisem mezi rychlostí, spolehlivostí a redundancí dat. RAID5, podobně jako RAID0, rozdělí všechna příchozí data na *proužky* (stripes) a poté je rovnoměrně rozmístí na disky v poli. Oproti RAID0 je zde však podstatně rozdíl v tom, že se samotná data zapisují pouze na n - 1 disků. Zbývající n. disk nezahrádí, ale zapíše se na něj paritní informace. Paritní disk není statický (to by se pak jednalo o RAID4), ale pravidelně se posouvá tak, aby byly paritní informace rozmístěny rovnoměrně na všech discích v poli. V případě výpadku jednoho z disků může se chybějící informace dopočítat ze zbývajících dat a jejich parity. RAID5 se musí skladat z alespoň tří aktivních zařízení. Volitelně můžete mít v poli rezervní disk, který se normálně nevyužívá a v případě výpadku jednoho z disků okamžitě nahradí jeho místo.

Jak je vidět, RAID5 nabízí podobný stupeň spolehlivosti jako RAID1, ovšem dosahuje menší míry redundance dat. Čtecí operace budou stejně rychlé jako na RAID0, ovšem zápis bude mírně pomalejší kvůli počítání paritních informací.

RAID6
Je podobný jako RAID5, ale používá pro paritní informace dva disky, což vede k tomu, že přejezduje výpadek dvou disků.

RAID10

RAID10 se dá použít pro dosažení spolehlivosti a redundance bez nutnosti počítat parit. ⁶⁷

⁶V určitých případech (jako je použití LVM) nebudete moci vrátit *všechny* změny, protože některé z nich jsou již zapsány na disku. Naštěstí vás však instalační program bude před každou trvalou změnou varovat.

⁷Ve skutečnosti můžete MD vytvořit i z oblastí ležících na jednom fyzickém disku, ale nezískáte tím žádnou popisovanou výhodu.
Kdybychom měli shrnout podstatné vlastnosti:

<table>
<thead>
<tr>
<th>Typ</th>
<th>Minimálně zařízení</th>
<th>Rezervní zařízení</th>
<th>Přežije výpadek disku?</th>
<th>Dostupné místo</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID0</td>
<td>2</td>
<td>ne</td>
<td>ne</td>
<td>velikost nejmenšího zařízení krát počet aktivních zařízení v in RAIDu</td>
</tr>
<tr>
<td>RAID1</td>
<td>2</td>
<td>volitelně</td>
<td>ano</td>
<td>velikost nejmenšího zařízení v RAIDu</td>
</tr>
<tr>
<td>RAID5</td>
<td>3</td>
<td>volitelně</td>
<td>ano</td>
<td>velikost nejmenšího zařízení krát (počet akt. zařízení v RAIDu - 1)</td>
</tr>
<tr>
<td>RAID6</td>
<td>4</td>
<td>volitelně</td>
<td>ano</td>
<td>velikost nejmenšího zařízení krát (počet akt. zařízení v RAIDu - 2)</td>
</tr>
<tr>
<td>RAID10</td>
<td>2</td>
<td>volitelně</td>
<td>ano</td>
<td>součet všech oblastí děleno počet kopií (standardně dvě)</td>
</tr>
</tbody>
</table>

Chcete-li se o Softwarovém RAIDu dozvědět více, rozhodně se podívejte na Software RAID HOWTO.

Pro vytvoření vícediskového zařízení musí být oblasti, ze kterých se má zařízení skládat, označeny pro použití v RAIDu. (To se provádí v partmanu v menu Nastavení oblasti, kde byste měli nastavit položku Použít jako: na hodnotu fyzický svazek pro RAID.)

PožnámkA

Při rozdělování disku počítejte s tím, že při použití RAIDu pro kořenový souborový systém (/) je obvykle potřeba vytvořit samostatnou oblast pro /boot. Většina zaváděčů podporují zrcadlený RAID1 (pozor, ne RAID0), takže je např. možné použít RAID5 pro / a RAID1 pro /boot.

Na první obrazovce mconf jednoduše vyberte Vytvořit MD zařízení. Bude vám nabídnut seznam podporovaných typů vícediskových zařízení, ze kterého si jeden vyberte (např. RAID1). Co bude následovat, závisí na typu vybraného zařízení.

- RAID0 je velmi jednoduchý — vaším jediným úkolem je vybrat z nabídnutého seznamu RAIDových oblastí ty, které budou tvořit pole.
- RAID1 je trošku složitější. Nejprve musíte zadat počet aktivních a počet rezervních zařízení (oblastí), které budou tvořit RAID. Dále musíte ze seznamu dostupných RAIDových oblastí vybrat ty, které mají být aktivní a poté ty, které mají být rezervní. Počty vybraných oblastí se musí rovnat číslům, která jste zadali před chvílí. Pokud uděláte chybu a vyberete jiný počet oblastí, nic se neděje — debian-installer vás nenechá pokračovat, dokud vše nespravíte.
- RAID5 se nastavuje stejně jako RAID1 s drobnou výjimkou — musíte použít nejméně tři aktivní zařízení.
- RAID5 se nastavuje stejně jako RAID1 s drobnou výjimkou — musíte použít nejméně čtyři aktivní zařízení.
- Základní nastavení RAID10 je stejně jako u RAID1. V expertním režimu debian-installeru budete navíc dotážáni na na rozložení pole. Rozložení se skládá ze dvou částí. První část určuje typ rozložení, druhá
pak počet kopií každého bloku dat. Typ rozložení může být n (pro blízké kopie), f (pro vzdálené kopie) nebo o (pro offsetové kopie). Počet kopií musí být menší nebo roven počtu zařízení, aby bylo zaručeno, že se každá kopia zapíše na jiné zařízení.

Poznamenejme, že můžete používat více typů vícediskových zařízení najednou. Například pokud máte pro MD vyhrazeny tři 200 GB pevné disky a na každém máte dvě 100 GB oblasti, můžete z prvních oblastí všechn disků sestavít pole RAID0 (rychlá 300 GB oblast pro střih videa) a ze zbývajících tři oblastí (2 aktivní a 1 rezervní) sestavít RAID1 (rozumně spolehlivá 100 GB oblast pro domovské adresáře uživatelů.)

Až nastavíte vícedisková zařízení podle chuti, můžete ukončit mdcfg a vrátit se tak do partmanu, kde těmto zařízením přiřadíte obvyklé atributy jako souborové systémy a připojné body.

6.3.3.5 Nastavení manažera logických svazků (LVM)

Pracujete-li s počítači na pozici správce systému nebo pokročilého uživatele, jistě jste zažili situaci, kdy na jedné (zpravidla velmi důležité) oblasti docházelo volné místo, zatímco jiná oblast jej měla nadbytek. Zpravidla nastoupila mazání, přesouvání a propojování adresářů přes symbolické odkazy.

Abyste do budoucna předešli popsané situaci, můžete použít manažer logických svazků (Logical Volume Manager). Co takový manažer dělá? Jednoduše řečeno, spojí diskové oblasti (v žargonu LVM se nazývají fyzické svazky) do virtuálního disku (tzv. skupina svazků), který pak můžete rozdělit na virtuální oblasti (logické svazky). Jak se tyto virtuální oblasti liší od těch fyzických, na kterých jsou vybudovány? Pointa je v tom, že logické svazky (a samozřejmě pod nimi ležící skupiny svazků) se mohou rozprostírat přes několik fyzických disků.

Například můžete použít skupinu svazků a rozšířit ji o nové fyzické svazky. Pokud ještě nečetli, měli byste si projít LVM HOWTO.

Nastavení LVM v instalačním programu Debianu je poměrně jednoduché a plně integrované do partmanu. Nejprve musíte označit fyzické oblasti, které máte pro LVM. To se provádí v menu Nastavení oblasti, kde byste měli nastavit položku Použít jako: na hodnotu fyzický svazek pro LVM.

Po návratu na hlavní obrazovku partmanu uvidíte nové menu Nastavit manažer logických svazků (LVM). Po jeho výběru budete potvrzovat všechny dosud provedené změny v tabulce oblastí (pokud takové existují) a vzápětí se objeví konfigurační menu LVM, nad kterým je zobrazen krátký přehled současného nastavení.

Menu samotné je kontextově závislé a zobrazuje pouze akce použitelné v daný okamžik. Mezi dostupné akce patří:

- Zobrazit podrobné nastavení, což zobrazí strukturu LVM zařízení včetně jmen a velikostí fyzických svazků, logických svazků a samozřejmě skupin svazků.
- Vytvořit skupinu svazků z dosud nevyužívaných fyzických svazků.
- Zrušit skupinu svazků a uvolnit tak fyzické svazky, ze kterých se skupina skládá.
- Rozšířit skupinu svazků o nevyužité fyzické svazky.
- Zmenšit skupinu svazků o některé fyzické svazky a tím je dát k dispozici jiným skupinám, nebo z nich v partmanu udělat „běžné“ oblasti.
- Vytvořit logický svazek z volného místa ve skupině svazků.
- Zrušit logický svazek ve skupině svazků.
- Skončit, čímž se vrátíte zpět do hlavního rozdělovacího menu.

Při vytváření skupiny svazků nebo logického svazku budete požadováni o zadání jejich názvu. Tyto názvy by měly být krátké a výstižné, protože v běžném systému se podle těchto názvů vytvoří nová bloková zařízení v adresáři /dev/, která se budou používat pro přímý přístup k daným logickým svazkům. Tedy tam, kde by se běžně použilo např. /dev/hda3 se nyní použije /dev/mapper/jmskupiny-jmsvazku. (Pěkně to bude vidět v souboru /etc/fstab nebo na výstupu příkazů mount a df.)

POZNÁMKA
Až budete s nastavením LVM spokojeni, vraťte se zpět do `partman`, kde uvidíte všechny vytvořené logické svazky. Logické svazky se chovají jako obvyčejné oblasti, tudíž už asi víte, co s nimi můžete dělat.

6.3.3 Nastavení šifrovaných svazků

Největší smysl má šifrování oblasti s domovskými adresáři, kde se nachází vaše soukromá data, a oblasti s odkládacím prostorem, kde se mohou dočasně ocitnout citlivá data z operační paměti. Samozřejmě můžete šifrovat i libovolnou jinou oblast, například `/var`, kam si ukládají databázové servery své databáze, poštovní servery poštu, tiskové servery frontu úloh, nebo třeba adresář `tmp`, kde se mohou nacházet potenciálně zajímavá data (dočasné pracovní kopie vašich dokumentů). Existují i lidé, kteří si šifrují celý systém. Jedinou výjimkou, která musí zůstat nešifrovaná, je oblast obsahující `/boot`, protože momentálně neexistuje způsob, jak zavést jádro ze šifrované oblasti.

Abyste mohli využívat šifrování, musíte vybrat stávající oblast, což může být běžná oblast, logický svazek LVM nebo svazek RAID. (Pokud ještě oblast neexistuje, musíte ji nejprve vytvořit z dostupného volného místa.) V menu pro nastavení oblasti nastavte možnost Použít jako: na hodnotu fyzický svazek pro šifrování. Zbytek menu se poté změní a bude obsahovat několik kryptografických nastavení pro danou oblast.

debian-installer podporuje šifrování pomocí `dm-crypt` (součástí novějších linuxových jader, schopný hostit fyzické svazky pro LVM).

Podívejte se na lištu možností, které jsou k dispozici, pro šifrování přes `Device-mapper` (dm-crypt). Pokud jsou na pochybách, ponechejte výchozí hodnoty, protože byly zvoleny s ohledem na bezpečnost. Neuvážená kombinace voleb může způsobit nízkou kvalitu šifrování, kterou tak vytváří pouze falešný pocit bezpečí.

Šifrování: aes

Touto volbou můžete vybrat šifrovací algoritmus (šifru), jež se použije pro šifrování dat na dané oblasti. debian-installer nyní podporuje tyto šifry: `aes`, `blowfish`, `serpent` a `twofish`. Kvalita jednotlivých šifer přesahuje záběr této příručky, nicméně vám v rozhodování může pomoci informace, že v roce 2000 byla šifra AES zvolena americkým úřadem pro standardizaci jako standardní šifrovací algoritmus pro ochranu citlivých dat v 21. století.

Velikost klíče: 256

Zde můžete zadat délku šifrovacího klíče. Obvykle platí, že čím delší klíč, tím větší odolnost šifry proti útokům. Na druhou stranu také delší klíč většinou menší víkon (výjimkou jsou třeba šifry blowfish a twofish). Dostupné velikosti klíče se liší v závislosti na konkrétní šifře.

Algoritmus IV: xts-plain64

Inicializační vektor nebo též algoritmus IV se používá v kryptografii pro zajištění, že aplikovaný řetězec na stejný `neutralně šifrovaný text` za použití stejného klíče vždy dostaneme jiný `šířený text`. Cílem je zabránit útočníkovi v odvození informací na základě opakování příloh v šifrovaných datech.

Z nabízených alternativ je `xts-plain64` momentálně nejméně zranitelný vzhledem ke známým útokům. Ostatní možnosti používejte pouze v případě, kdy potřebujete zaručit zpětnou kompatibilitu s dříve instalovaným systémem, který neumí používat novější algoritmy.

Šifrovaní klíč: Přístupová fráze

Zde si můžete zvolit typ šifrovacího klíče pro tuto oblast.

Přístupová fráze Šifrovací klíč bude vypočítán⁹ na základě textové fráze, kterou zadáte později.

⁸Nápověda: vytvořit souborové systémy, vybrat přípojné body, apod.
⁹Použití přístupové fráze jako klíče momentálně znamená, že oblast bude používat LUKS.
Náhodný klíč Nový šifrovací klíč bude vytvořen z náhodných dat pokáždé, když se pokusíte tuto šifrovanou oblast použít poprvé od startu systému. Jinými slovy po každém vypnutí/restartu systému bude obsah oblasti ztracen, protože se klíč z oblasti smaže. (Samozřejměže se můžete pokusit uhádnout klíč hrubou silou, ale pokud v šifrovacím algoritmu není nějaká neznámá slabina, během našeho života se to nepodaří.)

Náhodné klíče se hodí pro odkládací oblasti, protože se pak nemusíte trápit s pamatováním další přístupové fráze, nebo s ručním mazáním dat z odkládací oblasti před každým vypnutím počítače. Na druhou stranu to také znamená, že nebude moci vytvořit vlastnost „uspání na disk“, která je součástí novějších linuxových jader, protože při následujícím startu nebude možno obnovit obsah operační paměti, který byl odložen do odkládací oblasti.

Smazat data: ano Určuje, zda se má před samotným zašifrovaním oblasti přepsat její obsah náhodnými znaky. Je doporučeno tuto možnost povolit, protože během této časné fáze instalace může tím mít během instalace připomínky o předchozích instalacích, které se mohou vztahovat na prováděcího. Kromě toho vám může pomoci při vyhledání případných dat.

Po výběru požadovaných parametrů vaší šifrované oblasti se vracíte zpět do hlavního rozdělovacího menu, kde můžete měnit položku „používání“ na „nejlepší možnost“ pro smazání. V uživatelských oblastech můžete mazání dat do nových nástrojů, které nemají základní stejnou funkci, jako v předchozí fázi instalace.

Pokud jste zvolili vytvoření šifrovacího klíče z náhodných dat, bude nyní vytvořen. Protože během této časné fáze instalace ještě nemůžete mít dohledu nad vznikající entropie, bude proces trvat hodně dlouho. Proces můžete zvýšit vyčíslovaním různých klíčů v nějakém textovém poli, případně se přepnout na druhou virtuální konzoli a napsat něco do příkazového řádku.

Pokud jste zvolili vytvoření šifrovacího klíče z náhodných dat, bude nyní vytvořen. Protože během této časné fáze instalace ještě nemusí být jádro nasbíráno dostatek entropie, bude proces trvat hodně dlouho. Proces můžete zvýšit vyčíslovaním několika klíčů, například mačkáním náhodných klíčů, ale předtím byste měli mít dostatek časné fáze.

Varování

Než budete zadávat samotnou frázi, měli byste ji zkusit. Je klíčem, který je užitečný k sebevědomí a ovládání oblasti. Můžete tím vynaložit několik minut, aby jste si ujistili, že jste se užívávající frázi s činí posud, a že jste se dostali do správného rozložení.

Pokud jste zvolili vytvoření šifrovacího klíče z náhodných dat, bude nyní vytvořen. Protože během této časné fáze instalace ještě nemusí být jádro nasbíráno dostatek entropie, bude proces trvat hodně dlouho. Proces můžete zvýšit vyčíslovaním různých klíčů v nějakém textovém poli, případně se přepnout na druhou virtuální konzoli a napsat něco do příkazového řádku.

Pokud jste zvolili vytvoření šifrovacího klíče z náhodných dat, bude nyní vytvořen. Protože během této časné fáze instalace ještě nemusí být jádro nasbíráno dostatek entropie, bude proces trvat hodně dlouho. Proces můžete zvýšit vyčíslovaním různých klíčů v nějakém textovém poli, případně se přepnout na druhou virtuální konzoli a napsat něco do příkazového řádku.

VAROVÁNÍ

Než budete zadávat samotnou frázi, měli byste ji zkusit. Je klíčem, který je užitečný k sebevědomí a ovládání oblasti. Můžete tím vynaložit několik minut, aby jste si ujistili, že jste se užívávající frázi s činí posud, a že jste se dostali do správného rozložení.

Pokud jste zvolili vytvoření šifrovacího klíče z náhodných dat, bude nyní vytvořen. Protože během této časné fáze instalace ještě nemusí být jádro nasbíráno dostatek entropie, bude proces trvat hodně dlouho. Proces můžete zvýšit vyčíslovaním různých klíčů v nějakém textovém poli, případně se přepnout na druhou virtuální konzoli a napsat něco do příkazového řádku.

Pokud jste zvolili vytvoření šifrovacího klíče z náhodných dat, bude nyní vytvořen. Protože během této časné fáze instalace ještě nemusí být jádro nasbíráno dostatek entropie, bude proces trvat hodně dlouho. Proces můžete zvýšit vyčíslovaním různých klíčů v nějakém textovém poli, případně se přepnout na druhou virtuální konzoli a napsat něco do příkazového řádku.

Smazat data: ano Určuje, zda se má před samotným zašifrovaním oblasti přepsat její obsah náhodnými znaky. Je doporučeno tuto možnost povolit, protože během této časné fáze instalace může být méně využitelný pro různé účely.

Smazat data: ano

Určuje, zda se má před samotným zašifrovaním oblasti přepsat její obsah náhodnými znaky. Je doporučeno tuto možnost povolit, protože během této časné fáze instalace může atypickým výpuklinám nepodat.

Po výběru požadovaných parametrů vaší šifrované oblasti se vraťete zpět do hlavního rozdělovacího menu, kde můžete měnit položku „používání“ na „nejlepší možnost“ pro smazání. V uživatelských oblastech můžete mazání dat do nových nástrojů, které nemají základní stejnou funkci, jako v předchozí fázi instalace.

Po výběru požadovaných parametrů vaší šifrované oblasti se vraťte zpět do hlavního rozdělovacího menu, kde měla by mít nově přibývat položka nazvaná Nastavit šifrované svazky. Po jejím výběru budete požádáni o povolení smazat data na oblastech, které jsou označeny pro smazání. V uživatelských oblastech můžete mazání dat do nových nástrojů, které nemají základní stejnou funkci, jako v předchozí fázi instalace.

Jakmile jste připraveni, můžete pokračovat v instalaci.

6.3.4 Instalace základního systému

Přestože je tato část nejméně problematická, zabere dosti času, protože musí stáhnout, ověřit a rozbalit celý základní systém. Pokud máte pomalý počítač a/nebo síťové připojení, může to trvat.

Přestože je tato část nejméně problematická, zabere dosti času, protože musí stáhnout, ověřit a rozbalit celý základní systém. Pokud máte pomalý počítač a/nebo síťové připojení, může to trvat.

⁠¹⁰Obecně se všimá, že agenti z třípísmenných agentur umí obnovit data z magnetooptických médií i po několika přepsáních.
Během instalace základního systému jsou hlášky o rozbalování a nastavování balíků přesměrovány na třetí virtuální konzoli tty4. Můžete se na ni přepnout klávesami Levý Alt-F4, zpět se dostanete kombinací Levý Alt-F1.

Tyto jsou hlášky jsou také uloženy do souboru /var/log/syslog, což se může hodit v případě, že instalujete systém přes sériovou konzoli.

Během instalace se nainstaluje i jádro Linux. Při standardní prioritě vám debian-installer vybere jádro, které nejvíce odpovídá vašemu hardwaru. Při nižších prioritách si budete moci sami vybrat ze seznamu dostupných jader.

Při instalaci balíků se automaticky nainstalují také balíky, které jsou instalovanými balíku doporučovány. Doporučené balíky nejsou pro funkčnost zvoleného software striktně vyžadovány, nicméně nějakým způsobem rozšiřují jeho funkcionalitu a v očích správců balíků by se měly instalovat společně.

6.3.5 Instalace dodatečného softwaru

6.3.5.1 Nastavení apt

Uživatelé obvykle instalují balíky programem apt z balíku apt, případně některou nadstavbou typu aptitude nebo synaptic¹¹. Uživatelé si tyto nadstavby oblíbili pro jejich pokročilé funkce jako je hledání dle různých kritérií nebo interaktivní řešení závislostí.

aby aptitude nebo apt věděli, odkud mají získávat balíky, musí se nastavit. S tím pomůže komponenta apt-setup, která výsledky svého snažení zapiše do souboru /etc/apt/sources.list a který můžete po instalaci prozkoumat a v případě potřeby upravit.

Instalujete-li s výchozí prioritou otázek, instalátor nastaví většinu věcí automaticky na základě typu instalace (síťová, CD/DVD) a drže zodpovězených otázek. Jestliže jste například zvolili instalaci ze sítě, zvolil jste výchozí jazyk češtinu a neměnili nastavení zrcadla, použije se pravděpodobně síťový zdroj ftp.cz.debian.org. Ve většině případu se automaticky přidá zrcadlo s bezpečnostními aktualizacemi a v případě stabilní verze distribuce také archiv služby „stable-updates“, která poskytuje novější verze rychle se měnících balíků, jako jsou vzory a pravidla pro antivirové a antispamové prograny.

Při instalaci s nižší prioritou otázek (např. v expertním režimu) můžete rozhodovat o více nastaveních. Můžete si sami vybrat, zda budete používat bezpečnostní aktualizace a službu stable-updates a také zda chcete mít přístupné balíky ze sekcí „contrib“ a „non-free“.

6.3.5.1.1 Instalace z více CD/DVD

Instalujete-li z CD nebo DVD, které je součástí celé sady, instalátor se zeptá, zda chcete prozkoumat dodatečná CD/DVD. Pokud taková média máte, doporučujeme souhlasit, protože pak můžete jednoduše instalovat balíky na nich uložené.

Nemáte-li další média, nic se neděje — jejich použití není nutné. Nepoužijete-li ani sítové zrcadlo (další kapitola), znamená to pouze, že se nemusí nainstalovat všechny balíky z úloh, které si vyberete v přístupním kroku.

¹¹Ve skutečnosti balíky instaluje program na nižší úrovni: dpkg. dpkg je podle potřeby volán z nástroje apt, který se stará o získání potřebných balíků ze sítě, CD nebo jiného zdroje a také o vyřešení závislostí mezi nimi.
POZNÁMKA

Balíky jsou na mediích uloženy podle popularity, což znamená, že pro nejběžnější instalace postačí pouze několik prvních CD. Balíky z posledního CD využije jen velmi málo uživatelů.

To také znamená, že zakoupení nebo stažení a vypálení celé sady CD je jen příležitostí, protože většinu medií mělí stejně nevyužijete. Ve většině případů je rozumné stáhnout pouze nejvhodnější CD (často postačí první 3) a případně další balíky instalovat z Internetu. Pro DVD platí něco podobného — jedno nebo dvě DVD pokryjí většinu potřeb.

Pořadí, ve kterém necháte média prozkoumat, nehraje žádnou roli. Je ovšem vhodné nechat média pouze ze stejně sady, protože tak předejde potenciálním problémům se závislostmi balíků.

6.3.5.1.2 Používání síťového zrcadla

Jednou z otázek, která se zobrazí téměř ve všech případech, je použití síťového zrcadla. Většinou stačí použít výchozí možnost, ale existuje několik výjimek.

Pokud neinstallujete z velkého CD nebo DVD, případně z obrazu velkého CD/DVD, měli byste použítí síťového zrcadla povolit, protože jinak skončíte pouze s minimálním systémem. Máte-li pomalé internetové připojení je lepší v dalším kroku instalace nevybírat úlohu Desktopové prostředí.

Instalujete-li z jediného velkého CD nebo obrazu CD (ne DVD), nemusíte používat síťového zrcadla nutně, ale rozhodně je doporučené, protože CD obsahuje jen omezené množství balíků. Máte-li pomalé internetové připojení, je lepší zde síťové zrcadlo nevybírat a dokončit instalaci jenom s tím, co je na prvním CD. Další balíky pak můžete doinstalovat po skončení instalace ze svého nového systému.

Jestliže instalujete z DVD, nebo k instalaci používáte obraz DVD, je potřeba síťového zrcadla mnohem menší, protože všechny balíky potřebné pro základní instalaci by se měly nacházet na DVD. To stejně platí v případě, že použijete sadu několika CD.

Jednou z výhod použití síťového zrcadla je, že pokud od vytvoření medií vyšla nová minoritní verze Debiana, automaticky získáte aktualizované balíky, které se měnily v době instalace. U vnějších CD/DVD nemusíte instalovat předem všechny balíky, ale je možné, že se z Internetu stáhnou novější verze, které budou podporovány až nadále.

Stručně: s výjimkou pomalého internetového připojení je použití síťového zrcadla dobrý nápad. Bude-li stejná verze balíku k dispozici na síti i na CD/DVD, instalátor vždy použije balík z CD/DVD. Množství stažených dat závisí na:

1. úlohách vybraných v dalším kroku
2. balících, které jsou k dispozici na CD/DVD
3. zda se na síťových zrcadelech vyskytují novější verze balíků, než jsou na CD/DVD (opravy závažných chyb, záležitosti aktualizace)

Poslední bod znamená, že i když použijete zrcadla zakážete, je možné, že se z Internetu stáhnou balíky, ve kterých byla nalezena bezpečnostní chyba, nebo pro které existuje novější verze na sloužbě „stable-updates“ (za předpokladu, že jste použili těchto služeb také nezakázali).

6.3.5.1.3 Výběr síťového zrcadla

Jestliže jste během instalace zvolili použití síťového zrcadla, bude vám nabídnuto seznam geograficky blízkých (a tedy dobře vyzkoušených) zrcadel. Není v tom žádná magie, použijí se zrcadla ze země, ve které vás ještě instalace vede.

Další možnosti, zatím ne zcela oficiální, je při ručně zadávané zrcadlo zadat httpredir.debian.org. Nejedná se o fyzické zrcadlo, ale o službu, která vás automaticky přesměruje na topologicky nejbližší zrcadlo. Služba bude v úvahu i protokol, kterým k ní přistupujete, takže v případě IPv6 by vás měla přesměrovat na blízké zrcadlo podporující právě protokol IPv6.
Při ručním zadávání zrcadla je možné kromě jména počítače použít i IP adresu a volitelně i číslo portu. Při zadávání IPv6 adresy je nutné ji obklopit hranatými závorkami, např. takto: \([2001:db8::1]\).

6.3.5.2 Výběr a instalace softwaru

Během instalace vám bude nabídlena možnost nainstalovat si další software. V této fázi sice máte k dispozici 83841 dostupných balíků, ale protože jen jejich projítí zabere hodně (tím myslime opravdu hodně) času, nabízí debian-installer připravených softwarových úloh, které umožní rychlé přizpůsobení počítače pro danou úlohu.

Nejprve tedy můžete vybrat úlohu a teprve poté doinstalovat konkrétní balíky. Úlohy představují různé činnosti, které byste s počítačem mohli provádět. Například „deskstopové prostředí“, „webový server“ nebo „tiskový server“.

Velikost jednotlivých úloh zmíní kapitola D.2.

Podle odhadnutého typu počítače mohou být některé úlohy předvybrány. (Např. pokud si debian-installer myslí, že instalujete notebook, předvybere úlohu „Notebook“.) Nesouhlasíte-li s výběrem, můžete nechtěné úlohy zase odebrat. Dokonce nemusíte instalovat žádnou úlohu.

POZNÁMKA

Úloha „Desktopové prostředí“ nainstaluje výchozí grafické deskstopové prostředí. Preferujete-li jiné prostředí, můžete je zvolit jako alternativní úlohu přímo během instalace. Dokonce je možné vybrat několik prostředí najednou, ale u některých kombinací není zaručeno, že se instalace podaří.

To samozřejmě bude fungovat pouze v případě, že jsou balíky tvořící zvolené deskstopové prostředí k dispozici. Naznačujeme tím, že pokud k instalaci používáte pouze první CD, musí se tyto balíky stáhnout ze sítě zrcadla, jelikož se na první CD nevejdou. U všech ostatních typů instalace (z DVD nebo rovnou ze sítě) by se mělo desktopové prostředí nainstalovat bez problémů.

Různé serverové úlohy nainstalují zhruba následující software. Webový server: apache2; Tiskový server: cups; SSH server: openssh.

Úloha „Standardní systém“ nainstaluje všechny balíky s prioritou „standardní“. To zahrnuje spoustu běžných nástrojů, které se obvykle nacházejí na každém linuxovém nebo unixovém systému. Pokud zrovna nestavíte minimalistický systém a pokud přesně nevíte, co dělat, měli byste tuto úlohu ponechat vybranou.

Jestliže jste při výběru jazyka zvolili jakoukoliv jinou možnost než „C", tasksel nyní zkontroluje, zda pro zvolený jazyk/místní prostředí neexistuje lokalizační úloha a automaticky se ji pokusí nainstalovat. Lokalizační úlohy typicky obsahují balíky se slovníky a fonty vhodnými pro daný jazyk. Pokud jste zvolili i úlohu „Desktopové prostředí“, mohou se doinstalovat další lokalizační balíky (pokud jsou dostupné).

Až skončíte s výběrem, vyberte tlačítko Pokračovat. Tím se na pozadí spustí aptitude, která nainstaluje vybrané balíky.

Programy apt-get a dpkg pak zajistí stažení, rozbalení a instalaci všech balíků obsažených ve zvolených úlohách. Pokud instalace balíku vyžaduje od uživatele nějaký vstup, budete dotážáni stejně jako třeba při vytváření nového uživatele.

Měli byste mít na paměti, že úloha deskstopové prostředí je opravdu velká. Pocítíte to obzvláště v případě, kdy instalujete z běžného CD v kombinaci se sítovým zrcadlem, což může při pomalém připojení trvat poměrně dlouho. Po zahájení instalace neexistuje žádná uživatelské jednoduchá možnost, jak instalaci přerušit.

¹²Protože je debian-installer velmi líný, tak si na pomoc volá jiné aplikace. Konkrétně pro zobrazení seznamu úloh spustí program tasksel, který můžete spustit i samostatně kdykoliv po instalaci a (od)installovat si tak další balíky. Je-li pro vaše potřeby výběr úloh moc hrubý, pak poslouží program aptitude. Například pro instalaci konkrétního balíku stačí spustit příkaz aptitude install balík, kde balík je jméno balíku, který chcete nainstalovat.
Instalační systém může některé balíky stahovat ze síťky i v případě, že se balíky nacházejí na CD. To se stává tehdy, když se na síťovém zrcadle nachází nověji verze balíků, než na CD. U stálejší distribuce to znamená po vydání nové revize (po 10r0 vyjde 10r1, 10r2, ...), u testovací distribuce se s tímto potkáte již několik dnů až týdnů po stažení obrazu CD.

6.3.6 Nastavení zavádění systému
Pokus instalujete bezdiskovou stanici, zavádění systému z lokálního disku evidentně nebude nejsmysluplnější volba - tento krok přeskočte.

6.3.6.1 Nalezení ostatních operačních systémů
Před instalací zaváděče se debian-installer pokusí vyhledat jiné operační systémy instalované na počítači. Pokud nějaké najde, budete o tom informováni během instalace zaváděče a počítač bude nastaven tak, aby kromě Debianu zaváděl i nalezené operační systémy.

Zavádění více operačních systémů na jednom počítači je stále něco jako černá magie. Kvalita automatického rozpoznávání operačních systémů a následné nastavení zaváděče se liší na jednotlivých architekturách a dokonce i na jejich podarchitekturách. Pokud něco nebude fungovat, měli byste si dobře prostudovat dokumentaci použitého zaváděče.

6.3.6.2 Nastavit systém jako zaveditelný pomocí flash-kernel
Jelikož na ARM platformě neexistuje jednotné rozhraní k firmware, liší se konkrétní kroky pro nastavení zavádění systému zařízení od zařízení. Debian používá nástroj flash-kernel, který obsahuje databázi zařízení a seznam kroků, které je třeba na konkrétním zařízení vykonat, aby se z něj dal zavádět systém. Podkod flash-kernel jistí, že je dané zařízení podporováno, automaticky na něm příslušné kroky provede.

Na zařízeních, které zavádí z interní NOR- nebo NAND- flash paměti, zapíše flash-kernel jádro a ramdisk do této interní paměti. Tento způsob je běžný obvykle u starších zařízení arml. Většina těchto zařízení neumožňuje uchovávat v interní paměti více jader a ramdisků, což znamená, že spuštění flash-kernel obvykle přepíše předchozí obsah flash paměti.

Systémy ARM, které používají jako systémový firmware U-Boot, zavádí jádro a ramdisk z externího média, jako jsou MMC/SD karty, zařízení USB mass storage nebo pevné disky IDE/SATA. V těchto případech vygeneruje flash-kernel příslušný zaváděcí skript, který umožní automatické zavádění bez zásahu uživatele.

6.3.6.3 Pokračovat bez zaváděče
Pomoce této komponenty můžete získat zaveditelný systém, i když se nenainstaluje žádný zaváděč — ať už proto, že na této architektuře žádný neexistuje, nebo proto, že jej nelze nastavit (třeba chcete použít zaváděcí zaváděče).

V tomto okamžiku je vhodné prozkoumat obsah adresáře /target/boot a poznačit názvy jádra a případného ramdisku (initrd), protože je budete muset sdělit svému zaváděči spolu s dalšími důležitými informacemi, jako je oblast s kořenovým souborovým systémem a oblast pro /boot (pokud je /boot na samostatné oblasti).

6.3.7 Dokončení instalace
Toto jsou poslední drobnosti, které je třeba vykonat před zavedením nového systému. Většina práce spočívá v uklázení po debian-installeru.

6.3.7.1 Nastavení systémových hodin
debian-installer se může zeptat, zda jsou hardwarové hodiny počítače nastaveny na univerzální časové pásma (UTC). Systém se snaží odpověď odhadnout podle nalezených operačních systémů. Při expertní instalaci se otázka zobrazí vždy.

V tomto okamžiku je vhodné prozkoumat obsah adresáře /target/boot a poznačit názvy jádra a případného ramdisku (initrd), protože je budete muset sdělit svému zaváděči spolu s dalšími důležitými informacemi, jako je oblast s kořenovým souborovým systémem a oblast pro /boot (pokud máte /boot na samostatné oblasti).

6.3.7.2 Dokončení instalace a restart do nového systému
Toto je poslední krok debian-installeru. Budete vyzváni k odstranění zaváděcích médií (CD, disketa, apod.), která již používaly pro zavedení instalačního systému. debian-installer provede poslední úklidové práce a restartuje počítač do vašeho nového systému.
6.3.8 Řešení problémů
Následující komponenty se obvykle do instalačního procesu nezapojují, ale tře čekají v pozadí, aby vám pomohly v případě, že se něco pokází.

6.3.8.1 Uložení záznamů o instalaci
Pokud byla instalace úspěšná, budou záznamy vytvořené během instalace uloženy v novém systému v adresáři `/var/log/installer/`

Pokud během instalace zaznamenáte kriticky chyby, může být výhodné uložit si tyto informace na disketu, síť, pevný disk nebo jiné médium a v klidu si je prostudovat na jiném počítači, nebo je přiložit k hlášení o chybě. K tomu slouží právě menu Uložit záznamy pro pozdější ladění.

6.3.8.2 Používání shellu a prohlížení logů
Shell můžete během instalace získat několika způsoby. Pokud zrovna neinstalujete přes sériovou konzoli, je nejjižnější se přepnout na druhou virtuální konzoli klávesami Levý Alt-F2 (na macintoshí klávesnici Option-F2), kde běží samostatný klon Bourne shellu nazvaný `ash`. Zpět do instalátoru se dostanete klavírním menu příkazem `exit`.

Přestože můžete v shellu provádět téměř cokoliv, co vám dostupné programy umožní, měli byste raději používat menu instalačního programu — shell a jeho příkazy jsou to jen pro případ, že se něco pokází. Ruční spouštění příkazů ze shellu totiž může kolidovat s instalačním procesem. Konkrétně pro inicializaci odkládací oblasti byste měli použít menu a ne shell, protože instalace program jinak nepozná, že jste tento krok již provedli.

6.3.9 Instalace přes síť
Jednou ze zajímavějších komponent je `network-console`, která vám umožní provádět větší část instalace vzdáleně přes SSH. Použijte sít naznačuje, že budete muset provést několik prvních kroků instalace (minimálně po nastavení sítě) lokálně a tepře pak pokračovat vzdáleně. Lokální část však můžete automatizovat použitím 4.5.)

Tato komponenta se implicitně nenahrává do instalačního menu a proto o ni bude muset požádat. Nejpře můžete zavést instalační systém se střední prioritou otázek, nebo jiným způsobem vyvolat hlavní instalační menu a vybrat položku Nahrát komponenty instalátoru z CD (nebo ze sítě) a ze seznamu dodatečných komponent vyberte `network-console`. Kontrola instalace probíhá přes SSH, a pokud je úspěšná, v menu bude nová položka nazvaná Pokračovat v instalaci vzdáleně přes SSH.

Po výběru této nové položky budete požádáni o zadání nového hesla, které se použije pro připojení k instalacnému systému. Následuje potvrzení hesla, zda bylo zadáno správně. To vše. Nyní uživateli budete přidávat do hraní nového systému jako uživatel `installer` s heslem, které jste právě zadali. Další důležité věc na obrazovce je kryptografický otisk tohoto systému. Tento otisk musíte zabezpečit na případně předat osobě, která bude v instalaci pokračovat vzdáleně.

Pokud byste se náhodou rozhodli pokračovat v instalaci lokálně, můžete vytvořit soubor `installovany_pocitac` a příkazem `ssh -l installer installovany_pocitac` se připojte k instalovanému systému. Před samotným přihlášením se zobrazí kryptografický otisk tohoto systému, který bylo uživateli předáno.

Pokud byste se náhodou rozhodli pokračovat v instalaci vzdáleně, můžete vytvořit soubor `installovany_pocitac` a příkazem `ssh -l installer installovany_pocitac` se připojte k instalovanému systému. Před samotným přihlášením se zobrazí kryptografický otisk tohoto systému, který bylo uživateli předáno.
Poznámka

ssh server v instalačním systému používá východí nastavení, které neposílá pakety pro udržování spojení. Teoreticky to níčemu nevadí, ale prakticky se může stát, že se po určité době neaktivity spojení rozpadne. Typickým příkladem může být překlad adres (NAT) někde po cestě mezi klientem a instalovaným systémem. Opětovné připojení a pokračování v instalace se může, ale nemusí podařit — závisí na kroku instalace, ve kterém se spojení přerušilo.

Poznámka

Instalujete-li postupně několik počítačů, které mají stejnou IP adresu nebo jméno, ssh se odmítne k takovému počítači připojit. Důvodem je odlišný kryptografický otisk, což obvykle indikuje útok, kdy se záškodník vydává za cílový počítač. Pokud jste si jisti, že to není tento případ, budete muset ze souboru ~/.ssh/known_hosts smazat příslušný řádek a připojení zopakovat.

oNapříklad příkazem ssh-keygen -R <počítač> nebo ssh-keygen -R <IP adr.>

Po přihlášení vám bude nabídlena úvodní obrazovka, kde můžete volit mezi možností Spustit menu a Spustit shell. První možnost vás přeje do hlavního instalačního menu, kde můžete pokračovat v instalaci obvyklým způsobem. Druhá možnost spustí shell, ve kterém můžete zkoumat a případně opravit vzdálený systém. Přestože počet SSH spojení do instalovaného systému není omezen, měli byste mít pouze jedno spojení, kterým ovládáte instalaci (na rozdíl od shellů, kterých si můžete spustit dle libosti).

Varování

Po zahájení vzdálené instalace byste se již neměli vracet zpět k lokální instalaci, protože by to mohlo porušit databázi, ve které je uloženo nastavení nového systému, což by následně vedlo k nefunkční instalaci nebo k problémům v novém systému.

6.4 Nahrání chybějícího firmwaru

Jak je zmíněno v 2.2, některá zařízení vyžadují pro svou práci kromě ovladače zařízení také firmware. Ve většině případů znamená chybějící firmware nefunkční zařízení. Existují však výjimky, kdy zařízení bez firmware funguje alespoň v základním režimu a firmware je potřeba až pro povolení speciálních vlastností.

Poznámka

To, která zařízení jsou prohledána a které souborové systémy prozkoumány, závisí na architektuře, typu instalačních médií a fázi instalace. Obzvláště v počátcích instalace budete mít největší šanci na úspěch s disketou nebo USB klíčenkou formátovanou souborovým systémem FAT.

Pokud víte, že zařízení není pro instalaci potřeba, nebo pokud zařízení funguje i bez firmwaru, můžete zavedení firmware přeskočit.

debian-installer se ptá pouze na firmware vyžadovaný jadernými moduly používanými během instalace. Například jedním z ovladačů, které debian-installer během instalace nepoužívá, je modul radeon pro grafické karty AMD/ATI. To znamená, že se pro některý hardware nenahraje firmware a takový hardware pak nemusí být využíván naplno. Pokud máte podezření, že to je váš případ, zkontrolujete si v nově zavedeném systému výstup příkazu `dmesg` a hledejte řádky obsahující slovo „firmware“.

6.4.1 Příprava média

Archivy obsahující nejnovější balíky pro nejčastěji používaný firmware jsou dostupné z:

- https://cdimage.debian.org/cdimage/unofficial/non-free/firmware/

Stačí stáhnout archivy pro příslušné vydání a rozbalit jej na médium.

Jestliže se požadovaný firmware v archivu nenachází, můžete se zkusit podívat do sekce non-free. Následující přehled by měl obsahovat většinu dostupných balíků s firmwarem (nemusí být úplný):

- https://packages.debian.org/search?keywords=firmware

Na médium je také možné zkopytovat jednotlivé soubory s firmwarem (tzn. ne balíky). Takovéto soubory můžete obvykle získat z již instalovaného systému, nebo od dodavatele hardwaru.

6.4.2 Firmware a instalovaný systém

Všechny firmwary, které se zavedou během instalace, se automaticky nakopírují do instalovaného systému. To by mělo zajistit, že zařízení vyžadující firmware budou fungovat i po restartu do nového systému. Stále zde však existuje drobné riziko v případě, kdy nainstalovaný systém používá jinou verzii jádra, než instalační systém. V takovém případě je možné, že se firmware nepodaří zavést kvůli rozdílné verzi.

Pokud byl firmware nainstalován z balíku s firmwarem, debian-installer do instalovaného systému nainstaluje a tento balík a automaticky přidá do konfiguračního souboru `sources.list` sekci non-free. Výhodou je to, že se firmware bude aktualizovat automaticky.

Jestliže ještě při instalaci přeskočili možnost nahrání firmware, nebude dané zařízení nejspíš fungovat ani v nainstalovaném systému. Pro jeho zprovoznění budete muset doinstitalovat firmware ručně.

51
Kapitola 7

Zavedení vašeho nového systému

7.1 Okamžik pravdy

Teď přichází chvíle zahoření systému.

Jestliže se systémem Debian začínáte, může se vám hodit pomoc zkušenějších uživatelů. Pro méně rozšířené architektury jako 64-bit ARM bude nejlepší zeptat se v poštovní konferenci debian-arm. Dále nám můžete poslat zprávu o instalaci (viz 5.4.5). Svůj problém popište stručně a jasně a opište z obrazovky všechny hlášky, které by mohly ostatním pomoci v určení problému.

7.2 Připojení zašifrovaných svazků

Jestliže jste při instalaci vytvořili nějaké šifrované svazky a přiřadili jim připojné body, budete během zavádění dotázaní na přístupovou frázi ke každému takovému svazku.

Pro oblasti zašifrované pomocí dm-crypt uvidíte při zavádění výzvu podobnou této:

```
Starting early crypto disks... part_crypt(starting)
Enter LUKS passphrase:
```

kde **oblast** je název oblasti, která byla zašifrována. Možná nyní přemýšlíte, pro **který svazek** vlastně frázi zadáváte. /home/? /var? Samozřejmě pokud máte jen jeden šifrovaný svazek, tyto pochyby vás trápí nemusí a stačí zadat frázi, kterou jste přiřadili při vytváření svazku. Pro ostatní se nyní hodí poznámky, které jste si poznáčili jako poslední krok 6.3.3.6. Pokud jste si nepoznačili dvojice **oblast_crypt** a připojný bod, můžete tuto informaci najít v souboru /etc/fstab (a částečně v /etc/crypttab) ve svém novém systému.

Při připojování kořenového souborového systému může výzva k zadání fráze vypadat mírně jinak. Vzhled závisí na generátoru, kterým byl initrd vytvořen. Initrd v následujícím příkladu byl vytvořen nástrojem initramfs-tools:

```
Begin: Mounting root file system... ...
Begin: Running /scripts/local-top ...
Enter LUKS passphrase:
```


Po zadání všech přístupových frází by mělo zavádění pokračovat jako obvykle.

7.2.1 Řešení problémů

Pokud se některé šifrované svazky nepodařilo připojit kvůli chybné přístupové frázi, budete je muset připojit po zavedení systému ručně. Existuje několik možností.

- **První případ** se zabývá kořenovou oblastí. Pokud se tato nepřipojí, zavádění se zastaví a pro další pokus budete muset počítač restartovat.
KAPITOLA 7. ZAVEDENÍ VAŠEHO NOVÉHO SYSTÉMU 7.3. PŘIHLÁŠENÍ DO SYSTÉMU

• Nejjednodušší případ se týká datových oblastí typu /home nebo /srv. Po zavedení je stačí ručně připojit.
 U dm-crypt nejprve musíte zaregistrovat svazky do části jádra nazvané device mapper. Slouží k tomu příkaz

```bash
# /etc/init.d/cryptdisks start
```

 který prohledá všechny svazky zmíněné v souboru /etc/crypttab a po zadání správných přístupových frází vytvoří příslušná zařízení v adresáři /dev. (Již zaregistrované svazky budu přeskočeny, takže můžete příkaz spustit bez obav i několikrát po sobě.) Po úspěšné registraci můžete svazky připojit tradičním

```bash
# mount /pripojny_bod
```

• Pokud se nepodařilo připojit svazky obsahující nekritické části systému (např. /usr nebo /var), systém by se měl stále zavést a měli byste mít možnost připojit svazky ručně stejně jako v předchozím případě. Navíc byste ale měli nastartovat (resp. restartovat) služby, které se spouštějí ve vašem výchozím runlevelu, protože je velmi pravděpodobné, že se nesneprostí. Nejjednodušší cestou je asi restart celého počítače.

7.3 Přihlášení do systému

Po zavedení Debianu se setkáte s výzvou k přihlášení do systému (tzv. login prompt). Přihlaste se pod svým osobním účtem, který jste si vytvořili během instalace. Systém je připraven k používání.

Pokud jste začínající uživatel, asi si budete chtít prohlédnout dokumentaci dostupnou v systému. V současné době existuje několik dokumentačních systémů, ale pracuje se na jejich sjednocení.

Dokumentace vztahující se k instalovaným programům je v adresáři /usr/share/doc/ v podadresáři se jménem programu (přesněji se jménem balíku). U rozsáhlejší dokumentace bývá tato zabalena v samostatném balíku, který je většinou potřeba doinstalovat v balíku apt-doc nebo apt-howto.

/usr/share/doc/ navíc obsahuje několik speciálních adresářů. Například příručky pro použití programu apt naleznete v balíku apt-doc nebo apt-howto.

... Tyto dokumenty můžete jednoduše prohlížet pomocí textového prohlížeče. Zadejte:

```bash
$ cd /usr/share/doc/
$ w3m .
```

Tečka za příkazem w3m říká, že má zobrazit obsah aktuálního adresáře.

Máte-li nainstalované desktopové grafické prostředí, můžete použít v něm obsažený grafický webový prohlížeč. Spusťte prohlížeč z nabídky aplikací a do řádku s adresou zadejte /usr/share/doc/.

Kapitola 8

Co dál?

8.1 Vypínání systému

Běžící systém Debian GNU/Linux nesmíte vypínat tlačítkem reset nebo prostým vytažením napájecí šňůry ze zásuvky. Pokud se operační systém nevypne řízeně, mohou se soubory na disku ztratit nebo poškodit. Používáte-li desktopové prostředí, obvykle se v menu vyskytuje položka „Odhlásit“, která vám umožní systém vypnout (případně restartovat).

Na konzoli můžete použít klávesovou kombinaci Ctrl-Alt-Del. Pokud žádná z předchozích možností nefungovala, můžete se přihlásit jako uživatel root a zadat příslušný příkaz ručně. Systém restartujete příkazem reboot, zastavíte příkazem halt (bez vypnutí napájení) a zcela vypnete příkazem poweroff¹ nebo shutdown -h now. Nový init systém restartovatelných pakovacích systémů systemd nabízí podobné příkazy se stejnou funkcionalitou, a sice systemctl reboot, systemctl halt a systemctl poweroff.

8.2 První kroky se systémem UNIX

Jestliže se systémem Unix začínáte, měli byste si pořídit (a hlavně přečíst) nějakou literaturu. Mnoho hodnotných informací naleznete v Debian Reference. Za shlédnutí stojí také seznam unixových FAQ, který obsahuje spoustu usenetových dokumentů, jež mohou sloužit jako pohled do historie.

Linux je jednou z implementací systému Unix. Na stránkách Linux Documentation Project (LDP) je shromážděno obrovské množství elektronických knih a návodů HOWTO týkajících se Linuxu. Většinu z těchto materiálů si můžete pročíst lokálně, stačí nainstalovat jeden z balíků doc-linux-html (HTML verze) nebo doc-linux-text (ASCII verze). Dokumenty se nainstalují do adresáře /usr/share/doc/HOWTO. V balících jsou dostupné rovněž překlady některých návodů.

8.3 Orientace v Debianu

Debian GNU/Linux se od ostatních distribucí mírně odlišuje. Proto i když jste již s Linuxem nebo jiným unixovým systémem pracovali, pokud si chcete udržet systém v pořádku, je třeba se seznámit s tím, jak distribuce funguje. Tato kapitola vám pomůže se v Debianu lépe zorientovat. Opět se jedná pouze o letmý přehled.

8.3.1 Balíčkovací systém Debianu

Nejjedlejší je pochopit, jak pracuje balíčkovací software, protože systém je z velké části spravován právě balíčkovacím systémem. Jedná se o adresáře:

- /usr (vyjma /usr/local)
- /var (vyjma /var/local)
- /bin
- /sbin

¹S dřívějším init systémem SysV se příkaz halt choval stejně jako poweroff; ale s init systémem systemd (výchozí od Debianu 8) se jejich chování změnilo.
8.4. DALŠÍ DOKUMENTACE

8.3.2 Další software pro Debian

I když máte po instalaci systému Debian k dispozici oficiální repositáře balíčků, je možné, že budete potřebovat software, který se v nich nenači. V takovém případě se můžete pohlednout po dalších více či méně oficiálních repositářích, které mohou daný software obsahovat. Jeden komentovaný seznam repositářů naleznete Wiki stránce Dostupný software pro Debian (stabilní vydání)

8.3.3 Správa různých verzí programů

Pokud udržujete více verzí různých aplikací, bude vás zajímat manuálová stránka příkazu update-alternatives.

8.3.4 Správa Cronu

Všechny periodické úlohy spojené se správou systému by měly být v adresáři /etc, protože to jsou konfigurační soubory. Pokud spouštíte administrátorské úlohy denně, týdně, nebo měsíčně, umístěte je do /etc/crontab. Spouštění těchto úloh je řízeno souborem /etc/crontab. Úlohy poběží postupně podle abecedního pořadí.

Jestliže však máte speciálnější požadavky (potřebuji úlohu spouštět pod jiným uživatelem nebo chcete úlohu pouštět v určité čase nebo intervalu), můžete použít soubory /etc/cron.daily, /etc/cron.weekly, /etc/cron.monthly. Tyto soubory mají navíc pole pro jméno uživatele, pod kterým se má úloha spustit.

V obou případech stačí přidat/upravit soubory a cron je automaticky rozpozná a začne používat — není potřeba spouštět žádný příkaz. Další informace jsou v cron(8), crontab(5) a /usr/share/doc/cron/README. Debian.

8.4 Další dokumentace

8.5 Nastavení poštovního systému

V dnešní době je elektronická pošta důležitou součástí našich životů. Protože existuje spousty způsobů, jak poštou nastavit, a protože na ni spoléhají některé nástroje, zkusíme zde pokrýt aspoň základy.

Poštovní systém se skládá ze tří částí. Uživateli nejbližší je klientský program (MUA), jenž uživatel používá pro čtení a psaní pošty. Dále je zde poštovní server (MTA), který se stará o přenos pošty mezi různými počítači. A na závěr je zde doručovací agent (MDA), který se stará o doručení pošty do uživatelovy schránky. Tyto tři funkce mohou vykonávat samostatné programy, nebo mohou být sloučeny do dvou, případně jediného programu.
KAPITOLA 8. CO DÁL? 8.5. NASTAVENÍ POŠTOVNÍHO SYSTÉMU

Na unixových systémech je historicky velmi populární MUA mutt a jako většina tradičních programů je textový. Jako MTA se často používá exim nebo sendmail a funkci MDA vykonává procmail nebo maildrop.

S rostoucí popularitou grafických desktopových prostředí se začíná používat více grafických poštovních klientů jako evolution pro prostředí GNOME, kmail pro prostředí KDE, nebo multiplatformní thunderbird. Tyto programy kombinují funkce MUA, MTA a MDA dohromady, ale mohou být — a často jsou — používány v kombinaci s tradičními unixovými nástroji.

8.5.1 Výchozí nastavení pošty

I když plánujete používat grafický poštovní program typu vše v jednom, je důležité, aby byl nainstalován i tradiční MTA/MDA. Důvodem jsou různé nástroje\(^2\), které mohou elektronickou poštu zasílat správci a/nebo uživatelům důležitá upozornění.

K těmto účelům se při standardní instalaci (pokud jste nezrušili výběr úlohy „standardní“) nainstalují balíky exim4 a mutt. exim4 kombinuje MTA a MDA, je relativně malý, jednoduchý na pochopení a zároveň je dostatečně pružný, aby vyhověl i náročnějším požadavkům. Ve výchozí konfiguraci je nastaven tak, aby zpracovával pouze lokální poštu (tj. tu, která vznikla na tomto systému) a veškeré zprávy adresované systémovému správci (účet root) posílal na účet běžného uživatele, který byl vytvořen během instalace\(^3\).

Pošta je při doručení přidána do souboru `/var/mail/jmeno_uctu`. Tuto poštu můžete číst například programem mutt.

8.5.2 Odesílání pošty mimo systém

Jak bylo zmíněno dříve, po základní instalaci Debianu umí systém zpracovávat pouze poštu pocházející ze stejného počítače. Odesílání nebo přijímání pošty z jiných systémů není nastaveno.

Chcete-li, aby exim4 zpracovával i externí poštu, posuňte se na následující podkapitolu, kde naleznete základní možnosti. Nezapomeňte pak otestovat, zda odesílání a přijímání pošty funguje bez problému.

Jestliže plánujete používat grafický poštovní program v spojení s poštovním serverem vašeho poskytovatele Internetu nebo s poštovním serverem vaší firmy, není důvod, abyste nastavovali exim4. Stačí nastavit grafický poštovní klient, aby používal pro přijímání a odesílání správné poštovní servery (konkrétní nastavení spadá mimo rozsah této příručky).

I při použití grafického poštovního klienta a externího poštovního serveru je někdy potřeba nastavit některé konkrétní programu pro posílání pošty mimo systém. Jedním z takových programů je nástroj reportbug, který zajišťuje odesílání hlášení o chybách v Debianích balících. Ve výchozím nastavení očekává, že bude pro odesílání chybových hlášení používat exim4.

Abyste reportbug přemluvili, aby používal externí poštovní server, spusťte příkaz reportbug --configure a na otázku, zda je MTA dostupný, odpovězte „ne“. Poté budete dotázaní na SMTP server, který se má používat pro odesílání chybových hlášení. Sem vyplňte stejně jméno nebo IP adresu, jakou jste zadali v konfiguraci grafického poštovního klienta.

8.5.3 Nastavení poštovního serveru Exim4

V případě, že na svém systému chcete zpracovávat i externí poštu, musíte změnit nastavení balíku exim4\(^4\):

```bash
# dpkg-reconfigure exim4-config
```

Po zadání příkazu budete nejprve dotáznáni, zda chcete rozdělit konfiguraci do menších souborů. Pokud si nejste jisti, ponechte výchozí možnost.

Další obrazovka vám nabídne několik typických scénářů použití. Vyberte z nich ten, který nejvíce odpovídá zamýšlenému použití:

internetový počítač Váš systém je připojen k počítačové síti a pošta je odesílána/přijímána přímo protokolem SMTP. Na následujících obrazovkách budete dotázaní několik základních údajů, jako je poštovní jméno nebo seznam domén, pro které chcete přijímat nebo předávat poštu.

\(^2\)cron, quota, logcheck, aide, ...

\(^3\)Přeposílání pošty uživatele root na účet běžného uživatele se nastavuje v souboru `/etc/aliases`. Jestliže jste během instalace přeskočili vytvoření běžného uživatele, pak bude pošta samozřejmě doručována přímo uživateli root.

\(^4\)Samozřejmě vám nic nebrání exim4 odstranit a nahradit alternativním MTA/MDA.
odesílání pošty přes chytrý počítač

Podle tohoto scénáře je veškerá odchozí pošta posílána „chytrému“ počítači, který ji za vás rozešle. Chytrý počítač také často ukládá vaší příchozí poštu, tudíž nemusíte být neustále připojeni. To pak znamená, že poštu musíte číst na chytrém počítači, nebo ji z něj stahovat programem typu fetchmail.

Chytrý počítač obvykle bývá poštovní server vašeho poskytovatele připojení, což je obzvláště vhodné pro uživatele s vytáčeným připojením. Jinak to může být třeba firemní poštovní server, nebo i jiný počítač na vaší síti.

odesílání pošty přes chytrý počítač; žádná lokální pošta

Tato volba je v podstatě shodná s předchozí, až na fakt, že systém nebude zpracovávat poštu pro lokální poštovní doménu. Zpracovávat se bude pouze pošta vzniklá na systému (např. pro systémového správce).

pouze lokální pošta

Systém není připojen k síti a pošta se rozesílá pouze mezi lokálními uživateli. Tato volba je důrazně doporučena i když nemáte připojení k internetu. Jinak byste mohli dostat hromadu emailů.

žádné nastavení

Tuto možnost vyberte jedině pokud přesně víte, co děláte, protože pokud budete používat tohoto typu poštovního systému, můžete přijít o důležité zprávy od systémových programů.

Mějte však na paměti, že pokud nemáte oficiální doménové jméno, tak pošta odesílaná přímo do internetu může být protistranou odmítnuta jako ochrana proti spammerům. Preferováno je posílání pošty přes poštovní server vašeho poskytovatele připojení. Chcete-li měnit nastavení, musíte postupovat podle instrukcí ve souboru /etc/email-addresses.

8.6 Kompilace nového jádra

Proč byste si chtěli sestavit nové jádro? Obvykle nejde o nutnost, poněvadž jádro dodávané s Debianem funguje ve většině počítačů. V Debianu také bývají dostupné alternativní jádra, která mohou odpovídat vašemu hardwaru lépe než jádro výchozí, takže byste měli také podívat.

Nicméně nové jádro může být užitečné v následujících situacích:

• Potřebujete vyřešit hardwarový konflikt zařízení nebo speciální nároky hardwaru, které dodávané jádro nezvládá.
• Ve standardním jádře postrádáte podporu zařízení nebo nějakou službu (např. podporu vysoké paměti).
• Chcete menší jádro bez ovladačů, které nepoužíváte. Urychlíte start systému a ušetříte paměť.
• Chcete monolitické jádro místo modulárního.
• Chcete jádro z vývojové řady.
• Chcete se o jádře dozvědět něco víc.

8.6.1 Správa jader

Nebojte se kompilace jádra, je to zábava a budete z ní mít užitek.

Tato metoda vytvoří zdrojové texty jádra /boot a několik dalších, které již můžete instalovat. Jakmile kompilace ukončí, budete mít do rukou kompletu jádra.

Jádro není standardní, takže musíte být zcela připraveni na malé změny. Pokud jste se vyjádřili otužněnější, můžete použít jiné jádro, které je standardní.

Jádro nesouhlasí s některými nastaveními, jaké byste mohli použít. Pokud jste se vyjádřili o tuhové, můžete použít jiné jádro, které je standardní.

Jádro nesouhlasí s některými nastaveními, jaké byste mohli použít. Pokud jste se vyjádřili o tuhové, můžete použít jiné jádro, které je standardní.

Jádro nesouhlasí s některými nastaveními, jaké byste mohli použít. Pokud jste se vyjádřili o tuhové, můžete použít jiné jádro, které je standardní.

Jádro nesouhlasí s některými nastaveními, jaké byste mohli použít. Pokud jste se vyjádřili o tuhové, můžete použít jiné jádro, které je standardní.

Jádro nesouhlasí s některými nastaveními, jaké byste mohli použít. Pokud jste se vyjádřili o tuhové, můžete použít jiné jádro, které je standardní.

Jádro nesouhlasí s některými nastaveními, jaké byste mohli použít. Pokud jste se vyjádřili o tuhové, můžete použít jiné jádro, které je standardní.

Jádro nesouhlasí s některými nastaveními, jaké byste mohli použít. Pokud jste se vyjádřili o tuhové, můžete použít jiné jádro, které je standardní.

Jádro nesouhlasí s některými nastaveními, jaké byste mohli použít. Pokud jste se vyjádřili o tuhové, můžete použít jiné jádro, které je standardní.

Jádro nesouhlasí s některými nastaveními, jaké byste mohli použít. Pokud jste se vyjádřili o tuhové, můžete použít jiné jádro, které je standardní.

V dalším budeme předpokládat, že zdrojové texty jádra verze 3.16 uložíte někam do svého domovského adresáře.⁵

V prostředí X11 nakonfigurujte jádro příkazem `make xconfig`, nebo v terminálu příkazem `make menuconfig` (musíte mít nainstalovaný balíček `ncurses-dev`). Pročtěte si nápovědu a pozorně vybírejte z nabízených možností.

Pokud si v některém bodu nebudete vědět rady, je většinou lepší zařízení do jádra vložit. Volby, kterým nerozumíte a které se nevztahují k hardwaru, raději nechte na přednastavených hodnotách. Nezapomeňte do jádra zahrnout „Kernel module loader“ (tj. automatické vkládání modulů) v sekci „Loadable module support“, které přednastavené nebývá, avšak Debiam tuto službu předpokládá.

Příkazem `make-kpkg clean` pročistíte strom zdrojových textů a vynulujete předchozí nastavení balíku `kernel-package`.

Kompilaci jádra provedete příkazem `fakeroot make-kpkg --initrd --revision=1.0.moje kernel_image`.

Číslo verze „1.0.moje“ si můžete zvolit podle vlastní úvahy, slouží pouze k vaší orientaci v připravených balících.

Kompilace zabere chvíli času, záleží na výpočetním výkonu vašeho počítače.

Až kompilace skončí, jádro nainstalujte jako každý jiný balík. Jako root napište `dpkg -i ../linux-image-3.16-podarchitektura_1.0.moje_arm64.deb`.

Podarchitektura je volitelné upřesnění architektury, které zde zadali při konfiguraci jádra.

dpkg -i nainstaluje jádro spolu s doprovodnými soubory. Jedná se třeba o soubory `System.map`, který je užitečný při dohledávání problémů v jádře, a `/boot/config-3.16` obsahující konfigurační soubor jádra. Balík s jádrem je dostatečně chytrý, takže během instalace automaticky začne používat nové jádro.

Nyní je čas spustit systém s novým jádrem. Projděte si chybové hlášky, které se mohly při instalaci jádra vyskytnout, a pokud vše vypadá dobře, restartujte příkazem `shutdown -r now`.

Více informací o debianích jádrech a o kompilaci jader si můžete přečíst v [Debian Linux Kernel Handbook](#).

8.7 Obnovení poškozeného systému

Občas se věci pokazí a pečlivě instalovaný systém najednou nejde zavést. Možná se při změně porušila nastavení fáze, nebo mohla být nějaká hardware ve vašem systému zasáhla a systém sice funguje, ale je následně citlivý na změny.

V takovém případě je vhodné zaplnit některou z dalších automatických příkazů pro restart systému.

Existují několik různých způsobů, jak se dostat do reinstalačního režimu, avšak nejčastěji se používá příkaz `shutdown -r now`. V případě, že se již předchozí příkazem `shutdown -r now` nezdařil, můžete použít další nástroje pro restart systému, které vám umožní štěstí a restartování systému.

V obou případech se po ukončení shellu systém restartuje.

Na závěr mějte na paměti, že oprava poškozených systémů může být obtížná a popis všech možností, které mohou nastat, je mimo rozsah této příručky. Pokud máte problémy, obraťte se na specialistu.

⁵Existují i jiná místa, kam můžete zdrojové texty jádra rozbalit, ale použitá možnost je nejednodušší a nevyžaduje žádná speciální práva.
Příloha A

Jak na instalaci

Tento dokument popisuje, jak nainstalovat Debian GNU/Linux buster pro architekturu 64-bit ARM („arm64“) pomocí nového instalačního programu. Jedná se o rychlého průvodce instalací procesem, který by měl pokrýt většinu typických instalací. V případech, kdy je vhodné sdělit více informací, se odkazujeme do ostatních částí tohoto dokumentu.

A.1 Příprava

Zaznamenáte-li během instalace nějaké chyby, podívejte se do 5.4.5, kde naleznete instrukce, jak je nahlásit. Pokud máte otázky, na které nemůžete nalézt odpovědi v tomto dokumentu, ptejte se v diskusní skupině debian-boot (debian-boot@lists.debian.org) nebo na IRC (kanál #debian-boot v síti OFTC).

A.2 Zavedení instalačního programu

Tým debian-cd nabízí obrazy CD s debian-installerem na stránce Debian CD. Více informací o získání CD naleznete v kapitole 4.1.

Některé metody instalace vyžadují jiné soubory než obrazy CD. Kapitola 4.2.1 vysvětluje, jak najít na zrcadlech Debianu ty správné obrazy.

Následující podkapitoly osvětlují, které obrazy byste měli použít pro který typ instalace.

A.2.1 CDROM

Populární volbou pro instalaci buster je obraz „síťového“ CD. Tento obraz slouží k zavedení instalačního systému z CD, instalaci minimálního funkčního systému a k instalaci ostatních balíků ze sítě (proto mu říkáme „síťový“). Pokud byste raději nepoužili síť, můžete si stáhnout i plné CD, které k instalaci síť nepotřebuje. (Z celé sady vám bude stačit pouze první obraz.)

Stáhněte si preferovaný obraz a vypalte jej na CD.

A.2.2 USB Memory Stick

Instalovat můžete také z výměnných USB zařízení. Například USB klíčenka je šikovným instalačním zařízením, které můžete nosit stále s sebou a velmi rychle tak rozšiřovat řady počítačů s Debianem.

Nej捷doušší cestou k vytvoření USB klíčenky s instalačním systémem je stáhnout libovolný CD/DVD obraz s instalací Debianu, který se na klíčenku vejde a nakopírovat ho přímo na klíčenku. Tím samozřejmě zrušíte všechna data, která na ní byla. Celé to funguje proto, že obrazy instalací CD jsou „hybridní“ a umožňují zavádění jak z CD, tak z USB.

Funkční klíčenku s instalačním programem lze vyrobit více cestami, z nichž některé jsou popsány v kapitole 4.3. (Například návod, jak použít klíčenku menší než 256 MB.)

A.2.3 Zavedení ze sítě

Další z možností, jak zavést debian-installer je pomocí sítě. Konkrétní postup závisí na vaší architektuře a síťovém prostředí. Obecně budete potřebovat soubory z adresáře netboot/.
A.2.4 Zavedení z pevného disku

Také je možné spustit instalací systém z pevného disku. Stáhněte si soubory hd-media/initrd.gz, hd-media/vmlinuz a obraz instaláčního CD do kořenového adresáře pevného disku. Ujistěte se, že obraz CD má příponu .iso. Nyní již jen stačí zavést jádro vmlinuz spolu s jeho ramdiskem initrd.

A.3 Instalace

Po startu instaláčního programu budete uvítáni úvodní obrazovkou. Nyní si můžete buď přečíst návod pro různé způsoby zavádění (viz 5.3), nebo jednoduše stisknout Enter a zavést instalaci.

Za chvíli budete vyzváni k výběru jazyka, ve kterém má instalace probíhat. Po seznamu se můžete pohybovat šipkami, pro pokračování stiskněte Enter. Dále budete dotážáni na výběr země. Pokud není požadovaná země v zobrazené nabídce, můžete přejít do úplného seznamu zemí světa.

Můžete být vyzváni k potvrzení klávesnicového rozložení. Pokud si nejste jisti, ponechte výchozí návrh. Nyní se pohybujete na jednotlivé stránky instalaci.

Dalším krokem je nastavení hodin a časového pásma. Instalátor se pokusí spojit s časovým serverem na internetu a nastavit přesný čas. Časové pásmo je vybráno automaticky podle země, kterou jste zvolili dříve. Leží-li země v několika časových pásmech, dostanete možnost vybrat časové pásmo.

Nyní je správný čas pro rozdělení disků. Nejprve vám bude nabídnuta možnost automatického rozdělení celého disku nebo měrného místa na disku (viz kapitola 6.3.3.2). Toto je doporučený způsob rozdělení disků pro začátečníky nebo pro lidí ve spěhu. Pokud necháte udělat automatické dělení, mělo by stačit uživatelům vytvořit ručně.

Na další obrazovce uvidíte svou tabulku oblastí s informací o tom, jak budou oblasti formátovány a kam budou připojeny. Na povolit formátování oblastí a vytvoření účtu běžného uživatele. Je-li jste uživatel s přesným časem, dostanete možnost vybrat časem.
A.5 A na závěr…

Doufáme, že se vám instalace Debianu líbí a že shledáváte Debian užitečným. Nyní byste si možná chtěli přečíst kapitolu 8.
Příloha B

Automatizování instalací pomocí přednastavení

Tento dodatek vysvětluje taje a záuldnosti přednastavení odpovědí na otázky debian-installeru za účelem zautomatizování instalačního procesu.

Utržky konfigurace použitě v této části jsou také dostupné jako samostatný soubor na https://www.debian.org/releases/buster/example-preseed.txt.

B.1 Úvod

Přednastavení nabízí možnost předem odpovědět na otázky, které se ptá instalační program. Díky tomu pak nemusíte do většiny instalací zasahovat a dokonce můžete vyhnut se některým vlastnostem, které jinak nejsou dostupné.

Přednastavení není povinné. Použijete-li prázdny soubor s odpovědmi, instalace bude probíhat úplně stejně jako při běžné instalaci. Každá otázka, kterou přednastavíte, jistým způsobem odchýlí instalaci od standardní cesty.

B.1.1 Způsoby přednastavení

Přednastavení existuje ve třech variantách: ini*rd, soubor a síť. Ini*rd funguje s každým typem instalace, podporuje přednastavení více odpovědí, ovšem vyžaduje nejvíce příprav. Přednastavení přes lokální soubor nebo přes síť se používá pro různé typy instalací.

Následující tabulka ukazuje, které způsoby přednastavení fungují s kterými způsoby instalací.

| Způsob instalace | ini*rd | soubor | síť *
|------------------|--------|--------|------*
| CD/DVD | ano | ano | ano 1
| zavedení ze sítě | ano | ne | ano 2
| z pevného disku (včetně usb klíčenky) | ano | ano | ano 1

Prakticky to znamená, že přednastavení pomocí souboru a sítě se nahrává až po zodpovězení otázek ohledně jazyka, země a klávesnice. (V případě přednastavení ze sítě navíc po všech otázkách týkajících se síťového nastavení.) Instalujete-li se střední nebo nízkou prioritou, do cesty se vám připletou ještě otázky ohledně rozpoznávání hardwaru.

Abyste mohli přednastavit i otázky, které se zobrazí před nahráním souboru s přednastavením, můžete využít zaváděcí parametry jádra, viz část B.2.2.

Jinou možností, jak se vyhnout otázkám, které se zobrazí před nahráním souboru s přednastavením, je spustit instalátor v „automatickém“ režimu. Tím se odstraní všechny brzké otázky až za okamžik nahození sítě a navíc se zobrazí jen otázky s kritickou prioritou, což odfiltřuje několik zbytečných otázek. Podrobnosti naleznete v B.2.3.

¹Ovšem pouze pokud máte přístup k síti a správně nastavíte preseed/url.
B.1.2 Omezení

Přestože takto můžete přednastavit většinu otázek debian-installeru, existuje několik výjimek. Při dělení disku musíte rozdělit buď celý disk, nebo použít stávající volné místo — není možné použít existující oblast.

B.2 Použití

Nejprve samozřejmě musíte vytvořit soubor s přednastavením a umístit jej na vhodné místo, odkud jej budete používat.

B.2.1 Nahrání souboru s přednastavením

Používáte-li přednastavení z initrd, musíte zajistit, aby se soubor jmenoval preseed.cfg a aby se nacházel v kořenovém adresáři initrd. O vše ostatní se postará instalační program. Ten se podívá, zda je soubor přítomen, a pokud ano, tak jej najeho.

U zbývajících způsobů přednastavení musíte instalátoru říci, který soubor má použít. Toho dosáhnete parametrem, který předáte jádru buď ručně při zavádění, nebo skrze soubor zavaděče (např. syslinux.cfg), kde na konec řádku append přidáte příslušný parametr.

Pokud to váš zavaděč umožňuje, nemusí být od věci jej nastavit tak, aby nečekal se zavedením instalačního systému na stisk klávesy Enter, ale aby dále pokračoval automaticky. V případě syslinuxu to znamená nastavit v souboru syslinux.cfg parametr timeout na hodnotu 1.

Abyste měli jistotu, že instalátor dostane správný soubor, můžete zadat jeho kontrolní součet. V současnosti to musí být md5 součet. Pokud zadaný součet a vypočítaný součet souboru nebudou souhlasit, instalátor odmítne tento soubor použít.

Zaváděcí parametry:
- pro zavádění ze sítě:
 preseed/url=http://pocitac/cesta/k/preseed.cfg
 preseed/url/checksum=5da499872beccfed2a2c4872f9171c3d
- nebo
 preseed/url/tftp://pocitac/cesta/k/preseed.cfg
 preseed/url/checksum=5da499872beccfed2a2c4872f9171c3d
- pro zavádění z upraveného CD:
 preseed/file=/cdrom/preseed.cfg
 preseed/file/checksum=5da499872beccfed2a2c4872f9171c3d
- pro zavádění z USB média (soubor s přednastavením je v kořenovém adresáři USB média):
 preseed/file=/hd-media/preseed.cfg
 preseed/file/checksum=5da499872beccfed2a2c4872f9171c3d

Pokud zadáte preseed/url nebo preseed/file jako zaváděči parametr, můžete použít zkrácenou verzi url, resp. file. Obdobně lze zkrátit preseed/file/checksum na pouhé preseed-md5.

B.2.2 Použití zaváděcích parametrů jako formy přednastavení

I když nemůžete přednastavit některé kroky připravenými odpovědími v souboru, stále můžete dosáhnout plně automatické instalace, protože můžete zadat hodnoty pro přednastavení jako zaváděcí parametry jádra. Zaváděcí parametry jádra můžete těž využít v případě, kdy nechcete použít celé přednastavení, ale jen předodpovědět nějakou konkrétní otázku.

Předzopovězení otázky popsaným způsobem způsobí, že se tato otázka nezobrazí. Chcete-li otázku přednastavit konkrétní odpověď, ale přesto chcete, aby se otázka zobrazila, použijte místo „=“ operátor „?=". Vice těž B.5.2.

Tři pomlčky `---` mají u zaváděcích parametrů jádra speciální význam. Všechny parametry nacházející se za posledními pomlčkami budou zkopírovány do konfigurace zavaděče v instalovaném systému. (Pokud to instalátor pro daný zavaděč umožňuje.) Parametry, které instalátor rozpozná (např. volby pro přednastavení), budou automaticky odfiltrovány.

POZNÁMKA

Aktuální jádra (2.6.9 a novější) akceptují nejvýše 32 parametrů a 32 proměnných prostředí (včetně standardních voleb pro instalační program). Pokud tento limit překročíte, jádro zpanikaří. (Dřívější jádra měla tyto limity ještě menší.)

Pro většinu instalací můžete celkem bez problémů odstranit implicitní volby jako `vga=normal`, což vám umožní přidat další volby pro přednastavení.

POZNÁMKA

V některých případech není možné zadat hodnotu obsahující mezeru, a to i v případě, kdy hodnotu obklopíte uvozovkami.

B.2.3 Automatický režim

Díky několika pokročilým (někteří říkají zmateným) vlastnostem instalačního systému Debianu je možné, aby se jednoduchý zaváděcí parametr rozvinul do komplexní a na míru upravené automatické instalace.

Zařizuje to zaváděcí volba `Automated install`, na některých architekturách nebo zavaděčích nazývaná též `auto`. V této části příručky tedy `auto` není zaváděcím parametrem, ale návěstím zavaděče, které připojí příslušné zaváděcí parametry.

Pro ilustraci uvádíme několik příkladů, které můžete zadat na zaváděcí výzvě.

```
auto url=autoserver
```


Poslední část `url=(d-i/buster/.preseed.cfg)` pochází z proměnné `auto-install/defaultroot`. Proměnně implicitně obsahuje adresář `buster`, aby jste s příchodem novějších verzí Debianu a nových kóduvých označení nemigrovali na nové verze automaticky, ale kontrolovaně (po explicitním zadání nového kódového jména). Část `/...` indikuje kořen, vůči kterému můžete zadávat relativní cesty (používá se v `preseed/include` a `preseed/run`). To umožňuje zadávat cesty k souborům jako kompletní URL, cesty začínající na / jsou připojeny

Vlastníkem debconf proměnné (nebo šablony) je obvykle jméno balíku, který obsahuje odpovídající debconf šablonu. U proměnných používaných přímo v instalaci distro je vlastníkem „d-i“. Šablony a proměnně mohou mít více vlastníků, což pomáhá při rozdělování, zda je možné je při odinstalování balíku odstranit z databáze debconfu.
ke kořenu, nebo jako cesty relativní k umístění, kde byl nalezen poslední soubor s přednastavením. To umožňuje vytvářet přenositelné soubory a mohou být přesouvané mezi různé umístění, aniž by se co pokazilo. Napište text.

Pokud na dané síti není vybudována vhodná DHCP a DNS infrastruktura, nebo pokud chce budoucího vývoje cesty k souboru preseed.cfg, můžete zadat explicitní URL. Nebude-li URL obsahovat prvek ././, bude automaticky připojen ke začátku cesty, tj. za třetí lomítko URL.

Celé to funguje tak, že:

- pokud v URL chybí protokol, předpokládá se http,
- pokud název počítače neobsahuje tečky, připojí se k němu doména odvozená z DHCP a
- pokud za názvem počítače není žádné lomítko, přidá se výchozí cesta.

Kromě zadávání URL můžete zadat i parametry, které přímo neovlivňují chování debian-installeru samotného, ale které mohou být předán do skriptů spouštěných z nahraného souboru s přednastavením pomocí preseed/run. V současnosti to je pouze auto-install/classes, ve zkrácené verzi classes. Příklad použití:

```auto url=http://192.168.1.2/cesta/k/preseed.souboru```

Třídy mohou například označovat typ systému, který se má instalovat, nebo jazykové prostředí, které se má nastavit.

Tento koncept je možné dále rozšířit. Pokud toho ve svých skriptech využijete, je rozumné použít jmenný prostor auto-install, například auto-install/style. Jste-li si mysleli, že máte pro další parametry vhodné využití, zmiňte se o něm v diskusní skupině debian-boot@lists.debian.org, abychom předešli konfliktům v jmenném prostoru (a případně vám přidali kratší alias).

Příkaz auto zatím není definován na všech architekturách. Stejně jako při použití automatického přednastavení pro instalování dolav hodná, že se bude automaticky přidáno k parametřům jádra. Parametr priority je alias pro debconf/priority a nastavením na hodnotu critical zjistíte, že se zobrazovaly pouze otázky s kritickou prioritou, kterými při instalaci moci néni.

Další parametry, které se mohou hodit při automatizaci instalaci přes DHCP, jsou interface=auto netcfg/dhcp_timeout=60, které umožňují automatické připojení k instalaci odpovídajícího architektury.

Tři užitečné aliasy

Při použití (automatického) přednastavení mohou hodit následující aliasy. Poznamenejme, že aliasy zkracují pouze jméno otázky. Vždy je třeba přidat ještě hodnotu, například auto=true nebo interface=eth0.

<table>
<thead>
<tr>
<th>priority</th>
<th>debconf/priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>taf</td>
<td>debian-installer/framebuffer</td>
</tr>
<tr>
<td>language</td>
<td>debian-installer/language</td>
</tr>
<tr>
<td>country</td>
<td>debian-installer/country</td>
</tr>
<tr>
<td>locale</td>
<td>debian-installer/locale</td>
</tr>
<tr>
<td>theme</td>
<td>debian-installer/theme</td>
</tr>
</tbody>
</table>

TIP
Rozsáhlý příklad použití této infrastruktury naleznete na webových stránkách autora. Kromě ukázkových skriptů a tříd tam také naleznete zajímavé výsledky kreativního použití přednastavení.

B.2.4 Užitečné aliasy

Příkaz auto použití (automatického) přednastavení se mohou hodit následující aliasy. Poznamenejme, že aliasy zkracují pouze jméno otázky. Vždy je třeba přidat ještě hodnotu, například auto=true nebo interface=eth0.
B.3. Vytvoření souboru s přednastavením

Soubor s přednastavením soubor má stejný formát jako používá příkaz `debconf-set-selections`. Běžný řádek pak má tvar:

```
<vlastník> <jméno otázky> <typ otázky> <hodnota>
```

Soubor by měl začínat komentářem `#_preseed_V1`. Při vytváření souboru s přednastavením byste měli mít na paměti několik pravidel.

- Mezi typ a hodnotu vkládejte pouze jednu mezuru nebo tabulátor — případně další bílé znaky budou považovány za součást hodnoty.

- Dlouhý řádek můžete pro lepší čitelnost rozdělit na několik řádků tak, že na konec řádku přidáte znak pro pokračování řádku „\"“ (zpětné lomítko). Je vhodné rozdělit řádek mezi názvem a typem otázky, ne mezi typem a hodnotou. Po spojení řádků bude bílé místo ze začátku/konce řádku spojeno do jediné mezery.

- Pro `debconf` proměnné (šablony), které jsou součástí pouze samotného instalačního programu, by měl být vlastník nastaven na „.d-i“. Pro přednastavení ostatních proměnných používaných během instalace by se měl jako vlastník používat název balíku, který obsahuje příslušnou šablonu. Do `debconf` databáze v nainstalovaném systému se přenesou pouze proměnné, které mají jako vlastník nastaveno něco jiného než „.d-i“.

- Většina otázek vyžaduje zadání hodnot v angličtině, avšak existují výjimky jako třeba `partman`, kde musíte použít přeložené hodnoty.
• Dále pak některé otázky vyžadují hodnotu formou kódu (a ne text, který se zobrazuje během instalace).
• Na začátku souboru uveďte `#_preseed_V1`

Nejednodušší způsob vytvoření souboru s přednastavením je použít ukázkový soubor z B.4 jako základ a upravit si jej dle potřeb.

Jiná možnost je provést ruční instalaci a po restartu do nového systému použít příkaz `debconf-get-selections` (z balíku `debconf-utils`) a uložit databázi debconfu i cdebconfu do jediného souboru:

```
$ echo "#_preseed_V1" > soubor
$ debconf-get-selections --installer >> soubor
$ debconf-get-selections >> soubor
```

Tento přístup má tu nevýhodu, že vytvořený soubor bude obsahovat i položky, které by se neměly přednastavit.

Z tohoto pohledu je pro většinu uživatelů vhodnější použití ukázkového souboru.

**Poznámka**

Tento způsob se spoléhá na fakt, že se na konci instalace uloží databáze cdebconfu do instalovaného systému do souboru `/var/log/installer/cdebconf`. Protože tato databáze může obsahovat důvěrné informace, jsou tyto soubory čitelné pouze pro uživatele root.

Pokud ze systému vyčistíte balík `installation-report`, bude smazán také adresář `/var/log/installer`.

Seznam možných hodnot pro otázky můžete zjistit během instalace ze souborů umístěných v adresáři `/var/lib/cdebconf` (např. pomocí editoru `nano`). Samotné šablony se nachází v souboru `templates.dat`, aktuální hodnoty naleznete v souboru `questions.dat`.

Ještě před instalací je vhodné zkontrolovat formát předkonfiguračního souboru příkazem `debconf-set-selections -c preseed.cfg`.

**B.4 Obsah souboru s přednastavením (pro buster)**

Útržky konfigurace použité v této části jsou také dostupné jako samostatný soubor na [https://www.debian.org/releases/buster/example-preseed.txt](https://www.debian.org/releases/buster/example-preseed.txt).

Tento příklad je založen na instalaci pro architekturu Intel x86. Jelikož instalujete na jinou architekturu, nemusí některá nastavení odpovídat těm uvedeným (výběr klávesnice, instalace zavaděče) a budete je muset nahradit adekvátními hodnotami.

Podrobnosti o tom, jak jednotlivé komponenty instalačního systému pracují, naleznete v kapitole 6.3.

**B.4.1 Lokalizace**

Nastavení lokalizačních proměnných bude fungovat pouze v případě, když používáte přednastavení přes initrd, nebo pomocí zavaděčích parametrů jádra. U ostatních způsobů se totiž soubor s přednastavením nahráje až po zobrazení těchto otázek. Výjimkou je automatický režim (B.2.3), který odsune otázky ohledně lokalizace na později a umožní je tak přednastavit všemi známými způsoby.

Místní prostředí (locale) slouží k současnému zadání jazyka i země. Například pomocí zavaděčího parametru jádra můžete zadat `locale=cs_CZ`.

Tento způsob je velice jednoduchý, ale neumožňuje přednastavit všechny možné kombinace jazyka, země a místního prostředí.

Například přednastavením `locale` na hodnotu `en_NL` by se jako výchozí locale pro instalovaný systém použilo `en_US.UTF-8`. Jestliže preferujete britský standard angličtiny (`en_GB.UTF-8`), musíte přednastavit jednotlivé proměnné.

---

3Například přednastavením `locale` na hodnotu `en_NL` by se jako výchozí locale pro instalovaný systém použilo `en_US.UTF-8`. Jestliže preferujete britský standard angličtiny (`en_GB.UTF-8`), musíte přednastavit jednotlivé proměnné.
Zadat můžete libovolnou kombinaci jazyka podporovaného v `debian-installer` a země. Pokud kombinace neodpovídá platnému prostředí, vybere instalační systém kombinaci tak, že se pokusí zachovat jazyk a k němu vybere platnou zemi.

Nastavení klávesnice se skládá z výběru klávesové mapy a země. Pokud kombinace netvoří platné prostředí, vybírá instalační systém kombinaci tak, že se pokusí zachovat jazyk a k němu vybere platnou zemi.

Nastavení klávesnice můžete přeskočit nastavením proměnné `keymap` na hodnotu `skip-config`. Tím se zachová výchozí klávesová mapa jádra.

### B.4.2 Nastavení sítě

Pokud nahráváte soubor s přednastavením ze sítě, pak následující samozřejmě nebude fungovat! V takovém případě zadejte potřebné parametry sítě zaváděči jádra. Zavádíte-li z CD nebo USB, bude nastavení fungovat bez problémů.

Potřebujete-li při zavádění ze sítě vybrat konkrétní síťové rozhraní ještě před nahráním souboru s přednastavením, můžete to obejít následujícím hackem (např. pokud chcete síťovému rozhraní nastavit statickou adresu). Hack spočívá ve

```bash
Výběr klávesnice.
d-i keyboard-configuration/xkb-keymap select cz
d-i keyboard-configuration/toggle select No toggling

Nastavení klávesnice můžete přeskočit nastavením proměnné `keymap` na hodnotu `skip-config`. Tím se zachová výchozí klávesová mapa jádra.

Pro nastavení sítě lze využít následující proměnné:

```bash
kill-all-dhcp; netcfg

# Kompletně zakáže nastavení sítě. Hodí se pro instalace z CD
# na nezasílaných zařízeních, kde by byly síťové otázky,
# varování o nedostupné síti a dlouhé čekání doby na obtíž.
#d-i netcfg/enable boolean false

# netcfg zkusí použít rozhraní, jehož druhý konec je aktivní
# a tím pádem přeskočí výběr ze seznamu nalezených rozhraní.
d-i netcfg/choose_interface select auto

# Výběr konkrétního síťového rozhraní:
d-i netcfg/choose_interface select eth1

# Rozpoznání aktivního síťového připojení může někdy trvat déle než
# výchozi 3 sekundy. V takovém případě pomůže zvýšení této hodnoty.
d-i netcfg/link_wait_timeout string 10

# Máte-li pomáhající dhcp server a instalačnímu systému vypráti čas při
# čekání na odpověď, bude užitečné následující.
d-i netcfg/dhcp_timeout string 60
#d-i netcfg/dhcpv6_timeout string 60
```
Pokud dáváte přednost ručnímu nastavení síť:
#-i netcfg/disable_autoconfig boolean true

Má-li tento soubor s přednastavením fungovat na systémech s i bez
dhcp serveru, odkomentujte následující řádky a také statické
nastavení sítě níže.
#-i netcfg/dhcp_failed note
#-i netcfg/dhcp_options select Configure network manually

Statické nastavení sítě.
#
Příklad IPv4
#-i netcfg/get_ipaddress string 192.168.1.42
#-i netcfg/get_netmask string 255.255.255.0
#-i netcfg/get_gateway string 192.168.1.1
#-i netcfg/get_nameservers string 192.168.1.1
#-i netcfg/confirm_static boolean true
#
Příklad IPv6
#-i netcfg/get_ipaddress string fc00::2
#-i netcfg/get_netmask string fff:ffff:ffff:ffff::
#-i netcfg/get_gateway string fc00::1
#-i netcfg/get_nameservers string fc00::1
#-i netcfg/confirm_static boolean true

Název počítače a domény přiřazené přes DHCP mají větší prioritu než
hodnoty nastavené zde, nicméně takto máte jistotu, že tato otázka
neobrazil (ať už nastavení z DHCP obdržíme nebo ne).
#-i netcfg/get_hostname string nenastavene-jmeno
#-i netcfg/get_domain string nenastavena-domena

Chcete-li vynutit konkrétní název počítače bez ohledu na to, co
nabídne DHCP server, odkomentujte následující řádku.
#-i netcfg/hostname string nejakejmeno

Zakážte otravný dialog o WEP klíči.
#-i netcfg/wireless_wep string
PrávěDHCP jméno počítače, které používají některé ISP jako heslo.
#-i netcfg/dhcp_hostname string radish

Pokud síťová karta nebo jiný hardware vyžaduje nesvobodný firmware,
můžete říct instalátoru, aby se vždy pokusil firmware nahrát bez
dalšího dotazování. Chcete-li nahrávání i dotazování zakázat,
nastavte na hodnotu false.
#-i hw-detect/load_firmware boolean true

Pokud není proměnná netcfg/get_netmask přednastavená, netcfg si síťovou masku dopočítá automaticky.
Pro plně automatické instalace musíte v takovém případě nastavit proměnnou jako seen, abyste instalace nečekala
na potvrzení spočítané masky. Obdobně je možné nepřednastavovat proměnnou
netcfg/get_gateway a nenastavovat proměnnou netcfg/get_gateway na hodnotu „none“, což znamená, že se brána nemá použít vůbec.

B.4.3 Síťová konzole

Následující nastavení se hodí v situacích, kdy chcete instalovat
vzdáleně přes SSH pomocí komponenty network-console.
Toto přednastavení má smysl pouze pokud plánujete dokončit
instalaci ručně.
#-i anna/choose_modules string network-console
#-i network-console/authorized_keys_url string http://10.0.0.1/openssh-key
#-i network-console/password password rootme
#-i network-console/password-again password rootme
B.4.4 Nastavení zrcadla

V závislosti na způsobu instalace můžete zrcadlo použít pro stažení dodatečných komponent instalačního systému, stažení základního systému a pro nastavení souboru /etc/apt/sources.list.

Parametr mirror/suite určuje verzi instalovaného systému.

Parametr mirror/udeb/suite určuje verzi Debanu, ze které se stáhnu dodatečné komponenty instalačního systému. Nastavení této proměnné má smysl pouze v případě, že komponenty stahujete ze sítě a potřebujete, aby odpovídaly verzi inidrt, který se používá pro instalaci. Instalační systém obvykle zvolí správnou hodnotu, takže by neměl být důvod tuto proměnnou měnit.

```bash
# Zvolíte-li ftp, nemusíte nastavovat mirror/country
#d-i mirror/protocol string ftp
d-i mirror/country string manual
d-i mirror/http/hostname string ftp.cz.debian.org
d-i mirror/http/directory string /debian
d-i mirror/http/proxy string

# Verze pro instalaci.
#d-i mirror/suite string testing
# Verze, ze které nahrává komponenty instalátoru (volitelné).
#d-i mirror/udeb/suite string testing
```

B.4.5 Nastavení účtů

Instalační systém umožňuje přednastavit jak heslo uživatele root, tak jméno a heslo prvního běžného uživatele systému.

Heslo můžete zadat buď v nešifrované podobě, nebo jako crypt(3) hash.

VAROVÁNÍ

Přednastavení hesel není bezpečné, protože kdokoliv s přístupem k souboru s přednastavením si tato hesla může přečíst. Z pohledu bezpečnosti je použití hashů lépešší, ovšem vzhledem k možným útokům hrubou silou je třeba zvolit silný algoritmus jako SHA-256 nebo SHA512. Dřívejší hashovací algoritmy jako DES a MD5 jsou považovány za slábé.

```bash
# Přeskočí vytvoření účtu pro roota (běžný uživatel bude moci použít
# sudo).
#d-i passwd/root-login boolean false
# Volitelně přeskočí vytvoření běžného uživatelského účtu.
#d-i passwd/make-user boolean false

# Rootovo heslo v čitelném tvaru
#d-i passwd/root-password password r00tme
#d-i passwd/root-password-again password r00tme
# nebo šifrované pomocí crypt(3) hashe.
#d-i passwd/root-password-crypted password [crypt(3) hash]

# Vytvoření účtu běžného uživatele.
#d-i passwd/user-fullname string Jan Novak
#d-i passwd/username string jan
# Heslo běžného uživatele v čitelném tvaru
#d-i passwd/user-password password nebezpecne
#d-i passwd/user-password-again password nebezpecne
# nebo šifrované pomocí crypt(3) hashe.
#d-i passwd/user-password-crypted password [crypt(3) hash]
# Nastaví UID běžného uživatele (jinak se použije výchozí hodnota).
#d-i passwd/user-uid string 1010
# Uživatelský účet bude automaticky přidán do několika standardních
```
PŘÍLOHA B. AUTOMATIZOVÁNÍ INSTALACÍ

B.4. OBSAH SOUBORU S PŘEDNASTAVENÍM (PRO

B.4. Obsah souboru s přednastavením (pro

B.4.6 Nastavení hodin a časového pásma

Určuje, zda jsou hardwarové hodiny nastaveny na UTC.
d-i clock-setup/utc boolean true

Proměnnou můžete nastavit na libovolnou platnou hodnotu $TZ;
Seznam časových pásů naleznete v /usr/share/zoneinfo/.
d-i time/zone string Europe/Prague

Určuje, zda se mají při instalaci nastavit hodiny pomocí NTP.
d-i clock-setup/ntp boolean true
NTP server, který se má použít. Výchozí hodnota je většinou
dostačující.
d-i clock-setup/ntp-server string tak.cesnet.cz

B.4.7 Rozdělení disku

Rozdělení disku je více omezeno možnostmi, které nabízí partman-auto. Můžete zvolit rozdělení buď stávajícího volného místa, nebo celého disku. Rozvržení oblastí můžete určit pomocí předdefinovaného schematu, vlastního schematu nebo z souboru s přednastavením.

VAROVÁNÍ

Označení disků závisí na pořadí, ve kterém jsou nahrány jejich ovladače. Jestliže se v systému nachází více disků, tak se uživatele, že jste vybrali ten správný.

B.4.7.1 Příklad dělení disku

Má-li systém nějaké volné místo, můžete si vybrat, zda chcete
automaticky rozdělit pouze toto volné místo. To však funguje pouze
pokud není nastavena proměnná partman-auto/method (níže).
d-i partman-auto/init Automatically_partition select biggest_free

Alternativně můžete zadat k automatickému dělení celý disk.
Obsahuje-li systém pouze jediný disk, použije se tento automaticky.
V opačném případě musíte zadat název příslušného zařízení
v tradičním formátu a ne ve formátu devfs (tj. musíte zadat něco
PŘÍLOHA B. AUTOMATIZOVÁNÍ INSTALACÍ

B.4. OBSAH SOUBORU S PŘEDNASTAVENÍM (PRO

```
# jako /dev/sda, ne /dev/discs/disc0/disc).
# Například pro použití prvního SCSI/SATA disku:
#d-i partman-auto/disk string /dev/sda
#
# Dále musíte zvolit metodu, která se má použít. Momentálně jsou
# dostupné metody
# - regular: použije typ oblastí typický na vaší architektuře
# - lvm: pro rozdělení disku použije LVM
# - crypto: použije LVM nad zašifrovanou oblastí
#d-i partman-auto/method string lvm

# Pokud některý z disků určených k automatickému rozdělení obsahuje
# pozůstatek z předchozího LVM, zobrazí se varování. Tímto můžete
# varování potlačit...
#d-i partman-lvm/device_remove_lvm boolean true
# To stejné platí pro potvrzení při zápisu LVM oblastí.
#d-i partman-lvm/confirm boolean true
#d-i partman-lvm/confir_nooverwite boolean true
# A platí i pro odstranění pozůстатků předchozího softwarového RAIDu:
#d-i partman-md/device_remove_md boolean true

# Můžete vybrat jedno ze tří připravených schémat dělení.
# - atomic: všechny soubory v jedné oblasti
# - home: samostatná oblast /home
# - multi: samostatné oblasti /home, /var a /tmp
#d-i partman-auto/choose_recipe select atomic

# Nebo zadat váš vlastní návod na dělení...
# Pokud umíte do prostředí d-i dostat soubor s návodem na dělení,
# stačí na něj odkázat.
#d-i partman-auto/expert_recipe_file string /hd-media/recipe

# V opačném případě můžete zadat celý návod na jednu (logickou) řádku.
# Například vytvoříme malou oblast /boot, vhodný swap a zbytek
# použijeme jako kořenovou oblast:
#d-i partman-auto/expert_recipe string
#   boot-root ::
#   #
#   40 50 100 ext3
#   # $primary{ } $bootable{ }
#   # method{ format } format{ }
#   # use filesystem( ) filesystem{ ext3 }
#   # mountpoint{ /boot }
#   #
#   500 10000 1000000000 ext3
#   # method{ format } format{ }
#   # use filesystem( ) filesystem{ ext3 }
#   # mountpoint{ / }
#   #
#   64 512 300% linux-swap
#   # method{ swap } format{ }
#   #

# Kompletní formát je popsán v souboru partman-auto-recipe.txt
# dostupném v balíku "debian-installer" nebo ve zdrojovém repositáří
# D-I. Soubor demontruje použití i takových věcí, jako je pojmenování
# souborových systémů, pojmenování skupin svazků a určení, ze kterých
# fyzického zařízení se má skupina svazků skládat.

# Následujícím řeknete partmanu, aby disk rozdělil bez potvrzení.
# (Za předpokladu, že jste partmanu v předchozích krocích řekli,
# co má dělat.)
#d-i partman-partitioning/confirm_write_new_label boolean true
#d-i partman-choose_partition select finish
#d-i partman/confirm boolean true
```
d-i partman/confirm_nooverwrite boolean true

Je-li povoleno šifrování disku, přeskočí úvodní vymazání oblastí.
#d-i partman-auto-crypto/erase_disks boolean false

B.4.7.2 Rozdělení při použití RAIDu

Pomocí přednastavení též můžete nastavit oblasti na polích softwarového RAIDu. Podporovány jsou RAID úrovně 0, 1, 5, 6 a 10, vytváření degradovaných polí a určení rezervních zařízení.

VAROVÁNÍ

Metoda by měla být nastavena na "raid".
#d-i partman-auto/method string raid
Zadejte disky k rozdělení. Na všech bude nakonec stejné rozložení,
takže to bude fungovat pouze pokud mají disky stejnou velikost.
#d-i partman-auto/disk string /dev/sda /dev/sdb

Dále musíte zadat fyzické oblasti, které se mají použít.
#d-i partman-auto/expert_recipe string
 # multiraid ::= /
 # 1000 5000 4000 raid /
 # $primary{ } method{ raid } /
 # .
 # 64 512 300% raid
 # method{ raid }
 # .
 # 500 10000 1000000000 raid
 # method{ raid }
 # .

Na závěr musíte zadat, jakým způsobem se mají dříve definované oblasti
použít v nastavení RAIDu. Důležité je použít správná čísla logických
oblastí. Podporovány jsou RAID úrovne 0, 1, 5, 6 a 10; zařízení jsou
oddělena pomocí "."
Parametry jsou:
<typraidu> <početzařízení> <početrezerv> <typss> <přípobod>
<zařízení> <rezervnízařízení>

#d-i partman-auto-raid/recipe string
1 2 0 ext3 /
/dev/sda1#/dev/sdb1
.
1 2 0 swap -
/dev/sda5#/dev/sdb5
.
0 2 0 ext3 /home
/dev/sda6#/dev/sdb6
.

Více informací naleznete v souboru partman-auto-recipe.txt dostupném
v balíku "debian-installer" nebo ve zdrojovém repositáři D-I.

Toto zajistí, že se partman nebude při rozdělování ptát na potvrzení.
PŘÍLOHA B. AUTOMATIZOVÁNÍ INSTALACÍ

B.4. OBSAH SOUBORU S PŘEDNASTAVENÍM (PRO...

d-i partman-md/confirm boolean true
d-i partman-partitioning/confirm_write_new_label boolean true
d-i partman/choose_partition select finish
d-i partman/confirm boolean true

B.4.7.3 Způsob připojení oblastí
Souborové systémy se obvykle připojují pomocí jedinečného univerzálního identifikátoru, tzv. UUID. To umožňuje korektní připojení oblastí i v případech, kdy se změní jejich jména zařízení. UUID jsou dlouhé a špatně se čtou, takže pokud si budete přát, může instalátor připojit souborové systémy pomocí tradičních jmen zařízení, nebo pomocí názvů oblastí, které jim přidělíte. Zvolíte-li připojení pomocí názvů oblastí, budou oblasti bez nastaveného názvu kolidovat a tím pádem není zaručeno, která oblast se připojí.

Zařízení se stabilními jmény, jako např. logické svazky LVM, budou místo UUID nadále používat připojení pomocí tradičních jmen zařízení.

VAROVÁNÍ
Tradiční jména zařízení se mohou měnit v závislosti na pořadí, ve kterém jádro při zavádění zařízení objeví. To může způsobit připojení chybného souborového systému. Podobný problém existuje v případě použití názvů oblastí, protože při zapojení dalšího disku (i externího) mohou použité názvy oblastí kolidovat a tím pádem není zaručeno, která oblast se připojí.

Výchozí je připojování pomocí UUID, ale můžete zvolit též "traditional"
pro použití tradičních jmen zařízení, nebo "label" pro použití názvů
oblastí (se záchytnou možností použití UUID).
##d-i partman/mount_style select uuid

B.4.8 Instalace základního systému
V této fázi instalace se toho moc nastavit nedá. Jediné otázky se týkají instalace jádra.

##d-i base-installer/install-recommends boolean false
(Meta) balík jádra, který se má nainstalovat; nechcete-li instalovat
žádné jádro, zadejte "none".
##d-i base-installer/kernel/image string linux-image-686

B.4.9 Nastavení APT
Nastavení souboru /etc/apt/sources.list a několika základních parametrů je plně řízeno typem instalace a dříve zodpovězenými otázkami. Volitelně můžete přidat další (lokální) archivy.

##d-i apt-setup/non-free boolean true
##d-i apt-setup/contrib boolean true
Odkomentujte, pokud nechcete používat síťové zrcadla.
##d-i apt-setup/use_mirror boolean false
Vyberte, které aktualizační služby chcete využívat a zadejte
jejich zrcadla. Příklad ukazuje výchozí hodnoty.
##d-i apt-setup/services-select multiselect security, updates
##d-i apt-setup/security_host string security.debian.org

74
B.4.10 Výběr balíků

Můžete nainstalovat libovolnou kombinaci dostupných úloh. V době psaní to zahrnuje:

- **standard** (standardní unixové nástroje)
- **desktop** (grafické prostředí)
- **gnome-desktop** (prostředí Gnome)
- **xfce-desktop** (prostředí XFCE)
- **kde-desktop** (prostředí KDE Plasma)
- **cinnamon-desktop** (prostředí Cinnamon)
- **mate-desktop** (prostředí MATE)
- **lxde-desktop** (prostředí LXDE)
- **web-server** (webový server)
- **print-server** (tiskový server)
- **ssh-server** (SSH server)

Instalaci úloh můžete vynechat a instalovat balíky nějakou jinou cestou. Úlohu **standard** však doporučujeme instalovat vždy.

Chcete-li kromě balíků v úlohách instalovat také nějaké samostatné balíky, můžete použít parametr `pkgsel/include`.

Hodnotou parametru je čárkami nebo mezerami oddělený seznam, takže jej můžete jednoduše použít i na příkazové řádku.

```bash
# Další archivy, k dispozici jsou local[0-9]
#d-i apt-setup/local0/repository string http://muj.server/debian stable main
#d-i apt-setup/local0/comment string local server
#d-i apt-setup/local0/source boolean true
#d-i apt-setup/local0/source boolean true
# URL k veřejnému klíči lokálního archivu; Klíč musíte zadat, protože
# jinak si apt bude stážovat na neautentizovaný archiv a příslušný
# řádek v sources.list zůstane zakomentovaný
#d-i apt-setup/local0/key string http://muj.server/klic

# Instalace vyžaduje, aby byly všechnovy repositáře autentizovány
# znárným gpg klíčem. Tímto nastavením můžete autentizaci potlačit.
# Varování: Nebezpečné, není doporučeno.
#d-i debian-installer/allow_unauthenticated boolean true

# Odkomentujte pro přidání další architektury, zde i386
#d-i apt-setup/multiarch string i386

#tasksel tasksel/first multiselect standard, web-server, kde-desktop

# Samostatné balíky pro instalaci.
#d-i pkgsel/include string openssh-server build-essential
# Zda se mají balíky po rozbalení debootstrapem aktualizovat.
# Povolené hodnoty: none, safe-upgrade, full-upgrade
#d-i pkgsel/upgrade select none

# Některé verze instalacního systému mohou vývojářům Debianu hlásit
# seznam balíků, které jste nainstalovali, což pomáhá při
# rozhodování, který software je oblibený a proto by měl být zazazen
# na CD. Výchozí hodnotou je zákaz posilnání tohoto seznamu, ale měli
# byste zvázit jeho povolení.
#popularity-contest popularity-contest/participate boolean false
```
B.4.11 Dokončení instalace

```
# Při instalaci skrze sériovou konzoli jsou tradiční virtuální konzoly
# (VT1–VT6) v /etc/inittab zakázány. Chcete-li je nechat povolené,
# odkomentujte následující řádek.
#d-i finish-install/keep-consoles boolean true

# Vynechá poslední hlášku, že je instalace kompletní.
d-i finish-install/reboot_in_progress note

# Zakáže vysunutí CD během restartu, což se občas může hodit.
d-i cdrom-detect/eject boolean false

# Tímto se počítač po skončení instalace místo restartu do nového
# systému zastaví, případně zcela vypne.
d-i debian-installer/exit/halt boolean true

# Tímto se počítač nejen zastaví, ale i vypne.
d-i debian-installer/exit/poweroff boolean true
```

B.4.12 Přednastavení ostatních balíků

```
# Je možné, že se objeví další otázky v závislosti na tom, jaký
# software nainstalujete, nebo podle toho, co se během instalace
# pokazí. Seznam všech možných otázek během instalace získáte
# příkazy:
# debconf-get-selections --installer > soubor
# debconf-get-selections >> soubor
```

B.5 Pokročilé možnosti

B.5.1 Spouštění vlastních příkazů během instalace

Nástroje pro přednastavení nabízí velice mocnou vlastnost, kterou je možnost spouštění libovolných příkazů nebo
skriptů v určitých bodech instalace.

Po připojení souborového systému instalovaného systému je tento dostupný v adresáři /target. Pokud pro
instalaci používáte CD, je po připojení dostupně přes /cdrom.

```
# Přednastavení d-i není už ze své podstaty bezpečné. Nic
# v instalaci systému nekontroluje pokusy kolem přečtení bufferu
# ani znaužití hodnot v souboru s přednastaveními. Používejte tyto
# soubory pouze z důvěryhodných zdrojů!
# Následuje ukázka, jak v d-i spustit automaticky nějaký shellový příkaz.

# První příkaz je spuštěn co nejdříve – hned po načtení přednastavení.
#d-i preseed/early_command string anna-install nejaký-udeb

# Tento příkaz je spuštěn těsně před vstupem do dělení disků. Může se
# hodit pro dynamické přednastavení rozdělení disku, které závisí na
# aktuálním stavu disků (které ještě nemusí být vidět v době spuštění
# předchozího příkazu preseed/early_command).
#d-i partman/early_command \n  string debconf-set partman-auto/disk "$(list-devices disk | head -n1)"

# Tento příkaz je spuštěn těsně před koncem instalace, ale ještě je
# připojen adresář /target. Bud můžete použít chroot na /target
# a pracovat přímo v něm, nebo můžete použít příkaz apt-install
# resp. in-target pro jednoduchou instalaci balíků resp. spouštění
# příkazů v nově instalovaném systému.
#d-i preseed/late_command string apt-install zsh; in-target chsh -s /bin/zsh
```
B.5.2 Použití přednastavení pro změnu výchozích hodnot

Pomocí přednastavení můžete dosáhnout i toho, že se otázka normálně zobrazí, ale změní se její výchozí odpověď. (Například na úvodní otázce ohledně jazyka můžete přednastavit místo anglické češtinu, takže uživateli stačí stisknout Enter, ale stále mu necháváte možnost volby jiného jazyka.) Dosáhnete toho tak, že po nastavení proměnné změníte příznak seen na hodnotu „false“.

```bash
d-i foo/bar string hodnota
-d-i foo/bar seen false
```

Chcete-li stejného výsledku dosáhnout pro všechny otázky, můžete použít zaváděcí parametr preseed/interactive=true, což se může hodit pro testování a ladění konfiguračního souboru s přednastavením.

Zopakujme, že vlastník „d-i“ by se měl používat pouze pro proměnně používané samotným instalačním systémem. Pro proměnně nacházející se v instalovaných balicích měli jako vlastníka použít jméno příslušného balíku (viz poznámka pod čárou u B.2.2).

Pro více ladících informací můžete použít zaváděcí parametr DEBCONFIG_DEBUG=5, který zajistí, že debconf bude mnohem upovídanější, co se týče aktuálního nastavení proměnných a postupu instalačními skripty.

B.5.3 Zřetězené naráhání souborů s přednastavením

Přestože je použití jednoho velkého souboru s přednastavením jednoduché, zdáleka nemusí být přehledné a navíc postrádá flexibilitu. Z tohoto důvodu je možné nastavení rozdělit do několika samostatných souborů a ty pak skládat dohromady. Protože později uvedené volby přepisují volby zadané dříve, přímo se nabízí využití hlavního (sídleného) souboru s obecnými předvolbami a k němu několik dalších souborů se specifickým nastavením pro danou situaci.

```
# Zadat můžete i více souborů najednou, stačí je oddělit mezerami.
# Vložené soubory mohou obsahovat jak deklarace pro přednastavení,
# tak příkazy pro zavedení dalších souborů. Pokud cestu zadáte
# relativně, hledají se soubory ve stejném adresáři, jako nadřízený
# soubor.
#d-i preseed/include string x.cfg

# d-i může volitelně kontrolovat kontrolní součty souborů
# s přednastavením. V současnosti jsou podporovány pouze md5 součty.
# Seznam součtů zadejte ve stejném pořadí, v jakém se budou načítat
# soubory s přednastavením.
#d-i preseed/include/checksum string 5da499872beccc0eda2c04872f9171c3d

# Mnohem pružnější je použití shellového příkazu, který vrátí názvy
# souborů, jež se mají nahrát.
#d-i preseed/include_command \ 
# string if [ "$hostname" = bob ]; then echo bob.cfg; fi

# Nejpružnější možnost stáhněte program a spustí jej. Program může
# používat příkazy pro manipulaci s databází debconfu jako např.
# debconf-set. Pokud jsou názvy souborů relativní, berou se ze
# stejného adresáře jako soubor s přednastavením, který je spouštět.
# Zadat můžete i více skriptů, stačí je oddělit mezerami.
#d-i preseed/run string foo.sh
```

Zřetězené naráhání souborů s přednastavením funguje i mezi různými typy přednastavení. Například pokud použijete přednastavení z initrd nebo ze souboru, můžete v nich uvést proměnnou preseed/url a po naběhnutí sítě tak plynule přejít do souboru s přednastavením staženým ze sítě. Musíte však být opatrní, protože to také znamená, že se proces přednastavení spustí znovu a mimo jiné tím dostanete šanci na druhé spuštění příkazu preseed/early, tentokráte po naběhnutí sítě.
Příloha C

Poznámky k rozdělování disku

C.1 Počet a velikost oblastí

Jako úplné minimum potřebuje GNU/Linux jeden diskový oddíl. Tento oddíl je využit pro operační systém, programy a uživatelská data. Většina uživatelů navíc pokládá za nutnost mít vydělenou část disku pro virtuální paměť (swap). Tento oddíl slouží operačnímu systému jako odkládací prostor. Vydělení „swap“ oblasti umožní efektivnější využití disku jako virtuální paměti. Je rovněž možné pro tento účel využít obyčejný soubor, ale není to doporučené řešení.

Většina uživatelů vyčlení pro GNU/Linux více než jeden oddíl na disku. Jsou k tomu dva důvody. Prvním je bezpečnost, pokud dojde k poškození souborového systému, většinou se to týká pouze jednoho oddílu, takže potom musíte nahradit ze záloh pouze část systému. MINIMÁLNĚ MŮŽETE UVÁŽIT VYDĚLENÍ KOŘENOVÉHO SVAZKU SOUBORŮ. TEN OBSAHUJE ZÁSADNÍ KOMPONENTY SYSTÉMU. JESTLIŽE DOJDE POŠKOZENÍ NĚJAKÉHO DALEŠÍHO ODDÍLU, BUDETE STÁLE SCHOPNI SPROSTANSKY SPUSTIT GNU/Linux a provést nápravu, což vám může ušetřit novou instalaci systému.

Druhý důvod je obyčejně závažnější při produkčním nasazení. Představte si situaci, kdy nějaký proces začne nekontrolovaně zabírat diskový prostor. Pokud se jedná o proces se superuživatelskými právy, může zaplnit celý disk a narušit tak chod systému, poněvadž Linux potřebuje při běhu vytvářet soubory. K takové situaci musíte již vznětím připravit se, například se stanete obětí spamu a nevyžádané e-mails vám lehce zaplní celý disk. Rozdělením disku na více oddílů se lze před podobnými problémy uchránit. Pokud třeba vydělíte pro /var/mail samostatnou oblast, bude systém fungovat, i když bude zablokován nevyžádanou poštou.

Jedinou nevýhodou při používání více diskových oddílů je, že je obtížné předpovídat, kolik násadných kapacit budou dostupné v jednotlivých oddílech. Jestliže vytvoříte méně oddílů a rozdělíte je příliš malý, budete muset systém instalovat znovu, a nebo se budete potýkat s přesunáváním souborů z oddílu, jehož velikost jste podhodnotili. V opačném případě, kdy se vytvoří zbytečně velký oddíl, bude harddiskový prostor nepoužitelný, pokud by se dal využít jinde. Diskový prostor je dnes sice levný, ale proč vyhazovat peníze oknem?

C.2 Strom adresářů

Debian GNU/Linux dodržuje standard pro pojmenování souborů a adresářů (Filesystem Hierarchy Standard), což zaručuje, že uživatelé či programy mohou ohodnotit umístění souborů či adresářů. Kořenový adresář je reprezentován lomítkem / a na všech Debianích systémech obsahuje tyto adresáře:

<table>
<thead>
<tr>
<th>Adresář</th>
<th>Obsah</th>
</tr>
</thead>
<tbody>
<tr>
<td>bin</td>
<td>Důležité programy</td>
</tr>
<tr>
<td>boot</td>
<td>Statické soubory zavaděče</td>
</tr>
<tr>
<td>dev</td>
<td>Soubory zařízení</td>
</tr>
<tr>
<td>etc</td>
<td>Konfigurační soubory závislé na systému</td>
</tr>
<tr>
<td>home</td>
<td>Domovské adresáře uživatelů</td>
</tr>
<tr>
<td>lib</td>
<td>Podstatné sdílené knihovny a moduly jádra</td>
</tr>
<tr>
<td>media</td>
<td>Obsahuje přípojné body pro výměnná médií</td>
</tr>
<tr>
<td>mnt</td>
<td>Místo pro dočasná připojování souborových systémů</td>
</tr>
<tr>
<td>proc</td>
<td>Virtuální adresář obsahující systémové informace</td>
</tr>
<tr>
<td>root</td>
<td>Domovský adresář správce systému</td>
</tr>
<tr>
<td>run</td>
<td>Proměnlivá data platná po době běhu systému</td>
</tr>
<tr>
<td>sbin</td>
<td>Důležité systémové programy</td>
</tr>
<tr>
<td>srv</td>
<td>Data nabízená systémem</td>
</tr>
</tbody>
</table>
Adresář

<table>
<thead>
<tr>
<th>Adresář</th>
<th>Obsah</th>
</tr>
</thead>
<tbody>
<tr>
<td>sys</td>
<td>Virtuální adresář pro systémové informace</td>
</tr>
<tr>
<td>tmp</td>
<td>Dočasné soubory</td>
</tr>
<tr>
<td>usr</td>
<td>Druhá úroveň hierarchie</td>
</tr>
<tr>
<td>var</td>
<td>Proměnlivá data</td>
</tr>
<tr>
<td>opt</td>
<td>Softwarové balíky třetích stran</td>
</tr>
</tbody>
</table>

Následující seznam by vám měl pomoci při rozhodování o rozdělení disku na oblasti. Berte prosím na vědomí, že využití disku se velmi liší podle způsobu používání systému a proto jsou následující doporučení pouze obecné a měly by sloužit jen jako možný základ pro dělení disku.

- **/**: kořenový adresář musí vždy fyzicky obsahovat adresáře `/etc`, `/bin`, `/sbin`, `/lib` a `/dev`, protože jinak byste nemohli zavést systém. Typicky je potřeba 250–350 MB, ale v konkrétních podmínkách se požadavky mohou lišit.
 - `/usr`: obsahuje všechny uživatelské programy (`/usr/bin`), knihovny (`/usr/lib`), dokumentaci (`/usr/share/doc`), atd. Protože tato část souborového systému spotřebuje nejvíce místa, měli byste jí na disku poskytnout alespoň 600–750 MB. Pokud budete instalovat hodně balíčků, měli byste tomuto adresáři vyhradit ještě více místa. Velkorysé pojatá instalace pracovní stanice nebo serveru může klidně zabrat i 5–6 GB. V současnosti se doporučuje mít adresář `/usr` umístěn přímo na kořenové oblasti, jelikož zavádění systému s `/usr` na samostatné oblasti je stále obtížnější a jednou přestane být podporováno.
 - `/var`: v tomto adresáři budou uložena všechna proměnlivá data jako příspěvky news, e-maily, webové stránky, vyrovnávací paměť pro balíčkovací software, atd. Velikost tohoto adresáře velmi závisí na způsobu používání vašeho počítače, ale pro většinu lidí bude velikost dána režijními náklady správce balíčků. Pokud se chystáte nainstalovat hojně balíčky, měli byste tomuto adresáři vyhradit více místa. Velkorysé pojatá instalace pracovní stanice nebo serveru může klidně zabrat i 5–6 GB. V současnosti se doporučuje mít adresář `/var` umístěn přímo na kořenové oblasti, jelikož zavádění systému s `/usr` na samostatné oblasti je stále obtížnější a jednou přestane být podporováno.
 - `/home`: každý uživatel si bude ukládat data do svého podadresáře v tomto adresáři. Jeho velikost závisí na tom, kolik uživatelů budete systému používat a jaké soubory se v jejich adresářích budou uchovávat. Pro každého uživatele měli počítat alespoň 100 MB místa, ale opravdu závisí na konkrétní situaci.

C.3 Doporučené rozdělení disku

Pro nové uživatele, domácí počítače a jiné jednouživatelské stanice je asi nejjednodušší použít jednu oblast jako kořenovou (a případně jednu pro virtuální paměť). Pokud bude některá oblast větší než 6 GB, použijte raději další souborový systém než standardní ext2 (např. ext3). Oblasti se souborovým systémem ext2 se totiž musí pravidelně kontrolovat, což může u větších oblastí trvat poměrně dlouho a prodlužuje se tím náběh systému.

Jak jsme řekli dříve, pro víceuživatelské systémy je lepší použít pro `/var`, `/tmp` a `/home` samostatné oblasti.

Chcete-li instalovat hodně programů, které nejsou přímo součástí distribuce, může se vám hodit samostatný oddíl pro `/usr/local`. Na počítači, který slouží jako poštovní server, má smysl vytvořit svazek pro `/var/mail`. Někdy je také dobře oddělit adresář `/tmp` na samostatný oddíl s kapacitou 20 až 50 MB. Na serveru s více uživateli je výhodné vymezit velký oddíl pro domovské adresáře (`/home`). Obecně ale platí, že rozdělení disku se liší od počítače od počítače.

Při instalaci komplikovanějšího systému (serveru) se podívejte do Multi Disk HOWTO na podrobnější informace. Tento odkaz může být zajímavý rovněž pro zprostředkovatele připojení k Internetu.

Na některých 32-bitových architekturách (m68k a PowerPC) využije Linux z jednoho odkládacího oddílu maximálně 2 GB, takže není důvod, proč překračovat tuto hranici. Máte-li větší nároky na virtuální paměť, zkuste umístit...
odkládací oddíly na různé fyzické disky, a pokud možno, na různé IDE nebo SCSI kanály. Jádro bude automaticky vyrovňovat zátěž mezi jednotlivé oblasti, což se projeví ve zvýšení rychlosti.

Například starší domácí počítač může mít 32 MB paměti a 1,7 GB IDE disk na zařízení /dev/sda. Řekněme, že na /dev/sda1 je oblast pro druhý operační systém o velikosti 500 MB. Odkládací oddíl má 32 MB a je na /dev/sda3. Zbytek, tj. asi 1,2 GB na /dev/sda2 je kořenový svazek pro Linux.

Pro představu, kolik místa zaberou jednotlivé úlohy, se podívejte na D.2.

C.4 Jak Linux pojmenovává pevné disky

Disky a oddíly na nich mají v Linuxu odlišné názvy než v jiných operačních systémech. Tyto názvy budete potřebovat při rozdělování disku a připojování oblasti. Základní zařízení:

- První disketová jednotka je nazvána /dev/fd0.
- Druhá disketová jednotka je /dev/fd1.
- První rozpoznaný disk má název /dev/sda.
- Druhý rozpoznaný disk má název /dev/sdb atd.
- První SCSI CD mechanice odpovídá /dev/scd0 nebo také /dev/sr0.

Oddíly na discích jsou rozlišeny připojením čísla k názvu zařízení: sda1 a sda2 představují první a druhý oddíl prvního disku.

Například uvažujme počítač se dvěma disky na SCSI sběrnici na SCSI adresách 2 a 4. Prvnímu disku (na adrese 2) odpovídá zařízení sda, druhému sdb. Tři oddíly na disku sda by byly pojmenovány sda1, sda2, sda3. Stejné schéma značení platí i pro disk sdb a jeho oblasti.

Máte-li v počítači dva SCSI řadiče, pořadí disků zjistíte ze zpráv, které Linux vypisuje při startu.

C.5 Dělící programy v Debiano

K rozdělení disku nabízí každá architektura různé programy. Pro váš typ počítače jsou k dispozici:

- **partman** Doporučený nástroj, který umí kromě dělení disků i měnit velikost oblastí, vytvářet souborové systémy a přiřadit je k připojným bodům.
- **fdisk** Původní linuxový program pro správu oddílů, vhodný pro guru.

Obzvláště opatrní musíte být v případě, že máte na disku oblasti systému FreeBSD. Instalační jádra sice obsahují podporu pro tyto oblasti, ale způsob, jakým je **fdisk** (ne)reprezentuje, může změnit názvy zařízení. Viz [Linux+FreeBSD HOWTO](https://www.linux HOWTO).

- **cfdisk** Jednoduchý, celoobrazkový program pro správu oddílů se vyznačuje snadným ovládáním.

Poznamenejme, že **cfdisk** oblasti FreeBSD nerozpouští vábec a tím pádem se názvy zařízení mohou změnit.

Jeden z těchto programů se spustí automaticky, když vyberete krok Rozdělit disky (nebo podobný). Teoreticky je možné přepnout se na druhou konzoli (`tty2`) a použít jiný nástroj na dělení disku, avšak prakticky se to nedoporučuje.
Příloha D

Co se jinam nevešlo

D.1 Zařízení v Linuxu

<table>
<thead>
<tr>
<th>Soubor</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>fd0</td>
<td>první disketová mechanika</td>
</tr>
<tr>
<td>fd1</td>
<td>druhá disketová mechanika</td>
</tr>
<tr>
<td>sda</td>
<td>první pevný disk</td>
</tr>
<tr>
<td>sdb</td>
<td>druhý pevný disk</td>
</tr>
<tr>
<td>sda1</td>
<td>první oblast na prvním pevném disku</td>
</tr>
<tr>
<td>sdb7</td>
<td>sedmá oblast na druhém pevném disku</td>
</tr>
<tr>
<td>sr0</td>
<td>první CD-ROM</td>
</tr>
<tr>
<td>sr1</td>
<td>druhá CD-ROM</td>
</tr>
<tr>
<td>ttyS0</td>
<td>sériový port 0, pod MS-DOSem COM1</td>
</tr>
<tr>
<td>ttyS1</td>
<td>sériový port 1, pod MS-DOSem COM2</td>
</tr>
<tr>
<td>lp0</td>
<td>první paralelní port</td>
</tr>
<tr>
<td>lp1</td>
<td>druhý paralelní port</td>
</tr>
<tr>
<td>psaux</td>
<td>rozhraní myši na portu PS/2</td>
</tr>
<tr>
<td>gpmdata</td>
<td>pseudozařízení - jenom opakuje data získaná z GPM (ovladač myši)</td>
</tr>
<tr>
<td>cdrom</td>
<td>symbolický odkaz na CD-ROM mechaniku</td>
</tr>
<tr>
<td>mouse</td>
<td>symbolický odkaz na rozhraní myši</td>
</tr>
<tr>
<td>null</td>
<td>cokoliv pošlete na toto zařízení, zmizí beze stopy</td>
</tr>
<tr>
<td>zero</td>
<td>z tohoto zařízení můžete až do nekonečna číst nuly</td>
</tr>
</tbody>
</table>

D.1.1 Nastavení myší

Aby myš fungovala, musí být zavedeny některé moduly jádra. Ve většině případů jsou správné moduly rozpoznány a zavedeny automaticky. Výjimkou mohou být staré sériové a sběrnicové myši¹, které jsou dnes spíše raritou ve velmi starých počítačích. Typické moduly, které jsou potřeba pro různé typy myší:

<table>
<thead>
<tr>
<th>Modul</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>psmouse</td>
<td>PS/2 myš (měl by být rozpoznán automaticky)</td>
</tr>
<tr>
<td>usbhid</td>
<td>USB myši (měl by být rozpoznán automaticky)</td>
</tr>
<tr>
<td>sermouse</td>
<td>Většina sériových myší</td>
</tr>
<tr>
<td>logibm</td>
<td>Sběrnicová myš připojená k adaptérové kartě Logitech</td>
</tr>
<tr>
<td>import</td>
<td>Sběrnicová myš připojená ke kartě ATI nebo Microsoft InPort</td>
</tr>
</tbody>
</table>

Pro zavedení modulu s ovladačem můžete použít příkaz modconf z balíku stejného jména a hledat v kategorii kernel/drivers/input/mouse.

D.2 Místo potřebné pro úlohy

Standardní instalace na architektuře amd64 zabere na disku včetně všech standardních balíků 933MB. Menší instalace bez úlohy „Standardní systém“ zabere 701MB.

Důležité

V obou případech je zabrané místo počítáno po dokončení instalace a smazání všech dočasných souborů. Výpočet také nebere v úvahu režii souborového systému, například pro žurnálovací soubory. To znamená, že během instalace a také později při samotném používání systému bude potřeba mnohem více místa na dočasné soubory (stažené balíky) a uživatelská data.

Následující tabulka ukazuje velikosti úloh tak, jak je vypisuje program aptitude. Protože se mohou balíky v některých úlohách překrývat, je možné, že celková velikost instalovaných úloh bude menší než součet jejich velikostí.

Ve výchozím nastavení se instaluje desktopové prostředí GNOME. Některá jiná desktopová prostředí můžete nainstalovat buď pomocí speciálního instalačního CD, nebo použitím zavaděcího parametru při zavádění instalátoru (viz 6.3.5.2).

Při určování velikostí diskových oblastí budete muset čísla uvedená v tabulce přidat k velikosti standardního systému. Většina z hodnot ve sloupci „Instalovaná velikost“ skončí v /usr, při instalaci je však ještě třeba počítat s hodnotami ze sloupce „Stáhne se“, které se (dočasně) uloží v adresáři /var.

<table>
<thead>
<tr>
<th>Úloha</th>
<th>Instalovaná velikost (MB)</th>
<th>Stáhne se (MB)</th>
<th>Místo během instalace (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desktopové prostředí</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• GNOME (výchozi)</td>
<td>2724</td>
<td>785</td>
<td>3509</td>
</tr>
<tr>
<td>• KDE Plasma</td>
<td>4244</td>
<td>1280</td>
<td>5524</td>
</tr>
<tr>
<td>• Xfce</td>
<td>2342</td>
<td>657</td>
<td>2999</td>
</tr>
<tr>
<td>• LXDE</td>
<td>2486</td>
<td>707</td>
<td>3193</td>
</tr>
<tr>
<td>• MATE</td>
<td>2857</td>
<td>757</td>
<td>3614</td>
</tr>
<tr>
<td>• Cinnamon</td>
<td>3824</td>
<td>1102</td>
<td>4926</td>
</tr>
<tr>
<td>Webowy server</td>
<td>44</td>
<td>11</td>
<td>55</td>
</tr>
<tr>
<td>Tiskový server</td>
<td>440</td>
<td>91</td>
<td>531</td>
</tr>
<tr>
<td>SSH server</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

¹Sériové myši mají obvykle konektor tvaru D s devíti otvory. Sběrnicové myši mají kulatý 8 pinový konektor. Pozor, neplést s 6 pinovým kulatým konektorem myši PS/2 a 4 pinovým kulatým konektorem ADB.
Instalujete-li v jiném jazyce než angličtině, je možné, že taskel automaticky nainstaloval lokalizační úlohu pro daný jazyk. Velikost lokalizační úlohy závisí na tom, co do ní její tvůrci umístili za balíky.

D.3 Jak nainstalovat Debian GNU/Linux ze stávajícího unixového/linu-xového systému

Tato kapitola se, na rozdíl od zbytku příručky, nezabývá oficiálním instalaci programem, ale popisuje instalaci Debianu ze stávajícího unixového nebo linuxového systému. Tuto kapitolu si vyžádali uživatelé přecházející z distribucí Red Hat, Mandriva a SUSE. Předpokládáme zde jisté znalosti s používáním *nixových příkazů a pohybem v souborovém systému. V této sekci platí, že příkazy uvozené promptem $ zadáváte ve svém stávajícím systému, zatímco příkazy uvozené # se spouští v chrootovaném prostředí.

Až si Debian GNU/Linux vyladíte k obrazu svému, můžete do něj převést stávající uživatelská data a plynule přejít k nové distribuci bez zbytečných prostojů. Tento druh instalace je též vhodný pro systémy s podivným hardwarem, který jinak není podporován instalací němi.

POZNÁMKA
Protože se z velké části jedná o ruční postup, měli byste mít na paměti, že spoustu věcí, které běžně řeší instalaci program sám, nyní budete muset provádět sami. To také klade větší nároky na znalosti Debianu a unixových systémů obecně. Následující návod řeší pouze základní nastavení systému, je možné, že bude potřeba provést další kroky.

D.3.1 Přípravné práce

Nejprve si rozdělte disk. Budete potřebovat aspoň jeden oddíl (kořenový) plus oblast pro virtuální paměť (swap). Pro čistě konzolovou instalaci potřebujete oblast velkou minimálně 701 MB, jestliže budete instalovat i X Window System, počítejte s nejméně 2486 MB.

Na nových oddílech vytvořte souborové systémy. Například souborový systém ext3 na oblasti /dev/sda6 vytvořte příkazem:

```
# mke2fs -j /dev/sda6
```

(Ve zbytku návodu budeme předpokládat, že kořenový oddíl je /dev/sda6.) Jestliže chcete vytvořit systém ext2, vynechete parametr -j.

Inicializujte a aktivujte odkládací oddíl (nezapomeňte změnit číslo oblasti podle skutečnosti):

```
# mkswap /dev/sda5
# sync
# swapon /dev/sda5
```

Připojte budoucí kořenovou oblast (/) do adresáře /mnt/debinst. Na jméně připojného adresáře nezáleží.

```
# mkdir /mnt/debinst
# mount /dev/sda6 /mnt/debinst
```

POZNÁMKA

Chcete-li mít části souborového systému (např. /usr) připojené na různých oblastech, musíte tyto adresáře vytvořit a připojit ručně ještě před přísti kapitolou.
D.3.2 Instalace balíku debootstrap

`debootstrap` je program, kterým se v Debianu instaluje základní systém. Má minimum závislosti (pouze `/bin/sh`, `ar`, `wget` a základní unixové/linuxové nástroje²), takže se dá použít na téměř libovolném systému. Pokud ještě `wget` a `ar` nemáte, nainstalujte si je.

Poslední možností je ruční instalace. Vytvořte si pracovní adresář, do kterého později balík rozbalíte:

```bash
# mkdir work
# cd work

Z poolu si stáněte balík `debootstrap` pro svou architekturu, uložte jej do pracovního adresáře a vybalte z něj potřebné soubory. K instalaci souborů musíte mít rootovská práva.

```bash
ar -x debootstrap_0.X.X_all.deb
cd /
zcat /cesta-k-pracovnimu-adresari/work/data.tar.gz | tar xv
```

### D.3.3 Spuštění debootstrapu


Pokud máte první oficiální CD, můžete jej připojit jako `/cdrom` a místo síťové adresy použít odkaz na soubor: `file://cdrom/debian/`.

V ukázkovém příkazu `debootstrap` nahraďte `ARCH` jedním z následujících: `amd64`, `arm64`, `armel`, `armhf`, `i386`, `mips`, `mips64el`, `mipsel`, `powerpc`, `ppc64el` nebo `s390x`.

```bash
/usr/sbin/debootstrap --arch ARCH buster \
```

Pokud se cílová architektura liší od hostitelské, měli byste přidat ještě parametr `--foreign`.

### D.3.4 Nastavení základního systému

V adresáři `/mnt/debinst` teď máte opravdový, i když minimální, systém Debian. Nastal čas se do něj přesunout:

```bash
LANG=C.UTF-8 chroot /mnt/debinst /bin/bash
```

Pokud se cílová architektura liší od hostitelské, budete ale nejprve muset do nového systému nakopírovat qemu-user-static:

```bash
cp /usr/bin/qemu-ARCH-static /mnt/debinst/usr/bin
LANG=C.UTF-8 chroot /mnt/debinst qemu-ARCH-static /bin/bash
```

V novém systému možná budete muset nastavit definici terminálu tak, aby byla kompatibilní se základním systémem Debianu:

```bash
export TERM=xterm-color
```

Abyste mohli použít některé hodnoty proměnné `TERM`, budete možná muset nainstalovat balík `ncurses-term`.

Jestliže se cílová architektura liší od hostitelské, musíte dokončit druhou fázi nastavení:

```bash
/debootstrap/debootstrap --second-stage
```

²Sem patří GNU core utilities a příkazy typu `sed`, `grep`, `tar` a `gzip`. 

---

84
D.3.4.1 Vytvoření souborů zařízení

Adresář /dev nyní obsahuje několik základních souborů zařízení, avšak pro další instalaci může být zapotřebí dalších zařízení. Další postup závisí na různých faktorech, jako je typ hostitelského systému, zda hodláte použít modulární jádro a zda chcete soubory zařízení v novém systému spravovat staticky nebo dynamicky (například pomocí udev).

Několik možných postupů:

- V chrootu vytvořte základní sadu statických souborů zařízení příkazy:

```
apt install makedev
mount none /proc -t proc
cd /dev
MAKEDEV generic
```

- Pomocí příkazu MAKEDEV ručně vytvořte pouze ty soubory zařízení, které potřebujete.

- Do instalovaného systému připojte adresář /dev z hostitelského systému (parametr bind příkazu mount). S touto možností byste však měli být opatrní, protože některé balíky při instalaci vytvářejí nová zařízení, což nemusí být to, co chcete, aby se promítlo do hostitelského systému.

D.3.4.2 Připojení oblastí

Nejprve musíte vytvořit soubor /etc/fstab.

```
editor /etc/fstab
```

Jako vzor můžete použít následující šablonu (místo XXX dosaďte vlastní oblasti):

```
/etc/fstab: static file system information.
#
file system mount point type options dump pass
/dev/XXX / ext3 defaults 0 1
/dev/XXX /boot ext3 ro,nosuid,nodev 0 2
/dev/XXX none swap sw 0 0
proc /proc proc defaults 0 0
/dev/fd0 /media/floppy auto noauto,ro,sync,user,exec 0 0
/dev/cdrom /media/cdrom iso9660 noauto,ro,exec 0 0
/dev/XXX /tmp ext3 rw,nosuid,nodev 0 2
/dev/XXX /var ext3 rw,nosuid,nodev 0 2
/dev/XXX /usr ext3 rw,nodev 0 2
/dev/XXX /home ext3 rw,nosuid,nodev 0 2
```

Souborové systémy, které jste zadali do /etc/fstab můžete připojit všechny najednou příkazem mount -a, nebo individuálně příkazem:

```
mount /cesta # např.: mount /usr
```

Připojné body pro výměnná média se v aktuálních verzích Debianu nachází v adresáři /media, ale pro zachování zpětné kompatibility na ně existují i symbolické odkazy v kořenu /. Příklad:

```
cd /media
mkdir cdrom0
ln -s cdrom0 cdrom
cd /
ln -s media/cdrom
```
Před další prací si ověřte, že máte připojený virtuální souborový systém /proc. Pokud tomu tak není, připojte jej:

```
mount -t proc proc /proc
```

Příkaz `ls /proc` by nyní měl vypsat neprázdný adresář. Pokud by se tak nestalo, stále byste měli být schopni připojit proc z vnějšku chrootu:

```
mount -t proc proc /mnt/debinst/proc
```

### D.3.4.3 Nastavení časového pásma

Nastavením třetího řádku v souboru `/etc/adjtime` na hodnotu „LOCAL“ resp. „UTC“ systému říkáte, zda má hardwarové hodiny počítače interpretovat jako místní čas, resp. jako čas v UTC.

```
editor /etc/adjtime
```

Příklad souboru `/etc/adjtime`:

```
0.0 0 0.0
0
UTC
```

Své časové pásmo můžete nastavit příkazem:

```
dpkg-reconfigure tzdata
```

### D.3.4.4 Nastavení sítě

Síťování se nastavuje v souborech `/etc/network/interfaces`, `/etc/resolv.conf`, `/etc/hostname` a `/etc/hosts`.

```
editor /etc/network/interfaces
```

Pro začáteční vám mohou pomoci ukázky z `/usr/share/doc/ifupdown/examples`:

```
Virtuální loopback chceme vždy.
auto lo
iface lo inet loopback

Použití dhcp:
#
auto eth0
iface eth0 inet dhcp

Statická IP adresa: (broadcast a gateway jsou volitelné)
#
auto eth0
iface eth0 inet static
 address 192.168.0.42
 network 192.168.0.0
```

86
PŘÍLOHA D. CO SE JINAM NEVEŠLO

D.3. JAK NAINSTALOVAT DEBIAN GNU/LINUX...

# netmask 255.255.255.0
# broadcast 192.168.0.255
# gateway 192.168.0.1

Do /etc/resolv.conf zadejte nastavení jmenných serverů (DNS):

```bash
editor /etc/resolv.conf
```

Jednoduchá ukázka /etc/resolv.conf:

```bash
search hqdom.local
nameserver 10.1.1.36
nameserver 192.168.9.100
```

Zadejte název svého systému (délka aspoň 2 a nejvýše 63 znaky):

```bash
echo JmenoPocitace > /etc/hostname
```

A vytvořte základní /etc/hosts s podporou IPv6:

```bash
127.0.0.1 localhost
127.0.1.1 JmenoPocitace
```

```bash
The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts
```

Jestliže máte více síťových karet, měli byste si pohrát s názvy modulů v /etc/modules, aby se karty vždy přiřadily ke stejnemu rozhraní (eth0, eth1, atd.)

### D.3.4.5 Nastavení APT

Debootstrap sice vytvořil základní soubor /etc/apt/sources.list, který umožní instalaci dalších balíků, ale je možné, že budete chtít přidat další zdroje, například pro bezpečnostní aktualizace, nebo pro zdrojové balíky:

```bash
```

```bash
deb http://security.debian.org/ buster/updates main
deb-src http://security.debian.org/ buster/updates main
```

Po úpravách seznamu zdrojů nezapomeňte spustit příkaz `apt update`.

### D.3.4.6 Nastavení místního prostředí a klávesnice

Aby se s vámi systém bavil v jiném jazyce než je angličtina, musíte nainstalovat a nastavit balík pro podporu národních prostředí. V současnosti se doporučuje použít prostředí v kódování UTF-8.

```bash
apt install locales
dpkg-reconfigure locales
```

Pokud je to potřeba, můžete nakonfigurovat klávesnici:

```bash
apt install console-setup
dpkg-reconfigure keyboard-configuration
```

Klávesnici nemůžete nastavit v chrootu, změna se projeví až po příštím restartu.
D.3.5 Instalace jádra

Jestliže budete chtít tento systém i zavádět (na 99% ano), musíte si nainstalovat jádro (a možná zavaděč). Následujícím příkazem zjistíte dostupná připravená připravená jádra:

```bash
apt search linux-image
```

Poté balík s vybraným jádrem nainstalujte.

```bash
apt install linux-image-arch-atd
```

D.3.6 Nastavení zavaděče

Abyste mohli zavádět svůj Debian GNU/Linux, nastavte v zavaděči, aby nahrál instalované jádro s novou kořenovou oblastí. `debootstrap` sám o sobě zavaděč neinstaluje, takže jej budete muset doinstalovat zvlášť (např. pomocí `apt` uvnitř chrootovaného prostředí).

D.3.7 Vzdálený přístup: Instalace SSH a nastavení přístupu

Pokud se do systému můžete přihlásit přes konzoli, můžete tento krok přeskočit. Jestliže však má být počítač dostupný přes síť, měli byste nainstalovat SSH a nastavit přístup.

```bash
apt install ssh
```

Uživatel root má implicitně zakázané přihlášení pomocí hesla. Pokud mu chcete povolit přístup pomocí hesla tak, jako to bývalo běžné dříve, musíte mu nastavit heslo a povolit přihlášení pomocí hesla:

```bash
passwd
editor /etc/ssh/sshd_config
```

kde musíte povolit volbu

```
PermitRootLogin yes
```

Přístup můžete moderněji nastavit také přidáním ssh klíče do seznamu autorizovaných klíčů uživatele root:

```bash
mkdir /root/.ssh
chmod 700 /root/.ssh
cat << EOF > /root/.ssh/authorized_keys
ssh-rsa
EOF
```

Poslední možností je dát přístup běžnému uživateli:

```bash
adduser franta
passwd franta
```

D.3.8 Závěrečné kroky

Jak již bylo řečeno dříve, nainstalovaný systém bude poměrně jednoduchý. Chcete-li z něj udělat systém o něco vyspělejší, doinstalujte alespoň balíky s prioritou „standardní“:

```bash
tasksel install standard
```
Nic vám samozřejmě nebrání nainstalovat jednotlivé balíky pomocí apt.
Po instalaci zůstanou stažené .deb soubory v adresáři /var/cache/apt/archives/. Nějaké místo můžete uvolnít jejich smazáním:

```
apt clean
```

### D.4 Jak nainstalovat Debian GNU/Linux pomocí PPP přes Ethernet (PPPoE)

V některých zemích (např. v České republice) se mezi poskytovatelem širokopásmového připojení k Internetu pomocí ADSL nebo kabelové televize a koncovým zákazníkem běžně používá protokol PPP přes Ethernet (PPPoE). Použití PPPoE během instalace není v běžném instalátoru podporováno, ale podpora existuje a stačí ji zapnout. Tato kapitola vysvětluje jak.

PPPoE spojení vytvořené během instalace bude k dispozici i po restartu do nového systému (viz 7).
Abyste mohli během instalace nastavit a využít PPPoE, musíte k instalaci použít obraz některého z dostupných CD/DVD. Ostatní způsoby instalace (zavádění ze sítě) PPPoE nepodporují.
Instalace pomocí PPPoE je téměř shodná s ostatními instalacemi, drobné rozdíly jsou zachyceny v následujících bodech.

- Instalační systém zavedte se zaváděcím parametrem `modules=ppp-udeb`. Tímto zajistíte, aby se automaticky zavedla komponenta zodpovědná za nastavení PPPoE (`ppp-udeb`).
- Stejně jako v běžné instalaci projděte nastavením jazyka, země, klávesnice a zavedením dodatečných komponent instalačního systému³.
- Dalším krokem je rozpoznaní síťového hardwaru v systému.
- Poté se spustí vlastní nastavení PPPoE. Instalační systém postupně zkúsí na každém rozpoznaném ethernetovém rozhraní nalézt PPPoE koncentrátor (to je typ serveru, který se stará o PPPoE spojení).
  Je možné, že se koncentrátor nepodaří nalézt na první pokus. To se občas stává na pomalých nebo hodně zatížených síťích, případně u porouchaných serverů. Opakovaný pokus o nalezení koncentrátoru většinou bývá úspěšný. Pro opakované výběry z hlavního menu instalačního systému položku Nastavit a spustit PPPoE spojení.
- Po nalezení koncentrátoru budete dotázaní na přihlašovací informace (PPPoE jméno uživatele a heslo).
- V tomto okamžiku se instalační systém pokusí navázat PPPoE spojení. Jestliže byly zadané informace správné, PPPoE spojení se nastaví a bude k dispozici po zbytek instalace. Pokud jste zadali chybné přihlašovací informace, nebo pokud se vyskytne nějaká jiná chyba, instalace se zastaví, ale stále budete mít možnost se vrátit do hlavního menu a zkusit krok zopakovat; stačí znovu vybrat možnost Nastavit a spustit PPPoE spojení.

³V tomto kroku se nahraje komponenta `ppp-udeb`. Instalujete-li se střední nebo nízkou prioritou (expertní režim), můžete zde ručně zvolit `ppp-udeb` a nemusíte používat zaváděcí parametr „modules“ z předchozího kroku.
Příloha E

Administrivia

E.1 O tomto dokumentu

Tato příručka byla vytvořena pro instalaci distribuce Sarge (debian-installer). Příručka vychází z dřívějšího manuálu pro Woodyho (boot-floppies), který je zase založen na předchozích instalačních manuálech. Využili jsme i části manuálu distribuce Progeny, který byl v roce 2003 uvolněn pod licencí GNU GPL.


Aby byl dokument lépe udržovatelný, používáme různé výhody XML, jako jsou entity a profilovací atributy, které nahrazují proměnné a podmínky z programovacích jazyků. Zdrojový text příručky například obsahuje pohromadě informace pro všechny podporované typy počítačových architektur. Pomocí profilovacích atributů jsou různé pasáže textu označeny jako závislé na dané architektuře a při překladu se zobrazí jenom v určitých verzích dokumentu.

E.2 Jak přispět k tomuto návodu

Problémy a vylepšení týkající se tohoto dokumentu zasílejte formou bug reportu (hlášení o chybě) v balíku installation-guide (Viz popis v balíku reportbug nebo online dokumentace Debian Bug Tracking System.) Před nahlášením problému je vždy dobré nejprve zkонтrolovat databázi otevřených chyb balíku installation-guide, zda již chyba nebyla hlášena. Pokud stejný problém najdete mezi neuzavřenými chybami, můžete doplnit existující popis o váš poznatek zasláním zprávy na adresu xxxx@bugs.debian.org, kde xxxx je číslo již nahlášeného problému.

Ještě lepší je získat zdrojový text dokumentu ve formátu DocBook a vytvářet záplaty (patch) přímo proti němu. Pokud jste se s formátem DocBook ještě nesetkali, pro začátek vám pomůže soubor cheatsheet.txt nacházející se v adresáři se zdrojovými texty příručky. Ty můžete nalézt na stránce debian-installer WebSVN. Návod, jak získat soubory ze SVN, najdete v souboru README.


E.3 Hlavní spoluautoři

Tento dokument původně napsali Bruce Perens, Sven Rudolph, Igor Grobman, James Treacy a Adam Di Carlo. Sebastian Ley sepsal Installation Howto.

Miroslav Kufe zdokumentoval (přy velké) části funkcionality nového instalačního programu pro Sarge. Frans Pop byl hlavním editorem a release managerem během vydání Etche, Lennyho a Squeeze.

K tomuto dokumentu přispělo mnoho uživatelů a vývojářů Debiana. Zmíněme alespoň Michaela Schmitze (m68k), Franka Neumanna (je autorem instalačního manuálu pro Amigu). Dále to jsou Arto Astala, Eric Delaunay/Ben Collins (SPARC), Tapio Lehtonen a Stéphane Bortzmeyer (mnoho oprav a textu). Také je třeba poděkovat Pascalu Le Bailovi za užitečné informace o zavádění z USB zařízení.

Velmi užitečné informace jsme nalezli v dokumentech „Jim Mintha’s HOWTO for network booting“ (neznamá adresa), Debian FAQ, Linux/m68k FAQ, Linux for SPARC Processors FAQ, Linux/Alpha FAQ a dalších. Uznání samozřejmě patří i lidem, kteří tyto volně dostupné a bohaté zdroje informací spravují.
Část manuálu zabývající se chrootovanou instalací (D.3) je částečně odvozena z dokumentů na něž vlastní copyright Karsten M. Self.

E.4 Český překlad

Tento dokument smí být šířen za podmínek uvedených v GNU General Public License. Vlastníkem autorských práv k překladu je Miroslav Kuře kurem@debian.cz a historicky též Jiří Mašík masik@debian.cz a Vilém Vychodil vychodiv@debian.cz.

E.5 Ochranné známky

Všechny ochranné známky jsou majetkem svých vlastníků.
Příloha F

Český překlad GNU General Public License
Abstrakt

This is an unofficial translation of the GNU General Public License into Czech. It was not published by the Free Software Foundation, and does not legally state the distribution terms for software that uses the GNU GPL — only the original English text of the GNU GPL does that. However, we hope that this translation will help Czech speakers to better understand the GNU GPL.

Tento text je neoficiálním překladem GNU General Public License (GNU GPL). Nebyl vydán nadací Free Software Foundation a nevyjadřuje právní podstatu podmínek pro šíření softwaru používajícího GNU GPL — tomuto účelu slouží výhradně původní anglická verze GNU GPL. Přesto doufáme, že tento překlad pomůže českým čtenářům lépe porozumět licenci GNU GPL.
Český překlad verze 2, červen 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
Kopírování a distribuce doslovných kopií tohoto licenčního dokumentu jsou dovoleny komukoliv, jeho změny jsou
však zakázány.

F.1 Preambule

Software licence jsou většinou navrženy tak, že vám odebírají právo svobodného sdílení a úprav programů. Smyslem GNU General Public License je naprosto tomu zaručit svobodu ke sdílení a úpravám svobodného softwaru — pro
zajištění svobodného přístupu k tomuto softwaru pro všechny jeho uživatele. Tato General Public License se vztahuje
na většinu softwaru nadace Free Software Foundation a na jakýkoli jiný program, jehož autor se přikloní k jejímu používání. (Některé další software od Free Software Foundation je namísto toho pokryt GNU Lesser General Public License.) Můžete ji rovněž použít pro své programy.

Pokud mluvíme o svobodném softwaru, máme na mysli svobodu, nikoliv cenu. Naše General Public License je navržena pro zajištění toho, že můžete svobodně šířit kopie svobodného softwaru (a účtovat si poplatek za tuto službu, pokud chcete), že obdržíte zdrojový kód anebo jej můžete získat, pokud ho chcete, že můžete tento software modifikovat nebo jeho části použít v nových svobodných programech; a že vité, že tyto věci smíte dělat.

Abychom mohli chránit vaše práva, musíme vytvořit omezení, která zakáží komukoli vám tato práva odepírat nebo
vás žádat, abyste se těchto práv vzdali. Tato licence se promítá do jistých povinností, kterým musíte dostát, pokud
šíříte kopie dotyčného softwaru anebo ho modifikujete.


Vaše práva chráníme ve dvou krocích: (1) autorizací softwaru a (2) nabídkou této licence, která váms dává právo-
platné svolení ke kopírování, šíření a modifikaci softwaru.

Kvůli ochraně každého autora i nás samotných chceme zajistit, aby každý chápal skutečnost, že pro svobodný
software neplatí žádné záruky. Je-li software někým jiným modifikován a poslán dále, chceme, aby příjemci věděli,
že to, co mají, není originál, takže jakékoliv problémy vnesené jinými se neodrazí na reputaci původních autorů.

Konečně, každý svobodný program je neustále ohrožen softwarovými patenty. Přejeme si zamezit nebezpečí, že
redistributoři svobodného programu obdrží samostatně patentová osvědčení a tím učiní program vázaným. Abychom
tomu zamezili, deklarovali jsme, že každý patent musí být buď vydán s tím, že umožňuje každému svobodné užití,
aněbo nesmí být vydán vůbec.

Přesná ustanovení a podmínky pro kopírování, šíření a modifikaci jsou uvedeny dále.

F.2 GNU GENERAL PUBLIC LICENSE

USTANOVENÍ A PODMÍNKY PRO KOPÍROVÁNÍ, DISTRIBUCI A MODIFIKACI

0. Tato licence se vztahuje na kterýkoliv program či jiné dílo, které obsahuje zmínku, umístěnou v něm držitelem
autorských práv, o tom, že dílo může být šířeno podle ustanovení GNU General Public License. V dalším textu
znamená „program“ každý takový program nebo dílo a „dílo založené na programu“ znamená buď program samotný
anebo každě jiné dílo z něj odvozené, které podléhá autorskému zákonu: tím se míní dílo obsahující program nebo
jeho část, buď doslovně anebo s modifikacemi, popřípadě v překladu do jiného jazyka. (Nadále je překlad zahrnuje
bez omezení pod pojem „modifikace“.) Každý uživatel licence je označován jako „vy“. 

Jiné činnosti než kopírování, šíření a modifikace nejsou touto licencí pokryty; sahají mimo její rámec. Akt spuštění
programu není omezen a výstup z programu je pokryt pouze tehdy, jestliže obsahuje výstupu tvoří dílo založené na
programu (nezávisle na tom, zda bylo vytvořeno „činností programu“). Posouzení platnosti předchozí věty závisí na
tom, co program dělá.

1. Smíte kopírovat a šířit doslovné kopie zdrojového kódu programu tak, jak jste jej obdrželi a na libovolném
médiu, za předpokladu, že na každé kopii viditelně a náležitě zveřejníte zmínku o autorských právech a absenci záruky;
ponecháte nedotčené všechny zmínky vztahující se k této licenci a k absenci záruky; a dáte každému příjemci spolu
s programem kopii této licence.

2. Můžete modifikovat svou kopii či kopie programu anebo kterékoliv jeho části, a tak vytvořit dílo založené na
programu a kopírovat a rozšiřovat takové modifikace či dílo podle podmínek paragrafu 1 výše za předpokladu, že
splníte všechny tyto podmínky:

94
PŘÍLOHA F. ČESKÝ PŘEKLAD GNU GENERAL PUBLIC LICENSE

a. Modifikované soubory musíte opatřit zřetelnou zmínkou uvádějící, že jste soubory změnili a také uvést datum každé změny.

b. Musíte umožnit, aby jakékoli vámi publikované či rozšiřované dílo, které obsahuje zcela nebo zčásti program nebo jakoukoli jeho část, popřípadě je z programu nebo jeho části odvozeno, mohlo být jako celek bezplatně poskytnuto každé třetí osobě v souladu s ustanoveními této licence.

c. Pokud modifikovaný program pracuje normálně tak, že čte interaktivní povely, musíte zajistit, že při nejběžnějším způsobu jeho spuštění vytiskne nebo zobrazí hlášení zahrnující příslušnou zmínku o autorském právu a uvede, že neexistuje žádná záruka (nebo případně, že záruku poskytuje vy), a že uživatelé mohou za těchto podmínek program redistribuovat, a musí uživateli sdělit, jakým způsobem může nahlédnout do kopie této licence. (Výjimka: v případě, že sám program je interaktivní, avšak žádné takové hlášení nevypisuje, nepožaduje se, aby vaše dílo založené na programu takové hlášení vyprisovalo.)

Tyto požadavky se vztahují k modifikovanému dílu jako celku. Pokud lze identifikovat části takového díla, které zřejmě nejsou odvozeny z programu a mohou být samy o sobě rozumně považovány za nezávislá a samostatná díla, pak by tato licence a její ustanovení nevztahují na tyto části, jsou-li šířeny jako nezávislá díla. Avšak jakmile tytéž části rozšiřujete jako část celku, jímž je dílo založené na programu, musí být rozšiřování tohoto celku podřízeno ustanovením této licence tak, že povolení poskytnutá dalším uživatelům se rozšíří na celé dílo, tedy na všechny jeho části bez ohledu na to, kdo jí část napsal.

Smyslem tohoto paragrafu tedy není získání práv na dílo zcela napsané vámi ani popírání vašich práv vůči němu; skutečným smyslem je výkon práva na řízení distribuce odvozených nebo kolektivních děl založených na programu.

Pohuš spojení jiného díla, jež není na programu založeno, s programem (anebo dílem založeným na programu) na paměťovém nebo distribučním médiu neuvázne toto jiné dílo do působnosti této licence.

3. Můžete kopírovat a rozšiřovat program (nebo dílo na něm založené, viz parágrauf 2) v objektové anebo spustitelné podobě podle ustanovení paragrafů 1 a 2 výše, pokud splněte některou z následujících náležitostí:

a. Doprovodíte jej zdrojovým kódem ve strojově čitelné formě. Zdrojový kód musí být rozšiřován podle ustanovení paragrafů 1 a 2 výše, a to na médii běžně používaném pro výměnu softwaru; nebo

b. Doprovodíte jej písemnou nabídkou s platností nejméně tři roky, podle níž poskytnete jakékoli třetí straně, za poplatek nevyššího než výdaje vynaložené na fyzickou výrobou zdrojové distribuce, kompletní strojově čitelnou kopii odpovídajícího dílu založeného na programu, jenž musí být šířen podle ustanovení paragrafů 1 a 2 výše na médii běžně používaném pro výměnu softwaru; nebo

c. Doprovodíte jej informacemi, které jste dostali ohledně nabídky na poskytnutí zdrojového kódu. (Tato alternativa je povolena jen pro nekomerční šíření a jenom tehdy, pokud jste obdržel program v objektovém nebo spustitelném tvaru spolu s takovou nabídkou, v souladu s položkou b výše.)

Zdrojový kód k dílu je nejvhodnější formou díla z hlediska jeho případných modifikací. Pro dílo ve spustitelném tvaru znamená úplný zdrojový kód veškerý zdrojový kód pro všechny moduly, které obsahuje, plus jakékoli další soubory pro definici rozhraní, plus dávkové soubory potřebné pro kompilaci a instalaci spustitelného programu. Zvláštním výjimkou jsou však ty softwarové komponenty, které jsou normálně šířeny (buď ve zdrojové nebo binární formě) s hlavními součástmi operačního systému, na němž spustitelný program běží (tj. s překladačem, jádrem apod.). Tyto komponenty nemusí být šířeny ve zdrojovém kódu, pokud ovšem komponenta sama nedoprováží zdrojovou podobu díla.

Je-li šíření objektového nebo spustitelného kódu či nějakého nabídkou přístupu ke kopírování z určitého místa, potom se za distribuci zdrojového kódu počítá i nabídnutí ekvivalentního přístupu ke kopírování zdrojového kódu ze stejného místa, byť je tato nabídka třetí strany nucena ke zkopírování zdrojového kódu spolu s objektovým.

4. Nesmíte kopírovat, modifikovat, poskytovat sublicence anebo šířit program jiným způsobem než výšně uvedeným v této licence. Jakýkoli jiný pokus o kopírování, modifikování, poskytnutí sublicence anebo šíření programu je neplatný a automaticky ukončuje vaše práva na distribuci programu. Strany, které od vás obdržely kopie anebo práva v souladu s touto licencí, však nemají své licence ukončeny, dokud se jim plně podřizují.

5. Nesmíte ani právního příjmení tuto licenci přijmout, protože jste ji nepodepsal. Nic jiného vám však nedává možnost kopírovat, modifikovat a šířit program nebo odvozená díla. V případě, že tuto licenci nepřijmete, je vaše právo zůstat čisté. Tím pádem modifikace anebo šíření programu (anebo každého díla založeného na programu) vyjadřují své podřízení se licencí a všem jejím ustanovením a podmínkám pro kopírování, modifikování a šíření programu a děl na něm založených.

6. Pokud je určeno, že distribuujete program (nebo dílo založené na programu), získává příjemce od původního držitele licence právo kopírovat, modifikovat a šířit program v souladu s těmito ustanoveními a podmínkami. Nesmíte


F.3 Jak uplatnit tato ustanovení na vaše nové programy

Pokud vyvinete nový program a chcete, aby byl veřejně dostupný, můžete ho distribuovat pod licence GNU General Public License. Ustanovení licence se nevztahují na programy, pro které byly specifické podmínky nebo licence určené specifické články. Pouze pokud by byl tento program určen pro více cílů než jen pro osobní použití, může být distribuován pod licence. Pouze pokud je tato licence příslušná pro vaše cíle, můžete ji uplatnit.

K radosti otevřeného softwaru se nemusíte líbat, ale jakmile vám to bude užitečné, můžete tento software přidat do vašich programů. Pouze pokud neomezuje toto ustanovení konkrétní cíl, můžete použít tento software jako zdrojový soubor.
Tento program je svobodný software; můžete jej šířit a modifikovat podle ustanovení GNU General Public License, vydávané Free Software Foundation; a to buď verze 2 této licence anebo (podle vašeho uvážení) kterékoli pozdější verze.

Tento program je rozšířován v naději, že bude užitečný, avšak BEZ JAKÉKOLI ZÁRUKY; neposkytují se ani odvozené záruky PRODEJNOSTI anebo VHODNOSTI PRO URČITÝ ÚČEL. Další podrobnosti hledejte ve GNU General Public License.

Kopií GNU General Public License jste měli obdržet spolu s tímto programem; pokud se tak nestalo, napište o ni Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Připojte rovněž informaci o tom, jak je možné se s vámi spojit elektronickou a papírovou poštou.

Pokud je program interaktivní, zařiďte, aby se při startu v interaktivním módě vypalo hlášení podobné tomuto:

Gnomovision verze 69, Copyright (C) rok jméno autora.

Program Packal je absolutně bez záruky; podrobnosti se dozvíte zadáním 'show w'.

Toto je svobodný software a jeho šíření za jistých podmínek je vítáno; podrobnosti získáte zadáním ‘show c’.

Hypotetické povely ‘show w’ a ‘show c’ by měly zobrazit příslušné pasáže General Public License. Odpovídající povely ovšem nemusí být právě ‘show w’ a ‘show c’; mohou to být třeba stisky tlačítka na myši nebo položky v menu — cokoliv, co se do vašeho programu hodí.

Pokud je to nutné, měli byste také přimět svého zaměstnavatele (jestliže pracujete jako programátor) nebo představitele vaší školy, je-li někdo takový, k tomu, aby podepsal „zřeknutí se autorských práv“. Zde je vzor; jména poměňte:

Jojotechna, a.s., se tímto zříká veškerého zájmu o autorská práva k programu ‘Packal’ (překladač s nakladačem) napsanému Jakubem Programátorem.

Tomáš Ředitel - podpis, 1. dubna 1989

Tomáš Ředitel, více než prezident

Tato General Public License neumožňuje zahrnutí vašeho programu do jiných než svobodných programů. Je-li váš program knihovnou podprogramů, můžete zvážit, zda je užitečně umožnit sestavování i vázaných aplikačních programů s vaší knihovnou. V takovém případě použijte GNU Lesser General Public License namísto této licence.