Denne manual er frit programmet; du kan redistribuere den og/eller ændre den under betingelser i GNU General Public License. Referer venligst til licensen i Appendiks F.
Indhold

1 Velkommen til Debian
 1.1 Hvad er Debian? ... 1
 1.2 Hvad er GNU/Linux? ... 1
 1.3 Hvad er Debian GNU/Linux? ... 2
 1.4 Hvad er Debians installationsprogram? 3
 1.5 Hent Debian ... 3
 1.6 Hent den seneste version af dette dokument 3
 1.7 Organisering af det her dokument 3
 1.8 Om ophavsret og programlicenser 4

2 Systemkrav
 2.1 Understøttet udstyr .. 5
 2.1.1 Understøttede arkitekturer ... 5
 2.1.2 Tre forskellige ARM-porte ... 6
 2.1.3 Variationer i ARM CPU-design og understøttelseskompleksitet 6
 2.1.4 Platforme understøttet af Debian/arm64 6
 2.1.4.1 Andre platforme .. 6
 2.1.5 Flere processorer ... 7
 2.1.6 Understøttelse af grafikudstyr 7
 2.1.7 Udstyr for netværksforbindelse 7
 2.1.8 Ekstraudstyr .. 7
 2.2 Enheder som kræver firmware ... 7
 2.3 Køb af udstyr specifikt for GNU/Linux 8
 2.3.1 Undgåroprieter eller lukket udstyr 8
 2.4 Installationsmedie .. 8
 2.4.1 Cd-rom/dvd-rom/bd-rom ... 8
 2.4.2 USB-hukommelsesdrev ... 9
 2.4.3 Netværk ... 9
 2.4.4 Harddisk .. 9
 2.4.5 Un*x eller GNU-system ... 9
 2.4.6 Understøttede lagersystemer 9
 2.5 Hukommelses- og diskpladskrav ... 9

3 Før installation af Debian GNU/Linux
 3.1 Overblik over installationsprocessen 10
 3.2 Lav en sikkerhedskopi af dine eksisterende data! 11
 3.3 Information du har brug for .. 11
 3.3.1 Dokumentation .. 11
 3.3.1.1 Installationsmanual ... 11
 3.3.1.2 Udstyrsdokumentation 11
 3.3.2 Find kilder med udstyrsinformation 11
 3.3.3 Udtrykskompatibilitet ... 12
 3.3.3.1 Test af udtrykskompatibilitet med et livesystem 13
 3.3.4 Netværksindsstillinger ... 13
 3.4 Opfyldelse af udstyrets minimumskrav 13
 3.5 Forhåndspartitionering for systemer med flere opstartsmuligheder 14
 3.6 Præinstallation af udstyr og operativsystem 14
 3.6.1 Valg af opstartsenhed ... 15
 3.6.2 ARM-firmware .. 15
 3.6.3 Angivelse af ethereum MAC-adressen i U-Boot 15
 3.6.4 Kernel/Initrd/Device-Tree-flytteproblemstillinger i U-Boot 15
4 Find systeminstallationsmedie

- **4.1 Officielle Debian GNU/Linux cd/dvd-rom-sæt**
 - Her kan du finde installationsaftryk
- **4.2 Hentning af filer fra Debian-spejl**
- **4.3 Forberedning af filer for opstart via USB-hukommelsesdrev**
 - Forberedning af et USB-drev via en hybrid cd eller et dvd-aftryk
 - Manuelt kopiere filer til USB-drevet
 - Manuelt kopiere filer til USB-drevet — den fleksible måde
- **4.4 Forberedelse af filer for TFTP-netopstart**
 - Opsetning af en RARP-server
 - Opsetning af en DHCP-server
 - Opsetning af en BOOTP-server
 - Aktivering af TFTP-serveren
 - Flyt TFTP-aftryk på plads
- **4.5 Automatisk installation**
 - Automatisk installation med Debian-installationsprogrammet

5 Opstart af installationssystemet

- **5.1 Opstart af installationsprogrammet på 64-bit ARM**
- **5.1.1 Konsolkonfiguration**
- **5.1.2 Juno-installation**
- **5.1.3 Anvendt Micro Mustand-installation**
- **5.1.4 Opstart med TFTP**
 - TFTP-opstart i U-Boot
- **5.1.5 Opstart fra USB-drev med UEFI**
- **5.2 Tilgængelighed**
 - Installationsprogrammets brugerflade
 - Bundkortenheder
 - Tema med høj kontrast
 - Zoom
 - Ekspertinstallation, redningstilstand, automatiseret installation
 - Tilgængelighed for det installerede system
- **5.3 Opstartsparametre**
 - Opstartskonsol
 - Parametre for Debian-installationsprogrammet
 - Brug af opstartsparametre til at besvare spørgsmål
 - Sende parametre til kernemoduler
 - Sortliste kernemoduler
- **5.4 Fejlsøgning af installationsprocessen**
 - Cd-rom-troværdighed
 - Gængse problemstillinger
 - Hvordan kan der undersøges og måske løses problemstillinger
 - Opstartskonfiguration
 - Fortolker kernens opstartsbeskeder
 - Rapportering af installationsproblemer
 - Indsendelse af installationsrapporter

6 Brug af Debian-installationsprogrammet

- **6.1 Sådan fungerer installationsprogrammet**
- **6.1.1 Brug af det grafiske installationsprogram**
- **6.2 Introduktion til komponenter**
- **6.3 Brug af individuelle komponenter**
 - Konfiguration af Debians installationsprogram og udstyr
 - Kontroller tilgængelig hukommelse / tilstand for lav hukommelse
 - Valg af lokalitetsindstillinger
 - Valg af tastatur
 - På udkig efter et ISO-aftryk af Debian-installationsprogrammet
 - Konfigurer netværket
 - Automatisk netværkskonfiguration
INHOLD

6.3.1.5.2 Manual netværkskonfiguration .. 35
6.3.1.5.3 IPv4 og IPv6 ... 36
6.3.2 Opsætning af brugere og adgangskoder .. 36
 6.3.2.1 Angiv en adgangskode for root (administrator) 36
 6.3.2.2 Opret en normal bruger .. 36
6.3.3 Konfigurer uret og tidszonen .. 36
6.3.4 Partitionering og valg af monteringspunkt .. 37
 6.3.4.1 Understøttede partitioneringsindstiller ... 37
 6.3.4.2 Vejledt partitionering ... 38
 6.3.4.3 Manuel partitionering ... 39
 6.3.4.4 Konfiguration af flerdiskenheder (program-RAID) 40
 6.3.4.5 Konfiguration af den logiske diskenheds håndtering (LVM) 42
 6.3.4.6 Konfigurer krypterede diskenheder ... 43
6.3.5 Installation af basisssystemet ... 44
6.3.6 Installation af yderligere programmer .. 45
 6.3.6.1 Konfigurer apt ... 45
 6.3.6.1.1 Installation fra mere end en cd eller dvd 45
 6.3.6.1.2 Brug af et netværkspejl ... 46
 6.3.6.1.3 Vælg et netværkspejl ... 46
 6.3.6.2 Valg af og installation af programmer .. 47
6.3.7 Sikring af at dit system kan startes op ... 48
 6.3.7.1 Detektering af andre operativsystemer ... 48
 6.3.7.2 Gør systemet opstartsbart med flash-kernel 48
 6.3.7.3 Fortsæt uden opstartsindlæser .. 48
6.3.8 Afslutning af installationen ... 48
 6.3.8.1 Indstilling af systemuret ... 49
 6.3.8.2 Genstart systemet ... 49
6.3.9 Problemløsning ... 49
 6.3.9.1 Gemme installationsloggene .. 49
 6.3.9.2 Brug af skallen og visning af loggene .. 49
6.3.10 Installation over netværket .. 50
6.4 Indlæsning af manglende firmware ... 51
 6.4.1 Forberedelse af et medie .. 51
 6.4.2 Firmware og det installerede system .. 52
7 Start op i dit nye Debian-system .. 53
 7.1 Sandhedens øjeblik ... 53
 7.2 Montering af krypterede diskenheder .. 53
 7.2.1 Fejlsøgning .. 53
 7.3 Log ind ... 54
8 De næste trin og hvordan du kommer videre .. 55
 8.1 Nedlukning af systemet ... 55
 8.2 Et kig mod Debian .. 55
 8.2.1 Debian-pakkesystemet .. 55
 8.2.2 Yderligere programmer tilgængelige for Debian 56
 8.2.3 Håndtering af programversion ... 56
 8.2.4 Håndtering af cronjob ... 56
 8.3 Yderligere løsning og information ... 56
 8.4 Opsætning af dit system så du kan bruge e-post 56
 8.4.1 Standard e-postkonfiguration .. 57
 8.4.2 Send e-post udenfor systemet ... 57
 8.4.3 Konfiguration af Exim4-posttransportagenten 57
 8.5 Kompilering af en ny kerne ... 58
 8.6 Gendannelse af et ødelagt system ... 58
INDHOLD

A Installationsmanual
A.1 Forudsætninger .. 59
A.2 Opstart af installationsprogrammet 59
 A.2.1 Cd-rom ... 59
 A.2.2 USB-hukommelsesdrev 59
 A.2.3 Opstart fra netværk 60
 A.2.4 Opstart fra harddisk 60
A.3 Installation .. 60
A.4 Send os en installationsrapport 61
A.5 Og endelig.. 61

B Automatisering af installationen med preseeding (forhåndskonfiguration) 62
B.1 Introduktion ... 62
 B.1.1 Metoder til forhåndskonfiguration 62
 B.1.2 Begrensninger 63
B.2 Brug af forhåndskonfiguration 63
 B.2.1 Indlæsning af filen til forhåndskonfiguration 63
 B.2.2 Brug af opstartsparametre til at forhåndskonfigurere spørgsmål 64
 B.2.3 Auto-tilstand 64
 B.2.4 Aliasser nyttig under forhåndskonfiguration 66
 B.2.5 Brug af en DHCP-server til at specificere forhåndskonfigurationsfiler 66
B.3 Oprettelse af en forhåndskonfigurationsfil 66
B.4 Indhold af forhåndskonfigurationsfilen (for buster) 67
 B.4.1 Opsetning af sted 67
 B.4.2 Netværkskonfiguration 68
 B.4.3 Netværkskonsol 69
 B.4.4 Speilindstillinger 70
 B.4.5 Kontoopsætning 70
 B.4.6 Ur- og tidszoneopsætning 71
 B.4.7 Partitionering 71
 B.4.7.1 Partitioneringseksempel 72
 B.4.7.2 Partitionering med brug af RAID 73
 B.4.7.3 Kontrol af hvordan partitionerne monteres 74
 B.4.8 Installation af det grundlæggende system 74
 B.4.9 Apt-opsætning 74
 B.4.10 Pakkevalg 75
 B.4.11 Afslutning af installationen 76
 B.4.12 Forhåndskonfiguration af andre pakker 76
B.5 Avancerede indstillinger 76
 B.5.1 Kørsel af tilpassede kommandoer under installationen 76
 B.5.2 Brug af forhåndskonfiguration til at ændre standardværdier 77
 B.5.3 Kædeindlæsning af forhåndskonfigurerede filer 77

C Partitionering for Debian 79
C.1 Opsetning af partitioner og størrelser for Debian 79
C.2 Mappetræt .. 79
C.3 Anbefalet partitioneringsskema 80
C.4 Enhedsnavne i Linux 81
C.5 Debian - partitioneringsprogrammer 81

D Diverse forklaringer 82
D.1 Linux-enheder ... 82
 D.1.1 Opsetning af din mus 82
D.2 Diskpladskravet for opgaver 83
D.3 Installation af Debian GNU/Linux fra et Unix/Linux-system 84
 D.3.1 Kom i gang 84
 D.3.2 Installer debootstrap 84
 D.3.3 Kør debootstrap 85
 D.3.4 Konfigurer basissystemet 85
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.3.4.1 Opret enhedsfiler</td>
<td>85</td>
</tr>
<tr>
<td>D.3.4.2 Monter partitioner</td>
<td>86</td>
</tr>
<tr>
<td>D.3.4.3 Indstilling af tidszone</td>
<td>86</td>
</tr>
<tr>
<td>D.3.4.4 Konfigurer netværk</td>
<td>87</td>
</tr>
<tr>
<td>D.3.4.5 Konfigurer Apt</td>
<td>88</td>
</tr>
<tr>
<td>D.3.4.6 Konfigurer steder og tastatur</td>
<td>88</td>
</tr>
<tr>
<td>D.3.5 Installer en kerne</td>
<td>88</td>
</tr>
<tr>
<td>D.3.6 Opsætning af opstartsindlæseren</td>
<td>88</td>
</tr>
<tr>
<td>D.3.7 Ekstern adgang: Installation af SSH og opsætning af adgang</td>
<td>88</td>
</tr>
<tr>
<td>D.3.8 Afsluttende indstillinger</td>
<td>89</td>
</tr>
<tr>
<td>D.4 Installation af Debian GNU/Linux med brug af PPP over Ethernet</td>
<td>89</td>
</tr>
<tr>
<td>E Administrative</td>
<td>91</td>
</tr>
<tr>
<td>E.1 Om dette dokument</td>
<td>91</td>
</tr>
<tr>
<td>E.2 Bidrag til det her dokument</td>
<td>91</td>
</tr>
<tr>
<td>E.3 De største bidragydere</td>
<td>91</td>
</tr>
<tr>
<td>E.4 Varemærker</td>
<td>92</td>
</tr>
<tr>
<td>F GNU General Public License</td>
<td>93</td>
</tr>
<tr>
<td>F.1 Preamble</td>
<td>93</td>
</tr>
<tr>
<td>F.2 GNU GENERAL PUBLIC LICENSE</td>
<td>93</td>
</tr>
<tr>
<td>F.3 How to Apply These Terms to Your New Programs</td>
<td>96</td>
</tr>
</tbody>
</table>
Tabeller

3 Før installation af Debian GNU/Linux

3.1 Nyttig udstyrinformation under en installation .. 12
3.2 Anbefalede minimale systemkrav ... 13
Resumé

Det her dokument indeholder installationsinstruktioner for Debian GNU/Linux 10-systemet (kodenavn “buster”) for arkitekturen 64-bit ARM (“arm64”). Dokumentet indeholder også referencer til yderligere information og information om hvordan du får det bedste ud af dit nye Debian-system.
Installation af Debian GNU/Linux 10 for arm64

Vi er glade for, at du har valgt at prøve Debian og er sikker på, at du finder at udgaven af Debian GNU/Linux er unik. Debian GNU/Linux består af frie programmer i høj kvalitet fra hele verdenen og integrerer dem i en sammanhængende helhed. Vi tror, at du opdager at resultatet virkelig er mere end summen af delene.

Vi forstår, at mange ønsker at installere Debian uden at læse den her manual og Debian-installationsprogrammet er designet for at gøre det muligt. Hvis du ikke har tid til at læse hele installationsguiden på nuværende tidspunkt, så anbefaler vi at du læser installationshjælpen, som går igennem den grundlæggende installationsproces og henviser til manuallen for mere avancerede emner eller når tingene ikke fungerer som de skal. Installationshjælpen kan du se i Appendiks A.

Med det sagt håber vi, at du får tid til at læse størstedelen af den her manual og derigennem bliver mere informeret og får en større sandsynlighed for en succesfuld installationsoplevelse.
Kapitel 1

Velkommen til Debian

Dette kapitel giver et overblik over Debian-projektet og Debian GNU/Linux. Hvis du allerede kender til historien bag Debian-projektet og distributionen Debian GNU/Linux, så kan du hoppe videre til næste kapitel.

1.1 Hvad er Debian?

Debian-udviklerne er involveret i en række aktiviteter, inklusiv hjemmesiden og FTP-serveren, grafisk design, juridiske analyser af licensforhold, dokumentation og selvfølgelig vedligeholdelse af programpakkerne.

For at kommunikere vores filosofi og tiltrække udviklere, som tror på principperne bag Debian, så har Debian-projektet udgivet et antal dokumenter, som fortæller om vores værdier og fungerer som vejledninger til hvad det vil sige at være en Debian-udvikler:

- **Debians sociale kontrakt** er et resultat af Debians engagement for Free Software Community. Alle, som accepterer at følge den sociale kontrakt, kan blive vedligeholder. Alle vedligeholdere kan introducere nye programmer i Debian — så længe at programmerne overholder vores kriterier for at være frie og at pakken følger vores kvalitetsstandarder.

- **Debians retningslinjer for frit programmel (DFSG)** er klare og精密 precise regler for Debians kriterier for frit programmel. DFSG er et meget indflydelsesrigt dokument i Free Software Movement og var grundstenen for The Open Source Definition.

- **Debians politikmanual** er en omfattende specifikation af Debian-projektets kvalitetsstandarder.

Debian-udviklerne er også involverede i et antal andre projekter, nogle specifik for Debian, andre involverer nogle eller hele Linux-fællesskabet. Her nogle eksempler:

- **Filesystem Hierarchy Standard (FHS)** er et forsøg på at standardisere layouttet på Linux-filsystemet. FHS vil gøre det muligt for programudviklere at koncentrere deres indsats på design af programmer, uden at skulle bekymre sig om hvordan pakken vil blive installeret i forskellige GNU/Linux-distributioner.

- **Debian Jr.** er et internt projekt hvis mål er at gøre Debian attraktiv selv for unge brugere.

For mere generel information om Debian, se Debian OSS.

1.2 Hvad er GNU/Linux?

Linux er et operativsystem: Et antal programmer som lader dig interagere med din computer og køre andre programmer.

Et operativsystem indeholder forskellige fundamentale programmer, som er krævet af din computer, for at den kan kommunikere og modtage instruktioner fra brugere; læse og skrive data til harddiske, bånd og printere; kontrollere brugen af hukommelse og køre andre programmer. Den vigtigste del af et operativsystem er kernen. I et GNU/Linux-system er Linux kernekomponenten. Resten af systemet består af andre programmer, mange blev skrevet af eller
KAPITEL 1. VELKOMMEN TIL DEBIAN

1.3. HVAD ER DEBIAN GNU/Linux?

for GNU-projektet. Da Linuxkernen alene ikke udgør et fungerende operativsystem, så foretrækker vi betegnelsen “GNU/Linux” for at referere til systemer, som mange i dagligdagen bare kalder for “Linux”.

Udviklingen af hvad senere blev GNU/Linux startede i 1984 da Free Software Foundation begyndte udviklingen af et frit Unix-lignende operativsystem kaldet GNU.

GNU-projektet har udviklet en omfattende samling af frie programværktøjer for brug med Unix™ og Unix-lignende operativsystemer såsom Linux. Disse værktøjer gør, at brugerne kan udføre opgaver fra de mere triviale (såsom kopiering eller fjernelse af filer fra systemet) til de mere avancerede (såsom skrivning og kompilering af programmer eller mere sofistikeret redigering i en række forskellige dokumentformater).

Selv om mange grupper og individer har bidraget til Linux, så er den største enkelte bidragyder fortsat Free Software Foundation, som har skabt ikke bare de fleste værktøjer i Linux, men også filosofien og fællesskabet som gjorde Linux mulig.

Linux Torvalds koordinerer i dag fortsat arbejdet for flere hundrede udviklere med hjælp fra et antal undersystemvedligeholdere. Der er en officiel hjemmeside for Linux-kernen. Information om linux-kernen kan findes på Linux-kernens postliste for OSS.

Linux-brugere har utrolig frihed i valget af programmer. For eksempel kan Linuxbrugere vælge mellem et dusin forskellige antal brugerflader (shells) for kommandolinjen og flere grafiske skriveborde. Dette udvalg er ofte forvirrende for brugere af andre operativsystemer, som ikke er vænnet til at kommandolinjen eller skrivebordet er noget de kan ændre.

Linux er også mindre tilbøjelig til at bryde ned, kan køre flere programmer på samme tid, og mere sikker end andre operativsystemer. Med disse fordele er Linux det hurtigst voksende operativsystem på servermarkedet. På det seneste er Linux også begyndt at blive populært blandt hjemme- og forretningsbrugere.

1.3 Hvad er Debian GNU/Linux?

Debians opmærksomhed på detaljer gør, at vi kan skabe en højkvalitets, stabil og skalerbar distribution. Installationer kan let konfigureres til mange forskellige roller, fra minimale brandmure til skriveborde for videnskabelige arbejdsstationer på netværks servere i den høje ende.

Debian er speciel populær blandt erfarne brugere for sine tekniske fortræffeligheder og sit dybe engagement for behovene og forventningerne i Linux-fællesskabet. Debian har også introduceret mange funktioner til Linux, som nu er almindelige.

For eksempel var Debian den første Linux-udgave som inkluderede et pakkehåndteringssystem for enkelt installation og fjernelse af programmer. Den var også den første Linux-udgave, som kunne opgraderes uden at det krævede en ny installation.

Debian fortsætter med at være ledende inden for Linux-udviklingen. dens udviklingsproces er et eksempel på hvor godt udviklingsmodellen for åben kildekode kan fungere — selv for meget komplekse opgaver såsom bygning og vedligeholdelse af komplettte operativsystemer.

Funktionen som i størst omfang adskiller Debian fra de andre Linux-distributioner er dets pakkehåndteringssystem. Dette værktøj giver administratoren for Debian-systemet total kontrol over pakkerne som installeres på et system inklusive muligheden for at installere en enkel pakke eller automatisk opdatere hele operativsystemet. Individuelle pakker kan også beskyttes fra at blive opdateret. Du kan endda fortælle pakkehåndteringssystemet om programmer, du selv har kompileret og hvilke afhængigheder de opfylder.

For at beskytte dit system mod ”trojanske heste” og andre ondsindede programmer verificerer Debians servere at overførte pakker virkelig kommer fra de registrerede Debian-vedligeholdere. Debian-pakker gør også meget ud af at konfigurere deres pakker på en sikker måde. Såfremt der opstår sikkerhedsproblemer i udsendte pakker, så er
1.4 Hvad er Debians installationsprogram?

Debians installationsprogram, også kendt som "d-i" er programsystemet til at installere et fungerende og grundlæggende Debiansystem. En bred vifte af udstyr såsom indlejrede enheder, bærbare, skrivebords- og servermaskiner er understøttet og et stort sæt af frie programmer for mange formål tilbydes.

Installationen udføres ved at besvare nogle grundlæggende spørgsmål. En eksperttilstand er også tilgængelig, som gør det muligt at kontrollere hvert aspekt af installationen og en avanceret funktion til at udføre automatiserede installationer. Det installerede system kan bruges, som det er eller tilpasses yderligere. Installationen kan udføres fra en række kilder: USB, cd/dvd/blue-ray eller via netværk. Installationsprogrammet understøtter oversatte installationer i mere end 80 sprog.

Installationsprogrammet har sin oprindelse i projektet boot-floppies, og det blev først nævnt af Joey Hess i 2000. Siden da er installationssystemet blevet udviklet af frivillige, der har forbedret og tilføjet flere funktioner.

Yderligere information kan findes på Debians side for installationsprogrammet, på Wiki’en og på debian-boot-postlisten.

1.5 Hent Debian

For information om hvordan man henter Debian GNU/Linux fra internettet eller hvor man kan købe officielle Debian cd-skiver, se hjemmesiden Hent Debian. Hjemmesiden Hent Debian fra internettet indeholder en fuldstændig liste over officielle Debian-spejl, så at du nemt kan finde den nærmeste.

Debian kan efter installationen nemt opgraderes. Installationsprocessen vil hjælpe dig med at oprette og tilføje flere funktioner.

Yderligere information kan findes på Debians side for installationsprogrammet, på Wiki’en og på debian-boot-postlisten.

1.6 Hent den seneste version af dette dokument

Dette dokument er under konstant udvikling. Se på internetsiderne for Debian 10 efter den absolut seneste information om 10-udgaven af Debian GNU/Linux-systemet. Opdaterede versioner af den her installationshåndbog findes også tilgængelig fra den officielle installationshåndbog.

1.7 Organisering af det her dokument

Det her dokument er tænkt som en håndbog for nybegyndere af Debian. Håndbogen forsøger at have så forhåndsanfagnelser som muligt om dit vidensniveau. Dog antager vi, at du har en generel forståelse af hvordan udstyret i din computer fungerer.

Ekspertbrugere kan også finde interessant referenceinformation i det her dokument inklusive minimumsstørrelser for installation, detaljer om hvilket udstyr som er understøttet af Debians installationssystem og så videre. Vi opmuntrer til at ekspertbrugere hopper rundt i dokumentet.

Generelt er manualen ophøjet lineært og tager dig igennem installationsprocessen fra start til slut. Her er trinene som kræves for at installere Debian GNU/Linux og afsnittene i det her dokument som modvarer hvert trin:

1. Afklar om dit udstyr opfylder kravene for brug af installationssystemet i Kapitel 2.
2. Lav en sikkerhedskopier af dit system før den nødvendige planlægning og udstyrskonfiguration før du installerer Debian findes i Kapitel 3. Hvis du forbereder et system med flere operativsystemer, kan det være nødvendigt at oprette flere partitioner på din harddisk, som Debian kan anvende.
3. I Kapitel 4 kan du finde de nødvendige installationsfiler for din installationsmetode.

Til slut, information om det her dokument og hvordan man bidrager til det kan ses i Appendiks E.

1.8 Om ophavsret og programlicenser

Vi er sikker på, at du har læst nogle af licenserne, som kommer med de fleste kommercielle programmer — de siger normalt, at du kun kan anvende en kopi af programmet på en computer. Licensen for det her system er slet ikke sådan. Vi opmuntrer dig til at lægge en kopi af Debian GNU/Linux på hver computer på din skole eller arbejdsplass. Lå dem ud til dine venner og hjælp dem med at installere det på deres computere! Du kan også lave tusindvis af kopier og sælge dem — dog med nogle få restriktioner. Din frihed til at installere og anvende systemet kommer direkte fra at Debian er baseret på frie programmer.

At kalde programmer for frie betyder ikke, at programmerne ikke er ophavsretbeskyttet og det betyder ikke, at cd'er/dvd'er som indeholder dette program skal distribueres gratis. Frie programmer, i denne sammenhæng, betyder at licenser for de individuelle programmer ikke kræver, at du betaler for rettigheden til at distribuere eller anvende disse programmer. Frie programmer betyder også, at alle kan udvide, justere og ændre programmerne samt også må distribuere resultatet af deres arbejde.

Mange af programmerne i systemet udgivet under GNU General Public License, hvilket ofte refereres som “GPL”. GPL kræver, at du gør kildekoden for programmerne tilgængelig, når du distribuerer en binær kopi af programmet; det vilkår i licensen gør, at alle brugere har mulighed for at ændre programmet. På grund af det her vilkår er kildekoden1 for alle sådanne programmer tilgængelig i Debian-systemet.

Der er flere yderligere former for ophavsretvilkår og programlicenser, som bruges af programmerne i Debian. Du kan finde information om ophavsret og licenser for hver installeret pakke på dit system ved at kigge i filen /usr/share/doc/pakkenavn/copyright .

For yderligere information om licenser og hvordan Debian fastslår om programmer er tilstrækkelige frie til at blive inkluderet i hovedudgaven, så se Debians retningslinjer for frie programmer.

Den vigtigste juridiske information er, at dette program ingen garanti har. Programmørerne, som har skabt dette program, har gjort det for at glæde fællesskabet. Der gives ingen garanti for, at programmet er egnet til et bestemt formål. Da programmet er fri, kan du dog ændre det, så det passer til dine behov — og udnytte fordelene ved de programændringer som andre har foretaget af programmet.

1 For information om hvordan man finder, udpakker og bygger binære filer fra Debians kildekodepakker, se Debian GNU/Linux OSS under “Grundlaget for Debians pakkehåndteringssystem”.

BEMÆRK
Kapitel 2

Systemkrav

Dette afsnit indeholder information om det udstyr, du har brug for til at komme i gang med Debian. Du kan også finde henvisninger til yderligere information om udstyr understøttet af GNU og Linux.

2.1 Understøttet udstyr

Debian indfører ikke udstyrskrav udover kravene fra Linux- eller kFreeBSD-kernen og GNU-værktøjssetene. Derfor kan enhver arkitektur eller platform som Linux- eller kFreeBSD-kernen, libc, gcc, etc. er blevet porteret til, og for hvem en Debian-port findes afvikle Debian. Se porteringsiderne på https://www.debian.org/ports/arm/ for yderligere detaljer om 64-bit ARM arkitektursystemer, som er blevet testet med Debian GNU/Linux.

Frem for at forsøge at beskrive alle de forskellige udstyrskonfigurationer, som er understøttet for 64-bit ARM, dette afsnit indeholder generel information og henvisninger til hvor yderligere information kan findes.

2.1.1 Understøttede arkitekturer

Debian GNU/Linux 10 understøtter 10 væsentlige arkitekturer og flere variationer af hver arkitektur kendt som “varianter (flavors)”.

<table>
<thead>
<tr>
<th>Arkitektur</th>
<th>Debian Designation</th>
<th>Underarkitektur</th>
<th>Variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel x86-baseret</td>
<td>i386</td>
<td>standard for x86-maskiner</td>
<td>standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kun Xen PV-domæner</td>
<td>xen</td>
</tr>
<tr>
<td>AMD64 & Intel 64</td>
<td>amd64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARM</td>
<td>arme</td>
<td>Marvell Kirkwood og Orion</td>
<td>marvell</td>
</tr>
<tr>
<td>ARM med udstyr FPU</td>
<td>armhf</td>
<td>flerplatform</td>
<td>armmp</td>
</tr>
<tr>
<td>64-bit ARM</td>
<td>arm64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32-bit MIPS (big endian)</td>
<td>mips</td>
<td>MIPS Malta</td>
<td>4kc-malta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td>64-bit MIPS (little endian)</td>
<td>mips64el</td>
<td>MIPS Malta</td>
<td>5kc-malta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loongson 3</td>
<td>loongson-3</td>
</tr>
<tr>
<td>32-bit MIPS (little endian)</td>
<td>mipsel</td>
<td>MIPS Malta</td>
<td>4kc-malta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loongson 3</td>
<td>loongson-3</td>
</tr>
<tr>
<td>Power Systems</td>
<td>ppc64el</td>
<td>IBM POWER8 eller nyere maskiner</td>
<td></td>
</tr>
<tr>
<td>64-bit IBM S/390</td>
<td>s390x</td>
<td>IPL fra VM-reader og DASD</td>
<td>generisk</td>
</tr>
</tbody>
</table>

Dette dokument dækker installationen for arkitekturen 64-bit ARM, der bruger kernen Linux. Hvis du er på udkig efter information om en af de andre Debian-understøttede arkitekturer så tag et kig på siderne om Debian-porteringer.

Dette er den første officielle udgivelse af Debian GNU/Linux for arkitekturen 64-bit ARM. Vi har den opfattelse, at den har bevist, at den er klar til udgivelse. Da den endnu ikke har haft lige så stor udbredelse (og dermed test fra
KAPITEL 2. SYSTEMKRAV

2.1. UNDERSTØTTET UDSTYR

mange brugere) som nogle arkitekturer, så kan du møde nogle få fejl. Brug vores fejlsporingssystem til at rapportere eventuelle problemer; husk at nævne at fejlen er opstået på 64-bit ARM-platformen der bruger kernen Linux. Det kan også være nødvendigt at bruge postlisten debian-arm.

2.1.2 Tre forskellige ARM-porte

ARM-arkitekturen har udviklet sig over tid og moderne ARM-processorer tilbyder funktioner som er tilgængelige i ældre modeller. Debian tilbyder derfor tre ARM-porte så du har den bedste understøttelse for en bred vifte af forskellige maskiner:

- Debian/armel er til ældre 32-bit ARM-processorer uden understøttelse for en udstyrs-FPU (loating point unit),
- Debian/armhf fungerer kun på nyere 32-bit ARM-processorer, som implementerer mindst ARMv7-arkitekturen med version 3 af ARM vector floating point-specifikationen (VFPv3). Den gør brug af de udvidede funktioner og ydelsesforbedringer tilgængelige på disse modeller.
- Debian/arm64 fungerer på 64-bit ARM-processorer, der som minimum implementerer ARMv8-arkitekturen.

Teknisk kan alle nuværende ARM CPU'er køre enten i endian-tilstand (big eller little), men i praksis bruger hovedparten little-endian-tilstand. Debian/arm64, Debian/armhf og Debian/armel understøtter kun little-endian-systemer.

2.1.3 Variationer i ARM CPU-design og understøttelseskompleksitet

ARM-systemer er meget mere heterogene end dem baseret på den i386/amd64-baserede pc-arkitektur, så understøttelses situationen kan være meget mere kompliceret.

ARM-arkitekturen bruges hovedsagelig i såkaldte “systems-on-chip” (SOC'er). Disse SOC'er er designet af mange forskellige firmaer med mange og varierende udstyrsomponenter selv for den meget grundlæggende funktionalitet kravet for at få systemet i gang. Ældre versioner af ARM-arkitekturen har oplevet massive forskelle fra en SoC til den næste, men ARMv8 (arm64) er meget mere standardiseret og er derfor nemmere at understøtte for Linuxkernen og andre programmer.

Serverversioner af ARMv8-arkitekturen konfigureres typisk via Unified Extensible Firmware Interface (UEFI) og Advanced Configuration and Power Interface-standarderne (ACPI). Disse to tilbyder fælles, enhedsuafhængige måder at starte op og konfigurere computerudstyr. De er også udbredt i x86 pc-verdenen.

2.1.4 Platforme understøttet af Debian/arm64

Arm64/AArch64/ARMv8-udstyr blev tilgængelig ret sent i udgivelsescyklen for Debian Buster så få platforme have understøttelse i hovedudgivelsens kerneversion på tidspunktet for udgivelsen; dette er det vigtigste krav for at debian-installer fungerer på dem. De følgende platforme vides at være understøttet af Debian/arm64 i denne udgivelser. Der er kun et kerneaftryk, som understøtter alle de angivne platforme.

ARM Juno Development Platform Juno er et godt udviklingsbundkort med en 6-kerne (2xA57, 4xA53) ARMv8-A 800Mhz CPU, Mali (T624) grafik, 8GB DDR3 RAM, Ethernet, USB, Serial. Det blev designet for systemopstart og functionalitetstest så er hverken lille eller billig, men var et af de første bundkort tilgængelige. Alt indbygget udstyr er understøttet i hovedlinjens kerne og i Buster.

2.1.4.1 Andre platforme

Flerplatformsunderstøttelsen i arm64-Linuxkernen kan også afvikle debian-installer på arm64-systemer som ikke eksplicit er anført ovenfor så længe, at kernen brugt af debian-installer har understøttelse for målsystemets komponenter og en enhedsstraf til målet er tilgængelig. I disse tilfælde kan installationsprogrammet normalt tilbyde en fungerende installation, og så længe at UEFI er i brug, så bør systemet også kunne startes op. Hvis UEFI ikke bruges, så skal du måske også udføre nogle manuelle konfigurationstrin for at systemet kan starte op.

6
2.1.5 Flere processorer

Understøttelse af flere processorer — også kaldt “symmetrisk flerbehandling” eller SMP — er tilgængelig for denne arkitektur. AT have flere processorer i en computer var oprindelig kun en problemstilling for serversystemer i den dyre ende, men er nu blevet almindeligt næsten overalt med introduktionen af såkaldte “multi-core”-processorer. Disse indeholder to eller flere processorenheder, kaldet “kerner”, i en fysisk chip.

2.1.6 Understøttelse af grafikudstyr

Debians understøttelse for grafiske grænseflader bestemmes af den underliggende understøttelse i X.org’s X11-system og kernen. Grundlæggende framebuffergrafik tilbydes af kernen, mens skrivebordsmiljøer bruger X11. Om avancerede grafikkort-funktioner såsom 3D-udstyracceleration eller udstyraccelereret video er tilgængelig, afhænger af det faktiske grafikudstyr brugt i systemet og i nogle tilfælde af installationen af yderligere “firmware”-aftryk (se Afsnit 2.2).

Næsten alle ARM-maskiner har grafikudstyr indbygget, frem for i et separat kort. Nogle maskiner har dog udvildelsespladser, som kan anvende grafikkort, men det er sjældent. Udstyr som er designet til at være uden grafik i det hele taget er ret normalt. Mens grundlæggende framebuffervideo tilbudt af kernen før fungere på alle enheder som har grafik, så kræver hurtig 3D-grafik binære drivere for at fungere. Situationen ændrer sig hurtigt, men i udgivelsesøjeblikket for buster er frie drivere for nouveau (Nvidia Tegra K1 SoC) og freedreno (Qualcomm Snapdragon SoCs) tilgængelige i udgivelsen. Andet udstyr kræver proprietære drivere fra tredjeparter.

2.1.7 Udstyr for netværksforbindelse

Næsten alle netværksgrænsefledekort (NIC) understøttet af Linux-kernen bør også være understøttet af installationssystemet; drivere bliver normalt indlæst automatisk.

På 64-bit ARM, er de fleste indbyggede Ethernet-enheder understøttet og moduler for yderligere PCI- og USB-enheder tilbydes.

2.1.8 Ekstraudstyr

2.2 Enheder som kræver firmware

På mange ældre enheder, som kræver firmware for at fungere, blev firmwarefilen placeret permanent i en EEPROM/Flashchip på selve enheden af producenten. I dag har de fleste nye enheder ikke firmware indlejet på den måde, så firmwarefilen skal overføres til enheden af værtsoperativsystemet hver gang systemet starter op.

I de fleste tilfælde er firmware ikke fri jævnfør de kriterier som bruges af Debian GNU/Linux-projektet og kan derfor ikke inkluderes i hoveddistributionen eller i installationssystemet. Hvis enhedsdriveren selv er inkluderet i distributionen og hvis Debian GNU/Linux legalt kan distribuere firmwareen, så vil den ofte være tilgængelig som en separat pakke fra den ikkefrie (non-free) del af arkivet.

Dette betyder dog ikke at sådant udstyr ikke kan bruges under en installation. Startende med Debian GNU/Linux 5.0 understøtter debian-installer indlæsning af firmwarefiler eller pakker indeholdende firmware fra et eksternt medie, såsom et USB-drev. Se Afsnit 6.4 for detaljeret information om hvordan firmwarefiler eller pakker skal indlæses under installationen.

Hvis debian-installer anmoder om en firmwarefil og du ikke har denne firmwarefil tilgængelig eller ikke ønsker at installere en ikkefri firmwarefil på dit system, så kan du fortsætte uden at indlæse firmwareen. Der er flere tilfælde hvor en driver anmoder om yderligere firmware fordi det skal bruges under bestemte omstændigheder, men
KAPITEL 2. SYSTEMKRAV

2.3 Køb af udstyr specifikt for GNU/Linux

Der er flere leverandører som leverer systemet med Debian eller andre distributioner af GNU/Linux forhåndsinstalleret. Du betaler måske mere for privilegiet, men det giver lidt ro isindet, da du er sikker på, at udstyret er godt understøttet af GNU/Linux.

Uanset om du købte et system med Linux eller måske et brugt system, så er det stadig vigtig at kontrollere om dit udstyr er understøttet af Linux-kernen. Kontroller om dit udstyr er nævnt i referencerne nævnt ovenfor. Lad din sælger (hvis en sådan findes/kan kontaktes) vide at du ønsker at købe et Linux-system. Støt Linux-venlige udstyrsleverandører.

2.3.1 Undgå proprietær eller lukket udstyr

Nogle producenter vil ikke fortælle os hvordan vi skal skrive drivere for deres udstyr. Andre giver os ikke lov til at se dokumentationen uden en fortrolighedsaftale, som forhindrer os i at udgive driverens kildekode som åben kildekode, som er et af de centrale elementer i frie programmer. Da vi ikke har fået adgang til brugbar dokumentation vedrørende disse enheder, så vil de ikke fungere under Linux.

I mange tilfælde er der standarder (eller i det mindste de-facto standarder), der beskriver hvordan et operativsystem og dets enhedsdrivere kommunikerer med en bestemt klasse af enheder. Alle enheder som over en sådan (de-facto) standard kan bruges med en enkel generisk enhedsdriver og ingen enhedsspecifikke drivere er krævet. Med noget udstyr (f.eks. USB “Human Interface Devices”, d.v.s. tastaturer, mus etc. og USB-lagerenheder såsom USB-drev og hukommelseskortlæsere) fungerer dette godt og praktisk talt alle enheder solgt på markedet overholder standarderne.

På andre områder, blandt dem f.eks. printer, er dette desværre ikke tilfældet. Selvom der er mange printerer som kan adresseres via en lille sæt af (de-facto) standardkontroldsporg og derfor kan fungere uden problemer i ethvert operativsystem, så er der ret så mange modeller, som kun forstår proprietære kontrollkommandoer hvor ingen brugbar dokumentation er tilgængelig og som derfor slet ikke kan bruges på frie operativsystemer eller kun kan bruges med en leverandørdriver i lukket kildekode.

Selv om der er en leverandørdriver i lukket kildekode for sådant udstyr når du køber enhede, så er den praktiske brugsevne begrænset af driver tilgængelighed. I dag er produktcyklusser blevet korte og det er derfor ikke usandsynligt at kort tid efter at en forbruger leverede den har bygget den, og den ikke har driveropdateringer tilgængelige fra leverandørens side. Hvis den gamle driver i lukket kildekode ikke løngere fungerer efter en systemopdatering, så kan det en ellers perfekt fungerende enhed blive ubrugelig på grund af manglende driverunderstøttelse og der er intet som kan gøres i dette tilfælde. Du bør derfor undgå at købe lukket udstyr i første omgang, uanset hvilket operativsystem du ønsker at bruge på det.

Du kan hjælpe med at forbedre situationen ved at opfordre producenter af lukket udstyr til at frigive dokumentationen og andre ressourcer nødvendige for at vi kan tilbyde frie drivere til deres udstyr.

2.4 Installationsmedie

Dette afsnit vil hjælpe dig med at bestemme hvilke forskellige medietyper du kan bruge til at installere Debian. Der er et helt kapitel reserveret til medie, Kapitel 4, som angiver fordelene og ulemperne for hver medietype. Du kan gå tilbage til denne side, når du når det afsnit.

2.4.1 Cd-rom/dvd-rom/bd-rom

2.4.2 **USB-hukommelsesdrev**

2.4.3 **Netværk**

Netværket kan bruges under installationen for at hente filer krævet for installationen. Hvorvidt netværket bruges eller ej afhænger af installationsmetoden du valgte og dine svar til bestemte spørgsmål, som du får stillet under installationen. Installationssystemet understøtter de fleste typer af netværksforbindelser (inklusive PPPoE, men ikke ISDN, eller PPP), via enten HTTP eller FTP. Efter installationen er færdig, kan du også konfigurere dit system til at bruge ISDN og PPP.

Diskløs installation, via netværksopstart fra et lokalt netværk og NFS-montering af alle lokale filesystemer, er en anden mulighed.

2.4.4 **Harddisk**

Opstart af installationssystemet direkte fra en harddisk er en mulighed for mange arkitekter. Dette vil kræve et andet operativsystem til at indlæse installationsprogrammet på harddisken. Denne metode anbefales kun i specielle tilfælde, hvor ingen anden installationsmetode er tilgængelig.

2.4.5 **Un*x eller GNU-system**

Hvis du køre et andet Unix-lignende system, så kan du bruge det til at installere Debian GNU/Linux uden at bruge *%d-i*; som beskrevet i resten af denne manual. Denne slags installation kan være nyttig for brugere med udstyr der ellers ikke understøttes eller på værter som ikke må have nedetid. Hvis du er interessert i denne teknik, så gå til Afsnit D.3. Denne installationsmetode anbefales kun for avancerede brugere når ingen andre installationsmetoder er tilgængelige.

2.4.6 **Understøttede lagersystemer**

Debian-installationsprogrammet indeholder en kerne, som er bygget til at maksimere antallet af systemer det kan køre på.

2.5 **Hukommelses- og diskpladskrav**

Du skal have mindst 80MB hukommelse og 850MB harddiskplads for at udføre en normal installation. Bemærk at dette er omtrentlige minimumstal. For mere realistiske tal, se Afsnit 3.4.

Installation på systemer med mindre tilgængelig hukommelse eller diskplads kan lade sig gøre, men tilrådes kun for erfarne brugere.
Kapitel 3

Før installation af Debian GNU/Linux

Dette kapitel forklarer lidt om forberedelsen af installationen for Debian før du har startet installationsprogrammet op. Dette inkluderer en sikkerhedskopiering af dine data, indsamling af lidt information om dit udstyr og lokalisering af nødvendig information.

3.1 Overblik over installationsprocessen

Først en lille bemærkning om reinstallationer. Med Debian vil en omstændighed som kræver en fuldstændig reinstall- lation af dit system være meget sjælden; måske vil en mekanisk fejl på harddisken være det mest udbredte tilfælde.

For det første kræver mange operativsystemer, at en fuldstændig installation udføres, når der sker kritiske fejl, eller når der opgraderes til en ny version af operativsystemet. Selv når en fuldstændig ny installation ikke er krævet, vil nogle programmer ofte skulle installeres igen for at fungere korrekt i det nye operativsystem.

Under Debian GNU/Linux, er det meget mere sandsynligt at dit operativsystem kan repareres frem for at skulle erstattes, hvis noget går galt. Opgraderinger kræver aldrig en fuld installation; du kan altid opgradere internt. Og programmerne er næsten altid kompatible med efterfølgende versioner af operativsystemet. Hvis en ny programversion kræver nyere støtteprogrammer så vil Debian-pakkesystemet garantere at alle de nødvendige programmer automatisk identificeres og installeres. Pointen er at der er gjort en stor indsats for at undgå behovet for en ny installation, så tænk på det som din sidste mulighed. Installationsprogrammet er ikke designet til installere igen over et eksisterende system.

Her er en plan over de trin du vil gennemgå under installationsprocessen.

1. Lav en sikkerhedskopi af alle eksisterende data eller dokumenter på harddisken du planlægger at installere på.
2. Indsaml information om din computer og den krævede dokumentation, før du starter installationen.
3. Opret partitioneret plads for Debian på harddisken.
5. Indstil opstartsmedier såsom cd/dvd/usb-drev eller tilbyd en netværksopstartsinfrastruktur hvorfra installationsprogrammet kan igangsættes.
7. Vælg installationssproget.
8. Aktiver netværksforbindelse via ethernet, hvis tilgængelig.
11. Select and install additional software.
12. Installer en opstartsindlæser som kan starte Debian GNU/Linux op og/eller dit eksisterende system.
13. Indlæs det netop installerede system for den første gang.
Hvis du har problemer under installationen, så hjælper det os at vide hvilke pakker, der er involveret i hvilke trin. Introduktion af de væsentligste programmer i dette installationsdrama:

Til at tune systemet til dine behov, gør tasksel det muligt at vælge installation af diverse forhåndskonfigurerede programpakker såsom en internetserver eller et skrivebordsmiljø.

One important option during the installation is whether or not to install a graphical desktop environment, consisting of the X Window System and one of the available graphical desktop environments. If you choose not to select the “Desktop environment” task, you will only have a relatively basic, command line driven system. Installing the Desktop environment task is optional because in relation to a text-mode-only system it requires a comparatively large amount of disk space and because many Debian GNU/Linux systems are servers which don’t really have any need for a graphical user interface to do their job.

Husk at være opmærksom på, at X-vinduessystemet er fuldstændig separat fra debian-installer, og er faktisk meget mere kompliceret. Fejlfinding for X-vinduessystemet er uden for denne manuals område.

3.2 Lav en sikkerhedskopi af dine eksisterende data!

Før du går i gang, så husk at lave en sikkerhedskopi af hver fil på dit system. Hvis dette er første gang, at et ikke medfølgende operativsystem skal installeres på din computer, så er der høj sandsynlighed for, at du kan få brug for at lave en ny partitionering af din disk for at gøre plads til Debian GNU/Linux. Hver gang du udfører en partitionering, risikerer du at miste alt på disken, uanset hvilket program du anvender til opgaven. Programmerne brugt under installationen af Debian GNU/Linux er meget troværdige og har været brugt i mange år; men de er også ret så kraftige og et forkert valg kan få stor betydning. Selv efter du har lavet en sikkerhedskopi, skal du være omhyggelig og tænke over dine svar og handlinger. To minutters omtanke kan redde timevis af unødvendigt arbejde.

Hvis du opretter et system med opstart af flere operativsystemer så sikr dig, at du har distributionsmediet for andre tilstedeværende operativsystemer til rådighed. Selvom dette normalt ikke er nødvendigt, så kan der være situationer hvor du kan blive tvunget til at geninstallere dit operativsystems opstartsindlæser for at gøre systemet opstartsklart eller i værste tilfælde skulle geninstallere hele operativsystemet og gendanne din tidligere udarbejdede sikkerhedskopi.

3.3 Information du har brug for

3.3.1 Dokumentation

3.3.1.1 Installationsmanual

Dokumentet du nu læser, som er en officiel version af installationsvejledningen for buster-versionen af Debian; tilgængelig i diverse formater og oversættelser.

3.3.1.2 Udstyrsdokumentation

Indholder ofte nyttig information om konfiguration eller brug af dit udstyr.

3.3.2 Find kilder med udstyrsinformation

I mange tilfælde vil installationsprogrammet automatisk kunne detektere dit udstyr. Men for at være forberedt anbefaler vi at du gør dig bekendt med dit udstyr før installation.

Udstyrinformations kan indsamles fra:

• Manualerne som følger med hver stykke af udstyr.

• Boksene for hvert stykke af udstyr.
• Systemkommandoer eller værktøjer i et andet operativsystem, inklusive filhåndteringsvisninger. Denne kilde er specielt nyttig vedrørende information om RAM og harddiskhukommelse.

• Din systemadministratør eller internetleverandør. Disse kilder kan fortælle dig om indstillingerne, du skal bruge for at opsætte dit netværk og e-post.

Tabel 3.1 Nyttig udstyrsinformation under en installation

<table>
<thead>
<tr>
<th>Udstyr</th>
<th>Information du måske har brug for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harddiske</td>
<td>Dit antal.</td>
</tr>
<tr>
<td></td>
<td>Deres rækkefølge på systemet.</td>
</tr>
<tr>
<td></td>
<td>Om IDE (også kendt som PATA), SATA eller SCSI.</td>
</tr>
<tr>
<td></td>
<td>Tilgengelig ledig plads.</td>
</tr>
<tr>
<td></td>
<td>Partitioner.</td>
</tr>
<tr>
<td></td>
<td>Partitioner hvor andre operativsystemer er installeret.</td>
</tr>
<tr>
<td>Netværksgrænseflader</td>
<td>Type/model af tilgengelige netværksgrænseflader.</td>
</tr>
<tr>
<td>Printer</td>
<td>Model og producent.</td>
</tr>
<tr>
<td>Videokort</td>
<td>Type/model og producent.</td>
</tr>
</tbody>
</table>

3.3.3 Udstyrkompatibilitet

Mange produkter fungerer uden problemer på Linux. Derudover forbedres understøttelsen af udstyr i Linux hver dag. Linux afvikler dog stadig ikke lige så mange forskellige typer af udstyr som nogle operativsystemer.

Driwere i Linux er i de fleste tilfælde ikke skrevet for et bestemt "produkt" eller "mærke" fra en specifik leverandør, men for noget bestemt udstyr/chipset. Mange der med første øjekast ligner forskellige produkter/mærker er baseret på det samme udstyrsdesign; det ses ofte, at chipleverandører tilbyder såkaldte “referencedesign” for produkter baseret på deres chip, som så bruges af flere forskellige enhedsleverandører og sælges under en masse forskellige produkt- eller mærkenavne.

Dette har fordele og ulemper. En fordel er at en driver for et chipsæt fungerer med en masse forskellige produkter fra forskellige leverandører, så længe det samme chipsæt er installeret på samme udstyret. Ulemper er, at det ikke altid er nemt at se hvilket chipsæt der bruges i et produkt/mærke. Undertiden ændrer leverandører også udstyrsgrundlaget for deres produkter uden at ændre produktid'erne eller i det mindste produktets versionsnummer, så to produkter med samme mærke/produktid' er baseret på forskellige tidspunkter, kan undertiden være baseret på forskellige chipsæt og derfor anvende forskellige drivere eller der er måske ingen driver overhovedet for en af dem.

For USB- og PCI/PCI-Express/ExpressCard-enheder kan man se hvilket chipsæt de er baseret på ved at tagge på deres enheds-id'er. Alle USB/PCI/PCI-Express/ExpressCard-enheder har såkaldte "vendor"- og "product"-id'er, og kombinationen af disse to er normalt den samme for et produkt baseret på det samme chipsæt.

På Linuxsystemer kan disse id'er læses med kommandoen `lsusb` for USB-enheder og med kommandoen `lspci`-`nn` for PCI/PCI-Express/ExpressCard-enheder. Leverandør- (vendor) og product-id'er er normalt anført i form af to hexadeciamle tal, adskilt af et kolon, såsom “1d6b:0001”.

Et eksempel på resultatet for `lsusb`: "Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub", hvor 1d6b er leverandør-id'et og 0002 er produkt-id'et.

Et eksempel på uddata for `lspci`-`nn` for et Ethernetkort: “03:00.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller [10ec:8168] (rev 06)”. Id'erne er givet inden for den højre firkantede parentes, dvs. 10ec er leverandøren - og 8168 er produkt-id'et.

Et andet eksempel, et grafikkort kan give det følgende resultat: “04:00.0 VGA compatible controller [0300] inden for den højre firkantede parentes, dvs. 10ec er leverandøren - og 8168 er produkt-id'et.

Et et eksempel på uddata for `lspci`-`nn`: "Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub", hvor 1d6b er leverandør-id'et og 0002 er produkt-id'et.

Et eksempel på uddata for `lspci`-`nn` for et Ethernetkort: “03:00.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller [10ec:8168] (rev 06)”. Id'erne er givet inden for den højre firkantede parentes, dvs. 10ec er leverandøren - og 8168 er produkt-id'et.

Et et andet eksempel, et grafikkort kan give det følgende resultat: “04:00.0 VGA compatible controller [0300] inden for den højre firkantede parentes, dvs. 10ec er leverandøren - og 8168 er produkt-id'et.

Et et eksempel på uddata for `lspci`-`nn` for et Ethernetkort: “03:00.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller [10ec:8168] (rev 06)”. Id'erne er givet inden for den højre firkantede parentes, dvs. 10ec er leverandøren - og 8168 er produkt-id'et.

Et et andet eksempel, et grafikkort kan give det følgende resultat: “04:00.0 VGA compatible controller [0300] inden for den højre firkantede parentes, dvs. 10ec er leverandøren - og 8168 er produkt-id'et.

Et et eksempel på uddata for `lspci`-`nn` for et Ethernetkort: “03:00.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller [10ec:8168] (rev 06)”. Id'erne er givet inden for den højre firkantede parentes, dvs. 10ec er leverandøren - og 8168 er produkt-id'et.

Et et et eksempel, et grafikkort kan give det følgende resultat: “04:00.0 VGA compatible controller [0300] inden for den højre firkantede parentes, dvs. 10ec er leverandøren - og 8168 er produkt-id'et.

Et et eksempel på uddata for `lspci`-`nn` for et Ethernetkort: “03:00.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller [10ec:8168] (rev 06)”. Id'erne er givet inden for den højre firkantede parentes, dvs. 10ec er leverandøren - og 8168 er produkt-id'et.

Et et et eksempel, et grafikkort kan give det følgende resultat: “04:00.0 VGA compatible controller [0300] inden for den højre firkantede parentes, dvs. 10ec er leverandøren - og 8168 er produkt-id'et.
3.3.3.1 Test af udstyrskompatibilitet med et live system

Der er nogle få begrænsninger i brugen af et live system. Den første er at alle ændringer du udfører på systemet skal være i computerens ram-lager, og dette fungerer kun på systemer med nok ram til dette formål, så installation af store programpakker kan fejle på grund af hukommelsesbegrænsninger. En anden begrænsning vedrørende udstyrets kompatibilitetstest er at det officielle Debian GNU/Linux live system kun indeholder frie komponenter, det vil sige at der er ingen ikke-frie firmwarefiler inkluderet. Sådanne ikke-frie pakker kan selvfølgelig installeres manuelt på systemet, men der er ingen automatisk registrering af krævede firmwarefiler som i debian-installer, så installation af ikke-frie komponenter skal udføres manuelt, såfremt de er krævet.

Information om de tilgængelige varianter af Debian live-aftryk kan findes på Debian Live Images website.

3.3.4 Netværksindstillinger

Hvis din computer er forbundet til et fast netværk (dvs. et Ethernet eller en tilsvarende forbindelse — ikke en opkalds-/PPP-forbindelse) som administreres af andre, så skal du spørge dit netværksystems administrator om denne information:

- Dit værtsnavn (du kan også vælge dette på egen hånd).
- Dit domænenavn.
- Din computeres IP-adresse.
- Netmasken at bruge med dit netværk.
- IP-addressen for adgangspunktssystemet du skal vidersende til, hvis dit netværk har et adgangspunkt.
- Systemet på dit netværk som du skal bruge som en DNS-server (Domain Name Service).

Hvis du bruger et WLAN/WiFi-netværk, skal du undersøge følgende:

- ESSID’en (“netværksnavn”) for dit trådløse netværk.
- WEP'en eller WPA/WPA2-sikkerhedsnøgle til at tilgå netværket (hvis gældende).

3.4 Opfyldelse af udstyrets minimumskrav

Når du har indsamlet information om din computeres udstyr så kontroller, at dit udstyr tillader den type af installation, du ønsker at udføre.

Afhængig af dine behov, så kan du måske klare dig med mindre end de anbefalede udstyrskrav vist i tabellen nedenfor. De fleste brugere kan dog risikere at blive frustreret, hvis de ignorerer disse anbefalinger.

<table>
<thead>
<tr>
<th>Installationstype</th>
<th>RAM (minimum)</th>
<th>RAM (anbefalet)</th>
<th>Harddisk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intet skrivebord</td>
<td>256 megabyte</td>
<td>512 megabyte</td>
<td>2 gigabyte</td>
</tr>
<tr>
<td>Med skrivebord</td>
<td>512 megabyte</td>
<td>2 gigabyte</td>
<td>10 gigabyte</td>
</tr>
</tbody>
</table>

The minimum value assumes that swap will be enabled.
The actual minimum memory requirements are a lot less than the numbers listed in this table. With swap enabled, it is possible to install Debian with as little as 32 MB. The same goes for the disk space requirements, especially if you pick and choose which applications to install; see Afsnit D.2 for additional information on disk space requirements.

Det er muligt at afvikle et grafisk skrivebordsmiljø på ældre eller mindre systemer, men i det tilfælde anbefales det at installere en vindueshåndtering som bruger færre ressourcer end f.eks. GNOME eller KDE Plasma; altså ikke dermed at vælge fra.

Husk at disse størrelsesangivelser ikke inkluderer andet materiale, som der normalt også skal være plads til, såsom brugefiler, post og data. Det er altid bedst at være generøs med plads til dine egne filer og data.

Det er praktisk umuligt at angive almene hukommelses- eller diskpladskrav for serverinstallationer, da disse i høj grad afhænger af, hvad serveren skal bruges til.

Det er praktisk umuligt at angive almene hukommelses- eller diskpladskrav for serverinstallationer, da disse i høj grad afhænger af, hvad serveren skal bruges til.

Diskplads krævet for en god operation af Debian GNU/Linux-systemet medtages i disse anbefalede systemkrav. Specielt indeholder partitionen /var en masse tilstandsinformation specifik for Debian udover dets normale indhold, såsom logfilere. dpkg-filer (med information om alle installerede pakker) kan nemt bruge 40 MB. Også apt placerer hentede pakker her før installation. Du skal normalt allokere mindst 20 MB for /var og en meget mere, hvis du installerer et grafisk skrivebordsmiljø.

3.5 Forhåndspartitionering for systemer med flere opstartsmuligheder

Partitionering af din disk refererer til det at opdele din disk i sektioner. Hver sektion er så uafhængig af de andre. Det svarer cirka til at placere vægge i dit eget hus; hvis du tilføjer møbler i et rum, så påvirkes de andre rum ikke.

Flere moderne operativsystemer tilbyder muligheden for at flytte eller ændre størrelse på bestemte eksisterende partitioner uden at ødelægge deres indhold. Dette gør det muligt at gøre plads til yderligere partitioner uden at miste eksisterende data. Selvom dette går godt i de fleste tilfælde, så er det at lave ændringer til partitioneringen af en disk farligt og bør kun udføres efter en fuld sikkerhedskopiering af alle data.

Oprettelse og sletning af partitioner kan udføres inden fra debian-installer samt fra et eksisterende operativsystem. Som en hovedregel skal partitioner oprettes af systemet, som de skal bruges af, dvs. partitioner til brug for Debian GNU/Linux skal oprettes inden fra debian-installer og partitioner til brug for et andet operativsystem skal oprettes derfra. debian-installer kan opretet ikke-Linux-partitioner, og partitioner opretet på den måde fungerer normalt uden problemer, når brugt i andre operativsystemer, men der er nogle få sjældne undtagelser, hvor det kan medføre problemer, så hvis du vil være sikker, så brug de medfølgende partitioneringsværktøjer til at oprette partitioner for brug af andre operativsystemer.

Hvis du skal installere mere end et operativsystem på den samme maskine, så skal du installere alle andre systemer før du fortsætter med Debian-installationen. Windows og andre operativsystemer kan ødelægge din mulighed for at starte Debian, eller opfordre dig til at formaterere allerede formaterede partitioner igen.

Du kan fortryde disse handlinger eller undgå dem, men installation af standardsystemet først sparer dig for en masse problemer.

3.6 Præinstallation af udstyr og operativsystem

Dette afsnit vil gennemgå opsetning af udstyr til forhåndsininstallationen, som du skal gør, før du installerer Debian. Generelt involverer dette kontroll og muligvis ændring af BIOS/systemfirmware-indstillinger for dit system. ”BIOS” eller ”systemfirmware” er det grundlæggende program brugt af udstyret; det er mest kritisk igangsat under opstartsprocessen (efter tænding).
3.6.1 Valg af opstartsenhed

3.6.2 ARM-firmware

As already mentioned before, there is unfortunately no standard for system firmware on ARM systems. Even the behaviour of different systems which use nominally the same firmware can be quite different. This results from the fact that a large part of the devices using the ARM architecture are embedded systems, for which the manufacturers usually build heavily customized firmware versions and include device-specific patches. Unfortunately the manufacturers often do not submit their changes and extensions back to the mainline firmware developers, so their changes are not integrated into newer versions of the original firmware.

As a result even newly sold systems often use a firmware that is based on a years-old manufacturer-modified version of a firmware whose mainline codebase has evolved a lot further in the meantime and offers additional features or shows different behaviour in certain aspects. In addition to that, the naming of onboard devices is not consistent between different manufacturer-modified versions of the same firmware, therefore it is nearly impossible to provide usable product-independent instructions for ARM-based systems.

3.6.3 Angivelse af ethernet MAC-adressen i U-Boot

MAC-adressen for hver ethernetgrænseflade skal normalt være global unik, og den skal teknisk være unik indenfor sit ethernet broadcast-domæne. For at opnå dette, allokere leverandøren normalt en blok af MAC-adresser fra en centralt administreret pulje (hvilket der skal betales et vederlag for) og forhåndskonfigurerer en af disse adresser på hvert solgt enhed.

In the case of development boards, sometimes the manufacturer wants to avoid paying these fees and therefore provides no globally unique addresses. In these cases the users themselves have to define MAC addresses for their systems. When no MAC address is defined for an ethernet interface, some network drivers generate a random MAC address that can change on every boot, and if this happens, network access would be possible even when the user has not manually set an address, but e.g. assigning semi-static IP addresses by DHCP based on the MAC address of the requesting client would obviously not work reliably.

To avoid conflicts with existing officially-assigned MAC addresses, there is an address pool which is reserved for so-called “locally administered” addresses. It is defined by the value of two specific bits in the first byte of the address (the article “MAC address” in the English language Wikipedia gives a good explanation). In practice this means that e.g. any address starting with hexadecimal ca (such as ca:ff:ee:12:34:56) can be used as a locally administered address.

3.6.4 Kernel/Initrd/Device-Tree-flytteproblemstillinger i U-Boot

On some systems with older U-Boot versions there can be problems with properly relocating the Linux kernel, the initial ramdisk and the device-tree blob in memory during the boot process. In this case, U-Boot shows the message “Starting kernel ...”, but the system freezes afterwards without further output. These issues have been solved with newer U-Boot versions from v2014.07 onwards.

If the system has originally used a U-Boot version older than v2014.07 and has been upgraded to a newer version later, the problem might still occur even after upgrading U-Boot. Upgrading U-Boot usually does not modify the existing U-Boot environment variables and the fix requires an additional environment variable (bootm_size) to be set, which U-Boot does automatically only on fresh installations without existing environment data. It is possible to manually set bootm_size to the new U-Boot’s default value by running the command “env default bootm_size; saveenv” at the U-Boot prompt.

En anden måde at omgå relokeringsproblemer er at køre kommandoen “setenv fdt_high ffffffff; setenv initrd_high 0xffffffff; saveenv” på U-Boot-prompten for helt at deaktivere relokeringen af den oprindelige ramdisk og enhedstreets blob.
Kapitel 4

Find systeminstallationsmedie

4.1 Officielle Debian GNU/Linux cd/dvd-rom-sæt

Da cd'er har en ret så begrænset kapacitet efter nutidens standarder, kan ikke alle grafiske skrivebordsmiljøet installeres kun med den første cd; for nogle skrivebordsmiljøet kræver en cd-installation enten netværksforbindelse under installationen for at hente de resterneede filer eller yderligere cd'er.

Hvis din maskine ikke understøtter cd-opstart, men du har et cd-sæt, så kan du bruge en alternativ strategi såsom usb-drev, net-opstart, eller manuelt indlæse kernen fra cd'en for her i starten at få gang i systeminstallationsprogrammet. Filerne du skal bruge til at starte op med andre metoder er også på cd'en; Debian-netværksarkivet og cd-mappeorganisationen er identisk. Så når arkivfilstier angives nedenfor for bestemte filer du skal bruge til at starte op, så skal du kigge efter disse filer i de samme mapper og undermapper på din cd.

Når installationsprogrammet er startet op, så vil det hente alle de andre nødvendige filer fra cd'en.

Hvis du ikke har et cd-sæt, så skal du hente installationsprogrammets systemfiler og placere dem på usb-drev eller en computer med internetforbindelse så de kan brugs til at starte installationsprogrammet op.

4.2 Hentning af filer fra Debian-spejl

For at finde det nærmeste (og dermed sandsynligvis det hurtigste) spejl, så se liste over Debian-spejle.

4.2.1 Her kan du finde installationsaftryk

Installationsaftrykkene er placeret på hvert Debian-spejl i mappen debian/dists/buster/main/installer-arm64/current/-images/ — MANIFESTET viser hvert aftryk og dets formål.

4.3 Forberedning af filer for opstart via USB-hukommelsesdrev

Procedurerne beskrevet i dette afsnit vil fjerne alt på enheden! Vær sikker på at du bruger det korrekt enhedsnavn for dit USB-drev. Hvis du bruger dne forkerte enhed kan resultatet være at al information på for eksempel en harddisk mistes.

4.3.1 Forberedning af et USB-drev via en hybrid cd eller et dvd-aftryk

Alternativt kan du for meget små USB-drev på kun nogle få megabyte hente aftrykket mini.iso fra mappen netboot (på placeringen nævnt i Afsnit 4.2.1).

Cd eller dvd-aftrykket du vælger skal skrives direkte til USB-drevet, og overskrive dets nuværende indhold. For eksempel kan du med et eksisterende GNU/Linux-system skrive cd- eller dvd-aftrykket til et USB-drev som i det følgende, efter at du har sikret dig at drevet er afmonteret:

```
# cp debian.iso /dev/sdX
# sync
```

Information om hvordan dette gøres på andre operativsystemer kan findes i Debian CD FAQ.

VIGTIGT

VIGTIGT

En simpel skrivning af cd- eller dvd-aftrykket til USB bør fungere fint for de fleste brugere. De andre muligheder er mere komplekse og hovedsagelig for folk med specielle behov.

Hybridaftrykket på drevet bruger ikke al lagerplads, så kan være en overvejelse værd at bruge den ledige plads til firmware-filer eller pakker eller andre filer efter dit eget valg. Dette kan være nyttigt, hvis du kun har et drev eller bare ønsker at have alt på en enhed.

Opret endnu en FAT-partition på drevet, monter partitionen og kopier eller udpak firmwaren til den. For eksempel:

```
# mount /dev/sdX2 /mnt
# cd /mnt
# tar xzvf /path/to/firmware.tar.gz
# cd /mnt
# umount /mnt
```

Du har skrevet mini.iso til USB-drevet. I dette tilfælde skal den anden partition ikke oprettes da, meget passende, den allerede vil være til stede. Fjernelse og isættelse af USB-drevet bør gøre de to partitioner synlige.

4.3.2 Manuelt kopiere filer til USB-drevet

En alternativ måde at opsætte dit USB-drev er manuelt at kopiere installationsprogrammets filer, og også et cd-aftryk til drevet. Bemærk at USB-drevet skal være på mindst 1 GB (mindre opsatninger er muligere hvis du følger Afsnit 4.3.3).

Der er en alt i en-fil hd-media/boot.img.gz som indeholder alle installationsprogrammets filre (inklusive the kernen).
Bemærk dog, selvom det er nemt, at denne metode har en stor ulempe: Den logiske størrelse på enheden vil være begrenset til 1 GB, selv hvis kapaciteten på USB-drevet er større. Du skal partitionere USB-drevet igen og oprette nye filsystemer for at få den fulde kapacitet tilbage, hvis du ønsker at bruge den til andre formål.

Derefter monteres USB-hukommelsesdrevet som nu vil have på sig og kopier et Debian ISO-aftryk (netinst eller fuld cd) til den. Afmonter drevet (`umount /mnt`) og du er færdig.

4.3.3 Manuelt kopiere filer til USB-drevet — den fleksible måde

Hvis du ønsker højere fleksibilitet eller bare ønsker at vide, hvad der foregår, så kan du bruge en af de følgende metoder til at placere filerne på dit drev. En af fordelene ved denne metode er at — hvis kapaciteten på dit USB-drev er stor nok — så kan du kopiere ethvert ISO-aftryk eller endda et dvd-aftryk til drevet.

4.4 Forberedelse af filer for TFTP-netopstart

Hvis din maskine er forbundet på et lokalt områdenetværk, så kan du måske starte den op over netværket fra en anden maskine, via TFTP. Hvis du har tænkt dig at starte installationssystemet op fra en anden maskine, så vil opstartsfilerne skulle placeres på specifikke placeringer på den maskine, og maskinen skal konfigureres til at understøtte opstart fra din specifikke maskine.

Du skal opsætte en TFTP-server, og for mange maskiner en DHCP-server, eller RARP-server, eller BOOTP-server.

The Reverse Address Resolution Protocol (RARP) er en måde at fortælle din klient, hvilken IP-adresse der skal bruges internt. En anden måde er at bruge BOOTP-protokollen. BOOTP er en IP-protokol, som informerer en computer om dens IP-adresse og hvor på netværket du kan finde et opstartsaftryk. DHCP'en (Dynamic Host Configuration Protocol) er en mere fleksibel, bagud kompatibel udvidelse af BOOTP. Nogle systemer kan kun konfigureres via DHCP.

Trivial File Transfer Protocol (TFTP) bruges til at levere opstartsaftrykket til klienten. Teoretisk kan enhver server på enhver platform, som implementerer disse protokoller, anvendes. I eksemplerne i dette afsnit angiver vi kommandoer for SunOS 4.x, SunOS 5.x (a.k.a. Solaris) og GNU/Linux.

4.4.1 Opsætning af en RARP-server

For at opsætte RARP, så skal ud kende Ethernet-adressen (a.k.a. MAC-adressen) på klientcomputerene der skal installeres på. Hvis du ikke kender denne information, så kan du start op i “Redningstilstand”(f.eks. fra redningsdisketten) og brug kommandoen `ip addr show dev eth0`.


```
/usr/sbin/rarpd -a
```


```
/usr/sbin/rarpd -a
```

4.4.2 Opsætning af en DHCP-server

En fri DHCP-server er ISC `dhcpd`. For Debian GNU/Linux anbefales pakken `isc-dhcp-server`. Her er et eksempel på en konfigurationsfil for den (se `/etc/dhcp/dhcpd.conf`):

```
option domain-name "example.com";
option domain-name-servers ns1.example.com;
option subnet-mask 255.255.255.0;
default-lease-time 600;
max-lease-time 7200;
server-name "servername";

subnet 192.168.1.0 netmask 255.255.255.0 {
    range 192.168.1.200 192.168.1.253;
    option routers 192.168.1.1;
}

host filename {
    filename "/tftpboot.img";
    server-name "servername";
}
```
KAPITEL 4. FIND SYSTEMINSTALLATIONSMEDIE

4.4. FORBEREDELSE AF FILER FOR NEXT-SERVER

next-server servername;
 hardware ethernet 01:23:45:67:89:AB;
 fixed-address 192.168.1.90;
}

I dette eksempel er der en server servername som udfører al arbejdet på DHCP-serveren, TFTP-serveren og netværksadgangspunktet. Du har med stor sandsynlighed behov for at ændre indstillinger for domænenavnnet samt servernavnet og klientens udstyrsadresse. Indstillingen fixed-address skal være navnet på filen, som hentes via TFTP.

Efter du har redigeret konfigurationsfilen dhcppd, så genstart den med /etc/init.d/isc-dhcp-server restart.

4.4.3 Opsætning af en BOOTP-server

Der er to BOOTP-servere tilgængelige for GNU/Linux. Den første er CMU bootpd. Den anden er faktisk en DHCP-server: ISC dhcpd. I Debian GNU/Linux er disse indeholdt i pakkerne bootp og isc-dhcp-server respektivt.

For at bruge CMU bootpd, skal du først aktivere (eller tilføje) de relevante linjer i /etc/inetd.conf. På Debian GNU/Linux kan du køre update-inetd --enable bootps, og så /etc/init.d/inetd reload for at gøre det. Bare i tilfælde af, at din BOOTP-server ikke kører Debian, skal den omtalte linje se således ud:

bootps dgram udp wait root /usr/sbin/bootpd bootpd -i -t 120

Nu skal du oprette en /etc/bootptab-fil. Den har samme slags kendte og kryptiske format som det gode gamle BSD printcap-, termcap- og disktab-filer. Se manualsiden bootptab for yderligere information. For CMU bootpd, skal du bruge udstyrsadressen (MAC) for klienten. Her er en eksempel /etc/bootptab:

client:
 hd=/tftpboot:
 bf=tftpboot.img:
 ip=192.168.1.90:
 sm=255.255.255.0:
 sa=192.168.1.1:
 ha=0123456789AB:

Du skal mindst ændre “ha”-tilvalget, som angiver udstyrsadressen for klienten. Tilvalget “bf” specificerer filen en klient skal hente via TFTP; se Afsnit 4.4.5 for yderligere detaljer.

Som kontrast er opsætning af BOOIPG med ISC dhcpd virkelig nemt, da det opfatter BOOTP-klienter som et moderat specieltilfælde for DHCP-klienter. Nogle arkitekturer kræver en kompleks konfiguration for opstart af klienter via BOOTP. Hvis din er en af disse, så læs afsnittet Aftnit 4.4.2. Ellers vil du sandsynligvis kunne slippe af sted med at tilføje allow bootp direkte til konfigurationsbløkken for undernettet, der indeholder klienten i /etc/dhcp/dhcpd.conf, og genstarte dhcpd med /etc/init.d/isc-dhcp-server restart.

4.4.4 Aktivering af TFTP-serveren

For at få TFTP-serveren klar, skal du først sikre dig, at tftpd er aktiveret.

I tilfælde tftpd-hpa er der to måder at tjenesten kan køres. Den kan startes efter behov af systemets dæmon inetd, eller den kan opseses til at blive kørt som en uafhængig dæmon. Hvilken af disse metoder der bruges vælges når pakke installeres og kan ændres ved at rekonfigurere pakken.

BEMÆRK

Historisk brugte TFTP-servere /tftpboot som mappe til at betjene aftryk fra. Pakkerne Debian GNU/Linux kan bruge andre mapper til at overholde Filesystem Hierarchical Standard. For eksempel bruger tftpd-hpa som standard /srv/tftp. Du skal måske justere konfigurationseksemplerne i dette afsnit jævnfør dette.

4.4.5 Flyt TFTP-aftryk på plads

4.5 Automatisk installation

For installation på flere computere er det muligt at udføre helt automatiske installationer. Debian-pakker til dette formål inkluderer `fai-quickstart` (som kan bruge en installationsserver) og selve Debian-installationsprogrammet. Kig på FAI's hjemmeside for detaljerede information.

4.5.1 Automatisk installation med Debian-installationsprogrammet

Debian-installationsprogrammet understøtter automatiske installationer via prækonfigurationsfiler. En prækonfigurationsfil kan indlæses fra netværket eller fra et eksternt medie, og bruges til at udfylde svar på spørgsmål stillet under installationsprocessen.

Fuld dokumentation vedrørende preseeding inklusiv et arbejdseksæmple, som du kan redigere er i Appendiks B.
Kapitel 5

Opstart af installationssystemet

5.1 Opstart af installationsprogrammet på 64-bit ARM

5.1.1 Konsolkonfiguration

Det grafiske installationsprogram er ikke aktiveret på arm64 debian-installer-aftryk for stretch så den serielle konsol anvendes. Konsolenheden bør blive registreret automatisk fra firmwaren, men hvis den ikke gør det så vil du efter, at du starter op i Linux fra GRUB-menuen se en “Booting Linux”-besked, og så intet andet.

Hvis du møder denne problemstilling, så skal du angive en speciel konsolkonfiguration på kernekommandolinjen. Tryk på e for “Rediger kernekommandolinje” i GRUB-menuen, og ændr

```
--- quiet
```
til

```
console=<device>,<speed>
```

f.eks.

```
console=ttyAMA0,115200n8
```

. Når færdig tryk på Control-x for at fortsætte opstart med den nye indstilling.

5.1.2 Juno-installation


```
console=ttyAMA0,115200n8
```

som beskrevet i (Afsnit 5.1.1). Control-x for at starte op bør vise dig skærmen for debian-installer og give dig mulighed for at fortsætte med en standardinstallation.

5.1.3 Anvendt Micro Mustand-installation

UEFI er tilgengeligt for denne maskine, men den leveres normalt med U-Boot, så du skal enten installere UEFI-firmware først og så bruge standardmetoderne til opstart/installation, eller bruger U-Boot-opstartsmetoder. Du skal bruge en seriel konsol til at kontrollere installationen da det grafiske installationsprogram ikke er aktiveret på arm64-arkitekturen.
Den anbefalede installationsmetode er at kopiere kernen for *debian-installer* og initrd på harddisken, via det »openembedded« system leveret med maskinen, og så starte op fra det for at afvikle installationsprogrammet. Alternativt brug TFTP til at få kernel/dtb/initrd kopieret over og startet op (Afsnit 5.1.4.1). Efter installation er manuelle ændringer til opstarten fra det installerede aftryk krævet.

5.1.4 Opstart med TFTP

Opstart fra netværket kræver, at du har en netværksforbindelse og en TFTP-netværksopstartsserver (og sandsynligvis også en DHCP-, RARP- eller BOOTP-server for automatisk netværkskonfiguration).

Opsætningen på serversiden for understøttelse af netværksopstart er beskrevet i Afsnit 4.4.

5.1.4.1 TFTP-opstart i U-Boot

Netværksopstart på systemer, der bruger firmwaren U-Boot, består af tre trin: a) konfiguration af netværket, b) indlæsning af aftrykket (kerne/initiel ramdisk/dtb) i hukommelsen og c) faktisk kørsel af den tidligere indlæste kode.

Først skal du konfigurere netværket, enten automatisk via DHCP ved at køre

```
setenv autoload no dhcp
```

eller manuelt ved at indstille flere miljøparametre

```
setenv ipaddr <ip-adresse for klienten>
setenv netmask <netmaske>
setenv serverip <ip-adresse for tftp-serveren>
setenv dnsip <ip-adresse for navneserveren>
setenv gatewayip <ip-adresse for standardadgangspunktet>
```

Hvis du foretrækker det kan du foretage disse indstillinger ved at køre

```
saveenv
```

Efterfølgende skal du indlæse aftrykkene (kerne/initiel ramdisk/dtb) i hukommelsen. Dette gøres med kommandoen tftpboot, som skal have adressen hvor aftrykket skal lagres i hukommelsen. Desværre kan hukommelseskontoret variere fra system til system, så der er ingen generel regel om, hvilke adresser som kan bruges.

På nogle systemer, prædefinerer U-Boot et sæt af miljøparametre med egne indlæsningsadresser: kernel_addr_r, ramdisk_addr_r og fdt_addr_r. Du kan kontrollere om de er defineret ved at køre

```
printenv kernel_addr_r ramdisk_addr_r fdt_addr_r
```

Hvis de ikke er defineret, så skal du kontrollere dit systems dokumentation for passende værdier og angive dem manuelt. For systemer baseret på Allwinner SunXi SOC’er (f.eks. Allwinner A10, arkitekturnavn “sun4i” eller Allwinner A20, arkitekturnavn “sun7i”), du kan f.eks. bruge de følgende værdier:

```
setenv kernel_addr_r 0x46000000
setenv fdt_addr_r 0x47000000
setenv ramdisk_addr_r 0x48000000
```

Når indlæsningsadresserne er defineret, så kan du indlæse aftrykket i hukommelsen fra den tidligere definerede tftp-server med

```
tftpboot ${kernel_addr_r} <filnavn for kerneafttrykket>
tftpboot ${fdt_addr_r} <filnavn for dtb'en>
tftpboot ${ramdisk_addr_r} <filnavn for det initielle ramdisk-aftryk>
```

Tredjeparten indstiller kernens kommandolinje og kører den indlæste kode. U-boot videresender indholdet af miljøvariablen “bootargs” som kommandolinje til kernen, så eventuelle parametre for kernen og installationsprogrammet - såsom konsolenhedten (se Afsnit 5.3.1) eller forudfyldte indstillinger (se Afsnit 5.3.2 og Appendiks B) - kan sættes med en kommando som

```
setenv bootargs console=ttyS0,115200 rootwait panic=10
```
KAPITEL 5. OPSTART AF INSTALLATIONSSYSTEMET

5.2. TILGÆNGELIGHED

Den præcise kommando til at køre den tidligere indlæste kode afhænger af det anvendte aftryksformat. Med uImage/Initrd er kommandoen

\[\text{bootm} \{\text{kernel_addr_r}\} \{\text{ramdisk_addr_r}\} \{\text{fdt_addr_r}\}\]

goget med standardaftryk for Linux er det

\[\text{bootz} \{\text{kernel_addr_r}\} \{\text{ramdisk_addr_r}\} \{\text{filesize}\} \{\text{fdt_addr_r}\}\]

Bemærk: Når der opstartes standardaftryk for Linux, så er det vigtigt at indlæse det oprindelige ramdisk-aftryk efter kernen og dtb'en, da U-Boot angiver filstørrelsesvariablen til størrelsen på den sidst indlæste fil og kommandoen bootz kræver størrelsen af ramdisk-aftrykket for at fungere korrekt. I tilfælde hvor der opstartes en platformspecifik kerne, d.v.s. en kerne uden enhedstræ, udelades parameteren \$\{fdt_addr_r\}.

5.1.5 Opstart fra USB-drev med UEFI

Hvis din computer kan starte op fra USB, så vil dette sandsynligvis være den letteste vej til installation. Lad os antage, at du har forberedt alt fra Afsnit 3.6.1 og Afsnit 4.3. Indsæt dit USB-drev i en ledig indgang og genstart computeren. Systemet bør starte op, og med mindre du har brugt den fleksible måde til at bygge drevet med og ikke aktiveret det, vil du blive præsenteret for en grafisk opstartsmenu (på udstyr som understøtter det). Her kan du indtaste valgfrie opstartparametre, eller bare trykke på \text{Enter}.

5.2 Tilgængelighed

5.2.1 installationsprogrammets brugerflade

Debian-installationsprogrammet understøtter flere brugerflader til spørgsmål, med varierende tilgængelighed: \texttt{text} bruger ren tekst mens \texttt{newt} bruger tekstbaserede dialogbokse. Valget kan foretages på opstartsprompten, se dokumentationen for \texttt{DEBIAN_FRONTEND} i Afsnit 5.3.2.

5.2.2 Bundkortenheder

Nogle tilgængelighedshenheder er fysiske bundkort som er indsat i selve maskinen og som læser tekst direkte fra videohukommelsen. For at få dem til at virke skal understøttelse af framebuffer være deaktiveret ved at bruge opstartsparameternen \texttt{fb=false}. Dette vil dog reducere antallet af tilgængelige sprog.

5.2.3 Tema med høj kontrast

For users with low vision, the installer can use a high-contrast color theme that makes it more readable. To enable it, you can use the "Accessible high contrast" entry from the boot screen with the \texttt{c} shortcut, or append the \texttt{theme=dark} boot parameter.

5.2.4 Zoom

For brugere med begrænset syn, har det grafiske installationsprogram en meget basal zoomunderstøttelse: Genveja-sterne Control-+ og Control--øger og sænker skriftstørrelsen.

5.2.5 Ekspertinstallation, redningstilstand, automatiseret installation

Installationsvalgene for Ekspert, Redning og Automatisk er også tilgængelige med talesyntese. For at tilgå dem, skal man først gå til undermenuen “Advanced options” fra opstartsmenuen ved at taste \texttt{a}. Og så bruge et BIOS-system (opstartsmenuen vil kun have bippet en gang), dette skal efterfølges af Enter; for UEFI-systemer (opstartsmenuen vil have bippet to gange) som ikke skal gøres. Derefter, for at aktivere talesyntese, kan \texttt{s} valgfrit trykkes ned (efterfulgt af Enter på BIOS-systemer men ikke på UEFI-systemer). Derfra kan forskellige geneveje bruges: \texttt{x} for ekspertinstallation, \texttt{z} for redningstilstand, eller \texttt{a} for automatiseret installation. Når der bruges et BIOS-system, skal hvert af dem efterfølges af Enter.
Det automatiserede installationsvalg kan installere Debian fuldstændig automatisk ved at bruge forhåndsindstil-linger, hvis kilde kan indtastes efter tilgængelighedsfunktioner er startet. Forhåndsindstilling er dokumenteret i Appendiks B.

5.2.6 Tilgængelighed for det installerede system

Dokumentation vedrørende tilgængelighed for det installerede system er tilgængelig på Debians wikiside om tilgæn-
gelighed.

5.3 Opstartsparametre

Opstartsparametre er parametre for Linuxkernen, som generelt bruges til at sikre at perifære enheder håndteres kor-
rekt. I de fleste tilfælde kan kernen automatisk detektere information om dine perifære enheder. Dog skal du i nogle
tilfælde hjælpe kernen lidt.

Hvis dette er den første gang du starter systemet op, så prøv standardparametrene for opstart (dvs. prøv uden at
angive parametre) og se om det virker korrekt. Det vil det sikkert. Hvis ikke så kan du genstarte senere og kigge efter
eventuelle specielle parametre som informerer dit system om dit udstyr.

Information om mange opstartsparametre kan findes i Linux BootPrompt HOWTO, inklusive fif for sjældent
udstyr. Dette afsnit indeholder kun en skitse med de mest indlysende parametre. Nogle gængse problemstillinger er
inkluderet nedenfor i Afsnit 5.4.

5.3.1 Opstartsconsol

Hvis du starter op med en seriel konsol, vil kernen generelt detektere dette automatisk. Hvis du har et videokort
(framebuffer) og et tastatur der også er tilsluttet computeren, som du ønsker at starte op via seriel konsol, så skal du
måske sende argumentet console=device til kernen, hvor device er din seriel enhed, hvilket normalt ligner noget
ala ttyS0.

Det kan være nødvendigt at angive parametre for den seriele port, såsom hastighed og paritet, for eksempel
console=ttyS0,9600n8; andre typiske hastigheder kan være 57600 eller 115200. Vær opmærksom på at angive
denne indstilling efter “---”, så at den kopieres ind i opstartsindlæserens konfiguration for det installerede system (hvis
understøttet af installationsprogrammet for opstartsindlæseren).

For at sikre at terminaltypen brugt af installationsprogrammet matcher din terminalemulator kan parameteren
TERM=type tilføjes. Bemærk at installationsprogrammet kan understøtte de følgende terminaltyper: linux, bterm,
ansi, vt102 og dumb. Standarden for seriel konsol i debian-installer er vt102. Hvis du bruger en
IPMI-konsol eller et virtualiseringsværktøj, som ikke selv tilbyder konvertering til sådanne terminaltyper, f.eks.
QEMU/KVM, så kan du starte den inden i en screen-session. Den vil udføre oversættelse til screen-terminaltypen,
som er meget tæt på vt102.

5.3.2 Parametre for Debian-installationsprogrammet

Installationssystemet genkender nogle få yderligere opstartsparametre1 hvilket kan være nyttigt.

Et antal parametre har en “kort form” som hjælper med at undgå begrænsningerne i kernens indstiller for
kommandolinjen og gør indtastning af parametre nemmere. Hvis en parameter har en kort form, så vil den blive vist
i parenteser bag den (normale) lange form. Eksempler i denne manual vil normalt også bruge den korte form.

debconf/priority (prioritet) Denne parameter angiver den laveste prioritet beskeder kan have for at blive vist.

Standardinstallationen bruger priority=high. Dette betyder at beskeder med både høj og kritisk prioritet bliver vist, mens beskeder med mellem og lav prioritet udelades. Hvis der opstår problemer, justerer installa-
tionsprogrammet prioritet efter behov.

Hvis du tilfører priority=medium som opstartsparameter, vil du få vist installationsmenuen og opnå yder-
ligere kontrol over installationen. Når priority=low bruges, vises alle beskeder (dette svarer til opstarts-
metoden expert. Med priority=critical vil installationsystemet kun vise kritiske beskeder og forsøge
at udføre tingene korrekt uden hensyn til uønsdende detaljer.

DEBIAN_FRONTEND Denne opstartsparameter kontroller typen af brugergrænseflade brugt af installationspro-
grammet. De aktuelt mulige parameterindstillinger er:

1 med aktuelle kerner (2.6.9 eller nyere) kan du bruge 32 kommandolinjendstillinger og 32 miljøindstillinger. Hvis disse tal overskrider går kernen i panik. Der er også en grænse på 255 tegn for hele kernekommandolinjen, alt over denne grænse kan blive afkortet.
KAPITEL 5. OPSTART AF INSTALLATIONSSYSTEMET 5.3. OPSTARTSPARAMETRE

- **DEBIAN_FRONTEND=noninteractive**
- **DEBIAN_FRONTEND=text**
- **DEBIAN_FRONTEND=newt**
- **DEBIAN_FRONTEND=gtk**

BOOT_DEBUG Angivelse af denne opstartsparameter til 2 vil medføre at installationsprogrammets opstartsprogram bliver udførligt logget. Indstillingen 3 vil gøre fejlsøgningsskaller tilgængelige på strategiske steder i opstartsprocessen. (Afslut skallerne for at fortsætte opstartsprocessen).

- **BOOT_DEBUG=0** Dette er standarden.
- **BOOT_DEBUG=1** Mere uddybende end normalt.
- **BOOT_DEBUG=2** Masser af fejlsøgningsinformation.
- **BOOT_DEBUG=3** Skaller køres på forskellige steder i opstartsprocessen for at tillade detaljeret fejlsøgning. Afslut skallen for at fortsætte opstarten.

INSTALL_MEDIA_DEV Værdien på denne parameter er stien til enheden hvor Debian-installationsprogrammet skal indlæses fra. For eksempel, **INSTALL_MEDIA_DEV=/dev/floppy/0**

Opstartsdisketten, som normalt skanner alle diskettedrev den kan for at finde roddisketten, kan overskrives med denne parameter til kun at kigge efter en enhed.

log_host, log_port Får installationsprogrammet til at sende logbeskeder til en ekstern systemlog på den angivne vært og port samt til en lokal fil. Hvis ikke angivet, er portstandarden systemloggens standardport 514.

lowmem Kan bruges til at tvinge installationsprogrammet til et lowmen-niveau højere end det installationsprogrammet sætter som standard baseret på tilgængelig hukommelse. Mulige værdier er 1 og 2. Se også Afsnit 6.3.1.1.

noshell Forhindrer installationsprogrammet i at tilbyder interaktive skaller på tty2 og tty3. Nyttig for installationer der ikke overvåges og hvor fysisk sikkerhed er begrænset.

debian-installer/framebuffer (fb) Nogle arkitekturen bruger kerneframebufferen til at tilbyder installation i et antal sprog. Hvis framebuffer medfører et problem på dit system, så kan du deaktivere funktionen med parameteren **fb=false**. Symptomer på problemer er fejlbeskeder om bterm eller bogl, en blank skærm eller at installationen fryser efter et par minutter.

debian-installer/theme (tema) Et tema bestemmer hvordan brugergrænsefladen for installationsprogrammet ser ud (farver, ikoner etc.). Hvilke temaer der er tilgængelige afviger per brugerflade. Aktuelt har både newt- og gtk-brugerfladerne kun et "dark"-tema, som blev designet for de visuelt synshæmmede brugere. Angiv temaet ved at starte med **theme=dark**.

netcfg/disable_autoconfig Som standard vil debian-installer automatisk søge efter netværkskonfiguration via automatisk IPv6-konfiguration og DHCP. Hvis søgningen lykkes, vil du ikke få mulighed for at gennemse eller ændre de indhentede indstillinger. Du kan kun komme til manuel netværksopsetning den automatiske konfiguration mislykkes.

Hvis du har en IPv6-router eller en DHCP-server på dit lokale netværk, men ønsker at undgå den fordi den f.eks. giver forkerte svar, så kan du bruge parameteren **netcfg/disable_autoconfig=true** til at forhindre automatisk konfiguration af netværket (herveren v4 eller v6) og indtaste informationen manuelt.

hw-detect/start_pcmcia Sæt til false for at forhindre opstart af PCMCIA-tjenester, hvis dette medfører problemer. Nogle bærbare er kendt for denne opførsel.

disk-detect/dmraid/enable (dmraid) Sæt til true for aktiverede understøttelse for Serial ATA RAID-diske (også kaldt ATA RAID, BIOS RAID eller falsk RAID) i installationsprogrammet. Bemærk at denne understøttelse kun er eksperimentel. Yderligere information kan findes på Debian-installationsprogrammets wiki.

preseed/url (adresse) Angiv adressen for en prækonfigurationsfil for at hente og bruge den for automatisering af installationen. Se Afsnit 4.5.
KAPITEL 5. OPSTART AF INSTALLATIONSSYSTEMET

5.3. OPSTARTSPARAMETRE

preseed/file (fil) Angiv stien til en forhåndskonfigurationsfil til indlæsning for automatisering af installationen. Se Afsnit 4.5.

preseed/interactive Sæt til `true` for at vise spørgsmål selv hvis de er blevet forudfyldt. Kan være nyttig for test eller fejlsøgning af en forhåndskonfigureret fil. Bemærk at dette ikke vil have effekt på parametre som sendes som opstartsparametre, men for disse kan en speciel syntaks bruges. Se Afsnit B.5.2 for detaljer.

auto-install/enable (auto) Forsink spørgsmål som der normalt stilles for forudfyldning er muligt indtil efter at netværket er konfigureret. Se Afsnit B.2.3 for detaljer om brugen af denne til automatisering af installationer.

finish-install/keep-consoles Under installationer fra seriel eller håndteringskonsol er de regulære virtuelle konsoller (VT1 til VT6) normalt deaktiveret i `/etc/inittab`. Sæt til `true` for at forhindre dette.

cdrom-detect/eject Som standard, før genstart, så skubber `debian-installer` automatisk det optiske medie ud, som blev brugt under installationen. Dette kan være uønsket, hvis systemet ikke automatisk starter op fra cd'en. I nogle tilfælde kan det endda være uønsket, for eksempel hvis det optiske drev ikke kan genindsætte mediet selv og hvis brugeren ikke er der til at gøre det manuelt. Mange slot-indlæsede og tynde drev samt drev i caddy-stil kan ikke genindlæse mediet automatisk.

Sæt til `false` for at deaktivere automatisk skub ud, og vær opmærksom på at du skal sikre at systemet ikke automatisk starter op fra det optiske drev efter den oprindelige installation.

base-installer/install-recommends (anbefalinger) Ved at angive denne indstilling til `false`, vil pakkehåndteringssystemet blive konfigureret til ikke automatisk at installere “Recommends (anbefalinger)”, både under installationen og for det installerede system. Se også Afsnit 6.3.5.

Bemærk at denne indstilling giver et mindre omfattende system, men kan også resultere i at funktioner mangler, som du ellers normalt ville have tilgængelige. Du skal måske installere nogle af anbefalede pakker for at få den fulde funktionalitet. Denne indstilling bør derfor kun bruges af meget erfarne brugere.

debian-installer/allow_unauthenticated Som standard kræver installationsprogrammet at arkiver godkendes med en kendt gpg-nøgle. Angiv som `true` (sand) for at deaktivere den godkendelse. **Advarsel: usikker, kan ikke anbefales.**

rescue/enable Angiv til `true` (sand) for at gå i redningstilstand fremfor at udføre en normal installation. Se Afsnit 8.6.

5.3.3 Brug af opstartsparametre til at besvare spørgsmål

Med nogle undtagelser, kan en værdi angives ved opstarts promoten for spørgsmål stillet under installationen, dog er dette kun virkeligt nyttigt i specifikke tilfælde. Generelle instruktioner om hvordan dette udføres kan findes i Afsnit B.2.2. Nogle specifikke eksempler vises nedenfor.

debian-installer/language (sprog), debian-installer/country (land), debian-installer/locale (sted) Der er to måder at angive sproget på, land og sted til bruge for installationen og det installerede system.

anna/choose_modules (moduler) Kan bruges til automatisk at indlæse installationskomponenter, som ikke indlæses som standard. Eksempler på valgfrie komponenter, som kan være nyttige er `openssh-client-udeb` (så du kan bruge `scp` under installationen) og `ppp-udeb` (se Afsnit D.4).

netcfg/disable_autoconfig Angiv som `true` (sand) hvis du ønsker at deaktivere automatisk IPv6-konfiguration og DHCP og i stedet for fremtvinge statisk netværkskonfiguration.

26
KAPITEL 5. OPSTART AF INSTALLATIONSSYSTEMET 5.4. FEJLSØGNING AF INSTALLATIONSPROCESSEN

tasksel:tasksel/first (opgaver) Kan bruges til at vælge opgaver, som ikke er tilgængelige fra den interaktive opgaveliste, såsom opgaven kde-desktop. Se Afsnit 6.3.6.2 for yderligere information.

5.3.4 Sende parametre til kernemoduler

Hvis drivere er kompileret ind i kernen, så kan du sende parametre til dem som beskrevet i keredokumentationen. Dog er det ikke muligt at sende parametre til moduler, som du normalt ville gøre, hvis drivere er kompileret som moduler og fordi kernemoduler indlæses en smule anderledes under installation end under opstart fra et installeret system. I stedet skal du bruge en speciel syntaks der genkendes af installationsprogrammet, som så vil sikre at parametrene er gent i de korrekte konfigurationsfiler og vil derfor blive brugt når modulerne rent faktisk indlæses. Parametrene vil også automatisk blive videregivet til konfigurationen for det installerede system.

Bemærk at det er ret sjældent at parametre skal sendes til moduler. I de fleste tilfælde vil kernen kunne finde frem til udstyret i et system og angive gode standarder via denne metode. I nogle situationer kan det dog være nødvendigt at angive parametre manuelt.

Syntaksen for brug af modulparametre er:

```
module_name.parameter_name=value
```

Hvis du skal sende flere parametre til den samme eller forskellige moduler, så gentag bare dette. For eksempel, for at angive at et gammelt 3Com-netværksgrænsefladekort skal bruge BNC-forbindelsen (coax) og IRQ 10, skal du skrive:

```
3c509.xcvr=3 3c509.irq=10
```

5.3.5 Sortliste kernemoduler

Undertiden kan det være nødvendigt at sortliste et modul for at forhindre det i at blive indlæst automatisk af kernen og udev. En årsag kunne være at et specifik modul medfører problemer med dit udstyr. Kernen viser også undertiden to forskellige drivere for den samme enhed. Dette kan medføre at enheden ikke fungerer korrekt, hvis drive er i konflikt eller hvis den forkerte driver indlæses først.

Du kan sortliste et modul med den følgende syntaks: `modulnavn.blacklist=yes`. Dette vil gøre, at modulet bliver sortlistet i `/etc/modprobe.d/blacklist.local` både under installationen og for det installerede system.

Bemærk at et modul stadig kan blive indlæst af selve installationssystemet. Du kan forhindre dette i at ske ved at køre installationen i eksperttilstand og fravælge modulet fra listen over moduler vist under detektionsfaserne for udstyret.

5.4 Fejlsøgning af installationsprocessen

5.4.1 Cd-rom-troværdighed

Undertiden, specielt med ældre cd-rom-drev, vil installationsprogrammet fejle i at starte op fra en cd-rom. Installationsprogrammet kan også — selv efter opstart fra cd-rom — mislykkes i at genkende cd-rommen eller returnere fejl under læsning fra den under installationen.

Der er mangle forskellige mulige årsager for disse problemer. Vi kan kun vise nogle gengæld problemlister og tilbyde generelle forslag til hvordan du håndterer dem. Resten er op til dig.

Der er to meget simple metoder, du bør prøve først.

- Hvis cd-rommen ikke starter op, så kontroller at disken er korrekt indsat og at den ikke er ridset eller beskidt.

Hvis dette ikke virker, så prøv forslagene i underafsnittene nedenfor. De fleste - men ikke alle - forslag diskutered her er gyldige for både cd-rom og dvd, men vi bruger alene udtrykket cd-rom.

Hvis du ikke kan få installationen til at virke fra cd-rom, så prøv en af de andre tilgængelige installationsmetoder.
5.4.1 Gængse problemstillinger

- Nogle ældre cd-rom-drev understøtter ikke læsning fra diske som blev brændt med høje hastigheder via et moderne cd-rom-drev.
- Nogle meget gamle cd-rom-drev virker ikke korrekt hvis “direct memory access” (DMA) er aktiveret for dem.

5.4.1.2 Hvordan kan der undersøges og måske løses problemstillinger

Hvis cd-rom’en ikke starter op, så prøv anbefalingerne på listen nedenfor.

- Kontroller at din BIOS rent faktisk understøtter opstart fra cd-rom (kun en problemstilling for meget gamle systemer) og at cd-opstart er aktiveret i BIOS’en.
- Hvis du hentede et iso-aftryk, så kontroller at md5summen for det aftryk matcher det viste aftryk i filen MD5SUMS, som bør befinde sig samme sted, som du hentede aftrykket fra.

```bash
$ md5sum debian-testing-i386-netinst.iso
a20391b12f7ff22ef705cee4059c6b92 debian-testing-i386-netinst.iso
```


```bash
> head -c `stat --format=%s debian-testing-i386-netinst.iso` |\n> md5sum
a20391b12f7ff22ef705cee4059c6b92 -
262668+0 poster ind
262668+0 poster ud
134486016 byte (134 MB) kopieret, 97,474 sekunder, 1,4 MB/s
```

Hvis, efter at installationsprogrammet er blevet korrekt startet, cd-rommen ikke detekteres, så kan det bare at prøve igen nogle gange løse problemet. Hvis du har mere end et cd-rom-drev, så prøv at indsette disken i det andet drev. Hvis det ikke virker eller hvis diske genkendes men har fejl under læsning, så prøv forslagene nedenfor. Lidt grundlæggende viden om Linux er krævet for dette. For at køre disse kommandoer, så skal du først skifte til den anden virtuelle konsol (VT2) og aktivere skallen der.

- Skift til VT4 eller vis indholdet af /var/log/syslog (brug nano som redigeringsprogram) til at kontrollere efter specifikke fejlbeskedene. Derefter kontrolleres også resultatet af dmesg.
- Kontroller i resultatet fra dmesg om dit cd-rom-drev blev genkendt. Du bør se noget ala (linjerne skal ikke nødvendigvis være forløbende):

```bash
atal0.00: ATAPI: MATSHITADV-822S, 1.61, max UDMA/33
atal0.00: configured for UDMA/33
scsi 0:0:0:0: CD-ROM MATSHITA DVD-RAM UJ-822S 1.61 PQ: 0 ANSI: 5
sr0: scsi3-mmc drive: 24x/24x writer dvd-ram cd/rw xa/form2 cdda tray
cdrom: Uniform CD-ROM driver Revision: 3.20
```

Hvis du ikke ser noget der ligner eksemplet, er der en risiko for, at controlleren som dit cd-rom-drev er forbundet med ikke blev genkendt eller slet ikke er understøttet. Hvis du ved hvilken driver, der er krævet for controlleren, så kan du forsøge at indlæse den manuelt med modprobe.

- Kontroller at der er en enhedsknude for dit cd-rom-drev under /dev/. I eksemplet ovenfor, skal dette være /dev/sr0. Der skal også være et /dev/cdrom.
- Brug kommandoen mount til at kontrollere om cd-rommen allerede er monteret; hvis ikke, så prøv at montere den manuelt:

```bash
$ mount /dev/hdc /cdrom
```

Kontroller hvis der er nogle fejlbeskedere efter den kommando.
- Kontroller hvis DMA er aktuelt aktiveret:
KAPITEL 5. OPSTART AF INSTALLATIONSSYSTEMET 5.4. FEJLSØGNING AF INSTALLATIONSPROCESSEN

5.4.1 Fejlsøgning af installationsprocesen

Et "1" i den første kolonne efter `using_dma` betyder at den er aktiveret. Hvis den er, så prøv at deaktivere den:

```
$ echo -n "using_dma:0" >settings
```

Sikr dig at du er i mappen for enheden som svarer til dit cd-rom-drev.

- Hvis der er problemer under installationen, så prøv at kontrollere integriteten for cd-rommen med indstillingen nær bunden af installationsprogrammets hovedmenu. Denne indstilling kan også bruges som en generel test af, om cd-rommen kan læses troværdigt.

5.4.2 Opstartsconfiguration

Hvis du har problemer og kernen hænger under opstartsprocessen, ikke genkender perifære enheder du rent faktisk har, eller driverne ikke bliver genkendt korrekt, så er den første ting du skal gøre er at kontrollere opstartsparametrene, som omtalt i Afsnit 5.3.

I nogle tilfælde kan fejlsituationer opstå på grund af manglende firmware for udstyr (se Afsnit 2.2 og Afsnit 6.4).

5.4.3 Fortolker kernens opstartsbeskeder

Under opstartssekvensen, kan du se beskeder i form af `kan ikke finde et eller andet eller noget er ikke til stede, kan ikke initialisere noget, eller endda denne driverudgivelse afhænger af et eller andet`. De fleste af disse beskeder er harmløse. Du ser dem fordi kernen for installationssystemet er bygget til at køre på computere med mange forskellige perifære enheder. Det er indlysende at ikke alle computere har hver eneste perifære enhed, så operativsystemet kan give nogle få beklagelser, når det leder efter perifære enheder, du ikke har. Du kan også se at systemet kan gå i pause i et øjeblik. Dette sker når systemet venter på en enhed svarer, og denne enhed ikke er tilgængelig på dit system. Hvis du synes at tiden systemet er om at starte op er for lang, så kan du oprette en tilpasset kerne senere (see Afsnit 8.5).

5.4.4 Rapportering af installationsproblemer

Andre relevante installationsbeskeder kan findes i `/var/log/` under installationen og `/var/log/installer/` efter at computeren er blevet startet op i det installerede system.

5.4.5 Indsendelse af installationsrapporter

Hvis du stadig har problemer, så indsend en installationsrapport. Vi opmuntrer også til, at installationsrapporter indsendes selvom installationen lykkes, så vi kan få så meget information som muligt om det største antal udstyrsconfigurationer.

Bemærk at din installationsrapport vil blive vist i Debiains fejlsøgningsystem (BTS) og videresendt til en offentlig postliste. Sikr dig at du bruger en e-post-adresse, som du ikke har problemer med at offentlig.

Hvis du har et fungerende Debian-system, så er den nemmeste måde at sende en installationsrapport at installere pakkene `installation-report` og `reportbug` (`apt install installation-report reportbug`), konfigurere `reportbug` som forklaret i Afsnit 8.4.2, og køre kommandoen `reportbug installation-reports`.

Alternativt kan du bruge denne skabelon når du udfylder installationsrapporter, og indsende rapporten som en fejrrapport mod pseudopakken `installation-reports` ved at sende den til `submit@bugs.debian.org`.

Pakke: `installation-reports`

29
I fejlrapporten beskriver du hvad problemet er, inklusiv den sidst synlige kernebesked i tilfælde af at kernen hænger. Beskriv handlingerne, du foretog dig, som førte til systemets fejltilstand.
Kapitel 6

Brug af Debian-installationsprogrammet

6.1 Sådan fungerer installationsprogrammet

Debians installationsprogram indeholder et antal komponenter for hver installationsopgave. Hver komponent udfører sin opgave, stiller spørgsmål til brugeren vedrørende sit job. Selve spørgsmålene har prioriteter, spørgsmålenees prioritet sættes når installationsprogrammet bliver startet.

Når en standardinstallation er gennemført bliver kun vigtige (høj prioritet) spørgsmål stillet. Dette resulterer i en meget automatiseret installationsprocess med lille brugeraktivitet. Komponenter køres automatisk i sekvens; hvilke komponenter som køres afhænger hovedsagelig af installationsmetoden du anvender og dit udstyr. Installationsprogrammet vil bruge standardværdier for spørgsmålet der ikke stilles.

Hvis der opstår et problem, så vil brugeren se en fejlskærm, og installationsmenuen vises måske for at du kan vælge nogle alternative handlinger. Hvis der ikke er problemer, så vil brugeren aldrig se installationsmenuen, men vil alene få spørgsmål for hver komponent. Alvorlige fejlpåmindelser sættes til prioritet ”kritisk” så at brugeren altid bliver påmindet.

Nogle af standarderne som installationsprogrammet bruger kan påvirkes med opstartsargumenter når debian-installer startes. Hvis, for eksempel, du ønsker at bruge statisk netværkskonfiguration (automatisk IPv6-konfiguration og DHCP bruges som standard, hvis tilgængelig), så kan du tilføje opstartsparameteren netcfg/disable_autoconfig=true. Se Afsnit 5.3.2 for alle tilgængelige indstillinger.

Erfarne brugere er måske mere komfortable med en menudrevet grænseflade, hvor hvert trin kontrolleres af brugeren fremfor at installationsprogrammet udfører hvert trin automatisk i sekvens. For at bruge installationsprogrammet på en manuelt og menudrevet måde så tilføj opstartsargumentet priority=medium.

Hvis dit udstyr kræver at du angiver tilvalg til kernemodulerne, når de installeres, så skal du starte installationsprogrammet i tilstanden ”expert”. Det her kan gøres enten ved at bruge kommandoen expert for at starte installationsprogrammet eller ved at tilføje opstartssargumentet priority=low. Eksperttilstanden giver dig fuld kontrol over debian-installer.

For denne arkitektur bruger installationsprogrammet en tegnbaseret brugerflade. En grafisk brugerflade er aktuelt ikke tilgængelig.

I det tegnbaserede miljø er brugen af mus ikke understøttet. Her er tastere, som du kan bruge for at navigere i de forskellige dialoger. Tab eller højre piletast flytter “fremad” og Skift-Tab eller venstre piletast flytter “tilbage” mellem viste knapper og valg. Piletasterne op og ned vælger forskellige punkter i en rullegliste og ruller også igennem selve listen. Desuden, i lange lister, kan du taste et bogstav for at få listen til at gå direkte til afsnittet med punkter, der starter med det indtastede bogstav. Du kan også bruge Pg-Up (Side op) og Pg-Down (Side ned) for at rulle listen i afsnit. Mellemrum vælger et punkt såsom en afkrydsningsboks. Brug Enter for at aktivere valg.

Nogle dialoger kan tilbyde yderligere hjælp. Hvis hjælp er tilgængeligt vil dette blive indikeret på nederste linje af skærmen ved at vise at hjælpen kan tilgås ved at trykke på tasten F1.

Fejlbekeder og logge omdirigeres til den fjerde konsol. Du kan tilgå denne konsol ved at trykke på Venstre Alt-F4 (hold venstre Alt-tast ned når du trykker på funktionstasten F3); gå tilbage til hovedkonsollen for installationsprogrammet med Venstre Alt-F1.

Disse beskeder kan også findes i /var/log/syslog. Efter installation bliver denne log kopieret til /var/log/installer/syslog på dit nye system. Andre installationsbeskeder kan findes i /var/log/ under installationen og /var/log/installer/ efter at computeren er blevet opstartet i det installerede system.
6.1.1 Brug af det grafiske installationsprogram

Det grafiske installationsprogram fungerer grundlæggende på samme måde som det tekstbaserede installationsprogram, og derfor kan resten af denne manual bruges til at vejledde dig igennem installationsprocessen.

Hvis du foretrækker tastaturet frem for musen, så er der to ting du skal vide. For at udvide en kollaps liste (brugt for eksempel for valget af lande på kontinenter) kan du bruge tasterne `+` og `−`. For spørgsmål hvor mere end et punkt kan vælges (f.eks. opgavevalg) så skal du første bruge tabulator til knappen Continue efter dine markerings; et tryk på retur vil skifte en markerings, ikke aktivere Continue.

Hvis en dialog tilbyder yderligere hjælp, vil en Hjælpeknap blive vist. Hjælpen kan tilgås enten ved at aktivere knappen eller ved at trykke på tasten F1.

For at skifte til en anden konsol, så skal du også bruge tasten Ctrl, ligesom med X-vinduessystemet. For eksempel, for at skifte til VT2 (den første fejlsøgningsskal) skal du bruge: Ctrl-Left Alt-F2. Det grafiske installationsprogram kører selv på VT5, så du kan bruge Vensre Alt-F5 til at skifte tilbage.

6.2 Introduktion til komponenter

Her er en liste over installationskomponenter med en kort beskrivning af hver komponents formål. Detaljer du måske skal vide om en bestemt komponent er i Afsnit 6.3.

- **main-menu** Viser listen over komponenter for brugeren under installationen og starter en komponent når den vælges. Hovedmenuens spørgsmål er sat til prioritet medium, så hvis din prioritet er sat til høj eller kritisk (høj er standard) kommer du ikke til at se den her menu. På den anden side, hvis der opstår en fejl, som kræver din indgriben, så vil spørgsmålsprioriteten måske blive nedgraderet midlertidigt så du kan løse problemet, og i det tilfælde kan menu blive vist.

 Du kan gå til hovedmenuen ved at trykke på Go Back-tasten flere gange for at gå baglæns igennem den aktuelt kørende komponent.

- **localechooser** Lader brugeren vælge sprogindstillinger for installationen og det installerede system: sprog, land og lokaliteter. Installationsprogrammet vil vise beskeder i det valgte sprog, med mindre at oversættelsen af det sprog ikke er fuldstændig, i hvilket tilfælde vil nogle beskeder blive vist på engelsk.

- **console-setup** Viser en liste over tastaturer hvorfra brugeren vælger den model som matcher hans egen.

- **hw-detect** Detekterer automatisk det meste af systemets udstyr, inklusive netværkskort, diskdrev og PCMCIA.

- **cdrom-detect** Leder efter og monterer Debians installations-cd.

- **netcfg** Konfigurerer computerens netværksforbindelser, så at den kan kommunikere over internettet.

- **iso-scan** Søger efter ISO-aftryk (.iso-filer) på harddiske.

- **choose-mirror** Præsenterar en liste af Debian-arkivets spejl. Brugeren kan vælge kilden for sine installationspakker.

- **cdrom-checker** Kontrollerer integriteten på en cd-rom. På denne måde kan brugeren sikre sig, at installationskiven ikke er ødelagt.

- **lowmem** Lowmem forsøger at identificere systemer med lidt hukommelse og forsøger så med nogle små fif til at fjerne nødvendige dele af debian-installer fra hukommelsen (på bekostning af visse funktioner).

- **anna** Anna's Not Nearly APT. Installerer pakker som er hentet fra det valgte spejl eller cd.

- **user-setup** Angiver adgangskoden for root (administrator) og tilføjer en almindelig bruger.

- **clock-setup** Opdaterer systemuret og bestemmer hvorvidt uret er indstillet til UTC eller ej.

- **tzsetup** Vælger tidszonen, baseret lokaliteten valgt tidligere.

- **partman** Lader brugeren partitionere diske vedhæftet systemet, oprette filsystemer på de valgte partitioner og hæfte dem til monteringspunkter. Inkludere der er også interessante funktioner såsom en fuld auotmatisk tilstand eller LVM-undersøttelse. Dette er det foretrukne partitioneringsværktøj i Debian.

- **partitioner** Giver brugeren mulighed for at partitionere diske tilsluttet systemet. Et partitioneringsprogram som passer til din computers arkitektur vælges.
KAPITEL 6. BRUG AF DEBIAN- …

6.3. BRUG AF INDIVIDUELLE KOMPONENTER

partconf Viser en liste af partitioner og opretter filesystemer på de valgte partitioner jævnfør brugerinstruktionerne.

lvmcfg Hjælper brugeren med konfigurationen af LVM (logisk diskenheds håndtering).

mdcfg Giver brugeren mulighed for at opsætte Software RAID (Redundant Array of Inexpensive Disks). Denne Software RAID er normalt overleget set i forhold til den billigle IDE (pseduo-udstyr) RAID-controllere fundet på nyre bundkort.

base-installer Installerer de mest enkle pakkeopsætninger, som gør at computeren kan fungere under Debian GNU/Linux efter genstart.

apt-setup Konfigurerer apt, hovedsagelig automatisk, baseret på hvilket medie som installationsprogrammet køres fra.

pkgsel Bruger tasksel til at vælge og installere yderligere programmer.

os-prober Detekterer aktuelt installerede operativsystemer på computeren og sender denne information til bootloader-installer, hvilken kan give dig mulighed for at tilføj fundne operativsystemer til opstartsindlæserens startmenu. På denne måde kan brugeren ved opstart nemt vælge hvilket operativsystem der skal startes op.

bootloader-installer De forskellige installationsprogrammer for opstartsindlæsere installerer hver et opstartsprogram på harddisken, hvilket er nødvendigt for at computeren kan starte op med Linux uden at bruge en diskette eller et cd-rom-drev. Mange opstartsindlæsere giver brugeren mulighed for at vælge et alternativt operativsystem hver gang computeren starter op.

shell Giver brugeren mulighed for at køre en skal (shell) fra menuen, eller i den anden konsol.

save-logs Tilbyder en måde hvorpå brugeren kan optage information på en diskette, netværk, harddisk eller andet medie når der opstår problemer. Dette for at der præcist kan rapporteres om problemer med installationen til Debian-udviklerne senere.

6.3 Brug af individuelle komponenter

I det her afsnit vil vi beskrive hver installationskomponent i detaljer. Komponenterne er blevet grupperet i stadier, som bør være kendte for brugerne. De præsenteres i den rækkefølge de kommer frem under installationen. Bemærk at ikke alle moduler vil blive brugt for hver installation; hvilke moduler som rent faktisk bliver brugt afhænger af den brugte installationsmetode og dit udstyr.

6.3.1 Konfiguration af Debians installationsprogram og udstyr

Du vil bemærke at debian-installer gennemfører udstyrdetektering flere gange under det her trin. Første gang er målrettet det udstyr som skal bruges til at indlæse installationskomponenter f.eks. dit cd-rom-drev eller netværkskort). Da ikke alle drivere nødvendigvis er tilgængelige under denne første kørsel, så skal udstyrdetektering køres igen senere i processen.

Under udstyrdetektering så kontrollerer debian-installer om nogle af driverne for udstyrenhederne i dit system kræver at firmware indlæses. Hvis firmware er krævet men ikke tilgængelig, så vil en dialog blive vist som tillader at den manglende firmware kan indlæses fra en eksternt medie. Se Afsnit 6.4 for yderligere detaljer.

6.3.1.1 Kontroller tilgængelig hukommelse / tilstand for lav hukommelse

En af de første ting som debian-installer udfører er at kontrollere tilgængelig hukommelse. Hvis den tilgængelige hukommelse er begrænset, så vil denne komponent foretage nogle ændringer i installationsprocessen, som forhåbentlig vil give dig mulighed for at installere Debian GNU/Linux på dit system.

Det første tiltag der udføres for at formindskes installationsprogrammets hukommelseforbrug er at deaktivere oversættelser, hvilket betyder at installationen kun kan udføres på engelsk. Du kan selvfølgelig stadig lokaltilpasse det installerede system efter installationen er færdig.
KAPITEL 6. BRUG AF DEBIAN-

6.3. BRUG AF INDIVIDUELLE KOMPONENTER

Hvis dette ikke er tilstrækkeligt vil installationsprogrammet yderligere formindskelse hukommelsesforbruget ved kun at indlæse de vigtigste komponenter for at færdiggøre en basisinstallation. Dette reducerer det installerede systemets funktionelitet. Du får mulighed for at indlasse yderligere komponenter manuelt, men du skal være opmærksom på, at hver komponent du vælger vil bruge yderligere hukommelse og derfor kan få installationen til at fejle.

På trods af disse tiltag, er det stadig muligt at dit system fryser, at uventede fejl opstår eller at processer bliver dræbt af kernen fordi systemet løber tør for hukommelse (hvilket resulterer i “Out of memory”-meddelelser på VT4 og i systemloggen).

Det er for eksempel blevet rapporteret at oprettelsen af et stort ext3-filssystem fejler i tilstanden for lav hukommelsesforbrug, når der ikke er tilstrækkelig med swap-plads. Hvis en større swap ikke hjælper, så prøv at oprette filssystemet som ext2 (som er en essentielt del af installationsprogrammet) i stedet for. Det er muligt at ændre en ext2-partition til ext3 efter installationen.

Det er muligt at tvinge installationsprogrammet til at bruge et højere lowmem-nivea end den som er baseret på tilgængelig hukommelse ved at bruge opstartsparameteren “lowmem” som beskrevet i Afsnit 5.3.2.

6.3.1.2 Valg af lokalitsindsstillinger

I de fleste tilfælde er det første spørgsmål du bliver stillet valget af lokalitsindsstillinger som skal bruges af både installationsprogrammet og for det installerede system. Lokalitsindsstillingerne består af sprog, land og sprogområder.

Sproget du vælger vil blive brugt i resten af installationsprocessen, såfremt en oversættelse for de forskellige dialoger er tilgængelig. Hvis ingen gyldig oversættelse er tilgængelig for det valgte sprog, vil installationsprogrammet bruge engelsk.

Den valgte geografiske placering (i det fleste tilfælde et land) vil blive brugt senere i installationsprocessen, for at vælge den korrekte tidzone og get Debian-spejel, som er passende for det land. Sprog og land tilsammen vil bestemme lokaliteten for dit system og vælge det korrekte tastaturlayout.

Du bliver først spurgt om dit foretrukne sprog. Sprognavnene er vist både på engelsk (venstre side) og med sprogets egen stavning (højre side); navnet til højre vises også i sprogets korrekte skrift. Listen er sorteret efter de engelske navne. Øverst på listen findes et ekstra alternativ som tillader dig at vælge indstillingen “C” i stedet for et sprog. Valg af indstillingen “C” betyder at installationen fortsætter på engelsk; det installerede system vil ikke have nogen form for lokaltilpasning da pakken locales ikke bliver installeret.

Derefter vil du blive spurgt om din geografiske placering. Hvis du valgte et sprog, som anerkendes som officiel sprog i mere end et land, vil du få vist en liste over kun disse lande. For at vælge et land som ikke findes på listen vælger du andet (sidste alternativ). Du får så vist en liste over kontinenter; vælg et kontinent for en liste over relevante lande på det kontinent.

Hvis du valgte et sprog, der ikke har et tilgængeligt land, vil du få vist en liste over lande på kontinenten; vælg et kontinent for en liste over relevante lande på det kontinent.

Hvis sproget kun har et land forbundet med det, vil du få vist en liste over lande på kontinenten, der er tilhører det landet, med det land forvalgt som standard. Brug indstillingen Gå tilbage for at vælge på et andet kontinent.

BEMÆRK

Det er vigtigt at vælge landet hvor du bor eller hvor du er placeret, da det afgrøer tidzonen, som bliver konfigureret for det installerede system.

Hvis du valgte en kombination af sprog og land hvor intet sted er defineret og der findes flere steder for sproget, så vil installationsprogrammet lade dig vælge hvilket af disse steder du foretrækker som standardstedet for det installerede system. I alle andre tilfælde vil et standardsted blive valgt baseret på det valgte sprog og land.

Ehvert standardsted valgt som beskrevet i det forrige afsnit vil bruge UTF-8 som tegnkodning.

Hvis du installerer ved lav prioritet, så har du mulighed for at vælge yderligere steder, inklusiv såkaldte “legacy” (forældede) steder, til oprettelse for det installerede system; hvis du foretager dette valg vil du blive spurgt om hvilket sted skal være standard for det installerede system.

1 Teknisk forklaring: Hvor flere lokaltilpasninger findes for det sprog men med forskellige landekoder.
2 Ved mellem og lav prioritet kan du altid vælge dit foretrukne sted fra de tilgængelige for det valgte sprog (hvis der er mere end et).
3 Forældede steder er steder som ikke bruger UTF-8, men en af de ældre standarder for tegnkodning såsom ISO 8859-1 (brugt af vesteuropæiske sprog) eller EUC-JP (brugt af japansk).

34
6.3.1.3 Valg af tastatur

Tastaturer er ofte tilpassede efter de tegn som bruges i et bestemt sprog. Vielæt et layout som gælder for tastaturet du bruger, eller vælg et som ligner det hvis tastaturlayoutet du ønsker ikke findes. Når installationen af systemet er færdig vil du kunne vælge et tastaturlayout fra en bredere skala (kør `dpkg-reconfigure keyboard-configuration` som root (administrator) efter at du er færdig med installationen).

Flyt markeringen til tastaturvalget og tryk på Enter. Brug piletasterne for at flytte markeringen — de er på samme placers for alle tastaturlayout på alle nationale sprogstastaturlayout, så de er uafhængige af tastaturkonfigurationen.

6.3.1.4 På udkig efter et ISO-aftyk af Debian-installationsprogrammet

Hvis det tidligere forsøg på at finde et iso-aftryk for installationsprogrammet mislykkedes, vil `iso-scan` spørge dig, om du ønsker at udføre en mere gennemgående søgning. Den her fase vil ikke bare kigge på de øverste mapper, men løbe igennem hele filsystemet.

Hvis `iso-scan` ikke finder iso-aftrykket for installationsprogrammet, så genstart tilbage til din oprindelige operativsystem og kontroller om aftrykket er korrekt navngivet (ender på `.iso`), hvis den er placeret på et filsystem, der kan genkendes af `debian-installer`, og hvis det ikke er ødelagt (verificer kontrolsummen). Erfarne Unix-brugere kan gøre dette på den anden konsol uden at genstarte.

Bemærk at partitionen (eller disken) hvor ISO-aftrykket befinder sig på ikke kan genbruges under installationsprocessen, da den vil være i brug af installationsprogrammet. For at omgå dette, og såfremt du har nok systemhukommelse, kan installationsprogrammet kopiere ISO-aftrykket ind i RAM for montering. Dette kontrolleres af debconf-spørgsmålet med lav prioritet `iso-scan/copy_iso_to_ram` (det bliver kun stillet såfremt hukommelseskravet er opfyldt).

6.3.1.5 Konfigurer netværket

Når du kommer til det her trin, hvis systemet detekterer at du har mere end en netværksenhed, bliver du spurgt om at vælge hvilken enhed der skal være din primære netværksgrænseflade, dvs. den du vil bruge for installationen. De øvrige grænseflader vil ikke blive konfigureret på dette tidspunkt. Du kan konfigurere yderligere grænseflader efter installationen er færdig; se manualsidan interfaces(5).

6.3.1.5.1 Automatisk netværkskonfiguration

Som standard forsøger `debian-installer` at konfigurere din computeres netværk automatisk så langt som muligt. Hvis den automatiske konfiguration mislykkes, kan det skyldes mange faktorer fra et udtrukket netværskabel til manglende infrastruktur for automatisk konfiguration. For yderligere forklaring i tilfælde af fejl, så kontroller fejlbeskederne på den fjerde konsol. Uanset hvad så vil du blive spurgt om at prøve igen, eller om du ønsker at foretage en manuel opsætning. Undertiden kan netværksstjenerne brugt til automatisk konfiguration være langsomme i deres svar, så hvis du er sikker på, at alt er i orden, så start den automatiske konfiguration igen. Hvis den automatiske konfiguration fejler i gentagende tilfælde, så kan du vælge at udføre manuel netværksopsætning.

6.3.1.5.2 Manuel netværkskonfiguration

KAPITEL 6. BRUG AF DEBIAN-

6.3. BRUG AF INDIVIDUELLE KOMPONENTER

6.3.1.5.3 IPv4 og IPv6

6.3.2 Opsetning af brugere og adgangskoder

Lige før konfiguration af uret, vil installationsprogrammet give dig mulighed for at oprette kontoen for “root” (administrator) og/eller en konto for den første bruger. Andre brugerkontoe kan oprettes efter installationen er færdig.

6.3.2.1 Angiv en adgangskode for root (administrator)

Kontoen root kaldes også for superbruger; det er en konto som omgår hele sikkerhedsbeskyttelsen på dit system. Root-kontoen skal kun bruges til at udføre systemadministration, og kun i så kort tid som muligt.

Hvis nogen anmoder dig om at udlevere din adgangskode for root, så vær ekstrem forsigtig. Du skal aldrig give din adgangskode for root til andre, med mindre du administrerer en machine som har mere end en systemadministrator.

I tilfælde af at du ikke angiver en adgangskode for administratoren “root” her, vil denne konto være deaktiveret men pakken sudo vil blive installeret senere for at aktivere at administrative opgaver kan udføres på det nye system. Som standard vil den første bruger oprettet på systemet kunne bruge kommandoen sudo for at blive administrator (root).

6.3.2.2 Opret en normal bruger

Systemet vil spørge dig om du ønsker at oprette en normal brugerkonto på dette tidspunkt. Denne konto skal være dit personlige logind. Du skal ikke brug rootkontoen til daglig brug eller som dit personlige logind.

Hvorfor ikke? En af årsagerne til at undgå at bruge rootbrugeren privilegier er at det er meget nemt at lave uoprettelig skade som root. En anden årsag er at du kan blive lokket til at køre en trojansk hest — det er et program som udnytter funktionerne hos din superbruger til at kompromitere dit systems sikkerhed bag om ryggen på dig. Enhver god bog om systemadministration i Unix vil behandle dette emne i flere detaljer — hvis det er nyt for dig, så overvej at læse en sådan bog.

Hvis du på et tidspunkt efter installationen ønsker at oprette en anden konto, så brug kommandoen adduser.

6.3.3 Konfigurer uret og tidszonen

Installationsprogrammet vil først forsøge at tilslette sig en tidsserver på internettet (med protokollen NTP) for at indstille systemtiden korrekt. Hvis dette ikke lykkes vil installationsprogrammet antage at tiden og datoent hentet fra
systemuret da installationssystemet blev startet er korrekt. Det er ikke muligt manuelt at angive systemtiden under installationsprocessen.

Afhængig af stedet valgt tidligere i installationsprocessen så kan der blive vist en liste over tidszoner som er relevante for det sted. Hvis dit sted kun har en tidszone og du udfører en standardinstallation, så vil du ikke blive spurgt om noget og systemet vil antage at tidszonen er korrekt.

I eksperttilstanden eller ved installation på prioritet mellem, så vil du have den yderligere mulighed for at vælge “Coordinated Universal Time” (UTC) som tidszone.

Hvis du af en eller anden årsag ønsker at bruge en tidszone for det installerede system, som ikke svarer til det valgte sted, så er der to muligheder.

1. Det nemmeste er bare at vælge en anden tidszone efter at installationen er færdig og du er logget ind på dit nye system. Kommandoen for dette er:

 # dpkg-reconfigure tzdata

2. Alternativt kan tidszonen vælges i begyndelsen af installationen ved at sende parameteren `time/zone=value` når du starter installationssystemet op. Værdien skal selvfølgelig være en gyldig tidszone, for eksempel `Europe/London` eller `UTC`.

For automatiserede installationer kan tidszonen sættes til enhver ønsket værdi med forhåndsindstilling.

6.3.4 Partitionering og valg af monteringspunkt

På det her tidspunkt, efter at detektering af udstyr i din computer er blevet kørt den sidste gang, bør debian-installer være ved sin fulde kraft, tilpasset til brugerens behov og klar til noget arbejde. Præcis som titlen på det her afsnit indikerer er hovedfunktionen for de næste komponenter partitionering af dine diske, oprettelse af filsystemer, tildelning af monteringspunkter og valgfri konfigurering af nærliggende sager som RAID, LVM eller krypterede enheder.

Hvis du er ukomfortabel med partitionering eller bare vil vide mere om detaljerne, så se Appendiks C.

Først får du muligheden for automatisk at partitionere enten en hel disk eller ledig plads på et drev. Dette kaldes også for ”vejledt” partitionering. Hvis du ikke vil partitionere automatisk, så væl Manuelt fra menuen.

6.3.4.1 Understøttede partitioneringsindstillinger

Partitioneringsprogrammet brugt i debian-installer er ret fleksibelt. Det tillader oprettelse af mange forskellige partitioneringsskemaer, brug af forskellige partitioneringstabeller, filsystemer og avancerede blokener.

Præcis hvilke indstillinger der er tilgængelige afhænger hovedsagelig af arkitekturen, men også af andre faktorer. For eksempel er nogle indstillinger, på systemer med begrænset intern hukommelse, ikke tilgengelige. Standarderne kan også variere. Typen af partitionstabel kan være anderledes for harddiske med stor kapacitet i forhold til mindre harddiske. Nogle indstillinger kan kun ændres når der installereres med mellem eller lav debconf-prioritet; ved højere prioriter vil fornuftige standarder blive brugt.

Installationsprogrammet understøtter forskellige former for avanceret partitionering og brug af lagerenheder, som i mange tilfælde kan bruges kombineret.

- **Logisk diskenhedshåndtering (LVM)**
- **Program-RAID**
 - Understøttede RAID-niveauer 0, 1, 4, 5, 6 og 10.
- **Kryptering**
- **Multipath** (eksperimentel)

Se vores Wiki for information. Understøttelse af multipath er aktuelt kun tilgængelig hvis aktiveret når installationsprogrammet startes op.

De følgende filsystemer er understøttet.

- **ext2r0, ext2, ext3, ext4**

Filsystemet, der vælges som standard, er i de fleste tilfælde ext4; for `/boot`-partitioner vil ext2 blive valgt som standard, når der bruges vejledt partitionering.
- **jfs** (ikke tilgængelig på alle arkitekturen)
KAPITEL 6. BRUG AF DEBIAN—

6.3. BRUG AF INDIVIDUELLE KOMPONENTER

• xfs (ikke tilgængelig på alle arkitekturen)

• reiserfs (valgfri; ikke tilgængelig på alle arkitekturen)

• jffs2

Brugt på nogle systemer til at læse flashhukommelse. Det er nu muligt at oprette nye jffs2-partitioner.

• FAT16, FAT32

6.3.4.2 Vejledt partitionering

Hvis du vælger vejledt partitionering har du tre alternativer: oprette partitioner direkte på harddisken (klassisk metode), oprette dem med logisk diskenhedshåndtering (LVM), eller oprette dem med krypteret LVM.

BEMÆRK

Alternativet med at anvende (krypteret) LVM er måske ikke tilgængelig på alle arkitekturen.

Når LVM eller krypteret LVM anvendes vil installationsprogrammet oprette de fleste partitioner inde i en stor partition; fordelen med den her metode er at partitionerne inde i den her store partition nemt kan få ny størrelse senere. I tilfælde med krypteret LVM, vil den store partition ikke være læsbar uden at kende til en speciel nøglefrase, hvilket giver ekstra sikkerhed for dine (personlige) data.

Når krypteret LVM anvendes, vil installationsprogrammet automatisk slette disken ved at skrive vilkårlige data til den. Dette øger sikkerheden yderligere (og gør det umuligt at se hvilke dele af disken som anvendes og også sikrer at ethvert spor af tidligere installationer er slettet), men det kan dog tage lidt tid afhængig af størrelsen på din disk.

BEMÆRK

Alle data på disken du vælger vil gå tabt, men du bliver altid spurgt om at bekræfte alle ændringer før de skrives til disken. Hvis du har valgt den klassiske metode for partitionering, kan du fortryde alle ændringer lige indtil slutningen; når du bruger (krypteret) LVM er dette ikke muligt.

<table>
<thead>
<tr>
<th>Partitioneringsplan</th>
<th>Minimumspæls</th>
<th>Oprettede partitioner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle filer på en partition</td>
<td>600 MB</td>
<td>/, swap</td>
</tr>
<tr>
<td>Separat partition for /home</td>
<td>500 MB</td>
<td>/, /home, swap</td>
</tr>
<tr>
<td>Separate partitioner for /home, /var og /tmp</td>
<td>1 GB</td>
<td>/, /home, /var, /tmp, swap</td>
</tr>
</tbody>
</table>

4 Installationsprogrammet vil kryptere LVM-diskenhedsguppen med en 256-bit AES-nøgle og gøre brug af kernens understøttelse af “dm-crypt”.

38
Hvis du vælger partitionering med guide (krypteret) og LVM vil installationsprogrammet også oprette en separat partition for /boot. De andre partitioner, inklusive swappartitionen, vil blive oprettet inden i LVM-partitionen.

Hvis du er startet op i EFI-tilstand så vil der i vejledningen til partitioneringsopstætningen være en yderligere partition, formateret som et FAT32-opstartsparat filsystem, for EFI-opstartindsleseren. Denne partition er kendt som en EFI System Partition (ESP). Der er også et yderligere menupunkt i formatteringsmenuen til manuelt at oprette en partition som en ESP.

Efter valg af en plan vil den næste skærm vise dine nye partitionstabel, inklusiv information om hvorvidt og hvordan partitioner vil blive formateret og hvor de vil blive monteret.

Listen over partitioner kan se ud som den her:

Det her eksempel viser to harddiske som deles op i flere partitioner; første disk har ledig plads. Hver partitionslinje indeholder partitionsnummeret, dets type, størrelse, valgfrie tilvalg, filsystem og monteringspunkt (hvis der findes nogen). Bemærk: Denne specifikke konfiguration kan ikke oprettes med en guidet partitionering, men det viser en mulig variation, som kan opnås med manuel partitionering.

6.3.4.3 Manuelt partitionering

En lignende skærm til den som vist ovenfor vil blive vist hvis du vælger manuel partitionering med undtagelse af at din eksisterende partitionstabel vil blive vist og uden monteringspunkterne. Hvordan du manuelt opsætter din partitionstabel og brugen af partitioner i dit nye Debian-system vil blive dækket i den resterende del af dette afsnit.

Hvis du vælger en ren disk som hverken har partitioner eller fri plads, så vil du blive spurgt om en ny partitionstabel skal oprettes (dette er krævet så du kan oprette nye partitioner). Derefter bør en ny linje “LEDIG PLADS” fremkomme i tabellen under den valgte disk.

Hvis du beslutter at du ønsker at ændre noget ved din partition, så vælg partitionen, hvilket vil føre dig til menuen for partitioneringskonfiguration. Der er den samme skærmen som bruges når der oprettes en ny partition, så du kan ændre de samme indstilling. En ting der ikke er så indlysende ved første øjekast er at du kan ændre størrelse på partitionen ved at vælge punktet der viser størrelsen på partitionen. Filsystemer der vides at fungere er fat16, fat32, ext2, ext3 og swap. Denne menu giver dig også mulighed for at slette en partition.

Vær sikker på, at du opretter mindst to partitioner: en for rodfilsystemet (som skal moneres som /) og en for swap. Hvis du glemt at montere rodfilsysteme (root), så vil partman ikke lade dig fortsætte før du retter dette.
Hvis du starter op i EFI-tilstand men glemmer at vælge og formatere en EFI-opstartspartition, så vil partman opdage det og forhindre dig i at fortsætte, indtil du har alloreret en.

Funktionerne i partman kan udvides med installationsmoduler, men er afhængige af dit systems arkitektur. Så hvis du ikke kan se alle de lovede goder, så kontrolle om du har indlæst alle krævede moduler (f.eks. partman-ext3, partman-xsf eller partman-lvm).

Efter at du er tilfreds med partitioneringen, så vælg Afslut partitioneringen og skriv ændringer til disken fra partitioneringsmenuen. Du får præsenteret et referat over ændringerne foretaget på diskene og bedt om at bekræfte at filsystemerne skal oprettes som anmodt om.

6.3.4.4 Konfiguration af flerdiskenheder (program-RAID)

Hvis du har flere end en harddisk i din computer, kan du bruge mdcfg til at opsætte dine drev for øget ydelse og/eller bedre sikkerhed for dine data. Resultatet kaldes Multidisk Device (eller efter dets mest kende variant program-RAID).

MD er grundlæggende en samling af partitioner placeret på forskellige diske og kombineret sammen til at udgøre en logisk enhed. Denne enhed kan så bruges som en ordinær partition (dvs. i partman kan du formatere den, tildele et monteringspunkt etc.).

De fordele du får afhænger af den type af MD-enhed du opretter. I øjeblikket understøttes:

RAID0 Er hovedsagelig rettet mod ydelse. RAID0 deler alle indgående data op i stripes og distribuerer dem jævnt over alle diske i array'en. Det kan øge hastigheden på læse- og skriveoperationer men når en af diskene går i stykker vil du miste alt (dele af informationerne findes fortsat på den friske disk (eller flere), den anden del fandtes på den ødelagte disk).

Typisk brug for RAID0 er en partition for videoredigering.

RAID1 Er egnet for konfigurationer hvor sikkerhed er kodeordet. Den indeholder flere (sædvanligvis to) lige store partitioner hvor hver partition indeholder de præcis samme data. Det betyder tre ting. For det første, hvis en af dine diske går i stykker, vil du fortsat have data spejlet på de resterende diske. For det andet kan du kun bruge en lille del af den tilgængelige kapacitet (nære specifikat er det størrelsen på den mindste partition i RAID'en). For det tredje er tillægsindlæsninger belastningsudjævnet mellem diskene, hvilket kan øge ydelsen på en server, såsom en filsverver, som normalt er belastet med flere disklæsninger end skrivninger.

Du kan endda have en reservedisk i RAID'ens som vil overtaage pladsen for en ødelagt disk hvis noget går galt.

RAID5 er et godt kompromis mellem hastighed, troværdighed og dataredundans. RAID5 deler alle indgående data op i »stripes« og distribuerer dem jævnt over alle undtagen en (en på samme måde som RAID0). Til forskel fra RAID0 beregner selv RAID5 partitetsinformation, som skrives på den tiloversblevne disk. Paritetsdisken er ikke statisk (det ville blive kaldt for RAID4), men forandres periodevis, så at partitetsinformationen distribueres jævnt over alle diskene. Når en af diskene går i stykker, kan den manglende del af informationen beregnes ud fra de resterende data og diesses paritet. RAID5 skal indeholde mindst tre aktive partitioner. Du kan endda have en reservedisk i RAID'ens, som vil overtaage pladsen for en ødelagt disk såfremt noget går galt.

Som du kan se, har RAID5 en troværdighed der ligner den for RAID1, men som tilbyder mindre redundans. På den anden side er den en smule langsommere for skrivninger end RAID0 på grund af beregningerne af partitetsinformation.

RAID6 Ligner RAID5 uover en anvender to paritetsdiske i stedet for en.

En RAID6 kan overleve op til to ødelagte diske.

RAID10 RAID10 kombinerer stripning (som i RAID0) og specijer (som i RAID1). Den skaber α kopier af indgående data og distribuerer dem over partitionerne så at ingen af kopierne af de samme data findes på samme disk. Standardvalget for α er 2, men det kan stilles til noget andet i experttilstand. Antallet af partitioner som anvendes skal være mindst α. RAID10 har forskellige layout for distribuering af kopier. Standard er α kopier. Nære kopier har alle kopier på samme position på alle diskene. Fjerne kopier har kopierne på forskellige positioner på diskene. Positionskopier koper stripper, men ikke de individuelle kopier.

RAID10 kan anvendes for at opnå troværdighed og redundans uden ulemper ved at skulle beregne partitetsinformation.

For at opsummere:

5 Det kan faktisk lade sig gøre at bygge en MD-enhed selv fra partitioner på en enkel fysisk enhed, men det giver dig ingen fordele.
Kapitel 6. Brug af Debian-

6.3. Brug af individuelle komponenter

<table>
<thead>
<tr>
<th>Type</th>
<th>Minimum antal enheder</th>
<th>Reservenhed</th>
<th>Overlever diskfejl?</th>
<th>Tilgængelig plads</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID0</td>
<td>2</td>
<td>nej</td>
<td>nej</td>
<td>Størrelsen for den mindste partition gangen med antallet af enheder i RAID</td>
</tr>
<tr>
<td>RAID1</td>
<td>2</td>
<td>valgfri</td>
<td>ja</td>
<td>Størrelse for den mindste partition i RAID</td>
</tr>
<tr>
<td>RAID5</td>
<td>3</td>
<td>valgfri</td>
<td>ja</td>
<td>Størrelse for den mindste partition gangen med (antal enheder i RAID minus en)</td>
</tr>
<tr>
<td>RAID6</td>
<td>4</td>
<td>valgfri</td>
<td>ja</td>
<td>Størrelsen for den mindste partition gangen med (antal enheder i RAID minus to)</td>
</tr>
<tr>
<td>RAID10</td>
<td>2</td>
<td>valgfri</td>
<td>ja</td>
<td>Totalen for alle partitioner delt med antallet af delkopier (standard er to)</td>
</tr>
</tbody>
</table>

Hvis du vil vide mere om program-RAID, så kig på [Software RAID HOWTO](#).

For at oprette en MD-enhed skal du markere de partitioner, som den skal indeholde markeret for anvendelse i et RAID. (Det her gør man i [partman](#) i menuen Partitionsindstillinger hvor du bør vælge Anvend som: → fysisk diskenhed for RAID.)

BEMÆRK

Sikr dig at systemet kan startes op med partitioneringsplanen som du planlægger. Normalt er det nødvendigt at oprette et separat filsystem for `/boot` når man anvender RAID for rodfilsystemet (/). De fleste opstartsindlæsere understøtter spejlet (ikke strippet!) RAID1, så hvis man for eksempel anvender RAID5 for `/` og RAID1 for `/boot` kan det være et alternativ.

Efter det skal du vælge Konfigurer program-RAID fra hovedmenuen i [partman](#). (Menuen bliver kun vist hvis du markerer mindst en partition for brug som fysisk diskenhed for RAID.) På første skærm i [mdcfg](#), vælges bare Opret MD-enhed. Du får vist en liste over typer af MD-enheder, hvorfra du skal vælge en (f.eks. RAID1). Det følgende afhænger af den valgte MD-type.

- **RAID0** er enkelt — du får vist listen over tilgængelige RAID-partitioner og din eneste opgave er at vælge partitionerne som udgør MD’en.

- **RAID5** har en installationsprocedure, der ligner RAID1 med den undtagelse at du skal bruge mindst **tre** aktive partitioner.

- **RAID6** har en lignende installationsprocedure som RAID1 med undtagelse af, at du skal bruge mindst **fire** aktive partitioner.

- **RAID10** har også en lignende installationsprocedure som RAID1 med undtagelse af eksperttilstand. I ekspert-tilstand vil [debian-installer](#) spørge dig om layouttet. Layouttet har to dele. Den første del er layouttypen.
Den er enten n (for nære kopier), f (for fjerne kopier) eller o (for forskydningskopier). Den anden del er antallet af kopier, som skal foretages af data. Der skal være mindst lige så mange aktive enheder at alle kopierne kan distribueres til forskellige diske.

Det er fuldt ud muligt at have flere MD-typer på samme tid. For eksempel hvis du har tre 200 GB harddiske dedikeret til MD, hvor hver indeholder to 100 GB partitioner, kan du kombinere de første partitioner på alle tre harddiske til RAID0 (hurtig 300 GB partition for videoredigering) og bruge de andre tre partitioner (2 aktiver og 1 ledig) for RAID1 (ret så trædlig 100 GB partition for /home).

Efter at du har konfigureret MD-enhederne efter dine behov kan du vælge Afslut i mdev for at returnere til partman for at oprette filsystemer på dine nye MD-enheder og tildele dem de normale attributter såsom monteringspunkter.

6.3.4.5 Konfiguration af den logiske diskenhedshåndtering (LVM)

Hvis du arbejder med computere på systemadministratormiveau eller som en “avanceret” bruger, så har du set situationen hvor nogle diskpartitioner (normalt de vigtigste) har pladsmangel, mens nogle andre partitioner har masser af ledig plads og du skal håndtere denne situation ved at flytte rundt på ting, symbolske henvisninger etc.

For at undgå den beskrevet situation kan du bruge Logical Volume Manager (LVM). Simpelt fortalt så kan du med LVM kombinere dine partitioner (**physical volumes** i LVM lingo) til at udføre en virtual disk (**virtual volume group**), som så kan opdeles i viruelle partitioner (**logical volumes**). Pointen er at logiske diskenheder (og selvfølgelig underliggende diskenhedshusgrupper) kan strække sig over flere fysiske diske.

LVM-opsætning i debian-installer er ret så simpel og fuldstændig understøttet inden i partman. Først skal du markere partitionerne som skal bruges som fysiske diskenheder for LVM. Dette gøres i menuen Partitionindstillinger, hvor du skal vælge Brug som: → fysisk diskenhed for LVM.

ADVARSEL

Når du returnerer til hovedskærmen for partman, så vil du se en ny indstilling Konfigurer Logical Volume Manager. Når du vælger den, vil du først blive spurgt om at bekræfte igangværende ændringer til partitionstabellen (hvis nogen) og derefter vil LVM-opsætningsmenuen blive vist. Over menuen vises et resume af LVM-opsætningen. Menuen er kontekstafhængig og viser kun gyldige handler. De mulige handler er:

- Vis konfigurationsdetaljer: Viser LVM-enhedsstruktur, navne og størrelser for logiske diskenheder og mere
- Opret diskenhedshusgruppe
- Opret logisk diskenhed
- Slet diskenhedshusgruppe
- Slet logisk diskenhed
- Udvid diskenhedshusgruppe
- Reducer diskenhedshusgruppe
- Afslut: returner til hovedskærmen for partman
Brug indstillingerne i den menu til først at oprette en diskenhedsgruppe og så oprette dine logiske diskenheder inden i den.

Efter du returnerer til hovedskærmen for partman, vil oprettede logiske diskenheder blive vist på samme måde som ordinære partitioner (og du skal opfatte dem som sådanne).

6.3.4.6 Konfigurer krypterede diskenheder

De to vigtigste partitioner at kryptere er: Hjemmemappen, hvor dine private data befinder sig og swap-partitionen, hvor sensitive data måske er lagret midlertidigt. Selvfølgelig er der intet der forhinder dig i at kryptere andre partitioner. For eksempel /var hvor databaseservere, postservere eller printservere lagerer deres data, eller /tmp som bruges af diverse programmer til at lagre potentielt interessante midlertidige filer. Nogle folk ønsker endda at kryptere hele deres system. Den eneste undtagelse er partitionen /boot, som skal forblive ukrypteret, da der i øjeblikket ikke er nogen måde at indlæse kernen på fra en krypteret partition.

Krypteringsmetoden understøttet af debian-installer er dm-crypt (inkluderet i nyere Linuxkerner, som kan være vært for LVM fysiske diskenheder).

Lad os kigge på de tilgængelige indstillinger, når du vælger kryptering via Device-mapper (dm-crypt). Som altid: Hvis i tvivl, så brug standarderne, da de er valgt med omhu med tanke på sikkerhed.

IV-algoritme: xts-plain64 Initialisationsvektoren eller IV-algoritmen bruges i kryptografi til at sikre, at den samme krypteringsalgoritmen brugt på de samme ren tekst-data med den samme nøgle altid laver en unik krypteringsalgoritmetekst. Ideen er at forhindre angriberen i at udlede information fra gentagne mønstre i de krypterede data.

Fra de tilbudte alternativer, er standarden xts-plain64 i øjeblikket den mindst sårbare over for kendte angreb. Brug kun de andre alternativer, når du skal sikre kompatibilitet med nogle tidligere installerede systemer, som ikke kan anvende de nyere algoritmer.

Krypteringsnøgle: Adgangsfrase Her kan du vælge typen for krypteringsnøglen for denne partition.

Adgangsfrase Krypteringsnøglen vil blive beregnet på grundlag af en adgangsfrase, som du vil kunne indtaste senere i processen.

6. Brug af en adgangsfrase som nøgle betyder i øjeblikket, at partitionen vil blive opsat under LUKS.

Vilkårlige nøgler er nyttige for swappartitioner, da du ikke skal huske adgangsfrasen eller slette ømtålelig information fra swappartitionen, før du lukker computeren ned. Det betyder dog også, at du ikke vil kunne bruge funktionaliteten “suspend-to-disk” (sæt disken i dvale) tilbudt af nyere Linuxkerner, da det vil være umuligt (under en efterfølgende opstart) at gendanne data skrevet til swappartitionen.

Slet data: ja. Bestemmer om indeholdet af denne partition skal overskrives med vilkårlige data før opsætning af krypteringen. Dette anbefales, fordi det ellers kan være muligt for en angriber at udlede hvilke dele af en partition, der er i brug og hvilke der ikke er. Derudover vil det være sværere at gendanne eventuelle overskydende data fra tidligere installationer.

Efter du har valgt de ønskede parametre for dine krypterede partitioner, returner tilbage til hovedpartitioneringsmenuen. Der bør nu være et nyt menupunkt kaldt Konfigurer krypterede diskenheder. Efter valg af denne vil du blive bedt om at bekræfte sletningen af data på partitioner markeret for sletning og muligvis andre handlinger såsom skrivning af en ny partitionstabel. For store partitioner kan dette tage noget tid.

Derefter vil du blive anmodt om at indtaste en adgangsfrase for partitioner konfigureret til at bruge en. Gode adgangsfraser bør være længere end 8 tegn, være en blanding af bogstaver, tal og andre tegn og bør ikke indeholde gængse ord fra ordbøger eller information nemt associeret med dig (såsom fødselsdatoer, hobbyer, kælenavne, navne på familiemedlemmer eller pårørende etc.).

ADVARSEL

Hvis du valgte at bruge metoder udover en adgangsfrase til at oprette krypteringsnøgler, så vil de blive oprettet nu. Da kernen måske ikke har indsamlet en tilstrækkelig mængde entropi på dette tidlige stadie af installationen, kan processen tage længere tid. Du kan også procesen ved at oprette entropi: f.eks. ved at trykke på tilfældige taster, eller ved at skifte til skallen på den virtuelle konsol og indtaste lidt netværk og disktrafik (hente nogle filer, føde store filer til /dev/null, etc.). Dette vil blive gentaget for hver partition der skal krypteres.

Efter returnering til hovedpartitioneringsmenuen, så vil du se alle krypterede diskenheder som yderligere partitioner. Dette eksempel viser en diskenhed krypteret via dm-crypt.

```
Encrypted volume (sda2_crypt) - 115.1 GB Linux device-mapper
    #1 115.1 GB  F  ext3
```

Nu er det tid til at tildele monteringspunkter til diskenhederne og valgfrit ændre filsystemtyperne, hvis standarderne ikke passer dig.

Vær opmærksom på identifikationerne i parentes (sda2_crypt i dette tilfælde) og monteringpunkterne du tildelte til hvert krypteret diskenhed. Du skal bruge denne information senere, når du opstarter det nye system. Forskellene mellem den ordinære opstartsproces og opstartsprocessen med kryptering involveret vil blive dækket senere i Absnit 7.2.

Når du er tilfreds med partitionsplanen, så fortset med installationen.

6.3.5 Installation af basissystemet

Selvom dette trin er det mindst problematiske, så forbruger det en signifikant del af installationen fordi den henter, verificerer og udpakker hele basissystemet. Hvis du har en langsom computer eller netværksforbindelse, så kan det tage noget tid.

7 Det antages dog at fyrene fra institutionerne med tre bogstaver kan gendanne data selv efter flere overskrivninger af det magnetoptiske medie.

Udpaknings- og opsætningsbeskederne oprettet under denne fase gemmes også i /var/log/syslog. Du kan kontrollere dem der, hvis installationen udføres over en seriell konsol.

Når pakker installeres via pakkehåndteringssystemet, så vil det også som standard installere pakker som anbefales af disse pakker. Anbefalede pakker er ikke krævet for den grundlæggende funktionalitet for de valgte programmer, men de forbedrer de programmer og bør, ifølge pakkevedligeholderne, normalt installeres sammen med programmet.

BEMÆRK

Af tekniske årsager bliver pakker installeret under installationen af grundsystemet installeret uden deres “Recommends”. Regel ovenfor træder kun i kraft efter dette punkt i installationsprocessen.

6.3.6 Installation af yderligere programmer

På dette tidspunkt har du et brugbart, men begrænset system. De fleste brugere ønsker at installere yderligere programmer på deres system, så det passer til deres behov, og installationsprogrammet giver dig mulighed for dette. Dette trin kan tage længere tid end installation af det grundlæggende system, hvis du har en langsom computer eller netværksforbindelse.

6.3.6.1 Konfigurer apt

Et af værktøjerne brugt til at installere pakker på et Debian GNU/Linux-system er et program kaldt apt-get, fra apt-pakken. Andre brugerflader til pakkehåndtering, såsom aptitude og synaptic, er også i brug. Disse brugerflader anbefales for nye brugere, da de integrerer nogle yderligere funktioner (pakkesøgning og statuskontrol) i en røg brugerflade. apt skal konfigureres så at den ved hvorfra den skal hente pakker. Resultaterne af denne konfiguration skrives til filen /etc/apt/sources.list. Du kan undersøge og redigere denne fil efter behag når installationen er færdig.

Hvis du installerer med standardprioritet, så vil installationsprogrammet håndtere konfigurationen automatisk, baseret på installationsmetoden du anvender og muligvis andre valg foretaget tidligere i installationen. I de fleste tilfælde vil installationsprogrammet automatisk tilføje et sikkerhedsspejl og, hvis du installerer en stabil distribution, et spejl for tjenesten “stable-updates”.

Hvis du installerer med en lavere prioritet (f.eks. i eksperttilstand), så vil du selv kunne foretage flere beslutninger. Du kan vælge hvorvidt tjenesterne sikkerhed og/eller stable-updates skal anvendes, og du kan vælge at tilføje pakker fra afsnittene “contrib” og “non-free” i arkivet.

6.3.6.1.1 Installation fra mere end en cd eller dvd

Hvis du installerer fra en cd eller en dvd, som er del af et større sæt, så vil installationsprogrammet spørge dig, om du ønsker at skanne yderligere cd’er eller dvd’er. Hvis du har yderligere cd’er eller dvd’er tilgængelige, vil du sandsynligvis ønske dette, så installationsprogrammet kan bruge pakkerne inkluderet på disse.

Hvis du ikke har yderligere cd’er eller dvd’er, er det ikke et problem: Brug af dem er ikke et krav. Hvis du heller ikke anvendte et netværksspejl (som forklaret i det næste afsnit), kan det betyde, at ikke alle pakker tilhørende opgaverne, du vælger i det næste trin på installationen, kan installeres.

8 Bemærk at programmet som rent faktisk installerer pakkerne kaldes dpkg. Dette program er dog et værktøj på lavt niveau. apt-get er et værktøj på et højere niveau, som vil igangsætte dpkg, hvor det er passende. Det ved, hvordan pakker skal hentes fra din cd, netværket eller andre steder. Det kan også automatisk installere andre pakker som er krævet for, at den pakke du ønsker installeret fungerer korrekt.
KAPITEL 6. BRUG AF DEBIAN-

6.3. BRUG AF INDIVIDUELLE KOMPONENTER

Pakker er inkluderet på cd’er (og dvd’er) efter deres popularitet. Det betyder at de fleste brugere kun bruger den første cd i et sæt og at kun meget få rent faktisk anvender pakker inkluderet på den sidste cd i et sæt.

Det betyder også at køb af eller overførsel og brænding af et fuldt cd-sæt bare er spild af penge, da du aldrig bruger dem. I de fleste tilfælde er du bedre stillet ved kun at hente de første 3-8 cd’er og installere eventuelle yderligere pakker fra internettet via et spejl. Det samme gælder for dvd-sæt: Den første dvd, eller måske de to første dvd’er vil dække de fleste behov.

Hvis du skanner flere cd’er eller dvd’er, så vil installationsprogrammet prompte dig for at udvælge dem, når det skal bruge pakker fra en anden cd/dvd end den aktuelle i drevet. Bemærk at kun cd’er eller dvd’er, som tilhører det samme sæt bør skannes. Rækkefølgen de skannes betyder reelt ikke noget, men skanning af dem i fortøbende rækkefølge vil reducere risikoen for fejl.

6.3.6.1.2 Brug af et netværksspejl

Et spørgsmål som vil blive stillet under de fleste installationer er hvorvidt du ønsker at bruge et netværksspejl som kilde for pakker. I de fleste tilfælde bør standardsvaret være okay, men der er nogle undtagelser.

Hvis du ikke installerer fra en fuld cd eller dvd eller bruger et fuldt cd/dvd-aftryk, så bør du bruge et netværksspejl da du ellers kun vil få et meget minimalt system installeret. Hvis du har en begrænset internetforbindelse er det bedst ikke at vælge opgaven desktop i det næste trin af installationen.

Hvis du installerer fra en enkel fuld cd bruger et fuldt cd-aftrykssæt, så er et netværksspejl ikke krævet, men anbefales stadig da en enkel cd kun indeholder et begrænset antal pakker. Hvis du har en begrænset internetforbindelse, kan det stadig være bedst ikke at vælge et netværksspejl her, men at afslutte installationen med hvad der er tilgængelig på cd’en og selektivt installere yderligere pakker efter installationen (d.v.s. efter du har genstartet i det nye system).

En fordel ved at tilføje et netværksspejl er at opdateringer, som er sket siden cd/dvd-sættet først blev oprettet og er blevet inkluderet i en punktudgivelse, vil blive tilgængelige for installation, og dermed udvides livslængden for dit cd/dvd-sæt uden at gå på kompromis med sikkerheden eller stabiliteten for det installerede system.

Opsumerer: Valg af et netværksspejl er generelt en god ide, undtagen hvis du ikke har en god internetforbindelse.

Hvis den nuværende version af en pakke er tilgængelig fra cd/dvd, så vil installationsprogrammet altid bruge den. Mængden af data som hentes, hvis du vælger et spejl, afhænger der af

1. opgaverne du vælger i det næste trin af installationen,
2. hvilke pakker der kræves for disse opgaver,
3. hvilke af disse pakker befinder sig på cd’erne eller dvd’erne du har skannet, og
4. om opdaterede versioner af pakkerne inkluderet på cd’erne eller dvd’erne er tilgængelige fra et spejl (enten et normalt pakkespejl, eller et spejl for sikkerhed eller stable-updates).

Bemærk at det sidste punkt betyder at, selv hvis du vælger ikke at bruge et netværksspejl, nogle pakker stadig kan hentes fra internettet, hvis der er en sikkerhedsopdatering eller en opdatering fra stable-updates tilgængelig og disse tjenester er blevet konfigureret.

6.3.6.1.3 Vælg et netværksspejl

Hvis du har valgt at bruge et netværksspejl under installationen (valgfri for cd/dvd-installationer; kravet for netboot-aftryk), så vil du blive præsenteret med et liste over netværksspejl, der befinder sig tæt på geografisk (og derfor forhåbentlig er hurtige), baseret på dit landevalg tidligere i installationsprocessen. Valg af den tilbudte standard er normalt fint.

Et spejl kan også angives manuelt ved at vælge “indtast information manuelt”. Du kan så specificere et værtssnavn for spejlet og et valgfrit portnummer. Fra og med Wheezy skal dette være en URL-basis, d.v.s. når der specificeres en IPv6-adresse, så skal der firkantede parenteser omkring, for eksempel “[2001:db8::1]”.

Hvis din computer befinder sig på et netværk kun med IPv6 (hvilket sandsynligvis ikke er tilfældet for den største del af brugere), vil brug af standardspejlet for dit land måske ikke fungere. Alle spejlene i listen kan nås via IPv4, men kun nogle af dem kan bruges via IPv6. Da forbindelsen for individuelle spejl kan ændre sig over tid, er denne
6.3. BRUG AF INDIVIDUELLE KOMPONENTER

6.3.6.2 Valg af og installation af programmer

Under installationsprocessen, får du mulighed for at vælge yderligere programmer, der skal installeres. Frem for at udvælge individuelle pakker fra 83841 tilgængelige pakker, fokuserer dette trin af installationsprocessen på at vælge og installere prædefinerede samlinger af programmer til hurtigt at opsætte din computer, så den kan udføre forskellige opgaver.

I standardbrugerfladen for installationsprogrammet, kan du bruge mellemrum til at skifte mellem valg af en opgave.

Opgiven “skrivebordsmiljø” vil installere et grafisk skrivebordsmiljø.

De forskellige serveropgaver vil installere programmer omtrentlig således. netserver: apache2; printerserver: cups; SSH-server: openssh.

Hvis der under sprogvalget blev valgt et andet sprog end “C”, så vil taskel kontrollere om der er oversættelsesopgaver defineret for det sprog og vil automatisk forsøge at installere relevante oversættelsespakker. Dette inkluderer for eksempel pakker, der indeholder ordlister eller specielle skrifttyper for dit sprog. Hvis et skrivebordsmiljø blev valgt, så vil de dertilhørende oversættelsespakker også blive installeret (hvis tilgængelige).

9 Du bør vide at for at præsentere denne liste så iagnøgter installationsprogrammet programmet taskel. Det kan køres på et senere tidspunkt efter installationen for at installere yderligere pakker (eller fjerne dem), eller du kan bruge et mere fintunet værktøj såsom aptitude. Hvis du er på udkig efter en specifikpakke, så bør du i dag installere pakke, efter installationen, hvor pakke er navnet på pakken du er på udkig efter.
KAPITEL 6. BRUG AF DEBIAN- ...

6.3. BRUG AF INDIVIDUELLE KOMPONENTER

Når du har valgt dine opgaver, så vælg Continue. På dette tidspunkt, vil apt installere pakkerne, som er en del af de valgte opgaver. Hvis et bestemt program kræver yderligere information fra brugeren, vil programmet spørge brugeren under denne proces.

Du skal være opmærksom på, at specielt skrivebordsopgaven er meget stor. Specielt når der installeres fra en normal cd-rom i kombination med et spejl for pakker, der ikke er på cd-rom’en, installationsprogrammet skal måske hente en masse pakker over netværket. Hvis du har en relativ langsom internetforbindelse, kan det tage lang tid. Der er ingen mulighed for at afbryde installationen af pakker, når først den er startet.

Selv når pakker er inkluderet på cd-rom’en, så kan installationsprogrammet stadig finde på at hente fra spejlet, hvis versionen tilgængelig på spejlet er nyere end den inkluderet på cd’rom’en. Hvis du installerer den stabile distribution, kan dette ske efter en punktudgivelse (en opdatering af den oprindelige stabile udgivelse); hvis du installerer fra testdistributionen vil dette ske hvis du bruger et ældre aftryk.

6.3.7 Sikring af at dit system kan startes op

Hvis du installerer en diskløs arbejdsstation, er opstart fra den lokale disk af indlysende årsager ikke en meningsfuld valgmulighed, og dette trin vil blive udeladt.

6.3.7.1 Detektering af andre operativsystemer

Før en opstartsindlæser installerer, vil installationsprogrammet forsøge at kigge efter andre operativsystemer, som er installeret på maskinen. Hvis det finder et understøttet operativsystem, vil du blive informeret om dette under opstartsindlæserens installationstrin, og computeren vil blive konfigureret til at starte disse andre operativsystemer udover Debian.

Bemærk at flere startende operativsystemer på en enkel machine stadig er lidt af en magisk kunststil. Den automatiske understøttelse for detektering og opsætning af opstartsindlæsere til at starte andre operativsystemer varierer per arkitektur og selv per underarkitektur. Hvis det ikke fungerer bør du konsultere din opstartshåndterings dokumentation for yderligere information.

6.3.7.2 Gør systemet opstartsbart med flash-kernel

Da der ingen fælles firmware-grænseflade er på alle ARM-platforme, er de nødvendige trin for at gøre systemet opstartbart på ARM-enheder meget enhedsafhængige. Debian bruger et værktøj kaldt flash-kernel til at håndtere dette. Flash-kernel indeholder en database, som beskriver de specifikke handlinger, der kræver for at gøre systemet opstartbart på diverse enheder. Det detekterer om den nuværende enhed er understøttet, og hvis ja, udfører de nødvendige operationer.

På enheder som starter fra intern NOR- eller NAND-flash-hukommelse, så skriver flash-kernel kernen og den oprindelige ramdisk til denne interne hukommelse. Denne metode er specielt udbredt på ældre armel-enheder. Bemærk venligst at de fleste enheder ikke tillader at have flere kerner og ramdisk i deres interne flashhukommelse, d.v.s. fører flash-kernel på dem overskriver normalt det tidligere indhold af flashhukommelsen!

For ARM-enheder som bruger U-Boot som deres systemfirmware og starter kernen og den oprindelige ramdisk fra ekstern lagermedie (såsom MMC/SD-kort, USB-masselagerenheder eller IDE/SATA-hårddiske), opretter flash-kernel et passende opstartsskript så der automatisk kan startes op uden brugerinteraktion.

6.3.7.3 Fortsæt uden opstartsindlæser

Denne valgmulighed kan bruges til at færdiggøre installationen selv når ingen opstartsindlæser skal installeres, enten fordi arkitekturen/underarkitekturen ikke tilbyder en, eller fordi ingen er ønsket (f.eks. hvis du vil bruge en eksisterende opstartsindlæser).

6.3.8 Afslutning af installationen

Dette er det sidste trin i Debian-installasionsprocessen hvor installationsprogrammet udfører de sidste opgaver. De består hovedsagelig i at rydde op efter debian-installer.
6.3.8.1 Indstilling af systemuret

Installationsprogrammet spørger dig måske om computerens ur er sat til UTC. Normalt undgås dette spørgsmål om muligt og installationsprogrammet forsøger at finde ud af om uret er sat til UTC baseret på f.eks. hvilke andre operativsystemer som er installeret.

I eksperttilstand vil du altid kunne vælge hvorvidt uret er sat til UTC.

På dette tidspunkt vil debian-installer også forsøge at gemme den nuværende tid til systemets udstyrsur. Dette vil blive gjort i enten UTC eller lokal tid, afhængig af valget du lige har foretaget.

6.3.8.2 Genstart systemet

Du vil blive anmodt om at fjerne opstartsmediet (cd, diskettedrev etc.), som du brugte til at starte installationsprogrammet op med. Derefter vil systemet blive genstartet i dit nye Debian-system.

6.3.9 Problemløsning

Komponenterne i dette afsnit er normalt ikke involveret i installationsprocessen, men venter i baggrunden for at hjælpe brugeren i tilfælde af at noget går galt.

6.3.9.1 Gemme installationsloggene

Hvis installationen lykkedes, vil logfilerne oprettet under installationen automatisk blive gemt til /var/log/installer/ på dit nye Debian-system.

6.3.9.2 Brug af skallen og visning af loggene

Der er flere metoder, du kan anvende for at få en skal uden at køre en installation. På de fleste systemer, og hvis du ikke installerer over seriel konsol, er den nemmeste metode at skifte til den anden virtuelle konsol ved at trykke på Left Alt-F2 (på et Mac-tastatur, Option-F2). Brug Venstre Alt-F1 for at skifte tilbage til selve installationsprogrammet.

Hvis du ikke kan skifte konsoller, så er der også et punkt Kør en skal på hovedmenuen, som kan bruges til at starte en skal. Du kan gå til hovedmenuen fra de fleste dialoger ved at bruge knappen Go Back en eller flere gange. Tast exit for at lukke skallen og returnere til installationsprogrammet.

På dette tidspunkt er du startet op fra RAM-disk, og der er et begrænset sæt af Unix-redskaber tilgængelige. Du kan se hvilke programmer, som er tilgængelige med kommandoen ls /bin /sbin /usr/bin /usr/sbin og ved at indtaste help. Skallen er en Bourne-skalklon kaldt ash og den har nogle gode funktioner såsom automatisk fuldførelse og historik.

For at redigere og vise filer bruges tekstredigeringsprogrammet nano. Logfiler for installationssystemet kan findes i mappen /var/log.

BEMÆRK

Selvom du grundlæggende kan udføre alt i en skal, som de tilgængelige kommandoer tillader at du gør, så er muligheden for at bruge en skal der reel kun i tilfælde at, at noget går galt og til at fejlsøge i.

Udførsel af ting manuelt fra skallen kan komme i konflikt med installationsprocessen og medføre fejl eller en ufuldstændig installation. Du skal specielt være opmærksom på at lade installationsprogrammet aktivere din swappartition og ikke selv gøre dette fra en skal.

10 Det vil sige: tryk på tasten Alt på den venstre side af mellemrum og funktionstasten F2 på samme tid.
6.3.10 Installation over netværket

En af de mere interessante komponenter er network-console. Det gør, at du kan udføre en stor del af installationen over netværket via SSH. Med brugen af netværket underforstås at du skal udføre de første trin af installationen fra konsollen, i det mindste til punktet for opsætning af netværket. (Du kan dog automatisk derefter denne del med Afsnit 4.5.)

Denne komponent indlæses ikke i hovedinstallationens menu som standard, så du skal eksplicit anmode om den. Hvis du installerer fra cd, så skal du starte op med mellem prioritet eller ellers starte hovedinstallationens menu og vælge Indlæs installationsprogrammets komponenter fra cd og fra listen over yderligere komponenter vælge network-console: Fortsæt installation eksternt med brug af SSH. Indlæsning indikeres med et nyt menupunkt kaldt Fortsæt installation eksternt med brug af SSH.

Skulle du beslutte at fortsætte med installationen lokalt, så kan du altid trykke Enter, som vil føre dig tilbage til hovedmenuen, hvor du kan vælge en anden komponent.

Skift nu til den anden side af linjen. Som et forhåndskrav skal du konfigurere din terminal for UTF-8-kodning, da det er hvad installationssystemet anvender. Hvis du ikke gør dette, så vil eksternt installation stadig være mulig, men kan møde mærkelige skærmvisninger, såsom ødelagte dialogkanter eller ulæselige ikke-ascii tegn. Etablering af en forbindelse med installationssystemet er så simpel som at taste:

```
$ ssh -l installer install_host
```

hvor install_host enten er navnet eller IP-adressen for computeren som der installeres på. Før det faktiske logind vil fingeraftrykket for det ekserne system blive vist og du skal bekræfte, at det er korrekt.

BEMÆRK

Du kan måske undgå at forbindelsen tabes ved at tilføje indstillingen – o ServerAliveInterval=value når ssh-forbindelsen startes, eller ved at tilføje indstillingen i din ssh-konfigurationsfil. Bemærk dog at i nogle tilfælde vil tilføjelse af denne indstilling også medføre at forbindelsen bliver tabt (for eksempel hvis hold i live-pakker sendes under et kort netværksnedbrud, hvorfor ssh ellers ville have klaret skærene), så den bør kun bruges når krævet.

BEMÆRK

Hvis du installerer flere computere efter hinanden og de har den samme IP-adresse eller værtsnavn, så vil ssh nægte at forbinde til sådanne værter. Årsagen er, at de vil have forskellige fingeraftryk, hvilket normalt er et tegn på et spoofing-angreb. Hvis du er sikker på, at dette ikke er tilfældet, så skal du slette den relevante linje fra ~/.ssh/known_hosts og prøv igen.

* Den følgende kommando vil fjerne en eksisterende post for en vært: ssh-keygen -R <værtsnavn/IP adresse>.

Efter logind vil du blive præsenteret med en opstartskærm, hvor du har to muligheder kaldt Startmenu og Startskal. Den første fører dig til hovedmenuen for installationsprogrammet, hvor du kan fortsætte med installationen som normalt. Den sidste starter en
KAPITEL 6. BRUG AF DEBIAN-

6.4 INDLÆSNING AF MANGLENDE FIRMWARE

skal, hvorfor du kan undersøge og eventuelt rette det eksterne system. Du bør kun starte en SSH-session for installationsmenyen, men kan starte flere sessioner for skaller.

ADVARSEL

Efter du har startet installationen ekstern over SSH, skal du ikke gå tilbage til installationssessionen, der kører på den lokale konsol. Det kan ødelægge databasen som indeholder konfigurationen for det nye system. Dette kan igen medføre en mislykket installation eller problemer med det installerede system.

6.4 Indlæsning af manglende firmware

Som beskrevet i Afsnit 2.2 kræver nogle enheder at firmware indlæses. I de fleste tilfælde vil enheden ikke fungere overhovedet hvis firmwareen ikke er tilgængelig; undertiden er noget af den grundlæggende funktionelitet ikke svækket hvis den mangler og firmwareen er kun krævet for at aktivere yderligere funktioner.

BEMÆRK

Hvilke enheder der skanens og hvilke filsystemer der er understøttet afhænger af arkitekturen, installationsmetoden og stadiet for installationen. Specielt i de tidlige stadijer af installationen vil indlæsning af firmware fra et FAT-formateret diskettedrev eller et USB-drev have størst sandsynlighed for succes.

Bemærk at det er muligt at udelade indlæsning af firmwareen, hvis du ved at enheden også vil fungere uden den, eller hvis enheden ikke er krævet under installationen.

debian-installer spørger kun efter firmware krævet af kernemoduler indlæst under installationen. Ikke alle drivere er inkluderet i %d-i, bemærk at radeon ikke er, så dette gør at funktionerne på nogle enheder ikke er andeledes ved slutningen af installationen end de var ved begyndelsen. Konsekvensen kan være, at noget af dit udstyr ikke bliver brugt i sit fulde potentiale. Hvis du har mistanke om, at dette er tilfældet, eller bare er nysgerrig, så er det en god ide at kigge på resultatet af kommandoen dmesg på det netop opstartede system og søge efter “firmware”.

6.4.1 Forberedelse af et medie

Tarball'er og zip-filer indeholderne nuværende pakker for den mest anvendte firmware er tilgængelige fra:

- https://cdimage.debian.org/cdimage/unofficial/non-free/firmware/

hent bare tarball'en eller zip-filen for den korrekte udgivelse og udpak den til filsystemet på mediet.

Hvis firmwareen du har brug for ikke er inkluderet i tarball'en, så kan du også hente specifikke firmwarepakker fra (den ikke frite del af) arkivet. Det følgende overblik bør vise de mest tilgængelige firmwarepakker men er ikke garanteret fuldstændighed og kan også inkludere ikke-firmwarepakker:

- https://packages.debian.org/search?keywords=firmware

Det er også muligt at kopiere individuelle firmwarefiler til medieet. Løs firmware kan indehentes for eksempel fra et allerede installeret system eller fra en udstyrleverandør.
6.4.2 Firmware og det installerede system

Al firmware indlæst under installationen vil automatisk blive kopieret til det installerede system. I de fleste tilfælde vil det sikre, at enheden som kræver firmwaren også fungerer korrekt når systemet genstartes i det installerede system. Hvis det installerede system kører en anden kerneversion fra installationsprogrammet er der en lille risiko for at firmwareen ikke kan indlæses på grund af forskellene i versionerne.

Hvis firmwaren blev indlæst fra en firmwarepakke vil debian-installer også installere denne pakke for det installerede system og vil automatisk tilføje den ikke-frie del af pakkearkivet i APT's sources.list. Dette har den fordel at firmwareen bør blive opdateret automatisk, hvis en nyere version bliver tilgængelig.

Hvis indlæsningen af firmwaren blev sprunget over under installationen, så vil den relevante enhed ikke fungere korrekt med det installerede system før firmwaren (pakke) er installeret manuelt.

BEMÆRK

Hvis firmwareen blev indlæst fra uafhængige filer, så vil firmwareen kopieret til det installerede system ikke automatisk blive opdateret med mindre, at den tilsvarende firmwarepakke (hvis tilgængelig) installeres efter installationen er færdig.
Kapitel 7

Start op i dit nye Debian-system

7.1 Sandhedens øjeblik

Dit systems første opstart på egen hånd er hvad teknikerne kalder for “den endelige test (»smoke test«)“.

Hvis systemet ikke starter korrekt op, så gå ikke i panik. Hvis installationen lykkedes, er der gode chancer for, at det kun er et mindre problem, som forhindrer systemet i at starte Debian op. I de fleste tilfælde kan sådanne problemer rettes uden at skulle gentage installationen. En mulig måde at rette opstartsproblemer på er at bruge installationsprogrammets indbyggede redningstitstand (se Afsnit 8.6).

Hvis du er ny til Debian og Linux, så har du måske brug for lidt hjælp fra mere erfarne brugere. For mindre udbredte arkitekturer såsom 64-bit ARM, dit bedste valg er at spørge på debian-arm-postlisten. Du kan også indsende en installationsrapport som beskrevet i Afsnit 5.4.5. Vær sikker på at du beskriver dit problem tydeligt og inkludere alle beskeder som vises og som kan hjælpe andre med at diagnosticere problemet.

7.2 Montering af krypterede diskenheder

Hvis du oprettede krypterede diskenheder under installationen og tildelte dem monteringspunkter, så vil du blive anmodt om en adgangsfrase for hver af disse diskenheder under opstarten.

For partitioner krypteret med dm-crypt får du den følgende prompt under opstarten:

```
Starting early crypto disks... part_crypt(starting)
Enter LUKS passphrase:
```

I den første linje af prompten, er `part` navnet på den underliggende partition, f.eks. sda2 eller md0. Du undrer dig nu sikkert over hvilken diskenhed du reelt indtaster adgangsfrasen for. Drejer det sig om din `/home`? Eller til `/var`?

Hvis du kun har en krypteret diskenhed er dette selvfølgelig nemt og du kan bare indtaste adgangsfrasen du brugte ved opsætning af denne diskenhed. Hvis du har opsat flere partitioner krypteret diskenhed under installationen, så er noterne du skrev ned som det sidste trin i Afsnit 6.3.4.6 rigtig gode nu. Hvis du ikke skrev opsætningen mellem `part_crypt` og monteringspunkter før ned, så kan du stadig finde den i `/etc/crypttab` og `/etc/fstab` i dit nye system.

Prompten kan se noget anderledes ud når et krypteret rod-filsystem er monteret. Dette afhænger af hvilke initramfs-generatorer der blev brugt til at oprette initrd'en brugt til at starte systemet op med. Eksemplet nedenfor er for en initrd oprettet med initramfs-tools:

```
Begin: Mounting root file system... ...
Begin: Running /scripts/local-top ...
Enter LUKS passphrase:
```


Efter indtastning af alle adgangsfraser bør opstarten fortsætte som normalt.

7.2.1 Fejlsøgning

Hvis nogle af de krypterede diskenheder ikke kunne monteres på grund af en forkert adgangsfrase, så skal du montere dem manuelt efter opstarten. Der er flere tilfælde.
• Det første tilfælde vedrører rodpartitionen. Når den ikke er monteret korrekt, så vil opstartsprocessen stoppe og du vil skulle genstarte computeren for at forsøge igen.

• Det nemmeste tilfælde er for krypterede diskenheder, der indeholder data som `/home` eller `/srv`. Du kan bare montere dem manuelt efter genstarten.

For dm-crypt er det en smule sværere. Først skal du registrere diskenhederne med device mapper ved at køre:

```
# /etc/init.d/cryptdisks start
```

Dette vil skanne alle diskenheder nævnt i `/etc/crypttab` og vil oprette passende enheder under mappen `/dev` efter indtastning af korrekt adgangsfrase. (Allerede registrerede diskenheder vil blive sprunget over, så du kan gentage denne kommando flere gange uden problemer). Efter succesfuld registrering kan du montere diskenhederne på den normale måde:

```
# mount /monteringspunkt
```

• Hvis en diskenhed indeholdende ikkekritiske systemfiler ikke kunne monteres (`/usr` eller `/var`), bør systemet stadig kunne montere diskenhederne manuelt ligesom i det forrige tilfælde. Du skal dog også (gen)starte alle tjenester der normalt kører i dit normale kørselsniveau, da det er meget sandsynligt, at de ikke blev startet. Den nemmeste måde er bare at genstarte computeren.

7.3 Log ind

Når dit system starter op, vil du blive præsenteret for logind-prompten. Log ind med dit personlige logind og adgangskode, du valgte under installationsprocessen. Dit system er nu klar til brug.

Hvis du er en ny bruger, så kan du kigge i dokumentationen, som allerede er installeret på dit system, når du begynder at bruge det. Der er i øjeblikket flere dokumentationssystemer, arbejde er i gang med at integrere de forskellige typer af dokumentation. Her er nogle få udgangspunkter.

Dokumentation for programmer du har installeret kan findes i `/usr/share/doc/` i en undermappe navngivet efter programmet (eller mere præcist, Debian-pakken som indeholder programmet). Mere omfattende dokumentation er ofte pakket for sig selv i specielle dokumentationspakker som normalt ikke installeres som standard. For eksempel kan dokumentationen for pakkehåndteringstværktøjet **apt** findes i pakkerne `apt-doc` eller `apt-howto`.

En nem måde at vise disse dokumenter med en tekstbaseret browser er at indtaste de følgende kommandoer:

```
$ cd /usr/share/doc/
$ w3m .
```

Punktummet efter kommandoen `w3m` viser indholdet af den aktuelle mappe.

Hvis du har et grafisk skrivebordsmiljø installeret, så kan du også bruge dets internetbrowser. Start internetbrowseren fra programmenuen og indtast `/usr/share/doc/` i adresse adressefeltet.

Du kan også indtaste `info command` eller `man command` for at se dokumentationen for de fleste kommandoer tilgængelige på kommandoprompten. Tast `help` for at se hjælpeteksten for skalkommandoer. Og indtastning af en kommando efterfulgt af `--help` vil normalt vise et kort referat af kommandoenes brug. Hvis resultatet for en komando ruller forbi skærmen, så tast `| more` efter kommanden for at få resultatet til at stoppe før der rulles forbi skærmen. For at se en liste over alle tilgængelige kommandoer, som begynder med et bestemt bogstav, så tast bogstavet efterfulgt af to indryk (tabs).
Kapitel 8

De næste trin og hvordan du kommer videre

8.1 Nedlukning af systemet

For at lukke et kørende Debian GNU/Linux-system ned, så må du ikke genstarte med slukknappen på fronten eller bagsiden af din computer, eller bare slukke for strømmen til computeren. Debian GNU/Linux bør lukkes ned på en kontrolleret måde, ellers kan filer gå tabt og/eller der kan ske skade på harddisken. Hvis du afvikler et skrivebordsmiljø, så er der normalt en indstilling til at “logge ud” i programmenuen, som gør, at du kan lukke ned (eller genstarte) systemet.

8.2 Et kig mod Debian

Debian er en smule anderledes end andre distributioner. Selv om du kender til Linux fra andre distributioner, er der nogle ting, du skal vide om Debian for at holde dit system i en god tilstand. Dette kapitel indeholder materiale, som kan hjælpe dig med at blive orienteret; det er ikke tænkt som en øvelse i hvordan Debian skal anvendes, men er alene en kort oversigt over systemet.

8.2.1 Debian-pakkesystemet

Det vigtigste koncept er Debian-pakkesystemet. Helt grundlæggende erstore dele af dit system under kontrol af pakkesystemet. Dette inkluderer:

- /usr (eksklusive /usr/local)
- /var (du kan lave /var/local og være sikker der)
- /bin
- /sbin
- /lib

For eksempel, hvis du erstatter /usr/bin/perl, vil det fungere, men hvis du opgraderer din perl-pakke, vil filen du placerer der blive erstattet. Ekspertter kan omgå dette ved at placere pakke på “hold” i aptitude.

En af de bedste installationsmetoder er apt. Du kan bruge versionen for kommandolinjen apt eller værktøjer såsom aptitude eller synaptic (som bare er grafske brugerflader for apt). Bemærk at apt vil lade dig sammenføje main, contrib og non-free, så du kan have begrænsede pakker (strengt taget ikke tilhørende Debian) samt pakker fra Debian GNU/Linux på samme tid.

\(^1 \) Under SysV-opstartssystemet havde halt den samme effekt som poweroff, men med systemd som opstartssystem (standarden siden jessie) er deres effekt anderledes.
8.2.2 Yderligere programmer tilgængelige for Debian

Der er officielle og uofficielle programarkiver, som ikke er aktiveret som standard i Debi ans installation. Disse indeholder programmer, som mange synes er vigtige og forventer at have installeret. Information om disse yderligere arkiver kan findes på wikisiden for Debian under titlen The Software Available for Debian’s Stable Release.

8.2.3 Håndtering af programversion

8.2.4 Håndtering af cronjob

Alle job under systemadministratoren ansvar skal placeres i /etc, da de er konfigurationsfiler. Hvis du har et root-cronjob for daglig, ugentlig eller månedlige kørsler, så placer dem i /etc/cron.{daily, weekly, monthly}. Disse startes fra /etc/crontab, og vil blive afviklet i alfabetisk rækkefølge, hvilket serialiserer dem.

På den anden side, hvis du har et cronjob som (a) kræver at blive avviklet via en speciel bruger, eller (b) kræver at blive afviklet på et specielt tidspunkt eller frekvens, så kan du bruge enten /etc/crontab, eller endnu bedre, /etc/cron.d/whatever. Disse bestemte filer har også et ekstra felt som giver mulighed for at fastsætte brugerkontoen hvorunder cornjobbet afvikles.

I begge tilfælde kan du bare redigere filerne og cron vil automatisk bemærke dem. Der er ikke behov for at køre en speciel kommando. For yderligere information se cron(8), crontab(5) og /usr/share/doc/cron/README.

8.3 Yderligere læsning og information

Debians hjemmeside indeholder en stor mængde dokumentation om Debian. Vigtigst er Debian GNU/Linux OSS og Debianreferencen. Et indeks med yderligere Debian-dokumentation er tilgængelig fra Debians dokumentationsprojekt. Debians fællesskab er selvunderstøttende; for at abonnere på en eller flere af Debians postlister, se siden for Postlisteabonnement. Sidste, men ikke mindst, indeholder Debians postlistearchiv en rigdom af information om Debian.

Hvis du har brug for information om et bestemt program, så skal du først prøve man program, eller info program.

En generel kilde til information om GNU/Linux er Dokumentationsprojektet for Linux. Der kan du finde manualer og referencer til anden meget verdifuld information om dele af et GNU/Linux-system.

Linux er en implementering af Unix. Linux Documentation Project (LDP) indsamler et antal manualer og internettøger relaterende til Linux.

Hvis du er ny i brugen af Unix, så bør du gå ud og købe nogle bøger og læse lidt om det. Denne liste over Unix OSS' indeholder et antal af UseNet-dokumenter, som tilbyder en god historisk reference.

8.4 Opsætning af dit system så du kan bruge e-post

I dag er e-post en vigtig del af mange folks liv. Da der er mange muligheder for opsætning, og da en korrekt opsætning er vigtig for mange af Debians redskaber, så vil vi prøve at dække det grundlæggende i dette afsnit.

Der er tre hovedfunktioner, som udgør et e-postsystem. Først er der Postbrugeragenten (MUA), som er programmet en bruger anvender til at lave og læse post. Så er der Postoverførselagenten (MTA) som håndterer overførslen af beskeder fra en computer til den næste. Og sidst er der Postleveringsagenten (MDA), som håndterer leverancen af indgående post til brugerens inboks.

Disse tre funktioner kan udføres af separate programmer, men de kan også kombineres i et eller to programmer. Det er også muligt at have forskellige programmer til at håndtere disse funktioner for forskellige typer af post.

På Linux- og Unixsystemer er mutt historisk en meget populær MUA. Som de fleste traditionelle Linuxprogrammer er programmet tekstbaseret. Det bruges ofte i kombination med exim eller sendmail som MTA og procmail som MDA.

8.4. Standard e-postkonfiguration

Selv om du planlægger at bruge et grafisk postprogram, er det vigtigt, at en traditionel MTA/MDA også er installeret og korrekt opsat på dit Debian GNU/Linux-system. Årsagen er at diverse redskaber der kører på systemet2 kan sende vigtige beskeder via e-post for at informere systemadministratoren om (potentielle) problemer eller ændringer.

Af denne årsag vil pakkerne exim4 og mutt blive installeret som standard (såfremt du ikke fravalgte ”standard”-opgaven under installationen). exim4 er en kombineret MTA/MDA, som er relativ lille men meget fleksibel. Som standard vil programmet blive konfigureret til kun at håndtere e-post lokalt for selve systemet og e-post adresseret til systemadministratoren (root-konto) vil blive leveret til den normale brugerkonto oprettet under installationen3.

Når system-e-post leveres tilføjes den til en fil i /var/mail/account_name. Den leverede e-post kan læses via mutt.

8.4.2 Sende e-post udenfor systemet

Som nævnt tidligere, så er det installerede Debian-system kun opsat til at håndtere e-post lokalt for systemet, ikke til at sende post til andre eller modtage post fra andre.

Hvis du ønsker at exim4 skal håndtere ekstern e-post, så kig i det næste underafsnit for de grundlæggende tilgængelige konfigurationsindstillinger. Sikr dig ved test at post kan sendes og modtages korrekt.

Hvis du forventer at bruge et grafisk postprogram og en postserver fra din internetleverandør (ISP) eller dit firma, så er der reelt ingen grund til at konfigurere exim4 til at håndtere ekstern e-post. Bare konfigurer dit grafiske favoritprogram til at bruge de korrekte servere til at sende og modtage e-post (hvordan er uden for denne manuels område).

I det tilfælde hvor du skal konfigurere individuelle redskaber til korrekt at sende e-post er et sådant redskab f.eks. reportbug, et program som håndterer indsendelse af fejlrapporter omhandlende Debian-pakker. Som standard forvender det at kunne bruge exim4 til atindsende fejlrapporter.

For at sætte reportbug korrekt op til at bruge en ekstern postserver, så køn venligst kommandoen reportbug -- configure og svar ”no” til spørgsmålet om en MTA er tilgængelig. Du vil så blive spurgt om SMTP-serveren, der skal bruges til atindsende fejlrapporter.

8.4.3 Konfiguration af Exim4-posttransportagenten

Hvis du ønsker, at dit system også skal håndtere ekstern e-post, så skal du konfigurere pakken exim44:

```bash
# dpkg-reconfigure exim4-config
```

Efter indtastning af den kommando (som root), så vil du blive spurgt, om du ønsker at opdele konfigurationen i små filer. Hvis du er usikker, så vælg standardindstillingen.

Herefter vil du blive præsenteret for flere gængse postscenarier. Vælg den som er tættet på dine behov.

internetside Dit system er forbundet til et netværk og din post sendes og modtages direkte via SMTP. På de følgende skærm billeder får du nogle får grundlæggende spørgsmål, såsom din maskines postnavn, eller en liste over domæner hvorfra du accepterer eller videresender post.

I mange tilfælde vil smarthost’en være din ISP’s postserver, hvilket gør denne indstilling meget velegnet for opkaldsbrugere. Det kan også være et firmas server eller et andet system på dit eget netværk.

2 Eksempler er: cron, quota, logcheck, aide, ...

3 Videresendelse af post for root til den normale brugerkonto konfigureres i /etc/aliases. Hvis ingen brugerkonto blev oprettet, så vil posten selvfølgelig blive leveret til root-kontoen.

4 Du kan selvfølgelig også fjerne exim4 og erstatte den med en alternativ MTA/MDA.
post sendt af smarthost; ingen lokal post Denne indstilling er grundlæggende den samme som den forrige, med undtagelse af, at systemet ikke vil blive opsat til at håndtere post for et lokalt e-postdomæne. Post på selve systemet (f.eks. for systemadministratoren) vil stadig blive håndteret.

kun lokal levering Dette er valget dit system er konfigureret til som standard.

Hvis ingen af disse scenarier passer til dine behov, eller hvis du skal bruge en mere detaljeret opsætning, så skal du redigere konfigurationsfilerne under mappen `/etc/exim4`, efter at installationen er færdig. Yderligere information om `exim4` kan findes under `/usr/share/doc/exim4`; filen `README.Debian.gz` har yderligere detaljer om konfiguration af `exim4` og forklarer hvor yderligere dokumentation kan findes.

Bemærk at afsendelse af post direkte til internettet, når du ikke har et officielt domænenavn kan medføre, at din post bliver afvist på grund af metoder til at stoppe spam på de modtagne servere. Brug af din ISP’s postserver foretrækkes. Hvis du stadig ikke ønsker at sende post direkte, kan du foretrække at bruge en anden e-postadresse som din MTA, dette er muligt ved at tilføje et punkt i `/etc/email-addresses`.

8.5 Kompilering af en ny kerne

8.6 Gendannelse af et ødelagt system

For at tilgå redningstilstand så vælg `rescue` fra opstartsmenuen, tast `rescue` ved `boot:`-prompten, eller start med `rescue/enable=true`-opstartsparameteren. Du får vist de første få skærmbilder af installationsprogrammet, med en bemærkning i hjørnet af skærmen, som indikerer at det er redningstilstand, ikke en fuld installation. Du skal ikke være nervøs, dit system er ikke ved at blive overskrevet! Redningstilstand bruger bare udstyrets registreringsfunktioner, som er tilgængelige i installationsprogrammet for at sikre at dine diske, netværksenheder, og så videre er tilgængelige for dig, mens du reparerer dit system.

Hvis muligt vil installationsprogrammet nu præsentere dig for en skalprompt i det valgte filsystem, som du kan bruge til at udføre nødvendige reparationer.

Hvis installationsprogrammet ikke kan afvikle en brugbar skal i root-filsystemet, du valgte, på grund af at filsystemet er ødelagt, så vil det udstede en advarsel og tilbyde at give dig en skal i installationsmiljøet i stedet for. Du har måske ikke så mange værktøjer tilgængelige i dette miljø, men de vil ofte være nok til at reparere dit system alligevel. Root-filsystemet du valgte vil blive monteret på mappen `/target`.

I begge tilfælde, efter du afslutter skallen, vil systemet genstarte.

Endelig, bemærk at reparation af ødelagte systemer kan være svært, og denne manual forsøger ikke at dække alle de problemstillinger, der kan gå galt eller hvordan de skal rettes. Hvis du har problemer, så spørg en ekspert.
Bilag A

Installationsmanual

Dette dokument beskriver hvordan du installerer Debian GNU/Linux buster for 64-bit ARM (“arm64”) med den nye debian-installer. Det er en hurtig gennemgang af installationsprocessen, som bør indeholde den information du skal bruge for de fleste detaljer. Når mere information kan være nyttig vil vi henvise til en mere detaljeret forklaring i andre dele af dette dokument.

A.1 Forudsætninger

Hvis du møder fejl under installationen, så se venligst Afsnit 5.4.5 for instruktioner i hvordan de rapporteres. Hvis du har spørgsmål, som ikke kan besvaret af dette dokument, så send dem direkte til postlisten debian-boot (debian-boot@lists.debian.org) eller spørg på IRC (#debian-boot på OFTC-netværket).

A.2 Opstart af installationsprogrammet

Vv og installationsmetoder kræver andre aftryk end cd-aftryk. Afsnit 4.2.1 forklarer hvordan du finder aftryk på Debian-spejl.

Underafsnittene nedenfor vil have detaljer om hvilke aftryk, du bør hente for mulige måde at installere på.

A.2.1 Cd-rom

Netinst cd-aftrykket kan hentes fra Debians cd-spejl, og kan hentes direkte fra cd-aftrykket.

A.2.2 USB-hukommelsesdrev

Det er også muligt at installere fra eksterne USB-lagerenheder. For eksempel et USB-drev være et smart Debian-installationsmedium, som du kan medtage overalt.

Der er andre, mere fleksible måder at oprette et hukommelsesdrev for debian-installer, og det er muligt at få den til at fungere med små hukommelsesdrev. For detaljer se Afsnit 4.3.
A.2.3 Opstart fra netværk

A.2.4 Opstart fra harddisk

A.3 Installation

Når installationsprogrammet starter, så mødes du med en opstartsskærm. Tryk Enter for at starte, eller læs instruktionerne for andre opstartsmetoder og parametre (se Afsnit 5.3).

Efter et stykke tid vil du blive spurgt om at vælge sprog. Brug piletasterne til at vælge et land og tryk på Enter for at fortsætte. Så vil du blive spurgt om at vælge dit land, med valgmuligheder der inkluderer lande hvor dit sprog tales. Hvis det ikke er på den korte liste, er der længere liste med alle landene i verden også tilgængelig.

Du bliver måske spurgt om at bekræfte dit tastaturlayout. Vælg standarden med mindre ud ved bedre.

Læn dig nu tilbage mens debians installationsprogram registrerer dit udstyr, og indlæser resten det skal bruge fra cd, diskette, USB etc.

Nu vil installationsprogrammet prøve at detektere dit netværksudstyr og opsette netværk med DHCP. Hvis du ikke er på et netværk eller ikke har DHCP, så vil du få mulighed for at konfigurere netværket manuelt.

Det næste trin er at indstille dit ur og tidszone. Installationsprogrammet vil forsøge at kontakte en tidserver på internetet for at sikre at uret er indstillet korrekt. Tidszonen er baseret på dit landevalg tidligere og installationsprogrammet vil kun spørge hvis et land har flere zoner.

Nu er det tid til at partitionere dine diske. Først får du mulighed for automatisk at partitionere enten et helt drev eller tilgængelig ledig plads på et drev (se Afsnit 6.3.4.2). Hvis anbefales for nye brugere eller alle som har travlt. Hvis du ikke ønsker at bruge automatisk partitionering så vælg Manual fra menuen.

På den næste skærm vil du se din partitionstabell, hvordan partitionerne vil blive formateret, og hvor de vil blive monteret. Vælg en partition for at ændre eller slette den. Hvis du udførte automatisk partitionering, så bør du være i stand til at vælge Fuldfør partitionering og skriv ændringer til disk fra menuen for at bruge opsætningen. Husk at tildele mindst en partition til swapplads og en partition til / (for at montere det nye system). Se Afsnit 6.3.4 for yderligere information om hvordan partitionernes konfiguration behandles.

Nu formaterer debian-installer dine partitioner med commandoet parted til at oprette basissystemet, hvilket kan tage lidt tid. Dette følges af installationen af en kerne.

Det grundlæggende system som blev installeret tidligere er en fungerende, men meget minimal installation. For å bygge systemet mere funktionelt, skal det næste trin dig mulighed for at installere yderligere pakker ved at vælge opgaver. Før pakker kan installeres skal apt konfigureres, da dette program definerer hvorfra pakkerne vil blive hentet. Pakken apt-designer skal til, og der starter installeret pakkebyggen (se Afsnit 6.3.5.2). Hvis pakkerne ikke tilhører det vein, og der er behov for at behandle pakkerne ved hjælp af apt-designer, pakkebyggen vil ikke kunne starte. Hvis pakkerne tilhører det vein, og der er behov for at behandle pakkerne ved hjælp af apt-designer, pakkebyggen vil kunne starte. Hvis pakkerne tilhører det vein, og der er behov for at behandle pakkerne ved hjælp af apt-designer, pakkebyggen vil kunne starte.

Det sidste trin er at installere en opstartsindlæser. Hvis installationsprogrammet detekterer andre operativsystemer på din computer, så vil de blive tilføjet til opstartsmenuen og du får besked.

Hvis du har brug for yderligere information om installationsprocessen, så se Kapitel 6.
A.4 Send os en installationsrapport

Hvis du med succes foretog en installation med debian-installer, så brug venligst lidt tid på at give os en rapport. Den simpleste måde er at installere pakken reportbug (``apt install reportbug``), konfigurer reportbug som forklaret i Afsnit 8.4.2, og kør `reportbug installation-reports`.

Hvis du ikke fuldførte installationen, så har du sandsynligvis fundet en fejl i installationsprogrammet. For at forbedre installationsprogrammet er det nødvendigt at vi kender til fejlene, så brug venligst lidt tid på at rapportere dem. Du kan bruge en installationsrapport til at rapportere problemer med; hvis installationen slet ikke fungerer, så se Afsnit 5.4.4.

A.5 Og endelig…

Vi håber at din Debian-installation bliver fornøjelig og at du finder Debian nyttig. Du kan eventuelt også læse Kapitel 8.
Bilag B

Automatisering af installationen med preseeding (forhåndskonfiguration)

Dette appendiks forklarer hvordan du forhåndskonfigurerer svar på spørgsmål i debian-installer, så installationen bliver automatisk.

Konfigurationsfragmenterne brugt i dette appendiks er også tilgængelige som et eksempel på en forhåndskonfigureret fil fra https://www.debian.org/releases/buster/example-preseed.txt.

B.1 Introduktion

Forhåndskonfiguration tilbyder en måde at angive svar på spørgsmål, der stilles under installationsprocessen, uden at skulle indtaste dem manuelt, mens installationen er i gang. Dette gør det muligt at automatisere de fleste typer af installationer og endda tilbyde nogle funktioner, som ikke er tilgængelige under normale installationer.

B.1.1 Metoder til forhåndskonfiguration

Den følgende tabel viser hvilke metoder for forhåndskonfiguration, der kan bruges med hvilke installationsmetoder.

<table>
<thead>
<tr>
<th>Installationsmetode</th>
<th>initrd</th>
<th>fil</th>
<th>netværk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd/dvd</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>netboot</td>
<td>ja</td>
<td>nej</td>
<td>ja</td>
</tr>
<tr>
<td>hd-media (inklusive usb-drev)</td>
<td>ja</td>
<td>ja</td>
<td>ja¹</td>
</tr>
</tbody>
</table>

En vigtig forskel mellem metoderne til forhåndskonfiguration er punktet hvor filen til forhåndskonfiguration indlæses og behandles. For initrd-forhåndskonfiguration er dette lige ved starten af installationen, før det første spørgsmål. Forhåndskonfiguration fra kernekommandolinjen sker lige fter. Det er derfor muligt at overskrive konfiguration angivet i initrd ved at redigere kernekommandolinjen (enten i opstartsindlæserens konfiguration eller manuelt på opstarts-tidspunktet for opstartsindlæseren som tillader dette). For filforhåndskonfiguration er dette efter cd- eller cd-aftrykket er blevet indlæst. For netværksforhåndskonfiguration er det lige efter at netværket er blevet konfigureret.

¹ men kun hvis du har netværksadgang og angiver preseed/url på passende vis
B.1.2 Begrensninger

Although most questions used by debian-installer can be preseeded using this method, there are some notable exceptions. You must (re)partition an entire disk or use available free space on a disk; it is not possible to use existing partitions.

B.2 Brug af forhåndskonfiguration

You will first need to create a preconfiguration file and place it in the location from where you want to use it. Creating the preconfiguration file is covered later in this appendix. Putting it in the correct location is fairly straightforward for network preseeding or if you want to read the file off a floppy or usb-stick. If you want to include the file on a CD or DVD, you will have to remaster the ISO image. How to get the preconfiguration file included in the initrd is outside the scope of this document; please consult the developers’ documentation for debian-installer.

An example preconfiguration file that you can use as basis for your own preconfiguration file is available from https://www.debian.org/releases/buster/example-preseed.txt. This file is based on the configuration fragments included in this appendix.

B.2.1 Indlæsning af filen til forhåndskonfiguration

If you are using initrd preseeding, you only have to make sure a file named preseed.cfg is included in the root directory of the initrd. The installer will automatically check if this file is present and load it.

For the other preseeding methods you need to tell the installer what file to use when you boot it. This is normally done by passing the kernel a boot parameter, either manually at boot time or by editing the bootloader configuration file (e.g. syslinux.cfg) and adding the parameter to the end of the append line(s) for the kernel.

If you do specify the preconfiguration file in the bootloader configuration, you might change the configuration so you don’t need to hit enter to boot the installer. For syslinux this means setting the timeout to 1 in syslinux.cfg.

To make sure the installer gets the right preconfiguration file, you can optionally specify a checksum for the file. Currently this needs to be a md5sum, and if specified it must match the preconfiguration file or the installer will refuse to use it.

Opstartsparametre at angive:
- hvis du bruger opstart for nettet:
 preseed/url=http://host/path/to/preseed.cfg
 preseed/url/checksum=5da499872becccfeda2c4872f9171c3d
- eller
 preseed/url=tftp://host/path/to/preseed.cfg
 preseed/url/checksum=5da499872becccfeda2c4872f9171c3d
- hvis du starter op fra en remastered cd:
 preseed/file=/cdrom/preseed.cfg
 preseed/file/checksum=5da499872becccfeda2c4872f9171c3d
- hvis du installerer fra USB-medie (placer prækonfigurationsfilen i
BILAG B. AUTOMATISERING AF INSTALLATIONEN … B.2. BRUG AF FORHÅNDSKONFIGURATION

B.2.2 Brug af opstartsparametre til at forhåndskonfigurere spørgsmål

Hvis en forhåndskonfigurationsfil ikke kan bruges til at forhåndskonfigurere nogle trin, så kan installationen stadig automatiseres, da du kan sende forhåndskonfigurerede værdier på kommandolinjen når installationsprogrammet startes op.

Opstartsparametre kan også bruges hvis du ikke reelt ønsker at bruge forhåndskonfiguration, men bare ønsker at tilbyde et svar på et specifikt spørgsmål. Nogle eksempler hvor dette kan være nyttigt er dokumenteret et andet sted i denne manual.

For at angive en værdi til brug inden i debian-installer, så send bare `sti/til/variabel=verdi` for enhver af variablerne vist i eksemplet i dette appendiks. Hvis en værdi skal bruges til at konfigurere pakker for målsystemet, så skal du foranstille `ejer`2 af variablen som `ejer:sti/til/variabel=verdi`. Hvis du ikke angiver ejeren, vil værdien for variablen ikke blive kopieret til debconf-databasen i målsystemet og forbliver dermed ubrugt under konfiguration af den relevante pakke.

Normalt vil forhåndskonfiguration af et spørgsmål på den måde betyde, at spørgsmålet ikke vil blive stillet. For at angive en specifik standardværdi for et spørgsmål, men stadig få spørgsmålet, så brug “?=” i stedet for “=” som operator. Se også Afsnit B.5.2.

Bemærk at nogle variabler som ofte angives ved opstartsprompten har et kortere alias. Hvis et alias er tilgængeligt, så bruges det i eksemplene i dette appendiks i stedet for den fulde variabel. Variablen `preseed/url` har for eksempel et alias som `url`. Et andet eksempel er `tasksel:tasksel/first`.

Et “---” i opstartstilvalget har speciel betydning. Kerneparametre som fremgår efter det sidste “---” kan kopieres til opstartsindlæserens konfiguration for det installerede system (hvis understøttet af installationsprogrammet for opstartsindlæseren). Installationsprogrammet vil automatisk filtrere tilvalg væk (såsom forhåndskonfigurerede tilvalg), som den genkender.

BEMÆRK

Nuværende Linuxkerner (2.6.9 og senere) accepterer et maksimum på 32 kommandolinjetilvalg og 32 miljøtilvalg, inklusive eventuelle tilvalg tilføjet som standard for installationsprogrammet. Hvis der anvendes højere antal, vil kernen gå i panik (nedbrud). (For tidligere kerner er disse antal lavere).

For de fleste installationer kan nogle af standardtilvalgene i opstartsindlæserens konfigurationsfil, såsom `vga=normal`, fjernes uden problemer, hvilket giver mulighed for at tilføre flere tilvalg for forhåndskonfigurationen.

BEMÆRK

Det er ikke altid muligt at specificere værdier med mellemlrum for opstartsparametre, selv ikke hvis du afgrænses dem med citationstegn.

2 Ejeren af en debconf-variabel (eller skabelon) er normalt navnet på pakken, der indeholder den tilsvarende debconf-skabelon. For variabler brugt i selve installationsprogrammet er ejeren ”d-i”. Skabeloner og variabler kan have mere end en ejer, hvilket hjælper med at bestemme om de kan fjernes fra debconf-databasen, hvis pakken fjernes.

B.2.3 Auto-tilstand

Der er flere funktioner i Debian-installationsprogrammet, som kombineret medfører at ret så simple kommandolinjer på opstartsprompten medfører arbitrære og komplekse tilpassede automatiske installationer.

Dette aktiveres ved at bruge opstartsvalget `Automatiseret installation`, også kaldt `auto` for nogle arkitekturer eller opstartsmetoder. I dette afsnit, er `auto` derfor ikke en parameter, det betyder valg af opstartindstillingen, og tilføjelse af den efterfølgende opstartsparametre på opstartsprompten.
BILAG B. AUTOMATISERING AF INSTALLATIONEN … B.2. BRUG AF FORHÅNDSKONFIGURATION

For at illustrere dette er her nogle eksempler, som kan bruges ved opstartsprompten:

```
auto
url=autoserver
```


Den sidste del af den adresse (d-i/buster/./preseed.cfg) tages fra `auto-install/defaulttroot`. Som standard inkluderer dette at mappen `buster` tillader fremtidige versioner at angive deres eget kodennavn og lade folk migrere videre på en kontrolleret måde. Delen `/./` bruges til at indikere en rod, relativ til hvilke efterfølgende stier kan forankres (for brug i `preseed/include` og `pressed/run`). Dette gør det det muligt at filer angives enten som fulde adesser, stier startende med `/` som dermed forankres eller endda stier relative til stedet hvor den sidste fil til forhåndskonfiguration blev fundet. Dette kan bruges til at konstruere mere flytbare skripter, hvor et helt hierarki af skripter kan flyttes til en ny placering uden at blive ødelagt, for eksempel kopiere filerne ned på et USB-drev, når de startede på en internetserver.

Hvis der ingen lokal DHCP- eller DNS-infrastruktur er, eller hvis du ikke ønsker at bruge standardstien til `preseed.cfg`, så kan du stadig bruge en eksplicit adresse, og hvis du ikke bruger `/./`-elementet, så vil det blive forankret til begyndelsen af stien (dvs. `tredje` `/i adressen`). Her er et eksempel, der kræver minimum understøttelse fra den lokale netværksinfrastruktur:

```
auto url=http://192.168.1.2/path/to/mypreseed.file
```

Måden dette fungerer på er:

- hvis adressen mangler en protokol, så anvendes `http`,
- hvis værtsnavnafsnittet ikke indeholder punktummer, så bliver domænet afledt fra HDCP tilføjet til det, og
- hvis der ikke er nogle `/` efter værtsnavnet, så tilføjes standardstien.

Udover at angive adressen, så kan du også angive indstillinger, som ikke har en direkte påvirkning på opførelsen hos selve `debian-installer`, men som kan sendes videre igennem til skripter angivet via `preseed/run` i den indlæste fil til forhåndskonfiguration. I øjeblikket er det eneste eksempel på dette `auto-install/classes`, der har et alias `classes`. Dette kan bruges således:

```
auto url=http://example.com classes=class_A;class_B
```

Klasserne kan for eksempel betegne typen af system til installation, eller oversættelsen.

Det er selvfølgelig muligt at udvide dette koncept, og hvis du gør det, er det fornuftigt at bruge det automatisk installerede navnerv til dette formål. Så man kan have noget ala dette `auto-install/style`, som så bruges i dine skripter. Hvis du har brug for dette, så næv'n det på postlisten 'debian-boot@lists.debian.org', så vi kan undgå navnervkonflikter, og måske måske et alias for parameteren for dig.

Opstartsvalget `auto` er ikke defineret på alle arkitekturer. Den samme effekt kan opnås ved at tilføje de to parameter `auto=true priority=critical` til kernens kommandolinje. Kerneparameteren `auto` er et alias for `auto-install/enable` og angivelse af den til `true` forsinker spørgsmålene om sprog og tastatur indtil efter, at der har været en mulighed for at forhåndskonfigurere dem, mens `priority` er et alias for `debconf/priority` og angivelse af den til `critical` stopper alle spørgsmål med en lavere prioritet i at blive stillet.

Yderligere indstillinger som kan have interesse under forsøget på at automatiskere en installation mens `DHCP` anvendes: `interface=auto netcfg/dhcp_timeout=60` som får maskinen til at vælge den første levedygtige `NIC` og være tilmødig med at få et svar til dets `DHCP`-forespørgsel.

VINK

Et omfattende eksempel på hvordan denne ramme anvendes, inklusive eksemplskrifter og klasser, kan findes på hjemmesiden for udvikleren. Eksemplerne der viser også mange andre gode effekter, som kan opnås ved kreativ brug af forhåndskonfiguration.
B.2.4 Aliassser nyttig under forhåndskonfiguration

De følgende aliassser kan være nyttige når forhåndskonfiguration (auto-tilstand) anvendes. Bemærk at dette er simple korte aliassser for spørgsmålnavne, og at du altid også skal specificere en værdi: For eksempel, `auto=true` eller `interface=eth0`.

<table>
<thead>
<tr>
<th>Spørgsmålsnavn</th>
<th>Aliassser</th>
</tr>
</thead>
<tbody>
<tr>
<td>priority</td>
<td><code>debconf/priority</code></td>
</tr>
<tr>
<td>fb</td>
<td><code>debian-installer/framebuffer</code></td>
</tr>
<tr>
<td>language</td>
<td><code>debian-installer/language</code></td>
</tr>
<tr>
<td>country</td>
<td><code>debian-installer/country</code></td>
</tr>
<tr>
<td>locale</td>
<td><code>debian-installer/locale</code></td>
</tr>
<tr>
<td>theme</td>
<td><code>debian-installer/theme</code></td>
</tr>
<tr>
<td>auto</td>
<td><code>auto-install/enable</code></td>
</tr>
<tr>
<td>classes</td>
<td><code>auto-install/classes</code></td>
</tr>
<tr>
<td>fil</td>
<td><code>preseed/file</code></td>
</tr>
<tr>
<td>url</td>
<td><code>preseed/url</code></td>
</tr>
<tr>
<td>domain</td>
<td><code>netcfg/get_domain</code></td>
</tr>
<tr>
<td>hostname</td>
<td><code>netcfg/get_hostname</code></td>
</tr>
<tr>
<td>interface</td>
<td><code>netcfg/choose_interface</code></td>
</tr>
<tr>
<td>protocol</td>
<td><code>mirror/protocol</code></td>
</tr>
<tr>
<td>suite</td>
<td><code>mirror/suite</code></td>
</tr>
<tr>
<td>modules</td>
<td><code>anna/choose_modules</code></td>
</tr>
<tr>
<td>recommends</td>
<td><code>base-installer/install-recommends</code></td>
</tr>
<tr>
<td>tasks</td>
<td><code>tasksel:tasksel/first</code></td>
</tr>
<tr>
<td>desktop</td>
<td><code>tasksel:tasksel/desktop</code></td>
</tr>
<tr>
<td>dmraid</td>
<td><code>disk-detect/dmraid/enable</code></td>
</tr>
<tr>
<td>keymap</td>
<td><code>keyboard-configuration/xkb-keymap</code></td>
</tr>
<tr>
<td>preseed-md5</td>
<td><code>preseed/file/checksum</code></td>
</tr>
</tbody>
</table>

B.2.5 Brug af en DHCP-server til at specificere forhåndskonfigurationsfil

It's also possible to use DHCP to specify a preconfiguration file to download from the network. DHCP allows specifying a filename. Normally this is a file to netboot, but if it appears to be an URL then installation media that support network preseeding will download the file from the URL and use it as a preconfiguration file. Here is an example of how to set it up in the dhcpd.conf for version 3 of the ISC DHCP server (the isc-dhcp-server Debian package).

```bash
if substring (option vendor-class-identifier, 0, 3) = "d-i" {
    filename "http://host/preseed.cfg";
}
```

Bemærk at det ovenstående eksempel begrænser dette filnavn til DHCP-klienter, som identificerer sig selv som »d-i«, så det vil ikke påvirke normale DHCP-klienter, men kun installationsprogrammet. Du kan også placere teksten i en stanza for en bestemt vært for at undgå forhåndskonfiguration af alle installationer på dit netværk.

A good way to use the DHCP preseeding is to only preseed values specific to your network, such as the Debian mirror to use. This way installs on your network will automatically get a good mirror selected, but the rest of the installation can be performed interactively. Using DHCP preseeding to fully automate Debian installs should only be done with care.

B.3 Oprettelse af en forhåndskonfigurationsfil

Den forhåndskonfigurerede fil er i et format brugt af kommandoen `debconf-set-selections`. Det generelle format for en linje i en forhåndskonfigureret fil er:

```
<ejerværdi> <spørgsmålsnavv> <spørgsmålstype> <værdi>
```

The file should start with `#_preseed_V1`
Der er nogle få regler at huske, når en forhåndskonfigurationsfil skrives.

- Placer kun et enkelt mellemrum eller indryk mellem type og værdi: Eventuelle yderligere mellemrum vil blive fortolket som tilhørende værdien.

66
• A line can be split into multiple lines by appending a backslash (“\”) as the line continuation character. A good place to split a line is after the question name; a bad place is between type and value. Split lines will be joined into a single line with all leading/trailing whitespace condensed to a single space.

• For debconf variables (templates) used only in the installer itself, the owner should be set to “d-i”; to preseed variables used in the installed system, the name of the package that contains the corresponding debconf template should be used. Only variables that have their owner set to something other than “d-i” will be propagated to the debconf database for the installed system.

• De fleste spørgsmål skal forhåndskonfigureres via værdierne gyldige i engelsk ikke de oversatte værdier. Der er dog nogle spørgsmål (for eksempel i partman) hvor de oversatte værdier skal bruges.

• Nogle spørgsmål bruger en kode som værdi i stedet for den engelske tekst som vises under installationen.

• Start med #_preseed_V1

Den nemmeste måde at oprette en fil for forhåndskonfigurationen er at bruge eksempelfilen i Afsnit B.4 som udgangspunkt og arbejde ud fra den.

En alternativ metode er at udføre en manuel installation og så, efter genstart at bruge debconf-get-selections fra pakken debconf-utils til at dumpe både debconf-databsen og installationsprogrammets cdebconf-database til en enkel fil.

```
$ echo "#_preseed_V1" > file
$ debconf-get-selections --installer >> file
$ debconf-get-selections >> file
```

En fil oprettet på denne måde vil dog have nogle elementer, som ikke skal forhåndskonfigureres og eksempelfilen er et bedre udgangspunkt for de fleste brugere.

BEMÆRK

Denne metode afhænger af det faktum, at i slutningen af installationen, gemmes installationsprogrammets cdebconf-database til det installerede system i /var/log/installer/cdebconf. Da databasen kan indeholde sensitiv information, så kan filerne som standard kun læses af root (administrator).

Mappen `/var/log/installer og alle filer i den vil blive slettet fra dit system, hvis du fjerner pakken installation-report.

For at kontrollere mulige værdier for spørgsmål, så kan du bruge nano for at undersøge filerne i /var/lib/cdebconf mens en installation er i gang. Vis templates.dat for de rå skabeloner og questions.dat for de nuværende værdier og for værdierne tildelt variabler.

For at kontrollere om formatet for forhåndskonfigurationen er gyldig før udførelse af en installation, så kan du bruge kommandoen debconf-set-selections -c preseed.cfg.

B.4 Indhold af forhåndskonfigurationsfilen (for buster)

Konfigurationsgrammen brugt i detteappendiks er også tilgængelige som et eksempel på en forhåndskonfigureret fil fra https://www.debian.org/releases/buster/example-preseed.txt.

Bemærk at dette eksempel er baseret på en installation for Intel x86-arkitektur. Hvis du installerer en anden arkitektur, så kan nogle af eksemplerne (såsom tastaturvalg og installation af opstartsindlæser) være irrelevante og skal erstattes af debconf-indstillinger passende for din arkitektur.

Detaljer om hvordan forskellige komponenter for Debians installationsprogram fungerer kan findes i Afsnit 6.3.

B.4.1 Opsætning af sted

Under en normal installation vil spørgsmål om sted blive spurt først, så disse værdier kan kun forhåndskonfigureres via metoderne hos initrd- eller kerneopstartsparametre. Automatisk tilstand (Afsnit B.2.3) inkluderer indstillingen auto-install/enable=true (normalt via aliasset for forhåndskonfiguration auto). Dette forsinket spørgsmålene om sted, så de kan forhåndskonfigureres med enhver metode.
BILAG B. AUTOMATISERING AF INSTALLATIONEN …

68

B.4. INDHOLD AF…

Stedet kan bruges til at specificere både sprog og land og kan være enhver kombination af et sprog understøttet af debian-installer og et anerkendt land. Hvis kombinationen ikke udgør et gyldigt sted, så vil installationsprogrammet automatisk vælge et sted, som er gyldig for det valgte sprog. For at specificere stedet som en opstartsparametre, så brug `locale=en_US`

<table>
<thead>
<tr>
<th># Forhåndskonfiguration af sted angiver sprog, land og sted..</th>
</tr>
</thead>
<tbody>
<tr>
<td>d-i debian-installer/locale string en_US</td>
</tr>
<tr>
<td># Værdierne kan også forhåndskonfigureres individuelt for større fleksibilitet.</td>
</tr>
<tr>
<td>#d-i debian-installer/language string en</td>
</tr>
<tr>
<td>#d-i debian-installer/country string NL</td>
</tr>
<tr>
<td>#d-i debian-installer/locale string en_GB.UTF-8</td>
</tr>
<tr>
<td># Valgfrit kan yderligere steder angives for oprettelse.</td>
</tr>
<tr>
<td>#d-i localechooser/supported-locales multiselect en_US.UTF-8, nl_NL.UTF-8</td>
</tr>
</tbody>
</table>

Tastaturkonfiguration består af valg af et tastaturkort og (for andre end latinske tastaturkort) en endringstast til at skifte mellem det amerikanske tastaturkort og andre ikke latinske tastaturkort. Kun grundlæggende tastaturkortvarianter er tilgængelige under installation. Avancerede varianter er kun tilgængelige i det installerede system, via dpkg-reconfigure keyboard-configuration.

<table>
<thead>
<tr>
<th># Tastaturvalg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>d-i keyboard-configuration/xkb-keymap select us</td>
</tr>
<tr>
<td># d-i keyboard-configuration/toggle select No toggling</td>
</tr>
</tbody>
</table>

For at undlade tastaturkonfiguration, forhåndskonfigureres keymap med `skip-config`. Dette vil medføre, at kernens tastaturkort forbliver aktiv.

B.4.2 Netværkskonfiguration

Of course, preseeding the network configuration won’t work if you’re loading your preconfiguration file from the network. But it’s great when you’re booting from CD or USB stick. If you are loading preconfiguration files from the network, you can pass network config parameters by using kernel boot parameters.

Hvis du skal vælge en bestemt grænseflade under netopstart før indlæsning af en forhåndskonfigurationsfil fra netværket, så brug en opstartsparameter såsom `interface=eth1`.

Although preseeding the network configuration is normally not possible when using network preseeding (using “preseed/url”), you can use the following hack to work around that, for example if you’d like to set a static address for the network interface. The hack is to force the network configuration to run again after the preconfiguration file has been loaded by creating a “preseed/run” script containing the following commands:

```bash
kill-all-dhcp; netcfg
```

De følgende debconf-variabler er relevante for netværkskonfiguration.

<table>
<thead>
<tr>
<th># Deaktiver netværkskonfiguration helt. Dette er nyttigt for cd-rom-</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># installationer på enheder uden netværk, hvor netværkspørrgsmålne,</td>
<td></td>
</tr>
<tr>
<td># advarsel og lange tidsudløb er til gene.</td>
<td></td>
</tr>
<tr>
<td>#d-i netcfg/enable boolean false</td>
<td></td>
</tr>
<tr>
<td># netcfg vil vælge en grænseflade, der har link hvis muligt. Dette gør, at</td>
<td></td>
</tr>
<tr>
<td># der udelades visning af en liste hvis der er mere end en grænseflade.</td>
<td></td>
</tr>
<tr>
<td>#d-i netcfg/choose_interface select auto</td>
<td></td>
</tr>
<tr>
<td># For at vælge en bestemt grænseflade i stedet for:</td>
<td></td>
</tr>
<tr>
<td>#d-i netcfg/choose_interface select eth1</td>
<td></td>
</tr>
<tr>
<td># For at angive et andet link-registreringstidsudløb (standarden er 3</td>
<td></td>
</tr>
<tr>
<td># sekunder).</td>
<td></td>
</tr>
<tr>
<td># Værdier fortolkes som sekunder.</td>
<td></td>
</tr>
</tbody>
</table>

3 Forhåndskonfiguration af locale til en_NL vil for eksempel medføre en_US.UTF-8 som standardsted for det installerede system. Hvis f.eks. en_GB.UTF-8 foretrækkes i stedet for, så skal værdierne forhåndskonfigureres individuelt.
BILAG B. AUTOMATISERING AF INSTALLATIONEN …

B.4. INDHOLD AF …

Please note that netcfg will automatically determine the netmask if netcfg/get_netmask is not preseeded. In this case, the variable has to be marked as seen for automatic installations. Similarly, netcfg will choose an appropriate address if netcfg/get_gateway is not set. As a special case, you can set netcfg/get_gateway to “none” to specify that no gateway should be used.

B.4.3 Netværskonsol
Brug følgende indstillinger, hvis du ønsker at gøre brug af komponenten network-console for ekstern installation over SSH. Dette giver kun mening, hvis du forventer at udføre den resterende installation manuelt.

```bash
# d-i anna/choose_modules string network-console
# d-i network-console/authorized_keys_url string http://10.0.0.1/openssh-key
# d-i network-console/password password r00tme
# d-i network-console/password-again password r00tme
```

B.4.4 Spejlindstillinger

Afhængig af installationsmetoden du anvender, kan et spejl bruges til at hente yderligere komponenter for installationsprogrammet, for at installere det grundlæggende system og opsætte `/etc/apt/sources.list` for det installerede system.

Parameteren `mirror/suite` bestemmer programpakken for det installerede system.

Parameteren `mirror/udeb/suite` bestemmer programpakken for yderligere komponenter for installationsprogrammet. Den er kun nyttigt at angive denne, hvis komponenterne faktisk hentes over netværket og skal matche programpakken, som blev brugt til at bygge initrd'en for installationsmetoden brugt for installationen. Normalt vil installationsprogrammet automatisk brug den korrekte værdi og der bør derfor ikke være behov for at angive denne.

```
# Hvis du vælger ftp, så skal spejl/land-strengen ikke være angivet.
# d-i mirror/protocol string ftp
d-i mirror/country string manual
d-i mirror/http/hostname string http.us.debian.org
d-i mirror/http/directory string /debian
d-i mirror/http/proxy string
```

B.4.5 Kontoopsætning

Adgangskoden for root-kontoen og navn og adgangskode for den første normale brugers konto kan forhåndskonfigureres. For adgangskoderne kan du enten bruge rene tekstværdier eller crypt(3)-hasher.

```
# Udelad oprettelsen af en root-konto (normal brugerkonto vil kunne anvende sudo).
# d-i passwd/root-login boolean false
# Alternativet, for at undlade oprettelsen af en normal brugerkonto.
# d-i passwd/make-user boolean false

# Root-adgangskode, enten i klar tekst
# d-i passwd/root-password password r00tme
# d-i passwd/root-password-again password r00tme
# eller krypteret via en crypt(3)-hash.
# d-i passwd/root-password-crypted password [crypt(3) hash]
```

For at oprette en normal brugerkonto.

Advarsel

Vær opmærksom på at forhåndskonfiguration af adgangskoder ikke er fuldstændig sikker da alle med adgang til den forhåndskonfigurerede fil vil have viden om disse adgangskoder. Lagring af hashede adgangskoder anses for at være sikker medmindre at en svag hashingalgoritme såsom DES eller MD5 bruges; de giver mulighed for »bruteforce«-angreb. Anbefalede hashingalgoritmer for adgangskoder er SHA-256 og SHA512.
#d-i passwd/user-fullname string Debian User
#d-i passwd/username string debian
Normal brugers adgangskode, enten i klar tekst
#d-i passwd/user-password password insecure
#d-i passwd/user-password-again password insecure
eller krypteret via en crypt(3)-hash.
#d-i passwd/user-password-crypted password [crypt(3) hash]
Opret den første bruger med den specificerede UID i stedet for standarden.
#d-i passwd/user-uid string 1010

Brugerkontoen vil blive tilføjet til nogle opstartsgrupper. For at
omgå dette, så brug følgende.
#d-i passwd/user-default groups string audio cdrom video

Variablerne passwd/root-password-crypted og passwd/user-password-crypted kan også
forhåndskonfigureres med "!" som deres værdi. I det tilfælde, bliver den tilsvarende konto deaktiveret. Dette kan være
nyttigt for root-kontoen, selvfølgelig såfremt en alternativ metode er opsat til at tillade administrative aktiviteter eller
root-logind (for eksempel ved at bruge SSH-nøglegodkendelse eller sudo).

Den følgende kommando (tilgængelig fra pakken whois) kan bruges til at oprette en SHA-512-baseret crypt(3)-
hash for en adgangskode:

 mkpasswd -m sha-512

B.4.6 Ur- og tidszoneopsætning

Kontrollerer om udstyrets ur er sat til UTC.
d-i clock-setup/utc boolean true

Du kan sætte dette til enhver gyldig indstilling for $TZ; se indholdet af
/usr/share/zoneinfo/ for gyldige værdier.
d-i time/zone string US/Eastern

Kontrollerer om NTP skal bruges til at sætte uret under installationen
#d-i clock-setup/ntp boolean true
NTP-server at bruge. Standarden er næstid altid fin her.
#d-i clock-setup/ntp-server string ntp.example.com

B.4.7 Partitionering

Brug af forhåndskonfiguration til at partitionere harddisken er begrænset til det som partman-auto understøttet.
Du kan vælge at partitionere enten eksisterende fri plads på en disk eller en hel disk. Layouttet på disken kan bestemmes
ved at bruge en på forhånd defineret opskrift, en brugeropskrift fra en opskriftsfil eller en opskrift inkluderet i
forhåndskonfigurationsfilen.

Forhåndskonfiguration af avancerede partitionsopsætninger via brug af RAID, LVM og kryptering er understøttet,
men ikke med den fulde fleksibilitet under partitionering under en installation uden forhåndskonfiguration.

Eksemplerne nedenfor viser kun grundlæggende information vedrørende brugen af opskrifter. Se filerne partman-auto-recipe.

ADVARSEL

Identifikationen af diske er afhængige af rækkefølgen, som deres drivere indlæses i. Hvis der er flere diske i systemet, så sikr dig, at den korrekte vil blive valgt, før forhåndskonfiguration anvendes.
B.4.7.1 Partitioneringseksempel

| # If the system has free space you can choose to only partition that space. |
| # This is only honoured if partman-auto/method (below) is not set. |
| # d-i partman-auto/init_automatically_partition select biggest_free |
| # Alternatively, you may specify a disk to partition. If the system has only |
| # one disk the installer will default to using that, but otherwise the device |
| # name must be given in traditional, non-devfs format (so e.g. /dev/sda |
| # and not e.g. /dev/discs/disc0/disc). |
| # For example, to use the first SCSI/SATA hard disk: |
| # d-i partman-auto/disk string /dev/sda |
| # In addition, you’ll need to specify the method to use. |
| # The presently available methods are: |
| # - regular: use the usual partition types for your architecture |
| # - lvm: use LVM to partition the disk |
| # - crypto: use LVM within an encrypted partition |
| d-i partman-auto/method string lvm |
| # You can define the amount of space that will be used for the LVM volume |
| # group. It can either be a size with its unit (eg. 20 GB), a percentage of |
| # free space or the ‘max’ keyword. |
| d-i partman-auto-lvm/guided_size string max |
| # If one of the disks that are going to be automatically partitioned |
| # contains an old LVM configuration, the user will normally receive a |
| # warning. This can be preseeded away... |
| d-i partman-lvm/device_remove_lvm boolean true |
| # The same applies to pre-existing software RAID array: |
| d-i partman-md/device_remove_md boolean true |
| # And the same goes for the confirmation to write the lvm partitions. |
| d-i partman-lvm/confirm boolean true |
| d-i partman-lvm/confirm_nooverwrite boolean true |
| # You can choose one of the three predefined partitioning recipes: |
| # - atomic: all files in one partition |
| # - home: separate /home partition |
| # - multi: separate /home, /var, and /tmp partitions |
| d-i partman-auto/choose_recipe select atomic |
| # Or provide a recipe of your own... |
| # If you have a way to get a recipe file into the d-i environment, you can |
| # just point at it. |
| d-i partman-auto/expert_recipe_file string /hd-media/recipe |
| # If not, you can put an entire recipe into the preconfiguration file in one |
| # (logical) line. This example creates a small /boot partition, suitable |
| # swap, and uses the rest of the space for the root partition: |
| d-i partman-auto/expert_recipe string |
| # boot-root :: |
| | 40 50 100 ext3 |
| # | $primary{ } $bootable{ } |
| # method{ format } format{ } |
| # use_filesystem{ } filesystem{ ext3 } |
| # mountpoint{ /boot } |
| | |
| # 500 10000 1000000000 ext3 |
| # method{ format } format{ } |
| # use_filesystem{ } filesystem{ ext3 } |
| # mountpoint{ / } |
| | |
| # 64 512 300% linux-swap |
| # method{ swap } format{ } |
| | |
BILAG B. AUTOMATISERING AF INSTALLATIONEN …

B.4. INDHOLD AF …

The full recipe format is documented in the file partman-auto-recipe.txt
included in the ‘debian-installer’ package or available from D-I source
repository. This also documents how to specify settings such as file
system labels, volume group names and which physical devices to include
in a volume group.

This makes partman automatically partition without confirmation, provided
that you told it what to do using one of the methods above.
d-i partman-partitioning/confirm_write_new_label boolean true
d-i partman/choose_partition select finish
d-i partman/confirm boolean true
d-i partman/confirm_nooverwrite boolean true

When disk encryption is enabled, skip wiping the partitions beforehand.
#d-i partman-auto-crypto/erase_disks boolean false

B.4.7.2 Partitionering med brug af RAID

Du kan også bruge forhåndskonfiguration til at opsætte partitioner på program-RAID-arrayer. Understøttet er RAID-
niveauerne 0, 1, 5, 6 og 10, der opretter degraded arrayer og specificerer ledige enheder.

ADVARELS

Denne type af automatiseret partitionering er nem at få gjort forkert. Det er også
funktionalitet som modtager forholdsvis lidt test fra udviklerens side hos debian-
installer. Ansvaret for at de forskellige opskrifter er korrekte (så de giver me-
ing og ikke er i konflikt) ligger hos brugeren. Kontroller /var/log/syslog hvis
du får problemer.

Metoden skal være »raid«.
d-i partman-auto/method string raid
Specifikcer diskene der skal partitioneres. De får alle samme layout,
så dette vil kun fungere hvis diskene er af samme størrelse.
d-i partman-auto/disk string /dev/sda /dev/sdb

Derefter skal du angive de fysiske partitioner.
d-i partman-auto/expert_recipe string
multiraid ::
1000 5000 4000 raid
$primary{ } method(raid }
.
64 512 300% raid
method(raid }
.
500 10000 1000000000 raid
method{ raid }
.
Til sidst skal du angive hvordan de tidligere definerede partitioner skal
bruges i RAID-opsætningen. Husk at bruge de korrekte partitionsnumre
for logiske partitioner. RAID-niveauerne 0, 1, 5, 6 og 10 er understøttet;
enheder adskilles med »#«.
Parametre er:
<raidtype> <devcount> <sparecount> <fstype> <mountpoint>
<devices> <sparedevices>

d-i partman-auto-raid/recipe string
1 2 0 ext3 /
/dev/sda1#/dev/sdb1
.

73
B.4.7.3 Kontrol af hvordan partitionerne monteres

Normally, filesystems are mounted using a universally unique identifier (UUID) as a key; this allows them to be mounted properly even if their device name changes. UUIDs are long and difficult to read, so, if you prefer, the installer can mount filesystems based on the traditional device names, or based on a label you assign. If you ask the installer to mount by label, any filesystems without a label will be mounted using a UUID instead.

Enheder med stabile navne, såsom LVM logiske diskenehder, vil fortsætte med at bruge deres traditionelle navne frem for UUID'er.

ADVAREL

Traditionelle enhedsnavne kan ændre sig baseret på rækkefølgen hvormed kernen registrerer enheder ved opstart, hvilket kan medføre at det forkerte filsystem monteres. Tilsyneladende vil etiketter ramle sammen, hvis vi tilslutter en ny disk eller et USB-drev og hvis det sker, vil dit systems opførsel, når startet, være tilfældigt.

B.4.8 Installation af det grundlæggende system

Der er faktisk ikke meget som kan forhåndskonfigureres på dette trin af installationen. De eneste spørgsmål, der stilles, vedrører installationen af kernen.

ADVAREL

(Meta)pakken for kerneaftryk at installere; »none« kan bruges hvis ingen kerne skal installeres.

B.4.9 Apt-opsætning

Opsetning af /etc/apt/sources.list og grundlæggende konfigurationsindstillinger er fuldt automatiseret baseret på din installationsmetode og svarer til tidligere spørgsmål. Du kan valgfrit tilføje andre (lokale) arkiver.
Du kan vælge at installere programmer fra non-free og contrib.

Du kan vælge at installere enhver kombination af opgaver, som er tilgængelige. Tilgængelige opgaver, da dette skrives, inkluderer:

- standard (standardværktøjer)
- desktop (grafisk skrivebord)
- gnome-desktop (GNOME-skrivebord)
- xfce-desktop (XFCE-skrivebord)
- kde-desktop (KDE Plasma-skrivebord)
- cinnamon-desktop (Cinnamon-skrivebord)
- mate-desktop (MATE-skrivebord)
- lxde-desktop (LXDE-skrivebord)
- web-server (netserver)
- print-server (printserver)
- ssh-server (SSH-server)

Du kan også vælge ikke at installere opgaver og tvinge installationen af et sæt af pakke igennem på en anden måde. Vi anbefaler altid inkludering af standardopgaven.

Hvis du ønsker at installere nogle individuelle pakker udover pakkerne installeret af tasks, så kan du bruge parameteren pkgsel/include. Verdien for denne parameter kan være en liste af pakker adskilt af enten kommaer eller mellemrum, som gør at den kan nemt kan bruges på kernes kommandolinje.
BILAG B. AUTOMATISERING AF INSTALLATIONEN ...

B.5. AVANCEREDE INDSTILLINGER

#tasksel tasksel/first multiselect standard, web-server, kde-desktop

Individual additional packages to install
#d-i pkgsel/include string openssh-server build-essential
Whether to upgrade packages after debootstrap.
Allowed values: none, safe-upgrade, full-upgrade
#d-i pkgsel/upgrade select none

Some versions of the installer can report back on what software you have
installed, and what software you use. The default is not to report back,
but sending reports helps the project determine what software is most
popular and include it on CDs.
#popularity-contest popularity-contest/participate boolean false

B.4.11 Afslutning af installationen

Under installationer fra seriel konsol, er den normale virtuelle konsol
(VT1~VT6) normalt deaktiveret i /etc/inittab. Aktiver den næste linje for
at forhindre dette.
#d-i finish-install/keep-consoles boolean true

Undgå den sidste besked om at installationen er færdig.
d-i finish-install/reboot_in_progress note

Dette vil forhindre installationsprogrammet i at skubbe cd’en ud under
genstarten, hvilket er nyttigt i nogle situationer.
#d-i cdrom-detect/eject boolean false

Sådan lukkes installationsprogrammet ned, når det er færdigt, men undgår
at genstarte i det installerede system.
#d-i debian-installer/exit/halt boolean true
Dette vil slukke for strømmen i stedet for bare at stoppe det.
#d-i debian-installer/exit/poweroff boolean true

B.4.12 Forhåndskonfiguration af andre pakker

Afhængig af hvilke programmer du vælger at installere, eller hvis noget
går galt under installationsprocessen, så er det muligt at andre spørgsmål
kan stilles. Du kan selvfølkelig også forhåndskonfigurere disse. For en liste
over alle de mulige spørgsmål, der kan stilles under en installation, udføres en
installation, og disse kommandoer afvikles:
debconf-get-selections --installer > file
debconf-get-selections >> file

B.5 Avancerede indstillinger

B.5.1 Kørsel af tilpassede kommandoer under installationen

En meget funktionsrig og fleksibel valgmulighed tilbudt af værktøjerne til forhåndskonfiguration er muligheden for at
afvikle kommandoer eller skripter på bestemte steder under installationen.

Når filsystemet for målsystemet er monteret, så er det tilgængeligt i /target. Hvis en installation-cd bruges, når
den er monteret, er den tilgængelig under /cdrom.

d-i preseeding is inherently not secure. Nothing in the installer checks
for attempts at buffer overflows or other exploits of the values of a
preconfiguration file like this one. Only use preconfiguration files from
trusted locations! To drive that home, and because it’s generally useful,
BILAG B. AUTOMATISERING AF INSTALLATIONEN … B.5. AVANCEREDE INDSTILLINGER

B.5.2 Brug af forhåndskonfiguration til at ændre standardværdier

It is possible to use preseeding to change the default answer for a question, but still have the question asked. To do this the `seen` flag must be reset to “false” after setting the value for a question.

```
d-i foo/bar string value
```

The same effect can be achieved for all questions by setting the parameter `presseed/interactive=true` at the boot prompt. This can also be useful for testing or debugging your preconfiguration file.

Note that the “d-i” owner should only be used for variables used in the installer itself. For variables belonging to packages installed on the target system, you should use the name of that package instead. See the footnote to Afsnit B.2.2.

If you are preseeding using boot parameters, you can make the installer ask the corresponding question by using the “?=” operator, i.e. `foo/bar?=value` (or `owner:foo/bar?=value`). This will of course only have effect for parameters that correspond to questions that are actually displayed during an installation and not for “internal” parameters.

For yderligere fejlsøgningsinformation bruges opstarstparameteren `DEBCONF_DEBUG=5`. Dette vil medføre at debconf udskriver langt flere detaljer om den nuværende opsætning af hver variabel og om dens status igennem hver pakkes installationsskripter.

B.5.3 Kædeindlæsning af forhåndskonfigurerede filer

Det er muligt at inkludere andre forhåndskonfigurationsfiler fra en forhåndskonfigurationsfil. Enhver indstilling i disse filer vil overskrive eksisterende indstillinger fra filer indlæst tidligere. Dette gør det muligt at placere, for eksempel, generelle netværksindstillinger for din placering i en fil og mere specifikke indstillinger for bestemte konfigurationer i andre filer.

```
# Mere end en fil kan angives, adskilt af mellemrum; alle vil blive
# indlæst. De inkluderede filer kan have egne preseed/include-direktiver.
# Bemærk at hvis filnavne er relative, så tages de fra den samme mappe
# som forhåndskonfigurationsfilen, som inkluderer dem.
d-i preseed/include string x.cfg
```

```
# Installationsprogrammet kan valgfrit verificere kontrolsummer for filer
# til forhåndskonfiguration. I øjeblikket er kun md5sums understøttet, angiv
# md5sums i den samme rækkefølge som listen med filer til inklusion.
d-i preseed/include/checksum string 5da499872beccc4eda2c4872f9171c3d
```

```
# Mere fleksibelt, så afvilkler dette en skalkommando og hvis den viser navnene
# på forhåndskonfigurationsfiler, så inkluder disse filer.
d-i preseed/include_command \n#    string if [ "'hostname'" = 'bob' ]; then echo bob.cfg; fi
```

```
# Mest fleksibelt, så hentes her et program der afvikles. Programmet
```
Det er også muligt at kædeindlæse (chainload) fra initrd- eller filforhåndskonfigurationsfasen, til netværksforhåndskonfiguration ved at angive preseed/url i de tidligere filer. Dette vil medføre at netværksforhåndskonfiguration udføres når netværket startes op. Du skal være omhyggelig når dette udføres, da der vil være to distinkte kørsler ved forhåndskonfiguration, hvilket for eksempel betyder at du får en anden chance for at afvikle kommandoen preseed/early, den den efter at netværket er i gang.
Bilag C

Partitionering for Debian

C.1 Opsætning af partitioner og størrelser for Debian

Som minimum kræver GNU/Linux en partition for sig selv. Du kan have en enkel partition, der indeholder hele operativsystemet, programmer og dine personlige filer. Manage mener også at en separat swap-partition er nødvendig, selvom det ikke helt er korrekt. “Swap” er midlertidigt plads for et operativsystem, hvis systemet kan bruge disklagere som ”virtuel hukommelse”. Ved at placere swap på en separat partition kan Linux gøre mere effektiv brug af den. Det er muligt at tvinge Linux til at bruge en normal fil som swap, men det anbefales ikke.

De fleste vælger dog at give GNU/Linux mere end det minimale antal partitioner. Der er to årsager til at du måske ønsker at bryde filsystemet op i et antal mindre partitioner. Den første er sikkerhed. Hvis der sker noget, der ødelægger filsystemet, så bliver kun en partition påvirket. Du kan derfor erstatte (fra sikkerhedskopier som du omhyggeligt har opbevaret) en del af dit system. Som minimum bør du overveje at oprette hvad der kaldes for en “rodpartition”. Denne indeholder de væsentligste komponenter for dit system. Hvis andre partitioner bliver ødelagt, så kan du stadig starte op i GNU/Linux for at rette systemet. Dette kan spare dig for problemerne ved at skulle geninstallere systemet fra bunden af.

Den anden årsag er generelt mere vigtigt i en forretningsmæssig opsætning, men afhænger reelt af din brug af maskinen. For eksempel, kan en postserver der spænmes med e-post nemt fylde en partition op. Hvis du har gjort /var/mail til en separat partition på postserveren, så vil de meste af systemet stadig fungere, selv om du bliver spammet.

Den eneste ulempe ved at bruge flere partitioner er, at det ofte er svært at vide på forhånd, hvad dine behov bliver. Hvis du laver en partition for lille, så skal du enten geninstallere systemet eller du må konstant flytte rundt på filer for at gøre plads ledig på den for lille partition. På den anden side, hvis du gør partitionen for stor, så spilder du plads, som kunne bruges andre steder. Diskplads er billig nu om dage, men hvorfor spilde sine penge?

C.2 Mappetræet

Debian GNU/Linux overholder Filesystem Hierarchy Standard for mappe- og filnavngivning. Denne standard giver brugere og programmer mulighed for at forudsige placeringen af filer og mapper. Rootniveaumappen er repræsenteret af skråstreg /. På rodniveau inkluderer alle Debian-systemer disse mapper:

<table>
<thead>
<tr>
<th>Mappe</th>
<th>Indhold</th>
</tr>
</thead>
<tbody>
<tr>
<td>bin</td>
<td>Essentielle binære filer for kommandoer</td>
</tr>
<tr>
<td>boot</td>
<td>Statiske filer for opstartsindlæseren</td>
</tr>
<tr>
<td>dev</td>
<td>Enhedsfiler</td>
</tr>
<tr>
<td>etc</td>
<td>Værtspecifik systemkonfiguration</td>
</tr>
<tr>
<td>home</td>
<td>Brugerens hjemmemapper</td>
</tr>
<tr>
<td>lib</td>
<td>Essentielle delte biblioteker og kernemoduler</td>
</tr>
<tr>
<td>media</td>
<td>Indholder monteringspunkter for udskiftelige medier</td>
</tr>
<tr>
<td>mnt</td>
<td>Monteringspunkt for monteret et filsystem midlertidigt</td>
</tr>
<tr>
<td>proc</td>
<td>Virtuel mappe for systeminformation</td>
</tr>
<tr>
<td>root</td>
<td>Hjemmemappe for root-brugeren</td>
</tr>
<tr>
<td>run</td>
<td>Variable data for kørelsetid</td>
</tr>
<tr>
<td>sbin</td>
<td>Essentielle binære filer for systemet</td>
</tr>
<tr>
<td>sys</td>
<td>Virtuel mappe for systeminformation</td>
</tr>
</tbody>
</table>
Det følgende er en list over vigtigste overvejeles jævnfør mapper og partitioner. Bemærk at diskforbruget varierer meget med systemkonfiguration og specifikke brugsmønstre. Anbefalingerne her er generelle vejledninger og tilbyder et udgangspunkt for partitionering.

• Rodpartitionen / skal altid fysisk indeholde /etc, /bin, /sbin, /lib og /dev, ellers vil du ikke kunne starte op. Typiske er 250–350 MB krævet for rodpartitionen.

• /usr: indeholder alle brugerprogrammer (/usr/bin), biblioteker (/usr/lib), dokumentation (/usr/share/doc), etc. Dette er den del af filsystemet som generelt bruger mest plads. Du bør tildele mindst 500 MB i diskplads. Denne mængde bør øges afhængig af antallet og akketyperne du planlægger at installere. En generøs arbejdstation eller serverinstallation bør indeholder 4–6 GB.

• Det anbefales nu at have /usr på root-partitionen /, ellers kan det medføre problemer på opstartstidspunktet. Det betyder, at du skal have mindst 600–750 MB diskplads for rodpartitionen inklusive /usr, eller 5–6 GB for en arbejdstation eller en serverinstallation.

• /var: variable data såsom nyhedsartikler, e-post, netsider, databaser, pakkesystemets mellemlager etc. vil blive placeret under denne mappe. Størrelsen af denne mappe afhænger i høj grad på brugen af dit system, men for de fleste være dikeret af pakkehåndteringens ekstra forbrug. Hvis du udfører en fuld installation af så godt som alt Debian kan tilbyde, i en session, bør 2-3 GB plads for /var være tilstrækkelig. Hvis du installerer styvstyk (det vil sige, installere tjenester og redskaber efterfulgt tekststumper, så X, ...), så kan du nøjes med 300–500 MB. Hvis harddiskplads er dyrt og du planlægger at udføre væsentlige systemopdateringer, så kan du nøjes med så lidt som 30 eller 40 MB.

C.3 Anbefalet partitioneringsskema

For nye brugere, personlige Debian-bokse, hjemmesystemer og andre enkel bruger-systemer, er en enkel /-partition (plus swap) sandsynligvis den simpliceste måde at gå i gang. Hvis din partition er større end omkring 6 GB, så vælg ext3 som din partitionstype. Ext2-partitioner kræver periodisk integritetskontrol af filsystemet, og dette kan medføre forsinkelser under opstart, når partitionen er stor.

For systemer med flere brugere eller systemer med en masse displads, er det bedst at placere /var, /tmp, og /home på hver deres partition adskilt fra partitionen / partition.

Du skal måske bruge en separat partition /usr/local, hvis du planlægger at installere mange programmer, som ikke er en del af Debian-distributionen. Hvis din maskine skal være en postserver, så kan det være en god ide at gøre /var/mail til en separat partition, for eksempel er 20–50 MB, en god ide. Hvis du opsætter en server med en masse brugerkonto, er det generelt en god ide at have en adskilt, stor partition for /home. Generelt er den ideelle partitionering forskellig fra computer til computer afhængig af computerens brug.

For meget komplekse systemer, bør du se Multi Disk-manualen. Denne indeholder dybegående information, hovedsagelig af interesse for ISP’er og folk som opsætter servere.

Med respekt for problemstillingen for swappartitionens størrelse, så er der mange meninger. En trommefingerregel som fungerer godt er at bruge så meget swap som du har systemhukommelse. Den bør, i de fleste tilfælde, ikke være
mindre end 16 MB. Selvfølgelig er der undtagelser til denne regel. Hvis du forsøger at løse 10.000 samtidige ligninger på en maskine med 256 MB hukommelse, så skal du sandsynligvis bruge en gigabyte (eller mere) swap.

På nogle 32-bit arkitekture (m68k og PowerPC), er den maksimale størrelse for en swappartition 2 GB. Det bør være nok for næsten alle installationer. Hvis dit swapkrav er meget højt, så bør du eventuelt prøve at sprede swappen over forskellige diske (også kaldt for "spindles") og, hvis muligt, forskellige SCSI- eller IDE-kanaler. Kernen vil balancere swapbrug mellem flere swappartitioner, hvilket giver bedre ydelse.

Som et eksempel, kan en gammel maskine have 32 MB ram og et 1,7 GB IDE-drev på /dev/sda. Der er måske en 500 MB partition for et andet operativsystem på /dev/sda1, en 32 MB swappartition på /dev/sda3 og omkring 1,2 GB på /dev/sda2 som Linuxpartitionen.

For en cirka estimering af den forbrugte plads, efter at din systeminstallation er færdig, for opgaver du er interesseret i, så se Afsnit D.2.

C.4 Enhedsnavne i Linux

Linuxdiske og partitionsnavne kan være forskellige fra andre operativsystemer. Du skal kende navnene som Linux bruger, når du opretter og monterer partitioner. Her er det grundlæggende navneskema:

- Det første diskettedrev er navngivet /dev/fd0.
- Det andet diskettedrev er navngivet /dev/fd1.
- Den første harddisk registreret er navngivet /dev/sda.
- Den anden harddisk er navngivet /dev/sdb, og så videre.
- Den første SCSI-cd-rom er navngivet /dev/scd0, også kendt som /dev/sr0.

Partitionerne på hver disk er repræsenteret ved at tilføje et decimaltal til disknavnet: sda1 og sda2 repræsenterer de første og anden partitioner for det første SCSI-diskdrev i dit system.

Bemærk, at hvis du har to SCSI-værtsbusadaptørene (dvs. controllere), så kan rækkefølgen for drevene blive forstyrret. Den bedste løsning i dette tilfælde er at kigge på opstartsbeskederen, hvis vi antager, at du kender drevmodellerne og/eller kapaciteten.

C.5 Debian - partitioneringsprogrammer

Flere variationer af partitioneringsprogrammer er blevet tilpasset af Debian-udviklere til at fungere på forskellige typer af harddiske og computerarkitekturer. Her følger en liste over programmer, som er egnede for din arkitektur.

partman Anbefalet partitioneringsværktøj i Debian. Denne schweitzerkniv kan også ændre størrelse på partitioner, oprette filsystemer og tildele dem til monteringspunkter.

fdisk Det originale Linux-diskpartitioneringsprogram, godt for guruer.

Vær forsigtig hvis du har eksisterende FreeBSD-partitioner på din maskine. Installationskernerne inkluderer understøttelse for disse partitioner, men den måde som fdisk repræsenterer dem (eller ej) kan gøre at enhedsnavnene er forskellige. Se Linux+FreeBSD HOWTO.

cfdisk Et simpelt fuldskærms diskpartitioneringsprogram for resten af os.

Bemærk at cfdisk overhovedet ikke forstår FreeBSD-partitioner, og, igen, enhedsnavne kan være forskellige som et resultat heraf.

Et af disse programmer vil blive kørt som standard når du vælger Partitionsdiske (eller lignende). Det kan være muligt at bruge et andet partitioneringsværktøj fra kommandolinjen på VT2, men dette anbefales ikke.
Diverse forklaringer

D.1 Linux-enheder

I Linux kan diverse specielle filer findes i mappen /dev. Disse filer kaldes for enhedsfiler og opfører sig som ordinære filer. De mest gængse typer af enhedsfiler er for blokenehder og tegnenheder. disse filer er en grænseflade til den faktiske driver (del af Linux-kernen) som igen tilgår udstyret. En anden, mindre udbredt, type enhedsfil er navngivet pipe. De vigtigste enhedsfiler er vist i tabellerne nedenfor.

<table>
<thead>
<tr>
<th>Filenummer</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>fd0</td>
<td>1. diskettedrev</td>
</tr>
<tr>
<td>fd1</td>
<td>2. diskettedrev</td>
</tr>
<tr>
<td>sda</td>
<td>Første harddisk</td>
</tr>
<tr>
<td>sdb</td>
<td>Anden harddisk</td>
</tr>
<tr>
<td>sda1</td>
<td>Første partition på den første harddisk</td>
</tr>
<tr>
<td>sdb7</td>
<td>7. partition for den anden harddisk</td>
</tr>
<tr>
<td>sr0</td>
<td>Første cd-rom</td>
</tr>
<tr>
<td>sr1</td>
<td>Anden cd-rom</td>
</tr>
<tr>
<td>ttyS0</td>
<td>Seriel port 0, COM1 under MS-DOS</td>
</tr>
<tr>
<td>ttyS1</td>
<td>Seriel port 1, COM2 under MS-DOS</td>
</tr>
<tr>
<td>psaux</td>
<td>PS/2-musenhed</td>
</tr>
<tr>
<td>gpmdata</td>
<td>Pseudo-enhed, gentagelsesdata fra GPM-dæmon (mus)</td>
</tr>
<tr>
<td>cdrom</td>
<td>Symbolisk henvisning til cd-rom-drevet</td>
</tr>
<tr>
<td>mouse</td>
<td>Symbolisk henvisning til muse-enhedsfilen</td>
</tr>
<tr>
<td>null</td>
<td>Alt skrevet til denne enhed vil forsvinde</td>
</tr>
<tr>
<td>zero</td>
<td>Man kan uendeligt læse nuller ud af denne enhed</td>
</tr>
</tbody>
</table>

D.1.1 Opsætning af din mus

Bestemte kernemoduler skal indlæses for at din mus fungerer. I de fleste tilfælde detekteres de korrekte moduler
automatisk, men ikke altid for ældre serielle mus samt bus-mus\(^1\), som er ret så sjældne undtaget på meget gamle computere. Overblik over Linux-kernemoduler krævet for forskellige musetyper:

<table>
<thead>
<tr>
<th>Module</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>psmouse</td>
<td>PS/2-mus (bør detekteres automatisk)</td>
</tr>
<tr>
<td>usbhid</td>
<td>USB-mus (bør detekteres automatisk)</td>
</tr>
<tr>
<td>sermouse</td>
<td>De fleste serielle mus</td>
</tr>
<tr>
<td>logibm</td>
<td>Bus-mus forbundet til Logitechs adapterkort</td>
</tr>
<tr>
<td>inport</td>
<td>Bus-mus forbundet til ATI- eller Microsoft InPort-kort</td>
</tr>
</tbody>
</table>

For at indlæse et musedrivermodul, så kan du bruge kommandoen `modconf` (fra pakken med det samme navn) og se i kategorien `kernel/drivers/input/mouse`.

D.2 Diskpladskrævet for opgaver

En standardinstallation for amd64-arkitekturen, inklusive alle standardpakker og brug af standardkernen, fylder 933MB diskplads. En minimal basisinstallation, uden ”Standardsystem”-opgaven valgt, vil benytte 701MB.

VIGTIGT

I begge tilfælde er dette det faktiske diskforbrug brugt efter installationen er færdig og eventuelle midlertidige filer er slettet. Tallene medtager heller ikke pladsbehov for filsystemet, for eksempel for journalfiler. Dette betyder at signifikant mere diskplads er krævet både under installationen og under normal brug.

Den følgende tabel viser størrelser rapporteret af aptitude for opgaverne vist i tasksel. Bemærk at nogle opgaver har overlappende bestanddele, så at den samlede installerede størrelse for to opgaver sammenlagt kan være mindre end det samlede beløb indhentet ved at lægge tallene sammen.

Som standard vil installationsprogrammet intallere GNOME-skrivebordsmiljøet, men alternative skrivebordsmiljøer kan vælges ved enten at bruge en af de specielle cd-aftryk eller ved at specificere det ønskede skrivebordsmiljø når installationsprogrammet startes op (se Afsnit 6.3.6.2).

Bemærk at du skal tilføje størrelserne vist i tabellen til størrelsen for standardinstallationen når du skal bestemme størrelsen for partitionerne. Det meste af den angivne størrelse vist som ”Instalteret størrelse” vil blive lagt i `/usr` og i `/lib`; størrelsen vist som ”Overført størrelse” er (midlertidigt) krævet i `/var`.

<table>
<thead>
<tr>
<th>Opgave</th>
<th>Installeret størrelse (MB)</th>
<th>Størrelse at hente (MB)</th>
<th>Plads krævet for installation (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skrivebordsmiljø</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• GNOME (standard)</td>
<td>2724</td>
<td>785</td>
<td>3509</td>
</tr>
<tr>
<td>• KDE Plasma</td>
<td>4244</td>
<td>1280</td>
<td>5524</td>
</tr>
<tr>
<td>• Xfce</td>
<td>2342</td>
<td>657</td>
<td>2999</td>
</tr>
<tr>
<td>• LXDE</td>
<td>2486</td>
<td>707</td>
<td>3193</td>
</tr>
<tr>
<td>• MATE</td>
<td>2857</td>
<td>757</td>
<td>3614</td>
</tr>
<tr>
<td>• Cinnamon</td>
<td>3824</td>
<td>1102</td>
<td>4926</td>
</tr>
<tr>
<td>Internetserver</td>
<td>44</td>
<td>11</td>
<td>55</td>
</tr>
<tr>
<td>Udskrivningsserver</td>
<td>440</td>
<td>91</td>
<td>531</td>
</tr>
<tr>
<td>SSH-server</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Hvis du installerer på et sprog forskellig fra engelsk, kan `tasksel` selv installere en oversættelsesopgave, hvis en sådan findes for dit sprog. Pladskravet er forskellig per sprog; du skal forvente op til 350 MB samlet set for overførslen og installationen.

\(^1\) Serielle mus har normalt et 9-huls D-formet stik; men mus er et 8-pinds rundt stik, som ikke skal forveksles med det 6-pinds runde stik for en PS/2-mus eller det 4-pinds runde stik for en ADB-mus.
D.3 Installation af Debian GNU/Linux fra et Unix/Linux-system

Dette afsnit forklarer hvordan Debian GNU/Linux installerer fra et eksisterende Unix- eller Linux-system, uden brug af det menuudrøvne installationsprogram, som beskrevet i resten af manualen. Denne "cross-install"-manual er ønsket af brugere, der skifter til Debian GNU/Linux fra Red Hat, Mandriva og SUSE. I dette afsnit antages det at du kender til indtastning af *nix-kommandoer og navigering i filsystemet. I dette afsnit symboliserer $ en kommando til indtastning i brugerens nuværende system, mens # refererer til en kommando indtastet i Debian-chrooten.

Når du har fået dit nye Debian-system konfigureret efter dine præferencer, så kan du migrere dine eksisterende data (hvis der er nogle) til det, og rulle videre. Der er derfor “nul nedetid” for Debian GNU/Linux-installationen. Det er også en smart måde at håndtere udstyr, som ellers ikke fungerer ordentligt med diverse opstarts- eller installationsmedier.

BEMÆRK

Da dette hovedsagelig er en manuel procedure, så skal du huske, at du skal udføre en masse grundlæggende konfiguration af systemet selv, hvilket også vil kræve viden om Debian og om Linux Du kan ikke forvente at denne procedure vil medføre et system, som er identisk med et system fra en gængs installation. Du skal også huske, at denne procedure kun viser de grundlæggende trin for opsætning af et system. Yderligere installation og/eller konfigurationstrin kan være krævet.

D.3.1 Kom i gang

Med dine nuværende *nix-partitioneringsværktøjer, så ændr partition på harddisken efter behov, opret mindst et filsystem samt swap. Du skal have omkring 701MB tilgængelig for en konsolinstallation, eller omkring 2486MB hvis du planlægger at installere X (mere hvis du installerer skrivebordsmiljøer som GNOME eller KDE).

Opret nu filsystemer på partitionerne. For eksempel, for at oprette et ext3-filsystem på partition /dev/sda6 (det er vores eksempels root-partition):

```
# mke2fs -j /dev/sda6
```

For at oprette et ext2-filsystem i stedet for så udelad -j.

Initialiser og aktiver swap (erstat partitionsnummeret for din Debian-swappartition):

```
# mkswap /dev/sda5
# sync
# swapon /dev/sda5
```

Monter en partition som /mnt/debinst (installationspunktet, til at være root (/)-filsystemet på dit nye system). Monteringspunktets navn er strengt arbitrært, der bliver refereret til det senere nedenfor.

```
# mkdir /mnt/debinst
# mount /dev/sda6 /mnt/debinst
```

BEMÆRK

Hvis du ønsker at dele af dit filsystem (f.eks. /usr) monteret på separate partitioner, så skal du oprette og montere disse mapper manuelt, før du fortsætter med næste trin.

D.3.2 Installer debootstrap

Redskabet brugt af Debian-installationsprogrammet og genkendt som den officielle måde at installere et Debian-basis-system, er debootstrap. Programmet bruger wget og ar, men afhænger ellers af /bin/sh og grundlæggende Unix/Linux-værktøjer. Installer wget og ar hvis de ikke allerede er på dit nuværende system, hent så og installer debootstrap.

2 Disse inkluderer GNU core-redskaber og kommandoer såsom sed, grep, tar og gzip.
Eller, du kan bruge den følgende procedure til at installere den manuelt. Lav en arbejdsmappe til udtrækning af .deb:

```bash
# mkdir work
# cd work
```

Den binære fil for debootstrap er placeret i Debian-arkivet (vær sikker på at vælge den korrekte fil for din arkitektur). Hent debootstrap .deb fra poolen, kopier pakken til arbejdsmappen, og udtræk filerne fra den. Du skal have administratorprivilegier (root) for at installere filerne.

```bash
# ar -x debootstrap_0.X.X_all.deb
# cd /
# zcat /full-path-to-work/work/data.tar.gz | tar xv
```

D.3.3 Kør debootstrap

Hvis du har en buster Debian GNU/Linux-cd monteret på /cdrom, så skal du erstatte en filadresse i stedet for http-adressen: `file:/cdrom/debian/`

Erstat en af de følgende for ARCH i debootstrap kommando: amd64, arm64, armel, armhf, i386, mips, mips64el, mipsel, powerpc, ppc64el eller s390x.

```bash
# /usr/bin/debootstrap --arch ARCH buster 
/mnt/debinst http://ftp.us.debian.org/debian
```

Hvis målarkitekturen er forskellig fra værten, skal du tilføje tilvalget --foreign.

D.3.4 Konfigurer basissystemet

Nu har du et reelt Debian-system, omend noget magert, på disk. chroot til det:

```bash
# LANG=C.UTF-8 chroot /mnt/debinst /bin/bash
```

Hvis målarkitekturen er anderledes end værten, så skal du første kopiere qemu-user-static til den nye vært:

```bash
# cp /usr/bin/qemu-ARCH-static /mnt/debinst/usr/bin
# LANG=C.UTF-8 chroot /mnt/debinst qemu-ARCH-static /bin/bash
```

Efter chrooting skal du måske opsætte terminaldefinitionen til at være kompatibel med Debians basissystem, for eksempel:

```bash
# export TERM=xterm-color
```

Afhængig af værdien for TERM, skal du måske installere pakken ncurses-term for at få understøttelse for den.

Hvis målarkitekturen er forskellig fra værten, så skal du afslutte multi-satge boot-strap'en:

```
/debootstrap/debootstrap --second-stage
```

D.3.4.1 Opret enhedsfiler

På dette tidspunkt indeholder /dev/ kun meget grundlæggende enhedsfiler. For de næste trin af installationen kan yderligere enhedsfiler være krævet. Der er forskellige måder for dette og hvilken metode du bør bruge afhænger af værtssystemet du bruger for installationen, om du forventer at bruge en modular kerne eller ej, og om du forventer at bruge dynamisk (f.eks. brug af udev) eller statiske enhedsfiler for det nye system.

Nogle få af de tilgængelige indstillinger:

- installer pakken makedev, og opret et standardsæt af statiske enhedsfiler der bruger (etter chrooting)
```bash
# apt install makedev
# mount none /proc -t proc
# cd /dev
# MAKEDEV generic
```
BILAG D. DIVERSE FORKLARINGER D.3. INSTALLATION AF DEBIAN GNU/LINUX FRA ...

- manuelt opret kun specifikke enhedsfiler der bruger MAKEDEV
- bind montering /dev fra dit værtssystem oven på /dev i målsystemet; bemærk at postinst-skripterne for nogle pakker kan forsøge at oprette enhedsfiler, så dette tilvalg skal bruges med omhu

D.3.4.2 Monter partitioner

Du skal eventuelt oprettet /etc/fstab.

```bash
# editor /etc/fstab

Her er et eksempel, du kan tilpasse dine behov:

```# /etc/fstab: statisk filsysteminformation.
#
filsystem monteringsp. type tilvalg dump-qn.løb
/dev/XXX / ext3 defaults 0 1
/dev/XXX /boot ext3 ro,nosuid,nodev 0 2
/dev/XXX none swap sw 0 0
proc /proc proc defaults 0 0
/dev/fd0 /media/floppy auto noauto,rw,sync,user,exec 0 0
/dev/cdrom /media/cdrom iso9660 noauto,ro,user,exec 0 0
/dev/XXX /tmp ext3 rw,nosuid,nodev 0 2
/dev/XXX /var ext3 rw,nosuid,nodev 0 2
/dev/XXX /usr ext3 rw,nodev 0 2
/dev/XXX /home ext3 rw,nosuid,nodev 0 2
```

Brug `mount -a` til at montere filsystemerne du har angivet i din /etc/fstab, eller, for at montere filsystemerne individuelt, brug:

```bash
mount /sti # f.eks.: mount /usr
```

Nuværende Debian-systemer har monteringspunkter for eksterne medier under /media, men bevarer symbolske kompatibilitetshenvisninger i /. Opret disse efter behov, for eksempel:

```bash
cd /media
mkdir cdrom0
ln -s cdrom0 cdrom
cd /
ln -s media/cdrom
```

Du kan montere proc-filsystemet flere gange og til arbitrære placeringer. /proc kan dog tilpasses. Hvis du ikke brugte `mount -a`, så vær sikker på at montere proc før du fortsætter:

```bash
mount -t proc proc /proc
```

Kommandoen `ls /proc` bør nu vise en mappe med indhold. Hvis dette fejler, så kan du måske montere proc uden for chroot'en:

```bash
mount -t proc proc /mnt/debinst/proc
```

D.3.4.3 Indstilling af tidszone

Angivelse af den tredje linje i filen /etc/adjtime til "UTC" eller "LOCAL" bestemmer om systemet vil fortolke udstyrets ur som værende sat til UTC respektiv lokal tid. Den følgende kommando giver mulighed for at angive dette.

```bash
editor /etc/adjtime
```

Her er et eksempel:

```bash
0.0 0 0.0
0
UTC
```
Den følgende kommando gør at du kan vælge din tidszone.

```
dpkg-reconfigure tzdata
```

### D.3.4.4 Konfigurer netværk

For at konfigurere netværk, rediger `/etc/network/interfaces`, `/etc/resolv.conf`, `/etc/hostname` og `/etc/hosts`.

```
editor /etc/network/interfaces
```

Her er nogle simple eksempler fra `/usr/share/doc/ifupdown/examples`:

```
##
/etc/network/interfaces - konfigurationsfil for ifup(8), ifdown(8)
Se manualsiden interfaces(5) for information om hvilket tilvalg der er
tilgængelige.
##

Loopback-grænsefladen er ikke længere krævet, men kan bruges hvis.
ønsket.
auto lo
iface lo inet loopback
For at bruge dhcp:
auto eth0
iface eth0 inet dhcp

Et eksempel på en statisk IP-opsætning: (netværk, broadcast og adgangspunkt er ← valgfri)

auto eth0
iface eth0 inet static
address 192.168.0.42
network 192.168.0.0
netmask 255.255.255.0
broadcast 192.168.0.255
gateway 192.168.0.1
```

Indtast dine navneservere og søgedirektiver i `/etc/resolv.conf`:

```
editor /etc/resolv.conf
```

Et simpelt eksempel `/etc/resolv.conf`:

```
search hqdom.local
nameserver 10.1.1.36
nameserver 192.168.9.100
```

Indtast dit systems værtsnavn (2 til 63 characters):

```
echo DebianHostName > /etc/hostname
```

Og en grundlæggende `/etc/hosts` med IPv6-understøttelse:

```
127.0.0.1 localhost
127.0.1.1 DebianHostName

De følgende linjer er ønskværdige for IPv6-egnede værter
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts
```

87
Hvis du har flere netværkskort, så skal du arrangere navnene for drivermoduler i filen `/etc/modules` i den ønskede rækkefølge. Når under opstart, så vil hvert kort blive associeret med grænsefladenavnet (eth0, eth1, etc.), du forventer.

### D.3.4.5 Konfigurer Apt

Debootstrap vil have oprettet en meget grundlæggende `/etc/apt/sources.list`, som vil tillader installation af yderligere pakker. Du vil dog måske ønske at tilføje nogle yderligere kilder, for eksempel for kildepakker og sikkerhedsopdateringer:

```console
deb-src http://ftp.us.debian.org/debian buster main
deb http://security.debian.org/ buster/update main
deb-src http://security.debian.org/ buster/update main
```

Husk at køre `apt update` efter at du har lavet ændringer til kildelisten (sources).

### D.3.4.6 Konfigurer steder og tastatur

For at konfigurere dine lokale indstillinger til et andet sprog end engelsk, så installer støttepakken `locales` og konfigurer den. I øjeblikket anbefales brugeaf UTF-8 locales.

```console
apt install locales
dpkg-reconfigure locales
```

For at konfigurere dit tastatur (hvis krævet):

```console
apt install console-setup
dpkg-reconfigure keyboard-configuration
```

Bemærk at tastaturet ikke kan angives mens i en chroot, men at det vil blive konfigureret i den næste genstart.

### D.3.5 Installer en kerne

Hvis du skal starte op fra dette system, så skal du bruge en Linux-kerne og en opstartsindlæser. Identificer tilgængelige forhåndspakkede kerner med:

```console
apt search linux-image
```

Installer så kernepakken efter dit valg via dets pakkenavn.

```console
apt install linux-image-arch-etc
```

### D.3.6 Opsætning af opstartsindlæseren

For at gøre dit Debian GNU/Linux-system opstartsparat, så opsæt din opstartsindlæser til at indlæse den installerede kerne med din nye root-partition. Bemærk at `debootstrap` ikke installerer en opstartsindlæser, men du kan bruges `apt` i din Debian-chroot til dette formål.

Bemærk at dette antager at en `/dev/sda-enhedsfil er blevet oprettet. Der er alternative metoder til at installere grub2, men de er uden for dette appendisk omfang.

### D.3.7 Ekstern adgang: Installation af SSH og opsætning af adgang

I tilfælde af, at du kan logge ind på systemet via konsollen, så kan du springe dette afsnit over. Hvis systemet skal være tilgængeligt via netværket senere, så skal du installere SSH og opsætte adgang.

```console
apt install ssh
```

Log ind som root med adgangskode er deaktiveret som standard, så opsætning af adgang kan gøres ved at angive en adgangskode og genaktivere login for root med adgangskode:

```console
passwd
editor /etc/ssh/sshd_config
```

Dette er indstillingen der skal aktiveres:
PermitRootLogin yes

Adgang kan også sættes op ved at tilføje en ssh-nøgle til root-kontoen:

```
mkdir /root/.ssh
cat << EOF > /root/.ssh/authorized_keys
ssh-rsa
EOF
```

Sidst kan adgang sættes op ved at tilføje en ikke-root bruger og angive en adgangskode:

```
adduser joe
passwd joe
```

### D.3.8 Afsluttende indstillinger

Som nævnt tidligere, vil det installerede system være meget grundlæggende. Hvis du ønsker at gøre systemet en smule mere modent til brug, så er der en nem metode til at installere alle pakker med prioriteten “standard”:

```
taskSEL install standard
```

Selvfølgelig kan du også bare bruge `apt` til at installere pakker individuelt.

Efter installationen vil der være en masse hentede pakker i `/var/cache/apt/archives/`. Du kan frigive diskplads ved at køre:

```
apt clean
```

### D.4 Installation af Debian GNU/Linux med brug af PPP over Ethernet (PPPoE)

I nogle lande er PPP over Ethernet (PPPoE) en udbredt protokol for bredbåndsforbindelser (ADSL eller kabel) til en Internetleverandør. Opsætning af en netværksforbindelse der bruger PPPoE er ikke understøttet som standard i installationsprogrammet, men kan komme til at fungere ret så simpelt. Dette afsnit forklarer hvordan.

PPPoE-forbindelsesopsætningen under installationen vil også være tilgængelig efter genstarten i det installerede system (se Kapitel 7).

For at have muligheden for at opsætte og bruge PPPoE under installationen, så skal du installere med en af de cd-rom/dvd-aftryk, som er tilgængelige. Der er ikke understøttelse for andre installationsmetoder (f.eks. netopstart). Installation over PPPoE er hovedsagelig det samme som enhver anden installation. De følgende trin forklarer forskellene.

- Start installationsprogrammet med opstartsparameteren `modules=ppp-udeb`. Dette vil sikre at komponenten ansvarlig for opsætningen af PPPoE (`ppp-udeb`) vil blive indlæst og kørt automatisk.

- Følg de normale første trin af installationen (sprog, land og valg af tastatur; indlæsning af yderligere installationskomponenter3).

- Det næste trin er registrering af netværksudstyr, for at identificere eventuelle Ethernet-kort i systemet.

- Efter dette startes den faktiske opsætning af PPPoE. Instalationsprogrammet vil forespørge alle de registrerede Ethernet-grænseflader i et forsøg på at finde en PPPoE-concentrator (en servertype der håndterer PPPoE-forbindelser).

Det er muligt at concentratoren ikke vil blive fundet i det første forsøg. Dette kan ske på langsomme eller overbelastede netværk eller med fejlbehæftede servere. I de fleste tilfælde vil endnu et forsøg på at registrere concentratoren lykkes; for at prøve igen, vælg Konfigurer og starte en PPPoE-forbindelse fra hovedmenuen i installationsprogrammet.

- Når en concentrator er fundet, vil brugeren blive anmodt om at indtaste logindinformationen (PPPoE-brugernavn og adgangskode).

---

3 Komponenten `ppp-udeb` indlæses som en af de yderligere komponenter i dette trin. Hvis du ønsker at installere på mellem eller lav prioritet (ekspert-tilstand), så kan du også manuelt vælge `ppp-udeb` i stedet for at indtaste "modules"-parameteren ved opstartsprimten.

89
• På dette tidspunkt vil installationsprogrammet bruge den tilbudte information til at etablere PPPoE-forbindelsen. Hvis den korrekte information blev leveret bør PPPoE-forbindelsen være konfigureret installationsprogrammet bør kunne bruge den til at forbinde til internettet og hente pakker over nettet (hvis krævet). Hvis logindinformationen ikke er korrekt eller nogle fejl opstår, vil installationsprogrammet stoppe, men konfigurationen kan forsøges igen ved at vælge menu punktet Konfigurer og start en PPPoE-forbindelse.
Bilag E

Administrivia

E.1 Om dette dokument


Det her dokument er skrevet i DocBook XML. Det endelige format oprettes af forskellige programmer med information fra pakkerne docbook-xml og docbook-xsl.

For at forbedre vedligeholdelsen af dette dokument, så bruger vi et antal XML-funktioner såsom entities og profilattributter. Disse spiller en rolle som er beslægtet med variabler og vilkår i programmeringssprog. XML-kilden for dette dokument indeholder information om hver arkitektur og profilattributter, som anvendes for at isolere visse dele af teksten som arkitekturspecifik.

E.2 Bidrag til det her dokument


Kontakt venligst ikke forfatteren af det her dokument direkte. Der er også en diskussionsliste for debian-installer som inkluderer diskussioner om den her manual. Postlisten er debian-boot@lists.debian.org. Instruktioner for abonnement på denne liste kan findes på siden Debian Mailing List Subscription eller også kan du bladre i Debian Mailing List Archives på nettet.

E.3 De største bidragydere


Rigtig mange Debian-brugere og -udviklere har bidraget til det her dokument. Specielt tak til Michael Schmitz (m68k-understøttelse), Frank Neumann (originalforfatter af installationsmanualen for Amiga), Arto Astala, Eric Delaunay/Ben Collins (SPARC-information), Tapio Lehtonen og Stéphane Bortzmeyer for utallige redigeringer og tekst. Pascal Le Bail takkes for nyttig information om opstart fra USB-drev.

En stor hjælp og information blev fundet i Jim Minthas HOWTO for opstart via netværk (ingen URL tilgængelig), Debian OSS, Linux/m68k OSS, Linux for SPARC-processor OSS, Linux/Alpha OSS blandt andre. Ansvarlige for
disse frit tilgængelige og rige kilder af information takkes hermed.

Afsnittet om chrootede installationer i den her manual (Afsnit D.3) blev afledt delvist fra dokumenter som har ophavsret af Karsten M. Self.

E.4 Varemærker

Alle varemærker tilhører deres respektive ejere.
Bilag F

GNU General Public License

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

F.1 Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the gnu General Public License is intended to guarantee your freedom to share and change free software — to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation’s software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the gnu Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

F.2 GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into
another language. (Hereinafter, translation is included without limitation in the term "modification"). Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

   a. You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change.

   b. You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License.

   c. If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

   a. Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

   b. Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

   c. Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL AND COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GE-
NERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INA-
BILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

F.3 How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve
this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to
most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer
to where the full notice is found.

one line to give the program's name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with absolutely no warranty; for details
type ’show w’. This is free software, and you are welcome
redistribute it under certain conditions; type ’show c’
for details.

The hypothetical commands ’show w’ and ’show c’ should show the appropriate parts of the General Public License.
Of course, the commands you use may be called something other than ’show w’ and ’show c’; they could even be
mouse-clicks or menu items — whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright
disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
program ‘Gnomovision’ (which makes passes at compilers) written
by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your pro-
gram is a subroutine library, you may consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General Public License instead of this License.