This document contains installation instructions for the Debian GNU/Linux 3.1 system (codename “sarge”), for the Alpha (“alpha”) architecture. It also contains pointers to more information and information on how to make the most of your new Debian system.

Note: Although this installation guide for alpha is mostly up-to-date, we plan to make some changes and reorganize parts of the manual after the official release of sarge. A newer version of this manual may be found on the Internet at the debian-installer home page (http://www.debian.org/devel/debian-installer/). You may also be able to find additional translations there.

This manual is free software; you may redistribute it and/or modify it under the terms of the GNU General Public License. Please refer to the license in Appendix E.
Table of Contents

Installing Debian GNU/Linux 3.1 For alpha

1. Welcome to Debian
 1.1. What is Debian?
 1.2. What is GNU/Linux?
 1.3. What is Debian GNU/Linux?
 1.4. Getting Debian
 1.5. Getting the Newest Version of This Document
 1.6. Organization of This Document
 1.7. About Copyrights and Software Licenses

2. System Requirements
 2.1. Supported Hardware
 2.1.1. Supported Architectures
 2.1.2. CPU, Main Boards, and Video Support
 2.1.3. Graphics Card
 2.1.4. Multiple Processors
 2.2. Installation Media
 2.2.1. CD-ROM/DVD-ROM
 2.2.2. Hard Disk
 2.2.3. Network
 2.2.4. Un*x or GNU system
 2.2.5. Supported Storage Systems
 2.3. Peripherals and Other Hardware
 2.4. Purchasing Hardware Specifically for GNU/Linux
 2.4.1. Avoid Proprietary or Closed Hardware
 2.4.2. Fake or “Virtual” Parity RAM
 2.5. Memory and Disk Space Requirements
 2.6. Network Connectivity Hardware

3. Before Installing Debian GNU/Linux
 3.1. Overview of the Installation Process
 3.2. Back Up Your Existing Data!
 3.3. Information You Will Need
 3.3.1. Documentation
 3.3.1.1. Installation Manual
 3.3.1.2. Hardware documentation
 3.3.2. Finding Sources of Hardware Information
 3.3.3. Hardware Compatibility
 3.3.4. Network Settings
 3.4. Meeting Minimum Hardware Requirements
 3.5. Pre-Partitioning for Multi-Boot Systems
 3.5.1. Partitioning in Tru64 UNIX
 3.5.2. Partitioning in Windows NT
 3.6. Pre-Installation Hardware and Operating System Setup
 3.6.1. Hardware Issues to Watch Out For
 3.6.1.1. More than 64 MB RAM
4. Obtaining System Installation Media

4.1. Official Debian GNU/Linux CD-ROM Sets

4.2. Downloading Files from Debian Mirrors

4.2.1. Where to Find Installation Images

4.2.1.1. Alpha Installation Files

4.3. Preparing Files for TFTP Net Booting

4.3.1. Enabling the TFTP Server

4.3.2. Move TFTP Images Into Place

4.3.2.1. Alpha TFTP Booting

4.4. Automatic Installation

4.4.1. Automatic Installation Using the Debian Installer

5. Booting the Installation System

5.1. Booting the Installer on Alpha

5.1.1. Alpha Console Firmware

5.1.2. Booting with TFTP

5.1.3. Booting from CD-ROM with the SRM Console

5.2. Boot Parameters

5.2.1. Debian Installer Parameters

5.3. Troubleshooting the Installation Process

5.3.1. Boot Configuration

5.3.2. Interpreting the Kernel Startup Messages

5.3.3. Bug Reporter

5.3.4. Submitting Installation Reports

6. Using the Debian Installer

6.1. How the Installer Works

6.2. Components Introduction

6.3. Using Individual Components

6.3.1. Setting up Debian Installer and Hardware Configuration

6.3.1.1. Check available memory

6.3.1.2. Language selection

6.3.1.3. Country selection

6.3.1.4. Choosing a Keyboard

6.3.1.5. Looking for the Debian Installer ISO Image

6.3.1.6. Configuring Network

6.3.2. Partitioning and Mount Point Selection

6.3.2.1. Partitioning Your Disks

6.3.2.2. Configuring Logical Volume Manager (LVM)

6.3.2.3. Configuring Multidisk Device (Software RAID)

6.3.3. Installing the Base System

6.3.3.1. Base System Installation

6.3.4. Making Your System Bootable

6.3.4.1. Detecting other operating systems

6.3.4.2. Install bootable on a Hard Disk

6.3.4.3. Continue Without Boot Loader

6.3.5. Finishing the First Stage

6.3.5.1. Finish the Installation and Reboot

6.3.6. Miscellaneous

6.3.6.1. Saving the installation logs

6.3.6.2. Using the Shell and Viewing the Logs

6.3.6.3. Installation Over the Network

6.3.6.4. Running base-config From Within debian-installer
C.4.4. Configure The Base System ... 76
 C.4.4.1. Mount Partitions ... 76
 C.4.4.2. Configure Keyboard ... 77
 C.4.4.3. Configure Networking .. 77
 C.4.4.4. Configure Timezone, Users, and APT 78
 C.4.4.5. Configure Locales .. 79
C.4.5. Install a Kernel .. 79
C.4.6. Set up the Boot Loader ... 79

D. Administrivia .. 80
 D.1. About This Document ... 80
 D.2. Contributing to This Document .. 80
 D.3. Major Contributions ... 80
 D.4. Trademark Acknowledgement .. 81

E. GNU General Public License ... 82
 E.1. Preamble .. 82
 E.2. GNU GENERAL PUBLIC LICENSE ... 82
 E.3. How to Apply These Terms to Your New Programs 85
List of Tables

3-1. Hardware Information Needed for an Install ... 16
3-2. Recommended Minimum System Requirements ... 18
Installing Debian GNU/Linux 3.1 For alpha

We are delighted that you have decided to try Debian, and are sure that you will find that Debian’s GNU/Linux distribution is unique. Debian GNU/Linux brings together high-quality free software from around the world, integrating it into a coherent whole. We believe that you will find that the result is truly more than the sum of the parts.

We understand that many of you want to install Debian without reading this manual, and the Debian installer is designed to make this possible. If you don’t have time to read the whole Installation Guide right now, we recommend that you read the Installation Howto, which will walk you through the basic installation process, and links to the manual for more advanced topics or for when things go wrong. The Installation Howto can be found in Appendix A.

With that said, we hope that you have the time to read most of this manual, and doing so will lead to a more informed and likely more successful installation experience.
Chapter 1. Welcome to Debian

This chapter provides an overview of the Debian Project and Debian GNU/Linux. If you already know about the Debian Project’s history and the Debian GNU/Linux distribution, feel free to skip to the next chapter.

1.1. What is Debian?

Debian is an all-volunteer organization dedicated to developing free software and promoting the ideals of the Free Software Foundation. The Debian Project began in 1993, when Ian Murdock issued an open invitation to software developers to contribute to a complete and coherent software distribution based on the relatively new Linux kernel. That relatively small band of dedicated enthusiasts, originally funded by the Free Software Foundation (http://www.fsf.org/) and influenced by the GNU (http://www.gnu.org/gnu/the-gnu-project.html) philosophy, has grown over the years into an organization of around 900 Debian Developers.

Debian Developers are involved in a variety of activities, including Web (http://www.debian.org/) and FTP (ftp://ftp.debian.org/) site administration, graphic design, legal analysis of software licenses, writing documentation, and, of course, maintaining software packages.

In the interest of communicating our philosophy and attracting developers who believe in the principles that Debian stands for, the Debian Project has published a number of documents that outline our values and serve as guides to what it means to be a Debian Developer:

- The Debian Social Contract (http://www.debian.org/social_contract) is a statement of Debian’s commitments to the Free Software Community. Anyone who agrees to abide by the Social Contract may become a maintainer (http://www.debian.org/doc/maint-guide/). Any maintainer can introduce new software into Debian — provided that the software meets our criteria for being free, and the package follows our quality standards.

- The Debian Free Software Guidelines (http://www.debian.org/social_contract#guidelines) are a clear and concise statement of Debian’s criteria for free software. The DFSG is a very influential document in the Free Software Movement, and was the foundation of the The Open Source Definition (http://opensource.org/docs/definition_plain.html).

Debian developers are also involved in a number of other projects; some specific to Debian, others involving some or all of the Linux community. Some examples include:

- The Linux Standard Base (http://www.linuxbase.org/) (LSB) is a project aimed at standardizing the basic GNU/Linux system, which will enable third-party software and hardware developers to easily design programs and device drivers for Linux-in-general, rather than for a specific GNU/Linux distribution.

- The Filesystem Hierarchy Standard (http://www.pathname.com/fhs/) (FHS) is an effort to standardize the layout of the Linux file system. The FHS will allow software developers to concentrate their efforts on designing programs, without having to worry about how the package will be installed in different GNU/Linux distributions.
Chapter 1. Welcome to Debian

- Debian Jr. (http://www.debian.org/devel/debian-jr/) is an internal project, aimed at making sure Debian has something to offer to our youngest users.

For more general information about Debian, see the Debian FAQ (http://www.debian.org/doc/FAQ/).

1.2. What is GNU/Linux?

Linux is an operating system: a series of programs that let you interact with your computer and run other programs.

An operating system consists of various fundamental programs which are needed by your computer so that it can communicate and receive instructions from users; read and write data to hard disks, tapes, and printers; control the use of memory; and run other software. The most important part of an operating system is the kernel. In a GNU/Linux system, Linux is the kernel component. The rest of the system consists of other programs, many of which were written by or for the GNU Project. Because the Linux kernel alone does not form a working operating system, we prefer to use the term “GNU/Linux” to refer to systems that many people casually refer to as “Linux”.

Linux is modelled on the Unix operating system. From the start, Linux was designed to be a multi-tasking, multi-user system. These facts are enough to make Linux different from other well-known operating systems. However, Linux is even more different than you might imagine. In contrast to other operating systems, nobody owns Linux. Much of its development is done by unpaid volunteers.

Development of what later became GNU/Linux began in 1984, when the Free Software Foundation (http://www.gnu.org/) began development of a free Unix-like operating system called GNU.

The GNU Project has developed a comprehensive set of free software tools for use with Unix™ and Unix-like operating systems such as Linux. These tools enable users to perform tasks ranging from the mundane (such as copying or removing files from the system) to the arcane (such as writing and compiling programs or doing sophisticated editing in a variety of document formats).

While many groups and individuals have contributed to Linux, the largest single contributor is still the Free Software Foundation, which created not only most of the tools used in Linux, but also the philosophy and the community that made Linux possible.

Linus Torvalds continues to coordinate the work of several hundred developers with the help of a few trusty deputies. An excellent weekly summary of discussions on the linux-kernel mailing list is Kernel Traffic (http://www.kerneltraffic.org/kernel-traffic/index.html). More information about the linux-kernel mailing list can be found on the linux-kernel mailing list FAQ (http://www.tux.org/lkml/).

Linux users have immense freedom of choice in their software. For example, Linux users can choose from a dozen different command line shells and several graphical desktops. This selection is often bewildering to users of other operating systems, who are not used to thinking of the command line or desktop as something that they can change.

Linux is also less likely to crash, better able to run more than one program at the same time, and more secure than many operating systems. With these advantages, Linux is the fastest growing operating system in the server market. More recently, Linux has begun to be popular among home and business users as well.
1.3. What is Debian GNU/Linux?

The combination of Debian’s philosophy and methodology and the GNU tools, the Linux kernel, and other important free software, form a unique software distribution called Debian GNU/Linux. This distribution is made up of a large number of software packages. Each package in the distribution contains executables, scripts, documentation, and configuration information, and has a maintainer who is primarily responsible for keeping the package up-to-date, tracking bug reports, and communicating with the upstream author(s) of the packaged software. Our extremely large user base, combined with our bug tracking system ensures that problems are found and fixed quickly.

Debian’s attention to detail allows us to produce a high-quality, stable, and scalable distribution. Installations can be easily configured to serve many roles, from stripped-down firewalls to desktop scientific workstations to high-end network servers.

Debian is especially popular among advanced users because of its technical excellence and its deep commitment to the needs and expectations of the Linux community. Debian also introduced many features to Linux that are now commonplace.

For example, Debian was the first Linux distribution to include a package management system for easy installation and removal of software. It was also the first Linux distribution that could be upgraded without requiring reinstallation.

Debian continues to be a leader in Linux development. Its development process is an example of just how well the Open Source development model can work — even for very complex tasks such as building and maintaining a complete operating system.

The feature that most distinguishes Debian from other Linux distributions is its package management system. These tools give the administrator of a Debian system complete control over the packages installed on that system, including the ability to install a single package or automatically update the entire operating system. Individual packages can also be protected from being updated. You can even tell the package management system about software you have compiled yourself and what dependencies it fulfills.

To protect your system against “Trojan horses” and other malevolent software, Debian’s servers verify that uploaded packages come from their registered Debian maintainers. Debian packagers also take great care to configure their packages in a secure manner. When security problems in shipped packages do appear, fixes are usually available very quickly. With Debian’s simple update options, security fixes can be downloaded and installed automatically across the Internet.

The primary, and best, method of getting support for your Debian GNU/Linux system and communicating with Debian Developers is through the many mailing lists maintained by the Debian Project (there are more than 160 at this writing). The easiest way to subscribe to one or more of these lists is visit Debian’s mailing list subscription page (http://www.debian.org/MailingLists/subscribe) and fill out the form you’ll find there.

1.4. Getting Debian

For information on how to download Debian GNU/Linux from the Internet or from whom official Debian CDs can be purchased, see the distribution web page (http://www.debian.org/distrib/). The list of Debian mirrors (http://www.debian.org/distrib/ftplists) contains a full set of official Debian mirrors, so you can easily find the nearest one.

Debian can be upgraded after installation very easily. The installation procedure will help set up the system so that you can make those upgrades once installation is complete, if need be.
Chapter 1. Welcome to Debian

1.5. Getting the Newest Version of This Document

This document is constantly being revised. Be sure to check the Debian 3.1 pages (http://www.debian.org/releases/sarge/) for any last-minute information about the 3.1 release of the Debian GNU/Linux system. Updated versions of this installation manual are also available from the official Install Manual pages (http://www.debian.org/releases/sarge/alpha/).

1.6. Organization of This Document

This document is meant to serve as a manual for first-time Debian users. It tries to make as few assumptions as possible about your level of expertise. However, we do assume that you have a general understanding of how the hardware in your computer works.

Expert users may also find interesting reference information in this document, including minimum installation sizes, details about the hardware supported by the Debian installation system, and so on. We encourage expert users to jump around in the document.

In general, this manual is arranged in a linear fashion, walking you through the installation process from start to finish. Here are the steps in installing Debian GNU/Linux, and the sections of this document which correlate with each step:

1. Determine whether your hardware meets the requirements for using the installation system, in Chapter 2.

2. Backup your system, perform any necessary planning and hardware configuration prior to installing Debian, in Chapter 3. If you are preparing a multi-boot system, you may need to create partition-able space on your hard disk for Debian to use.

3. In Chapter 4, you will obtain the necessary installation files for your method of installation.

4. Chapter 5 describes booting into the installation system. This chapter also discusses troubleshooting procedures in case you have problems with this step.

5. Perform the actual installation according to Chapter 6. This involves choosing your language, configuring peripheral driver modules, configuring your network connection, so that remaining installation files can be obtained directly from a Debian server (if you are not installing from a CD), partitioning your hard drives and installation of minimal working system. (Some background about setting up the partitions for your Debian system is explained in Appendix B.)

6. Boot into your newly installed base system and run through some additional configuration tasks, from Chapter 7.

7. Install additional software in Section 7.2.5.

Once you’ve got your system installed, you can read Chapter 8. That chapter explains where to look to find more information about Unix and Debian, and how to replace your kernel.

Finally, information about this document and how to contribute to it may be found in Appendix D.

1.7. About Copyrights and Software Licenses

We’re sure that you’ve read some of the licenses that come with most commercial software — they usually say that you can only use one copy of the software on a single computer. This system’s license...
isn’t like that at all. We encourage you to put a copy of on every computer in your school or place of business. Lend your installation media to your friends and help them install it on their computers! You can even make thousands of copies and sell them — albeit with a few restrictions. Your freedom to install and use the system comes directly from Debian being based on free software.

Calling software free doesn’t mean that the software isn’t copyrighted, and it doesn’t mean that CDs containing that software must be distributed at no charge. Free software, in part, means that the licenses of individual programs do not require you to pay for the privilege of distributing or using those programs. Free software also means that not only may anyone extend, adapt, and modify the software, but that they may distribute the results of their work as well.

Note: The Debian project, as a pragmatic concession to its users, does make some packages available that do not meet our criteria for being free. These packages are not part of the official distribution, however, and are only available from the contrib or non-free areas of Debian mirrors or on third-party CD-ROMs; see the Debian FAQ (http://www.debian.org/doc/FAQ/), under “The Debian FTP archives”, for more information about the layout and contents of the archives.

Many of the programs in the system are licensed under the GNU General Public License, often simply referred to as “the GPL”. The GPL requires you to make the source code of the programs available whenever you distribute a binary copy of the program; that provision of the license ensures that any user will be able to modify the software. Because of this provision, the source code for all such programs is available in the Debian system.

There are several other forms of copyright statements and software licenses used on the programs in Debian. You can find the copyrights and licenses for every package installed on your system by looking in the file /usr/share/doc/package-name/copyright once you’ve installed a package on your system.

For more information about licenses and how Debian determines whether software is free enough to be included in the main distribution, see the Debian Free Software Guidelines (http://www.debian.org/social_contract#guidelines).

The most important legal notice is that this software comes with no warranties. The programmers who have created this software have done so for the benefit of the community. No guarantee is made as to the suitability of the software for any given purpose. However, since the software is free, you are empowered to modify that software to suit your needs — and to enjoy the benefits of the changes made by others who have extended the software in this way.

1. For information on how to locate, unpack, and build binaries from Debian source packages, see the Debian FAQ (http://www.debian.org/doc/FAQ/), under “Basics of the Debian Package Management System”.
Chapter 2. System Requirements

This section contains information about what hardware you need to get started with Debian. You will also find links to further information about hardware supported by GNU and Linux.

2.1. Supported Hardware

Debian does not impose hardware requirements beyond the requirements of the Linux kernel and the GNU tool-sets. Therefore, any architecture or platform to which the Linux kernel, libc, gcc, etc. have been ported, and for which a Debian port exists, can run Debian. Please refer to the Ports pages at http://www.debian.org/ports/alpha/ for more details on Alpha architecture systems which have been tested with Debian.

Rather than attempting to describe all the different hardware configurations which are supported for Alpha, this section contains general information and pointers to where additional information can be found.

2.1.1. Supported Architectures

Debian 3.1 supports eleven major architectures and several variations of each architecture known as “flavors”.

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Debian Designation</th>
<th>Subarchitecture</th>
<th>Flavor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel x86-based</td>
<td>i386</td>
<td></td>
<td>vanilla</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>speakup</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>linux26</td>
</tr>
<tr>
<td>Motorola 680x0</td>
<td>m68k</td>
<td>Atari</td>
<td>atari</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>amiga</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mac</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bvme6000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mvme147</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mvme16x</td>
</tr>
<tr>
<td>DEC Alpha</td>
<td>alpha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sun SPARC</td>
<td>sparc</td>
<td></td>
<td>sun4cdm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sun4u</td>
</tr>
<tr>
<td>ARM and StrongARM</td>
<td>arm</td>
<td></td>
<td>netwinder</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>riscpc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>shark</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lart</td>
</tr>
<tr>
<td>IBM/Motorola PowerPC</td>
<td>powerpc</td>
<td>CHRP</td>
<td>chrp</td>
</tr>
</tbody>
</table>
This document covers installation for the Alpha architecture. If you are looking for information on any of the other Debian-supported architectures take a look at the Debian-Ports (http://www.debian.org/ports/) pages.

2.1.2. CPU, Main Boards, and Video Support

Complete information regarding supported DEC Alphas can be found at Linux Alpha HOWTO (http://www.tldp.org/HOWTO/Alpha-HOWTO.html). The purpose of this section is to describe the systems supported by the boot disks.

Alpha machines are subdivided into different system types because there are a number of generations of motherboard and supporting chipsets. Different systems (“sub-architectures”) often have radically different engineering and capabilities. Therefore, the process of installing and, more to the point, booting, can vary from system to system.

The following table lists the system types supported by the Debian installation system. The table also indicates the code name for these system types. You’ll need to know this code name when you actually begin the installation process:

<table>
<thead>
<tr>
<th>Hardware Type</th>
<th>Aliases</th>
<th>MILO image</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM S/390</td>
<td>s390</td>
<td>generic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPL from tape</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPL from tape and DASD</td>
</tr>
<tr>
<td>JVM</td>
<td></td>
<td>generic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPL from tape</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPL from tape and DASD</td>
</tr>
</tbody>
</table>

Table: System Types Supported by Debian Installation System

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Debian Designation</th>
<th>Subarchitecture</th>
<th>Flavor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerMac</td>
<td></td>
<td></td>
<td>pmac</td>
</tr>
<tr>
<td>PReP</td>
<td></td>
<td></td>
<td>prep</td>
</tr>
<tr>
<td>APUS</td>
<td></td>
<td></td>
<td>apus</td>
</tr>
<tr>
<td>HP PA-RISC</td>
<td>hppa</td>
<td>PA-RISC 1.1</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PA-RISC 2.0</td>
<td>64</td>
</tr>
<tr>
<td>Intel ia64-based</td>
<td>ia64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIPS (big endian)</td>
<td>mips</td>
<td>SGI Indy/Indigo 2</td>
<td>r4k-ip22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>r5k-ip22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Broadcom BCM91250A (SWARM)</td>
<td>sb1-swarm-bn</td>
</tr>
<tr>
<td>MIPS (little endian)</td>
<td>mipsel</td>
<td>Cobalt</td>
<td>cobalt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DECstation</td>
<td>r4k-kn04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>r3k-kn02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Broadcom BCM91250A (SWARM)</td>
<td>sb1-swarm-bn</td>
</tr>
<tr>
<td>IBM S/390</td>
<td>s390</td>
<td>IPL from VM-reader and DASD</td>
<td>generic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPL from tape</td>
<td>tape</td>
</tr>
<tr>
<td>Hardware Type</td>
<td>Aliases</td>
<td>MILO image</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>ALCOR</td>
<td>AlphaStation 500</td>
<td>Maverick</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5/266.300</td>
<td>alcor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AlphaStation 500</td>
<td>Bret</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5/333...500</td>
<td>alcor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AlphaStation 600/266</td>
<td>Alcor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>600/300...300</td>
<td>alcor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AlphaStation 600/300</td>
<td>XLT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>600/300...433</td>
<td>xlt</td>
<td></td>
</tr>
<tr>
<td>BOOK1</td>
<td>AlphaBook1 (laptop)</td>
<td>Alphabook1/Burns book1</td>
<td></td>
</tr>
<tr>
<td>AVANTI</td>
<td>AlphaStation 200</td>
<td>Mustang</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4/100...166</td>
<td>avanti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AlphaStation 200</td>
<td>Mustang+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4/233</td>
<td>avanti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AlphaStation 205</td>
<td>LX3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4/133...333</td>
<td>avanti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AlphaStation 250</td>
<td>M3+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4/300</td>
<td>avanti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AlphaStation 255</td>
<td>LX3+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4/133...333</td>
<td>avanti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AlphaStation 300</td>
<td>Melmac</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4/266</td>
<td>avanti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AlphaStation 400</td>
<td>Chinet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4/166</td>
<td>avanti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AlphaStation 400</td>
<td>Avanti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4/233...300</td>
<td>avanti</td>
<td></td>
</tr>
<tr>
<td>EB164</td>
<td>AlphaPC164</td>
<td>PC164</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pc164</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AlphaPC164-LX</td>
<td>LX164</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lx164</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AlphaPC164-SX</td>
<td>SX164</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sx164</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EB164</td>
<td>EB164</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>eb164</td>
<td></td>
</tr>
<tr>
<td>EB64+</td>
<td>AlphaPC64</td>
<td>Cabriolet</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cabriolet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AlphaPCI64</td>
<td>Cabriolet</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cabriolet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EB64+</td>
<td>EB64+</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>eb64p</td>
<td></td>
</tr>
<tr>
<td>EB66</td>
<td>EB66</td>
<td>EB66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EB66+</td>
<td>EB66p</td>
<td></td>
</tr>
<tr>
<td>JENSEN</td>
<td>DEC 2000 Model</td>
<td>Jensen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>300(S)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEC 2000 Model 500</td>
<td>Culzen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DECpc 150</td>
<td>Jensen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>MIATA</td>
<td>Personal WorkStation</td>
<td>Miata</td>
<td></td>
</tr>
<tr>
<td></td>
<td>433a</td>
<td>miata</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Personal WorkStation</td>
<td>Miata</td>
<td></td>
</tr>
<tr>
<td></td>
<td>433au</td>
<td>miata</td>
<td></td>
</tr>
<tr>
<td>Hardware Type</td>
<td>Aliases</td>
<td>MILO image</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Personal WorkStation 466au</td>
<td>Miata</td>
<td>miata</td>
<td></td>
</tr>
<tr>
<td>Personal WorkStation 500a</td>
<td>Miata</td>
<td>miata</td>
<td></td>
</tr>
<tr>
<td>Personal WorkStation 500au</td>
<td>Miata</td>
<td>miata</td>
<td></td>
</tr>
<tr>
<td>Personal WorkStation 550au</td>
<td>Miata</td>
<td>miata</td>
<td></td>
</tr>
<tr>
<td>Personal WorkStation 600a</td>
<td>Miata</td>
<td>miata</td>
<td></td>
</tr>
<tr>
<td>Personal WorkStation 600au</td>
<td>Miata</td>
<td>miata</td>
<td></td>
</tr>
<tr>
<td>MIKASA</td>
<td>AlphaServer 1000 4/200</td>
<td>Mikasa</td>
<td>mikasa</td>
</tr>
<tr>
<td></td>
<td>AlphaServer 1000 4/233...266</td>
<td>Mikasa+</td>
<td>mikasa</td>
</tr>
<tr>
<td></td>
<td>AlphaServer 1000 5/300</td>
<td>Mikasa-Pinnacle</td>
<td>mikasa</td>
</tr>
<tr>
<td></td>
<td>AlphaServer 1000 5/300</td>
<td>Mikasa-Primo</td>
<td>mikasa</td>
</tr>
<tr>
<td>NAUTILUS</td>
<td>UP1000</td>
<td>Nautilus</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>UP1100</td>
<td>Galaxy-Train/Nautilus Jr.</td>
<td>N/A</td>
</tr>
<tr>
<td>NONAME</td>
<td>AXPpci33</td>
<td>Name</td>
<td>name</td>
</tr>
<tr>
<td></td>
<td>UDB</td>
<td>Multia</td>
<td>name</td>
</tr>
<tr>
<td>NORITAKE</td>
<td>AlphaServer 1000A 4/233...266</td>
<td>Noritake</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>AlphaServer 1000A 5/300</td>
<td>Noritake-Pinnacle</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>AlphaServer 1000A 5/333...500</td>
<td>Noritake-Primo</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>AlphaServer 800 5/333...500</td>
<td>Corelle</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>AlphaStation 600 A</td>
<td>Alcor-Primo</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Digital Server 3300</td>
<td>Corelle</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Digital Server 3300R</td>
<td>Corelle</td>
<td>N/A</td>
</tr>
<tr>
<td>PLATFORM 2000</td>
<td>P2K</td>
<td>P2K</td>
<td>p2k</td>
</tr>
<tr>
<td>RAWHIDE</td>
<td>AlphaServer 1200 5/xxx</td>
<td>Tincup/DaVinci</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>AlphaServer 4000 5/xxx</td>
<td>Wrangler/Durango</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>AlphaServer 4100 5/xxx</td>
<td>Dodge</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Digital Server 5300</td>
<td>Tincup/DaVinci</td>
<td>N/A</td>
</tr>
<tr>
<td>Hardware Type</td>
<td>Digital Server 7300</td>
<td>Aliases</td>
<td>MILO image</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>RUFFIAN</td>
<td>DeskStation</td>
<td>Ruffian</td>
<td>ruffian</td>
</tr>
<tr>
<td></td>
<td>AlphaPC164-UX</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DeskStation RPL164-2</td>
<td>Ruffian</td>
<td>ruffian</td>
</tr>
<tr>
<td></td>
<td>DeskStation RPL164-4</td>
<td>Ruffian</td>
<td>ruffian</td>
</tr>
<tr>
<td></td>
<td>DeskStation RPX164-2</td>
<td>Ruffian</td>
<td>ruffian</td>
</tr>
<tr>
<td></td>
<td>DeskStation RPX164-4</td>
<td>Ruffian</td>
<td>ruffian</td>
</tr>
<tr>
<td></td>
<td>Samsung</td>
<td>Ruffian</td>
<td>ruffian</td>
</tr>
<tr>
<td></td>
<td>AlphaPC164-BX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SABLE</td>
<td>AlphaServer 2000</td>
<td>Demi-Sable</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>4/xxx</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AlphaServer 2000</td>
<td>Demi-Gamma-Sable</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>5/xxx</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AlphaServer 2100</td>
<td>Sable</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>4/xxx</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AlphaServer 2100</td>
<td>Gamma-Sable</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>5/xxx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAKARA</td>
<td>21164 PICMG SBC</td>
<td>Takara</td>
<td>takara</td>
</tr>
<tr>
<td>TITAN</td>
<td>AlphaServer DS15</td>
<td>HyperBrick2</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>AlphaServer DS25</td>
<td>Granite</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>AlphaServer ES45</td>
<td>Privateer</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>UNKNOWN</td>
<td>Yukon</td>
<td>N/A</td>
</tr>
<tr>
<td>TSUNAMI</td>
<td>AlphaServer DS10</td>
<td>Webbrick</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>AlphaServer DS10L</td>
<td>Slate</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>AlphaServer DS20</td>
<td>Catamaran/Goldrush</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>AlphaServer DS20E</td>
<td>Goldrack</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>AlphaServer DS20L</td>
<td>Shark</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>AlphaServer ES40</td>
<td>Clipper</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>DP264</td>
<td>DP264</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>SMARTengine 21264</td>
<td>Eiger</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>PCI/ISA SBC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNKNOWN</td>
<td>Warhol</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>UNKNOWN</td>
<td>Windjammer</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>UP2000</td>
<td>Swordfish</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>XP1000</td>
<td>Monet/Brisbane</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>XP900</td>
<td>Webbrick</td>
<td>N/A</td>
</tr>
<tr>
<td>WILDFIRE</td>
<td>AlphaServer GS160</td>
<td>Wildfire</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>AlphaServer GS320</td>
<td>Wildfire</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Chapter 2. System Requirements

<table>
<thead>
<tr>
<th>Hardware Type</th>
<th>Aliases</th>
<th>MILO image</th>
</tr>
</thead>
<tbody>
<tr>
<td>XL</td>
<td>XL-233..266</td>
<td>xl</td>
</tr>
</tbody>
</table>

It is believed that Debian sarge supports installing on all alpha sub-architectures with the exception of the ARC-only Ruffian and XL sub-architectures and the Titan subarchitecture, which requires a change to the kernel compile options.

2.1.3. Graphics Card

Debian’s support for graphical interfaces is determined by the underlying support found in XFree86’s X11 system. Most AGP, PCI and PCIe video cards work under XFree86. Details on supported graphics buses, cards, monitors, and pointing devices can be found at http://www.xfree86.org/. Debian 3.1 ships with XFree86 version 4.3.0.

2.1.4. Multiple Processors

Multi-processor support — also called “symmetric multi-processing” or SMP — is supported for this architecture. However, the standard Debian 3.1 kernel image does not support SMP. This should not prevent installation, since the standard, non-SMP kernel should boot on SMP systems; the kernel will simply use the first CPU.

In order to take advantage of multiple processors, you’ll have to replace the standard Debian kernel. You can find a discussion of how to do this in Section 8.4. At this time (kernel version 2.4.27) the way you enable SMP is to select “Symmetric multi-processing support” in the “General setup” section of the kernel config.

2.2. Installation Media

This section will help you determine which different media types you can use to install Debian. For example, if you have a floppy disk drive on your machine, it can be used to install Debian. There is a whole chapter devoted media, Chapter 4, which lists the advantages and disadvantages of each media type. You may want to refer back to this page once you reach that section.

2.2.1. CD-ROM/DVD-ROM

Note: Whenever you see “CD-ROM” in this manual, it applies to both CD-ROMs and DVD-ROMs, because both technologies are really the same from the operating system’s point of view, except for some very old nonstandard CD-ROM drives which are neither SCSI nor IDE/ATAPI.

CD-ROM based installation is supported for some architectures. On machines which support bootable CD-ROMs, you should be able to do a completely floppy-less installation. Even if your system doesn’t support booting from a CD-ROM, you can use the CD-ROM in conjunction with the other techniques to install your system, once you’ve booted up by other means; see Chapter 5.

Both SCSI and IDE/ATAPI CD-ROMs are supported on Alpha, as long as the controller is supported by the SRM console. This rules out many add-on controller cards, but most integrated IDE
and SCSI chips and controller cards that were provided by the manufacturer can be expected to work. To find out whether your device is supported from the SRM console, see the SRM HOWTO (http://www.tldp.org/HOWTO/SRM-HOWTO/).

2.2.2. Hard Disk

Booting the installation system directly from a hard disk is another option for many architectures. This will require some other operating system to load the installer onto the hard disk.

2.2.3. Network

You can also boot your system over the network.

Diskless installation, using network booting from a local area network and NFS-mounting of all local filesystems, is another option.

After the operating system kernel is installed, you can install the rest of your system via any sort of network connection (including PPP after installation of the base system), via FTP or HTTP.

2.2.4. Un*x or GNU system

If you are running another Unix-like system, you could use it to install Debian GNU/Linux without using the debian-installer described in the rest of the manual. This kind of install may be useful for users with otherwise unsupported hardware or on hosts which can’t afford downtime. If you are interested in this technique, skip to the Section C.4.

2.2.5. Supported Storage Systems

The Debian boot disks contain a kernel which is built to maximize the number of systems it runs on. Unfortunately, this makes for a larger kernel, which includes many drivers that won’t be used for your machine (see Section 8.4 to learn how to build your own kernel). Support for the widest possible range of devices is desirable in general, to ensure that Debian can be installed on the widest array of hardware.

Any storage system supported by the Linux kernel is also supported by the boot system. This includes both SCSI and IDE disks. Note, however, that on many systems, the SRM console is unable to boot from IDE drives, and the Jensen is unable to boot from floppies. (see http://www.alphalinux.org/faq/FAQ-9.html for more information on booting the Jensen)

2.3. Peripherals and Other Hardware

Linux supports a large variety of hardware devices such as mice, printers, scanners, PCMCIA and USB devices. However, most of these devices are not required while installing the system.
2.4. Purchasing Hardware Specifically for GNU/Linux

There are several vendors, who ship systems with Debian or other distributions of GNU/Linux pre-installed (http://www.debian.org/distrib/pre-installed). You might pay more for the privilege, but it does buy a level of peace of mind, since you can be sure that the hardware is well-supported by GNU/Linux.

Whether or not you are purchasing a system with Linux bundled, or even a used system, it is still important to check that your hardware is supported by the Linux kernel. Check if your hardware is listed in the references found above. Let your salesperson (if any) know that you’re shopping for a Linux system. Support Linux-friendly hardware vendors.

2.4.1. Avoid Proprietary or Closed Hardware

Some hardware manufacturers simply won’t tell us how to write drivers for their hardware. Others won’t allow us access to the documentation without a non-disclosure agreement that would prevent us from releasing the Linux source code.

Since we haven’t been granted access to the documentation on these devices, they simply won’t work under Linux. You can help by asking the manufacturers of such hardware to release the documentation. If enough people ask, they will realize that the free software community is an important market.

2.4.2. Fake or “Virtual” Parity RAM

If you ask for Parity RAM in a computer store, you’ll probably get virtual parity memory modules instead of true parity ones. Virtual parity SIMMs can often (but not always) be distinguished because they only have one more chip than an equivalent non-parity SIMM, and that one extra chip is smaller than all the others. Virtual-parity SIMMs work exactly like non-parity memory. They can’t tell you when you have a single-bit RAM error the way true-parity SIMMs do in a motherboard that implements parity. Don’t ever pay more for a virtual-parity SIMM than a non-parity one. Do expect to pay a little more for true-parity SIMMs, because you are actually buying one extra bit of memory for every 8 bits.

If you want complete information on Alpha RAM issues, and what is the best RAM to buy, see the PC Hardware FAQ (http://www.faqs.org/faqs/pc-hardware-faq/part1/).

Most, if not all, Alpha systems require true-parity RAM.

2.5. Memory and Disk Space Requirements

You must have at least 32MB of memory and 110MB of hard disk space. For a minimal console-based system (all standard packages), 250MB is required. If you want to install a reasonable amount of software, including the X Window System, and some development programs and libraries, you’ll need at least 400MB. For a more or less complete desktop system, you’ll need a few gigabytes.

2.6. Network Connectivity Hardware

Any network interface card (NIC) supported by the Linux kernel should also be supported by the boot disks. You may need to load your network driver as a module.
Chapter 3. Before Installing Debian
GNU/Linux

This chapter deals with the preparation for installing Debian before you even boot the installer. This includes backing up your data, gathering information about your hardware, and locating any necessary information.

3.1. Overview of the Installation Process

First, just a note about re-installations. With Debian, a circumstance that will require a complete re-installation of your system is very rare; perhaps mechanical failure of the hard disk would be the most common case.

Many common operating systems may require a complete installation to be performed when critical failures take place or for upgrades to new OS versions. Even if a completely new installation isn’t required, often the programs you use must be re-installed to operate properly in the new OS.

Under Debian GNU/Linux, it is much more likely that your OS can be repaired rather than replaced if things go wrong. Upgrades never require a wholesale installation; you can always upgrade in-place. And the programs are almost always compatible with successive OS releases. If a new program version requires newer supporting software, the Debian packaging system ensures that all the necessary software is automatically identified and installed. The point is, much effort has been put into avoiding the need for re-installation, so think of it as your very last option. The installer is *not* designed to re-install over an existing system.

Here’s a road map for the steps you will take during the installation process.

1. Back up any existing data or documents on the hard disk where you plan to install.
2. Gather information about your computer and any needed documentation, before starting the installation.
3. Create partition-able space for Debian on your hard disk.
4. Locate and/or download the installer software and any specialized driver files your machine requires (except Debian CD users).
5. Set up boot tapes/floppies/USB sticks, or place boot files (most Debian CD users can boot from one of the CDs).
6. Boot the installation system.
7. Select installation language.
8. Activate the ethernet network connection, if available.
9. Create and mount the partitions on which Debian will be installed.
10. Watch the automatic download/install/setup of the base system.
11. Install a *boot loader* which can start up Debian GNU/Linux and/or your existing system.
12. Load the newly installed system for the first time, and make some initial system settings.
13. Install additional software (*tasks* and/or *packages*), at your discretion.

If you have problems during the installation, it helps to know which packages are involved in which steps. Introducing the leading software actors in this installation drama:
Chapter 3. Before Installing Debian GNU/Linux

The installer software, *debian-installer*, is the primary concern of this manual. It detects hardware and loads appropriate drivers, uses *dhcp-client* to set up the network connection, and runs *debootstrap* to install the base system packages. Many more actors play smaller parts in this process, but *debian-installer* has completed its task when you load the new system for the first time.

Upon loading the new base system, *base-config* supervises adding users, setting a time zone (via *tzsetup*), and setting up the package installation system (using *apt-setup*). It then launches *tasksel* which can be used to select large groups of related programs, and in turn can run *aptitude* which allows you to choose individual software packages.

When *debian-installer* finishes, before the first system load, you have only a very basic command line driven system. The graphical interface which displays windows on your monitor will not be installed unless you select it during the final steps, with either *tasksel* or *aptitude*. It’s optional because many Debian GNU/Linux systems are servers which don’t really have any need for a graphical user interface to do their job.

Just be aware that the X system is completely separate from *debian-installer*, and in fact is much more complicated. Installation and troubleshooting of the X window installation is not within the scope of this manual.

3.2. Back Up Your Existing Data!

Before you start, make sure to back up every file that is now on your system. If this is the first time a non-native operating system has been installed on your computer, it’s quite likely you will need to re-partition your disk to make room for Debian GNU/Linux. Anytime you partition your disk, you should count on losing everything on the disk, no matter what program you use to do it. The programs used in installation are quite reliable and most have seen years of use; but they are also quite powerful and a false move can cost you. Even after backing up be careful and think about your answers and actions. Two minutes of thinking can save hours of unnecessary work.

If you are creating a multi-boot system, make sure that you have the distribution media of any other present operating systems on hand. Especially if you repartition your boot drive, you might find that you have to reinstall your operating system’s boot loader, or in many cases the whole operating system itself and all files on the affected partitions.

3.3. Information You Will Need

3.3.1. Documentation

3.3.1.1. Installation Manual

The document you are now reading, which is the official version of the Installation Guide for the sarge release of Debian; available in various formats and translations (http://www.debian.org/releases/sarge/installmanual).

3.3.1.2. Hardware documentation

Often contains useful information on configuring or using your hardware.
3.3.2. Finding Sources of Hardware Information

In many cases, the installer will be able to automatically detect your hardware. But to be prepared, we do recommend familiarizing yourself with your hardware before the install.

Hardware information can be gathered from:

- The manuals that come with each piece of hardware.
- The BIOS setup screens of your computer. You can view these screens when you start your computer by pressing a combination of keys. Check your manual for the combination. Often, it is the Delete key.
- The cases and boxes for each piece of hardware.
- System commands or tools in another operating system, including file manager displays. This source is especially useful for information about RAM and hard drive memory.
- Your system administrator or Internet Service Provider. These sources can tell you the settings you need to set up your networking and e-mail.

Table 3-1. Hardware Information Needed for an Install

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Information You Might Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Drives</td>
<td>How many you have.</td>
</tr>
<tr>
<td></td>
<td>Their order on the system.</td>
</tr>
<tr>
<td></td>
<td>Whether IDE or SCSI (most computers are IDE).</td>
</tr>
<tr>
<td></td>
<td>Available free space.</td>
</tr>
<tr>
<td></td>
<td>Partitions.</td>
</tr>
<tr>
<td></td>
<td>Partitions where other operating systems are installed.</td>
</tr>
<tr>
<td>Monitor</td>
<td>Model and manufacturer.</td>
</tr>
<tr>
<td></td>
<td>Resolutions supported.</td>
</tr>
<tr>
<td></td>
<td>Horizontal refresh rate.</td>
</tr>
<tr>
<td></td>
<td>Vertical refresh rate.</td>
</tr>
<tr>
<td></td>
<td>Color depth (number of colors) supported.</td>
</tr>
<tr>
<td></td>
<td>Screen size.</td>
</tr>
<tr>
<td>Mouse</td>
<td>Type: serial, PS/2, or USB.</td>
</tr>
<tr>
<td></td>
<td>Port.</td>
</tr>
<tr>
<td></td>
<td>Manufacturer.</td>
</tr>
<tr>
<td></td>
<td>Number of buttons.</td>
</tr>
<tr>
<td>Network</td>
<td>Model and manufacturer.</td>
</tr>
</tbody>
</table>
3.3.3. Hardware Compatibility

Many brand name products work without trouble on Linux. Moreover, hardware for Linux is improving daily. However, Linux still does not run as many different types of hardware as some operating systems.

You can check hardware compatibility by:

- Checking manufacturers’ web sites for new drivers.
- Looking at web sites or manuals for information about emulation. Lesser known brands can sometimes use the drivers or settings for better-known ones.
- Checking hardware compatibility lists for Linux on web sites dedicated to your architecture.
- Searching the Internet for other users’ experiences.

3.3.4. Network Settings

If your computer is connected to a network 24 hours a day (i.e., an Ethernet or equivalent connection — not a PPP connection), you should ask your network’s system administrator for this information.

- Your host name (you may be able to decide this on your own).
- Your domain name.
- Your computer’s IP address.
- The netmask to use with your network.
- The IP address of the default gateway system you should route to, if your network has a gateway.
- The system on your network that you should use as a DNS (Domain Name Service) server.

If you use a wireless network, you should also find out:

- ESSID of your wireless network.
3.4. Meeting Minimum Hardware Requirements

Once you have gathered information about your computer’s hardware, check that your hardware will let you do the type of installation that you want to do.

Depending on your needs, you might manage with less than some of the recommended hardware listed in the table below. However, most users risk being frustrated if they ignore these suggestions.

<table>
<thead>
<tr>
<th>Install Type</th>
<th>RAM</th>
<th>Hard Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>No desktop</td>
<td>24 megabytes</td>
<td>450 megabytes</td>
</tr>
<tr>
<td>With Desktop</td>
<td>64 megabytes</td>
<td>1 gigabyte</td>
</tr>
<tr>
<td>Server</td>
<td>128 megabytes</td>
<td>4 gigabytes</td>
</tr>
</tbody>
</table>

Here is a sampling of some common Debian system configurations. You can also get an idea of the disk space used by related groups of programs by referring to Section C.3.

Standard Server

This is a small server profile, useful for a stripped down server which does not have a lot of niceties for shell users. It includes an FTP server, a web server, DNS, NIS, and POP. For these 100MB of disk space would suffice, and then you would need to add space for any data you serve up.

Desktop

A standard desktop box, including the X window system, full desktop environments, sound, editors, etc. You’ll need about 2GB using the standard desktop task, though it can be done in far less.

Work Console

A more stripped-down user machine, without the X window system or X applications. Possibly suitable for a laptop or mobile computer. The size is around 140MB.

Developer

A desktop setup with all the development packages, such as Perl, C, C++, etc. Size is around 475MB. Assuming you are adding X11 and some additional packages for other uses, you should plan around 800MB for this type of machine.

Remember that these sizes don’t include all the other materials which are usually to be found, such as user files, mail, and data. It is always best to be generous when considering the space for your own files and data. Notably, the /var partition contains a lot of state information specific to Debian in addition to its regular contents like logfiles. The dpkg files (with information on all installed packages) can easily consume 20MB. Also, apt-get puts downloaded packages here before they are installed. You should usually allocate at least 100MB for /var.
3.5. Pre-Partitioning for Multi-Boot Systems

Partitioning your disk simply refers to the act of breaking up your disk into sections. Each section is then independent of the others. It’s roughly equivalent to putting up walls inside a house; if you add furniture to one room it doesn’t affect any other room.

If you already have an operating system on your system (Tru64 (Digital UNIX), OpenVMS, Windows NT, FreeBSD, . . .) and want to stick Linux on the same disk, you will need to repartition the disk. Debian requires its own hard disk partitions. It cannot be installed on Windows or MacOS partitions. It may be able to share some partitions with other Linux systems, but that’s not covered here. At the very least you will need a dedicated partition for the Debian root.

You can find information about your current partition setup by using a partitioning tool for your current operating system. Partitioning tools always provide a way to show existing partitions without making changes.

In general, changing a partition with a file system already on it will destroy any information there. Thus you should always make backups before doing any repartitioning. Using the analogy of the house, you would probably want to move all the furniture out of the way before moving a wall or you risk destroying it.

If your computer has more than one hard disk, you may want to dedicate one of the hard disks completely to Debian. If so, you don’t need to partition that disk before booting the installation system; the installer’s included partitioning program can handle the job nicely.

If your machine has only one hard disk, and you would like to completely replace the current operating system with Debian GNU/Linux, you also can wait to partition as part of the installation process (Section 6.3.2.1), after you have booted the installation system. However this only works if you plan to boot the installer system from tapes, CD-ROM or files on a connected machine. Consider: if you boot from files placed on the hard disk, and then partition that same hard disk within the installation system, thus erasing the boot files, you’d better hope the installation is successful the first time around.

At the least in this case, you should have some alternate means of reviving your machine like the original system’s installation tapes or CDs.

If your machine already has multiple partitions, and enough space can be provided by deleting and replacing one or more of them, then you too can wait and use the Debian installer’s partitioning program. You should still read through the material below, because there may be special circumstances like the order of the existing partitions within the partition map, that force you to partition before installing anyway.

If none of the above apply, you’ll need to partition your hard disk before starting the installation to create partition-able space for Debian. If some of the partitions will be owned by other operating systems, you should create those partitions using native operating system partitioning programs. We recommend that you do not attempt to create partitions for Debian GNU/Linux using another operating system’s tools. Instead, you should just create the native operating system’s partitions you will want to retain.

If you are going to install more than one operating system on the same machine, you should install all other system(s) before proceeding with Linux installation. Windows and other OS installations may destroy your ability to start Linux, or encourage you to reformat non-native partitions.

You can recover from these actions or avoid them, but installing the native system first saves you trouble.

If you currently have one hard disk with one partition (a common setup for desktop computers), and you want to multi-boot the native operating system and Debian, you will need to:

1. Back up everything on the computer.
2. Boot from the native operating system installer media such as CD-ROM or tapes.
3. Use the native partitioning tools to create native system partition(s). Leave either a place holder partition or free space for Debian GNU/Linux.
4. Install the native operating system on its new partition.
5. Boot back into the native system to verify everything’s OK, and to download the Debian installer boot files.
6. Boot the Debian installer to continue installing Debian.

3.5.1. Partitioning in Tru64 UNIX

Tru64 UNIX, formerly known as Digital UNIX, which is in turn formerly known as OSF/1, uses the partitioning scheme similar to the BSD “disk label”, which allows for up to eight partitions per disk drive. The partitions are numbered “1” through to “8” in Linux and “lettered” “a” through to “h” in UNIX. Linux kernels 2.2 and higher always correspond “1” to “a”, “2” to “b” and so on. For example, rz0e in Tru64 UNIX would most likely be called sda5 in Linux.

Partitions in a Tru64 disk label may overlap. Moreover, if this disk will be used from Tru64, the “c” partition is required to span the entire disk (thus overlapping all other non-empty partitions). Under Linux this makes sda3 identical to sda (sdb3 to sdb, if present, and so on). However, the partman partitioning tool used by debian-installer cannot handle overlapping partitions at present. As a result, it is currently not recommended to share disks between Tru64 and Debian. Partitions on Tru64 disks can be mounted under Debian after installation has been completed.

Another conventional requirement is for the “a” partition to start from the beginning of the disk, so that it always includes the boot block with the disk label. If you intend to boot Debian from that disk, you need to size it at least 2MB to fit aboot and perhaps a kernel. Note that this partition is only required for compatibility; you must not put a file system onto it, or you’ll destroy data.

It is possible, and indeed quite reasonable, to share a swap partition between UNIX and Linux. In this case it will be needed to do a mkswap on that partition every time the system is rebooted from UNIX into Linux, as UNIX will damage the swap signature. You may want to run mkswap from the Linux start-up scripts before adding swap space with swapon -a.

If you want to mount UNIX partitions under Linux, note that Digital UNIX can use two different file system types, UFS and AdvFS, of which Linux only understands the former.

3.5.2. Partitioning in Windows NT

Windows NT uses the PC-style partition table. If you are manipulating existing FAT or NTFS partitions, it is recommended that you use the native Windows NT tools (or, more conveniently, you can also repartition your disk from the AlphaBIOS setup menu). Otherwise, it is not really necessary to partition from Windows; the Linux partitioning tools will generally do a better job. Note that when you run NT, the Disk Administrator may offer you to write a “harmless signature” on non-Windows disks if you have any. Never let it do that, as this signature will destroy the partition information.

If you plan to boot Linux from an ARC/AlphaBIOS/ARCSBIOS console, you will need a (small) FAT partition for MILO. 5 MB is quite sufficient. If Windows NT is installed, its 6 MB bootstrap partition can be employed for this purpose. Debian sarge does not support installing MILO. If you already have MILO installed on your system, or install MILO from other media, Debian can still be booted from ARC.
3.6. Pre-Installation Hardware and Operating System Setup

This section will walk you through pre-installation hardware setup, if any, that you will need to do prior to installing Debian. Generally, this involves checking and possibly changing firmware settings for your system. The “firmware” is the core software used by the hardware; it is most critically invoked during the bootstrap process (after power-up). Known hardware issues affecting the reliability of Debian GNU/Linux on your system are also highlighted.

3.6.1. Hardware Issues to Watch Out For

Many people have tried operating their 90 MHz CPU at 100 MHz, etc. It sometimes works, but is sensitive to temperature and other factors and can actually damage your system. One of the authors of this document over-clocked his own system for a year, and then the system started aborting the gcc program with an unexpected signal while it was compiling the operating system kernel. Turning the CPU speed back down to its rated value solved the problem.

The gcc compiler is often the first thing to die from bad memory modules (or other hardware problems that change data unpredictably) because it builds huge data structures that it traverses repeatedly. An error in these data structures will cause it to execute an illegal instruction or access a non-existent address. The symptom of this will be gcc dying from an unexpected signal.

3.6.1.1. More than 64 MB RAM

The Linux Kernel cannot always detect what amount of RAM you have. If this is the case please look at Section 5.2.
Chapter 4. Obtaining System Installation Media

4.1. Official Debian GNU/Linux CD-ROM Sets

By far the easiest way to install Debian GNU/Linux is from an Official Debian CD-ROM Set. You can buy a set from a vendor (see the CD vendors page (http://www.debian.org/CD/vendors/)). You may also download the CD-ROM images from a Debian mirror and make your own set, if you have a fast network connection and a CD burner (see the Debian CD page (http://www.debian.org/CD/) for detailed instructions). If you have a Debian CD set and CDs are bootable on your machine, you can skip right to Chapter 5; much effort has been expended to ensure the files most people need are there on the CD. Although a full set of binary packages requires several CDs, it is unlikely you will need packages on the third CD and above. You may also consider using the DVD version, which saves a lot of space on your shelf and you avoid the CD shuffling marathon.

If your machine doesn’t support CD booting, but you do have a CD set, you can use an alternative strategy such as net boot, or manually loading the kernel from the CD to initially boot the system installer. The files you need for booting by another means are also on the CD; the Debian network archive and CD folder organization are identical. So when archive file paths are given below for particular files you need for booting, look for those files in the same directories and subdirectories on your CD.

Once the installer is booted, it will be able to obtain all the other files it needs from the CD.

If you don’t have a CD set, then you will need to download the installer system files and place them on the a connected computer so they can be used to boot the installer.

4.2. Downloading Files from Debian Mirrors

To find the nearest (and thus probably the fastest) mirror, see the list of Debian mirrors (http://www.debian.org/distrib/ftpplist).

When downloading files from a Debian mirror, be sure to download the files in binary mode, not text or automatic mode.

4.2.1. Where to Find Installation Images

4.2.1.1. Alpha Installation Files

If you choose to boot from ARC console firmware using MILO, you will also need to prepare a disk containing MILO and LINLOAD.EXE from the provided disk images. See Section 5.1.1 for more information on Alpha firmware and boot loaders. The floppy images can be found in the MILO directory as milo_subarchitecture.bin.
Unfortunately, these MILO images could not be tested and might not work for all subarchitectures. If you find it doesn’t work for you, try copying the appropriate MILO binary onto the floppy (ftp://ftp.debian.org/debian/dists/sarge/main/disks-alpha/current/MILO/). Note that those MILOs don’t support ext2 “sparse superblocks”, so you can’t use them to load kernels from newly generated ext2 file systems. As a workaround, you can put your kernel onto the FAT partition next to the MILO.

MILO binaries are platform-specific. See Section 2.1.2 to determine the appropriate MILO image for your Alpha platform.

4.3. Preparing Files for TFTP Net Booting

If your machine is connected to a local area network, you may be able to boot it over the network from another machine, using TFTP. If you intend to boot the installation system from another machine, the boot files will need to be placed in specific locations on that machine, and the machine configured to support booting of your specific machine.

You need to setup a TFTP server, and for many machines, a BOOTP server.

Unlike the Open Firmware found on Sparc and PowerPC machines, the SRM console will not use RARP to obtain its IP address, and therefore you must use BOOTP for net booting your Alpha. You can also enter the IP configuration for network interfaces directly in the SRM console.

The Trivial File Transfer Protocol (TFTP) is used to serve the boot image to the client. Theoretically, any server, on any platform, which implements these protocols, may be used. In the examples in this section, we shall provide commands for SunOS 4.x, SunOS 5.x (a.k.a. Solaris), and GNU/Linux.

4.3.1. Enabling the TFTP Server

To get the TFTP server ready to go, you should first make sure that tftpd is enabled. This is usually enabled by having something like the following line in /etc/inetd.conf:

```
tftp dgram udp wait nobody /usr/sbin/tcpd in.tftpd /tftpboot
```

Debian packages will in general set this up correctly by default when they are installed.

Look in that file and remember the directory which is used as the argument of in.tftpd; you’ll need that below. The -l argument enables some versions of in.tftpd to log all requests to the system logs; this is useful for diagnosing boot errors. If you’ve had to change /etc/inetd.conf, you’ll have to notify the running inetd process that the file has changed. On a Debian machine, run /etc/init.d/inetd reload; on other machines, find out the process ID for inetd, and run kill -HUP inetd-pid.

4.3.2. Move TFTP Images Into Place

Next, place the TFTP boot image you need, as found in Section 4.2.1, in the tftpd boot image directory. Generally, this directory will be /tftpboot. You’ll have to make a link from that file to the file

1. Alpha systems can also be net-booted using the DECNet MOP (Maintenance Operations Protocol), but this is not covered here. Presumably, your local OpenVMS operator will be happy to assist you should you have some burning need to use MOP to boot Linux on your Alpha.
Chapter 4. Obtaining System Installation Media

which `tftpd` will use for booting a particular client. Unfortunately, the file name is determined by the TFTP client, and there are no strong standards.

4.3.2.1. Alpha TFTP Booting

On Alpha, you must specify the filename (as a relative path to the boot image directory) using the `-file` argument to the SRM `boot` command, or by setting the `BOOT_FILE` environment variable. Alternatively, the filename can be given via BOOTP (in ISC dhcpd, use the `filename` directive). Unlike Open Firmware, there is no default filename on SRM, so you must specify a filename by either one of these methods.

4.4. Automatic Installation

For installing on multiple computers it’s possible to do fully automatic installations. Debian packages intended for this include `fai` (which uses an install server), `replicator`, `systemimager`, `autoinstall`, and the Debian Installer itself.

4.4.1. Automatic Installation Using the Debian Installer

The Debian Installer supports automating installs via preconfiguration files. A preconfiguration file can be loaded from the network or from removable media, and used to fill in answers to questions asked during the installation process.

Although most dialogs used by `debian-installer` can be preseeded using this method, there are some notable exceptions. You can (re)partition an entire disk or use available free space on a disk; it is not possible to use existing partitions. You currently cannot use preseeding to set up RAID and LVM. Also, with the exception of network driver modules, it is not possible to preconfigure kernel module parameters.

The preconfiguration file is in the format used by the `debconf-set-selections` command. A well documented and working example that you can edit is in Section C.1.

Alternatively, one way to get a complete file listing all the values that can be preseeded is to do a manual install, and then use `debconf-get-selections`, from the `debconf-utils` package, to dump both the debconf database and the cdebconf database in `/var/log/debian-installer/cdebconf` to a single file:

```
$ debconf-get-selections --installer > file
$ debconf-get-selections >> file
```

However, a file generated in this manner will have some items that should not be preseeded, and the file in Section C.1 is a better starting place for most users.

Once you have a preconfiguration file, you can edit it if necessary, and place it on a web server, or copy it onto the installer’s boot media. Wherever you place the file, you need to pass a parameter to the installer at boot time to tell it to use the file.

To make the installer use a preconfiguration file downloaded from the network, add `preseed/url=http://url/to/preseed.cfg` to the kernel boot parameters. Of course the preconfiguration will not take effect until the installer manages to set up the network to download the file, so this is most useful if the installer can set up the network via DHCP without asking any questions. You may
want to set the installation priority to critical to avoid any questions while the network is being configured. See Section 5.2.1.

To place a preconfiguration file on a CD, you would need to remaster the ISO image to include your preconfiguration file. See the manual page for mkisofs for details. Alternatively, put the preseed file on a floppy, and use preseed/file=/floppy/preseed.cfg
Chapter 5. Booting the Installation System

5.1. Booting the Installer on Alpha

5.1.1. Alpha Console Firmware

Console firmware is stored in a flash ROM and started when an Alpha system is powered up or reset. There are two different console specifications used on Alpha systems, and hence two classes of console firmware available:

- **SRM console**, based on the Alpha Console Subsystem specification, which provides an operating environment for OpenVMS, Tru64 UNIX, and Linux operating systems.
- **ARC, AlphaBIOS, or ARCSBIOS console**, based on the Advanced RISC Computing (ARC) specification, which provides an operating environment for Windows NT.

From the user’s perspective, the most important difference between SRM and ARC is that the choice of console constrains the possible disk-partitioning scheme for the hard disk which you wish to boot off of.

ARC requires that you use an MS-DOS partition table (as created by `cfdisk`) for the boot disk. Therefore MS-DOS partition tables are the “native” partition format when booting from ARC. In fact, since AlphaBIOS contains a disk partitioning utility, you may prefer to partition your disks from the firmware menus before installing Linux.

Conversely, SRM is incompatible\(^1\) with MS-DOS partition tables. Since Tru64 Unix uses the BSD disklabel format, this is the “native” partition format for SRM installations.

GNU/Linux is the only operating system on Alpha that can be booted from both console types, but Debian GNU/Linux 3.1 only supports booting on SRM-based systems. If you have an Alpha for which no version of SRM is available, if you will be dual-booting the system with Windows NT, or if your boot device requires ARC console support for BIOS initialization, you will not be able to use the Debian GNU/Linux 3.1 installer. You can still run Debian GNU/Linux 3.1 on such systems by using other install media; for instance, you can install Debian woody with MILO and upgrade.

Because MILO is not available for any of the Alpha systems currently in production (as of February 2000), and because it is no longer necessary to buy an OpenVMS or Tru64 Unix license to have SRM firmware on your older Alpha, it is recommended that you use SRM when possible.

The following table summarizes available and supported system type/console combinations (see Section 2.1.2 for the system type names). The word “ARC” below denotes any of the ARC-compliant consoles.

<table>
<thead>
<tr>
<th>System Type</th>
<th>Console Type Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>alcor</td>
<td>ARC or SRM</td>
</tr>
<tr>
<td>avanti</td>
<td>ARC or SRM</td>
</tr>
<tr>
<td>book1</td>
<td>SRM only</td>
</tr>
<tr>
<td>cabriolet</td>
<td>ARC or SRM</td>
</tr>
<tr>
<td>dp264</td>
<td>SRM only</td>
</tr>
</tbody>
</table>

\(^1\) Specifically, the bootsector format required by the Console Subsystem Specification conflicts with the placement of the DOS partition table.
System Type

<table>
<thead>
<tr>
<th>System Type</th>
<th>Console Type Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>eb164</td>
<td>ARC or SRM</td>
</tr>
<tr>
<td>eb64p</td>
<td>ARC or SRM</td>
</tr>
<tr>
<td>eb66</td>
<td>ARC or SRM</td>
</tr>
<tr>
<td>eb66p</td>
<td>ARC or SRM</td>
</tr>
<tr>
<td>jensen</td>
<td>SRM only</td>
</tr>
<tr>
<td>lx164</td>
<td>ARC or SRM</td>
</tr>
<tr>
<td>miata</td>
<td>ARC or SRM</td>
</tr>
<tr>
<td>mikasa</td>
<td>ARC or SRM</td>
</tr>
<tr>
<td>mikasa-p</td>
<td>SRM only</td>
</tr>
<tr>
<td>nautilus</td>
<td>ARC (see motherboard manual) or SRM</td>
</tr>
<tr>
<td>noname</td>
<td>ARC or SRM</td>
</tr>
<tr>
<td>noritake</td>
<td>SRM only</td>
</tr>
<tr>
<td>noritake-p</td>
<td>SRM only</td>
</tr>
<tr>
<td>pc164</td>
<td>ARC or SRM</td>
</tr>
<tr>
<td>rawhide</td>
<td>SRM only</td>
</tr>
<tr>
<td>ruffian</td>
<td>ARC only</td>
</tr>
<tr>
<td>sable</td>
<td>SRM only</td>
</tr>
<tr>
<td>sable-g</td>
<td>SRM only</td>
</tr>
<tr>
<td>sx164</td>
<td>ARC or SRM</td>
</tr>
<tr>
<td>takara</td>
<td>ARC or SRM</td>
</tr>
<tr>
<td>xl</td>
<td>ARC only</td>
</tr>
<tr>
<td>xlt</td>
<td>ARC only</td>
</tr>
</tbody>
</table>

Generally, none of these consoles can boot Linux directly, so the assistance of an intermediary bootloader is required. For the SRM console, **aboot**, a small, platform-independent bootloader, is used. See the (unfortunately outdated) SRM HOWTO (http://www.tldp.org/HOWTO/SRM-HOWTO/) for more information on **aboot**.

The majority of AlphaServers and all current server and workstation products contain both SRM and AlphaBIOS in their firmware. For “half-flash” machines such as the various evaluation boards, it is possible to switch from one version to another by reflashing the firmware. Also, once SRM is installed, it is possible to run ARC/AlphaBIOS from a floppy disk (using the **arc** command). For the reasons mentioned above, we recommend switching to SRM before installing Debian GNU/Linux.

As on other architectures, you should install the newest available revision of the firmware\(^2\) before installing Debian GNU/Linux. For Alpha, firmware updates can be obtained from Alpha Firmware Updates (http://ftp.digital.com/pub/DEC/Alpha/firmware/).

5.1.2. Booting with TFTP

In SRM, Ethernet interfaces are named with the **ewa** prefix, and will be listed in the output of the

\(^2\) Except on Jensen, where Linux is not supported on firmware versions newer than 1.7 — see http://www.alphalinux.org/faq/FAQ-9.html for more information.
show dev command, like this (edited slightly):

```bash
>>> show dev
ewa0.0.0.9.0 EWA0 08-00-2B-86-98-65
ewb0.0.0.11.0 EWBO 08-00-2B-86-98-54
ewc0.0.0.2002.0 EWC0 00-06-2B-01-32-B0
```

You first need to set the boot protocol:

```bash
>>> set ewa0_protocol bootp
```

Then check the medium type is correct:

```bash
>>> set ewa0_mode mode
```

You can get a listing of valid modes with `set ewa0_mode`.

Then, to boot from the first Ethernet interface, you would type:

```bash
>>> boot ewa0 -flags ""
```

This will boot using the default kernel parameters as included in the netboot image.

If you wish to use a serial console, you must pass the `console=` parameter to the kernel. This can be done using the `-flags` argument to the SRM boot command. The serial ports are named the same as their corresponding files in `/dev`. Also, when specifying additional kernel parameters, you must repeat certain default options that are needed by the debian-installer images. For example, to boot from `ewa0` and use a console on the first serial port, you would type:

```bash
>>> boot ewa0 -flags "root=/dev/ram ramdisk_size=16384 console=ttyS0"
```

5.1.3. Booting from CD-ROM with the SRM Console

Type

```bash
>>> boot xxxx -flags 0
```

where `xxxx` is your CD-ROM drive in SRM notation.

5.2. Boot Parameters

Boot parameters are Linux kernel parameters which are generally used to make sure that peripherals are dealt with properly. For the most part, the kernel can auto-detect information about your peripherals. However, in some cases you’ll have to help the kernel a bit.

If this is the first time you’re booting the system, try the default boot parameters (i.e., don’t try setting parameters) and see if it works correctly. It probably will. If not, you can reboot later and look for any special parameters that inform the system about your hardware.
Chapter 5. Booting the Installation System

Information on many boot parameters can be found in the Linux BootPrompt HOWTO (http://www.tldp.org/HOWTO/BootPrompt-HOWTO.html), including tips for obscure hardware. This section contains only a sketch of the most salient parameters. Some common gotchas are included below in Section 5.3.

When the kernel boots, a message

Memory: avail/total available

should be emitted early in the process. total should match the total amount of RAM, in kilobytes. If this doesn’t match the actual amount of RAM you have installed, you need to use the mem=ram parameter, where ram is set to the amount of memory, suffixed with “k” for kilobytes, or “m” for megabytes. For example, both mem=65536k and mem=64m mean 64MB of RAM.

If you are booting with a serial console, generally the kernel will autodetect this. If you have a video-card (framebuffer) and a keyboard also attached to the computer which you wish to boot via serial console, you may have to pass the console=device argument to the kernel, where device is your serial device, which is usually something like ttyS0.

5.2.1. Debian Installer Parameters

The installation system recognizes a few additional boot parameters\(^3\) which may be useful.

debconf/priority

This parameter sets the lowest priority of messages to be displayed.

The default installation uses debconf/priority=high. This means that both high and critical priority messages are shown, but medium and low priority messages are skipped. If problems are encountered, the installer adjusts the priority as needed.

If you add debconf/priority=medium as boot parameter, you will be shown the installation menu and gain more control over the installation. When debconf/priority=low is used, all messages are shown (this is equivalent to the expert boot method). With debconf/priority=critical, the installation system will display only critical messages and try to do the right thing without fuss.

DEBIAN_FRONTEND

This boot parameter controls the type of user interface used for the installer. The current possible parameter settings are:

- DEBIAN_FRONTEND=noninteractive
- DEBIAN_FRONTEND=text
- DEBIAN_FRONTEND=newt
- DEBIAN_FRONTEND=slang
- DEBIAN_FRONTEND=ncurses
- DEBIAN_FRONTEND=bogl
- DEBIAN_FRONTEND=gtk
- DEBIAN_FRONTEND=corba

\(^3\) Note that the kernel accepts a maximum of 8 command line options and 8 environment options (including any options added by default for the installer). If these numbers are exceeded, 2.4 kernels will drop any excess options and 2.6 kernels will panic.
Chapter 5. Booting the Installation System

The default front end is `DEBIAN_FRONTEND=newt`. `DEBIAN_FRONTEND=text` may be preferable for serial console installs. Generally only the `newt` frontend is available on default install media, so this is not very useful right now.

BOOT_DEBUG

Setting this boot parameter to 2 will cause the installer’s boot process to be verbosely logged. Setting it to 3 makes debug shells available at strategic points in the boot process. (Exit the shells to continue the boot process.)

- **BOOT_DEBUG=0**

 This is the default.

- **BOOT_DEBUG=1**

 More verbose than usual.

- **BOOT_DEBUG=2**

 Lots of debugging information.

- **BOOT_DEBUG=3**

 Shells are run at various points in the boot process to allow detailed debugging. Exit the shell to continue the boot.

INSTALL_MEDIA_DEV

The value of the parameter is the path to the device to load the Debian installer from. For example, `INSTALL_MEDIA_DEV=/dev/floppy/0`

The boot floppy, which normally scans all floppies and USB storage devices it can to find the root floppy, can be overridden by this parameter to only look at the one device.

debian-installer/framebuffer

Some architectures use the kernel framebuffer to offer installation in a number of languages. If framebuffer causes a problem on your system you can disable the feature by the parameter `debian-installer/framebuffer=false`. Problem symptoms are error messages about `bterm` or `bogl`, a blank screen, or a freeze within a few minutes after starting the install.

debian-installer/probe/usb

Set to `false` to prevent probing for USB on boot, if that causes problems.

netcfg/disable_dhcp

By default, the `debian-installer` automatically probes for network configuration via DHCP. If the probe succeeds, you won’t have a chance to review and change the obtained settings. You can get to the manual network setup only in case the DHCP probe fails.

If you have a DHCP server on your local network, but want to avoid it because e.g. it gives wrong answers, you can use the parameter `netcfg/disable_dhcp=true` to prevent configuring the network with DHCP and to enter the information manually.

hw-detect/start_pcmcia

Set to `false` to prevent starting PCMCIA services, if that causes problems. Some laptops are well known for this misbehavior.
Chapter 5. Booting the Installation System

preseed/url
Specify the url to a preconfiguration file to download and use in automating the install. See Section 4.4.

preseed/file
Specify the path to a preconfiguration file to load to automating the install. See Section 4.4.

ramdisk_size
If you are using a 2.2.x kernel, you may need to set `ramdisk_size=13000`.

5.3. Troubleshooting the Installation Process

5.3.1. Boot Configuration

If you have problems and the kernel hangs during the boot process, doesn’t recognize peripherals you actually have, or drives are not recognized properly, the first thing to check is the boot parameters, as discussed in Section 5.2.

If you are booting with your own kernel instead of the one supplied with the installer, be sure that `CONFIG_DEVFS` is set in your kernel. The installer requires `CONFIG_DEVFS`.

Often, problems can be solved by removing add-ons and peripherals, and then trying booting again.

If you have a large amount of memory installed in your machine, more than 512M, and the installer hangs when booting the kernel, you may need to include a boot argument to limit the amount of memory the kernel sees, such as `mem=512m`.

5.3.2. Interpreting the Kernel Startup Messages

During the boot sequence, you may see many messages in the form *can’t find something*, or *something not present*, *can’t initialize something*, or even *this driver release depends on something*. Most of these messages are harmless. You see them because the kernel for the installation system is built to run on computers with many different peripheral devices. Obviously, no one computer will have every possible peripheral device, so the operating system may emit a few complaints while it looks for peripherals you don’t own. You may also see the system pause for a while. This happens when it is waiting for a device to respond, and that device is not present on your system. If you find the time it takes to boot the system unacceptably long, you can create a custom kernel later (see Section 8.4).

5.3.3. Bug Reporter

If you get through the initial boot phase but cannot complete the install, the bug reporter menu choice may be helpful. It copies system error logs and configuration information to a user-supplied floppy. This information may provide clues as to what went wrong and how to fix it. If you are submitting a bug report you may want to attach this information to the bug report.
Other pertinent installation messages may be found in `/var/log/` during the installation, and `/var/log/debian-installer/` after the computer has been booted into the installed system.

5.3.4. Submitting Installation Reports

If you still have problems, please submit an installation report. We also encourage installation reports to be sent even if the installation is successful, so that we can get as much information as possible on the largest number of hardware configurations.

Please use this template when filling out installation reports, and file the report as a bug report against the `installation-reports` pseudo package, by sending it to `<submit@bugs.debian.org>`.

Package: installation-reports

Boot method: <How did you boot the installer? CD? floppy? network?>

Image version: <Fill in date and from where you got the image>

Date: <Date and time of the install>

Machine: <Description of machine {eg, IBM Thinkpad R32}>

Processor:

Memory:

Partitions: <df -Tl will do; the raw partition table is preferred>

Output of lspci and lspci -n:

Base System Installation Checklist:
[O] = OK, [E] = Error (please elaborate below), [] = didn’t try it

- Initial boot worked: []
- Configure network HW: []
- Config network: []
- Detect CD: []
- Load installer modules: []
- Detect hard drives: []
- Partition hard drives: []
- Create file systems: []
- Mount partitions: []
- Install base system: []
- Install boot loader: []
- Reboot: []

Comments/Problems:
<Description of the install, in prose, and any thoughts, comments and ideas you had during the initial install.>

In the bug report, describe what the problem is, including the last visible kernel messages in the event of a kernel hang. Describe the steps that you did which brought the system into the problem state.
Chapter 6. Using the Debian Installer

6.1. How the Installer Works

The Debian Installer consists of a number of special-purpose components to perform each installation task. Each component performs its task, asking the user questions as necessary to do its job. The questions themselves are given priorities, and the priority of questions to be asked is set when the installer is started.

When a default installation is performed, only essential (high priority) questions will be asked. This results in a highly automated installation process with little user interaction. Components are automatically run in sequence; which components are run depends mainly on the installation method you use and on your hardware. The installer will use default values for questions that are not asked.

If there is a problem, the user will see an error screen, and the installer menu may be shown in order to select some alternative action. If there are no problems, the user will never see the installer menu, but will simply answer questions for each component in turn. Serious error notifications are set to priority “critical” so the user will always be notified.

Some of the defaults that the installer uses can be influenced by passing boot arguments when debian-installer is started. If, for example, you wish to force static network configuration (DHCP is used by default if available), you could add the boot parameter `netcfg/disable_dhcp=true`. See Section 5.2.1 for available options.

Power users may be more comfortable with a menu-driven interface, where each step is controlled by the user rather than the installer performing each step automatically in sequence. To use the installer in a manual, menu-driven way, add the boot argument `debconf/priority=medium`.

If your hardware requires you to pass options to kernel modules as they are installed, you will need to start the installer in “expert” mode. This can be done by either using the `expert` command to start the installer or by adding the boot argument `debconf/priority=low`. Expert mode gives you full control over debian-installer.

The normal installer display is character-based (as opposed to the now more familiar graphical interface). The mouse is not operational in this environment. Here are the keys you can use to navigate within the various dialogs. The Tab or right arrow keys move “forward”, and the Shift-Tab or left arrow keys move “backward” between displayed buttons and selections. The up and down arrow select different items within a scrollable list, and also scroll the list itself. In addition, in long lists, you can type a letter to cause the list to scroll directly to the section with items starting with the letter you typed and use Pg-Up and Pg-Down to scroll the list in sections. The space bar selects an item such as a checkbox. Use Enter to activate choices.

Error messages are redirected to the third console. You can access this console by pressing Left Alt-F3 (hold the left Alt key while pressing the F3 function key); get back to the main installer process with Left Alt-F1.

These messages can also be found in /var/log/messages. After installation, this log is copied to /var/log/debian-installer/messages on your new system. Other installation messages may be found in /var/log/ during the installation, and /var/log/debian-installer/ after the computer has been booted into the installed system.
6.2. Components Introduction

Here is a list of installer components with a brief description of each component’s purpose. Details you might need to know about using a particular component are in Section 6.3.

main-menu
Shows the list of components to the user during installer operation, and starts a component when it is selected. Main-menu’s questions are set to priority medium, so if your priority is set to high or critical (high is the default), you will not see the menu. On the other hand, if there is an error which requires your intervention, the question priority may be downgraded temporarily to allow you to resolve the problem, and in that case the menu may appear.

You can get to the main menu by selecting the “Back” button repeatedly to back all the way out of the currently running component.

languagechooser
Shows a list of languages and language variants. The installer will display messages in the chosen language, unless the translation for that language is not complete. When a translation is not complete, English messages are shown.

countrychooser
Shows a list of countries. The user may choose the country he lives in.

kbd-chooser
Shows a list of keyboards, from which the user chooses the model which matches his own.

hw-detect
Automatically detects most of the system’s hardware, including network cards, disk drives, and PCMCIA.

cdrom-detect
Looks for and mounts a Debian installation CD.

netcfg
Configures the computer’s network connections so it can communicate over the internet.

iso-scan
Looks for ISO file systems, which may be on a CD-ROM or on the hard drive.

choose-mirror
Presents a list of Debian archive mirrors. The user may choose the source of his installation packages.

cdrom-checker
Checks integrity of a CD-ROM. This way the user may assure him/herself that the installation CD-ROM was not corrupted.

lowmem
Lowmem tries to detect systems with low memory and then does various tricks to remove unnecessary parts of debian-installer from the memory (at the cost of some features).
Anna

Anna’s Not Nearly APT. Installs packages which have been retrieved from the chosen mirror or CD.

partman

Allows the user to partition disks attached to the system, create file systems on the selected partitions, and attach them to the mountpoints. Included are also interesting features like a fully automatic mode or LVM support. This is the preferred partitioning tool in Debian.

autopartkit

Automatically partitions an entire disk according to preset user preferences.

partitioner

Allows the user to partition disks attached to the system. A partitioning program appropriate to your computer’s architecture is chosen.

partconf

Displays a list of partitions, and creates file systems on the selected partitions according to user instructions.

lvmcfg

Helps the user with the configuration of the LVM (Logical Volume Manager).

mdcfg

Allows the user to setup Software RAID (Redundant Array of Inexpensive Disks). This Software RAID is usually superior to the cheap IDE (pseudo hardware) RAID controllers found on newer motherboards.

base-installer

Installs the most basic set of packages which would allow the computer to operate under Linux when rebooted.

os-prober

Detects currently installed operating systems on the computer and passes this information to the bootloader-installer, which may offer you an ability to add discovered operating systems to the bootloader’s start menu. This way the user could easily choose at the boot time which operating system to start.

bootloader-installer

Installs a boot loader program on the hard disk, which is necessary for the computer to start up using Linux without using a floppy or CD-ROM. Many boot loaders allow the user to choose an alternate operating system each time the computer boots.

base-config

Provides dialogs for setting up the base system packages according to user preferences. This is normally done after rebooting the computer; it is the “first run” of the new Debian system.

shell

Allows the user to execute a shell from the menu, or in the second console.
Chapter 6. Using the Debian Installer

6.3. Using Individual Components

In this section we will describe each installer component in detail. The components have been grouped into stages that should be recognizable for users. They are presented in the order they appear during the install. Note that not all modules will be used for every installation; which modules are actually used depends on the installation method you use and on your hardware.

6.3.1. Setting up Debian Installer and Hardware Configuration

Let’s assume the Debian Installer has booted and you are facing its first screen. At this time, the capabilities of `debian-installer` are still quite limited. It doesn’t know much about your hardware, preferred language, or even the task it should perform. Don’t worry. Because `debian-installer` is quite clever, it can automatically probe your hardware, locate the rest of its components and upgrade itself to a capable installation system. However, you still need to help `debian-installer` with some information it can’t determine automatically (like selecting your preferred language, keyboard layout or desired network mirror).

You will notice that `debian-installer` performs hardware detection several times during this stage. The first time is targeted specifically at the hardware needed to load installer components (e.g. your CD-ROM or network card). As not all drivers may be available during this first run, hardware detection needs to be repeated later in the process.

6.3.1.1. Check available memory

One of the first things `debian-installer` does, is to check available memory. If the available memory is limited, this component will make some changes in the installation process which hopefully will allow you to install Debian GNU/Linux on your system.

During a low memory install, not all components will be available. One of the limitations is that you won’t be able to choose a language for the installation.

6.3.1.2. Language selection

As the first step of the installation, select the language in which you want the installation process to proceed. The language names are listed in both English (left side) and in the language itself (right side); the names on the right side are also shown in the proper script for the language. The list is sorted on the English names.

The language you choose will be used for the rest of the installation process, provided a translation of the different dialogs is available. If no valid translation is available for the selected language, the installer will default to English. The selected language will also be used to help select a suitable keyboard layout.
6.3.1.3. Country selection

If you selected a language in Section 6.3.1.2 which has more than one country associated with it (true for Chinese, English, French, and many other languages), you can specify the country here. If you choose Other at the bottom of the list, you will be presented with a list of all countries, grouped by continent.

This selection will be used later in the installation process to pick the default timezone and a Debian mirror appropriate for your geographic location. If the defaults proposed by the installer are not suitable, you can make a different choice. The selected country, together with the selected language, may also affect locale settings for your new Debian system.

6.3.1.4. Choosing a Keyboard

Keyboards are often tailored to the characters used in a language. Select a layout that conforms to the keyboard you are using, or select something close if the keyboard layout you want isn’t represented. Once the system installation is complete, you’ll be able to select a keyboard layout from a wider range of choices (run kbdconfig as root after you have completed the installation).

Move the highlight to the keyboard selection you desire and press Enter. Use the arrow keys to move the highlight — they are in the same place in all national language keyboard layouts, so they are independent of the keyboard configuration. An “extended” keyboard is one with F1 through F10 keys along the top row.

6.3.1.5. Looking for the Debian Installer ISO Image

When installing via the hd-media method, there will be a moment where you need to find and mount the Debian Installer iso image in order to get the rest of the installation files. The component iso-scan does exactly this.

At first, iso-scan automatically mounts all block devices (e.g. partitions) which have some known filesystem on them and sequentially searches for filenames ending with .iso (or .ISO for that matter). Beware that the first attempt scans only files in the root directory and in the first level of subdirectories (i.e. it finds /whatever.iso, /data/whatever.iso, but not /data/tmp/whatever.iso). After an iso image has been found, iso-scan checks its content to determine if the image is a valid Debian iso image or not. In the former case we are done, in the latter iso-scan seeks for another image.

In case the previous attempt to find an installer iso image fails, iso-scan will ask you whether you would like to perform a more thorough search. This pass doesn’t just look into the topmost directories, but really traverses whole filesystem.

If iso-scan does not discover your installer iso image, reboot back to your original operating system and check if the image is named correctly (ending in .iso), if it is placed on a filesystem recognizable by debian-installer, and if it is not corrupted (verify the checksum). Experienced Unix users could do this without rebooting on the second console.

6.3.1.6. Configuring Network

As you enter this step, if the system detects that you have more than one network device, you’ll be asked to choose which device will be your primary network interface, i.e. the one which you want to use for installation. The other interfaces won’t be configured at this time. You may configure additional interfaces after installation is complete; see the interfaces(5) man page.
By default, `debian-installer` tries to configure your computer’s network automatically via DHCP. If the DHCP probe succeeds, you are done. If the probe fails, it may be caused by many factors ranging from unplugged network cable, to a misconfigured DHCP setup. Or maybe you don’t have a DHCP server in your local network at all. For further explanation check the error messages on the third console. In any case, you will be asked if you want to retry, or if you want to perform manual setup. DHCP servers are sometimes really slow in their responses, so if you are sure everything is in place, try again.

The manual network setup in turn asks you a number of questions about your network, notably IP address, Netmask, Gateway, Name server addresses, and a Hostname. Moreover, if you have a wireless network interface, you will be asked to provide your Wireless ESSID and a WEP key. Fill in the answers from Section 3.3.

Note: Some technical details you might, or might not, find handy: the program assumes the network IP address is the bitwise-AND of your system’s IP address and your netmask. It will guess the broadcast address is the bitwise OR of your system’s IP address with the bitwise negation of the netmask. It will also guess your gateway. If you can’t find any of these answers, use the system’s guesses — you can change them once the system has been installed, if necessary, by editing `/etc/network/interfaces`. Alternatively, you can install `etherconf`, which will step you through your network setup.

6.3.2. Partitioning and Mount Point Selection

At this time, after hardware detection has been executed a final time, `debian-installer` should be at its full strength, customized for the user’s needs and ready to do some real work. As the title of this section indicates, the main task of the next few components lies in partitioning your disks, creating filesystems, assigning mountpoints and optionally configuring closely related issues like LVM or RAID devices.

6.3.2.1. Partitioning Your Disks

Now it is time to partition your disks. If you are uncomfortable with partitioning, or just want to know more details, see Appendix B.

First you will be given the opportunity to automatically partition either an entire drive, or free space on a drive. This is also called “guided” partitioning. If you do not want to autopartition, choose Manually edit partition table from the menu.

If you choose guided partitioning, you will be able to choose from the schemes listed in the table below. All schemes have their pros and cons, some of which are discussed in Appendix B. If you are unsure, choose the first one. Bear in mind, that guided partitioning needs certain minimal amount of free space to operate with. If you don’t give it at least about 1GB of space (depends on chosen scheme), guided partitioning will fail.

<table>
<thead>
<tr>
<th>Partitioning scheme</th>
<th>Minimum space</th>
<th>Created partitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>All files in one partition</td>
<td>600MB</td>
<td>/, swap</td>
</tr>
<tr>
<td>Desktop machine</td>
<td>500MB</td>
<td>/, /home, swap</td>
</tr>
<tr>
<td>Multi-user workstation</td>
<td>1GB</td>
<td>/, /home, /usr, /var, /tmp, swap</td>
</tr>
</tbody>
</table>
Chapter 6. Using the Debian Installer

If you chose an automatic partitioning for your Alpha system, an additional, unformatted partition will be allocated at the beginning of your disk to reserve this space for the aboot boot loader.

After selecting a scheme, the next screen will show your new partition table, including information on whether and how partitions will be formatted and where they will be mounted.

The list of partitions might look like this:

```
IDE1 master (hda) - 6.4 GB WDC AC36400L
  #1 primary 16.4 MB ext2 /boot
  #2 primary 551.0 MB swap swap
  #3 primary 5.8 GB ntfs
   pri/log  8.2 MB FREE SPACE

IDE1 slave (hdb) - 80.0 GB ST380021A
  #1 primary 15.9 MB ext3
  #2 primary 996.0 MB fat16
  #3 primary 3.9 GB xfs /home
  #5 logical 6.0 GB ext3 /
  #6 logical 1.0 GB ext3 /var
  #7 logical 498.8 MB ext3
  #8 logical 551.5 MB swap swap
  #9 logical 65.8 GB ext2
```

This example shows two IDE harddrives divided into several partitions; the first disk has some free space. Each partition line consists of the partition number, its type, size, optional flags, file system, and mountpoint (if any).

This concludes the guided partitioning. If you are satisfied with the generated partition table, you can choose Finish partitioning and write changes to disk from the menu to implement the new partition table (as described at the end of this section). If you are not happy, you can choose to Undo changes to partitions, to run guided partitioning again or modify the proposed changes as described below for manual partitioning.

A similar screen to the one shown just above will be displayed if you choose manual partitioning except that your existing partition table will be shown and without the mount points. How to manually setup your partition table and the usage of partitions by your new Debian system will be covered in the remainder of this section.

If you select a pristine disk which doesn’t have neither partitions nor free space on it, you will be offered to create a new partition table (this is needed so you can create new partitions). After this a new line entitled “FREE SPACE” should appear under the selected disk.

If you select some free space, you will be offered to create new partition. You will have to answer a quick series of questions about its size, type (primary or logical), and location (beginning or end of the free space). After this, you will be presented with detailed overview of your new partition. There are options like mountpoint, mount options, bootable flag, or way of usage. If you don’t like the preselected defaults, feel free to change them to your liking. E.g. by selecting the option Use as:, you can choose different filesystem for this partition including the possibility to use the partition for swap, software RAID, LVM, or not use it at all. Other nice feature is the possibility to copy data from existing partition onto this one. When you are satisfied with your new partition, select Done setting up the partition and you will be thrown back to the partman’s main screen.

If you decide you want to change something about your partition, simply select the partition, which will bring you to the partition configuration menu. Because this is the same screen like when creating a new partition, you can change the same set of options. One thing which might not be very obvious at a first glance is that you can resize the partition by selecting the item displaying the size of the
Chapter 6. Using the Debian Installer

partition. Filesystems known to work are at least fat16, fat32, ext2, ext3 and swap. This menu also allows you to delete a partition.

Be sure to create at least two partitions: one for the root filesystem (which must be mounted as /) and one for swap. If you forget to mount the root filesystem, partman won’t let you continue until you correct this issue.

Capabilities of partman can be extended with installer modules, but are dependent on your system’s architecture. So if you can’t see all promised goodies, check if you have loaded all required modules (e.g. partman-ext3, partman-xfs, or partman-lvm).

After you are satisfied with partitioning, select Finish partitioning and write changes to disk from the partitioning menu. You will be presented with a summary of changes made to the disks and asked to confirm that the filesystems should be created as requested.

6.3.2.2. Configuring Logical Volume Manager (LVM)

If you are working with computers at the level of system administrator or “advanced” user, you have surely seen the situation where some disk partition (usually the most important one) was short on space, while some other partition was grossly underused and you had to manage this situation with moving stuff around, symlinking, etc.

To avoid the described situation you can use Logical Volume Manager (LVM). Simply said, with LVM you can combine your partitions (physical volumes in LVM lingo) to form a virtual disc (so called volume group), which can then be divided into virtual partitions (logical volumes). The point is that logical volumes (and of course underlying volume groups) can span across several physical discs.

Now when you realize you need more space for your old 160GB /home partition, you can simply add a new 300GB disc to the computer, join it with your existing volume group and then resize the logical volume which holds your /home filesystem and voila — your users have some room again on their renewed 460GB partition. This example is of course a bit oversimplified. If you haven’t read it yet, you should consult the LVM HOWTO (http://www.tldp.org/HOWTO/LVM-HOWTO.html).

LVM setup in debian-installer is quite simple. At first, you have to mark your partitions to be used as physical volumes for LVM. (This is done in partman in the Partition settings menu where you should select Use as: — physical volume for LVM.) Then start the lvmcfg module (either directly from partman or from the debian-installer’s main menu) and combine physical volumes to volume group(s) under the Modify volume groups (VG) menu. After that, you should create logical volumes on the top of volume groups from the menu Modify logical volumes (LV).

After returning from lvmcfg back to partman, you will see any created logical volumes in the same way as ordinary partitions (and you should treat them like that).

6.3.2.3. Configuring Multidisk Device (Software RAID)

If you have more than one harddrive1 in your computer, you can use mdcfg to setup your drives for increased performance and/or better reliability of your data. The result is called Multidisk Device (or after its most famous variant software RAID).

MD is basically a bunch of partitions located on different disks and combined together to form a logical device. This device can then be used like an ordinary partition (i.e. in partman you can format it, assign a mountpoint, etc.).

The benefit you gain depends on a type of a MD device you are creating. Currently supported are:

1. To be honest, you can construct MD device even from partitions residing on single physical drive, but that won’t bring you anything useful.
RAID0

Is mainly aimed at performance. RAID0 splits all incoming data into *stripes* and distributes them equally over each disk in the array. This can increase the speed of read/write operations, but when one of the disks fails, you will loose *everything* (part of the information is still on the healthy disk(s), the other part was on the failed disk).

The typical use for RAID0 is a partition for video editing.

RAID1

Is suitable for setups where reliability is the first concern. It consists of several (usually two) equally sized partitions where every partition contains exactly the same data. This essentially means three things. First, if one of your disks fails, you still have the data mirrored on the remaining disks. Second, you can use only a fraction of the available capacity (more precisely, it is the size of the smallest partition in the RAID). Third, file reads are load balanced among the disks, which can improve performance on a server, such as a file server, that tends to be loaded with more disk reads than writes.

Optionally you can have a spare disk in the array which will take the place of the failed disk in the case of failure.

RAID5

Is a good compromise between speed, reliability and data redundancy. RAID5 splits all incoming data into stripes and distributes them equally on all but one disks (similar to RAID0). Unlike RAID0, RAID5 also computes *parity* information, which gets written on the remaining disk. The parity disk is not static (that would be called RAID4), but is changing periodically, so the parity information is distributed equally on all disks. When one of the disks fails, the missing part of information can be computed from remaining data and its parity. RAID5 must consist of at least three active partitions. Optionally you can have a spare disk in the array which will take the place of the failed disk in the case of failure.

As you can see, RAID5 has similar degree of reliability like RAID1 while achieving less redundancy. On the other hand it might be a bit slower on write operation than RAID0 due to computation of parity information.

To sum it up:

<table>
<thead>
<tr>
<th>Type</th>
<th>Minimum Devices</th>
<th>Spare Device</th>
<th>Survives disk failure?</th>
<th>Available Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID0</td>
<td>2</td>
<td>no</td>
<td>no</td>
<td>Size of the smallest partition multiplied by number of devices in RAID</td>
</tr>
<tr>
<td>RAID1</td>
<td>2</td>
<td>optional</td>
<td>yes</td>
<td>Size of the smallest partition in RAID</td>
</tr>
<tr>
<td>RAID5</td>
<td>3</td>
<td>optional</td>
<td>yes</td>
<td>Size of the smallest partition multiplied by (number of devices in RAID minus one)</td>
</tr>
</tbody>
</table>
If you want to know the whole truth about Software RAID, have a look at Software RAID HOWTO (http://www.tldp.org/HOWTO/Software-RAID-HOWTO.html).

To create a MD device, you need to have the desired partitions it should consist of marked for use in a RAID. (This is done in partman in the Partition settings menu where you should select Use as:→physical volume for RAID.)

Warning

Support for MD is a relatively new addition to the installer. You may experience problems for some RAID levels and in combination with some bootloaders if you try to use MD for the root (/) filesystem. For experienced users, it may be possible to work around some of these problems by executing some configuration or installation steps manually from a shell.

Next, you should choose Configure software RAID from the main partman menu. On the first screen of mdcfg simply select Create MD device. You will be presented with a list of supported types of MD devices, from which you should choose one (e.g. RAID1). What follows depends on the type of MD you selected.

- **RAID0** is simple — you will be issued with the list of available RAID partitions and your only task is to select the partitions which will form the MD.

- **RAID1** is a bit more tricky. First, you will be asked to enter the number of active devices and the number of spare devices which will form the MD. Next, you need to select from the list of available RAID partitions those that will be active and then those that will be spare. The count of selected partitions must be equal to the number provided few seconds ago. Don’t worry. If you make a mistake and select different number of partitions, the debian-installer won’t let you continue until you correct the issue.

- **RAID5** has similar setup procedure as RAID1 with the exception that you need to use at least three active partitions.

It is perfectly possible to have several types of MD at once. For example if you have three 200 GB hard drives dedicated to MD, each containing two 100 GB partitions, you can combine first partitions on all three disk into the RAID0 (fast 300 GB video editing partition) and use the other three partitions (2 active and 1 spare) for RAID1 (quite reliable 100 GB partition for /home).

After you setup MD devices to your liking, you can Finish mdcfg to return back to the partman to create filesystems on your new MD devices and assign them the usual attributes like mountpoints.

6.3.3. Installing the Base System

Although this stage is the least problematic, it consumes most time of the install because it downloads, verifies and unpacks the whole base system. If you have a slow computer or network connection, this could take some time.

6.3.3.1. Base System Installation

During the Base installation, package unpacking and setup messages are redirected to tty3. You can access this terminal by pressing Left Alt-F3, get back to the main installer process with Left Alt-F1.
The unpack/setup messages generated by the base installation are saved in `/var/log/messages` when the installation is performed over a serial console.

As part of the installation, a Linux kernel will be installed. At the default priority, the installer will choose one for you that best matches your hardware. In lower priority modes, you will be able to choose from a list of available kernels.

6.3.4. Making Your System Bootable

If you are installing a diskless workstation, obviously, booting off the local disk isn’t a meaningful option, and this step will be skipped.

Note that multiple operating systems booting on a single machine is still something of a black art. This document does not even attempt to document the various boot managers, which vary by architecture and even by subarchitecture. You should see your boot manager’s documentation for more information.

6.3.4.1. Detecting other operating systems

Before a boot loader is installed, the installer will attempt to probe for other operating systems which are installed on the machine. If it finds a supported operating system, you will be informed of this during the boot loader installation step, and the computer will be configured to boot this other operating system in addition to Debian.

Note that multiple operating systems booting on a single machine is still something of a black art. The automatic support for detecting and setting up boot loaders to boot other operating systems varies by architecture and even by subarchitecture. If it does not work you should consult your boot manager’s documentation for more information.

Note: The installer may fail to detect other operating systems if the partitions on which they reside are mounted when the detection takes place. This may occur if you select a mountpoint (e.g. `/win`) for a partition containing another operating system in `partman`, or if you have mounted partitions manually from a console.

6.3.4.2. Install aboot on a Hard Disk

If you have booted from SRM, if you select this option, the installer will write `aboot` to the first sector of the disk on which you installed Debian. Be very careful — it is not possible to boot multiple operating systems (e.g. GNU/Linux, Free/Open/NetBSD, OSF/1 a.k.a. Digital Unix a.k.a. Tru64 Unix, or OpenVMS) from the same disk. If you also have a different operating system installed on the disk where you have installed Debian, you will have to boot GNU/Linux from a floppy instead.

6.3.4.3. Continue Without Boot Loader

This option can be used to complete the installation even when no boot loader is to be installed, either because the arch/subarch doesn’t provide one, or because none is desired (e.g. you will use existing boot loader).
If you plan to manually configure your bootloader, you should check the name of the installed kernel in /target/boot. You should also check that directory for the presence of an initrd; if one is present, you will probably have to instruct your bootloader to use it. Other information you will need are the disk and partition you selected for your / filesystem and, if you chose to install /boot on a separate partition, also your /boot filesystem.

6.3.5. Finishing the First Stage

These are the last bits to do before rebooting to your new Debian. It mostly consists of tidying up after the debian-installer.

6.3.5.1. Finish the Installation and Reboot

This is the last step in the initial Debian installation process. You will be prompted to remove the boot media (CD, floppy, etc) that you used to boot the installer. The installer will do any last minute tasks, and then reboot into your new Debian system.

6.3.6. Miscellaneous

The components listed in this section are usually not involved in the installation process, but are waiting in the background to help the user in case something goes wrong.

6.3.6.1. Saving the installation logs

If the installation is successful, the logfiles created during the installation process will be automatically saved to /var/log/debian-installer/ on your new Debian system.

Choosing Save debug logs from the main menu allows you to save the log files to a floppy disk. This can be useful if you encounter fatal problems during the installation and wish to study the logs on another system or attach them to an installation report.

6.3.6.2. Using the Shell and Viewing the Logs

There is an Execute a Shell item on the menu. If the menu is not available when you need to use the shell, press Left Alt-F2 (on a Mac keyboard, Option-F2) to switch to the second virtual console. That’s the Alt key on the left-hand side of the space bar, and the F2 function key, at the same time. This is a separate window running a Bourne shell clone called ash.

At this point you are booted from the RAM disk, and there is a limited set of Unix utilities available for your use. You can see what programs are available with the command ls /bin /sbin /usr/bin /usr/sbin and by typing help. The text editor is nano. The shell has some nice features like autocompletion and history.

Use the menus to perform any task that they are able to do — the shell and commands are only there in case something goes wrong. In particular, you should always use the menus, not the shell, to activate your swap partition, because the menu software can’t detect that you’ve done this from the shell. Press Left Alt-F1 to get back to menus, or type exit if you used a menu item to open the shell.
6.3.6.3. Installation Over the Network

One of the more interesting components is network-console. It allows you to do a large part of the installation over the network via SSH. The use of the network implies you will have to perform the first steps of the installation from the console, at least to the point of setting up the networking. (Although you can automate that part with Section 4.4.)

This component is not loaded into the main installation menu by default, so you have to explicitly ask for it. If you are installing from CD, you need to boot with medium priority or otherwise invoke the main installation menu and choose Load installer components from CD and from the list of additional components select network-console: Continue installation remotely using SSH. Successful load is indicated by a new menu entry called Continue installation remotely using SSH.

After selecting this new entry, you will be asked for a new password to be used for connecting to the installation system and for its confirmation. That’s all. Now you should see a screen which instructs you to login remotely as the user installer with the password you just provided. Another important detail to notice on this screen is the fingerprint of this system. You need to transfer the fingerprint securely to the “person who will continue the installation remotely”.

Should you decide to continue with the installation locally, you can always press Enter, which will bring you back to the main menu, where you can select another component.

Now let’s switch to the other side of the wire. As a prerequisite, you need to configure your terminal for UTF-8 encoding, because that is what the installation system uses. If you do not, remote installation will be still possible, but you may encounter strange display artefacts like destroyed dialog borders or unreadable non-ascii characters. Establishing a connection with the installation system is as simple as typing:

```
$ ssh -l installer install_host
```

Where install_host is either the name or IP address of the computer being installed. Before the actual login the fingerprint of the remote system will be displayed and you will have to confirm that it is correct.

Note: If you install several computers in turn and they happen to have the same IP address or hostname, ssh will refuse to connect to such host. The reason is that it will have different fingerprint, which is usually a sign of a spoofing attack. If you are sure this is not the case, you will need to delete the relevant line from ~/.ssh/known_hosts and try again.

After the login you will be presented with an initial screen where you have two possibilities called Start menu and Start shell. The former brings you to the main installer menu, where you can continue with the installation as usual. The latter starts a shell from which you can examine and possibly fix the remote system. You should only start one SSH session for the installation menu, but may start multiple sessions for shells.

Warning

After you have started the installation remotely over SSH, you should not go back to the installation session running on the local console. Doing so may corrupt the database that holds the configuration of the new system. This in turn may result in a failed installation or problems with the installed system.

Also, if you are running the SSH session from an X terminal, you should not resize the window as that will result in the connection being terminated.
6.3.6.4. Running base-config From Within debian-installer

It is possible to configure the base system within the first stage installer (before rebooting from the hard drive), by running `base-config` in a `chroot` environment. This is mainly useful for testing the installer and should normally be avoided.
Chapter 7. Booting Into Your New Debian System

7.1. The Moment of Truth

Your system’s first boot on its own power is what electrical engineers call the “smoke test”.

If you are booting directly into Debian, and the system doesn’t start up, either use your original installation boot media, or insert the custom boot floppy if you have one, and reset your system. This way, you will probably need to add some boot arguments like `root=root`, where `root` is your root partition, such as `/dev/sda1`.

7.2. Debian Post-Boot (Base) Configuration

After booting, you will be prompted to complete the configuration of your basic system, and then to select what additional packages you wish to install. The application which guides you through this process is called `base-config`. Its concept is very similar to the `debian-installer` from the first stage. Indeed, `base-config` consists of a number of specialized components, where each component handles one configuration task, contains “hidden menu in the background” and also uses the same navigation system.

If you wish to re-run the `base-config` at any point after installation is complete, as root run `base-config`.

7.2.1. Configuring Your Time Zone

After a welcome screen, you will be prompted to configure your time zone. First select whether the hardware clock of your system is set to local time or Greenwich Mean Time (GMT or UTC). The time displayed in the dialog may help you decide on the correct option.

Depending on the location selected at the beginning of the installation process, you will next be shown either a single timezone or a list of timezones relevant for that location. If a single timezone is shown, choose Yes to confirm or choose No to select from the full list of timezones. If a list is shown, select your timezone from the list, or select Other for the full list.

7.2.2. Setting Up Users And Passwords

7.2.2.1. Set the Root Password

The `root` account is also called the `super-user`; it is a login that bypasses all security protection on your system. The root account should only be used to perform system administration, and only used for as short a time as possible.

Any password you create should contain at least 6 characters, and should contain both upper- and lower-case characters, as well as punctuation characters. Take extra care when setting your root password, since it is such a powerful account. Avoid dictionary words or use of any personal information which could be guessed.
Chapter 7. Booting Into Your New Debian System

If anyone ever tells you they need your root password, be extremely wary. You should normally never give your root password out, unless you are administering a machine with more than one system administrator.

7.2.2.2. Create an Ordinary User

The system will ask you whether you wish to create an ordinary user account at this point. This account should be your main personal log-in. You should not use the root account for daily use or as your personal login.

Why not? Well, one reason to avoid using root’s privileges is that it is very easy to do irreparable damage as root. Another reason is that you might be tricked into running a Trojan-horse program — that is a program that takes advantage of your super-user powers to compromise the security of your system behind your back. Any good book on Unix system administration will cover this topic in more detail — consider reading one if it is new to you.

You will first be prompted for the user’s full name. Then you’ll be asked for a name for the user account; generally your first name or something similar will suffice and indeed will be the default. Finally, you will be prompted for a password for this account.

If at any point after installation you would like to create another account, use the adduser command.

7.2.3. Setting Up PPP

If no network was configured during the first stage of the installation, you will next be asked whether you wish to install the rest of the system using PPP. PPP is a protocol used to establish dialup connections with modems. If you configure the modem at this point, the installation system will be able to download additional packages or security updates from the Internet during the next steps of the installation. If you don’t have a modem in your computer or if you prefer to configure your modem after the installation, you can skip this step.

In order to configure your PPP connection, you will need some information from your Internet Service Provider (ISP), including phone number, username, password and DNS servers (optional). Some ISPs provide installation guidelines for Linux distributions. You can use that information even if they don’t specifically target Debian since most of the configuration parameters (and software) is similar amongst Linux distributions.

If you do choose to configure PPP at this point, a program named pppconfig will be run. This program helps you configure your PPP connection. Make sure, when it asks you for the name of your dialup connection, that you name it provider.

Hopefully, the pppconfig program will walk you through a trouble-free PPP connection setup. However, if it does not work for you, see below for detailed instructions.

In order to setup PPP, you’ll need to know the basics of file viewing and editing in GNU/Linux. To view files, you should use more, and zmore for compressed files with a .gz extension. For example, to view README.debian.gz, type zmore README.debian.gz. The base system comes with an editor named nano, which is very simple to use, but does not have a lot of features. You will probably want to install more full-featured editors and viewers later, such as jed, nvi, less, and emacs.

Edit /etc/ppp/peers/provider and replace /dev/modem with /dev/ttyS# where # stands for the number of your serial port. In Linux, serial ports are counted from 0; your first serial port is /dev/ttyS0 under Linux. The next step is to edit /etc/chatscripts/provider and insert your
provider’s phone number, your user-name and password. Please do not delete the “\q” that precedes
the password. It hides the password from appearing in your log files.

Many providers use PAP or CHAP for login sequence instead of text mode authentication. Others use both. If your provider requires PAP or CHAP, you’ll need to follow a different procedure. Comment out everything below the dialing string (the one that starts with “ATDT”) in
/etc/chatscripts/provider, modify /etc/ppp/peers/provider as described above, and add user name where name stands for your user-name for the provider you are trying to connect to.

Next, edit /etc/ppp/pap-secrets or /etc/ppp/chap-secrets and enter your password there.

You will also need to edit /etc/resolv.conf and add your provider’s name server (DNS) IP addresses. The lines in /etc/resolv.conf are in the following format: nameserver xxx.xxx.xxx.xxx where the xs stand for numbers in your IP address. Optionally, you could add the usepeerdns option to the /etc/ppp/peers/provider file, which will enable automatic choosing of appropriate DNS servers, using settings the remote host usually provides.

Unless your provider has a login sequence different from the majority of ISPs, you are done! Start the PPP connection by typing pon as root, and monitor the process using plog command. To disconnect, use poff, again, as root.

Read /usr/share/doc/ppp/README.Debian.gz file for more information on using PPP on Debian.

For static SLIP connections, you will need to add the slattach command (from the net-tools package) into /etc/init.d/network. Dynamic SLIP will require the gnudip package.

7.2.3.1. Setting Up PPP over Ethernet (PPPOE)

PPPOE is a protocol related to PPP used for some broadband connections. There is currently no support in base configuration to help you set this up. However, the necessary software has been installed, which means you can configure PPPOE manually at this stage of the installation by switching to VT2 and running pppoconf.

7.2.4. Configuring APT

The main means that people use to install packages on their system is via a program called apt-get, from the apt package. Other front-ends for package management, like aptitude, synaptic and the older dselect also use and depend on apt-get. These front-ends are recommended for new users, since they integrate some additional features (package searching and status checks) in a nice user interface.

APT must be configured so that it knows where to retrieve packages from. The helper application which assists in this task is called apt-setup.

The next step in your configuration process is to tell APT where other Debian packages can be found. Note that you can re-run this tool at any point after installation by running apt-setup, or by manually editing /etc/apt/sources.list.

If an official CD-ROM is in the drive at this point, then that CD-ROM should automatically be configured as an apt source without prompting. You will notice this because you will see the CD-ROM being scanned.

1. Note that the actual program that installs packages is called dpkg. However, this package is more of a low-level tool. apt-get is a higher-level tool as it will invoke dpkg as appropriate and also because it knows to install other packages which are required for the package you’re trying to install, as well as how to retrieve the package from your CD, the network, or wherever.
Chapter 7. Booting Into Your New Debian System

For users without an official CD-ROM, you will be offered an array of choices for how Debian packages are accessed: FTP, HTTP, CD-ROM, or a local file system.

You should know that it’s perfectly acceptable to have a number of different APT sources, even for the same Debian archive. `apt-get` will automatically pick the package with the highest version number given all the available versions. Or, for instance, if you have both an HTTP and a CD-ROM APT source, `apt-get` should automatically use the local CD-ROM when possible, and only resort to HTTP if a newer version is available there. However, it is not a good idea to add unnecessary APT sources, since this will tend to slow down the process of checking the network archives for new versions.

7.2.4.1. Configuring Network Package Sources

If you plan on installing the rest of your system via the network, the most common option is to select the `http` source. The `ftp` source is also acceptable, but tends to be somewhat slower making connections.

The next step during the configuration of network package sources is to tell `apt-setup` which country you live in. This configures which of the official Debian Internet mirrors you will connect to. Depending on which country you select, you will be presented with a list of possible servers. It’s generally fine to pick the one at the top of the list, but any of them should work. Note however that the mirror list provided by the installation was generated when this version of Debian was released and some mirrors may no longer be available.

After you have selected a mirror, you will be asked if a proxy server should be used. A proxy server is a server that will forward all your HTTP and/or FTP requests to the Internet and is most often used to regulate and optimize access to the Internet on corporate networks. In some networks only the proxy server is allowed access to the Internet, in which case you will have to enter the name of the proxy server. You may also have to include an user name and password. Most home users will not need to specify a proxy server, although some ISPs may provide proxy servers for their users.

After you select a mirror, your new network package source will be tested. If all goes well, you will be prompted whether you want to add another package source. If you have any problems using the package source you selected, try using a different mirror (either from your country list or from the global list), or try using a different network package source.

7.2.5. Package Installation

Next you will be offered a number of pre-rolled software configurations offered by Debian. You could always choose, package by package, what you want to install on your new machine. This is the purpose of the `aptitude` program, described below. But this can be a long task with around 14750 packages available in Debian!

So, you have the ability to choose tasks first, and then add on more individual packages later. These tasks loosely represent a number of different jobs or things you want to do with your computer, such as “desktop environment”, “web server”, or “print server”\(^2\). Section C.3 lists the space requirements for the available tasks.

Once you’ve selected your tasks, select Ok. At this point, `aptitude` will install the packages you’ve selected.

\(^2\) You should know that to present this list, `base-config` is merely invoking the `tasksel` program. For manual package selection, the `aptitude` program is being run. Any of these can be run at any time after installation to install (or remove) more packages. If you are looking for a specific single package, after installation is complete, simply run `aptitude install package`, where `package` is the name of the package you are looking for.
Note: Even if you did not select any tasks at all, any standard, important, or required priority packages that are not yet present on your system will be installed. This functionality is the same as running `tasksel --ris` at the command line, and currently involves a download of about 37M of archives. You will be shown the number of packages to be installed, and how many kilobytes of packages, if any, need to be downloaded.

If you do want to choose what to install on a package by package basis, select the “manual package selection” option in `tasksel`. If you select one or more tasks alongside this option, `aptitude` will be called with the `--visual-preview` option. This means you will be able to review the packages that are to be installed. If you do not select any tasks, the normal `aptitude` screen will be displayed. After making your selections you should press “g” to start the download and installation of packages.

Note: If you choose “manual package selection” without selecting any tasks, no packages will be installed by default. This means you can use this option if you want to install a minimal system, but also that the responsibility for selecting any packages not installed as part of the base system (before the reboot) that might be required for your system lies with you.

Of the 14750 packages available in Debian, only a small minority are covered by tasks offered in the Task Installer. To see information on more packages, either use `apt-cache search search-string` for some given search string (see the apt-cache(8) man page), or run `aptitude` as described below.

7.2.5.1. Advanced Package Selection with aptitude

`Aptitude` is a modern program for managing packages. `aptitude` allows you to select individual packages, set of packages matching given criteria (for advanced users), or whole tasks.

The most basic keybindings are:

<table>
<thead>
<tr>
<th>Key</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up, Down</td>
<td>Move selection up or down.</td>
</tr>
<tr>
<td>Enter</td>
<td>Open/collapse/activate item.</td>
</tr>
<tr>
<td>+</td>
<td>Mark package for installation.</td>
</tr>
<tr>
<td>-</td>
<td>Mark package for removal.</td>
</tr>
<tr>
<td>d</td>
<td>Show package dependencies.</td>
</tr>
<tr>
<td>g</td>
<td>Actually download/install/remove packages.</td>
</tr>
<tr>
<td>q</td>
<td>Quit current view.</td>
</tr>
<tr>
<td>F10</td>
<td>Activate menu.</td>
</tr>
</tbody>
</table>

For more commands see the online help under the ? key.

3. You can also change the default selections. If you would like to select any additional package, use View — New Package View.
Chapter 7. Booting Into Your New Debian System

7.2.6. Prompts During Software Installation

Each package you selected with taskel or aptitude is downloaded, unpacked and then installed in turn by the apt-get and dpkg programs. If a particular program needs more information from the user, it will prompt you during this process. You might also want to keep an eye on the output during the process, to watch for any installation errors (although you will be asked to acknowledge errors which prevented a package’s installation).

7.2.7. Configuring Your Mail Transport Agent

Today, email is a very important part of many people’s life, so it’s no surprise Debian lets you configure your mail system right as a part of the installation process. The standard mail transport agent in Debian is exim4, which is relatively small, flexible, and easy to learn.

You may ask if this is needed even if your computer is not connected to any network. The short answer is: Yes. The longer explanation: Some system utilities (like cron, quota, aide, . . .) may send you important notices via email.

So on the first screen you will be presented with several common mail scenarios. Choose the one that most closely resembles your needs:

- internet site
 - Your system is connected to a network and your mail is sent and received directly using SMTP.
 - On the following screens you will be asked a few basic questions, like your machine’s mail name, or a list of domains for which you accept or relay mail.

- mail sent by smarthost
 - In this scenario is your outgoing mail forwarded to another machine, called a “smarthost”, which does the actual job for you. Smarthost also usually stores incoming mail addressed to your computer, so you don’t need to be permanently online. That also means you have to download your mail from the smarthost via programs like fetchmail. This option is suitable for dial-up users.

- local delivery only
 - Your system is not on a network and mail is sent or received only between local users. Even if you don’t plan to send any messages, this option is highly recommended, because some system utilities may send you various alerts from time to time (e.g. beloved “Disk quota exceeded”). This option is also convenient for new users, because it doesn’t ask any further questions.

- no configuration at this time
 - Choose this if you are absolutely convinced you know what you are doing. This will leave you with an unconfigured mail system — until you configure it, you won’t be able to send or receive any mail and you may miss some important messages from your system utilities.

If none of these scenarios suits your needs, or if you need a finer setup, you will need to edit configuration files under the /etc/exim4 directory after the installation is complete. More information about exim4 may be found under /usr/share/doc/exim4.
7.3. Log In

After you’ve installed packages, you’ll be presented with the login prompt. Log in using the personal login and password you selected. Your system is now ready to use.

If you are a new user, you may want to explore the documentation which is already installed on your system as you start to use it. There are currently several documentation systems, work is proceeding on integrating the different types of documentation. Here are a few starting points.

Documentation accompanying programs you have installed is in /usr/share/doc/, under a subdirectory named after the program. For example, the APT User’s Guide for using apt to install other programs on your system, is located in /usr/share/doc/apt/guide.html/index.html.

In addition, there are some special folders within the /usr/share/doc/ hierarchy. Linux HOWTOs are installed in .gz format, in /usr/share/doc/HOWTO/en-txt/. After installing dhelp you will find a browse-able index of documentation in /usr/share/doc/HTML/index.html.

One easy way to view these documents is to cd /usr/share/doc/, and type lynx followed by a space and a dot (the dot stands for the current directory).

You can also type info command or man command to see documentation on most commands available at the command prompt. Typing help will display help on shell commands. And typing a command followed by --help will usually display a short summary of the command’s usage. If a command’s results scroll past the top of the screen, type more after the command to cause the results to pause before scrolling past the top of the screen. To see a list of all commands available which begin with a certain letter, type the letter and then two tabs.

For a more complete introduction to Debian and GNU/Linux, see /usr/share/doc/debian-guide/html/noframes/index.html.
Chapter 8. Next Steps and Where to Go From Here

8.1. If You Are New to Unix

If you are new to Unix, you probably should go out and buy some books and do some reading. A lot of valuable information can also be found in the Debian Reference (http://www.debian.org/doc/user-manuals#quick-reference). This list of Unix FAQs (http://www.faqs.org/faqs/unix-faq/) contains a number of Usenet documents which provide a nice historical reference.

Linux is an implementation of Unix. The Linux Documentation Project (LDP) (http://www.tldp.org/) collects a number of HOWTOs and online books relating to Linux. Most of these documents can be installed locally; just install the doc-linux-html package (HTML versions) or the doc-linux-text package (ASCII versions), then look in /usr/share/doc/HOWTO. International versions of the LDP HOWTOs are also available as Debian packages.

8.2. Orienting Yourself to Debian

Debian is a little different from other distributions. Even if you’re familiar with Linux in other distributions, there are things you should know about Debian to help you to keep your system in a good, clean state. This chapter contains material to help you get oriented; it is not intended to be a tutorial for how to use Debian, but just a very brief glimpse of the system for the very rushed.

8.2.1. Debian Packaging System

The most important concept to grasp is the Debian packaging system. In essence, large parts of your system should be considered under the control of the packaging system. These include:

- /usr (excluding /usr/local)
- /var (you could make /var/local and be safe in there)
- /bin
- /sbin
- /lib

For instance, if you replace /usr/bin/perl, that will work, but then if you upgrade your perl package, the file you put there will be replaced. Experts can get around this by putting packages on “hold” in aptitude.

One of the best installation methods is apt. You can use the command line version apt-get or full-screen text version aptitude. Note apt will also let you merge main, contrib, and non-free so you can have export-restricted packages as well as standard versions.
8.2.2. Application Version Management

Alternative versions of applications are managed by update-alternatives. If you are maintaining multiple versions of your applications, read the update-alternatives man page.

8.2.3. Cron Job Management

Any jobs under the purview of the system administrator should be in /etc, since they are configuration files. If you have a root cron job for daily, weekly, or monthly runs, put them in /etc/cron.{daily,weekly,monthly}. These are invoked from /etc/crontab, and will run in alphabetic order, which serializes them.

On the other hand, if you have a cron job that (a) needs to run as a special user, or (b) needs to run at a special time or frequency, you can use either /etc/crontab, or, better yet, /etc/cron.d/whatever. These particular files also have an extra field that allows you to stipulate the user under which the cron job runs.

In either case, you just edit the files and cron will notice them automatically. There is no need to run a special command. For more information see cron(8), crontab(5), and /usr/share/doc/cron/README.Debian.

8.3. Further Reading and Information

If you need information about a particular program, you should first try man program, or info program.

There is lots of useful documentation in /usr/share/doc as well. In particular, /usr/share/doc/HOWTO and /usr/share/doc/FAQ contain lots of interesting information. To submit bugs, look at /usr/share/doc/debian/bug*. To read about Debian-specific issues for particular programs, look at /usr/share/doc/{package name}/README.Debian.

The Debian community is self-supporting; to subscribe to one or more of the Debian mailing lists, see the Mail List Subscription (http://www.debian.org/MailingLists/subscribe) page. Last, but not least, the Debian Mailing List Archives (http://lists.debian.org/) contain a wealth of information on Debian.

A general source of information on GNU/Linux is the Linux Documentation Project (http://www.tldp.org/). There you will find the HOWTOs and pointers to other very valuable information on parts of a GNU/Linux system.

8.4. Compiling a New Kernel

Why would someone want to compile a new kernel? It is often not necessary since the default kernel shipped with Debian handles most configurations. Also, Debian often offers several alternative
kernels. So you may want to check first if there is an alternative kernel image package that better corresponds to your hardware. However, it can be useful to compile a new kernel in order to:

- handle special hardware needs, or hardware conflicts with the pre-supplied kernels
- use options of the kernel which are not supported in the pre-supplied kernels (such as high memory support)
- optimize the kernel by removing useless drivers to speed up boot time
- create a monolithic instead of a modularized kernel
- run an updated or development kernel
- learn more about linux kernels

8.4.1. Kernel Image Management

Don’t be afraid to try compiling the kernel. It’s fun and profitable.

To compile a kernel the Debian way, you need some packages: fakeroot, kernel-package, kernel-source-2.4.27 (the most recent version at the time of this writing) and a few others which are probably already installed (see /usr/share/doc/kernel-package/README.gz for the complete list).

This method will make a .deb of your kernel source, and, if you have non-standard modules, make a synchronized dependent .deb of those too. It’s a better way to manage kernel images; /boot will hold the kernel, the System.map, and a log of the active config file for the build.

Note that you don’t have to compile your kernel the “Debian way”; but we find that using the packaging system to manage your kernel is actually safer and easier. In fact, you can get your kernel sources right from Linus instead of kernel-source-2.4.27, yet still use the kernel-package compilation method.

Note that you’ll find complete documentation on using kernel-package under /usr/share/doc/kernel-package. This section just contains a brief tutorial.

Hereafter, we’ll assume you have free rein over your machine and will extract your kernel source to somewhere in your home directory. We’ll also assume that your kernel version is 2.4.27. Make sure you are in the directory to where you want to unpack the kernel sources, extract them using tar xjf /usr/src/kernel-source-2.4.27.tar.bz2 and change to the directory kernel-source-2.4.27 that will have been created.

Now, you can configure your kernel. Run make xconfig if X11 is installed, configured and being run; run make menuconfig otherwise (you’ll need libncurses5-dev installed). Take the time to read the online help and choose carefully. When in doubt, it is typically better to include the device driver (the software which manages hardware peripherals, such as Ethernet cards, SCSI controllers, and so on) you are unsure about. Be careful: other options, not related to a specific hardware, should be left at the default value if you do not understand them. Do not forget to select “Kernel module loader” in “Loadable module support” (it is not selected by default). If not included, your Debian installation will experience problems.

Clean the source tree and reset the kernel-package parameters. To do that, do make-kpkg clean.

1. There are other locations where you can extract kernel sources and build your custom kernel, but this is easiest as it does not require special permissions.
Now, compile the kernel: `fakeroot make-kpkg --revision=custom.1.0 kernel_image`. The version number of “1.0” can be changed at will; this is just a version number that you will use to track your kernel builds. Likewise, you can put any word you like in place of “custom” (e.g., a host name). Kernel compilation may take quite a while, depending on the power of your machine.

Once the compilation is complete, you can install your custom kernel like any package. As root, do `dpkg -i ../kernel-image-2.4.27-subarchitecture_custom.1.0_alpha.deb`. The `subarchitecture` part is an optional sub-architecture, depending on what kernel options you set. `dpkg -i kernel-image...` will install the kernel, along with some other nice supporting files. For instance, the `System.map` will be properly installed (helpful for debugging kernel problems), and `/boot/config-2.4.27` will be installed, containing your current configuration set. Your new `kernel-image-2.4.27` package is also clever enough to automatically use your platform’s boot-loader to run an update on the booting, allowing you to boot without re-running the boot loader.

If you have created a modules package, e.g., if you have PCMCIA, you’ll need to install that package as well.

It is time to reboot the system: read carefully any warning that the above step may have produced, then `shutdown -r now`.

For more information on `kernel-package`, read the fine documentation in `/usr/share/doc/kernel-package`.
Appendix A. Installation Howto

This document describes how to install Debian GNU/Linux sarge for the Alpha (“alpha”) with the new debian-installer. It is a quick walkthrough of the installation process which should contain all the information you will need for most installs. When more information can be useful, we will link to more detailed explanations in the Debian GNU/Linux Installation Guide.

A.1. Preliminaries

If you encounter bugs during your install, please refer to Section 5.3.4 for instructions on how to report them. If you have questions which cannot be answered by this document, please direct them to the debian-boot mailing list (debian-boot@lists.debian.org) or ask on IRC (#debian-boot on the freenode network).

A.2. Booting the installer

The debian-cd team provides builds of CD images using debian-installer on the Debian CD page (http://www.debian.org/CD/). For more information on where to get CDs, see Section 4.1.

Some installation methods require other images than CD images. Section 4.2.1 explains how to find images on Debian mirrors.

The subsections below will give the details about which images you should get for each possible means of installation.

A.2.1. CDROM

There are two different netinst CD images which can be used to install sarge with the debian-installer. These images are intended to boot from CD and install additional packages over a network, hence the name ‘netinst’. The difference between the two images is that on the full netinst image the base packages are included, whereas you have to download these from the web if you are using the business card image. If you’d rather, you can get a full size CD image which will not need the network to install. You only need the first CD of the set.

Download whichever type you prefer and burn it to a CD.

A.2.2. Booting from network

It’s also possible to boot debian-installer completely from the net. The various methods to netboot depend on your architecture and netboot setup. The files in netboot/ can be used to netboot debian-installer.

A.2.3. Booting from hard disk

It’s possible to boot the installer using no removable media, but just an existing hard disk, which can have a different OS on it. Download hd-media/initrd.gz, hd-media/vmlinux, and a Debian
CD image to the top-level directory of the hard disk. Make sure that the CD image has a filename ending in .iso. Now it’s just a matter of booting Linux with the initrd.

A.3. Installation

Once the installer starts, you will be greeted with an initial screen. Press Enter to boot, or read the instructions for other boot methods and parameters (see Section 5.2).

After a while you will be asked to select your language. Use the arrow keys to pick a language and press Enter to continue. Next you’ll be asked to select your country, with the choices including countries where your language is spoken. If it’s not on the short list, a list of all the countries in the world is available.

You may be asked to confirm your keyboard layout. Choose the default unless you know better.

Now sit back while debian-installer detects some of your hardware, and loads the rest of itself from CD, floppy, USB, etc.

Next the installer will try to detect your network hardware and set up networking by DHCP. If you are not on a network or do not have DHCP, you will be given the opportunity to configure the network manually.

Now it is time to partition your disks. First you will be given the opportunity to automatically partition either an entire drive, or free space on a drive. This is recommended for new users or anyone in a hurry, but if you do not want to autopartition, choose manual from the menu.

On the next screen you will see your partition table, how the partitions will be formatted, and where they will be mounted. Select a partition to modify or delete it. If you did automatic partitioning, you should just be able to choose Finished partitioning from the menu to use what it set up. Remember to assign at least one partition for swap space and to mount a partition on /.

Appendix B has more information about partitioning.

Now debian-installer formats your partitions and starts to install the base system, which can take a while. That is followed by installing a kernel.

The last step is to install a boot loader. If the installer detects other operating systems on your computer, it will add them to the boot menu and let you know.

debian-installer will now tell you that the installation has finished. Remove the cdrom or other boot media and hit Enter to reboot your machine. It should boot up into the next stage of the install process, which is explained in Chapter 7.

If you need more information on the install process, see Chapter 6.

A.4. Send us an installation report

If you successfully managed an installation with debian-installer, please take time to provide us with a report. There is a template named install-report.template in the /root directory of a freshly installed system. Please fill it out and file it as a bug against the package installation-reports, as explained in Section 5.3.4.

If you did not reach base-config or ran into other trouble, you probably found a bug in debian-installer. To improve the installer it is necessary that we know about them, so please take the time to report them. You can use an installation report to report problems; if the install completely fails, see Section 5.3.3.
A.5. And finally..

We hope that your Debian installation is pleasant and that you find Debian useful. You might want to read Chapter 8.
Appendix B. Partitioning for Debian

B.1. Deciding on Debian Partitions and Sizes

At a bare minimum, GNU/Linux needs one partition for itself. You can have a single partition containing the entire operating system, applications, and your personal files. Most people feel that a separate swap partition is also a necessity, although it’s not strictly true. “Swap” is scratch space for an operating system, which allows the system to use disk storage as “virtual memory”. By putting swap on a separate partition, Linux can make much more efficient use of it. It is possible to force Linux to use a regular file as swap, but it is not recommended.

Most people choose to give GNU/Linux more than the minimum number of partitions, however. There are two reasons you might want to break up the file system into a number of smaller partitions. The first is for safety. If something happens to corrupt the file system, generally only one partition is affected. Thus, you only have to replace (from the backups you’ve been carefully keeping) a portion of your system. At a bare minimum, you should consider creating what is commonly called a “root partition”. This contains the most essential components of the system. If any other partitions get corrupted, you can still boot into GNU/Linux to fix the system. This can save you the trouble of having to reinstall the system from scratch.

The second reason is generally more important in a business setting, but it really depends on your use of the machine. For example, a mail server getting spammed with e-mail can easily fill a partition. If you made /var/mail a separate partition on the mail server, most of the system will remain working even if you get spammed.

The only real drawback to using more partitions is that it is often difficult to know in advance what your needs will be. If you make a partition too small then you will either have to reinstall the system or you will be constantly moving things around to make room in the undersized partition. On the other hand, if you make the partition too big, you will be wasting space that could be used elsewhere. Disk space is cheap nowadays, but why throw your money away?

B.2. The Directory Tree

Debian GNU/Linux adheres to the Filesystem Hierarchy Standard (http://www.pathname.com/fhs/) for directory and file naming. This standard allows users and software programs to predict the location of files and directories. The root level directory is represented simply by the slash /. At the root level, all Debian systems include these directories:

<table>
<thead>
<tr>
<th>Directory</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>bin</td>
<td>Essential command binaries</td>
</tr>
<tr>
<td>boot</td>
<td>Static files of the boot loader</td>
</tr>
<tr>
<td>dev</td>
<td>Device files</td>
</tr>
<tr>
<td>etc</td>
<td>Host-specific system configuration</td>
</tr>
<tr>
<td>home</td>
<td>User home directories</td>
</tr>
<tr>
<td>lib</td>
<td>Essential shared libraries and kernel modules</td>
</tr>
<tr>
<td>media</td>
<td>Contains mount points for replaceable media</td>
</tr>
</tbody>
</table>
Appendix B. Partitioning for Debian

<table>
<thead>
<tr>
<th>Directory</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>mnt</td>
<td>Mount point for mounting a file system temporarily</td>
</tr>
<tr>
<td>proc</td>
<td>Virtual directory for system information (2.4 and 2.6 kernels)</td>
</tr>
<tr>
<td>root</td>
<td>Home directory for the root user</td>
</tr>
<tr>
<td>sbin</td>
<td>Essential system binaries</td>
</tr>
<tr>
<td>sys</td>
<td>Virtual directory for system information (2.6 kernels)</td>
</tr>
<tr>
<td>tmp</td>
<td>Temporary files</td>
</tr>
<tr>
<td>usr</td>
<td>Secondary hierarchy</td>
</tr>
<tr>
<td>var</td>
<td>Variable data</td>
</tr>
<tr>
<td>opt</td>
<td>Add-on application software packages</td>
</tr>
</tbody>
</table>

The following is a list of important considerations regarding directories and partitions. Note that disk usage varies widely given system configuration and specific usage patterns. The recommendations here are general guidelines and provide a starting point for partitioning.

- The root partition / must always physically contain /etc, /bin, /sbin, /lib and /dev, otherwise you won’t be able to boot. Typically 150–250 MB is needed for the root partition.
- /usr: contains all user programs (/usr/bin), libraries (/usr/lib), documentation (/usr/share/doc), etc. This is the part of the file system that generally takes up most space. You should provide at least 500 MB of disk space. This amount should be increased depending on the number and type of packages you plan to install. A generous workstation or server installation should allow 4-6 GB.
- /var: variable data like news articles, e-mails, web sites, databases, the packaging system cache, etc. will be placed under this directory. The size of this directory depends greatly on the usage of your system, but for most people will be dictated by the package management tool’s overhead. If you are going to do a full installation of just about everything Debian has to offer, all in one session, setting aside 2 or 3 gigabyte of space for /var should be sufficient. If you are going to install in pieces (that is to say, install services and utilities, followed by text stuff, then X, ...), you can get away with 300–500 MB. If hard drive space is at a premium and you don’t plan on doing major system updates, you can get by with as little as 30 or 40 MB.
- /tmp: temporary data created by programs will most likely go in this directory. 40–100 MB should usually be enough. Some applications — including archive manipulators, CD/DVD authoring tools, and multimedia software — may use /tmp to temporarily store image files. If you plan to use such applications, you should adjust the space available in /tmp accordingly.
- /home: every user will put his personal data into a subdirectory of this directory. Its size depends on how many users will be using the system and what files are to be stored in their directories. Depending on your planned usage you should reserve about 100 MB for each user, but adapt this value to your needs. Reserve a lot more space if you plan to save a lot of multimedia files (MP3, movies) in your home directory.
B.3. Recommended Partitioning Scheme

For new users, personal Debian boxes, home systems, and other single-user setups, a single / partition (plus swap) is probably the easiest, simplest way to go. However, if your partition is larger than around 6GB, choose ext3 as your partition type. Ext2 partitions need periodic file system integrity checking, and this can cause delays during booting when the partition is large.

For multi-user systems or systems with lots of disk space, it’s best to put /usr, /var, /tmp, and /home each on their own partitions separate from the / partition.

You might need a separate /usr/local partition if you plan to install many programs that are not part of the Debian distribution. If your machine will be a mail server, you might need to make /var/mail a separate partition. Often, putting /tmp on its own partition, for instance 20 to 50MB, is a good idea.

If you are setting up a server with lots of user accounts, it’s generally good to have a separate, large /home partition. In general, the partitioning situation varies from computer to computer depending on its uses.

For very complex systems, you should see the Multi Disk HOWTO (http://www.tldp.org/HOWTO/Multi-Disk-HOWTO.html). This contains in-depth information, mostly of interest to ISPs and people setting up servers.

With respect to the issue of swap partition size, there are many views. One rule of thumb which works well is to use as much swap as you have system memory. It also shouldn’t be smaller than 16MB, in most cases. Of course, there are exceptions to these rules. If you are trying to solve 10000 simultaneous equations on a machine with 256MB of memory, you may need a gigabyte (or more) of swap.

On 32-bit architectures (i386, m68k, 32-bit SPARC, and PowerPC), the maximum size of a swap partition is 2GB. That should be enough for nearly any installation. However, if your swap requirements are this high, you should probably try to spread the swap across different disks (also called “spindles”) and, if possible, different SCSI or IDE channels. The kernel will balance swap usage between multiple swap partitions, giving better performance.

As an example, an older home machine might have 32MB of RAM and a 1.7GB IDE drive on /dev/hda. There might be a 500MB partition for another operating system on /dev/hda1, a 32MB swap partition on /dev/hda3 and about 1.2GB on /dev/hda2 as the Linux partition.

For an idea of the space taken by tasks you might be interested in adding after your system installation is complete, check Section C.3.

B.4. Device Names in Linux

Linux disks and partition names may be different from other operating systems. You need to know the names that Linux uses when you create and mount partitions. Here’s the basic naming scheme:

- The first floppy drive is named /dev/fd0.
- The second floppy drive is named /dev/fd1.
- The first SCSI disk (SCSI ID address-wise) is named /dev/sda.
- The second SCSI disk (address-wise) is named /dev/sdb, and so on.
- The first SCSI CD-ROM is named /dev/scd0, also known as /dev/sr0.
- The master disk on IDE primary controller is named /dev/hda.
- The slave disk on IDE primary controller is named /dev/hdb.
The master and slave disks of the secondary controller can be called /dev/hdc and /dev/hdd, respectively. Newer IDE controllers can actually have two channels, effectively acting like two controllers.

The partitions on each disk are represented by appending a decimal number to the disk name: sda1 and sda2 represent the first and second partitions of the first SCSI disk drive in your system.

Here is a real-life example. Let’s assume you have a system with 2 SCSI disks, one at SCSI address 2 and the other at SCSI address 4. The first disk (at address 2) is then named sda, and the second sdb. If the sda drive has 3 partitions on it, these will be named sda1, sda2, and sda3. The same applies to the sdb disk and its partitions.

Note that if you have two SCSI host bus adapters (i.e., controllers), the order of the drives can get confusing. The best solution in this case is to watch the boot messages, assuming you know the drive models and/or capacities.

B.5. Debian Partitioning Programs

Several varieties of partitioning programs have been adapted by Debian developers to work on various types of hard disks and computer architectures. Following is a list of the program(s) applicable for your architecture.

- **partman**

 Recommended partitioning tool in Debian. This Swiss army knife can also resize partitions, create filesystems and assign them to the mountpoints.

- **fdisk**

 The original Linux disk partitioner, good for gurus.

 Be careful if you have existing FreeBSD partitions on your machine. The installation kernels include support for these partitions, but the way that fdisk represents them (or not) can make the device names differ. See the Linux+FreeBSD HOWTO (http://www.tldp.org/HOWTO/Linux+FreeBSD-2.html)

- **cfdisk**

 A simple-to-use, full-screen disk partitioner for the rest of us.

 Note that cfdisk doesn’t understand FreeBSD partitions at all, and, again, device names may differ as a result.

One of these programs will be run by default when you select **Partition a Hard Disk**. If the one which is run by default isn’t the one you want, quit the partitioner, go to the shell (tty2) by pressing Alt and F2 keys together, and manually type in the name of the program you want to use (and arguments, if any). Then skip the **Partition a Hard Disk** step in debian-installer and continue to the next step.

If you will be working with more than 20 partitions on your ide disk, you will need to create devices for partitions 21 and beyond. The next step of initializing the partition will fail unless a proper device is present. As an example, here are commands you can use in tty2 or under Execute A Shell to add a device so the 21st partition can be initialized:

```bash
# cd /dev
# mknod hda21 b 3 21
# chgrp disk hda21
# chmod 660 hda21
```
Booting into the new system will fail unless proper devices are present on the target system. After installing the kernel and modules, execute:

```
# cd /target/dev
# mknod hda21 b 3 21
# chgrp disk hda21
# chmod 660 hda21
```

B.5.1. Partitioning for Alpha

Booting Debian from the SRM console (the only disk boot method supported by sarge) requires you to have a BSD disk label, not a DOS partition table, on your boot disk. (Remember, the SRM boot block is incompatible with MS-DOS partition tables — see Section 5.1.1.) As a result, `partman` creates BSD disk labels when running on alpha, but if your disk has an existing DOS partition table the existing partitions will need to be deleted before partman can convert it to use a disk label.

If you have chosen to use `fdisk` to partition your disk, and the disk that you have selected for partitioning does not already contain a BSD disk label, you must use the “b” command to enter disk label mode.

Unless you wish to use `fdisk` to partition your disk, and the disk that you have selected for partitioning does not already contain a BSD disk label, you must use the “b” command to enter disk label mode. For the same reason mentioned above, we now suggest that you do not do this on disks that will only be used by GNU/Linux. When using `partman`, a small partition will still be created for `aboot` for convenience reasons.
Appendix C. Random Bits

C.1. Preconfiguration File Example

This is a complete working example of a preconfiguration file for an automated install. Its use is explained in Section 4.4. You may want to uncomment some of the lines before using the file.

Note: In order to be able to properly present this example in the manual, we’ve had to split some lines. This is indicated by the use of the line-continuation-character “\” and extra indentation in the next line. In a real preconfiguration file, these split lines have to be joined into one single line. If you do not, preconfiguration will fail with unpredictable results.

A “clean” example file is available from http://www.debian.org/releases/sarge/example-preseed.txt.

Startup.

To use a preseed file, you’ll first need to boot the installer, # and tell it what preseed file to use. This is done by passing the # kernel a boot parameter, either manually at boot or by editing the # syslinux.cfg (or similar) file and adding the parameter to the end # of the append line(s) for the kernel.
If you’re netbooting, use this:
preseed/url=http://host/path/to/preseed
If you’re remastering a CD, you could use this:
preseed/file=/cdrom/preseed
If you’re installing from USB media, use this, and put the preseed file # in the toplevel directory of the USB stick.
preseed/file=/hd-media/preseed
Be sure to copy this file to the location you specify.
#
Some parts of the installation process cannot be automated using # some forms of preseeding, because the questions are asked before # the preseed file is loaded. For example, if the preseed file is # downloaded over the network, the network setup must be done first.
One reason to use initrd preseeding is that it allows preseeding # of these early steps of the installation process.
#
If a preseed file cannot be used to preseed some steps, the install can # still be fully automated, since you can pass preseed values to the kernel # on the command line. Just pass path/to/var=value for any of the preseed # variables listed below.
#
While you’re at it, you may want to throw a debconf/priority=critical in # there, to avoid most questions even if the preseeding below misses some. # And you might set the timeout to 1 in syslinux.cfg to avoid needing to hit # enter to boot the installer.
#
Note that the kernel accepts a maximum of 8 command line options and # 8 environment options (including any options added by default for the # installer). If these numbers are exceeded, 2.4 kernels will drop any
excess options and 2.6 kernels will panic. With kernel 2.6.9 or newer, # you can use 32 command line options and 32 environment options. # # Some of the default options, like ‘vga=normal’ may be safely removed # for most installations, which may allow you to add more options for # preseeding.

It is not possible to use preseeding to set language, country, and # keyboard. Instead you should use kernel parameters. Example: # languagechooser/language-name=English # countrychooser/shortlist=US # console-keymaps-at/keymap=us

Network configuration.

netcfg will choose an interface that has link if possible. This makes it # skip displaying a list if there is more than one interface. d-i netcfg/choose_interface select auto

If you have a slow dhcp server and the installer times out waiting for # it, this might be useful. #d-i netcfg/dhcp_timeout string 60

If you prefer to configure the network manually, here’s how: #d-i netcfg/disable_dhcp boolean true #d-i netcfg/get_nameservers string 192.168.1.1 #d-i netcfg/get_ipaddress string 192.168.1.42 #d-i netcfg/get_netmask string 255.255.255.0 #d-i netcfg/get_gateway string 192.168.1.1 #d-i netcfg/confirm_static boolean true

Note that any hostname and domain names assigned from dhcp take # precedence over values set here. However, setting the values still # prevents the questions from being shown even if values come from dhcp. d-i netcfg/get_hostname string unassigned-hostname d-i netcfg/get_domain string unassigned-domain

Disable that annoying WEP key dialog. d-i netcfg/wireless_wep string

The wacky dhcp hostname that some ISPs use as a password of sorts. #d-i netcfg/dhcp_hostname string radish

Mirror settings.

d-i mirror/country string enter information manually
d-i mirror/http/hostname string http.us.debian.org
d-i mirror/http/directory string /debian
d-i mirror/suite string testing
d-i mirror/http/proxy string

Partitioning.
If the system has free space you can choose to only partition that space.
#d-i partman-auto/init_automatically_partition \
select Use the largest continuous free space

Alternatively, you can specify a disk to partition. The device name can
be given in either devfs or traditional non-devfs format.
For example, to use the first disk devfs knows of:
d-i partman-auto/disk string /dev/discs/disc0/disc

You can choose from any of the predefined partitioning recipes:
d-i partman-auto/choose_recipe select \
 All files in one partition (recommended for new users)
d-i partman-auto/choose_recipe select Desktop machine
#d-i partman-auto/choose_recipe select Multi-user workstation

Or provide a recipe of your own...
The recipe format is documented in the file devel/partman-auto-recipe.txt.
If you have a way to get a recipe file into the d-i environment, you can
just point at it.
d-i partman-auto/expert_recipe_file string /hd-media/recipe

If not, you can put an entire recipe in one line. This example creates
a small /boot partition, suitable swap, and uses the rest of the space
for the root partition:
d-i partman-auto/expert_recipe string boot-root :: \
 20 50 100 ext3 $primary{ } $bootable{ } method{ format } format{ } \
 use_filesystem{ } filesystem(ext3) mountpoint{ /boot } . \
 500 10000 1000000000 ext3 method(format) format{ } \
 use_filesystem{ } filesystem(ext3) mountpoint{ / } . \
 64 512 300% linux-swap method{ swap } format{ } .
For reference, here is that same recipe in a more readable form:
boot-root ::
40 50 100 ext3
$primary{ } $bootable{ }
method{ format } format{ }
use_filesystem{ } filesystem{ ext3 }
mountpoint{ /boot }
.
500 10000 1000000000 ext3
method{ format } format{ }
use_filesystem{ } filesystem{ ext3 }
mountpoint{ / }
.
64 512 300% linux-swap
method{ swap } format{ }
.

This makes partman automatically partition without confirmation.
d-i partman/confirm_write_new_label boolean true
d-i partman/choose_partition select \
 Finish partitioning and write changes to disk
d-i partman/confirm boolean true

Boot loader installation.

Grub is the default boot loader (for x86). If you want lilo installed
instead, uncomment this:
Appendix C. Random Bits

d-i grub-installer/skip boolean true

This is fairly safe to set, it makes grub install automatically to the MBR if no other operating system is detected on the machine.

d-i grub-installer/only_debian boolean true

This one makes grub-installer install to the MBR if it finds some other OS too, which is less safe as it might not be able to boot that other OS.

d-i grub-installer/with_other_os boolean true

Alternatively, if you want to install to a location other than the mbr, uncomment and edit these lines:

d-i grub-installer/bootdev string (hd0,0)
d-i grub-installer/only_debian boolean false
d-i grub-installer/with_other_os boolean false

Finishing up the first stage install.

Avoid that last message about the install being complete.

d-i prebaseconfig/reboot_in_progress note

Shell commands.

d-i preseeding is inherently not secure. Nothing in the installer checks for attempts at buffer overflows or other exploits of the values of a preseed file like this one. Only use preseed files from trusted locations! To drive that home, and because it’s generally useful, here’s a way to run any shell command you’d like inside the installer, automatically.

This first command is run as early as possible, just after preseeding is read.

d-i preseed/early_command string anna-install some-udeb

This command is run just before the install finishes, but when there is still a usable /target directory.

d-i preseed/late_command string echo foo > /target/etc/bar

This command is run just as base-config is starting up.

base-config base-config/early_command string echo hi mom

This command is run after base-config is done, just before the login prompt. This is a good way to install a set of packages you want, or to tweak the configuration of the system.

base-config base-config/late_command string \
apt-get install zsh; chsh -s /bin/zsh

Preseeding the 2nd stage of the installation.

Preseeding base-config.

Avoid the introductory message.

base-config base-config/intro note

Avoid the final message.

base-config base-config/login note

69
If you installed a display manager, but don’t want to start it immediately after base-config finishes.
#base-config base-config/start-display-manager boolean false

Some versions of the installer can report back on what you’ve installed. The default is not to report back, but sending reports helps the project determine what software is most popular and include it on CDs.
#popularity-contest popularity-contest/participate boolean false

Clock and time zone setup.

Controls whether or not the hardware clock is set to UTC.
#base-config tzconfig/gmt boolean true
If you told the installer that you’re in the United States, then you can set the time zone using this variable.
(Choices are: Eastern, Central, Mountain, Pacific, Alaska, Hawaii, Aleutian, Arizona East-Indiana, Indiana-Starke, Michigan, Samoa, other)
#base-config tzconfig/choose_country_zone/US select Eastern
If you told it you’re in Canada.
(Choices are: Newfoundland, Atlantic, Eastern, Central, East-Saskatchewan, Saskatchewan, Mountain, Pacific, Yukon, other)
#base-config tzconfig/choose_country_zone/CA select Eastern
If you told it you’re in Brazil. (Choices are: East, West, Acre, DeNoronha, other)
#base-config tzconfig/choose_country_zone/BR select East
Many countries have only one time zone. If you told the installer you’re in one of those countries, you can choose its standard time zone via this question.
#base-config tzconfig/choose_country_zone_single boolean true
This question is asked as a fallback for countries other than those listed above, which have more than one time zone. You can preseed one of the time zones, or "other".
#base-config tzconfig/choose_country_zone_multiple select

Account setup.

To preseed the root password, you have to put it in the clear in this file. That is not a very good idea, use caution!
#passwd passwd/root-password password r00tme
#passwd passwd/root-password-again password r00tme

If you want to skip creation of a normal user account.
#passwd passwd/make-user boolean false

Alternatively, you can preseed the user’s name and login.
#passwd passwd/user-fullname string Debian User
#passwd passwd/username string debian
And their password, but use caution!
#passwd passwd/user-password password insecure
#passwd passwd/user-password-again password insecure

Apt setup.

This question controls what source the second stage installation uses for packages. Choices are cdrom, http, ftp, filesystem, edit sources list by hand
base-config apt-setup/url_type select http
If you choose ftp or http, you’ll be asked for a country and a mirror.
base-config apt-setup/country select enter information manually
base-config apt-setup/hostname string http.us.debian.org
base-config apt-setup/directory string /debian
Stop after choosing one mirror.
base-config apt-setup/another boolean false

You can choose to install non-free and contrib software.
#base-config apt-setup/non-free boolean true
#base-config apt-setup/contrib boolean true

Do enable security updates.
base-config apt-setup/security-updates boolean true

Package selection.

You can choose to install any combination of tasks that are available.
Available tasks as of this writing include: Desktop environment,
Web server, Print server, DNS server, File server, Mail server,
SQL database, Laptop, Standard system, manual package selection. The
last of those will run aptitude. You can also choose to install no
tasks, and force the installation of a set of packages in some other
way. We recommend always including the Standard system task.
tasksel tasksel/first multiselect Desktop environment, Standard system
#tasksel tasksel/first multiselect Web server, Standard system

Mailer configuration.

During a normal install, exim asks only a few questions. Here’s how to
avoid even those. More complicated preseeding is possible.
exim4-config exim4/dc_eximconfig_configtype \
 select no configuration at this time
exim4-config exim4/no_config boolean true
exim4-config exim4/no_config boolean true

It’s a good idea to set this to whatever user account you choose to
create. Leaving the value blank results in postmaster mail going to
/var/mail/mail.
exim4-config exim4/dc_postmaster string

X Configuration.

Preseeding Debian’s X config is possible, but you probably need to know
some details about the video hardware of the machine, since Debian’s X
configurator does not do fully automatic configuration of everything.

X can detect the right driver for some cards, but if you’re preseeding,
you override whatever it chooses. Still, vesa will work most places.
xserver-xfree86 xserver-xfree86/config/device/driver select vesa

A caveat with mouse autodetection is that if it fails, X will retry it
over and over. So if it’s preseeded to be done, there is a possibility of
an infinite loop if the mouse is not autodetected.
xserver-xfree86 xserver-xfree86/autodetect_mouse boolean true

Monitor autodetection is recommended.
xserver-xfree86 xserver-xfree86/autodetect_monitor boolean true
Uncomment if you have an LCD display.
xserver-xfree86 xserver-xfree86/config/monitor/lcd boolean true
X has three configuration paths for the monitor. Here’s how to preseed
the "medium" path, which is always available. The "simple" path may not
be available, and the "advanced" path asks too many questions.
xserver-xfree86 xserver-xfree86/config/monitor/selection-method \
select medium
xserver-xfree86 xserver-xfree86/config/monitor/mode-list \
select 1024x768 @ 60 Hz

Everything else.

Depending on what software you choose to install, or if things go wrong
during the installation process, it’s possible that other questions may
be asked. You can preseed those too, of course. To get a list of every
possible question that could be asked during an install, do an
installation, and then run these commands:
debconf-get-selections --installer > file
debconf-get-selections >> file

If you like, you can include other preseed files into this one.
Any settings in those files will override pre-existing settings from this
file. More that one file can be listed, separated by spaces; all will be
loaded. The included files can have preseed/include directives of their
own as well. Note that if the filenames are relative, they are taken from
the same directory as the preseed file that includes them.
#d-i preseed/include string x.cfg

More flexibly, this runs a shell command and if it outputs the names of
preseed files, includes those files. For example, to switch configs based
on a particular usb storage device (in this case, a built-in card reader):
#d-i preseed/include_command string \
if $(grep -q "GUID: 0aec3050aec305000001a003" /proc/scsi/usb-storage-*/*); \n# then echo kraken.cfg; else echo otherusb.cfg; fi

To check the format of your preseed file before performing an install,
you can use debconf-set-selections:
debconf-set-selections -c preseed.cfg

C.2. Linux Devices

In Linux you have various special files in /dev. These files are called device files. In the Unix world
accessing hardware is different. There you have a special file which actually runs a driver which in
turn accesses the hardware. The device file is an interface to the actual system component. Files under
/dev also behave differently than ordinary files. Below are the most important device files listed.

<table>
<thead>
<tr>
<th>fd0</th>
<th>First Floppy Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>fd1</td>
<td>Second Floppy Drive</td>
</tr>
</tbody>
</table>
Appendix C. Random Bits

<table>
<thead>
<tr>
<th>Device</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hda</td>
<td>IDE Hard disk / CD-ROM on the first IDE port (Master)</td>
</tr>
<tr>
<td>hdb</td>
<td>IDE Hard disk / CD-ROM on the first IDE port (Slave)</td>
</tr>
<tr>
<td>hdc</td>
<td>IDE Hard disk / CD-ROM on the second IDE port (Master)</td>
</tr>
<tr>
<td>hdd</td>
<td>IDE Hard disk / CD-ROM on the second IDE port (Slave)</td>
</tr>
<tr>
<td>hda1</td>
<td>First partition of the first IDE hard disk</td>
</tr>
<tr>
<td>hdd15</td>
<td>Fifteenth partition of the fourth IDE hard disk</td>
</tr>
<tr>
<td>sda</td>
<td>SCSI Hard disk with lowest SCSI ID (e.g. 0)</td>
</tr>
<tr>
<td>sdb</td>
<td>SCSI Hard disk with next higher SCSI ID (e.g. 1)</td>
</tr>
<tr>
<td>sdc</td>
<td>SCSI Hard disk with next higher SCSI ID (e.g. 2)</td>
</tr>
<tr>
<td>sda1</td>
<td>First partition of the first SCSI hard disk</td>
</tr>
<tr>
<td>sdd10</td>
<td>Tenth partition of the fourth SCSI hard disk</td>
</tr>
<tr>
<td>sr0</td>
<td>SCSI CD-ROM with the lowest SCSI ID</td>
</tr>
<tr>
<td>sr1</td>
<td>SCSI CD-ROM with the next higher SCSI ID</td>
</tr>
<tr>
<td>ttyS0</td>
<td>Serial port 0, COM1 under MS-DOS</td>
</tr>
<tr>
<td>ttyS1</td>
<td>Serial port 1, COM2 under MS-DOS</td>
</tr>
<tr>
<td>psaux</td>
<td>PS/2 mouse device</td>
</tr>
<tr>
<td>gpmdat a</td>
<td>Pseudo device, repeater data from GPM (mouse) daemon</td>
</tr>
<tr>
<td>cdrom</td>
<td>Symbolic link to the CD-ROM drive</td>
</tr>
<tr>
<td>mouse</td>
<td>Symbolic link to the mouse device file</td>
</tr>
<tr>
<td>null</td>
<td>Everything pointed to this device will disappear</td>
</tr>
<tr>
<td>zero</td>
<td>One can endlessly read zeros out of this device</td>
</tr>
</tbody>
</table>

C.2.1. Setting Up Your Mouse

The mouse can be used in both the Linux console (with gpm) and the X window environment. The two uses can be made compatible if the gpm repeater is used to allow the signal to flow to the X server as shown:

```
mouse => /dev/psaux => gpm => /dev/gpmdat a -> /dev/mouse => X
```
Appendix C. Random Bits

Set the repeater protocol to be raw (in /etc/gpm.conf) while setting X to the original mouse protocol in /etc/X11/XF86Config or /etc/X11/XF86Config-4.

This approach to use gpm even in X has advantages when the mouse is unplugged inadvertently. Simply restarting gpm with

```
# /etc/init.d/gpm restart
```

will re-connect the mouse in software without restarting X.

If gpm is disabled or not installed with some reason, make sure to set X to read directly from the mouse device such as /dev/psaux. For details, refer to the 3-Button Mouse mini-Howto at /usr/share/doc/HOWTO/en-txt/mini/3-Button-Mouse.gz, man gpm, /usr/share/doc/gpm/FAQ.gz, and README.mouse (http://www.xfree86.org/current/mouse.html).

C.3. Disk Space Needed for Tasks

The base installation for i386 using the default 2.4 kernel, including all standard packages, requires 573MB of disk space.

The following table lists sizes reported by aptitude for the tasks listed in tasksel. Note that some tasks have overlapping constituents, so the total installed size for two tasks together may be less than the total obtained by adding up the numbers.

Note that you will need to add the sizes listed in the table to the size of the base installation when determining the size of partitions. Most of the size listed as “Installed size” will end up in /usr; the size listed as “Download size” is (temporarily) required in /var.

<table>
<thead>
<tr>
<th>Task</th>
<th>Installed size (MB)</th>
<th>Download size (MB)</th>
<th>Space needed to install (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desktop</td>
<td>1392</td>
<td>460</td>
<td>1852</td>
</tr>
<tr>
<td>Web server</td>
<td>36</td>
<td>12</td>
<td>48</td>
</tr>
<tr>
<td>Print server</td>
<td>168</td>
<td>58</td>
<td>226</td>
</tr>
<tr>
<td>DNS server</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>File server</td>
<td>47</td>
<td>24</td>
<td>71</td>
</tr>
<tr>
<td>Mail server</td>
<td>10</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>SQL database</td>
<td>66</td>
<td>21</td>
<td>87</td>
</tr>
</tbody>
</table>

Note: The Desktop task will install both the Gnome and KDE desktop environments.

If you install in a language other than English, tasksel may automatically install a localization task, if one is available for your language. Space requirements differ per language; you should allow up to 200MB in total for download and installation.
C.4. Installing Debian GNU/Linux from a Unix/Linux System

This section explains how to install Debian GNU/Linux from an existing Unix or Linux system, without using the menu-driven installer as explained in the rest of the manual. This “cross-install” HOWTO has been requested by users switching to Debian GNU/Linux from Red Hat, Mandrake, and SUSE. In this section some familiarity with entering *nix commands and navigating the file system is assumed. In this section, $ symbolizes a command to be entered in the user’s current system, while # refers to a command entered in the Debian chroot.

Once you’ve got the new Debian system configured to your preference, you can migrate your existing user data (if any) to it, and keep on rolling. This is therefore a “zero downtime” Debian GNU/Linux install. It’s also a clever way for dealing with hardware that otherwise doesn’t play friendly with various boot or installation media.

C.4.1. Getting Started

With your current *nix partitioning tools, repartition the hard drive as needed, creating at least one filesystem plus swap. You need at least 150MB of space available for a console only install, or at least 300MB if you plan to install X.

To create file systems on your partitions. For example, to create an ext3 file system on partition /dev/hda6 (that’s our example root partition):

mke2fs -j /dev/hda6

To create an ext2 file system instead, omit -j.

Initialize and activate swap (substitute the partition number for your intended Debian swap partition):

mkswap /dev/hda5
sync; sync; sync
swapon /dev/hda5

Mount one partition as /mnt/debinst (the installation point, to be the root (/) filesystem on your new system). The mount point name is strictly arbitrary, it is referenced later below.

mkdir /mnt/debinst
mount /dev/hda6 /mnt/debinst

Note: If you want to have parts of the filesystem (e.g. /usr) mounted on separate partitions, you will need to create and mount these directories manually before proceeding with the next stage.
C.4.2. Install debootstrap

The tool that the Debian installer uses, which is recognized as the official way to install a Debian base system, is debootstrap. It uses wget and ar, but otherwise depends only on /bin/sh. Install wget and ar if they aren’t already on your current system, then download and install debootstrap.

If you have an rpm-based system, you can use alien to convert the .deb into .rpm, or download an rpm-ized version at http://people.debian.org/~blade/install/debootstrap

Or, you can use the following procedure to install it manually. Make a work folder for extracting the .deb into:

```
# mkdir work
# cd work
```

The debootstrap binary is located in the Debian archive (be sure to select the proper file for your architecture). Download the debootstrap .deb from the pool (http://ftp.debian.org.debian/pool/main/d/debootstrap/), copy the package to the work folder, and extract the binary files from it. You will need to have root privileges to install the binaries.

```
# ar -x debootstrap_0.X.X_arch.deb
# cd /
# zcat /full-path-to-work/work/data.tar.gz | tar xv
```

Note that running debootstrap may require you to have a minimal version of glibc installed (currently GLIBC_2.3). debootstrap itself is a shell script, but it calls various utilities that require glibc.

C.4.3. Run debootstrap

debootstrap can download the needed files directly from the archive when you run it. You can substitute any Debian archive mirror for http.us.debian.org.debian in the command example below, preferably a mirror close to you network-wise. Mirrors are listed at http://www.debian.org/misc/README.mirrors.

If you have a sarge Debian GNU/Linux CD mounted at /cdrom, you could substitute a file URL instead of the http URL: file:/cdrom/debian/

Substitute one of the following for ARCH in the debootstrap command: alpha, arm, hppa, i386, ia64, mips, mipsel, powerpc, s390, or sparc.

```
# /usr/sbin/debootstrap --arch ARCH sarge /mnt/debinet http://http.us.debian.org.debian
```

C.4.4. Configure The Base System

Now you’ve got a real Debian system, though rather lean, on disk. Chroot into it:

```
# LANG= chroot /mnt/debinet /bin/bash
```
C.4.4.1. Mount Partitions

You need to create `/etc/fstab`.

```bash
# editor /etc/fstab
```

Here is a sample you can modify to suit:

```
# /etc/fstab: static file system information.
#
# file system  mount point  type   options     dump  pass
/dev/XXX      /          ext3   defaults    0     1
/dev/XXX      /boot      ext3    ro,nosuid,nodev 0     2
/dev/XXX      none       swap    sw           0     0
proc          /proc      proc    defaults    0     0
/dev/fd0      /mnt/floppy auto    noauto,ro,sync,user,exec 0     0
/dev/cdrom    /mnt/cdrom  iso9660 noauto,ro,user,exec 0     0
/dev/XXX      /tmp       ext3    rw,nosuid,nodev 0     2
/dev/XXX      /var       ext3    rw,nosuid,nodev 0     2
/dev/XXX      /usr       ext3    rw,nodev     0     2
/dev/XXX      /home      ext3    rw,nosuid,nodev 0     2
```

Use `mount -a` to mount all the file systems you have specified in your `/etc/fstab`, or to mount file systems individually use:

```bash
# mount /path  # e.g.: mount /usr
```

You can mount the proc file system multiple times and to arbitrary locations, though `/proc` is customary. If you didn’t use `mount -a`, be sure to mount proc before continuing:

```bash
# mount -t proc proc /proc
```

The command `ls /proc` should now show a non-empty directory. Should this fail, you may be able to mount proc from outside the chroot:

```bash
# mount -t proc proc /mnt/debinst/proc
```

C.4.4.2. Configure Keyboard

To configure your keyboard:

```bash
# dpkg-reconfigure console-data
```

Note that the keyboard cannot be set while in the chroot, but will be configured for the next reboot.
C.4.4.3. Configure Networking

To configure networking, edit `/etc/network/interfaces`, `/etc/resolv.conf`, and `/etc/hostname`.

```bash
# editor /etc/network/interfaces
```

Here are some simple examples from `/usr/share/doc/ifupdown/examples`:

```bash
###################################################
# /etc/network/interfaces -- configuration file for ifup(8), ifdown(8) # See the interfaces(5) manpage for information on what options are # available.
###################################################

# We always want the loopback interface.
#
auto lo
iface lo inet loopback

# To use dhcp:
#
# auto eth0
# iface eth0 inet dhcp

# An example static IP setup: (broadcast and gateway are optional)
#
# auto eth0
# iface eth0 inet static
#   address 192.168.0.42
#   network 192.168.0.0
#   netmask 255.255.255.0
#   broadcast 192.168.0.255
#   gateway 192.168.0.1

Enter your nameserver(s) and search directives in `/etc/resolv.conf`:

```bash
editor /etc/resolv.conf
```

A simple `/etc/resolv.conf`:

```bash
search hqdom.local\000
nameserver 10.1.1.36
nameserver 192.168.9.100
```

Enter your system’s host name (2 to 63 characters):

```bash
echo DebianHostName > /etc/hostname
```

If you have multiple network cards, you should arrange the names of driver modules in the `/etc/modules` file into the desired order. Then during boot, each card will be associated with the interface name (eth0, eth1, etc.) that you expect.
C.4.4.4. Configure Timezone, Users, and APT

Set your timezone, add a normal user, and choose your `apt` sources by running

```
/usr/sbin/base-config new
```

C.4.4.5. Configure Locales

To configure your locale settings to use a language other than English, install the locales support package and configure it:

```
apt-get install locales
dpkg-reconfigure locales
```

NOTE: Apt must be configured before, ie. during the base-config phase. Before using locales with character sets other than ASCII or latin1, please consult the appropriate localization HOWTO.

C.4.5. Install a Kernel

If you intend to boot this system, you probably want a Linux kernel and a boot loader. Identify available pre-packaged kernels with

```
apt-cache search kernel-image
```

Then install your choice using its package name.

```
apt-get install kernel-image-2.X.X-arch-etc
```

C.4.6. Set up the Boot Loader

To make your Debian GNU/Linux system bootable, set up your boot loader to load the installed kernel with your new root partition. Note that debootstrap does not install a boot loader, though you can use `apt-get` inside your Debian chroot to do so.
Appendix D. Administrivia

D.1. About This Document

This manual was created for Sarge’s debian-installer, based on the Woody installation manual for boot-floppies, which was based on earlier Debian installation manuals, and on the Progeny distribution manual which was released under GPL in 2003.

This document is written in DocBook XML. Output formats are generated by various programs using information from the docbook-xml and docbook-xsl packages.

In order to increase the maintainability of this document, we use a number of XML features, such as entities and profiling attributes. These play a role akin to variables and conditionals in programming languages. The XML source to this document contains information for each different architecture — profiling attributes are used to isolate certain bits of text as architecture-specific.

D.2. Contributing to This Document

If you have problems or suggestions regarding this document, you should probably submit them as a bug report against the package debian-installer-manual. See the reportbug package or read the online documentation of the Debian Bug Tracking System (http://bugs.debian.org/). It would be nice if you could check the open bugs against debian-installer-manual (http://bugs.debian.org/debian-installer-manual) to see whether your problem has already been reported. If so, you can supply additional corroboration or helpful information to <xxxx@bugs.debian.org>, where xxxx is the number for the already-reported bug.

Better yet, get a copy of the DocBook source for this document, and produce patches against it. The DocBook source can be found at the debian-installer WebSVN (http://svn.debian.org/wsvn/d-i/). If you’re not familiar with DocBook, don’t worry: there is a simple cheatsheet in the manuals directory that will get you started. It’s like html, but oriented towards the meaning of the text rather than the presentation. Patches submitted to the debian-boot mailing list (see below) are welcomed. For instructions on how to check out the sources via SVN, see README (http://svn.debian.org/wsvn/d-i/README?op=file) from the source root directory.

Please do not contact the authors of this document directly. There is also a discussion list for debian-installer, which includes discussions of this manual. The mailing list is <debian-boot@lists.debian.org>. Instructions for subscribing to this list can be found at the Debian Mailing List Subscription (http://www.debian.org/MailingLists/subscribe) page; or you can browse the Debian Mailing List Archives (http://lists.debian.org/) online.

D.3. Major Contributions

This document was originally written by Bruce Perens, Sven Rudolph, Igor Grobman, James Treacy, and Adam Di Carlo. Sebastian Ley wrote the Installation Howto. Many, many Debian users and developers contributed to this document. Particular note must be made of Michael Schmitz (m68k support), Frank Neumann (original author of the Amiga install manual (http://www.informatik.uni-oldenburg.de/~amigo/debian_inst.html)), Arto Astala, Eric Delaunay/Ben Collins (SPARC information), Tapio Lehtonen, and Stéphane Bortzmeyer for numerous edits and text. We have to thank Pascal
Le Bail for useful information about booting from USB memory sticks. Miroslav Kuře has documented a lot of the new functionality in Sarge’s debian-installer.

Extremely helpful text and information was found in Jim Minha’s HOWTO for network booting (no URL available), the Debian FAQ (http://www.debian.org/doc/FAQ/), the Linux/m68k FAQ (http://www.linux-m68k.org/faq/faq.html), the Linux for SPARC Processors FAQ (http://www.ultralinux.org/faq.html), the Linux/Alpha FAQ (http://linux.iol.unh.edu/linux/alpha/faq/), amongst others. The maintainers of these freely available and rich sources of information must be recognized.

The section on chrooted installations in this manual (Section C.4) was derived in part from documents copyright Karsten M. Self.

D.4. Trademark Acknowledgement

All trademarks are property of their respective trademark owners.
Appendix E. GNU General Public License

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. — 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

E.1. Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the gnu General Public License is intended to guarantee your freedom to share and change free software — to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation’s software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the gnu Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

E.2. GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

• This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program",
below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification"). Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does.

- You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

- You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:
  a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change.
  b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License.
  c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.

- You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
Appendix E. GNU General Public License

following:

a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code.

• You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

• You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it.

• Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

• If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other
Appendix E. GNU General Public License

circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices.

Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

• If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporate the limitation as if written in the body of this License.

• The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation.

• If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

• because the program is licensed free of charge, there is no warranty for the program, to the extent permitted by applicable law. except when otherwise stated in writing the copyright holders and/or other parties provide the program "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. the entire risk as to the quality and performance of the program is with you. should the program prove defective, you assume the cost of all necessary servicing, repair or correction.

• in no event unless required by applicable law or agreed to in writing will any copyright holder, or any other party who may modify and/or redistribute the program as permitted above, be liable to you for damages, including any general, special, incidental or consequential damages arising out of the use or inability to use the program (including but not limited to loss of data or data being rendered inaccurate or losses sustained by you or third parties or a failure of the program to operate with any other programs), even if such holder or other party has been advised of the possibility of such damages.

END OF TERMS AND CONDITIONS

E.3. How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the
best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software; you can redistribute it and/or modify it under the terms of the gnu General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of merchantability or fitness for a particular purpose. See the gnu General Public License for more details.

You should have received a copy of the gnu General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with absolutely no warranty; for details type ‘show w’.

This is free software, and you are welcome to redistribute it under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items — whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the gnu Library General Public License instead of this License.