Debian GNU/Linux Installatiehandleiding

27 maart 2022
Deze handleiding is vrije software; u mag deze verspreiden en/of wijzigen onder de bepalingen van de GNU Alge-
mene Publieke Licentie (GNU General Public License). U wordt verzocht de licentie in Bijlage F te raadplegen.
Inhoudsopgave

1 Welkom bij Debian
 1.1 Wat is Debian? ... 1
 1.2 Wat is GNU/Linux? .. 2
 1.3 Wat is Debian GNU/Linux? 2
 1.4 Wat is het installatiesysteem van Debian? 3
 1.5 Debian verkrijgen ... 3
 1.6 De meest recente versie van dit document verkrijgen 3
 1.7 De opbouw van dit document 3
 1.8 Over copyright en softwarelicenties 4

2 Systeemvereisten
 2.1 Ondersteunde hardware 6
 2.1.1 Ondersteunde architecturen 6
 2.1.2 Drie verschillende uitgaven voor ARM 7
 2.1.3 Variaties in het design van ARM CPU’s en hun complexe ondersteuning 7
 2.1.4 Door Debian/arm64 ondersteunde platformen 7
 2.1.4.1 Andere platformen 8
 2.1.5 Meerdere processoren 8
 2.1.6 Ondersteuning voor grafische hardware 8
 2.1.7 Hardware voor verbinding met het netwerk 8
 2.1.8 Randapparatuur en andere hardware 8
 2.2 Apparaten waarvoor firmware vereist is 9
 2.3 Hardware aankopen, specifiek voor GNU/Linux 9
 2.3.1 Vermijd aan eigendomsrechten gebonden of gesloten hardware ... 9
 2.4 Installatiemedia .. 10
 2.4.1 CD/DVD/BD ... 10
 2.4.2 USB-geheugenstick 10
 2.4.3 Netwerk .. 10
 2.4.4 Harde schijf ... 10
 2.4.5 Un*X- of GNU-systeem 10
 2.4.6 Ondersteunde opslagsystemen 11
 2.5 Vereisten inzake geheugen en schijfruimte 11

3 Vooraleer u Debian GNU/Linux installeert
 3.1 Overzicht van het installatieproces 12
 3.2 Maak een reservekopie van uw bestaande gegevens! 13
 3.3 Benodigde informatie .. 13
 3.3.1 Documentatie .. 13
 3.3.1.1 Installatiehandleiding 13
 3.3.1.2 Documentatie over de hardware 13
 3.3.2 Informatiebronnen over hardware vinden 14
 3.3.3Compatibiliteit van de hardware 14
 3.3.3.1 De compatibiliteit van hardware testen met een live-systeem 15
 3.3.4 Netwerkinstellingen 15
 3.4 Voldoen aan de minimale vereisten op het gebied van hardware .. 16
 3.5 Uw harde schijf vooraf indelen voor een multi-boot systeem ... 16
 3.6 Configuratie van hardware en besturingssysteem voor de installatie 17
 3.6.1 Het opstartapparaat kiezen 17
 3.6.2 ARM firmware .. 17
 3.6.3 Het ethernet MAC-adres instellen in U-Boot 17
 3.6.4 Problemen in U-Boot met relocatie van kernel/initrd/apparatenboom 18
4 Media met het installatiesysteem verkrijgen

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Officiële Debian GNU/Linux installatie-images</td>
<td>19</td>
</tr>
<tr>
<td>4.2 Bestanden downloaden van Debian spiegelervers</td>
<td>19</td>
</tr>
<tr>
<td>4.2.1 Waar u installatiebestanden kunt vinden</td>
<td>20</td>
</tr>
<tr>
<td>4.3 Bestanden klaar maken om van een USB-geheugenstick op te starten</td>
<td>20</td>
</tr>
<tr>
<td>4.3.1 Een USB-stick klaar maken met een hybride CD/DVD-image</td>
<td>20</td>
</tr>
<tr>
<td>4.4 Bestanden klaarmaken om over het netwerk op te starten met TFTP</td>
<td>21</td>
</tr>
<tr>
<td>4.4.1 Een RARP-server opzetten</td>
<td>21</td>
</tr>
<tr>
<td>4.4.2 Een DHCP-server opzetten</td>
<td>21</td>
</tr>
<tr>
<td>4.4.3 Een BOOTP-server opzetten</td>
<td>22</td>
</tr>
<tr>
<td>4.4.4 De TFTP-server werkzaam maken</td>
<td>22</td>
</tr>
<tr>
<td>4.4.5 De TFTP-images op hun plaats zetten</td>
<td>23</td>
</tr>
<tr>
<td>4.5 Automatische installatie</td>
<td>23</td>
</tr>
<tr>
<td>4.5.1 Automatisch installeren met het installatiesysteem van Debian</td>
<td>23</td>
</tr>
<tr>
<td>4.6 De integriteit van installatiebestanden verifiëren</td>
<td>23</td>
</tr>
</tbody>
</table>

5 Het installatiesysteem starten

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Het installatiesysteem starten op 64-bit ARM</td>
<td>25</td>
</tr>
<tr>
<td>5.1.1 De configuratie van de console</td>
<td>25</td>
</tr>
<tr>
<td>5.1.2 De installatie op Juno</td>
<td>25</td>
</tr>
<tr>
<td>5.1.3 De installatie op Mustang van Applied Micro</td>
<td>26</td>
</tr>
<tr>
<td>5.1.4 Opstarten via TFTP</td>
<td>26</td>
</tr>
<tr>
<td>5.1.4.1 Opstarten via TFTP in U-Boot</td>
<td>26</td>
</tr>
<tr>
<td>5.1.5 Opstarten vanaf een USB-geheugenstick met UEFI</td>
<td>27</td>
</tr>
<tr>
<td>5.1.6 Het grafische installatiesysteem</td>
<td>27</td>
</tr>
<tr>
<td>5.2 Toegankelijkheid</td>
<td>28</td>
</tr>
<tr>
<td>5.2.1 Frontend voor het installatiesysteem</td>
<td>28</td>
</tr>
<tr>
<td>5.2.2 Apparatuur op een kaart</td>
<td>28</td>
</tr>
<tr>
<td>5.2.3 Een stijl met verhoogd contrast</td>
<td>28</td>
</tr>
<tr>
<td>5.2.4 Zoomfunctie</td>
<td>28</td>
</tr>
<tr>
<td>5.2.5 Expertmodus, reparatiemodus, geautomatiseerde installatie</td>
<td>29</td>
</tr>
<tr>
<td>5.2.6 Toegankelijkheid van het geïnstalleerde systeem</td>
<td>29</td>
</tr>
<tr>
<td>5.3 Opstartparameters</td>
<td>29</td>
</tr>
<tr>
<td>5.3.1 Opstartconsole</td>
<td>29</td>
</tr>
<tr>
<td>5.3.2 Parameters voor het installatiesysteem van Debian</td>
<td>29</td>
</tr>
<tr>
<td>5.3.3 Het gebruik van opstartparameters om op vragen te antwoorden</td>
<td>32</td>
</tr>
<tr>
<td>5.3.4 Parameters doorgeven aan kernelmodules</td>
<td>32</td>
</tr>
<tr>
<td>5.3.5 Kernel modules op een zwarte lijst plaatsen</td>
<td>33</td>
</tr>
<tr>
<td>5.4 Probleemanalyse bij het installatieproces</td>
<td>33</td>
</tr>
<tr>
<td>5.4.1 Betrouwbaarheid van optische media</td>
<td>33</td>
</tr>
<tr>
<td>5.4.1.1 Gebruikelijke problemen</td>
<td>33</td>
</tr>
<tr>
<td>5.4.1.2 Problemen onderzoeken en ze eventueel oplossen</td>
<td>33</td>
</tr>
<tr>
<td>5.4.2 De configuratie van het opstartproces</td>
<td>34</td>
</tr>
<tr>
<td>5.4.3 De meldingen bij het opstarten van de kernel interpreteren</td>
<td>35</td>
</tr>
<tr>
<td>5.4.4 Installatieproblem rapporten</td>
<td>35</td>
</tr>
<tr>
<td>5.4.5 Installatierapporten insturen</td>
<td>35</td>
</tr>
</tbody>
</table>

6 Het Debian installatiesysteem gebruiken

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Hoe het installatiesysteem werkt</td>
<td>37</td>
</tr>
<tr>
<td>6.1.1 Het grafische installatiesysteem gebruiken</td>
<td>37</td>
</tr>
<tr>
<td>6.2 Voorstelling van de componenten</td>
<td>38</td>
</tr>
<tr>
<td>6.3 Individuele componenten gebruiken</td>
<td>39</td>
</tr>
<tr>
<td>6.3.1 Het instellen van het installatiesysteem van Debian en het configureren van de hardware</td>
<td>40</td>
</tr>
<tr>
<td>6.3.1.1 Controle van het beschikbaar geheugen / modus voor weinig geheugen</td>
<td>40</td>
</tr>
<tr>
<td>6.3.1.2 Lokalisatiekeuzes maken</td>
<td>40</td>
</tr>
<tr>
<td>6.3.1.3 Een toetsenbord selecteren</td>
<td>41</td>
</tr>
<tr>
<td>6.3.1.4 Het ISO-image met het Debian installatiesysteem opzoeken</td>
<td>41</td>
</tr>
<tr>
<td>6.3.1.5 Het netwerk configureren</td>
<td>42</td>
</tr>
<tr>
<td>6.3.1.5.1 Automatische netwerkconfiguratie</td>
<td>42</td>
</tr>
</tbody>
</table>
6.3.1.5.2 Handmatige netwerkconfiguratie .. 42
6.3.1.5.3 IPv4 en IPv6 .. 43
6.3.2 Gebruikers en wachtwoorden instellen .. 43
6.3.2.1 Het wachtwoord voor root instellen 43
6.3.2.2 Een gewone gebruiker aanmaken .. 43
6.3.3 De klok en de tijdzone instellen .. 43
6.3.4 Schijfindeling en selectie van aankoppelpunten 44
6.3.4.1 Ondersteunde schijfindelingsopties 44
6.3.4.2 Begeleide schijfindeling .. 45
6.3.4.3 Handmatige schijfindeling .. 46
6.3.4.4 Meeroudige schijfapparaten configureren (Software RAID) 47
6.3.4.5 Logisch volumebeheer (LVM) instellen 50
6.3.4.6 Geëncodeerde volumes instellen ... 51
6.3.5 Installatie van het Basisssysteem .. 53
6.3.6 Aanvullende software installeren ... 53
6.3.6.1 De configuratie van apt ... 53
6.3.6.1.1 De installatie uitvoeren met meer dan één CD- of DVD-image 54
6.3.6.1.2 Een netwerkspiegelserver gebruiken 54
6.3.6.1.3 Een netwerkspiegelserver kiezen .. 55
6.3.6.2 Software selecteren en installeren ... 55
6.3.7 Zorgen dat uw systeem kan worden opgestart 56
6.3.7.1 Andere besturingssystemen detecteren 56
6.3.7.2 Het systeem opstartbaar maken met flash-kernel 57
6.3.7.3 Verder gaan zonder bootloader ... 57
6.3.8 De installatie afronden .. 57
6.3.8.1 De systeemklok instellen .. 57
6.3.8.2 Het systeem opnieuw opstarten ... 57
6.3.9 Probleemoplossing ... 57
6.3.9.1 De logbestanden van de installatie bewaren 58
6.3.9.2 Een shell gebruiken en de logs bekijken 58
6.3.10 Installatie over netwerk-console .. 58
6.4 Ontbrekende firmware laden ... 60
6.4.1 Een medium voorbereiden ... 60
6.4.2 Firmware en een geïnstalleerd systeem .. 61
6.4.3 Het geïnstalleerde systeem voltooien ... 61
6.5 Aanpassingen maken ... 62
6.5.1 Een ander init-systeem installeren ... 62

7 De computer opstarten met uw nieuwe Debian systeem 63
7.1 Het moment van de waarheid ... 63
7.2 Geïncodeerde volumes aankoppelen ... 63
7.2.1 Problemen oplossen ... 64
7.3 Inloggen ... 64

8 De volgende stappen en waar u hierna nog terecht kunt 66
8.1 Het systeem afsluiten ... 66
8.2 Zich mentaal instellen op Debian ... 66
8.2.1 Het pakketbeheersysteem van Debian ... 66
8.2.2 Extra software die voor Debian beschikbaar is 67
8.2.3 Het versiebeheer van toepassingsoftware 67
8.2.4 Het beheer van cron-taken .. 67
8.3 Aanvullende lectuur en informatie ... 67
8.4 Uw systeem instellen voor het gebruik van e-mail 67
8.4.1 Een standaard e-mailconfiguratie ... 68
8.4.2 E-mails versturen buiten het systeem .. 68
8.4.3 De Exim4 Mail Transport Agent configureren 68
8.5 Een nieuwe kernel compileren ... 69
8.6 Een defect systeem herstellen .. 69

INHOUDSOPGAVE
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.3.4</td>
<td>Het basissysteem configureren</td>
<td>99</td>
</tr>
<tr>
<td>D.3.4.1</td>
<td>Apparaatbestanden creëren</td>
<td>100</td>
</tr>
<tr>
<td>D.3.4.2</td>
<td>Partities aankoppelen</td>
<td>100</td>
</tr>
<tr>
<td>D.3.4.3</td>
<td>De tijdzone instellen</td>
<td>101</td>
</tr>
<tr>
<td>D.3.4.4</td>
<td>Het netwerk configureren</td>
<td>101</td>
</tr>
<tr>
<td>D.3.4.5</td>
<td>Apt configureren</td>
<td>102</td>
</tr>
<tr>
<td>D.3.4.6</td>
<td>Het taalgebied en het toetsenbord configureren</td>
<td>102</td>
</tr>
<tr>
<td>D.3.5</td>
<td>Een kernel installeren</td>
<td>102</td>
</tr>
<tr>
<td>D.3.6</td>
<td>Zet de bootloader op</td>
<td>103</td>
</tr>
<tr>
<td>D.3.7</td>
<td>Toegang vanop afstand: SSH installeren en de toegang opzetten</td>
<td>103</td>
</tr>
<tr>
<td>D.3.8</td>
<td>Afwerking</td>
<td>103</td>
</tr>
<tr>
<td>D.4</td>
<td>Debian GNU/Linux installeren met PPP over Ethernet (PPPoE)</td>
<td>104</td>
</tr>
<tr>
<td>E</td>
<td>Administrivia</td>
<td>105</td>
</tr>
<tr>
<td>E.1</td>
<td>Over dit document</td>
<td>105</td>
</tr>
<tr>
<td>E.2</td>
<td>Een bijdrage leveren aan dit document</td>
<td>105</td>
</tr>
<tr>
<td>E.3</td>
<td>Belangrijkste bijdragen</td>
<td>105</td>
</tr>
<tr>
<td>E.4</td>
<td>Handelsmerken</td>
<td>106</td>
</tr>
<tr>
<td>F</td>
<td>GNU General Public License — GNU Algemene Publieke Licentie</td>
<td>107</td>
</tr>
<tr>
<td>F.1</td>
<td>Preambule</td>
<td>107</td>
</tr>
<tr>
<td>F.2</td>
<td>GNU GENERAL PUBLIC LICENSE — GNU ALGEMENE PUBLIEKE LICENTIE</td>
<td>108</td>
</tr>
<tr>
<td>F.3</td>
<td>Hoe u deze bepalingen kunt toepassen op uw nieuwe programma's</td>
<td>111</td>
</tr>
</tbody>
</table>
Lijst van tabellen

3 Vooraleer u Debian GNU/Linux installeert
 3.1 Voor een installatie nuttige informatie over hardware 14
 3.2 Aanbevolen minimale systeemvereisten .. 16
Samenvatting

Dit document bevat installatie-instructies voor het Debian GNU/Linux 11 systeem (codenaam “bullseye”), voor de architectuur 64-bit ARM (“arm64”). Het bevat ook verwijzingen naar meer informatie en informatie over hoe u het maximale uit uw nieuwe Debian systeem kunt halen.

Deze handleiding is oorspronkelijk geschreven in het Engels en het is mogelijk dat voor sommige onderdelen de vertaling naar het Nederlands nog niet volledig is. Voor de delen die nog niet zijn vertaald is de originele, Engelstalige tekst opgenomen. Voor informatie over de vertaling naar het Nederlands kunt u een e-mail sturen naar de mailinglijst debian-l10n-dutch@lists.debian.org. Zie ook Paragraaf 1.6.
Debian GNU/Linux 11 installeren op arm64

Wij zijn verheugd dat u heeft besloten om Debian te proberen en weten zeker dat u zult ontdekken dat de GNU/Linux distributie van Debian uniek is. Debian GNU/Linux brengt hoogwaardige vrije software van over de hele wereld samen en integreert deze tot een samenhangend geheel. Wij zijn ervan overtuigd dat u zult ontdekken dat het resultaat werkelijk meer is dan de som der delen.

Wij begrijpen dat velen onder u Debian willen installeren zonder deze handleiding te lezen en het Debian installatiesysteem is ontworpen om dit mogelijk te maken. Als u op dit moment geen tijd heeft om de hele installatiehandleiding door te nemen, adviseren wij om tenminste de "Installatie Howto" te lezen, die u meeneemt door het basisinstallatieproces en verwijzingen bevat naar de handleiding voor meer geavanceerde onderwerpen of als er dingen fout gaan. U vindt de Installatie Howto in Bijlage A.

Dan hopen wij nu dat u de tijd wilt nemen om het merendeel van deze handleiding door te lezen en dat dit zal leiden tot een beter geïnformeerde en waarschijnlijk meer succesvolle installatie.
Hoofdstuk 1

Welkom bij Debian

Dit hoofdstuk geeft een overzicht van het Debian-project en van Debian GNU/Linux. Indien u reeds op de hoogte bent van de geschiedenis van het Debian-project en de Debian GNU/Linux-distributie kent, kunt u meteen doorgaan naar het volgende hoofdstuk.

1.1 Wat is Debian?

Debian is een volledig uit vrijwilligers bestaande organisatie die zich tot doel stelt vrije software te ontwikkelen en de idealen van de vrije-softwaregemeenschap te promoten. Het Debian-project ging van start in 1993 toen Ian Murdock een open uitnodiging verspreide onder softwareontwikkelaars om mee te werken aan een volledige en coherente softwaredistribution, gebaseerd op de relatief nieuwe Linux-kernel. Deze relatief kleine groep toegewijde enthousiastelingen, die initieel fondsen kreeg van de Free Software Foundation en zich liet leiden door de GNU-filosofie, is over de jaren heen uitgegroeid tot een organisatie van ongeveer 1000 Debian-ontwikkelaars.

Debian-ontwikkelaars zijn betrokken bij een verscheidenheid aan activiteiten, waaronder Web- en FTP-sitebeheer, grafische vormgeving, de juridische analyse van softwarelicenties, het schrijven van documentatie en natuurlijk ook het onderhouden van softwarepakketten.

Om onze filosofie te kunnen verspreiden en ontwikkelaars te kunnen aantrekken die geloven in de principes waarvoor Debian staat, heeft het Debian-project een aantal documenten uitgegeven die onze waarden beschrijven en als richtlijnen gelden voor wat het betekent om een Debian-ontwikkelaar te zijn:

• Het Debian Social Contract, het Sociaal Contract van Debian, is een toelichting bij de engagementen van Debian tegenover de vrije-softwaregemeenschap. Iedereen die ermee akkoord gaat om zich te houden aan het Sociaal Contract kan een maintainer, een onderhouder van Debian, worden. Elke onderhouder kan nieuwe software introduceren in Debian — mits de software beantwoordt aan onze criteria inzake vrije software en het pakket voldoet aan onze kwaliteitsstandaarden.

• De Debian Free Software Guidelines, de richtlijnen van Debian inzake vrije software, zijn een duidelijke en beknopte beschrijving van de criteria die Debian hanteert om te beslissen of software vrij is. De DFSG hebben een grote invloed binnen de beweging voor vrije software en ze hebben als basis gediend voor The Open Source Definition, de definitie van wat open broncode is.

• De Debian Policy Manual, het beleidshandboek van Debian, geeft een omstandige specificatie van de kwaliteitsstandaarden van het Debian-project.

Ontwikkelaars van Debian zijn ook actief in een aantal andere projecten. Sommige daarvan zijn specifiek voor Debian, andere hebben betrekking op een onderdeel van of de gehele Linux-gemeenschap. Enkele voorbeelden zijn:

• De Filesystem Hierarchy Standard (FHS), een gestandaardiseerde bestandssysteemhiërarchie, is een poging om de inrichting van het Linux bestandsysteem te standaardiseren. De FHS moet softwareontwikkelaars toelaten om zich te concentreren op het ontwerpen van programma’s zonder zich zorgen te moeten maken over hoe het pakket in de verschillende GNU/Linux-distributies geïnstalleerd zal worden.

• Debian Jr. is een intern project dat erop gericht is te garanderen dat Debian ook iets te bieden heeft voor de jongste gebruikers.

Voor meer algemene informatie over Debian kunt u terecht bij de Debian FAQ.
1.2 Wat is GNU/Linux?

GNU/Linux is een besturingsysteem, een reeks programma’s die uw computer en er andere programma’s op uit te voeren.

Een besturingsysteem bestaat uit verschillende fundamentele programma’s die uw computer nodig heeft om te kunnen communiceren en instructies van gebruikers te kunnen ontvangen, om gegevens te lezen van en te schrijven naar harde schijven, magneetbanden en printers, om het geheugengebruik te regelen en om andere programma’s uit te voeren. Het belangrijkste onderdeel van een besturingsysteem is de kernel. In een GNU/Linux-systeem is Linux de kernelcomponent. De rest van het systeem bestaat uit andere programma’s, waarvan er veel geschreven werden door of voor het GNU-project. Omdat de Linuxkernel op zich geen werkzaam besturingsysteem oplevert, verkiezen we om de term “GNU/Linux” te gebruiken om te verwijzen naar systemen die veel mensen achterloos “Linux” noemen.

GNU/Linux is gemaakt naar het model van het Unix-besturingsysteem. Vanaf het begin werd GNU/Linux ontworpen als een systeem voor multitasking en met meerdere gebruikers. Alleen al deze elementen maken GNU/Linux anders dan andere welbekende besturingsystemen. GNU/Linux verschilt zelfs nog meer dan u misschien wel denkt. In tegenstelling tot andere besturingsystemen is niemand eigenaar van GNU/Linux. Veel van zijn ontwikkeling gebeurt door onbetaalde vrijwilligers.

Het ontwikkelen van wat later GNU/Linux werd, begon in 1984, toen de Free Software Foundation startte met de ontwikkeling van een vrij Unix-achtig besturingsysteem dat GNU genoemd werd.

Het GNU-project heeft een omvattend geheel van vrije-softwaregereedschappen ontwikkeld om te worden gebruikt met Unix™ en Unix-achtige besturingsystemen, zoals GNU/Linux. Deze gereedschappen laten gebruikers toe taken uit te voeren, gaande van eenvoudige taken (zoals bestanden kopieren en van het systeem verwijderen) tot zeer complexe (zoals het schrijven en compileren van programma’s of het uitvoeren van geavanceerde bewerkingen op documenten in uiteenlopende bestandsformaten).

Hoewel veel groepen en individuen bijgedragen hebben tot GNU/Linux, blijft de Free Software Foundation nog steeds de entiteit met de grootste inbreng, omdat ze niet enkel het grootste deel van de gereedschappen maakte die in GNU/Linux gebruikt worden, maar ook de filosofie en de gemeenschap creëerde die GNU/Linux mogelijk maakten.

De Linuxkernel verscheen voor het eerst op het toneel in 1991, toen Linus Torvalds, een Finse student in de computerwetenschappen, in de Usenet-nieuwsgroep comp.os.minix een preliminaire versie aankondigde van een alternatieve kernel voor Minix. Zie de pagina Linux History (de geschiedenis van Linux) van Linux International.

Linus Torvalds blijft met de hulp van een aantal onderhouders van subsystemen het werk van honderden ontwikkelklaars coördineren. Er bestaat voor de Linuxkernel een officiële website. Informatie over de mailinglijst over de Linuxkernel kunt u vinden in de linux-kernel mailing list FAQ (FAQ van de mailinglijst over de Linuxkernel).

Gebruikers van GNU/Linux hebben een immense keuzevrijheid wat software betreft. Linuxgebruikers hebben bijvoorbeeld de keuze uit een dozijn verschillende shells voor de commandoregel en verschillende grafische werkomgevingen. Gebruikers van andere besturingsystemen zijn vaak verbijsterd over deze keuzemogelijkheid omdat het voor hen ongewoon is om te denken over de commandoregel of de grafische werkomgeving als iets dat door hen kan gewijzigd worden.

GNU/Linux is ook minder crashgevoelig, is beter in staat om tegelijk meer dan één programma uit te voeren en veiliger dan veel besturingsystemen. Omwille van deze voordelen is Linux het snelst groeiende besturingsysteem in het serverssegment. En meer recent is Linux ook populairder geworden voor computergebruik thuis en op het werk.

1.3 Wat is Debian GNU/Linux?

De filosofie en methodiek van Debian in combinatie met het GNU-gereedschap, de Linuxkernel en andere belangrijke vrije software levert een unieke softwaredistributie op die de naam Debian GNU/Linux draagt. Deze distributie bestaat uit een groot aantal softwarepakketten. Elk pakket uit de distributie bevat uitvoerbare bestanden, scripts, documentatie en configuratie-informatie en heeft een onderhouder (maintainer) die in de eerste plaats verantwoordelijk is om het pakket up-to-date te houden, bugrapporten op te volgen en de communicatie te onderhouden met de auteur(s) die de software die de onderhouder verpakt, aanlever(t/en). Ons extreem groot gebruikersaantal in combinatie met ons bugopvolgingssysteem zorgt ervoor dat problemen snel ontdekt en gerepareerd worden.

De aandacht voor detail in Debian laat ons toe een hoogkwalitatieve, stabiele en schaalbare distributie te produceren. Installaties kunnen gemakkelijk geconfigureerd worden om uiteenlopende functies te vervullen, gaande van minimale firewalls over wetenschappelijke werkstations tot hoogwaardige netwerk servers.

Debian is vooral populair bij geavanceerde gebruikers omwille van zijn technische uitmuntendheid en zijn groeiende betrokkenheid op de noden en verwachtingen van de Linuxgemeenschap. Debian bracht ook heel wat nieuwe functionaliteit aan die nu gemeengoed is in Linux.

Debian was bijvoorbeeld de eerste Linuxdistributie die een systeem voor pakketbeheer toeveroedge om het installeren en verwijderen van software eenvoudig te maken. Het was ook de eerste Linuxdistributie die opgewaardeerd
HOOFDSTUK 1. WELKOM BIJ DEBIAN

1.4. Wat is het installatiesysteem van Debian?

Het installatiesysteem van Debian, ook bekend als “Debian Installer” of “d-i”, is het softwaresysteem dat dient voor de installatie van een werkend basaal Debian-systeem. Een breed spectrum hardware, zoals ingebedde apparaten, laptops, desktops en servermachines wordt ondersteund en een uitgebreid gamma vrije software voor velerlei toepassingen wordt geboden.

Meer informatie kunt u vinden op de pagina van Debian Installer, op de Wiki en op de mailinglijst debian-boot.

1.5 Debian verkrijgen

Raadpleeg de webpagina over de distributie voor meer informatie over de manier waarop u Debian GNU/Linux van het internet kunt downloaden of officiële Debian installati media kunt aankopen. De lijst met Debian spiegel servers bevat een volledige lijst van officiële Debian spiegel servers, zodat u gemakkelijk de dichtstbijzijnde kunt vinden.

Na installatie kan Debian zeer gemakkelijk opgewaardeerd worden. De installatieprocedure helpt bij het instellen van het systeem, zodat u deze opwaarderingen, indien nodig, na het installeren van het systeem kunt uitvoeren.

1.6 De meest recente versie van dit document verkrijgen

Dit document wordt permanent bijgewerkt. Kijk dus zeker op de pagina's over Debian 11 voor eventuele informatie over release 11 van het Debian GNU/Linux-systeem die op het laatste moment beschikbaar geworden is. Een bijgewerkte versie van deze installatiehandleiding is ook te vinden op de offi ciële pagina van de Installatiehandleiding.

1.7 De opbouw van dit document

Dit document is opgevat als een handleiding voor wie Debian voor het eerst gebruikt. Het probeert zo weinig mogelijk vooronderstellingen te maken over het niveau van uw expertise. Niettemin gaan we ervan uit dat u een algemeen begrip
HOOFDSTUK 1. WELKOM BIJ DEBIAN

1.8. OVER COPYRIGHT EN SOFTWARELICENTIES

heeft over de wijze waarop de hardware in uw computer functioneert. Ook ervaren gebruikers kunnen in dit document interessante referentie-informatie vinden, onder meer over de minimale grootte van een installatie, over de hardware die door het installatiesysteem van Debian ondersteund wordt, enzovoort. We moedigen ervaren gebruikers aan om wat rond te neuzen in dit document.

Globaal genomen werd dit document lineair opgebouwd en neemt het u mee door het installatieproces vanaf het begin tot het einde. Dit zijn de verschillende stappen bij het installeren van Debian GNU/Linux en de overeenkomstige secties van dit document:

1. Het vaststellen of uw hardware voldoet aan de vereisten om het installatiesysteem te kunnen gebruiken in Hoofdstuk 2.

2. Het maken van een back-up van uw systeem en het voorafgaand aan de installatie van Debian uitvoeren van de nodige planning en hardware-configuratie in Hoofdstuk 3. Indien u een multi-boot-systeem, een systeem met verschillende besturingssystemen, voor ogen heeft, kan het zijn dat u op uw harde schijf ruimte die gepartitioneerd kan worden moet vrijmaken ten behoeve van Debian.

3. In Hoofdstuk 4 verkrijgt u de installatiebestanden die u voor uw installatiemethode nodig heeft.

4. Het volgende hoofdstuk Hoofdstuk 5 beschrijft het opstarten van het installatiesysteem. Dit hoofdstuk gaat ook in op procedures voor het oplossen van problemen die zich bij deze stap zouden kunnen stellen.

5. Het uitvoeren van de echte installatie volgens de informatie uit Hoofdstuk 6. Dit houdt de keuze van een taal in, het configureren van stuurprogrammamodules voor randapparatuur, het configureren van uw netwerkverbinding zodat de overige installatiebestanden rechtstreeks van een Debian-server opgehaald kunnen worden (in het geval u de installatie niet uitvoert aan de hand van een set CD/DVD-installatie-images), het indelen van de harde schijven en de installatie van het basissysteem en nadien het selecteren en installeren van taken. (Enige achtergrondinformatie over het instellen van de partities voor uw Debian-systeem vindt u in Bijlage C.)

Nadat u het systeem geïnstalleerd heeft, kunt u Hoofdstuk 8 lezen. Dat hoofdstuk legt uit waar u bijkomende informatie over Unix en Debian kunt vinden en hoe u een kernel kunt vervangen.

Tenslotte kunt u informatie over dit document en over hoe u er zelf aan kunt meehelpen, vinden in Bijlage E.

1.8 Over copyright en softwarelicenties

We zijn zeker dat u al sommige van de licenties die aan de meeste commerciële software gekoppeld zijn, gelezen heeft — meestal vermelden ze dat u slechts één kopie van de software op één enkele computer mag gebruiken. De licentie van dit systeem is helemaal anders. We moedigen u aan om op elke computer op uw school of op uw werkplek een kopie van Debian GNU/Linux te plaatsen. Leen uw installatiemedia uit aan uw vrienden en help hen om het systeem op hun computer te installeren! U mag er zelfs duizenden kopieën van maken en die verkopen — weliswaar met enkele restricties. Het recht om het systeem te installeren en te gebruiken wordt u rechtstreeks toegekend door Debian en heeft te maken met het feit dat het vrije software is.

Het als vrije bestempelen van software, houdt niet in dat er geen copyright aan verbonden is en betekent niet dat installatiemedia met die software kosteloos moeten verspreid worden. Vrije software wil onder meer zeggen dat de licenties van de afzonderlijke programma’s niet vereisen dat u moet betalen voor het recht om deze programma’s te verdelen of te gebruiken. Vrije software wil ook zeggen dat om het even wie die software mag uitbreiden, aanpassen en wijzigen en het resultaat van zijn werk ook mag verspreiden.

Opmerking

Ten behoeve van zijn gebruikers doet het Debian-project een pragmatische toegeving en stelt enkele pakketten ter beschikking die dit niet beantwoorden aan onze criteria inzake vrijheid. Deze pakketten maken echter geen deel uit van de officiële distributie en zijn enkel beschikbaar via de gebieden [contrib](https://packages.debian.org/contrib) en [non-free](https://packages.debian.org/non-free) van de spiegelserver van Debian of op de CD’s/DVD’s van externe leveranciers. Zie de Debian FAQ onder “De Debian FTP-archieven” voor bijkomende informatie over de indeling en de inhoud van de archieven.
Veel van de programma’s in het systeem hebben als licentie de *GNU General Public License* die vaak eenvoudigweg “de GPL” genoemd wordt. De GPL eist dat u de *broncode* van een programma ter beschikking stelt telkens u er een kopie in binaire vorm van verspreidt. Deze bepaling in de licentie garandeert dat elke gebruiker in staat gesteld wordt de software te wijzigen. Omwille van deze bepaling is de broncode van al die programma’s beschikbaar in het systeem van Debian.¹

Er bestaan verschillende andere vormen van copyrightvermeldingen en softwarelicenties die voor programma’s in Debian gebruikt worden. Voor elk op uw systeem geïnstalleerd pakket vindt u informatie over copyright en licentie door te kijken in het bestand `/usr/share/doc/pakket-naam/copyright` na de installatie van het pakket.

Voor bijkomende informatie over licenties en hoe Debian beoordeelt of software voldoende vrij is om opgenomen te kunnen worden in de hoofddistributie, kunt u de *Richtlijnen van Debian inzake vrije software*, de Debian Free Software Guidelines, raadplegen.

De belangrijkste juridische bepaling is dat deze software geleverd wordt *zonder enige garantie*. De programmeurs die deze software ontwikkelden, deden dit ten behoeve van de gemeenschap. Er wordt geen garantie gegeven inzake de bruikbaarheid van de software voor om het even welk specifiek doel. Maar vermits de software vrij is, heeft u het recht om die software aan te passen aan uw behoeften — en mee te genieten van de voordelen van op die manier door anderen aan de software aangebrachte wijzigingen en toevoegingen.

¹Raadpleeg voor informatie over hoe u Debian broncodepakketten kunt vinden, ze kunt uitpakken en er binaire bestanden uit bouwen de *Debian FAQ* onder "Basisbeginselen van het pakketbeheersysteem van Debian".
Hoofdstuk 2

Systeemvereisten

Dit hoofdstuk bevat informatie over welke hardware u nodig heeft om aan de slag te gaan met Debian. U vindt ook verwijzingen naar bijkomende informatie over hardware die ondersteund wordt door GNU en Linux.

2.1 Ondersteunde hardware

Debian stelt geen extra vereisten inzake hardware bovenop de vereisten die gesteld worden door de Linux- of de KFreeBSD-kernel en de GNU-gereedschapssets. Daardoor kan Debian gebruikt worden op elke architectuur of elk platform waarvoor de Linux- of de KFreeBSD-kernel, libc, gcc, enz. geschikt gemaakt werden en waarvoor een Debian-uitgave bestaat. Raadpleeg de pagina's over geschikte architecturen (ports) op https://www.debian.org/ports/arm/ voor meer informatie over systemen van de architectuur 64-bit ARM waarop Debian GNU/Linux getest werd.

Eerder dan alle verschillende ondersteunde hardwareconfiguraties van 64-bit ARM te proberen beschrijven, bevat dit hoofdstuk algemene informatie en verwijzingen naar plaatsen waar bijkomende informatie gevonden kan worden.

2.1.1 Ondersteunde architecturen

Debian GNU/Linux 11 ondersteunt 9 hoofdarchitecturen en verschillende variaties van elk van die architecturen, “varianten” (flavors) genoemd.

<table>
<thead>
<tr>
<th>Architectuur</th>
<th>Aanduiding in Debian</th>
<th>Onderarchitectuur</th>
<th>Variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD64 & Intel 64</td>
<td>amd64</td>
<td>standaard x86-systemen</td>
<td>standaard</td>
</tr>
<tr>
<td>Gebaseerd op Intel x86</td>
<td>i386</td>
<td>enkel Xen PV domeinen</td>
<td>xen</td>
</tr>
<tr>
<td>ARM</td>
<td>armel</td>
<td>Marvell Kirkwood en Orion</td>
<td>marvell</td>
</tr>
<tr>
<td>ARM met hardware-FPU</td>
<td>armhf</td>
<td>multiplatform</td>
<td>armmp</td>
</tr>
<tr>
<td>64bits ARM</td>
<td>arm64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64bits MIPS (little endian)</td>
<td>mips64el</td>
<td>MIPS Malta</td>
<td>5kc-malta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loongson 3</td>
<td>loongson-3</td>
</tr>
<tr>
<td>32bits MIPS (little endian)</td>
<td>mipsel</td>
<td>MIPS Malta</td>
<td>4kc-malta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loongson 3</td>
<td>loongson-3</td>
</tr>
<tr>
<td>Power Systems</td>
<td>ppc64el</td>
<td>IBM POWER8 of recentere machines</td>
<td></td>
</tr>
<tr>
<td>64bits IBM S/390</td>
<td>s390x</td>
<td>IPL van VM-reader en DASD</td>
<td>generieke</td>
</tr>
</tbody>
</table>

Dit document behandelt de installatie op de architectuur 64-bit ARM met de kernel Linux. Indien u op zoek bent naar informatie over een van de andere door Debian ondersteunde architecturen, raadpleeg dan de webpagina Architecturen waarop Debian werkt (Ports).

Dit is de eerste officiële release van Debian GNU/Linux voor de architectuur 64-bit ARM. We zijn van mening
dat het een voldoende staat van dienst heeft om uitgebracht te worden. Maar aangezien het niet dezelfde verspreiding gekend heeft als sommige andere architecturen (en dus minder getest werd door gebruikers), kan het zijn dat u op enkele bugs stoot. Gebruik ons Bugopvolgingssysteem om eventuele problemen te signaleren. Vermeld zeker het feit dat de bug zich manifesteerde op het platform 64-bit ARM met de kernel Linux. Het kan ook nodig zijn om de mailinglijst voor debian-arm te gebruiken.

2.1.2 Drie verschillende uitgaven voor ARM

Mettertijd is de ARM-architectuur geëvolueerd en moderne ARM-processors hebben functionaliteit die in oudere modellen niet aanwezig was. Daarom brengt Debian drie verschillende uitgaven (ports) uit voor ARM om op die manier de best mogelijke ondersteuning te bieden voor een zeer ruim scala van verschillende machines:

- Debian/armel is bedoeld voor oudere 32-bits ARM-processoren zonder ondersteuning voor een hardware floating point unit (FPU),
- Debian/armhf werkt alleen op recentere 32-bits ARM-processoren die minstens de architectuur ARMv7 met versie 3 van de ARM vector floating point specificatie (VFPv3) toepassen. Ze maakt gebruik van de uitgebreide functionaliteit en de verbeterde prestaties van deze modellen.
- Debian/arm64 werkt op 64-bits ARM-processoren die minstens de architectuur ARMv8 toepassen.

Vanuit technisch oogpunt kunnen alle momenteel beschikbare ARM CPU’s volgens beide endian-modi (big of little) functioneren, maar in de praktijk gebruikt het grootste deel de modus little-endian. Zowel Debian/arm64, Debian/armhf als Debian/armel ondersteunen enkel little-endian systemen.

2.1.3 Variaties in het design van ARM CPU’s en hun complexe ondersteuning

ARM-systemen zijn veel heterogener dan systemen die een i386/amd64 PC-architectuur als basis hebben. Daardoor kan de situatie wat ondersteuning betreft, veel gecompliceerder zijn.

De ARM-architectuur wordt hoofdzakelijk gebruikt in zogenaamde “system-on-chip” (SoC) designs (geïntegreerde schakelingen). Dergelijke SoC’s worden ontworpen door zeer veel verschillende bedrijven die gebruik maken van erg uiteenlopende hardwarecomponenten, zelfs voor de meest basale functionaliteit die het systeem activeert. Bij oudere versies van de ARM-architectuur zag men grote verschillen tussen de ene en de daaropvolgende SoC. ARMv8 (arm64) is echter veel meer gestandaardiseerd en kan daarom makkelijker ondersteund worden door de Linuxkernel en door andere software.

Serverversies van de ARMv8-hardware worden meestal geconfigureerd volgens de standaarden van de 'Unified Extensible Firmware Interface' (UEFI) en de 'Advanced Configuration and Power Interface' (ACPI). Deze beide standaarden voorzien in een gemeenschappelijke en apparaatonaafhankelijke manier om computerhardware op te starten en te configureren. Ook in de wereld van x86 PC’s zijn ze gebruikelijk.

2.1.4 Door Debian/arm64 ondersteunde platformen

Arm64/AArch64/ARMv8-hardware werd slechts vrij laat in de releasecyclus van Debian Bullseye beschikbaar. Daardoor was er op het ogenblik van de release nog niet voor veel platformen ondersteuning ingebouwd in de standaard- versie van de kernel. Dit is de belangrijkste vereiste voor een werkende debian-installer. Het is bekend dat in deze release de volgende platformen ondersteund worden door Debian/arm64. Eén kernelimage ondersteunt al de vermelde platformen.

Applied Micro (APM) Mustang/X-Gene De APM Mustang was het eerste voor Linux geschikte ARMv8 systeem dat beschikbaar was. Het gebruikte het X-gene SoC, dat nadien ook in andere machines gebruikt werd. Het heeft een CPU met 8 kernen, ethernet, USB en een seriële poort. Een gebruikelijk model ziet er uit als een desktopcomputer, maar men verwacht voor de toekomst nog veel andere versies. Het grootste deel van de hardware wordt door de standaardkernel ondersteund, maar op dit ogenblik ontbreekt USB-ondersteuning in de kernel van Bullseye.

ARM Juno Development Platform Juno is een degelijk ontwikkelingsbord met een ARMv8-A CPU van 800Mhz en 6 kernen (2xA7, 4xA53), Mali (T624) grafische interface, 8GB DDR3 RAM, ethernet, USB, seriële poort. Het werd ontwikkeld voor het activeren van systemen en doorgedreven testing en het is dus niet klein en niet goedkoop, maar het was een van de eerst beschikbare borden. Alle ingebouwde hardware wordt ondersteund door de standaardkernel en in Bullseye.
Indien u debian-installer gebruikt op niet-UEFI-systemen, moet u op het einde van de installatie het systeem handmatig gereed maken om te kunnen opstarten, bijvoorbeeld door de vereiste commando’s uit te voeren in een shell die vanuit debian-installer opgestart wordt. flash-kernel is in staat om een X-Gene systeem te bouwen dat met U-Boot opstartbaar is.

2.1.4.1 Andere platforms
De multiplatform-ondersteuning in de Linuxkernel voor arm64 kan het ook mogelijk maken om debian-installer te gebruiken op arm64-systemen die hierboven niet expliciet vermeld werden. Zolang de kernel die door debian-installer wordt gebruikt de componenten van het systeem ondersteunt, en er voor dat doelsysteem een bestand met een apparaatenlijst (device-tree file) beschikbaar is, kan een nieuw doelsysteem perfect werken. In dergelijke gevallen kan het installatieprogramma gewoonlijk voor een werkende installatie zorgen, en zal UEFI gebruikt worden, zou het ook mogelijk moeten zijn om met deze installatie opstartbaar te maken. Als geen UEFI gebruikt wordt, zult u handmatig een aantal configuratietappen moeten uitvoeren om het systeem opstartbaar te maken.

2.1.5 Meerdere processoren
Ondersteuning voor meerdere processoren — ook wel “symmetric multiprocessing” of SMP genoemd — is voor deze architectuur beschikbaar. De aanwezigheid van meerdere processoren in een computer was oorspronkelijk slechts weggelegd voor serversystemen uit het topsegment, maar is de laatste jaren ongeveer overal een gewone zaak geworden met de introductie van de zogenaamde “multi-core”-processoren (multikernprocessoren). Deze hebben in één enkele fysieke chip twee of meer processoreenheden, die “cores” of kernen genoemd worden.

Het standaard kernelimage van Debian 11 werd gecompileerd met SMP-ondersteuning. Het kan ook probleemloos gebruikt worden op niet-SMP-systemen.

2.1.6 Ondersteuning voor grafische hardware
De ondersteuning van Debian voor grafische interfaces wordt bepaald door de onderliggende ondersteuning ervan in het X11-systeem van X.Org en in de kernel. Basale grafische weergave via de framebuffer wordt door de kernel geleverd, terwijl een desktopomgeving gebruik maakt van X11. Of geavanceerde functionaliteit van grafische kaarten, zoals 3D hardwareacceleratie of video met hardwareacceleratie beschikbaar is, hangt af van de grafische hardware die in het systeem gebruikt wordt en in sommige gevallen ook van het extra installeren van “firmware”-images (zie Paragraaf 2.2).

Bijna alle ARM-machines hebben de grafische hardware ingebouwd in plaats van op een te pluggen grafische kaart. Sommige machines hebben expansiesloten waarin een grafische kaart geplaatst kan worden, maar dat is een rariteit. Hardware die bedoeld is als een systeem zonder toetsenbord en beeldscherm (headless) heeft vrij courant geen grafische hardware. Terwijl basale grafische weergave via de framebuffer waarvoor de kernel instaat, op elk apparaat met grafische hardware zou moeten werken, moet snelle 3D grafische hardware steevast binaire stuurprogramma’s hebben om te kunnen functioneren. De situatie verandert snel, maar op het ogenblik van de release van bullseye zijn vrije stuurprogramma’s voor nouveau (Nvidia Tegra K1 SoC) en freedreno (Qualcomm Snapdragon SoC’s) beschikbaar in de release. Andere hardware heeft niet-vrije stuurprogramma’s nodig van derden.

Meer informatie over ondersteunde grafische hardware en aanwijsapparaten is te vinden op https://wiki.freedesktop.org/xorg/. Debian 11 bevat versie 7.7 van X.Org.

2.1.7 Hardware voor verbinding met het netwerk
Zowel elke netwerkkaart (NIC) die door de kernel Linux ondersteund wordt, zou ook moeten ondersteund worden door het installatiesysteem. Stuurprogramma’s zouden normaal automatisch geladen moeten worden.

Op 64-bit ARM worden de meeste ingebouwde ethernetapparaten ondersteund en worden modules voorzien voor bijkomende PC- en USB-apparaten.

2.1.8 Randapparatuur en andere hardware
2.2 Apparaten waarvoor firmware vereist is

Los van de beschikbaarheid van een apparaatstuurprogramma vereist sommige hardware ook dat er zogenaamde *firmware* of *microcode* naar het apparaat geladen wordt voordat het operationeel kan worden. Dit komt meest voor bij netwerkkaarten of NIC's (in het bijzonder draadloze NIC's), maar bijvoorbeeld sommige USB-apparaten en zelfs sommige hardschrijfcontrollers hebben ook firmware nodig.

Voor veel grafische kaarten is basisfunctionaliteit beschikbaar zonder bijkomende firmware, maar om van de geavanceerde functies te kunnen genieten moet op het systeem een bestand met de passende firmware geïnstalleerd worden. In sommige gevallen kan een succesvolle installatie nog steeds eindigen in een zwart scherm of een vervormd scherm bij het opnieuw opstarten van het geïnstalleerde systeem. Als dat gebeurt, kunnen enkele tijdelijke oplossingen worden geprobeerd om toch in te loggen (zie Paragraaf 6.4.3).

Op veel oudere apparaten die firmware nodig hebben om te werken, werd het bestand met de firmware door de fabrikant permanent op een EEPROM/Flash-chip op het apparaat zelf geplaatst. Tegenwoordig wordt bij nieuwe apparaten de firmware niet langer op die manier ingebed, maar moet het bestand met de firmware door het besturingsysteem van de computer in het apparaat geladen worden telkens het systeem opstart.

In de meeste gevallen is firmware niet-vrij volgens de criteria die door het Debian GNU/Linux-project gehanteerd worden en kan daarom niet opgenomen worden in de hoofddistributie of in het installatiesysteem. Indien het apparaatstuurprogramma zelf in de distributie opgenomen is en indien Debian GNU/Linux de firmware wettelijk gezien mag verdelen, zal die vaak beschikbaar zijn als een afzonderlijk pakket in de sectie 'non-free' van het archief.

 Dit betekent evenwel niet dat dergelijke hardware niet gebruikt kan worden tijdens een installatie. Vanaf Debian GNU/Linux 5.0 ondersteunt *debian-installer* het laden vanuit een verwijderbaar medium, zoals een USB-stick, van firmware-bestanden of pakketten met firmware. Zie Paragraaf 6.4 voor bijkomende informatie over het laden van firmwarebestanden of -pakketten tijdens de installatie.

Indien *debian-installer* vraagt naar een firmwarebestand en u dat bestand niet bij de hand heeft of geen niet-vrije firmware wilt installeren op uw systeem, kunt u proberen om voort te gaan zonder de firmware te laden. Er zijn verschillende gevallen waarin een stuurprogramma vraagt naar een firmwarebestand, maar waarbij het apparaat ook daaronder op de meeste systemen werkt (dit gebeurt bijvoorbeeld bij sommige netwerkkaarten die het tg3-stuurprogramma gebruiken).

2.3 Hardware aankopen, specifiek voor GNU/Linux

Verschillende leveranciers verkopen systemen met Debian of een andere GNU/Linux-distributie reeds voorgeïnstalleerd. Misschien betaalt u iets meer voor dit voorrecht, maar daarvoor krijgt u een grotere gemoedsrust in de plaats, vermits u er zeker van kunt zijn dat de hardware goed ondersteund wordt door GNU/Linux.

Koopt u al dan niet een systeem met een voorgeïnstalleerde Linux of misschien zelfs een reeds gebruikt systeem, steeds is het belangrijk om na te gaan of uw systeem ondersteund wordt door de kernel Linux. Ga na of er in de hiervoor vermelde referenties melding gemaakt wordt van uw hardware. Laat de (eventuele) verkoper weten dat u op zoek bent naar een systeem voor Linux. Ondersteun Linux-genegen hardwareverkopers.

2.3.1 Vermijd aan eigendomsrechten gebonden of gesloten hardware

Sommige hardwarefabrikanten weigeren eenvoudig de nodige informatie te geven om een stuurprogramma voor hun hardware te kunnen schrijven. Anderen weigeren de toegang tot die informatie zonder het aangaan van een overeenkomst tot het niet-ontsluiten van die informatie, hetgeen ons verhindert om de broncode van het stuurprogramma vrij te geven. En dat laatste is één van de kernelementen van vrije software. Aangezien we voor dit soort apparaten geen toegang krijgen tot bruikbare documentatie, zullen die simpelweg ook niet werken met Linux.

In veel gevallen bestaan er standaarden (of minstens sommige de facto standaarden) die beschrijven hoe een besturingssysteem en zijn apparaatstuurprogramma's communiceren met een bepaalde klasse van apparaten. Alle apparaten die deze (de facto) standaard volgen, kunnen dan gebruikt worden met een eenvoudig algemeen apparaatstuurprogramma, zonder dat er een apparaatspecifiek stuurprogramma nodig is. Voor sommige groepen hardware (bijvoorbeeld USB-“interfaceapparaten”, zoals toetsenborden muizen, enz., en USB-apparaten voor massaopslag, zoals USB-sticks en geheugenkaartlezers) functioneert dat heel goed en zo goed als elk apparaat dat op de markt te verkrijgen is, beantwoordt aan die standaarden.

Op andere gebieden, waaronder bijvoorbeeld printers, is dit spijtig genoeg niet het geval. Hoewel er veel printers zijn die benaderd kunnen worden via een beperkt aantal (de facto) standaard printersturtaarten en om die reden probleemloos onder om het even welk besturingssysteem kunnen werken, zijn er heel wat modellen die enkel aan eigendomsrechten gebonden stuurcommando’s begrijpen, waarover geen bruikbare informatie beschikbaar is en om
die reden ofwel helemaal niet gebruikt kunnen worden met een vrij besturingssysteem of enkel met behulp van een door de fabrikant geleverd stuurprogramma met niet vrijgegeven broncode.

Hoewel er dan voor dergelijke hardware een door de fabrikant aangeleverd stuurprogramma met gesloten broncode bestaat, is de praktische levensduur van het apparaat beperkt tot de periode waarin een dergelijk stuurprogramma beschikbaar blijft. Tegenwoordig is de levenscyclus van een product vaak kort en is het niet ongebruikelijk dat kort nadat de productie van een consumentenproduct stopgezet wordt, door de fabrikant een nieuw model op de markt brengen en de oude modelen niet langer ondersteunt. Indien het oude stuurprogramma met gesloten broncode een systeemplaatsbouw niet langer blijkt te werken, wordt een nieuw perfect werkend apparaat plots onbruikbaar wegens een gebrek aan ondersteuning voor het stuurprogramma en in een dergelijk geval valt daar niets aan te verhelpen. Om die reden zou u in de eerste plaats moeten trachten om deze situaties te vermijden zodat wij vrije stuurprogramma’s kunnen voorzien voor hun hardware.

U kunt helpen om deze situaties te verbeteren door fabrikanten van gesloten hardware aan te sporen om de documentatie erover en andere noodzakelijke bronnen vrij te geven, zodat wij vrije stuurprogramma’s kunnen voorzien voor hun hardware.

2.4 Installatiemedia

Hoofdstuk 2. SYSTEEMVEREISTEN

Er wordt een heel hoofdstuk gewijd aan media, Hoofdstuk 4, en daarin worden de voor- en nadelen van elk mediatype besproken. Misschien wilt u naar deze pagina teruggrijpen opgeleid door de handleiding.

2.4.1 CD/DVD/BD

Voor de meeste architecturen bestaat er ondersteuning voor een installatie vanaf een optische schijf.

2.4.2 USB-geheugenstuck

USB-sticks, ook wel USB-geheugenstics genoemd, zijn een veelgebruikt en goedkoop opslagmedium geworden. Op de meeste moderne computersystemen is het ook mogelijk om debian-installer vanaf een USB-stick op te starten. Veel moderne computersystemen en in het bijzonder netbooks en dunne laptops hebben niet langer een optisch station en voor dat soort systemen is het opstarten vanaf een USB-medium de standaardprocedure geworden om een nieuw besturingssysteem erop te installeren.

2.4.3 Netwerk

Tijdens de installatie kan het netwerk gebruikt worden om bestanden op te halen die nodig zijn voor de installatie. Of het netwerk gebruikt wordt of niet, hangt af van de gekozen installatiemethode en van uw antwoord op sommige vragen die tijdens de installatie gesteld worden. Het installatiesysteem ondersteunt de meeste types netwerkverbindingen (waaronder PPPoE, maar geen ISDN of PPP) via ofwel HTTP of FTP. Na het beëindigen van de installatie kunt u uw systeem ook configureren om gebruik te maken van ISDN of PPP.

U kunt het installatiesysteem ook over het netwerk opstarten, zonder dat u een lokaal medium zoals een CD/DVD of een USB-stick nodig heeft. Indien er reeds een infrastructuur aanwezig is om computers over het netwerk op te starten (dit wil zeggen dat er in uw netwerk reeds DHCP- en TFTP-diensten actief zijn), kunt u die gebruiken om snel en gemakkelijk een groot aantal machines klaar te maken. Om de nodige infrastructuur op te zetten is een zekere graad van technische praktijkervaring vereist en daarom wordt dit niet aanbevolen voor beginnende gebruikers.

Een schijfloze installatie, waarbij men over een lokaal netwerk opstart en alle lokale bestandssystemen via NFS aankoppelt, is een andere mogelijkheid.

2.4.4 Harde schijf

Bij veel architecturen is het ook mogelijk om het installatiesysteem rechtstreeks van een harde schijf op te starten. Daarvoor is het nodig dat een ander besturingssysteem het installatiesysteem erop de harde schijf laat plaats. Deze methode valt enkel aan te bevelen als geen enkele andere methode beschikbaar is.

2.4.5 Un*x- of GNU-systeem

Indien u een ander Unix-achtig systeem gebruikt, zou u het kunnen gebruiken om Debian GNU/Linux te installeren zonder debian-installer te gebruiken zoals in het vervolg van deze handleiding beschreven wordt. Een dergelijke installatiemethode kan nuttig zijn voor gebruikers van anderszins niet-ondersteunde hardware of van computers
die niet uitgeschakeld mogen worden. Indien u interesse heeft in deze techniek, ga dan verder naar Paragraaf D.3. Deze installatiemethode wordt enkel aanbevolen voor gevorderde gebruikers in het geval er geen andere installatiemethode beschikbaar is.

2.4.6 Ondersteunde opslagsystemen

Het installatieprogramma van Debian bevat een kernel die gecompileerd is om op een maximaal aantal systemen te kunnen werken.

2.5 Vereisten inzake geheugen en schijfruimte

U heeft minstens 260MB geheugen nodig en minimum-fs-size; schijfruimte om een normale installatie te kunnen uitvoeren. Merk op dat dit behoorlijk minimale hoeveelheden zijn. Raadpleeg voor meer realistische cijfers Paragraaf 3.4.

Het installatieprogramma schakelt normaal gesproken automatisch geheugenbesparende kunstgrepen in om op zo'n systeem met weinig geheugen te kunnen draaien, maar op architecturen die minder getest zijn kan het zijn dat het dit over het hoofd ziet. Dit kan echter handmatig geactiveerd worden door de opstartparameter \texttt{lowmem=1} of zelfs \texttt{lowmem=2} toe te voegen (zie ook Paragraaf 6.3.1.1 en Paragraaf 5.3.2).

Installation on systems with less memory\footnote{Installation images that support the graphical installer require more memory than images that support only the text-based installer and should not be used on systems with less than 260MB of memory. If there is a choice between booting the text-based and the graphical installer, the former should be selected on such systems.} or disk space available may be possible but is only advised for experienced users.
Hoofdstuk 3

Vooraleer u Debian GNU/Linux installeert

Dit hoofdstuk behandelt de voorbereiding op de installatie van Debian zelfs voordat u het installatieprogramma start. Dit omvat het maken van een reservekopie van uw gegevens, het verzamelen van gegevens over uw hardware en het bijeenzoeken van eventueel benodigde informatie.

3.1 Overzicht van het installatieproces

Allereerst een opmerking over herinstallaties. Bij Debian zal zich slechts zeer zelden een omstandigheid voordoen die een volledige herinstallatie noodzakelijk maakt. Wellicht is een mechanisch falen van de harde schijf de meest voorkomende situatie.

Bij veel courante besturingssystemen kan een volledige herinstallatie nodig blijken wanneer kritieke fouten optreden of voor een upgrade naar een nieuwe versie van het besturingssysteem. En zelfs als een volledige herinstallatie niet nodig is, moeten vaak de programma’s die u gebruikt geherinstalleerd worden om behoorlijk te functioneren onder het nieuwe besturingssysteem.

Onder Debian GNU/Linux is het veel waarschijnlijker dat uw besturingssysteem niet vervangen moet worden maar gerepareerd kan worden als er dingen fout gaan. Voor opwaarderingen is nooit een volledige herinstallatie vereist. U kunt steeds het bestaande systeem opwaarderen terwijl het systeem blijft functioneren en bijna steeds zijn de programma’s compatibel met opeenvolgende releases van het besturingssysteem. Indien een nieuwe versie van een programma ook nieuwe ondersteunende software vereist, zorgt de manier waarop Debian pakketten maakt ervoor dat alle software die benodigd is, automatisch wordt geïdentificeerd en geïnstalleerd. Omdat zoveel aandacht is besteed aan het voorkomen van de noodzaak om opnieuw te installeren, zou u dat als uw allerlaatste redmiddel moeten beschouwen. Het installatiesysteem is niet ontworpen om een installatie over een bestaand systeem heen uit te voeren.

Hier volgt een draaiboek met de verschillende stappen van het installatieproces.

1. Een reservekopie maken van alle bestaande gegevens of documenten op de harde schijf waarop u de installatie wilt uitvoeren.
2. Informatie verzamelen over uw computer en alle benodigde documentatie voor u met de installatie begint.
3. Op uw harde schijf voor Debian ruimte vrij maken die in partities kan opgedeeld worden.
4. De installatiesoftware erbij nemen en/of downloaden, evenals eventuele gespecialiseerde stuurprogramma’s of firmware-bestanden die uw computer vereist.
5. De opstartmedia klaar maken, zoals CD’s/DVD’s/USB-sticks of een infrastructuur voorzien om het installatieprogramma over het netwerk te kunnen opstarten.
6. Het installatiesysteem opstarten.
7. De taal selecteren waarin de installatie uitgevoerd wordt.
8. De ethernet-netwerkverbinding activeren als die beschikbaar is.
10. Toekijken op het automatisch downloaden/installeren/instellen van het basisysteem.
11. Selecteren en installeren van *extra software*.

12. Een *bootloader* (bootloader) installeren die in staat is om Debian GNU/Linux en/of uw bestaande systeem op te starten.

13. Het pas geïnstalleerde systeem voor de eerste maal laden.

Voor 64-bit ARM heeft u de mogelijkheid om een experimentele grafische versie van het installatiesysteem te gebruiken. Raadpleeg Paragraaf 5.1.6 voor bijkomende informatie over dit grafisch installatieprogramma.

Indien u tijdens de installatie moeilijkheden ervaart, kan het nuttig zijn om een beeld te hebben van de pakketten die een rol spelen in de verschillende stappen. Wij stellen de belangrijkste software-acteurs uit dit installatietoneelstuk aan u voor:

De installatiesoftware, *debian-installer*, is het voornaamste onderwerp van deze handleiding. Zij verzorgt de herkenning van hardware en laadt geschikte stuurprogramma’s, gebruikt *dhcp-client* om de netwerkverbinding op te zetten, start *debootstrap* voor de installatie van de pakketten voor het basissysteem en voert *tasksel* uit om u in staat te stellen bepaalde bijkomende software te installeren. Nog veel meer acteurs spelen kleinere rollen in dit proces, maar de taak van *debian-installer* is achter de rug als u het nieuwe systeem voor de eerste maal laadt.

Om het systeem aan uw behoeften aan te passen, biedt *tasksel* u de mogelijkheid om diverse voorgedefinieerde softwarebundels, zoals een webserver of desktopomgeving, te installeren.

Een belangrijk keuzemoment tijdens de installatie is de vraag of er al dan niet een grafische desktopomgeving geïnstalleerd moet worden. Dat bestaat uit het ‘X Window System’ en één van de beschikbare grafische desktopomgevingen. Indien u ervoor kiest om de taak ‘Desktopomgeving’ niet te selecteren, zult u enkel beslissen over een relatief basaal systeem dat via de commandoregel aangestuurd wordt. Het installeren van de taak ‘desktopomgeving’ is optioneel omdat het vergeleken met een systeem dat uitsluitend in tekstmodus werkt, een relatief grote hoeveelheid schijfruimte nodig heeft en omdat veel Debian GNU/Linux-systemen als server dienst doen en die hebben niet echt behoefte aan een grafische gebruikersinterface om hun taak te vervullen.

3.2 Maak een reservekopie van uw bestaande gegevens!

Vooraleer u begint moet u zeker een reservekopie maken van elk bestand dat zich op dit moment op uw systeem bevindt. Als dit de eerste keer is dat op uw computer een niet-oorspronkelijk besturingssysteem geïnstalleerd zal worden, is het erg waarschijnlijk dat u de harde schijf zult moeten herindelen om plaats te maken voor Debian GNU/Linux. Telkens u de schijf indeelt in partities, loopt u het risico dat alles wat op de schijf staat verloren gaat, ongeacht welk programma u hiervoor gebruikt. De programma’s die tijdens de installatie van Debian GNU/Linux gebruikt worden, zijn behoorlijk betrouwbaar en de meeste zijn al jaren in gebruik, maar ze zijn ook erg krachtig en een verkeerde handeling kan u duur te staan komen. Zelfs nadat u een reservekopie gemaakt heeft, moet u voorzichtig te werk gaan en over uw antwoorden en acties nadenken. Twee minuten nadenken kan u uren nutteloos werk besparen.

Indien u een ‘multi-boot’ systeem wilt maken, een systeem waarop meerdere besturingssystemen staan, moet u ervoor zorgen dat u de distributiemedia van de andere aanwezige besturingssystemen bij de hand heeft. Hoewel dit in normale omstandigheden niet nodig is, kunnen er zich situaties voordoen waarin u de bootloader van uw besturingssysteem opnieuw moet installeren om het systeem te laten opstarten, of in het slechtste geval zelfs het volledige besturingssysteem opnieuw moet installeren en de vooraf gemaakte reservekopie moet terugplaatsen.

3.3 Benodigde informatie

3.3.1 Documentatie

3.3.1.1 Installatiehandleiding

Het document dat u nu aan het lezen bent. Dit is de officiële versie van de Installatiehandleiding voor de release bullseye van Debian en is beschikbaar in diverse bestandsformaten en vertalingen.

3.3.1.2 Documentatie over de hardware

Die bevat vaak nuttige informatie over het instellen en gebruiken van die hardware.
3.3.2 Informatiebronnen over hardware vinden

In veel gevallen zal het installatieprogramma in staat zijn automatisch uw hardware te herkennen. Maar om op alles voorbereid te zijn, raden we u aan om uzelf vertrouwd te maken met uw hardware voor u met de installatie begint.

Informatie over hardware kan gevonden worden via:

- De handleidingen die meegeleverd worden met elk hardware-onderdeel.
- De configuratieschermen van het BIOS/UEFI op uw computer. U krijgt deze schermen te zien als u bij het opstarten van de computer een toetsencombinatie indrukt. Kijk in uw handleiding welke combinatie u moet gebruiken. Vaak is het de Delete-toets of de F2-toets, maar sommige fabrikanten gebruiken een andere toets of toetsencombinatie. Gewoonlijk krijgt u bij het opstarten van de computer een mededeling die zegt welke toets u moet indrukken om het instellingenscherm te openen.
- De verpakkingssystemen van de verschillende hardware-onderdelen.
- Systeemcommando's en -gereedschappen van andere besturingssystemen, waaronder programma's voor beheerschermen. Deze informatiebron is vooral handig om informatie te verkrijgen over RAM-geheugen en opslaggeheugen van de harde schijf.
- Uw systeembeheerder of Internetprovider (ISP). Bij deze informatiebronnen kunt u de instellingen opvragen die u voor uw netwerkverbinding en uw e-mail moet gebruiken.

Tabel 3.1 Voor een installatie nuttige informatie over hardware

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Informatie die u nodig kunt hebben</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harde schijven</td>
<td>Hoeveel u er heeft.</td>
</tr>
<tr>
<td></td>
<td>Hun volgorde op het systeem.</td>
</tr>
<tr>
<td></td>
<td>Of ze van het type IDE (ook wel aangeduid met PATA), SATA of SCSI zijn.</td>
</tr>
<tr>
<td></td>
<td>Beschikbare vrije ruimte.</td>
</tr>
<tr>
<td></td>
<td>Partities.</td>
</tr>
<tr>
<td></td>
<td>Partities waarop andere besturingssystemen geïnstalleerd zijn.</td>
</tr>
<tr>
<td>Netwerk-interfaces</td>
<td>Type/model van de beschikbare netwerk-interfaces.</td>
</tr>
<tr>
<td>Printer</td>
<td>Model en fabrikant.</td>
</tr>
<tr>
<td>Grafische kaart</td>
<td>Type/model en fabrikant.</td>
</tr>
</tbody>
</table>

3.3.3 Compatibiliteit van de hardware

Veel producten werken probleemloos onder Linux. Daarenboven verbetert de ondersteuning van hardware in Linux nog dagelijks. Toch werkt Linux nog niet met evenveel verschillende types hardware als sommige andere besturingssystemen.

Stuurprogramma's in Linux zijn in de meeste gevallen niet geschreven voor een bepaald "product" of "merk" van een specifieke fabrikant, maar voor een bepaalde hardware/chipset. Veel ogenschijnlijk verschillende producten/-merken zijn op hetzelfde hardwarescherm gebaseerd. Het is niet ongewoon dat fabrikanten van chips zogenaamde "referentieschermen" ter beschikking stellen voor producten die op hun chips gebaseerd zijn. Die worden dan gebruikt door verschillende fabrikanten van apparatuur die ze onder veel verschillende product- en merknamen verkopen.

Dit heeft voor- en nadelen. Een voordeel is dat een stuurprogramma voor een chipset werkt voor veel verschillende producten van diverse fabrikanten zolang die producten op dezelfde chipset gebaseerd zijn. Het nadeel is dat het niet altijd gemakkelijk is om precies vast te stellen welke chipset gebruikt werd in een bepaald product/merk. Fabrikanten van apparatuur wijzigen jammer genoeg soms de hardwarebasis van hun product zonder dat ze de productnaam of minstens het versienummer aanpassen. Wanneer men twee exemplaren heeft met dezelfde product/merk-naam die op een verschillend moment aangekocht heeft, is het daardoor soms mogelijk dat ze blijven op verschillende chipsets gebaseerd te zijn en om die reden twee verschillende stuurprogramma's nodig hebben of dat voor een van hen zelfs helemaal geen stuurprogramma voorhanden is.

Een goede manier om uit te zoeken op welke chipset USB- en PCI/PCI-Express/ExpressCard-apparaten gebaseerd zijn, is te gaan kijken naar hun apparaat-ID. Alle USB/PCI/PCI-Express/ExpressCard-apparaten hebben een zogenaamde "leveranciers"-ID en "product"-ID en de combinatie van beide is meestal identiek voor alle producten die op dezelfde chipset gebaseerd zijn.

Een voorbeeld van uitvoer van het commando `lsusb` is: “Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub”, waarbij 1d6b het leveranciers-ID is en 0002 het product-ID.

Een voorbeeld van uitvoer van het commando `lspci -nn` voor een eternetkaart is: “03:00.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller [10ec:8168] (rev 06)”. De ID's worden vermeld binnen de meest rechtere rechte haakjes. In dit voorbeeld is 10ec het leveranciers-ID en 8168 het product-ID.

Nog een ander voorbeeld van de volgende mogelijke uitvoer is voor een grafische kaart: “04:00.0 VGA compatible controller [0300]: Advanced Micro Devices [AMD] radeon HD 4350 [1002:954f]”.

Als u op het internet zoekt met het leveranciers/product-ID samen met de zoektermen “Linux” en “driver” (stuur programma), kunt u vaak informatie vinden over hoe het gesteld is met de eventuele ondersteuning door een stuur programma van een bepaalde chipset. Indien een zoekopdracht met het leveranciers/product-ID geen bruikbare resultaten oplevert, kan een zoekopdracht met de codenaam van de chip, die ook vaak weergegeven wordt door de commando's `lsusb` en `lspci` (“RTL8111”/“RTL8168B” in het voorbeeld van de netwerkkaarten “RV710” in het voorbeeld van de grafische kaart), soms helpen.

3.3.3.1 De compatibiliteit van hardware testen met een live-systeem

Debian GNU/Linux bestaat voor bepaalde architecturen ook onder de vorm van een zogenaamd “live-systeem”. Een live-systeem is een voorgeconfigureerd en gecomprimeerd systeem dat klaar voor gebruik is en opgestart en gebruikt kan worden vanaf een alleen-lezen medium, zoals een CD of een DVD. Een standaardgebruik ervan brengt geen enkele permanente wijziging aan op uw computer. U kunt in het live-systeem gebruikersinstellingen wijzigen en bijkomende programma's installeren, maar dit alles speelt zich alleen maar af in het RAM-geheugen van de computer. Dit houdt in dat als u de computer afzet en het live-systeem opnieuw opstart, alles teruggeplaatst is op zijn standaardinstellingen. Indien u wilt nagaan of uw hardware ondersteund wordt door Debian GNU/Linux, is de eenvoudigste manier om dit te doen er een Debian live-systeem op uitproberen.

Aan het gebruik van een live-systeem zijn ook enkele beperkingen verbonden. De eerste heeft te maken met het feit dat alle wijzigingen die u in het live-systeem aanbrengt, bewaard moeten worden in het RAM-geheugen van uw computer. Daardoor kan het installeren van bijkomende grote softwarepakketten mislukken ten gevolge van een gebrek aan geheugen. Een andere beperking in verband met het testen van de compatibiliteit van hardware is dat het officiële live-systeem van Debian GNU/Linux enkel vrije componenten bevat, wat inhoudt dat het geen niet-vrije firmwarebestanden bevat. Dergelijke niet-vrije pakketten kunnen binnen het systeem uiteraard handmatig geïnstalleerd worden, maar er is geen automatische detectie aanwezig van de vereiste firmwarebestanden zoals dat in debian-installer wel het geval is. De installatie van niet-vrije componenten moet dus handmatig gebeuren als ze nodig zijn.

Informatie over de beschikbare varianten van Debian live-images is te vinden op de webpagina over Debian Live Images.

3.3.4 Netwerkinstellingen

Indien uw computer verbonden is met een vast netwerk (dus een ethernet- of gelijkaardige verbinding — geen inbel/PPP-verbinding) dat beheerd wordt door iemand anders, moet u bij uw netwerkbeheerder naar de volgende informatie vragen:

- Uw computernaam (host name - mogelijk mag u die zelf bepalen).
- De domeinnaam van uw netwerk.
- Het IP-adres van uw computer.
- Het voor uw netwerk te gebruiken netwerkmasker.
- Het IP-adres van het standaard gateway-systeem waarnaartoe u moet routeren (d.w.z. waarlangs u toegang kunt krijgen tot andere netwerken, waaronder het Internet) indien uw netwerk een gateway heeft.
• Het systeem op uw netwerk dat u moet gebruiken als DNS-server (Domain Name Service - dienst voor do-
meinnamen).

Indien het netwerk waarmee u verbonden bent, DHCP (Dynamic Host Configuration Protocol - protocol voor
dynamische hostconfiguratie) gebruikt om uw netwerkinstellingen te configureren, heeft u deze informatie niet nodig,
aangezien de DHCP-server deze rechtstreeks aan uw computer zal overmaken tijdens het installatieproces.

Indien u toegang heeft tot het internet via DSL of via een kabelmodem (d.w.z. via het kabelnetwerk van de TV)
een een router heeft (vaak voorzien van cementeerd geleverd door uw telefoon- of kabelmaatschappij) die instaat voor de
verbinding met het netwerk, is DHCP gewoonlijk standaard aanwezig.

Indien een WLAN/WiFi-netwerk (draadloos netwerk) gebruikt, moet u het volgende te weten komen:

• Het ESSID (“netwerknaam”) van uw draadloos netwerk.

3.4 Voldoen aan de minimale vereisten op het gebied van hardware

Eens u klaar bent met het verzamelen van informatie over de hardware van uw computer, moet u nagaan of uw
hardware geschikt is voor het soort installatie dat u wenst uit te voeren.

Afhankelijk van uw noden is het mogelijk dat u het kunt stellen met minder dan sommige van de in onderstaande
tabel vermelde minima. Toch lopen de meeste gebruikers het risico gefrustreerd te geraken als ze deze suggesties
negeren.

<table>
<thead>
<tr>
<th>Type installatie</th>
<th>RAM (minimum)</th>
<th>RAM (aanbevolen)</th>
<th>Harde schijf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zonder desktop</td>
<td>256 megabytes</td>
<td>512 megabytes</td>
<td>2 gigabytes</td>
</tr>
<tr>
<td>Met desktop</td>
<td>1 gigabyte</td>
<td>2 gigabytes</td>
<td>10 gigabytes</td>
</tr>
</tbody>
</table>

De feitelijke minimale geheugenvereisten liggen een stuk lager dan de in deze tabel opgegeven getallen. Met
gelijkvloerig wisselgeheugen is het mogelijk om Debian te installeren met slechts 245MB. Hetzelfde geldt voor
de vereisten inzake schijfgeheugen, vooral als u selectief bent wat de te installeren toepassingen betreft. Zie Paragraaf D.2
voor bijkomende informatie over de vereiste schijfgeheugen.

Het is mogelijk om een grafische desktopomgeving te gebruikten op oudere of eenvoudige systemen, maar dan
wordt aanbevolen om een fensterbeheerder te installeren die minder gulzig is naar systeembronnen dan die van de
desktopomgevingen GNOME of KDE Plasma. Mogelijke alternatieven zijn xfce4, icewm en wmaker, maar er
zijn er nog andere waaruit u kunt kiezen.

Voor serverinstallaties is het praktisch onmogelijk om algemene vereisten op te geven inzake geheugen en schijf-
ruimte, aangezien deze sterk afhankelijk zijn van het beoogde gebruik van de server.

Onthoud dat deze groottes geen rekening houden met al de overige zaken die men meestal ook aantreft, zoals
gebruikersbestanden, e-mail en gegevens. Het is altijd het beste om de benodigde ruimte voor uw eigen bestanden en
gegevens royaal in te schatten.

De vereiste schijfgeheugen voor een vlotte werking van het Debian GNU/Linux-systeem zelf is wel inbegrepen in
de opgegeven aanbevolen systeemvereisten. In het bijzonder de partitie /var bevat naast zijn gewone inhoud zoals logbestanden, een heleboel statusinformatie die specifiek is voor Debian. De bestanden van dpkg (met informatie
over al de geïnstalleerde pakketten) kunnen makkelijk 40MB in beslag nemen. Ook slaat apt gedownloade pakketten
hier op voor ze geïnstalleerd worden. U moet gewoonlijk minstens 200MB voorbehouden voor /var en nog veel
meer als u een grafische desktopomgeving installeert.

3.5 Uw harde schijf vooraf indelen voor een multi-boot systeem

Met het partitioneren of indelen van een schijf bedoelt men gewoon de activiteit van het opdelen van een schijf in
afdelingen. Elke afdeling is dan onafhankelijk van de andere. Het komt ruwweg overeen met muren optrekken
binnenin een huis. Indien u een bepaalde kamer inricht, heeft dit geen invloed op de andere plaatsen.

Indien u op uw systeem reeds een besturingssysteem heeft staan dat de volledige schijf gebruikt en u Debian op
dezelfde schijf wenst te plaatsen, moet u ze herindelen. Debian vereist eigen partities op de harde schijf. Het kan
niet geïnstalleerd worden op partities van Windows of Mac OS X. Het kan wel met andere Unix-systemen sommige
partities delen, maar dat wordt hier niet behandeld. In elk geval zult u een partitie moeten hebben die voorbehouden is voor het basisbestandssysteem van Debian.

U kunt informatie bekomen over de huidige partitie-indeling door gebruik te maken van een schijfindelingsprogramma voor uw huidige besturingssysteem. Schijfindelingsprogramma’s beschikken altijd over een functie om bestaande partities te tonen zonder wijzigingen aan te brengen.

Algemeen geldt dat men alle informatie vernietigt als men een partitie wijzigt waar reeds een bestandssysteem op staat. U moet dus altijd een reservekopie maken vooraleer u een schijf herindeelt. Om nog eens de analogie met een huis te gebruiken: vooraleer u een binnenmuur verplaatst, zult u wellicht alle meubilair weghalen, anders riskeert u het te vernielen.

Verschillende moderne besturingssystemen bieden de mogelijkheid om bepaalde bestaande partities te verplaatsen en hun grootte te veranderen zonder dat de inhoud ervan verloren gaat. Daardoor is het mogelijk om ruimte te maken voor bijkomende partities zonder de bestaande gegevens te verliezen. Hoewel dit in de meeste gevallen heel goed gaat, is het aanbrengen van veranderingen aan de wijze waarop een schijf ingedeeld is, een inherent gevaarlijke activiteit die enkel zou mogen gebeuren nadat u een volledige reservekopie gemaakt heeft van al uw gegevens.

Partities aanmaken en verwijderen kan gedaan worden vanuit debian-installer en ook vanuit een bestaand besturingssysteem. Als vuistregel kunt u gebruiken dat partities best gemaakt worden door het systeem dat ze zal gebruiken, d.w.z. dat partities die door Debian GNU/Linux gebruikt zullen worden, moeten gemaakt worden vanuit debian-installer en dat partities die vanuit een ander besturingssysteem gebruikt zullen worden, van daaruit moeten gemaakt worden. debian-installer is in staat om niet-Linux partities te maken en op die manier gemaakte partities werken meestal probleemloos als ze in een ander besturingssysteem gebruikt worden, maar er bestaan enkele uitzonderlijke randgevallen waarbij dit problemen zou kunnen geven. Als u dus zeker wilt zijn, gebruik dan het systeemeigen schijfindelingsgereedschap om partities te maken die door andere besturingssystemen gebruikt zullen worden.

Indien u meer dan één besturingssysteem gaat installeren op dezelfde machine, moet u alle andere systemen installeren vooraleer met de installatie van Debian te beginnen. De installatie van Windows en van andere besturingssystemen zou de mogelijkheid om Debian op te starten kunnen tenietdoen of u ertoe kan aanzetten de voor het systeem vreemde partities opnieuw te formatteren.

Het is mogelijk om dergelijke problemen te herstellen of te voorkomen, maar u bespaart uzelf moeite door het oorspronkelijke besturingssysteem eerst te installeren.

3.6 Configuratie van hardware en besturingssysteem voor de installatie

Dit deel behandelt eventuele hardware-instellingen die u moet uitvoeren voordat u Debian installeert. In het algemeen gaat het dan over het controleren en eventueel wijzigen van instellingen in de BIOS/UEFI/systeemfirmware op uw systeem. Het “BIOS/UEFI” of de “systeemfirmware” is de kernsoftware die door de hardware wordt gebruikt. Deze speelt een cruciale rol bij het begin van het opstarten (na het aanzetten van de computer).

3.6.1 Het opstartapparaat kiezen

3.6.2 ARM firmware

Zoals reeds eerder aangegeven, bestaat er jammer genoeg geen standaard voor systeemfirmware op ARM-systemen. Zelfs verschillende systemen die nominaal dezelfde firmware gebruiken, kunnen zich heel verschillend gedragen. Dit komt door het feit dat een groot deel van de apparaten die van de ARM-architectuur gebruik maken, ingebouwde systemen zijn waarvoor de fabrikanten sterk aangepaste firmwareversies maken met toevoeging van apparaatspecifieke aanpassingen. Jammer genoeg koppelen de fabrikanten deze aanpassingen en uitbreidingen niet terug naar de ontwikkelaars van de standaardfirmware, waardoor hun wijzighingen niet opgenomen geraken in de recentere versies van de originele firmware.

Het gevolg daarvan is dat zelfs nieuw verkochte systemen vaak gebruik maken van firmware die gebaseerd is op een jaren oude door de fabrikant gewijzigde versie van firmware waarvan de standaardcode intussen erg geëvolueerd is en bijkomende functionaliteit biedt en voor bepaalde aspecten een ander gedrag vertoont. Daarbij komt nog dat er verschillende partities door de fabrikant gewijzigde versies van dezelfde firmware geen consistentie is in de naamgeving van boordapparatuur en daarom is het schier onmogelijk om bruikbare product-onafhankelijke instructies te geven voor op ARM gebaseerde systemen.

3.6.3 Het ethernet MAC-adres instellen in U-Boot

Normaal zou het MAC-adres van elke ethernet-interface wereldwijd uniek moeten zijn en het moet vanuit technisch oogpunt uniek zijn binnen zijn ethernet broadcast-domein. Om dit te bereiken reserveert de fabrikant gewoonlijk een
bloc MAC-adressen uit een centraal beheerde pool (waarvoor een prijs betaald moet worden) en stelt een van deze adressen vooraf in op elk verkocht exemplaar.

In het geval van ontwikkelingsborden wil de fabrikant deze kosten soms vermijden en geeft hij geen globaal uniek adres. In deze gevallen moet de gebruiker zelf een uniek MAC-adres definiëren voor zijn systeem. Als geen MAC-adres gedefinieerd werd voor een ethernet-interface, genereren sommige netwerkstuurprogramma’s een willekeurig MAC-adres dat bij elke herstart anders kan zijn. In een dergelijk scenario is toegang tot het netwerk mogelijk, zelfs als de gebruiker niet handmatig een adres ingesteld heeft, maar bijvoorbeeld het toekennen van een semi-statistisch IP-adres door DHCP op basis van het MAC-adres van de cliënt die daarom vraagt, zal om evidente redenen niet betrouwbaar kunnen gebeuren.

Om conflicten met officieel toegewezen MACadressen te vermijden, bestaat er een pool met adressen die voorbehouden is voor zogenaamde “lokaal beheerde” adressen. Die pool wordt gedefinieerd door de waarde van twee specifieke bits in de eerste byte van het adres (het artikel “MAC address” in de Engelstalige Wikipedia geeft een goede uitleg). In de praktijk betekent dit dat bijvoorbeeld elk adres dat met het hexadecimaal getal ca begint (zoals ca:ff:ee:12:34:56) gebruikt kan worden voor een lokaal beheerd adres.

3.6.4 Problemen in U-Boot met relocatie van kernel/initrd/apparatenboom

Op sommige systemen met een oudere U-Boot-versie kunnen er zich tijdens het opstartproces problemen stellen met een juiste relocatie in het geheugen van de Linuxkernel, de initiële ramdisk en de blob met de apparatenboom. In een dergelijk geval toont U-Boot de melding “Starting kernel ...”, maar loopt het systeem nadien vast zonder verdere uitvoer te genereren. In recentere versies van U-Boot, te beginnen met v2014.07, zijn deze problemen opgelost.

Indien het systeem oorspronkelijk een versie van U-Boot gebruikte die ouder was dan v2014.07 en nadien opgewaardeerd werd naar een recentere versie, kan het probleem zich na de opwaardering van U-Boot nog steeds manifesteren. Het opwaarderen van U-Boot wijzigt over het algemeen niet de bestaande omgevingsvariabelen van U-boot en de reparatie vereist dat een bijkomende omgevingsvariabele (boottm_size) ingesteld wordt, hetgeen U-Boot enkel automatisch doet bij nieuwe installaties waar nog geen omgevingsdata bestaan. Men kan de variabele boottm_size handmatig instellen op de nieuwe standaard van U-Boot door het commando “env default boottm_size; saveenv” uit te voeren aan de prompt van U-Boot.

Een andere mogelijkheid om de relocatiegerelateerde problemen te omzeilen is om de relocatie van de initiële ramdisk en de blob met de apparatenboom volledig uit te schakelen door aan de prompt van U-Boot het commando “setenv fdt_high ffffffff; setenv initrd_high 0xffffffff; saveenv” in te geven.
Hoofdstuk 4

Media met het installatiesysteem verkrijgen

4.1 Officiële Debian GNU/Linux installatie-images

Veruit de gemakkelijkste manier om Debian GNU/Linux te installeren is vanaf een set officiële Debian installatie-images. U kunt een set CD's/DVD's kopen bij een leverancier (zie de pagina Leveranciers van Debian installatiedia). Als u over een snelle netwerkverbinding en een CD/DVD-brander beschikt, kunt u ook de installatie-images downloaden van een Debian spiegelserver en uw eigen set aanmaken (zie de pagina Debian op CD's/DVD's en de Debian CD FAQ voor gedetailleerde instructies). Indien u dergelijke optische installatiemedia bezit en uw computer ermee kan opstarten, dan kunt u meteen doorgaan naar Hoofdstuk 5. Indien u een andere werkwijze gebruikt, kunt u gebruik maken van een spiegelserver en de installatie-images downloaden van een Debian spiegelserver of een andere server in het netwerk en de installatie-images op een USB-stick plaatsen. Indien u geen set installatiemedia heeft, zult u de installatie-images op een USB-stick of een verbonden computer moeten downloaden en ze moeten plaatsen op een USB-stick of een verbonden computer, zodat de computer deze kan gebruiken om het installatiesysteem op te starten.

4.2 Bestanden downloaden van Debian spiegelservers

Om de dichtstbijzijnde (en dus wellicht snelste) spiegelserver te vinden, kunt u de lijst met Debian spiegelservers raadplegen.
4.2.1 Waar u installatiebestanden kunt vinden

Op elke Debian spiegelserver zijn verschillende installatiebestanden te vinden in de map `debian/dists/bullseye/main/-installer-arm64/current/images/` — het bestand `MANIFEST` vermeldt elk imagebestand en waarvoor het bedoeld is.

4.3 Bestanden klaar maken om van een USB-geheugenstick op te starten

To prepare the USB stick, we recommend to use a system where GNU/Linux is already running and where USB is supported. With current GNU/Linux systems the USB stick should be automatically recognized when you insert it. If it is not you should check that the usb-storage kernel module is loaded. When the USB stick is inserted, it will be mapped to a device named `/dev/sdX`, where the “X” is a letter in the range a-z. You should be able to see to which device the USB stick was mapped by running the command `lsblk` before and after inserting it. (The output of `dmesg` (as root) is another possible method for that.) To write to your stick, you may have to turn off its write protection switch.

WAARSCHUWING

The procedures described in this section will destroy anything already on the device! Make very sure that you use the correct device name for your USB stick. If you use the wrong device the result could be that all information on, for example, a hard disk is lost.

4.3.1 Een USB-stick klaar maken met een hybride CD/DVD-image

Debian installation images for this architecture are created using the `isohybrid` technology; that means they can be written directly to a USB stick, which is a very easy way to make an installation media. Simply choose an image (such as the netinst, CD or DVD-1) that will fit on your USB stick. See Paragraaf 4.1 to get an installation image.

Als een alternatieve mogelijkheid voor zeer kleine USB-sticks van slechts enkele megabytes groot, kunt u het mini.iso-image uit de netboot-map downloaden (op de in Paragraaf 4.2.1 vermelde plaats).

Het installatie-image dat u kiest, moet rechtstreeks naar de USB-stick geschreven worden. Daarbij wordt de huidige inhoud ervan overschreven. Bijvoorbeeld, als u een bestaand GNU/Linux-systeem gebruikt, kan het imagebestand op de volgende manier naar een USB-stick geschreven worden, nadat u er zich eerst van vergewist heeft dat de stick niet aangekoppeld is:

```
# cp debian.iso /dev/sdX
# sync
```

Informatie over hoe dit op andere besturingssystemen moet gebeuren, is te vinden in de Debian CD FAQ.

BELANGRIJK

Het image moet geschreven worden op het volledige schijffapparaat en niet op een partitie, bijvoorbeeld `/dev/sdb` en niet `/dev/sdb1`. Gebruik geen gereedschap zoals `unetbootin` dat aan het image veranderingen aanbrengt.

BELANGRIJK

Voor de meeste gebruikers zou het op deze manier eenvoudig wegschrijven van een installatie-image naar USB goed moeten werken. De hierna volgende andere mogelijkheden zijn complexer en hoofdzakelijk bedoeld voor mensen met specifieke behoeften.

Het hybride image op de stick neemt niet alle opslagruimte in beslag. Het kan dus de moeite waard zijn om in overweging te nemen om de vrije ruimte te gebruiken om er firmwarebestanden of -pakketten op te plaatsen of
desgewenst andere bestanden. Dit kan nuttig zijn indien u slechts één stick heeft of alles wat u nodig heeft op één apparaat wilt houden.

To do so, use cfdisk or any other partitioning tool to create an additional partition on the stick. Then create a (FAT) filesystem on the partition, mount it and copy or unpack the firmware onto it, for example with:

```bash
# mkdosfs -n FIRMWARE /dev/sdX3
# mount /dev/sdX3 /mnt
# cd /mnt
# tar zxvf /path/to/firmware.tar.gz
# cd /
# umount /mnt
```

Take care that you use the correct device name for your USB stick. The `mkdosfs` command is contained in the `dosfstools` Debian package.

4.4 Bestanden klaarmaken om over het netwerk op te starten met TFTP

Indien uw machine verbonden is met een lokaal netwerk, kunt u ze misschien over het netwerk vanaf een andere machine laten opstarten met TFTP. Indien u van plan bent het installatiesysteem op te starten vanaf een andere machine, moeten de opstartbestanden op een specifieke plaats op die machine geplaatst worden en moet die machine geconfigureerd worden om het opstarten van specifiek uw machine te ondersteunen.

U moet een TFTP-server opzetten en voor veel machines een DHCP-server, of een RARP-server of een BOOTP-server.

Het Reverse Address Resolution Protocol (RARP) is een manier om uw cliënt te laten weten welk IP-adres hij voor zichzelf moet gebruiken. Een andere manier is om het BOOTP-protocol te gebruiken. BOOTP is een IP-protocol dat een computer zijn IP-adres geeft en hem zegt waar op het netwerk hij een opstart-image kan krijgen. Het DHCP (Dynamic Host Configuration Protocol) is een meer flexibele en neerwaarts compatibele uitbreiding van BOOTP. Sommige systemen kunnen enkel via DHCP geconfigureerd worden.

Het Trivial File Transfer Protocol (TFTP) wordt gebruikt om het opstart-image aan te leveren aan de cliënt. In theorie kan elke server op gelijk welk platform die in staat is om deze protocollen te gebruiken, gebruikt worden. In de voorbeelden in dit gedeelte zullen we de commando’s demonstreren voor SunOS 4.x, SunOS 5.x (ook Solaris genoemd) en GNU/Linux.

4.4.1 Een RARP-server opzetten

Om RARP op te zetten, moet u het Ethernet-adres (ook MAC-adres genoemd) kennen van de cliëntcomputers die geïnstalleerd moeten worden. Indien u niet over deze informatie beschikt, kunt u ze opstarten in “Rescue”-modus (reparatietmmodus) en het commando `ip addr show dev eth0` gebruiken.

4.4.2 Een DHCP-server opzetten

Een DHCP-server uit vrije software is ISC `dhcpd`. Voor Debian GNU/Linux wordt het pakket `isc-dhcp-server` aanbevolen. Hierna volgt een voorbeeld van een configuratiebestand ervoor (zie `/etc/dhcp/dhcpd.conf`):

```plaintext
option domain-name "example.com";
option domain-name-servers ns1.example.com;
```
4.4. BESTANDEN KLAARMAKEN OM OVER HET...

```bash
option subnet-mask 255.255.255.0;
default-lease-time 600;
max-lease-time 7200;
server-name "servernaam";

subnet 192.168.1.0 netmask 255.255.255.0 {
    range 192.168.1.200 192.168.1.253;
    option routers 192.168.1.1;
}

host cliëntnaam {
    filename "/tftpboot.img";
    server-name "servernaam";
    next-server servernaam;
    hardware ethernet 01:23:45:67:89:AB;
    fixed-address 192.168.1.90;
}
```

In dit voorbeeld is er één server servernaam die als DHCP-server, TFTP-server en netwerk-gateway fungeert. U zult bijna zeker de ‘domain-name’ opties moeten aanpassen, evenals de servernaam en het hardware-adres van de cliënt. De optie `filename` moet de naam vermelden van het bestand dat via TFTP opgehaald zal worden.

Nadat u het configuratiebestand voor `dhcpd` aangepast heeft, moet u de achtergronddienst herstarten met `/etc/init.d/isc-dhcp-server restart`.

4.4.3 Een BOOTP-server opzetten

Voor GNU/Linux zijn twee BOOTP-servers beschikbaar. De eerste is CMU `bootpd`. De andere is in feite een DHCP-server: ISC `dhcpd`. In Debian GNU/Linux zijn ze respectievelijk te vinden in het pakket `bootp` en het pakket `isc-dhcp-server`.

Om de CMU `bootpd` te gebruiken, moet u eerst in het bestand `/etc/inetd.conf` de juiste regel toevoegen of het commentaarteken dat aan het begin ervan staat, wegnemen. Op Debian GNU/Linux kunt u daarvoor het commando `update-inetd --enable bootps` geven en dan het commando `/etc/init.d/inetd reload`.

In het geval uw BOOTP-server niet op een Debian-systeem staat, moet de regel in kwestie er zo uitzien:

```
bootps dgram udp wait root /usr/sbin/bootpd bootpd -i -t 120
```

Nu moet u een bestand `/etc/bootptab` aanmaken. Dit heeft hetzelfde soort bekende en cryptische indeling als de goede oude BSD-bestanden `printcap`, `termcap` en `disktab`. Raadpleeg de man-pagina van `bootptab` voor meer informatie. Voor CMU `bootpd` moet u het hardware-adres (MAC) van de cliënt kennen. Hierina is een voorbeeld van een `/etc/bootptab`-bestand:

```
client:\
    hd=/tftpboot:\
    bf=tftpboot.img:\
    ip=192.168.1.90:\
    sm=255.255.255.0:\
    sa=192.168.1.1:\
    ha=0123456789AB:
```

U zult minstens de optie “ha” moeten aanpassen. Die preciseert het hardware-adres van de cliënt. De optie “bf” preciseert het bestand dat de cliënt moet ophalen via TFTP. Zie Paragraaf 4.4.5 voor verdere details.

Daartegenover is het instellen van BOOTP met ISC `dhcpd` echt gemakkelijk, omdat het BOOTP-cliënten behandelt als een enigszins bijzondere soort van DHCP-cliënten. Voor sommige architecturen is een complexe configuratie nodig om cliënten via BOOTP op te starten. Indien uw architectuur daar één van is, moet u het onderdeel Paragraaf 4.4.2 lezen. Anders zal het wellicht volstaan om in het bestand `/etc/dhcp/dhcpd.conf` gewoon de opdracht `allow bootp` toe te voegen aan het configuratieblok dat betrekking heeft op het subnet waartoe uw cliënt behoort, en `dhcpd` opnieuw te starten met het commando `/etc/init.d/isc-dhcp-server restart`.

4.4.4 De TFTP-server werkzaam maken

Opdat de TFTP-server klaar voor de dienst zou zijn, moet u eerst controleren of `tftpd` geactiveerd is.

In het geval van `tftpd-hpa` kan de dienst op twee manieren functioneren. Hij kan op vraag van de achtergronddienst `inetd` van het systeem geactiveerd worden, of hij kan ingesteld worden om als een onafhankelijke
achtergronddienst te werken. Welke van beide methodes gebruikt wordt, wordt ingesteld bij het installeren van het pakket en kan gewijzigd worden door het pakket opnieuw te configureren.

Opmerking

Lange tijd gebruikten TFTP-servers /tftpboot als map van waaruit images aangeboden werden. Nochtans kunnen pakketten van Debian GNU/Linux andere mappen gebruiken om te beantwoorden aan de standaard van de Filesystem Hierarchy Standard. tftpd-hpc bijvoorbeeld gebruikt standaard /srv/tftp. Misschien zult u de configuratievoorbeelden uit dit onderdeel dienovereenkomstig moeten aanpassen.

Alle in Debian aanwezige in.tftpd alternatieven zouden TFTP-verzoeken standaard moeten registreren in de systeemlogbestanden. Sommige onder hen hebben een argument -v waarmee de hoeveelheid gegeven informatie kan verhoogd worden. Het wordt aangeraden om deze logberichten na te kijken in geval van opstartproblemen omdat ze een goed beginpunt zijn voor het diagnosticeren van de oorzaak van problemen.

4.4.5 De TFTP-images op hun plaats zetten
Plaats vervolgens het TFTP boot-image dat u nodig heeft en dat te vinden is in Paragraaf 4.2.1, in de map van tftpd voor opstart-images. Eventueel moet u een koppeling maken van dat bestand naar het bestand dat tftpd zal gebruiken om een specifieke cliënt op te starten. Spijtig genoeg wordt de bestandsnaam bepaald door de TFTP-cliënt en zijn er geen duidelijke standaarden.

4.5 Automatische installatie
Om op verschillende computers een installatie uit te voeren is het mogelijk om de installatie volledig automatisch te laten verlopen. Debian pakketten die hiervoor bedoeld zijn, zijn onder meer fai-quickstart (dat gebruik kan maken van een installatieserver) en het installatiesysteem zelf van Debian. Kijk op de FAI-website voor gedetailleerde informatie.

4.5.1 Automatisch installeren met het installatiesysteem van Debian
Het installatiesysteem van Debian ondersteunt het automatiseren van installaties via preconfiguratiebestanden. Een preconfiguratiebestand kan ingeladen worden over het netwerk of uit verwijderbare media en kan gebruikt worden om antwoorden te geven op de vragen die tijdens het installatieproces gesteld worden.
Volledige documentatie over vooraf ingestelde antwoorden (preseeding genoemd) met inbegrip van een werkzaam voorbeeld dat u kunt bewerken, is te vinden in Bijlage B.

4.6 De integriteit van installatiebestanden verifiëren
U kunt de integriteit van de gedownload bestanden verifiëren aan de hand van de controlegetallen in de bestanden SHA256SUMS en SHA512SUMS op de Debian-spiegelservers. U kunt ze op dezelfde plaatsen vinden als de installatie-images zelf. Bezoek de volgende locaties:

- controlegetalbestanden voor cd-images,
- controlegetalbestanden voor dvd-images,
- controlegetalbestanden voor andere installatiebestanden.

Om het controlegetal van een gedownload installatiebestand te controleren, gebruikt u het commando

```bash
sha256sum bestandsnaam.iso
```

respectievelijk

```bash
sha512sum bestandsnaam.iso
```

23
4.6. De integriteit van...

, waarna u het weergegeven controlegetal vergelijkt met het getal dat u terugvindt in het bestand SHA256SUMS, respectievelijk SHA512SUMS.

De Debian CD FAQ bevat meer uitgebreide nuttige informatie over dit onderwerp (zoals het script check_debian_iso om bovenstaande procedure halfautomatisch uit te voeren), alsook instructies voor het verifiëren van de integriteit van de hierboven vermelde controlegetalbestanden zelf.
Hoofdstuk 5

Het installatiesysteem starten

5.1 Het installatiesysteem starten op 64-bit ARM

OPMERKING

Voor informatie over hoe u het grafische installatiesysteem moet starten, raadpleegt u Paragraaf 5.1.6.

5.1.1 De configuratie van de console

The graphical installer is (experimentally) enabled on the arm64 debian-installer images, but on some devices you may still have to use the serial console. The console device should be detected automatically from the firmware, but if it is not then after you boot linux from the GRUB menu you will see a “Booting Linux” message, then nothing more.

Indien u te maken krijgt met dit probleem, moet u een specifieke consoleconfiguratie instellen aan de commandoregel van de kernel. Druk in het GRUB-menu op de toets e voor “Edit Kernel command-line” (de commandoregel van de kernel bewerken) en verander

```--- quiet

in

console=<device>,<speed>

bijv.

console=ttyAMA0,115200n8
```

Als u klaar bent, drukt u op de toetsencombinatie Control-x om het opstarten voort te zetten met de nieuwe instelling.

5.1.2 De installatie op Juno

Juno beschikt over UEFI en dus verloopt de installatie eenvoudig. De meest praktische methode is installeren vanaf een USB-stick. Opdat opstarten vanaf USB zou werken, moet de firmware up-to-date zijn. Compilaties van http://releases.linaro.org/members/arm/platforms/latest/ die dateren van na maart 2015 blijken oké te zijn. Raadpleeg de documentatie van Juno in verband met het opwaarderen van firmware.

Plaats een standaard arm64 CD/DVD-image op een USB-stick. Plaats die in een van de USB-poorten achteraan. Sluit een seriële kabel aan op de bovenste 9-pins seriële poort achteraan. Indien u een netwerkverbinding nodig heeft (als u het netboot-image gebruikt) moet u een ethternetkabel aansluiten op de socket vooraan op de machine.

Gebruik een seriële console aan 115200, 8bits zonder pariteit, en start de Juno op. Het apparaat zou vanaf de USB-stick moeten opstarten naar het GRUB-menu. De configuratie van de console wordt op Juno niet correct gedetecteerd en dus zal gewoon op de enter-toets drukken geen uitvoer van de kernel tonen. Stel de console in op
(zoals beschreven wordt in Paragraaf 5.1.1). De toetsencombinatie Control-x om op te starten zou u de schermuitvoer van debian-installer moeten laten zien en u in staat moeten stellen om een standaardinstallatie af te werken.

5.1.3 De installatie op Mustang van Applied Micro

Deze machine kan UEFI gebruiken, maar wordt gewoonlijk geleverd met U-Boot. U zal dus ofwel eerst de UEFI-firmware moeten installeren om daarna de standaardmethode te gebruiken voor het opstarten van het systeem en het uitvoeren van de installatie, ofwel zult u de opstartprocedure voor U-Boot moeten gebruiken. U moet een seriële console gebruiken om de installatie op te volgen, vermits het grafische installatiesysteem niet beschikbaar is voor de arm64-architectuur.

De aanbevolen installatiemethode is om de kernel en initrd van debian-installer naar de harde schijf te kopiëren met behulp van het ‘openembedded’ (open-ingebed) systeem dat met de machine meegeleverd wordt, om dan daarvandaan op te starten en het installatiesysteem te gebruiken. Een andere mogelijkheid is om TFTP te gebruiken om kernel/dtb/initrd binnen te halen en op te starten (Paragraaf 5.1.4.1). Na de installatie van het image zijn handmatig uit te voeren aanpassingen nodig om van het geïnstalleerde image te kunnen opstarten.

Gebruik een seriële console aan 115200, 8bits zonder pariteit, en start de machine. Herstart de machine en als u de melding “Hit any key to stop autoboot:” (druk op een toets om het automatisch opstarten te onderbreken) ziet, moet u een toets indrukken om een Mustang# prompt te bekomen. Dan moet u U-Boot commando’s gebruiken om de kernel, dtb en initrd te laden en op te starten.

5.1.4 Opstarten via TFTP

Om over het netwerk te kunnen opstarten moet u een netwerkverbinding hebben en een TFTP netwerk-opstartserver (en wellicht ook een DHCP-, RARP-, of BOOTP-server voor het automatisch configureren van de netwerkinstellingen).

De instellingen aan de kant van de server voor het ondersteunen van opstarten over het netwerk, worden beschreven in Paragraaf 4.4.

5.1.4.1 Opstarten via TFTP in U-Boot

Over het netwerk opstarten met systemen die gebruik maken van de U-Boot firmware, omvat drie stappen: a) het netwerk configureren, b) de images (kernel/ initiële ramschijf/dtb) in het geheugen laden, en c) de eerder geladen code daadwerkelijk uitvoeren.

Eerst moet u het netwerk configureren, ofwel automatisch via DHCP met de opdrachten

```
setenv autoloader no
dhcp
```

ofwel handmatig door verschillende omgevingsvariabelen in te stellen

```
setenv ipaddr <ip-adres van de cliënt>
setenv netmask <netmasker>
setenv serverip <ip-adres van de tftp-server>
setenv dnsip <ip-adres van de naamserver>
setenv gatewayip <ip-adres van de standaard gateway>
```

Indien u dit verkies, kunt u deze instellingen een permanent karakter geven met de opdracht

```
saveenv
```

Nadien moet u de images (kernel/ initiële ramschijf/dtb) in het geheugen laden. Dit gebeurt met het commando tftpboot, waaraan het adres opgegeven moet worden waar het image in het geheugen geplaatst zal worden. Jammer genoeg kan het indelingsplan van het geheugen verschillend zijn van systeem tot systeem, waardoor er geen algemene regel bestaat voor welke adressen daarvoor gebruikt kunnen worden.

Op sommige systemen stelt U-Boot vooraf een aantal omgevingsvariabelen in met geschikte laadadressen: kernel_addr_r, ramdisk_addr_r en fdt_addr_r. U kunt nagaan of ze ingesteld werden met de opdracht

```
printenv kernel_addr_r ramdisk_addr_r fdt_addr_r
```
Indien ze niet gedefinieerd zijn, moet u in de documentatie bij uw systeem nagaan welke waarden geschikt zijn en ze handmatig instellen. Voor systemen die gebaseerd zijn op SunXi SOC's van Allwinner (bijv. de Allwinner A10, met als architectuurnaam “sun4i” of de Allwinner A20, met als architectuurnaam “sun7i”), kunt u bijvoorbeeld de volgende waarden gebruiken:

```
setenv kernel_addr_r 0x46000000
setenv fdt_addr_r 0x47000000
setenv ramdisk_addr_r 0x48000000
```

Wanneer de laadadressen gedefinieerd zijn, kunt u de images vanaf de voordien gedefinieerde tftp-server in het geheugen laden met

```
tftpboot ${kernel_addr_r} <bestandsnaam van het kernel-image>
tftpboot ${fdt_addr_r} <bestandsnaam van het dtb>
tftpboot ${ramdisk_addr_r} <bestandsnaam van het initiële ramschijf-image>
```

De derde stap is het instellen van de commandoregel voor de kernel en het daadwerkelijk uitvoeren van de geladen code. U-Boot geeft de inhoud van de omgevingsvariabele “bootargs” als commandoregel door aan de kernel. Dus alle parameters voor de kernel en het installatiesysteem - zoals het apparaat dat de console gebruikt (zie Paragraaf 5.3.1) of opties in het kader van preseeding (vooraf ingestelde antwoorden - zie Paragraaf 5.3.2 en Bijlage B) - kunnen ingesteld worden met een commando zoals

```
setenv bootargs console=ttyS0,115200 rootwait panic=10
```

Het exacte commando voor het uitvoeren van de voordien geladen code is afhankelijk van welk van de twee image-vormen gebruikt wordt. Met uImage/uInitrd is het commando

```
bootm ${kernel_addr_r} ${ramdisk_addr_r} ${fdt_addr_r}
```

en met een authentieke Linux-image is het

```
bootz ${kernel_addr_r} ${ramdisk_addr_r}:${{filesize} ${fdt_addr_r}}
```

Opmerking: Als u standaard Linux images start, is het belangrijk om het image van de initiële ramschijf te laden na de kernel en de dtb, omdat U-Boot de variabele filesize instelt op de grootte van het laatst geladen bestand en het commando bootz de grootte van de ramschijf nodig heeft om correct te werken. Indien u een platformspecifieke kernel start, d.w.z. een kernel zonder apparatenboom, moet u gewoon de parameter ${fdt_addr_r} weglaten.

5.1.5 Opstarten vanaf een USB-geheugenstick met UEFI

Indien uw computer vanaf USB kan opstarten, is dit wellicht de gemakelijkste weg om een installatie uit te voeren. Als we ervan uitgaan dat u alle voorbereidingen getroffen heeft uit Paragraaf 3.6.1 en Paragraaf 4.3, moet u gewoon de USB-stick in een vrije USB-connector plaatsen en de computer herstarten. Het systeem zou moeten opstarten en u zou het grafische opstartmenu te zien moeten krijgen (op hardware dat dit ondersteunt), tenzij u gekozen heeft voor de flexibele manier om de stick samen te stellen en u daarbij niet voor het grafische installatiesysteem koos. In het menu kunt u verschillende installatieopties selecteren of gewoon op Enter drukken.

5.1.6 Het grafische installatiesysteem

De grafische versie van het installatiesysteem is enkel voor een beperkt aantal architecturen beschikbaar, waaronder 64-bit ARM. De functionaliteit van het grafische installatiesysteem is essentieel dezelfde als die van het tekstgeoriënteerde installatiesysteem, aangezien het in principe dezelfde programma's gebruikt met enkel een andere frontend.

Hoewel de functionaliteit identiek is, biedt het grafische installatiesysteem toch enkele significante voordelen. Het grootste voordeel is dat het meer talen ondersteunt, met name die welke een tekenset gebruiken die niet weergegeven kan worden in de tekstgeoriënteerde frontend “newt”. Het biedt ook enkele voordelen op het vlak van gebruik, zoals de mogelijkheid om een muis te gebruiken. En in sommige gevallen kunnen verschillende vragen op een scherm weergegeven worden.

Juist zoals dit het geval is voor het tekstgeoriënteerde installatiesysteem, is het ook bij het starten van het grafische installatiesysteem mogelijk om opstartparameters op te geven.
HOOFDSTUK 5. HET INSTALLATIESYSTEEM …

5.2 Toegankelijkheid

Sommige gebruikers kunnen specifieke ondersteuning nodig hebben omwille van bijvoorbeeld een visuele beperking. De meeste toegankelijkheidsopties moeten handmatig geactiveerd worden. Bepaalde opstartparameters kunnen opgegeven worden om bepaalde toegankelijkheidsfuncties te activeren. Merk op dat de bootloader op de meeste architecturen uw toetsenbord als een QWERTY-toetsenbord beschouwt.

5.2.1 Frontend voor het installatiesysteem

Het installatiesysteem van Debian kan verschillende frontends gebruiken voor het stellen van vragen met een wisselend comfort vanuit het oogpunt van toegankelijkheid: met name maakt text gebruik van platte tekst en newt van tekstgeoriënteerde dialoogvensters. Er kan een keuze gemaakt worden aan de opstartprompt. Raadpleeg de documentatie bij DEBIAN_FRONTEND in Paragraaf 5.3.2.

With the newt front-end (used mostly with braille), one mostly just selects answers with arrow keys and presses Enter to validate the choice. Pressing Tab or Shift - Tab allows to switch between dialog elements, and notably to access the Go Back button, which brings back again to previous questions. Some dialogs contain check boxes, which can be ticked on and off by pressing Space.

With the text front-end (used mostly with speech), one mostly selects answers by typing their number followed by pressing Enter. One can also not type anything and just press Enter to simply accept the default value. Typing < and pressing Enter brings back again to previous questions. When a selection of choices has to be made (e.g. during task selection), one can type ! to express an empty selection.

5.2.2 Apparatuur op een kaart

Sommige apparatuur voor toegankelijkheid heeft in feite de vorm van een kaart die binnenin de machine ingeplugd moet worden en die de tekst rechtstreeks leest uit het videogeheugen. Opdat dit soort apparaten zou werken moet u framebufferondersteuning uitzetten door de opstartparameter fb=false te gebruiken. Op die manier wordt het aantal ondersteunde talen wel beperkt.

5.2.3 Een stijl met verhoogd contrast

Voor gebruikers met een verminderd gezichtsvermogen bestaat de mogelijkheid om voor het installatiesysteem een kleurenschema met verhoogd contrast te kiezen, waardoor het beter leesbaar wordt. Om dit te activeren, kunt u de sneltoets d gebruiken om in het opstartscherm het item “Accessible high contrast” te selecteren, of u kunt theme=dark toevoegen als opstartparameter.

5.2.4 Zoomfunctie

Voor gebruikers met een verminderd gezichtsvermogen biedt het grafische installatiesysteem een erg basale zoomfunctie: met de sneltoetsen Control+ en Control– kunnen de letters groter en kleiner gemaakt worden.
5.2.5 **Expertmodus, reparatiemodus, geautomatiseerde installatie**

De expertmodus en de reparatiemodus van het installatiesysteem en een geautomatiseerde installatie kunnen ook met toegankelijkheidsvoorzieningen uitgevoerd worden. Om ze te gebruiken moet men eerst naar het submenu “Advanced options” van het opstartmenu gaan door a te typen. Op een BIOS-systeem (het opstartmenu heeft dan slechts één biep toegegeven) moet u daarna op Enter drukken. Bij UEFI-systemen (het opstartmenu heeft twee biepnoten toegegeven) dient u dit niet te doen. Om nadien eventueel spraaksynthese te activeren moet u op s drukken (opnieuw gevolg door Enter op een BIOS-systeem maar niet op een UEFI-systeem). Vanaf dan kunnen verschillende sneltoetsen gebruikt worden: x voor een installatie in expertmodus, r voor de reparatiemodus en a voor een geautomatiseerde installatie. Op een BIOS-systeem moet u daarna telkens op Enter drukken.

De optie geautomatiseerde installatie laat toe om Debian volledig automatisch te installeren via het gebruik van preseeding (vooraf ingestelde antwoorden), waarvan de vindplaats na het opstarten van de toegankelijkheidsvoorzieningen ingevoerd kan worden. Het gebruik van preseeding zelf wordt gedocumenteerd in Bijlage B.

5.2.6 **Toegankelijkheid van het geïnstalleerde systeem**

Documentatie over de toegankelijkheid van een geïnstalleerd systeem is te vinden op de Wikipagina van Debian over toegankelijkheid.

5.3 **Opstartparameters**

Opstartparameters zijn parameters voor de Linux kernel die over het algemeen gebruikt worden om ervoor te zorgen dat correct omgesprongen wordt met randapparatuur. In het merendeel van de gevallen kan de kernel zelf automatisch informatie over uw randapparatuur verzamelen. Maar in sommige gevallen moet u de kernel echter een beetje helpen.

Als u het systeem voor het eerst opstart, kunt u dit best met de standaard opstartparameters proberen (d.w.z. zonder te proberen parameters in te stellen) en zien of de zaak correct werkt. En waarschijnlijk zal dit het geval zijn. Is dit niet zo, dan kunt u later opnieuw opstarten en uitkijken naar eventuele bijzondere parameters die het systeem over uw hardware kunnen informeren.

Over veel opstartparameters is informatie te vinden in de Linux BootPrompt HOWTO, met inbegrip van tips voor obscure apparatuur. Dit onderdeel schetst enkel de meest in het oog springende parameters. Enkele veel voorkomende valkuilen worden hierna in Paragraaf 5.4 behandeld.

5.3.1 **Opstartconsole**

Indien u met een seriële console opstart, zal de kernel die meestal automatisch herkennen. Indien de computer ook een grafische kaart (framebuffer) en een toetsenbord heeft en u de kernel ziet als een seriële console wilt laten opstarten, zal u aan de kernel het argument console=apparaat moeten doorgeven, waarbij apparaat een serieel apparaat van het doel is, wat gewoonlijk iets in de zin van ttyS0 is.

U zult mogelijk parameters moeten opgeven voor de seriële poort, zoals snelheid en pariteit, bijvoorbeeld console=ttyS0,9600n8. Andere gebruikelijke snelheden zijn 57600 en 115200. Zorg ervoor dat u deze optie specificeert na "-", waardoor die gekopieerd wordt naar de configuratie van de bootloader van het geïnstalleerde systeem (als het installatiesysteem dit voor de bootloader ondersteunt).

Om er voor te zorgen dat het terminaltype dat door het installatiesysteem gebruikt wordt, overeenkomt met uw terminal-emulator, kunt u de parameter TERM=type gebruiken. Merk op dat het installatiesysteem enkel de volgende terminaltypes ondersteunt: linux, bterm, ansi, vt102 en dumb. Voor een seriële console in debian-installer is de standaard vt102. Indien u een IPMI console of een virtualisatietoepassing gebruikt die zelf geen conversie naar dergelijke terminaltypes verzorgt, bijvoorbeeld QEMU/KVM, kunt u die opstarten binnenin een screen-sessie. Dat zal inderdaad voor een omslag naar het terminaltype screen zorgen, wat heel dicht bij het type vt102 aanleunt.

5.3.2 **Parameters voor het installatiesysteem van Debian**

Het installatiesysteem herkent enkele bijkomende opstartparameters¹ die handig kunnen zijn.

Een aantal parameters hebben een “verkorte vorm”, hetgeen helpt om de beperkingen van de kernel inzake commandoregelopties te verminderen en het invoeren van parameters vergemakkelijkt. Indien een parameter een verkorte vorm heeft, zal die vermeld worden tussen haakjes achter de (normale) lange vorm. In deze handleiding zal de verkorte vorm gewoonlijk ook in de voorbeelden toegepast worden.

¹Met de huidige kernels (2.6.9 of recentere) kunt u 32 commandoregelopties en 32 omgevingsopties gebruiken. Indien deze aantallen overschreden worden, dan zal de kernel panikeren. Er staat ook een limiet van 255 lettertekens op de lengte van de volledige commandoregel voor de kernel. Alles wat deze limiet overschrijdt wordt stilzwijgend weggelaten.
5.3. OPSTARTPARAMETERS

debconf/priority *(priority)* Deze parameter definieert wat de minimale prioriteit moet zijn opdat meldingen op het scherm weergegeven zouden worden.

Een standaardinstallatie gebruikt **priority=high**. Dit betekent dat meldingen die behoren tot de prioriteitklassen hoog (high) en kritiek (critical) weergegeven zullen worden, maar dat de meldingen die behoren tot de prioriteitklassen middelmatig (medium) en laag (low) weggelaten worden. Indien er zich problemen voordoen, past het installatiesysteem indien nodig de urgentie aan.

Indien u **priority=medium** als opstartparameter opgeeft, zult u het installatiemenu te zien krijgen en zult u meer controle hebben over de installatie. Indien u **priority=low** gebruikt, worden alle meldingen weergegeven (dit is het equivalent van de opstartmethode *expert*). Bij **priority=critical** zal het installatiesysteem enkel kritieke meldingen weergeven en trachten zonder poespas de juiste beslissing te nemen.

DEBIAN_FRONTEND Deze opstartparameter controleert het type gebruikersinterface dat voor het installatiesysteem gebruikt wordt. Momenteel kunnen voor deze parameter de volgende instellingen gebruikt worden:

- **DEBIAN_FRONTEND=noninteractive**
- **DEBIAN_FRONTEND=text**
- **DEBIAN_FRONTEND=newt**
- **DEBIAN_FRONTEND=gtk**

Het standaard frontend is **DEBIAN_FRONTEND=newt, DEBIAN_FRONTEND=text** valt te verkiezen bij installaties via een seriële console. Sommige gespecialiseerde types installatimedia hebben een gelimiteerde aantal beschikbare frontends, maar de frontends **newt en text** zijn op de meeste standaardinstallatimedia beschikbaar. Op de architecturen die dit ondersteunen gebruikt het grafische installatiesysteem de frontend **gtk**.

BOOT_DEBUG Door deze opstartparameter op 2 in te stellen geeft u het installatiesysteem de opdracht om het opstartproces uitgebreid te loggen. Hem instellen op 3 maakt dat er op strategische punten in het opstartproces debug-shells beschikbaar worden. (Verlaat de shells om het opstartproces voort te zetten.)

- **BOOT_DEBUG=0** Dit is de standaardinstelling.
- **BOOT_DEBUG=1** Omslachtiger dan gebruikelijk.
- **BOOT_DEBUG=2** Een hoop debug-informatie.
- **BOOT_DEBUG=3** Op verschillende punten in het opstartproces wordt een shell gestart die toelaat om doorgedreven te debuggen. Verlaat de shell om het opstarten voort te zetten.

log_host, log_port Doet het installatiesysteem de logberichten zowel naar een extern syslog-bestand op de opgegeven computer en poort als naar een lokaal bestand sturen. Indien het poortnummer niet opgegeven werd, wordt de standaard syslogpoort 514 gebruikt.

lowmem Kan gebruikt worden om het installatiesysteem te dwingen om een strengere norm voor weinig geheugen te hanteren dan het standaard geneigd is in te stellen op basis van het beschikbaar geheugen. Mogelijke waarden zijn 1 en 2. Zie ook Paragraaf 6.3.1.1.

noshell Verhindert dat het installatiesysteem een interactieve shell ter beschikking stelt op tty2 en tty3. Nuttig voor onbemande installaties met een beperkte fysische beveiliging.

debian-installer/framebuffer *(fb)* Sommige architecturen maken gebruik van de framebuffer van de kernel om de installatie in een aantal talen aan te bieden. Indien de framebuffer op uw systeem voor problemen zorgt, kunt u die functionaliteit uitschakelen door de parameter **fb=false** te gebruiken. Symptomen van het probleem zijn foutmeldingen in verband met bterm en bogl, een leeg scherm of het vastlopen van de computer binnen enkele minuten na het starten van de installatie.

debian-installer/theme *(theme)* Een stijl bepaalt hoe de gebruikersinterface van het installatiesysteem er uitziet (kleuren, iconen, enz.). Welke stijlen beschikbaar zijn, verschilt per frontend. Momenteel hebben zowel de frontend newt als de frontend gtk (naast het standaard uiterlijk) enkel één extra stijl, met “dark” als naam, welke ontworpen is voor gebruikers met een visuele beperking. Stel deze stijl in door op te starten met **theme=dark** (hiervoor kan in het opstartmenu ook de toetsenbord-sneltoets d gebruikt worden).
5.3. OPSTARTPARAMETERS

netcfg/disable_autoconfig Standaard probeert debian-installer het netwerk automatisch te configureren via IPv6-autoconfiguratie en DHCP. Indien dit slaagt krijgt u niet de kans de verkregen instellingen na te kijken en te veranderen. U komt enkel uit bij het handmatig instellen van het netwerk in het geval de automatische configuratie mislukt.

Indien u op uw lokaal netwerk een IPv6-router of een DHCP-server heeft die u wenst te vermijden, bijvoorbeeld omdat ze verkeerde antwoorden geven, kunt u de parameter `netcfg/disable_autoconfig=true` gebruiken om te verhinderen dat er een automatische configuratie van het netwerk (niet voor v4 en evenmin voor v6) plaats vindt en om de informatie handmatig te kunnen invoeren.

hw-detect/start_pcmcia Stel dit in op `false` om te voorkomen dat PCMCIA-diensten opgestart worden indien dat problemen veroorzaakt. Sommige laptops staan er bekend zich slecht te gedragen op dit punt.

disk-detect/dmraid/enable (dmraid) Stel dit in op `true` om in het installatiesysteem de ondersteuning te activeren voor een opstelling met Seriële ATA RAID (ook ATA RAID, BIOS RAID of pseudo- of fake RAID genoemd) schijven. Merk op dat een dergelijke ondersteuning momenteel slechts experimenteel is. Bijkomende informatie vindt u op de Wiki-pagina van het installatiesysteem van Debian.

preseed/url (url) Geef de url op van een te downloaden bestand met vooraf ingestelde configuraties om dat te gebruiken bij een automatische installatie. Zie Paragraaf 4.5.

preseed/file (file) Geef het pad op naar een te laden bestand met vooraf ingestelde configuraties om dat te gebruiken bij een automatische installatie. Zie Paragraaf 4.5.

preseed/interactive Stel dit in op `true` om de vragen te tonen, ook al zijn de antwoorden in een antwoordbestand opgenomen. Kan nuttig zijn om een bestand met vooraf ingestelde configuraties te testen of op fouten onderzoek. Merk op dat dit geen effect zal hebben op parameters die als opstartparameters opgegeven werden, maar voor hen kan een bijzondere syntax gebruikt worden. Zie Paragraaf B.5.2 voor details.

auto-install/enable (auto) Stel vragen die normaal gezien gesteld worden vooraleer het doorgeven van antwoorden via een antwoordbestand mogelijk is, uit to na de netwerkconfiguratie. Zie Paragraaf B.2.3 voor meer informatie over hoe u dit gebruikt met het oog op het automatiseren van installaties.

finish-install/keep-consoles Tijdens een installatie vanaf een seriële of een Management Console, worden de reguliere consoles (VT1 tot VT6) normaal gezien uitgeschakeld in /etc/inittab. Stel dit in op `true` om dit te voorkomen.

cdrom-detect/eject Standaard werpt debian-installer de tijdens de installatie gebruikte optische media uit vooraleer er herstart wordt. Als het systeem niet automatisch opstart vanaf dergelijke media is dit onnodig. In sommige gevallen kan het zelfs onwenselijk zijn, bijvoorbeeld als het optische station het medium niet zelf terug kan plaatsen en de gebruiker niet aanwezig is om dit handmatig te doen. Veel sleufstations en stations van het slim-line- of caddy-type kunnen media niet automatisch terugplaatsen.

Stel in op `false` om het automatisch uitwerpen uit te schakelen. U moet er wel rekening mee houden dat u moet kunnen verzekeren dat het systeem niet automatisch opstart vanaf het optische station na de initiële installatie.

base-installer/install-recommends (recommends) Door deze optie in te stellen op `false` wordt het pakketbeheersysteem ingesteld om pakketten die tot de categorie “Recommends” (aanbeelden) behoren, niet automatisch te installeren tijdens het installatieproces en op het geïnstalleerde systeem. Zie ook Paragraaf 6.3.5.

Merk op dat deze optie het mogelijk makkelijk om de software op te bouwen die u wenst te hebben, maar dat het gevolg ook kan zijn dat bepaalde functies onbruikbaar zijn. Misschien zult u bepaalde van de aanbevolen pakketten handmatig moeten installeren om de door u gewenste volle functionaliteit te verkrijgen. Daarom zou deze optie enkel gebruikt moeten worden door zeer ervaren gebruikers.

debian-installer/allow_unauthenticated Standaard vereist het installatiesysteem dat pakketbronnen geauthenticeerd worden met een gekende gpg-sleutel. Stel dit in op `true` om die authenticatie uit te schakelen. **Waarschuwing: onveilig, niet aanbevolen.**

rescue/enable Stel in op `true` om naar de reparatiemodus te gaan in plaats van een normale installatie uit te voeren. Zie Paragraaf 8.6.
5.3.3 Het gebruik van opstartparameters om op vragen te antwoorden

Op enkele uitzonderingen na kan voor elke tijdens de installatie gestelde vraag een waarde ingesteld worden aan de opstartprompt. Dit is evenwel enkel in specifieke situaties echt nuttig. Algemene instructies over de manier waarop u dit doet, vindt u in Paragraaf B.2.2. Enkele specifieke voorbeelden worden hierna vermeld.

debian-installer/language (language), debian-installer/country (country), debian-installer/locale (locale) Er bestaan twee manieren om de taal, het land en het taalgebied die voor de installatie en het geïnstalleerde systeem gebruikt moeten worden, in te stellen.

De eerste en gemakkelijkste manier is om enkel de parameter locale (taalgebied) op te geven. Taal en land worden dan van deze waarde afgeleid. U kunt bijvoorbeeld locale=de_CH gebruiken om Duits als taal te kiezen en Zwitserland als land (de_CH.UTF-8 zal als het standaard taalgebied (locale) ingesteld worden op het geïnstalleerde systeem). De beperking zit in het feit dat op deze manier niet alle mogelijke combinaties van taal, land en taalgebied uitgedrukt kunnen worden.

De tweede meer flexibele optie is om language (taal) en country (land) apart op te geven. In dat geval kan eventueel ook locale (taalgebied) opgegeven worden om een specifiek standaardtaalgebied voor het geïnstalleerde systeem in te stellen. Bijvoorbeeld: language=en country=DE locale=en_GB.UTF-8.

anna/choose_modules (modules) Kan gebruikt worden om automatisch componenten van het installatiesysteem te laden die niet standaard geladen worden. Voorbeelden van facultatieve componenten die nuttig kunnen zijn, zijn openssh-client-udeb (waardoor u tijdens de installatie scp kunt gebruiken) en ppp-udeb (zie Paragraaf D.4).

netcfg/disable_autoconfig Stel dit in op true als u IPv6-autoconfiguratie en DHCP wilt uitschakelen en in plaats daarvan een statische netwerkkonfiguratie wilt afdwingen.

mirror/protocol (protocol) Standaard maakt het installatiesysteem gebruik van het http-protocol voor het downloaden van bestanden van Debian spiegelservers. En tijdens een installatie op een gewoon prioriteitsniveau is het niet mogelijk om dit te veranderen naar ftp. Door deze parameter in te stellen op ftp kunt u het installatiesysteem dwingen om van dat protocol gebruik te maken. Merk op dat u geen ftp-spiegelserver kunt selecteren uit een lijst en dat u die computernaam dan handmatig zult moeten instellen.

tasksel:tasksel/first (tasks) Kan gebruikt worden om taken te selecteren die niet voorkomen in de interactieve taaklijst, zoals de taak kde-desktop. Zie Paragraaf 6.3.6.2 voor bijkomende informatie.

5.3.4 Parameters doorgeven aan kernelmodules

Voor stuurprogramma’s die in de kernel gecompileerd werden, kunt u parameters doorgeven zoals beschreven wordt in de documentatie bij de kernel. Indien een stuurprogramma evenwel als module gecompileerd werd en omdat kernelmodules tijdens een installatie iets anders geladen worden dan het geval is bij een geïnstalleerd systeem, is het niet mogelijk om op de gebruikelijke manier parameters door te geven aan modules. In de plaats daarvan moet u een speciale syntax gebruiken die door het installatiesysteem herkend wordt. Het installatiesysteem draagt er dan zorg voor dat de parameters in de passende configuratiebestanden opgeslagen worden, zodat ze gebruikt zullen worden als de modules effectief geladen worden. De parameters zullen ook automatisch doorgegeven worden aan de configuratieinstellingen van het geïnstalleerde systeem.

Merk op dat het tegenwoordig zelden nodig is om parameters door te geven aan modules. In de meeste gevallen zal de kernel in staat zijn om de in het systeem aanwezige hardware te herkennen en op die manier goede standaardwaarden in te stellen. Toch kan het in sommige situaties nog steeds nodig zijn om parameters handmatig in te stellen.

De syntax die u moet gebruiken om parameters in te stellen voor modules is:

\[\text{module naam} . \text{parameter naam} = \text{waarde} \]

Indien u aan dezelfde of aan verschillende modules meerdere parameters moet doorgeven, moet u deze werkwijze gewoon herhalen. Om bijvoorbeeld in te stellen dat een oude 3Com-netwerkkaart de BNC (coax) connector en IRQ 10 moet gebruiken, zou u doorgeven:

3c509.xcvr=3 3c509.irq=10
5.3.5 Kernel modules op een zwarte lijst plaatsen

Soms kan het nodig zijn om een module op de zwarte lijst te plaatsen om te voorkomen dat ze automatisch geladen wordt door de kernel en udev. Een mogelijke reden kan zijn dat een specifieke module op uw hardware voor problemen zorgt. Soms vermeldt de kernel ook verschillende stuurprogramma’s voor hetzelfde apparaat. Dit kan tot gevolg hebben dat het apparaat niet correct werkt als de twee stuurprogramma’s tegenstrijdig zijn of als het verkeerde stuurprogramma eerst geladen werd.

U kunt een module op de zwarte lijst plaatsen met de volgende syntaxis: `module_naam.blacklist=yes`. Dit leidt ertoe dat de module op de zwarte lijst geplaatst wordt in `/etc/modprobe.d/blacklist.local` zowel tijdens de installatie als op het geïnstalleerd systeem.

Merk op dat een module nog steeds geladen kan worden door het installatiesysteem zelf. U kunt dit voorkomen door de installatie in expertmodus uit te voeren en de module te verwijderen uit de lijst van modules die weergegeven wordt tijdens de fase van apparatenherkenning.

5.4 Probleemanalyse bij het installatieproces

5.4.1 Betrouwbaarheid van optische media

Soms kan het gebeuren, vooral bij oudere stations, dat het installatiesysteem er niet in slaagt op te starten vanaf een optische schijf. Het is ook mogelijk — zelfs nadat met succes opgestart werd vanaf een dergelijke schijf — dat het installatiesysteem er niet in slaagt de schijf te herkennen of foutmeldingen produceert bij het lezen van de schijf tijdens de installatie.

Er kunnen veel verschillende mogelijke oorzaken zijn voor deze problemen. We kunnen enkel enige courante problemen vermelden en algemene suggesties geven over hoe ermee om te gaan. De rest laten we aan u over.

Eerst zou u twee heel eenvoudige dingen moeten proberen.

- Indien er niet opgestart wordt vanaf de schijf, moet u nagaan of die wel correct in het station geplaatst werd en of zij niet vuil is.
- Indien het installatiesysteem er niet in slaagt de schijf te herkennen, moet u gewoon nog een tweede keer de optie Installatiemedia detecteren en aankoppelen uitproberen. Het is bekend dat sommige DMA-gerelateerde problemen bij oude CD-stations op die manier opgelost raken.

Indien dit niet helpt, kunt u de suggesties uit de onderstaande paragrafen uitproberen. De meeste, hoewel niet alle, hierna behandelde suggesties gelden zowel voor CD als voor DVD.

Indien u er niet in slaagt de installatie vanaf een optische schijf op gang te krijgen, moet u het met een van de andere mogelijke installatiemethodes proberen.

5.4.1.1 Gebruikelijke problemen

- Sommige oudere CD-stations slagen er niet in om schijven te lezen die aan een hoge snelheid gebrand werden door een moderne CD-writer.
- Sommige zeer oude CD-stations werken niet correct als voor hen “direct memory access” (DMA) gebruikt wordt.

5.4.1.2 Problemen onderzoeken en ze eventueel oplossen

Indien het niet lukt om met de optische schijf op te starten, probeer dan de hierna vermelde suggesties.

- Ga na of uw BIOS/UEFI effectief het opstarten vanaf een optische schijf ondersteunt (kan enkel een probleem zijn op zeer oude systemen) en dat het opstarten vanaf dergelijke media in het BIOS/UEFI geactiveerd is.
- Indien u een ISO-image downloadde, controleer dan of de md5sum van dat image overeenkomt met dat wat voor dat image in het bestand MD5SUMS vermeld staat. Dat bestand zou u vinden moeten zijn op dezelfde plaats waar u het image downloadde.

```bash
$ md5sum debian-testing-i386-netinst.iso
a20391b12f7ffe2f22ef705cee4059c6b92  debian-testing-i386-netinst.iso
```

Ga vervolgens na of ook de md5sum van de gebrande schijf overeenkomt. Het volgende commando zou moeten werken. Het maakt gebruik van de grootte van het image om het correct aantal bytes van de schijf te lezen.
Als, nadat het installatiesysteem met succes opgestart werd, de schijf niet herkend wordt, kan het probleem soms eenvoudig opgelost worden door nog eens te proberen. Indien u meer dan één optisch station heeft, probeer de schijf dan eens in het andere station te plaatsen. Indien dat niet helpt, of indien de schijf herkend wordt maar er bij het lezen ervan foutmeldingen komen, moet u de hieronder vermelde suggesties proberen. Daarvoor is enige basiskennis van Linux nodig. Om deze commando’s uit te voeren, moet u eerst naar de tweede virtuele console (VT2) gaan en daar de shell activeren.

- Ga naar VT4 of bekijk de inhoud van /var/log/syslog (gebruik de editor nano) om eventuele specifieke foutmeldingen op te sporen. Kijk nadien ook de uitvoer na van dmesg.

- Ga in de uitvoer van dmesg na of uw optisch station herkend werd. U zou iets moeten vinden in de zin van (de regels moeten niet noodzakelijk na elkaar komen):

```
ata1.00: ATA|PI: MATSHITADVD-DRAM UJ-822S, 1.61, max UDMA/33
ata1.00: configured for UDMA/33
scsi 0:0:0:0: CD-ROM MATSHITA DVD-DRAM UJ-822S 1.61 PQ: 0 ANSI: 5
sr0: scsi3-mmc drive: 24x/24x writer dvd-ram cd/rw xa/form2 cdda tray
cdrom: Uniform CD-ROM driver Revision: 3.20
```

Indien u niets dergelijks vindt, is het mogelijk dat de controller waarmee uw station verbonden is, niet herkend werd of zelfs helemaal niet ondersteund wordt. Indien u weet welk stuurprogramma er nodig is voor de controller, kunt u het handmatig proberen laden met modprobe.

- Ga na of er voor uw optisch station onder /dev/ een ’device node’ (apparaatbestand) bestaat. In het bovenstaande voorbeeld is dit /dev/sr0. Er zou ook een /dev/cdrom moeten bestaan.

- Gebruik het commando mount om na te gaan of de optische schijf reeds aangekoppeld is. Indien dit niet het geval is, moet u proberen deze handmatig aan te koppelen:

```
$ mount /dev/hdc /cdrom
```

- Ga na of het commando eventueel aanleiding geeft tot foutmeldingen.

- Ga na of DMA momenteel geactiveerd is:

```
$ cd /proc/ide/hdc
$ grep using_dma settings
using_dma 1 0 1 rw
```

Een “1” in de eerste kolom na using_dma wijst erop dat het geactiveerd is. Indien dit het geval is moet u proberen het te deactiveren:

```
$ echo -n "using_dma:0" >settings
```

Zorg ervoor dat u zich bevindt in de map van het apparaat dat met uw optisch station overeenkomt.

- Indien er zich tijdens de installatie problemen voordoen, moet u de integriteit van de installatiemedia proberen na te gaan met behulp van de optie die u vindt ergens onderaan in het hoofdmenu van het installatiesysteem. Deze optie kan ook gebruikt worden als algemene test om na te gaan of de schijf op een betrouwbare wijze gelezen kan worden.

5.4.2 De configuratie van het opstartproces

Indien u problemen ervaart en de kernel gaat hangen tijdens het opstartproces, of bepaalde randapparaten die u wel degelijk heeft, niet herkent, of stations niet correct aanspreekt, is het eerste wat u moet doen, de opstartparameters controleren, zoals besproken wordt in Paragraaf 5.3.

In sommige gevallen kan het slecht functioneren te wijten zijn aan het feit dat er firmware ontbreekt voor het apparaat (zie Paragraaf 2.2 en Paragraaf 6.4).
5.4.3 De meldingen bij het opstarten van de kernel interpreteren

Tijdens de opstartsequentie kan het gebeuren dat u verschillende meldingen ziet in de zin van can't find iets, of iets not present, can't initialize iets, of zelfs this driver release depends on iets. De meeste van dit soort meldingen zijn onschadelijk. U krijgt ze te zien omdat de kernel voor het installatiesysteem gebouwd is om uitgevoerd te kunnen worden op computers met veel verschillende randapparaten. Vanzelfsprekend zal geen enkele computer met alle mogelijke randapparatuur uitgerust zijn en dus kan het besturingssysteem enkele klachten uiten omdat het randapparaten die u niet heeft, niet kan vinden. Het kan ook zijn dat u vaststelt dat het systeem even pauzeert. Dit gebeurt wanneer het wacht op een antwoord van een apparaat dat niet op uw systeem aanwezig is. Indien u de tijd die het systeem nodig heeft, als onaanvaardbaar lang ervaart, kunt u later een aangepaste kernel maken (zie Paragraaf 8.5).

5.4.4 Installatieproblemen rapporteren

Indien u door de initiële opstartfase heen geraakt, maar de installatie niet kunt voltooien, kan de menuoptie Save debug logs (debug-logs opslaan) nuttig zijn. Het laat u toe om logs over systeemfouten en configuratie-informatie uit het installatiesysteem op een opslagmedium op te slaan of ze met een webbrowser te downloaden. Deze informatie kan aanwijzingen bevatten over wat er fout liep en hoe het gerepareerd kan worden. Indien u een bugrapport instuurt, kunt u deze informatie toevoegen aan het bugrapport.

Andere pertinente installatiemeldingen kunt u vinden in /var/log/ tijdens de installatie en in /var/log/installer/ nadat de computer opgestart werd met het geïnstalleerde systeem.

5.4.5 Installatierapporten insturen

Indien u problemen blijft ervaren, hebben we graag dat u een installatierapport instuurt. We moedigen het insturen van installatierapporten zelfs aan als de installatie succesvol was. Op die manier kunnen we zoveel mogelijk informatie verzamelen over een zo groot mogelijk aantal hardwareconfiguraties.

Indien u over een werkend Debian systeem beschikt, loopt de gemakkelijkste manier om een installatierapport in te sturen via het installeren van de pakketten installation-report en reportbug (apt install installation-report reportbug). Configureer reportbug zoals uitgelegd wordt in Paragraaf 8.4.2 en voer het commando reportbug installation-reports uit.

Een andere mogelijkheid is om dit model te gebruiken bij het opstellen van het installatierapport en het verslag als een bugrapport over het pseudo-pakket installation-reports in te sturen naar submit@bugs.debian.org. Nooit van het Nederlandse vertaalteam van Debian: aangezien Debian een wereldwijd project is, wordt in de interne communicatie hoofdzakelijk de Engelse taal gehanteerd. Mocht u dit als een drempel ervaren, dan kunt u daarbij misschien hulp vragen op de mailinglijst van de Nederlandstalige gebruikersgemeenschap van debian: debian-user-dutch@lists.debian.org.

```
Package: installation-reports
(Pakket: installation-reports)

Image version: <Full URL to image you downloaded is best>
(Image-versie: <Bij voorkeur de volledige URL van het gedownloade image>)
Date: <Date and time of the install>
(Datum <Datum en tijd van de installatie>)

Machine: <Description of machine (eg, IBM Thinkpad R32)>
(Computer:<Beschrijving van de machine (bijv. IBM Thinkpad R32)>)
Processor:
(Processor:)
Memory:
(Geheugen:)
Partitions: <df -Tl will do; the raw partition table is preferred>
(Partities: <df -Tl is bruikbaar; de ruwe partitietabel geniet de voorkeur>)
```
Output of `lspci -knn` (or `lspci -nn`):
(Uitvoer van `lspci -knn` (of `lspci -nn`):

Base System Installation Checklist:
(Checklist bij de installatie van het basissysteem:)
[O] = OK, [E] = Error (please elaborate below), [] = didn’t try it
([O] = OK, [E] = Fout (geef hieronder wat toelichting), [] = niet geprobeerd)

Initial boot: []
(Aanvankelijk opstarten [])
Detect network card: []
(Herkennen netwerkkaart [])
Configure network: []
(Netwerkconfiguratie: [])
Detect media: []
(Herkenen media: [])
Load installer modules: []
(Installermodules laden: [])
Detect hard drives: []
(Herkenen harde schijven: [])
Partition hard drives: []
(Indelen harde schijven: [])
Install base system: []
(Basissysteem installeren [])
Clock/timezone setup: []
(Instellen klok/tijdzone [])
User/password setup: []
(Instellen gebruiker/wachtwoord: [])
Install tasks: []
(Taken installeren: [])
Install boot loader: []
(Bootloader installeren [])
Overall install: []
(De globale installatie: [])

Comments/Problems:
(Commentaar/Problemen:)

<Description of the install, in prose, and any thoughts, comments and ideas you had during the initial install.>
(<Beschrijf de installatie in gewone woorden en vermeld eventuele bedenkingen, commentaar en ideeën die u tijdens de installatie had.>)}

Beschrijf in het bugrapport wat het probleem is, vermeld ook de laatste zichtbare meldingen van de kernel als het een vastlopen van de kernel betreft. Beschrijf de verschillende stappen die u ondernam en die tot het probleem op het systeem leidden.
Hoofdstuk 6

Het Debian installatiesysteem gebruiken

6.1 Hoe het installatiesysteem werkt

For this architecture the debian-installer supports two different user interfaces: a text-based one and a graphical one. The text-based interface is used by default unless you select an “Graphical install” option in the boot menu. For more information about booting the graphical installer, please refer to Paragraaf 5.1.6.

Het Debian installatiesysteem bestaat uit een aantal componenten die elk ontwikkeld zijn om een specifieke taak uit te voeren tijdens de installatie. Elke component voert zijn taak uit, waarbij aan de gebruiker vragen gesteld kunnen worden als dat voor die taak nodig is. Aan de vragen zelf is een prioriteit toegekend, en bij het opstarten van het installatiesysteem wordt ingesteld welke prioriteit vragen moeten hebben om gesteld te worden.

Als een standaardinstallatie wordt uitgevoerd, zullen alleen essentiële vragen (met een hoge prioriteit - high priority) worden gesteld. Het resultaat is een in hoge mate geautomatiseerd installatieproces met weinig interactie met de gebruiker. Componenten worden vanzelf in de juiste volgorde uitgevoerd; welke componenten worden uitgevoerd, wordt hoofdzakelijk bepaald door de gekozen installatiemethode en door uw apparatuur. Het installatiesysteem zal standaardantwoorden gebruiken voor vragen die niet worden gesteld.

Als er een probleem optreedt, wordt een scherm met een foutmelding getoond en zal mogelijk het menu van het installatiesysteem worden getoond zodat de gebruiker een alternatieve actie kan selecteren. Als er geen problemen zijn, zal de gebruiker het menu van het installatiesysteem nooit zien, maar eenvoudig de vragen voor iedere opeenvolgende component kunnen beantwoorden. Meldingen van ernstige fouten hebben een prioriteit “critical” (kritiek), zodat de gebruiker altijd geïnformeerd zal worden.

Sommige van de standaardwaarden die het installatiesysteem gebruikt, kunnen beïnvloed worden door het meegeven van opstartparameters bij het starten van debian-installer. Als u bijvoorbeeld statische netwerkconfiguratie wilt forceren (standaard worden automatische IPv6-configuratie en DHCP gebruikt indien dit beschikbaar is), kunt u de opstartparameter `netcfg/disable_autoconfig=true` toevoegen. Zie Paragraaf 5.3.2 voor een overzicht van beschikbare opties.

Het is mogelijk dat gevorderde gebruikers zich meer thuis voelen met een menugestuurde interface, waarbij elke stap door de gebruiker zelf wordt bepaald in plaats van het installatiesysteem dat automatisch elke stap in volgorde uitvoert. Om het installatiesysteem op een handmatige, menugestuurde manier uit te voeren, moet de opstartparameter `priority=medium` worden toegevoegd.

Als het voor uw apparatuur noodzakelijk is om parameters mee te geven bij de installatie van kernelmodules, dan zult u het installatiesysteem moeten starten in de “expert” modus. Dit is mogelijk door ofwel het commando `expert` te gebruiken om het installatiesysteem op te starten, ofwel door de opstartparameter `priority=low` als opstartparameter toe te voegen. De expertmodus geeft u volledige controle over debian-installer.

In the text-based environment the use of a mouse is not supported. Here are the keys you can use to navigate within the various dialogs. The Tab or right arrow keys move “forward”, and the Shift-Tab or left arrow keys move “backward” between displayed buttons and selections. The up and down arrow select different items within a scrollable list, and also scroll the list itself. In addition, in long lists, you can type a letter to cause the list to scroll directly to the section with items starting with the letter you typed and use Pg-Up and Pg-Down to scroll the list in sections. The space bar selects an item such as a checkbox. Use Enter to activate choices.

Bij sommige diafoogvensters krijgt u bijkomende informatie om u te helpen. Indien er hulp beschikbaar is, wordt dit aangegeven in de onderste regel van het scherm door te vermelden dat u hulp kunt krijgen door op de toets F1 te drukken.

Foutmeldingen en logboekberichten worden omgeleid naar de vierde console. U kunt toegang krijgen tot deze console door op linker Alt-F4 te drukken (houd de linker Alt-toets vast terwijl u de F4-functietoets indrukt); u keert
HOOFDSTUK 6. HET DEBIAN...

6.2. VOORSTELLING VAN DE COMPONENTEN

terug naar het hoofdinstallatiescherm met linker Alt-F1.

Deze meldingen kunnen ook worden teruggevonden in /var/log/syslog. Na de installatie wordt dit log-
bestand gekopieerd naar /var/log/installer/syslog op uw nieuwe systeem. Andere installatiemeldingen
kunnen tijdens de installatie worden gevonden in /var/log/ en, nadat de computer opnieuw is opgestart met het
nieuwe systeem, in /var/log/installer/.

6.1.1 Het grafische installatiesysteem gebruiken

Het grafische installatiesysteem werkt eigenlijk op dezelfde manier als het tekstgeoriënteerde installatiesysteem, en
dus kunt u de rest van deze handleiding gebruiken om u te laten begeleiden bij het installatieproces.

Indien u liever het toetsenbord dan de muis gebruikt, dient u twee zaken te weten. Om een ingeklapte lijst (wordt
bijvoorbeeld toegepast bij de selectie van een land binnen een continent) uit te klappen, kunt u de toets + en-
gebruiken. Bij vragen waarbij meer dan een item geselecteerd kan worden (bijv. de selectie van taken), moet u nadat
u klaar bent met kiezen eerst met de toets Tab naar de knop Volgende gaan. Op de entertoets drukken werkt als een
schakelaar (selecteert/deselecteert het actieve element), maar activeert niet Volgende.

Indien er bij een dialoogvenster bijkomende hulp beschikbaar is, zult u een Help-knop zien. U krijgt de hulp te
zien door ofwel de knop te activeren of op de F1-toets te drukken.

Om naar een andere console over te schakelen, zult u ook de Ctrl-toets moeten gebruiken, zoals dat ook met het
X Window System het geval is. Indien u bijvoorbeeld wilt overschakelen naar VT2 (de eerste shell om te debuggen),
zult u de volgende toetsencombinatie gebruiken: Ctrl-linker Alt-F2. Het grafische installatiesysteem zelf bevindt zich
op VT5, en dus kunt u de toetsencombinatie linker Alt-F5 gebruiken om er naar terug te keren.

6.2 Voorstelling van de componenten

Hieronder vindt u een lijst van de componenten van het installatiesysteem met een korte beschrijving van het doel van
elke component. Details over het gebruik van een specifieke component staan in Paragraaf 6.3.

main-menu De component ‘main-menu’ (hoofdmenu) toont tijdens de installatie aan de gebruiker de lijst met com-
ponenten en start een component wanneer deze geselecteerd wordt. De vragen van het hoofdmenu hebben
medium (gemiddeld) als prioriteit. Dit betekent dat u het menu niet zult zien als u bij de installatie de prioriteit
heeft ingesteld op high (hoog) of critical (kritiek) (high is de standaardwaarde). Indien er echter een fout op-
treedt waarvoor uw interventie nodig is, zal de prioriteit die vragen moeten hebben vooraleer ze gesteld worden,
tijdelyk worden verlaagd om u in de gelegenheid te stellen het probleem op te lossen en in dat geval kan dus
het menu alsnog verschijnen.

U kunt het hoofdmenu bereiken door herhaaldelijk de knop Terug te selecteren, waardoor u stapsgewijs terug-
gaat uit de op dat moment actieve component.

localechooser Stelt de gebruiker in staat om lokalisatie-opties te selecteren voor de installatie en het geïnstalleerde
systeem: taal, land en taalgebied (locale). Het installatiesysteem zal meldingen weergeven in de gekozen taal,
tenzij de vertaling voor die taal niet compleet is. In dat geval kunnen sommige meldingen in het Engels zijn.

console-setup Toont een lijst van toetsenborden (toetsenbordindelingen) waaruit de gebruiker het model kan kiezen
dat overeenkomt met het zijne.

hw-detect Detecteert automatisch de meeste hardware in het systeem, inclusief netwerkkaarten, harde schijven en
PCMCIA.

cdrom-detect Zoekt een Debian installatiemedium en koppelt dit aan.

netcfg Configureert de netwerkverbindingen van de computer zodat die via het internet kan communiceren.

iso-scan Zoekt op harde schijven naar ISO-images (.iso-bestanden).

choose-mirror Toont een overzicht van spiegelservers die het archief van Debian aanbieden. De gebruiker kan hier
kiezen uit welke bron de pakketten voor de installatie opgehaald worden.

cdrom-checker Controleert de integriteit van installatiemedia. Op die manier kan een gebruiker zeker zijn dat het
installatie-image niet beschadigd is.

lowmem De component ‘lowmem’ probeert systemen met een beperkt werkgeheugen te detecteren en past vervolgens
verschillende trucs toe om niet strikt noodzakelijke onderdelen van debian-installer uit het werkgeheu-
gen te verwijderen (ten koste van enige functionaliteit).

38
HOOFDSTUK 6. HET DEBIAN…

6.3 INDIVIDUELE COMPONENTEN GEBRUIKEN

anna Het acroniem 'anna' staat voor "Anna's Not Nearly APT" (Anna is nog lang APT niet). Installeert pakketten die zijn opgehaald vanaf de gekozen spiegelserver of installatiemedia.

user-setup Stelt het wachtwoord in voor 'root' (wat de gebruikersnaam van de systeembeheerder is) en creëert een normale gebruiker.

clock-setup Zet de interne systeemklok juist en bepaalt of die al dan niet op de gecoördineerde wereldtijd (UTC) ingesteld moet staan.

tzsetup Selecteert de tijdzone op basis van de eerder geselecteerde locatie.

partman Stelt de gebruiker in staat om de met het systeem verbonden schijven in te delen, om op de geselecteerde partities bestandssystemen te creëren en om deze aan te koppelen aan de aankoppelpunten. Bovendien biedt 'partman' interessante functionaliteit zoals volledig geautomatiseerde schijfindeling en LVM-ondersteuning. Dit is het schijfindelingsgereedschap waaraan Debian de voorkeur geeft.

partitioner Stelt de gebruiker in staat om de met het systeem verbonden schijven in te delen. Er wordt een schijfindelingsprogramma gekozen dat past bij de architectuur van uw computer.

partconf Toont een overzicht van de partities en creëert bestandssystemen op de geselecteerde partities volgens de instructies van de gebruiker.

partman-lvm Helpt de gebruiker met het configureren van de **LVM** (Logical Volume Manager), het systeem dat logische volumes beheert.

partman-md Stelt de gebruiker in staat om een Software RAID (Redundant Array of Inexpensive Disks) te configureren. Een software RAID is veelal beter dan de goedkope (semi-hardwarematige) IDE-stuurapparaten voor RAID die op sommige nieuwe moederborden voorkomen.

base-installer Installeert de meest basale set pakketten die het mogelijk maakt om de computer onder Debian GNU/Linux te laten functioneren, nadat hij opnieuw opgestart werd.

apt-setup Verzorgt de configuratie van apt. Dit gebeurt grotendeels automatisch op basis van de media die voor het installatiesysteem gebruikt worden.

pkgsel Maakt gebruik van **tasksel** voor de selecte en de installatie van extra software.

os-prober Zoekt naar reeds op de computer aanwezige besturingssystemen en geeft deze informatie door aan de component 'bootloader-installer', die u in de mogelijkheid kan stellen om gevonden besturingssystemen toe te voegen aan het startmenu van de bootloader. Op deze manier kan de gebruiker tijdens het opstarten van de computer op een eenvoudige manier kiezen welk besturingssysteem moet worden gestart.

bootloader-installer De verschillende programma's voor het installeren van een 'bootloader' (bootloader), installeren allemaal een bootloaderprogramma op de harde schijf. Een dergelijk programma is noodzakelijk om de computer te laten opstarten met Linux zonder een USB-stick of CD te gebruiken. Veel bootloaders bieden de gebruiker de mogelijkheid om telkens wanneer de computer wordt opgestart te kiezen welk van de verschillende besturingssystemen gebruikt moet worden.

shell Stelt de gebruiker in staat vanuit het menu of op de tweede console een shell te starten.

save-logs Stelt de gebruiker in staat om informatie op een USB-stick, via het netwerk, op harde schijf of op een ander medium op te slaan wanneer zich problemen voordoen. Hiermee kan later een nauwkeurig verslag van problemen met het installatiesysteem worden gestuurd aan de ontwikkelaars van Debian.

6.3 Individuele componenten gebruiken

In dit onderdeel beschrijven we elke component van het installatiesysteem in detail. De componenten zijn gegroepeerd in stadia die herkenbaar zouden moeten zijn voor gebruikers. Ze worden voorgesteld in de volgorde waarin ze tijdens de installatie aan bod komen. Merk op dat niet alle modules voor elke installatie gebruikt zullen worden; welke modules daadwerkelijk worden gebruikt is afhankelijk van de door u gebruikte installatiemethode en van uw apparatuur.
6.3.1 Het instellen van het installatiesysteem van Debian en het configureren van de hardware

Laten we er vanuit gaan dat het Debian installatiesysteem is opgestart en dat u het eerste scherm ervan voor u heeft. Op dat moment is de functionaliteit van debian-installer nog vrij beperkt. Het weet nog niet veel over uw apparatuur, over welke taal u verkliest en zelfs niet over de taken die het moet uitvoeren. Maak u geen zorgen. Want debian-installer is behoorlijk slim. Het kan proberen uw apparatuur automatisch te detecteren, het kan de rest van zijn componenten lokaliseren en zichzelf opwaarderen tot een volwaardig installatiesysteem. U zult echter debian-installer nog altijd moeten helpen met enige informatie die het niet automatisch kan bepalen (zoals de selectie van de taal en de toetsenbordindeling die u verkliest of van de gewenste spiegelserver).

U zult merken dat debian-installer tijdens dit stadium verschillende keren een hardwareherkenning uitvoert. De eerste keer is dit specifiek gericht op de apparatuur (bijvoorbeeld uw CD-station of netwerkkaart) die nodig is voor het laden van componenten van het installatiesysteem. Omdat bij deze eerste keer mogelijk nog niet alle stuurprogramma’s beschikbaar zijn, moet de hardwareherkenning later in het proces worden herhaald.

Tijdens de hardwareherkenning zal debian-installer nagaan of er stuurprogramma’s voor uw hardware zijn waarvoor eventueel firmware geladen moet worden. Als er firmware nodig is die niet beschikbaar is, zal een dialoogvenster getoond worden dat de mogelijkheid biedt om de ontbrekende firmware vanaf een verwisselbaar medium te laden. Zie Paragraaf 6.4 voor nadere details.

6.3.1.1 Controle van het beschikbaar geheugen / modus voor weinig geheugen

Een van de eerste dingen die debian-installer doet, is het controleren van het beschikbaar geheugen. Als de hoeveelheid beschikbaar geheugen beperkt is, zal deze component een aantal wijzigingen aanbrengen in het installatietoeproces waardoor u hopelijk in staat zult zijn om Debian GNU/Linux op uw systeem te installeren.

De eerste maatregel die genomen wordt om het geheugenproces te beperken is het uitschakelen van de vertaling. Dit betekent dat de installatie enkel nog in het Engels kan verlopen. Natuurlijk kunt u na de installatie nog steeds de lokale taal voor uw installatiesysteem instellen.

Als dit nog steeds onvoldoende is, zal het installatiesysteem het geheugenproces nog verder trachten te vermin- deren door enkel die componenten te laden die nodig zijn om een basale installatie uit te voeren. Dit beperkt de functionaliteit van het installatiesysteem. U zult de gelegenheid krijgen om bijkomende componenten handmatig te laden, maar u moet er zeker van zijn dat elke geselecteerde component ook extra geheugen zal gebruiken en dat dit de installatie kan laten mislukken.

Indien het installatiesysteem in de modus voor weinig geheugen opereert, wordt aangeraden om een relatief grote partitie voor wisselgeheugen (swap) aan te maken (64–128MB). De wisselgeheugenpartitie zal als virtueel geheugen gebruikt worden en dus de hoeveelheid geheugen die voor het systeem beschikbaar is, verhogen. Het installatiesysteem zal zo vroeg mogelijk in het installatieproces de wisselgeheugenpartitie activeren. Merk op dat intens gebruik van het wisselgeheugen de performantie van uw systeem zal verminderen en veel hardeschijfactiviteit zal genereren.

Het is mogelijk dat uw systeem ondanks deze maatregelen toch nog vastloopt, dat er zich onverwachte fouten voordoen of dat bepaalde processen door de kernel vernietigd worden omdat het systeem geen vrij geheugen meer heeft (op VT4 en in het syslog-bestand zal dit resulteren in meldingen over “Out of memory” (te weinig geheugen)).

Er werd bijvoorbeeld gerapporteerd dat in de modus voor weinig geheugen bij onvoldoende wisselgeheugen het aanmaken van een groot ext3-bestandssysteem mislukt. Indien een grotere wisselgeheugenpartitie geen soelaas biedt, moet u proberen om het bestandssysteem als een ext2-bestandssysteem (wat een essentiële component van het installatiesysteem is) aan te maken. Na de installatie kunt u een ext2-partitie naar ext3 omzetten.

Het is mogelijk om het installatiesysteem te dwingen om een strengere norm voor weinig geheugen te hanteren dan het standaard geneigd is om te doen op basis van het beschikbaar geheugen. Daarvoor gebruikt u de opstartparameter “lowmem” zoals in Paragraaf 5.3.2 beschreven wordt.

6.3.1.2 Lokalisatiekeuzes maken

Het algemeen zullen de eerste vragen die u gesteld worden, betrekking hebben op de lokalisatie voor zowel de installatie als het geïnstalleerde systeem. De lokalisatie-keuzes betreffen taal, land en taalgebied (locale).

De taal die u kiest zal worden gebruikt tijdens het vervolg van de installatie, tenminste als een vertaling van de verschillende dialoegen beschikbaar is. Als voor de geselecteerde taal geen geldige vertaling beschikbaar is, zal het installatiesysteem terugvallen op Engels.

De geselecteerde geografische locatie (een land in de meeste gevallen) zal later in het installatieproces worden gebruikt om de correcte tijdzone te selecteren en een voor dat land geschikte Debian spiegelserver. Taal en land samen zullen helpen bij het bepalen wat het standaard taalgebied (locale) voor uw systeem is en bij de selectie van de correcte toetsenbordindeling.
Allereerst zal worden gevraagd welke taal uw voorkeur heeft. De naam van de taal wordt zowel in het Engels (links) als in de taal zelf (rechts) weergegeven; de naam van de rechterkant wordt ook gebruikt in het gepaste script voor die taal. De lijst wordt gesorteerd op de Engelse namen. Bovenaan de lijst vindt u een extra optie waarmee u, in plaats van een taal, de “C”-locale kunt selecteren. Het kiezen van de “C”-locale heeft tot gevolg dat de installatie in het Engels zal plaatsvinden; daarnaast zal het geïnstalleerde systeem geen ondersteuning voor lokalisatie hebben, aangezien het pakket locales niet zal worden geïnstalleerd.

Nadien zal u gevraagd worden uw geografische locatie te selecteren. Als u een taal heeft geselecteerd die als officiële taal wordt erkend in meer dan één land¹, zal een keuzelijst worden getoond met daarin alleen die landen. Om een land te kiezen dat niet in de lijst voorkomt, kiest u de optie ander (de laatste keuzemogelijkheid). U krijgt dan een keuzelijst met landen die behoren tot dat continent.

Als met de taal slechts één land geassocieerd wordt, zult u een keuzelijst krijgen met de landen van het continent of de regio waar dat land deel van uitmaakt, waarbij dat specifieke land reeds als standaard geselecteerd is. Gebruik de optie Terug om een land uit een ander continent te selecteren.

OPMERKING

Het is belangrijk om het land waar u woont of waar u verblijft te selecteren, omdat op basis daarvan de tijdzone voor het geïnstalleerde systeem geconfigureerd wordt.

Indien u een combinatie van land en taal selecteerde waarvoor geen taalgebied gedefinieerd is en er verschillende taalgebieden zijn met die taal, dan zal het installatiesysteem u laten kiezen welke van die taalgebieden u verkiest als standaard voor het geïnstalleerde systeem². In alle andere gevallen zal op basis van de geselecteerde taal en het geselecteerde land een standaardtaalgebied geselecteerd worden.

Elk taalgebied dat als standaard geselecteerd wordt op de in de vorige paragraaf beschreven manier, zal UTF-8 als tekencodering gebruiken.

Indien u instelde dat tijdens de installatie ook vragen met een lage prioriteit moeten gesteld worden, zult u de mogelijkheid hebben om bijkomende taalgebieden te selecteren en ze voor het geïnstalleerde systeem te laten aanmaken, met inbegrip van zogenaamde “oudere” taalgebieden³. Indien u dit doet, zal u gevraagd worden welk van de geselecteerde taalgebieden op het geïnstalleerde systeem als standaard beschouwd moet worden.

6.3.1.3 Een toetsenbord selecteren

De indeling van toetsenborden is vaak aangepast aan de tekens die in een taal worden gebruikt. Selecteer een indeling die overeenkomt met het toetsenbord dat u gebruikt. Als uw toetsenbordindeling niet in de lijst voorkomt, kies dan de indeling die het best in de buurt komt. U kunt, nadat de installatie is voltooid, een toetsenbordindeling kiezen uit een meer uitgebreide selectie (geef hiervoor, nadat u de installatie heeft afgerond, als systeembeheerder het commando dpkg-reconfigure keyboard-configuration).

Verplaats de selectie naar het toetsenbord dat u wilt selecteren en druk op Enter. Gebruik de pijltjestoetsen om de selectie te verplaatsen — zij zitten op alle toetsenbordindelingen op dezelfde plaats en zijn dus onafhankelijk van de toetsenbordconfiguratie.

6.3.1.4 Het ISO-image met het Debian installatiesysteem opzoeken

Als u de hd-media-installatiemethode gebruikt, komt er een moment waarop u het ISO-image met het Debian installatiesysteem zult moeten lokaliseren en aankoppelen om het restant van de installatiebestanden te laden. Dit is de taak van de component iso-scan.

Allereerst zal iso-scan automatisch alle blok-apparaten (d.w.z. partities en logische volumes) met daarop een bekend bestandssysteem, aankoppelen en deze achtereenvolgens doorzoeken op bestanden met een extensie .iso (en trouwens ook .ISO). Merk op dat tijdens de eerste poging alleen de hoogste twee niveau’s van de mapstructuur zullen worden doorzocht (d.w.z. dat bijvoorbeeld /willekeurig.iso en /data/willekeurig.iso gevonden zullen worden, maar bijvoorbeeld niet /data/tmp/willekeurig.iso). Nadat een ISO-image gevonden werd,

¹In technische termen: indien voor die taal meerdere taalgebieden (locales) bestaan met verschillende landcodes.

²Als u instelde dat ook vragen van gemiddelde of lage prioriteit gesteld moeten worden, kunt u steeds uw voorkeurstaalgebied kiezen uit die welke voor de geselecteerde taal bestaan (als er meer dan één bestaat).

³Een oud (of verouderd) taalgebied is een taalgebied dat geen UTF-8 gebruikt, maar een van de oudere standaarden voor tekencodering, zoals ISO 8859-1 (gebruikt door West-Europese talen) of EUC-JP (gebruikt door het Japans).
controleert iso-scan de inhoud ervan om na te gaan of het image een geldig Debian ISO-image is of niet. In het eerste geval zijn we klaar, in het tweede geval zoekt iso-scan verder naar een image.

Als de eerste poging om een ISO-installatie-image te vinden faalt, zal iso-scan u vragen of u een meer uitgebreide zoektocht wilt laten uitvoeren. Tijdens deze poging zal niet alleen in de hoogste mappen worden gezocht, maar wordt echt het volledige bestandssysteem doorlopen.

Als iso-scan uw ISO-installatie-image niet kan vinden, start de computer dan opnieuw met uw oorspronkelijk besturingssysteem en controleer of het image een correcte naam heeft (dus eindigend op .iso), of het staat op een bestandssysteem dat door debian-installer wordt herkend en of het niet beschadigd is (verifieer de checksum). Ervaren gebruikers van Unix kunnen deze handelingen eventueel uitvoeren op de tweede console zonder het systeem opnieuw op te starten.

Merk op dat de partitie (of schijf) waarop het ISO-image staat tijdens het installatieproces niet hergebruikt kan worden, aangezien deze gebruik wordt door het installatieprogramma. Om hieraan een mouw te passen en in de veronderstelling dat u over voldoende systeemgeheugen beschikt, kan het installatieprogramma het ISO-image naar het RAM-geheugen kopiëren voordat het aangekoppeld wordt. Dit wordt geregeld door de debconf-vraag met lage prioriteit iso-scan/copy_iso_to_ram (deze wordt enkel gesteld als aan de geheugenvereisten voldaan wordt).

6.3.1.5 Het netwerk configureren

Als u met deze fase begint en het systeem detecteert dat u meer dan één netwerkkaart heeft, zal u worden gevraagd welke van de apparaten u wilt gebruiken voor uw primaire netwerkinterface, dat wil zeggen, die welke u wilt gebruiken voor de installatie. De overige interfaces zullen op dit punt niet geconfigureerd worden. U kunt bijkomende interfaces configureren nadat de installatie is voltooid; zie hiervoor de man-pagina interfaces(5).

6.3.1.5.1 Automatische netwerkconfiguratie

Standaard zal debian-installer proberen uw netwerkinterface in de mate van het mogelijke automatisch in te stellen. Er zijn verschillende redenen waarom dit kan mislukken, variërend van het niet aangesloten zijn van de netwerkkabel tot het ontbreken van de nodige infrastructuur om een automatische configuratie mogelijk te maken. Als het fout loopt, kunt u voor nadere diagnose de foutmeldingen op de vierde console raadplegen. In elk geval zal u worden gevraagd of u een nieuwe poging wilt wagen of dat u het netwerk handmatig wilt configureren. Soms kunnen de netwerkdiesten die instaan voor de automatische configuratie traag reageren, en als u zeker weet dat alles aanwezig is, kunt u dus gewoon de nieuwe poging tot automatisch configureren starten. Indien het automatisch configureren blijft mislukken, kun u ter vervanging opteren voor de handmatige configuratie.

6.3.1.5.2 Handmatige netwerkconfiguratie

Bij een handmatige configuratie van de netwerkinterface, zal u een aantal vragen worden gesteld over uw netwerk, te weten: IP-adres, Netwerkmasker, Gateway, Adressen van naamservers, en een Computernaam (host-naam). Als u beschikt over een draadloos netwerkapparaat, zal u worden gevraagd naar het draadloos ESSID ("de naam van het draadloos netwerk") en een WEP-sleutel of een WPA/WPA2 wachtwoordzin. Voer de antwoorden uit Paragraaf 3.3 in.

OPMERKING

De volgende technische details kunnen mogelijk van pas komen (of niet). Het programma gaat ervan uit dat het IP-adres van het netwerk het resultaat is van een bitsgewijze AND-operatie van het IP-adres van uw systeem met het netwerkmasker. Het standaard broadcast-adres wordt berekend als het resultaat van een bitsgewijze OR-operatie van het IP-adres van uw systeem met de bitsgewijze NOT van het netwerkmasker. Ook zal het een veronderstelling maken voor uw gateway. Gebruik de voorgestelde standaardwaarden als u de juiste waarden voor de antwoorden niet kunt vinden — u kunt ze, indien nodig, altijd nog wijzigen nadat de installatie is afgerond door het bestand /etc/network/interfaces te wijzigen.
6.3.1.5.3 IPv4 en IPv6

Autoconfiguratie voor IPv4 gebeurt via DHCP (Dynamic Host Configuration Protocol), een protocol voor de dynamische netwerkconfiguratie van de computer. De autoconfiguratie voor IPv6 ondersteunt statusloze autoconfiguratie met NDP (Neighbor Discovery Protocol, met inbegrip van recursieve toewijzing van een DNS server (RDNSS)), statusloze autoconfiguratie via DHCPv6 en gemengde statusloze/statusgeoriënteerde autoconfiguratie (adresconfiguratie via NDP, bijkomende parameters via DHCPv6).

6.3.2 Gebruikers en wachtwoorden instellen

Juist voor de klok ingesteld wordt, zal het installatiesysteem u in staat stellen om het "root"-account (het systeembeheersersaccount) en/of een account voor de eerste gebruiker in te stellen. Accounts voor andere gebruikers kunnen worden aangemaakt nadat de installatie is afgerond.

6.3.2.1 Het wachtwoord voor root instellen

Het root-account wordt ook wel de super-user genoemd; het is een login die alle beveiligingen op uw systeem omzeilt. Het root-account dient alleen te worden gebruikt voor systeembeheer en altijd gedurende de kortst mogelijke tijd.

Elk wachtwoord dat u aanmaakt zou uit tenminste 6 tekens moeten bestaan en zou zowel hoofd- als kleine letters en ook leestekens moeten bevatten. Wees extra zorgvuldig als u het wachtwoord voor root instelt, aangezien dit account zo krachtig is. Vermijd woorden die voorkomen in woordenboeken of het gebruik van persoonlijke gegevens die eenvoudig kunnen worden geraden.

Wees erg op uw hoede als iemand u ooit vertelt dat hij het wachtwoord van uw root-account nodig heeft. Normaal gesproken zou u het wachtwoord voor uw root-account nooit mogen onthullen, tenzij u een machine beheert die meer dan één systeembeheerder heeft.

Indien u hier geen wachtwoord opgeeft voor de gebruiker "root", zal dit account uitgeschakeld worden, maar zal later het pakket sudo geïnstalleerd worden om het uitvoeren van beheertaken op het nieuwe systeem mogelijk te maken. Standaard zal de eerste gebruiker die aangemaakt wordt op het systeem, de toelating krijgen om het commando sudo te gebruiken om gebruiker root te worden.

6.3.2.2 Een gewone gebruiker aanmaken

Het systeem zal u op dit punt ook vragen of u een gewoon gebruikersaccount wilt aanmaken. Dit account dient om u op het systeem aan te melden. Het is niet de bedoeling dat u het root-account gebruikt voor dagelijks gebruik of als uw persoonlijke login.

Waarom niet? Wel, één reden om het gebruik van de privileges van root te vermijden, is dat het zeer eenvoudig is om als root onherstelbare schade aan te richten. Een andere reden is dat u erin geluisd zou kunnen worden om een programma uit te voeren met daarin verborgen een Trojaans paard — een Trojaans paard is een programma dat misbruik maakt van uw rechten als super-user om achter uw rug de beveiliging van uw systeem te ontwrichten. In elk degelijk boek over systeembeheer voor Unix wordt meer uitgebreid ingegaan op dit onderwerp — overweeg om er één te lezen als dit nieuw voor u is.

U zult eerst worden gevraagd om de volledige naam van de gebruiker in te voeren. Vervolgens wordt u gevraagd naar een naam voor het gebruikersaccount; in het algemeen is uw voornaam (de standaardwaarde) of iets dergelijks afdoende. Tot slot zal een wachtwoord voor dit account worden gevraagd.

Als u op enig moment na de installatie nog een ander gebruikersaccount wilt aanmaken, kunt u het commando adduser gebruiken.

6.3.3 De klok en de tijdzone instellen

Het installatiesysteem zal allereerst proberen om verbinding te maken met een tijdsserver op het Internet (gebruikmakend van het NTP-protocol) om op basis daarvan de systeemtijd juist in te stellen. Als dit mislukt, zal het installatiesysteem ervan uitgaan dat de datum en tijd die het tijdens het opstarten van de interne systeemklok kreeg, juist zijn. Het is niet mogelijk om tijdens de installatie de systeemtijd handmatig in te stellen.

Afhankelijk van de eerder in het installatieproces geselecteerde locatie, kan een keuzelijst getoond worden met tijdzones die relevant zijn voor die locatie. Als er voor uw locatie slechts één tijdzone bestaat en u een standaardinstallatie uitvoert, zal u niets worden gevraagd en zal het systeem ervan uitgaan dat dit de correcte tijdzone is.
HOOFDSTUK 6. HET DEBIAN ...

6.3. INDIVIDUELE COMPONENTEN GEBRUIKEN

In expertmodus of bij een installatie waarbij ook vragen gesteld worden die een prioriteit medium hebben, zult u de extra mogelijkheid hebben om “Coordinated Universal Time” (UTC - de gecoördineerde wereldtijd) als tijdzone te selecteren.

Als u, om wat voor reden dan ook, voor het geïnstalleerde systeem een tijdzone wilt instellen die niet past bij de geselecteerde locatie, dan zijn er twee opties.

1. De meest eenvoudige optie is om gewoon een andere tijdzone in te stellen nadat de installatie is afgerond en u uw nieuwe systeem heeft opgestart. Het commando hiervoor is:

 # dpkg-reconfigure tzdata

2. Een alternatieve mogelijkheid is om de tijdzone helemaal aan het begin van de installatie op te geven door de parameter **time/zone=waarde** mee te geven bij het opstarten van het installatiesysteem. De waarde dient uiteraard een geldige tijdzone te zijn, zoals **Europe/Amsterdam** of **UTC**.

Voor geautomatiseerde installaties kan de tijdzone op om het even welke gewenste waarde worden ingesteld door gebruik te maken van voorconfiguratie (preseeding).

6.3.4 Schijfindeling en selectie van aankoppelpunten

Op dit punt, nadat voor de laatste keer hardwareherkenning heeft plaatsgevonden, heeft **debian-installer** zijn volledige sterkte bereikt: aangepast aan de behoeften van de gebruiker en klaar voor het echte werk. Zoals de titel van dit onderdeel aangeeft, is de voornaamste taak van de volgende componenten het indelen van uw harde schijven, het creëren van bestandssystemen en het toewijzen van aankoppelpunten. Facultatief kunnen nauw gerelateerde zaken als RAID, LVM of versleutelde partities worden geconfigureerd.

Als u weinig ervaring heeft met het indelen van schijven of gewoon meer gedetailleerde informatie wenst, kunt u Bijlage C raadplegen.

Allereerst zal u de gelegenheid worden geboden om ofwel een gehele harde schijf of de beschikbare vrije ruimte op een schijf automatisch in te delen. Dit wordt ook “begeleide” schijfindeling genoemd. Als u de schijf niet automatisch wenst in te delen, kies dan de optie Schijfindeling handmatig uitvoeren uit het menu.

6.3.4.1 Ondersteunde schijfindelingsopties

Het schijfindelingsprogramma dat in **debian-installer** gebruikt wordt, is behoorlijk veelzijdig. Het laat toe om uiteenlopende schijfindelingsschema’s, verschillende partitietabellen en bestandssystemen en gespecialiseerde blok-apparaten te gebruiken.

Welke opties precies beschikbaar zijn, hangt hoofdzakelijk af van de architectuur, maar ook nog van andere factoren. Op systemen met een beperkt intern geheugen bijvoorbeeld, kunnen bepaalde opties niet beschikbaar zijn. Wat als standaard geldt, kan ook verschillend zijn. Het type partitietabel dat standaard gebruikt wordt, kan bijvoorbeeld anders zijn voor harde schijven met een grote opslagcapaciteit dan voor kleinere harde schijven. Sommige opties kunnen enkel aangepast worden als men een installatie uitvoert met een gemiddelde (medium) of lage (low) debconf-prioriteit (waarbij dus ook de vragen die een gemiddelde of lage prioriteit hebben, gesteld worden). Bij een hogere prioriteit zullen redelijke standaardwaarden gehanteerd worden.

Het installatiesysteem ondersteunt verschillende gespecialiseerde vormen van schijfindeling en gebruik van opslagapparatuur, die in veel gevallen met elkaar gecombineerd kunnen worden.

- **Logical Volume Management (LVM)** - logisch volumebeheer
- **Software RAID**
 Ondersteunde RAID-niveaus zijn 0, 1, 4, 5, 6 en 10.
- **Encryptie**
- **Multipath** (experimenteel)
 Raadpleeg onze Wiki voor informatie. De ondersteuning voor multipath (een techniek die meerdere paden tussen CPU en opslagapparaat gebruikt) is momenteel enkel beschikbaar als deze geactiveerd werd bij het opstarten van het installatiesysteem.

De volgende bestandssystemen worden ondersteund.
6.3. INDIVIDUELE COMPONENTEN GEBRUIKEN

• ext2r0, ext2, ext3, ext4
 Meestal is ext4 geselecteerd als standaard bestandssysteem. Voor /boot-partities zal bij een begeleide schijfindeling ext2 als standaard geselecteerd zijn.

• jfs (niet op alle architecturen beschikbaar)

• xfs (niet op alle architecturen beschikbaar)

• reiserfs (facultatief; niet op alle architecturen beschikbaar)
 Ondersteuning voor het Reiser bestandssysteem is niet langer standaard beschikbaar. Als het installatiesysteem uitgevoerd wordt met een gemiddelde (medium) of lage (low) debconf-prioriteit (waardoor het installatiesysteem ook vragen met een gemiddelde of lage prioriteit stelt), kan die ondersteuning geactiveerd worden door de component partman-reiserfs te selecteren. Enkel versie 3 van het bestandssysteem wordt ondersteund.

• jffs2
 Wordt op sommige systemen gebruikt om flashgeheugen te lezen. Het is niet mogelijk om nieuwe jffs2-partities aan te maken.

• FAT16, FAT32

6.3.4.2 Begeleide schijfindeling

Als u kiest voor begeleide schijfindeling, heeft u drie mogelijke opties: de partities direct op de harde schijf aanmaken (de klassieke methode), of ze aanmaken met behulp van logisch volumebeheer (LVM), of ze aanmaken met behulp van geëncrypteerde LVM⁴.

OPMERKING

De optie om gebruik te maken van (geëncrypteerde) LVM is mogelijk niet op alle architecturen beschikbaar.

Als u LVM of geëncrypteerde LVM gebruikt, zal het installatiesysteem de meeste partities aanmaken binnenin één grote partitie; het voordeel van deze methode is dat de grootte van de partities binnen die overkoepelende partitie later relatief eenvoudig kan worden gewijzigd. Als het een geëncrypteerde LVM betreft, zal de grote partitie niet leesbaar zijn zonder dat men de unieke sleutel kent. Op die manier worden uw (persoonlijke) gegevens extra beveiligd.

Als u geëncrypteerde LVM gebruikt, zal het installatiesysteem de schijf ook automatisch wissen door er willekeurige data op te schrijven. Dit verhoogt de beveiliging nog meer (omdat het daardoor niet mogelijk is uit te maken welke delen van de schijf in gebruik zijn en het ook garandeert dat elk spoor van een eerdere installatie gewist wordt), maar afhankelijk van de grootte van uw schijf kan dit wat tijd in beslag nemen.

OPMERKING

Indien u kiest voor begeleide schijfindeling met LVM of geëncrypteerde LVM, moeten bepaalde wijzigingen aan de partitietafel naar de gekozen schijf geschreven worden tijdens het opzetten van LVM. Deze wijzigingen weren effectief alle gegevens die momenteel op de geselecteerde harde schijf staan en ze later herstellen zal niet mogelijk zijn. Het installatiesysteem zal u evenwel om bevestiging vragen vooraleer die wijzigingen naar schijf geschreven worden.

Indien u kiest voor de begeleide schijfindeling (ofwel een klassieke schijfindeling ofwel een schijfindeling met (geëncrypteerde) LVM) van een volledige schijf, zal u eerst gevraagd worden de schijf te selecteren die u wenst te gebruiken. Ga na of al uw schijven vermeld worden en als u verschillende schijven heeft, moet u er op letten de juiste te selecteren. De volgorde waarin ze opgesomd staan kan anders zijn dan u gewoon bent. De grootte van de schijven kan u helpen om ze te herkennen.

⁴Het installatiesysteem zal de LVM volumegroep encrypteren met behulp van een 256 bits AES-sleutel en maakt gebruik van de ondersteuning voor “dm-crypt” in de kernel.
Alle gegevens op de geselecteerde schijf zullen uiteindelijk verloren gaan, maar er zal u altijd om bevestiging gevraagd worden bij het maken van veranderingen vooraleer ze op de schijf toegepast worden. Indien u de klassieke schijfmethode selecteerde, zult u tot op het einde de kans hebben om alle wijzigingen ongedaan te maken. Indien u (geëncrypteerd) LVM gebruikt is dit niet mogelijk.

Vervolgens zult u kunnen kiezen uit de schema’s die in de onderstaande tabel weergegeven worden. Elk van deze schema’s heeft zijn voor- en nadelen, waarvan een aantal wordt besproken in Bijlage C. Als u twijfelt, kies dan de eerste optie. Merk op dat begeleide schijfmethode een zekere minimale vrije schijfruimte nodig heeft om te kunnen werken. Als u niet tenminste ongeveer 1GB ruimte (afhankelijk van het gekozen schema) ter beschikking kunt stellen, zal de begeleide schijfmethode mislukken.

<table>
<thead>
<tr>
<th>Schijfmethode</th>
<th>Minimalruimte</th>
<th>Aangemaakte partities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle bestanden op één partitie</td>
<td>600MB</td>
<td>/, swap</td>
</tr>
<tr>
<td>Afzonderlijke partitie /home</td>
<td>500MB</td>
<td>/, /home, swap</td>
</tr>
<tr>
<td>Afzonderlijke partitie /home, /var en /tmp</td>
<td>1GB</td>
<td>/, /home, /var, /tmp, swap</td>
</tr>
</tbody>
</table>

Als u kiest voor begeleide schijfmethode met gebruik van (geëncrypteerd) LVM, dan zal het installatiesysteem ook een afzonderlijke /boot partitie aanmaken. Alle andere partitie, met inbegrip van de partitie voor wisselgeheugen (swap), zullen worden aangemaakt binnenin de LVM-partitie.

Indien u opstartte in EFI-modus dan zal er bij de begeleide schijfmethode een extra partitie, geformateerd als een opstartbaar FAT32-bestandssysteem, aangemaakt worden voor de EFI-bootloader. Deze partitie wordt een EFI System Partition (ESP) genoemd. Het formattingsscherm bevat ook een extra item voor het manueel instellen van een partitie als een ESP.

Nadat u een schema heeft geselecteerd, zal op het volgende scherm de nieuwe partitietabel worden getoond met daarbij indicaties of en hoe deze geformateerd zullen worden en op welke aankoppelpunten ze aange-kooppunt zullen worden.

De lijst met partities zou er zo uit kunnen zien:

```
SCSI1 (0,0,0) (sda) - 6.4 GB WDC AC36400L
  #1 primary 16.4 MB B f ext2 /boot
  #2 primary 551.0 MB swap swap
  #3 primary 5.8 GB ntfs
  pri/log 8.2 MB VRJIE RUIMTE

SCSI2 (1,0,0) (sdb) - 80.0 GB ST380021A
  #1 primary 15.9 MB ext3
  #2 primary 996.0 MB fat16
  #3 primary 3.9 GB xfs /home
  #5 logical 6.0 GB f ext4 /
  #6 logical 1.0 GB f ext3 /var
  #7 logical 498.8 MB ext3
```

Dit voorbeeld toont twee harde schijven die zijn opgedeeld in verschillende partities; de eerste schijf heeft nog vrije ruimte. Elke partitieregel bestaat uit partitienummer, type, grootte, facultatieve opties, bestandssysteem en het aankoppelpunt (eventueel). Merk op dat de hier weergegeven indeling niet kan worden gerealiseerd met behulp van de begeleide schijfmethode. Zij toont echter wel de flexibiliteit die kan worden bereikt met handmatige schijfmethode.

Hiertoe is de begeleide schijfmethode voltooid. Als u tevreden bent met de gegenereerde partitietabel, kunt u de menuoptie Schijfmethode afronden en veranderingen naar schijf schrijven kiezen om de nieuwe partitietabel te implementeren (zoals beschreven wordt aan het einde van dit onderdeel). Als u nog niet tevreden bent, kunt u kiezen voor Veranderingen aan partities ongedaan maken en de begeleide schijfmethode noogmaals uitvoeren of de voorgestelde indeling wijzigen zoals hieronder beschreven wordt voor de handmatige schijfmethode.

6.3.4.3 Handmatige schijfmethode

Als u kiest voor handmatige schijfmethode, zal een vergelijkbaar scherm worden getoond als hiervoor weergegeven, maar dan met uw bestaande partitietabel en nog zonder aankoppelpunten. Hoe handmatig de partitietabel kunt u opstellen en het gebruik van partities door uw nieuwe Debian systeem worden in de rest van dit onderdeel behandeld.

Als u een nog maagdelijke schijf zonder partities of vrije ruimte selecteer, zal u gevraagd worden of een nieuwe partitietabel aangemaakt moet worden (dezelfde is nodig om partities te kunnen aanmaken). Daarna zou in de tabel onder de geselecteerde schijf een nieuwe regel met als titel “VRIJE RUIMTE” (FREE SPACE) moeten verschijnen.
Als u vrije ruimte selecteert, krijgt u de gelegenheid om een nieuwe partitie te creëren. U zult een korte serie vragen over grootte, type (primair of logisch) en positie (aan het begin of het einde van de vrije ruimte) moeten beantwoorden. Daarna krijgt u een gedetailleerd overzicht van de nieuwe partitie. Het belangrijkste element is Gebruiken als: (Use as:), waarin vastgelegd wordt of er op de partitie een bestandssysteem geplaatst wordt, of ze gebruikt zal worden als wisselgeheugen, voor software RAID, voor LVM, als een geïncodeerd bestandssysteem of helemaal niet gebruikt zal worden. Andere instellingen betreffen aankoppelpunt, aankoppelopties en de indicatie of de partitie opstartbaar moet zijn. Welke instellingen getoond worden, is afhankelijk van waarvoor de partitie gebruikt zal worden. Als de standaardwaarden u niet bevalen, kunt u ze naar behoefte wijzigen. Door bijvoorbeeld de optie Gebruiken als: te selecteren, kunt u een ander bestandssysteem voor de partitie selecteren, inclusief de mogelijkheid om de partitie te gebruiken voor wisselgeheugen (swap), software RAID, LVM of om de partitie helemaal niet te gebruiken. Als u tevreden bent met de nieuwe partitie kiest u Klaar met het instellen van de partitie waarna u terugkeert naar het hoofdscherm van partman.

Als u een instelling van een partitie wilt wijzigen, selecteert u gewoon die partitie waarna u in het configuratiemenu voor de partitie komt. Dit is hetzelfde scherm als datgene voor het aanmaken van een nieuwe partitie en u kunt dus dezelfde instellingen wijzigen. Iets wat mogelijk niet meteen duidelijk is, is dat u de grootte van een partitie kunt wijzigen door het item dat de grootte van de partitie aangeeft, te selecteren. Bestandssystemen waarvan bekend is dat ze werken, zijn in ieder geval fat16, fat32, ext2, ext3 en swap. Dit menu stelt u ook in staat om een partitie te wijzigen door het item dat de grootte van de partitie aangeeft, te selecteren. Bestandssystemen waarvan bekend is dat ze werken, zijn in ieder geval fat16, fat32, ext2, ext3 en swap. Dit menu stelt u ook in staat om een partitie te verwijderen.

Zorg ervoor dat u tenminste twee partities aansluit: één voor hetroot-bestandssysteem, het basisbestandssysteem, (dat aangekoppeld moet worden aan het aankoppelpunt /) en één voor swap, het wisselgeheugen. Als u vergeet om het basisbestandssysteem aan te koppelen, zal partman u niet voort laten doen tot dit probleem is verholpen.

De functionaliteit van partman kan worden vergroot met behulp van modules voor het installatiesysteem, maar die functionaliteit is afhankelijk van de architectuur van uw systeem. Als u dus niet alle beschreven mogelijkheden terugvindt, controleer dan of alle vereiste modules (zoals partman-ext3, partman-xfs of partman-lvm) zijn geladen.

Als u tevreden bent met het eindresultaat van de schijfinvalidization, kiest u in het schijfinvalidizationmenu de optie Schijfinvalidization afronderen en veranderingen naar schijf schrijven. Daarna zal een overzicht worden getoond van de aan de schijven aangebrachte wijzigingen en zal u worden gevraagd om te bevestigen dat de gewenste bestandssystemen wel degelijk moeten aangemaakt worden.

6.3.4.4 Meervoudige schijfapparaten configureren (Software RAID)

Als u in uw computer meer dan één harde schijf⁵ heeft, kunt u partman-md gebruiken om uw schijfapparaten te configureren met betere prestaties en/of grotere gegevensbetrokkenzaamheid als doel. Het resultaat wordt een Multidisks Device (MD) genoemd, een meervoudig schijfapparaat, of naar zijn meest bekende variant, een Software RAID).

MD is in feite niets meer dan een verzameling partities op verschillende harde schijven die worden gecombineerd om gezamenlijk één logisch apparaat te vormen. Dit apparaat kan vervolgens worden gebruikt als een gewone partitie (dat wil zeggen dat u het in partman kunt formatteren, er een aankoppelpunt kunt aan toewijzen, enz.).

Het voordeel dat u behaalt, is afhankelijk van het soort MD-apparaat dat u creëert. Op dit moment worden ondersteund:

RAID0 Is hoofdzakelijk gericht op prestatieverbetering. RAID0 splitst alle binnenkomende gegevens op in blokken (ook wel stripes genoemd) en verdeelt deze gelijkmatig over elke schijf in de reeks. Dit kan de snelheid van lees- en schrijfoperaties verhogen, maar als één van de schijven defect raakt, verliest u alles (een deel van de informatie staat nog wel op de 'gezonde' schijf/schijven, maar een ander deel stond op de defecte schijf).

RAID0 wordt bijvoorbeeld veel toegepast voor video-bewerking.

RAID1 Is geschikt voor situaties waar betrouwbaarheid de belangrijkste overweging is. Het bestaat uit verschillende (gewoonlijk twee) partities van gelijke grootte, waarbij beide partities exact dezelfde gegevens bevatten. In essentie betekent dit drie dingen. Ten eerste heeft u, als één van de schijven defect raakt, nog altijd de gegevens op de overige schijven staan. Ten tweede kunt u effectief slechts een deel van de beschikbare capaciteit gebruik-

⁵Om eerlijk te zijn, kunt u zelfs een meervoudig schijfapparaat maken met partities die op één fysieke harde schijf staan, maar dit biedt geen enkel voordeel.
Desgewenst kunt u een reserve harde schijf in de reeks opnemen die bij een storing de plaats zal innemen van de defecte schijf.

RAID5 is een goed compromis tussen snelheid, betrouwbaarheid en gegevensredundantie. Bij RAID5 worden binnенkomende gegevens gesplitst in blokken en gelijkmatig verdeeld over alle harde schijven op één na (vergelijkbaar met RAID0). In afwijking van RAID0, wordt bij RAID5 ook *pariteitsinformatie* berekend die op de overgebleven schijf wordt wegeschreven. De harde schijf met de pariteitsinformatie is niet statisch (dat zou RAID4 zijn), maar wordt periodiek gewijzigd zodat de pariteitsinformatie gelijkmatig wordt verdeeld over alle schijven. Als één van de schijven defect raakt, kan het ontbrekende deel van de informatie worden berekend op basis van de resterende gegevens en hun pariteit. RAID5 dient te zijn opgebouwd uit tenminste drie actieve partities. Desgewenst kunt u een reserveharde schijf in de reeks opnemen die bij een storing de plaats zal innemen van de defecte schijf.

Zoals u kunt zien, heeft RAID5 een vergelijkbare mate van betrouwbaarheid als RAID1 terwijl de opslag minder redundant is. Aan de andere kant is het, in verband met de berekening van de pariteitsinformatie, mogelijk iets trager bij schrijfoperaties dan RAID0.

RAID6 is vergelijkbaar met RAID5 behalve dat het twee pariteitsapparaten gebruikt in plaats van één.

Een reeks schijven van het type RAID6 kan zich herstellen van wel twee defecte harde schijven.

RAID10 RAID10 combineert het werken met blokken (zoals in RAID0) en met spiegeling (zoals in RAID1). Het maakt n kopieën van inkomende gegevens en verdeelt ze over de partities, zodanig dat zich nooit meer dan één kopie van dezelfde gegevens op hetzelfde apparaat bevindt. De standaardwaarde voor n is 2, maar in de expertmodus kan het op een andere waarde ingesteld worden. Het aantal gebruikte partities moet minstens n zijn. RAID10 hanteert verschillende modellen om de kopieën te verdelen. Het standaardmodel werkt met nabij-kopieën (near copies). Daarbij bevindt de kopie zich op elk van de schijven op ongeveer dezelfde offset. Bij verre-kopieën (far copies) bevinden de kopieën zich op de schijven op verschillende offsets. Bij offset-kopieën wordt het blok gekopieerd, niet de individuele kopie.

RAID10 kan gebruikt worden om betrouwbaarheid en redundantie te bekomen zonder het nadeel van de partiteitsberekening.

Samenvattend:

<table>
<thead>
<tr>
<th>Type</th>
<th>Minimum aantal apparaten</th>
<th>Reserveschijf</th>
<th>Overleeft een schijfstoring?</th>
<th>Beschikbare ruimte</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID0</td>
<td>2</td>
<td>nee</td>
<td>nee</td>
<td>Grootte van de kleinste partitie vermenigvuldigd met het aantal apparaten in de RAID</td>
</tr>
<tr>
<td>RAID1</td>
<td>2</td>
<td>facultatief</td>
<td>ja</td>
<td>Grootte van de kleinste partitie in de RAID</td>
</tr>
<tr>
<td>RAID5</td>
<td>3</td>
<td>facultatief</td>
<td>ja</td>
<td>Grootte van de kleinste partitie vermenigvuldigd met (het aantal apparaten in de RAID minus één)</td>
</tr>
<tr>
<td>RAID6</td>
<td>4</td>
<td>facultatief</td>
<td>ja</td>
<td>Grootte van de kleinste partitie vermenigvuldigd met (het aantal apparaten in de RAID minus twee)</td>
</tr>
</tbody>
</table>
Opmerking

Zorg ervoor dat het systeem opgestart zal kunnen worden met het schijfindelingschema dat u in gedachten heeft. Over het algemeen zal het nodig zijn om een apart bestandssysteem aan te maken voor `/boot` als u voor het basisbestandsysteem (`/`) RAID wilt gebruiken. De meeste bootloaders ondersteunen de spiegelende vorm (niet de met blokken werkende of striped vorm!) van RAID1, en dus is bijvoorbeeld RAID5 gebruiken voor `/` en RAID1 voor `/boot` een mogelijkheid.

Vervolgens dient u in het hoofdmenu van `partman` te kiezen voor Software-RAID instellen. (Dit menu verschijnt pas nadat u tenminste één partitie heeft gemaakt voor gebruik te worden als Fysiek volume voor RAID.) Kies dan op het eerste scherm van `partman-md` voor MD-apparaat aanmaken. Er zal een lijst met ondersteunde types MD-apparaten worden getoond, waaruit u er één kunt kiezen (bijvoorbeeld RAID1). Het vervolg is afhankelijk van het geselecteerde type MD.

- **RAID0** is eenvoudig — er zal een overzicht met beschikbare RAID-partities worden getoond en uw enige taak is het selecteren van de partities die u voor het MD-apparaat wilt gebruiken.

- **RAID1** is iets lastiger. Allereerst zal u worden gevraagd om het aantal actieve en het aantal reserve-eenheden voor het MD-apparaat in te geven. Vervolgens dient u uit de lijst met beschikbare RAID-partities eerst de partities te kiezen die actief moeten zijn en vervolgens de reserve-partities. Het aantal partities dat u selecteert moet gelijk zijn aan het aantal dat u eerder heeft opgegeven. Maak u geen zorgen. Als u een fout maakt en een afwijkend aantal partities selecteert, zal `debian-installer` u beletten voort te gaan totdat dit gecorrigeerd is.

- De configuratieprocedure voor RAID5 is vergelijkbaar met die voor RAID1. Het enige verschil is dat u tenminste drie actieve partities dient te gebruiken.

- Ook de configuratieprocedure voor RAID6 is vergelijkbaar met die voor RAID1 behalve dat minstens vier actieve partities nodig zijn.

- Ook voor RAID10 is de configuratieprocedure te vergelijken met die voor RAID1, behalve in de expertmodus. In de expertmodus zal `debian-installer` u naar de opmaak vragen. De opmaak bestaat uit twee delen. Het eerste deel is het type. Dat is ofwel n (voor het type 'near copies'), f (voor het type 'far copies') of o (voor het type 'offset copies'). Het tweede deel is het aantal te maken kopieën van de data. Er moeten minstens evenveel actieve apparaten zijn, zodanig dat elke kopie naar een andere schijf gestuurd kan worden.

Het is zonder meer mogelijk om verschillende types MD-apparaten naast elkaar te hebben. Als u bijvoorbeeld drie 200 GB harde schijven heeft ten behoeve van MD, elk met twee partities van 100 GB, kunt u de eerste partities op alle drie de schijven samenvoegen tot één RAID0 (snelle partitie van 300 GB voor videobewerking) en de andere drie partities (2 actieve en 1 reserve) gebruiken voor RAID1 (als zeer betrouwbare partitie van 100 GB voor `/home`).

Nadat u de MD-apparaten naar uw tevredenheid heeft ingesteld, kunt u `partman-md` Voltooien om terug te keren naar `partman` om op uw nieuwe MD-apparaten bestandssystemen aan te maken en daaraan de gebruikelijke kenmerken, zoals aankoppelpunten, toe te kennen.
6.3.4.5 Logisch volumebeheer (LVM) instellen

Als u met computers werkt op het niveau van systeembeheerder of dat van “gevorderde” gebruiker, heeft u vast de situatie meegemaakt waarbij op een schijfpartitie (meestal de belangrijkste) onvoldoende ruimte beschikbaar was, terwijl het gebruik van een andere partitie sterk ondermaat was. Als oplossing heeft u mogelijk bestanden moeten verplaatsen en moeten werken met symbolische koppelingen vanaf de oude locatie naar de nieuwe locatie, enz.

Om deze situatie te voorkomen, kunt u gebruik maken van Logisch volumebeheer (Logical Volume Management — LVM). Eenvoudig gesteld, kunt u met LVM uw partities (in de terminologie van LVM fysieke volumes) combineren tot een virtuele harde schijf (een zogenaamde volumegroep). Deze kan op zijn beurt worden opgedeeld in virtuele partities (logische volumes). Waar het om gaat is dat logische volumes (en natuurlijk ook de onderliggende volumegroepen) verschillende fysieke harde schijven kunnen omvatten.

Als u bijvoorbeeld vervolgens ontdekt dat u meer ruimte nodig heeft op uw oude 160GB /home-partitie, kunt u eenvoudig een extra 300GB harde schijf in de computer plaatsen, deze toevoegen aan uw bestaande volumegroep en vervolgens het logische volume vergroten waarop uw /home-bestandssysteem zich bevindt. En klaar is Kees — uw gebruikers kunnen beschikken over de extra ruimte van een vernieuwde partitie van 460GB. Dit voorbeeld is uiteraard enigszins gesimplificeerd. Wij raden u aan om, voor zover u dat nog niet heeft gedaan, de LVM HOWTO te raadplegen.

Het instellen van LVM in debian-installer is relatief eenvoudig en volledig ondersteund in partman. Allereerst dient u de partitie(s) die u wilt gebruiken als fysieke volumes voor LVM, te markeren. Hiervoor selecteert u in partman vanuit het menu Partitie-instellingen de optie Gebruiken als: → Fysieke volumes voor LVM.

WAARSCHUWING

Waarschuwing: de nieuwe LVM-installatie zal alle gegevens vernietigen op alle partities die gemarkneerd zijn met een code van het type LVM. Dus, indien u op sommige van uw harde schijven reeds een LVM heeft en op die machine ook nog Debian wilt installeren, zal de oude (bestaande) LVM gewist worden! Hetzelfde geldt voor partities die (om welke reden ook) ten onrechte gemarkneerd zijn met een code van het type LVM, maar iets anders bevatten (zoals een versleuteld opslagmedium). U dient dergelijke schijven te verwijderen uit het systeem vooraleer u een nieuwe installatie van LVM uitvoert!

Als u terugkeert op het hoofdscherm van partman, zult u een nieuwe optie Logisch volumebeheer (LVM) instellen zien. Als u deze selecteert, zal u eerst worden gevraagd om nog niet vastgelegde wijzigingen in de partitietabel te bevestigen (als die er zijn) en vervolgens zal het configuratiemenu voor LVM worden getoond. Boven het menu wordt een samenvatting van de LVM-configuratie getoond. Het menu zelf is contextgevoelig en toont alleen toegestane acties. De mogelijke acties zijn:

- Toon configuratiedetails: toont onder andere de structuur van LVM-apparaten en de namen en groottes van logische volumes
- Volumegroep aanmaken
- Logisch volume aanmaken
- Volumegroep verwijderen
- Logisch volume verwijderen
- Volumegroep uitbreiden
- Volumegroep verkleinen
- Voltooien: keer terug naar het hoofdscherm van partman

Gebruik de opties in dit menu om eerst een volumegroep en vervolgens daaronder de gewenste logische volumes aan te maken.

Nadat u teruggekeerd bent naar het hoofdscherm van partman, zult u de aangemaakte logische volumes als ware het gewone partities terugvinden in het menu (en u kunt ze verder ook als zodanig behandelen).
6.3.4.6 Geëncrypteerde volumes instellen

U hebt de mogelijkheid om met `debian-installer` geëncrypteerde partities in te stellen. Elk bestand dat u naar een dergelijke partitie wegschrijft wordt op het apparaat onmiddellijk in geëncrypteerde vorm opgeslagen. Toegang tot de geëncrypteerde gegevens krijgt men pas na het invoeren van de *wachtwoordzin* die gebruikt werd toen de geëncrypteerde partitie aangemaakt werd. Deze functionaliteit is nuttig voor het beschermen van gevoelige informatie wanneer uw harde schijf of uw laptop gestolen worden. De dief kan er in slagen fysieke toegang te krijgen tot de harde schijf, maar zonder de correcte wachtwoordzin te kennen zullen de gegevens op de harde schijf eruit zien als willekeurige tekens.

De twee belangrijkste partities vanuit het oogpunt van encryptie zijn: de partitie met de persoonlijke mappen (home) waarop zich uw persoonlijke gegevens bevinden en de swap-partitie, het wisselgeheugen, waarop al werkend tijdelijk gevoelige gegevens opgeslagen kunnen worden. Niets belet u evenwel om eventueel nog andere partities die voor u ook belangrijk zijn, te encrypteren. Bijvoorbeeld `/var` waar databaseservers, mailservers en printservers hun gegevens opslaan, of `/tmp` dat door verschillende programma’s gebruikt wordt voor de tijdelijke opslag van potentiële belangrijke bestanden. Het kan zelfs zijn dat sommige mensen hun hele systeem wensen te encrypteren. Over het algemeen vormt de `/boot`-partitie hier de enige uitzondering. Deze mag niet geëncrypteerd worden, omdat er oorspronkelijk geen manier bestond om de kernel te laden vanaf een geëncrypteerde partitie. (GRUB kan dit nu wel, maar het ontbreekt `debian-installer` momenteel aan een eigen ondersteuning voor een geëncrypteerde `/boot`. Het opzet wordt daarom in een apart document behandeld.)

Om encryptie te kunnen gebruiken, moet u een nieuwe partitie maken door in het hoofdmenu van het schijfindelingprogramma vrije schijfruimte te selecteren. Een andere mogelijkheid is een bestaande partitie te kiezen (bijv. een gewone partitie, een LVM logisch volume of een RAID volume). In het menu Partitie-instellingen moet u dan bij de optie Gebruiken als: kiezen voor Fysiek volume voor encryptie. Het menu zal zich dan aanpassen en verschillende cryptografische opties voor de partitie tonen.

De door `debian-installer` ondersteunde encryptiemethode is *dm-crypt* (ingebouwd in recente Linux-kernels en met de mogelijkheid om het te gebruiken met fysieke LVM-volumes).

Laten we eens bekijken welke mogelijkheden er zijn als u encryptie selecteert via *Device-mapper (dm-crypt)*. Zoals altijd geldt dat u bij twijfel best de standaardinstellingen gebruikt, omdat ze met zorg geselecteerd werden met het oog op veiligheid.

Encryptie: *aes* Deze keuzemogelijkheid dient voor het selecteren van het encryptiealgoritme (*coderingsmethode*) dat gebruikt zal worden voor de encryptie van de gegevens op de partitie. Momenteel ondersteunt `debian-installer` de volgende blokcoderingsmethodes: *aes, blowfish, serpent en twofish*. Een bespreking van de kwaliteiten van deze verschillende algoritmes valt buiten het bestek van dit document. Maar misschien kan het u helpen bij het maken van een keuze als u weet dat *AES* in 2000 gekozen werd door het Amerikaans National Institute of Standards and Technology als het standaard encryptiealgoritme voor het beveiligen van gevoelige informatie in de 21ste eeuw.

Grootte van de sleutel: 256 Hier kunt u de lengte van de encryptiesleutel opgeven. Over het algemeen betekent een langere sleutel een betere encryptie. Daartegenover staat dat het vergroten van de sleutellengte een negatieve impact op de prestaties heeft. Welke sleutelgroottes beschikbaar zijn hangt af van de coderingsmethode.

IV algoritme: *xts-plain64* Het algoritme *Initialization Vector* of *IV* wordt gebruikt in de cryptografie om ervoor te zorgen dat het toepassen van de coderingsmethode op dezelfde gegevens in *niet-gecodeerde tekst* met eenzelfde sleutel steeds weer een unieke *gecodeerde tekst* oplevert. Het achterliggende idee is om te beletten dat een aanvaller informatie zou kunnen afleiden uit terugkerende patronen in de geëncrypteerde gegevens.

Van de geboden alternatieven is de standaard *xts-plain64* momenteel het minst kwetsbaar voor de bekende aanvallen. Gebruik een van de andere alternatieven enkel als u moet zorgen voor compatibiliteit met een vroeger geïnstalleerd systeem dat niet in staat is recentere algoritmes te gebruiken.

Encryptiesleutel: *Wachtwoordzin* Hier kunt u voor deze partitie het type encryptiesleutel kiezen.
Wachtwoordzin De encryptiesleutel zal berekend worden op basis van een wachtwoordzin die u later in het proces zult kunnen invoeren.

Willekeurige sleutel Telkens u probeert de geëncrypteerde partitie actief te maken, zal er een nieuwe encryptiesleutel gegenereerd worden uit willekeurige gegevens. Met andere woorden: iedere maal de computer afgesloten wordt, zal de inhoud van de partitie verloren gaan, vermits de sleutel die zich in het geheugen bevindt, vernietigd wordt. (U zou natuurlijk kunnen proberen om de sleutel te raden, maar tenzij er een onbekende zwakte zit in het coderingsalgoritme, is een mensenleven daarvoor te kort.)

Willekeurige sleutels zijn geschikt voor partities met wisselgeheugen aangezien u zich niet dient te bekommeren om het onthouden van de wachtwoordzin of om het wissen van gevoelige informatie op de wisselgeheugenpartitie vooraleer de computer afgesloten wordt. Met andere woorden: iedere maal de computer afgesloten wordt, zal de inhoud van de partitie verloren gaan, vermits de sleutel die zich in het geheugen bevindt, vernietigd wordt. (U zou natuurlijk kunnen proberen om de sleutel te raden via een aanval met brute kracht, maar tenzij er een onbekende zwakte zit in het coderingsalgoritme, is een mensenleven daarvoor te kort.)

Vooraleer u begint met het invoeren van een wachtwoordzin, moet u ervoor zorgen dat het toetsenbord correct geconfigureerd is. Indien u twijfelt, kunt u naar de tweede virtuele console overschakelen en aan de prompt wat tekst intypen. Op die manier kunt u zekerheid hebben dat u niet voor verrassingen zult komen te staan, bijvoorbeeld door te experimenteren met willekeurige toetsen of door over te schakelen naar de shell op de tweede virtuele console en netwerktrafiek en schijftrafiek te genereren (enkele bestanden downloaden, omvangrijke bestanden voederen aan /dev/null enz.).

WAARSCHUWING

Vooraleer u begint met het invoeren van een wachtwoordzin, moet u ervoor zorgen dat het toetsenbord correct geconfigureerd is en de verwachte tekens geenerveerd. Indien u twijfelt kunt u naar de tweede virtuele console verschakelen en aan de prompt wat tekst intypen. Op die manier kunt u de zekerheid hebben dat u later niet voor verrassingen zal komen te staan, bijvoorbeeld door te experimenteren met willekeurige toetsen in te voeren met eenqwertyklavier terwijl u tijdens de installatie eenazertyklavier gebruikte. Een dergelijke situatie kan aan verschillende oorzaken zijn. Misschien schakelde u tijdens de installatie over op een andere toetsenbordindeling of was de geselecteerde toetsenbordindeling geregistreerde partitie niet geconfigureerd en de installatie dan kon u de wachtwoordzin niet voor het basisbestandsysteem invoeren.

Indien u andere methodes dan een wachtwoordzoon koos voor het creëren van encryptiesleutels, zullen die laatste nu gegenereerd worden. Omdat het mogelijk is dat in dit vroege stadium van de installatie de kernel nog niet voldoende entropie kon verzamelen, kan dit proces veel tijd in beslag nemen. U kunt het proces helpen versnellen door entropie te genereren: bijv. door willekeurige toetsen aan te slaan, of door over te schakelen naar de shell op de tweede virtuele console en netwerktrafiek en schijftrafiek te genereren (enkele bestanden downloaden, omvangrijke bestanden voederen aan /dev/null enz.). Dit wordt herhaald voor elke partitie die geëncrypteerd moet worden.

Nadat u teruggekeerd bent naar het hoofdmenu van het schijfindelingsprogramma, zult u nu alle geëncrypteerde volumes als extra partities terugvinden die op dezelfde manier als gewone partities geconfigureerd kunnen worden. Het volgende voorbeeld toont een met dm-crypt geëncrypteerde volume.

6Een wachtwoordzoon gebruiken als sleutel betekent momenteel dat de partitie ingesteld zal worden met behulp van LUKS.
7Er wordt nochtans verondersteld dat de gozers van het bureau met de naam die uit drie letters bestaat, gegevens van magnetisch-optische media kunnen terughalen, zelfs als die meerdere keren overschreven werden.
Geëncrypteerde volume (sda2_crypt) - 115.1 GB Linux device-mapper
 #1 115.1 GB F ext3

Nu is het tijd om aankoppelpunten toe te kennen aan de volumes en om eventueel het type bestandssysteem te wijzigen als de standaardinstelling voor u niet geschikt is.

Let op de naam tussen haakjes (sda2_crypt in dit geval) en op de aankoppelpunten die u aan elk geëncrypteerd volume toegekend heeft. U zult die informatie later bij het opstarten van het nieuwe systeem nodig hebben. Het verschil tussen een gewoon opstartproces en een opstartproces waar encryptie mee gemoed is, wordt later behandeld in Paragraaf 7.2.

Eens u tevreden bent met het schijfindelingsschema, kunt u voortgaan met de installatie.

6.3.5 Installatie van het Basissysteem

Hoewel dit stadium het minst problematische is, beslaat het wel een significant deel van de duur van de installatie omdat hier het volledige basissysteem wordt opgehaald, geverifieerd en uitgepakt. Als u een langzame computer of netwerkverbinding heeft, kan dit enige tijd in beslag nemen.

Tijdens de installatie van het basissysteem worden meldingen met betrekking tot het uitpakken en configureren van pakketten doorgestuurd naar tty4. U kunt naar deze terminal overschakelen door op Linker Alt-F4 te drukken. U schakelt terug naar het hoofdscherm van de installatie met behulp van Linker Alt-F1.

De meldingen over uitpakken en configureren die tijdens deze fase worden gegenereerd worden ook opgeslagen in /var/log/syslog. Als de installatie wordt uitgevoerd vanaf een seriële console, kunt u ze daar raadplegen.

Als onderdeel van de installatie zal een Linux kernel worden geïnstalleerd. Tijdens een installatie met een standaard prioriteit voor vragen zal het installatiesysteem een kernel voor u kiezen die het beste past bij uw apparatuur. Bij installaties met een lagere prioriteit zal een lijst worden getoond met beschikbare kerns waaruit u een keuze kunt maken.

Als pakketten worden geïnstalleerd met behulp van het systeem voor pakketbeheer, zullen standaard ook de pakketten die door die pakketten aanbevolen worden, geïnstalleerd worden. Aanbevolen pakketten zijn voor de kernfunctionies van de geselecteerde software niet strikt noodzakelijk, maar ze breiden de mogelijkheden van die software uit en zouden volgens de opvattingen van de pakketonderhouders normaal gezien samen met die software geïnstalleerd moeten worden.

Opmerking

Wegens redenen van technische aard worden tijdens de installatie van het basissysteem pakketten zonder hun “Recommends” geïnstalleerd, zonder de door hen aanbevolen pakketten. De hierboven beschreven regel treedt pas in werking na dit punt in het installatieproces.

6.3.6 Aanvullende software installeren

6.3.6.1 De configuratie van apt

Een gereedschap dat gebruikt wordt om pakketten op een Debian GNU/Linux systeem te installeren, is het programma *apt* uit het pakket *apt*. Ook andere hulpprogramma’s voor pakketbeheer, zoals *aptitude* en *synaptic* worden gebruikt. Nieuwe gebruikers wordt aangeraden gebruik te maken van deze hulpprogramma’s omdat zij aanvullende functionaliteit (het zoeken van pakketten en statuscontroles) integreren in een vriendelijker gebruikersinterface.

6Merk op dat het programma dat de feitelijke installatie van pakketten uitvoert, *dpkg* is. Dit programma is echter meer een soort onderliggend gereedschap. *apt* is een hoger gereedschap dat, waar nodig *dpkg* invoert. Het is in staat om pakketten op te halen vanaf installatiemedia, het netwerk en andere bronnen. Het is ook in staat om automatisch andere pakketten te installeren die nodig zijn om het pakket dat u probeert te installeren, correct te laten functioneren.

apt moet worden geconfigureerd zodat het weet waar pakketten opgehaald moeten worden. Het resultaat van deze configuratie wordt weggeschreven naar het bestand /etc/apt/sources.list. U kunt dit bestand na afronding van de installatie bekijken en naar behoefte aanpassen.

Indien u de installatie uitvoert op de standaardprioriteit, zal het installatiesysteem in grote mate zelf automatisch de configuratie voor zijn rekening nemen. Het baseert zich daarbij op de installatietechnologie die u gebruikt en mogelijk op keuzes die u eerder in het installatieproces maakte. In de meeste gevallen zal het installatiesysteem automatisch een spiegelsysteem toevoegen voor veiligheidsupdates en, indien u de stabiele distributie installeert, een spiegelsysteem voor de dienst ‘stable-updates’ voor updates van pakketten uit de stabiele distributie.

Indien u de installatie uitvoert op een lagere prioriteit (bijv. in expertmodus), zult u de kans hebben om zelf meer keuzes te maken. U kunt dan zelf kiezen of u de diensten voor beveiligingsupdates en updates van de distributie ‘stable’ wilt gebruiken en u kunt er eventueel ook voor kiezen om de pakketten toe te voegen uit de secties ‘contrib’ en “non-free” van het archief.

6.3.6.1.1 De installatie uitvoeren met meer dan één CD- of DVD-image

Indien u een installatie uitvoert met een CD- of DVD-image dat deel uitmaakt van een ruimere set, zal het installatiesysteem vragen of u bijkomende installatiemedia wilt laten scannen. Indien u zulke bijkomende installatiemedia heeft, wilt u dit wellicht laten doen, zodat het installatiesysteem de pakketten die zij bevatten, kan gebruiken.

Indien u geen andere media heeft, is dit geen probleem: het is niet verplicht ze te gebruiken. Indien u ook geen netwerkspiegelserver gebruikt (zoals in het volgende onderdeel uitgelegd wordt), kan dit betekenen dat niet alle pakketten die horen bij de taken die u in de volgende stap selecteert, geïnstalleerd zullen kunnen worden.

Indien u meerdere installatiemedia laat scannen, zal het installatiesysteem u vragen ze te verwisselen wanneer het pakketten nodig heeft van een ander image dan dat welke op dat moment in het station zit. Merk op dat enkel schijven die tot dezelfde set behoren, gescheiden zouden mogen worden. De volgorde waarin ze gescand worden doet er niet echt toe, maar het in aflopende volgorde laten scannen kan de kans op fouten verminderen.

6.3.6.1.2 Een netwerkspiegelserver gebruiken

Een vraag die tijdens de meeste installaties aan bod komt, is of er een netwerkspiegelserver gebruikt moet worden als pakketbron. In de meeste gevallen zou het standaardantwoord geschikt moeten zijn, maar er zijn enkele uitzonderingen.

Indien u de installatie niet uitvoert met een image van een volledige CD/DVD, moet u echt een netwerkspiegelserver gebruiken, aangezien u anders op het einde enkel een erg minimaal systeem zult hebben. Als u evenwel slechts over een beperkte internetverbinding beschikt, is het best om in de volgende stap van de installatie niet de taak desktopomgeving te selecteren.

Indien u de installatie uitvoert met één enkel image van een volledige CD, is het gebruik van een netwerkspiegelserver niet vereist, maar het blijft wel sterk aanbevolen omdat op één enkel CD-image slechts een eerder beperkt aantal pakketten staat. Indien u slechts een beperkte netwerkverbinding heeft, kan het nog altijd beter zijn om hier geen netwerkspiegelserver te selecteren, maar de installatie af te ronden enkel op basis van wat op het CD-image beschikbaar is en dan na het beëindigen van de installatie selectief extra pakketten te installeren (d.w.z. nadat u naar het nieuwe systeem opgestart hebt).

Indien u de installatie uitvoert met een DVD zou elk pakket dat nodig is tijdens de installatie, op het eerste DVD-image moeten staan. Het gebruik van een netwerkspiegelserver is facultatief.
Een voordeel van het gebruik van een netwerkspiegelserver is dat updates die plaats vonden na het moment waarop de CD/DVD-images gecreëerd werden en opgenomen werden in een tussenrelease (een point release), geïnstalleerd kunnen worden. Op die manier wordt de levensduur van uw CD/DVD-set verlengd, zonder dat u de veiligheid of de stabiliteit van het geïnstalleerde systeem in het gedrang brengt.

Samenvattend: een netwerkspiegelserver selecteren is meestal een goede keuze, behalve als u niet over een goede internetverbinding beschikt. Indien de nieuwste versie van een pakket op installatiemedia staat, zal het installatiesysteem altijd dat medium gebruiken. De hoeveelheid data die gedownload zal worden als u een spiegelserver selecteert, hangt dus af van

1. de taken die u in de volgende stap van de installatie selecteert,
2. welke pakketten voor die taken nodig zijn,
3. welke van die pakketten op de installatiemedia staan die u liet scannen en
4. of er op een spiegelserver (ofwel een gewone spiegelserver, ofwel een spiegelserver voor veiligheidsupdates of updates van de stabiele release) bijgewerkte versies beschikbaar zijn van pakketten die op de installatiemedia staan.

Merk op dat dit laatste punt betekent dat zelfs als u ervoor kiest om geen netwerkspiegelserver te gebruiken, sommige pakketten nog altijd van het internet kunnen gedownload worden wanneer er van dat pakket een veiligheidsupdate of een update voor de stabiele release beschikbaar is en deze diensten ingesteld werden.

6.3.6.1.3 Een netwerkspiegelserver kiezen

Tenzij u ervoor koos om geen netwerkspiegelserver te gebruiken, zult u een lijst met netwerkspiegelservers te zien krijgen op basis van het land dat u eerder in het installatieproces selecteerde. Het standaardaanbod selecteren is meestal goed.

Het standaardaanbod is deb.debian.org, wat zelf geen spiegelserver is, maar dat zal doorverwijzen naar een spiegelserver die up-to-date en snel zou moeten zijn. Dergelijke spiegelservers ondersteunen TLS (https protocol) en IPv6. Deze dienst wordt onderhouden door het team van Debian systeembeheerders (Debian System Administration - DSA).

U kunt ook handmatig een spiegelserver opgeven door “de informatie handmatig invoeren” te kiezen. U kunt dan de computernaam van de spiegelserver opgeven en facultatief een poortnummer. Dit moet feitelijk een URL-basis zijn, d.w.z. dat als u een IPv6-adres opgeeft, u er rechte haakjes rond moet plaatsen, bijvoorbeeld “[2001:db8::1]”.

Indien uw computer zich op een exclusief IPv6-netwerk bevindt (wat voor de overgrote meerderheid van de gebruikers wellicht niet het geval is), werkt de standaardspiegelserver voor uw land mogelijk niet. Alle spiegelservers uit de lijst zijn bereikbaar via IPv4, maar slechts enkele ervan kunnen via IPv6 gebruikt worden. Vermits de connectiviteit van individuele spiegelservers in de loop van de tijd kan veranderen, beschikt het installatiesysteem niet over deze informatie. Indien de standaardspiegelserver van uw land geen IPv6-connectiviteit heeft, kunt u ofwel enkele van de andere voorgestelde spiegelservers proberen, ofwel kiezen voor de optie “de informatie handmatig invoeren”. U kunt dan “ftp.ipv6.debian.org” opgeven als de naam van de spiegelserver, hetgeen een alias is voor een spiegelserver die via IPv6 beschikbaar is, hoewel het wellicht niet de snelst mogelijke is.

6.3.6.2 Software selecteren en installeren

Tijdens de installatie wordt de mogelijkheid geboden om aanvullende programmatuur te installeren. In plaats van individuele softwarepakketten te selecteren uit de 86695 beschikbare pakketten, ligt de nadruk tijdens deze fase van de installatie op het selecteren en installeren van vooraf gedefinieerde verzamelingen van programmatuur waarmee uw computer snel kan worden ingericht voor het uitvoeren van diverse taken.

Deze taken vertegenwoordigen min of meer een aantal verschillende doeleinden waarvoor u uw computer zou kunnen gebruiken, zoals “Desktopomgeving”, “Webserver” of “SSH-server”. In Paragraaf D.2 is een overzicht opgenomen van de voor de beschikbare taken benodigde ruimte.

Sommige taken kunnen reeds automatisch geselecteerd zijn afhankelijk van de eigenschappen van de computer waarop de installatie wordt uitgevoerd. Als u het met deze selectie niet eens bent, kunt u deze ongedaan maken. U kunt er op dit punt zelfs voor kiezen om geen enkele taak te installeren.

⁹U moet weten dat om deze lijst te tonen het installatiesysteem eigenlijk het programma `tasksel` gebruikt. Het kan na de installatie op elk gewenst moment uitgevoerd worden om extra pakketten te installeren (of ze te verwijderen), of u kunt daarvoor een eerder fijnmazig instrument zoals `aptitude` gebruiken. Als u, nadat de installatie voltooid is, op zoek bent naar een specifiek pakket, kunt u eenvoudig `aptitude install pakket` uitvoeren, waarbij `pakket` de naam is van het pakket waarnaar u op zoek bent.
6.3. INDIVIDUELE COMPONENTEN GEBRUIKEN

TIP

Bij de standaard gebruikersinterface van het installatiesysteem kunt u de spatiebalk gebruiken om een taak te (de)selecteren.

OPMERKING

De taak “Desktopomgeving” zal een grafische desktopomgeving installeren.

Standaard installeert debian-installer de desktopomgeving. Het is mogelijk om interactief een andere desktopomgeving te selecteren tijdens de installatie. Het is ook mogelijk om verschillende desktopomgevingen te installeren, maar het kan zijn dat sommige combinaties ervan niet samen geïnstalleerd kunnen worden.

Merk op dat dit enkel zal werken als de pakketten die voor de gewenste desktopomgeving nodig zijn, ook effectief beschikbaar zijn. Indien u de installatie uitvoert met één enkel volledig CD-image, moeten zij mogelijk gedownload worden van een netwerkspeigelserver, omdat zij zich niet op het CD-image bevinden wegens zijn beperkte opslagruimte. Die installatiewerkwijze gebruiken zou voor elk van de beschikbare desktopomgevingen correct moeten werken als u een DVD-image of een andere installatiemethode gebruikt.

Via de diverse server-taken wordt in grote lijnen volgende software geïnstalleerd. Web-server: apache2; SSH-server: openssh.

Via de taak “Standaardsysteem” wordt elk pakket geïnstalleerd dat als prioriteit “standaard” heeft. Dit omvat een heleboel gebruikelijke hulpprogramma’s die gewoonlijk op elk Linux- of Unix-systeem aanwezig zijn. U zou deze taak geselecteerd moeten laten tenzij u weet wat u doet en echt een heel minimaal systeem wilt.

Indien tijdens het selecteren van de taal een ander standaard taalgebied geselecteerd werd dan “C”, zal tasksel nagaan of voor dat taalgebied een lokalisatitaak gedefinieerd is en zal automatisch de relevante lokalisatiegerelateerde pakketten trachten te installeren. Daartoe horen bijvoorbeeld pakketten met woordenlijsten of speciale lettertekens voor uw taal. Indien een desktopomgeving geselecteerd werd, zullen ook daarvoor de passende lokalisatiepakketten geïnstalleerd worden (als die beschikbaar zijn).

Nadat u klaar bent met het selecteren van taken, moet u Volgende selecteren. Dan zal apt de pakketten installeren die tot die geselecteerde taken behoren. Indien een bepaald programma meer informatie nodig heeft van de gebruiker, zal het gedurende dit proces daarom vragen.

U moet er zich van bewust zijn dat vooral de taak Desktopomgeving erg uitgebreid is. Vooral als u installeert vanaf een gewone CD in combinatie met een spiegelserver voor pakketten die niet op de CD staan, kan het installatiesysteem heel wat pakketten via het netwerk ophalen. Indien u over een relatief trage internetverbinding beschikt, kan dit veel tijd in beslag nemen. Eens de installatie van de pakketten gestart is, heeft u niet meer mogelijkheid om die installatie te annuleren.

Zelfs als de pakketten op de CD staan, kan het nog gebeuren dat het installatiesysteem ze ophaalt van de spiegelserver in het geval de versie op de spiegelserver recentere is dan die op de CD. Indien u de distributie 'stable' installeert, kan dit het geval zijn na een releaseupdate (een ‘point release’ - een update van de originele stabiele release). Indien u de testdistributie ‘testing’ installeert zal dit het geval zijn als u een ouder image gebruikt.

6.3.7 Zorgen dat uw systeem kan worden opgestart

Als u een werkstation zonder schijfieenheden installeert, is opstarten vanaf een lokale schijfieenheid uiteraard geen optie en zal deze stap worden overgeslagen.

6.3.7.1 Andere besturingssystemen detecteren

Voordat een bootloader wordt geïnstalleerd, zal het installatiesysteem eerst proberen om te ontdekken of er op de machine andere besturingssystemen geïnstalleerd zijn. Als het een besturingssysteem heeft gevonden dat wordt onder-
steund, zult u hierover worden geïnformeerd tijdens de installatie van de bootloader en zal de computer geconfigureerd worden om naast Debian ook dit andere besturingssysteem te kunnen opstarten.

Merk op dat het opstarten van meerdere besturingssystemen op één machine nog altijd iets wegheeft van zwarte magie. De ondersteuning voor de detectie van andere besturingssystemen en voor het instellen van bootloaders om deze te laden, varieert per architectuur en kan zelfs per subarchitectuur variëren. Als het niet lukt dient u de documentatie van uw bootloader te raadplegen voor nadere informatie.

6.3.7.2 Het systeem opstartbaar maken met flash-kernel

Vermits er geen gemeenschappelijke firmware-interface bestaat voor alle ARM-platformen, zijn de stappen die nodig zijn om er op ARM-apparaten voor te zorgen dat het systeem kan opgestart worden, sterk afhankelijk van het type apparaat. Debian gebruikt het gereedschap **flash-kernel** om hiermee om te gaan. Flash-kernel heeft een databank die beschrijft welke specifieke operaties nodig zijn om op verschillende apparaten te zorgen dat het systeem kan opgestart worden. Het gaat na of het huidige apparaat ondersteund wordt en voert de noodzakelijke operaties uit als dat het geval is.

Bij apparaten die opstarten vanaf intern NOR- of NAND-flashgeheugen, schrijft flash-kernel de kernel en de initiële ramschijf naar dat intern geheugen. Deze methode is vooral gebruikelijk op oudere armel-apparaten. Merk op dat de meeste van deze apparaten niet toelaat dat er meer dan een kernel en ramschijf op het interne flashgeheugen aanwezig zijn, hetgeen betekent dat als u bij een flash-kernel gebruikt, dit gewoonlijk de vorige inhoud van het flashgeheugen overschrijft!

Bij ARM-systemen die U-Boot als systeemfirmware gebruiken en de kernel en de initiële ramschijf opstarten van een extern opslagmedium (zoals een MC/SD-kaart, een USB-massaopslagapparaat of een IDE/SATA harde schijf), genereert flash-kernel een passend opstartscript dat automatisch opstarten zonder tussenkomst van de gebruiker mogelijk maakt.

6.3.7.3 Verder gaan zonder bootloader

Deze optie kan gebruikt worden om de installatie te voltooien, zelfs als er geen bootloader wordt geïnstalleerd, ofwel omdat er geen bootloader beschikbaar is voor die (sub)architectuur, ofwel omdat u er geen wilt installeren (b.v. als u de bestaande bootloader wilt gebruiken).

Indien u zinnens bent om de bootloader handmatig te configureren, moet u nagaan wat de naam is van de geïnstalleerde kernel in `/target/boot`. U moet ook nagaan of in die map een bestand `initrd` aanwezig is. Is dit het geval, dan zult u wellicht uw bootloader de instructie moeten geven om het te gebruiken. Informatie die u ook nodig zult hebben is de schijf en de partitie die u selecteerde voor het `/`-bestandssysteem en voor het bestandssysteem van `/boot` als u ervoor geopteerd heeft om uw `/boot`-bestandssysteem op een aparte partitie te plaatsen.

6.3.8 De installatie afronden

Dit is de laatste stap van het installatieproces voor Debian waarbij het installatiesysteem nog enkele afrondende taken uitvoert. Het komt er voornamelijk op neer dat de losse eindjes die `debian-installer` achter liet, nog aan elkaar geknoopt worden.

6.3.8.1 De systeemklok instellen

Het installatiesysteem kan u vragen of de interne klok van uw computer ingesteld staat op UTC. Normaal wordt deze vraag vermeden als dat kan. Het installatiesysteem zal dan op basis van informatie zoals welke andere besturingssystemen nog geïnstalleerd zijn, zelf proberen te bepalen of de interne klok al dan niet is ingesteld op UTC.

Bij een installatie in expert-modus zal u altijd kunnen kiezen of de klok wordt ingesteld op UTC of niet.

Op dit punt zal `debian-installer` ook proberen om de huidige tijd vast te leggen in de interne systeemklok. Dit zal ofwel in UTC ofwel in de lokale tijd zijn, afhankelijk van de zojuist gemaakte selectie.

6.3.8.2 Het systeem opnieuw opstarten

Men zal u vragen om het opstartmedium (CD, USB-stick, enz.) dat u heeft gebruikt om het installatiesysteem op te starten, te verwijderen. Vervolgens zal uw systeem opnieuw opstarten met uw nieuw Debian systeem.

6.3.9 Probleemoplossing

De componenten die in dit onderdeel vermeld worden, komen normaal gezien niet aan bod in het installatieproces, maar staan op de achtergrond ter beschikking om de gebruiker te helpen als er iets mis gaat.
6.3.9.1 De logbestanden van de installatie bewaren
Als de installatie succesvol is, worden de logbestanden die tijdens het installatieproces zijn aangemaakt, automatisch opgeslagen in de map /var/log/installer/ op uw nieuwe Debian systeem.

De optie Debug-logbestanden opslaan uit het hoofdmenu biedt u de mogelijkheid om de logbestanden op een USB-stick, op een plaats in het netwerk, op een harde schijf of op een ander medium te bewaren. Dit kan nuttig zijn als u onoverkomelijke problemen tegenkomt tijdens de installatie en u de logbestanden op een ander systeem wilt bestuderen of ze wilt meesturen met een installatierapport.

6.3.9.2 Een shell gebruiken en de logs bekijken
Bij het uitvoeren van een installatie staan u verschillende methodes ter beschikking om een shell te krijgen. Op de meeste systemen, en als u de installatie niet via een seriële console uitvoert, is de gemakkelijkste methode om naar de tweede virtuele console te gaan door op de spatiebalk op de computer te drukken op Linker Alt-F2¹⁰ (op een Mac-toetsenbord, Option-F2). Gebruik Linker Alt-F1 om terug te keren naar het installatiesysteem zelf.

Raadpleeg bij een grafische installatie ook Paragraaf 6.1.1.

Indien u niet kunt wisselen tussen consoles, is er ook nog het item Een shell uitvoeren in het hoofdmenu dat gebruikt kan worden om een shell te starten. Vanuit de meeste dialoogvensters kunt u naar het hoofdmenu gaan door een of meer keren de knop Terug te gebruiken. Typ exit om de shell af te sluiten en naar het installatiesysteem terug te keren.

Op dit punt is uw systeem opgestart vanaf een RAM-schijf en staan u een beperkt aantal Unix-hulpprogramma's ter beschikking. U kunt zien welke programma's beschikbaar zijn door het commando ls /bin /sbin /usr/bin /usr/sbin te gebruiken of door help te typen. De shell is ash, een kloon van de Bourne-shell. De shell heeft een aantal aardige functies zoals het automatisch voltooien van commando's en bestandsnamen en een opdrachthistorie.

Gebruik de teksteditor nano om bestanden te bewerken en te bekijken. Logbestanden van het installatiesysteem zijn te vinden in de map /var/log.

OPMERKING
Hoewel u in principe in een shell alles kunt doen wat men met de beschikbare commando's kan doen, is de mogelijkheid om een shell te gebruiken enkel bedoeld voor het geval er iets mis gaat en om te debuggen.

Bepaalde taken handmatig uitvoeren vanuit de shell kan interfereren met het installatieproces en kunnen resulteren in fouten of een onvolledige installatie. In het bijzonder zou u zeker aan het installatiesysteem moeten overlaten om de partitie met het wisselgeheugen, de swap-partitie, te activeren. Dit zou u niet zelf vanuit een shell mogen doen.

6.3.10 Installatie over netwerk-console
Een van de meer interessante componenten is network-console. Deze component maakt het mogelijk om een groot deel van de installatie via SSH over het netwerk uit te voeren. Het gebruik van het netwerk impliceert dat u de eerste stappen van de installatie vanaf de console zult moeten uitvoeren: in ieder geval tot en met de configuratie van het netwerk. (Het is echter mogelijk om dat deel van de installatie te automatiseren met Paragraaf 4.5.)

Deze component wordt niet automatisch getoond in het installatiemenu en dus moet u er expliciet naar vragen. Als u installeert vanaf optische media, moet u de installatie starten met prioriteit "medium" of op een andere manier het hoofdmenu van de installatie oproepen en daarmee de optie Installatiecomponenten van installatiediensten laden selecteren. Vervolgens selecteert u uit de lijst met aanvullende componenten netwerk-console: de installatie met SSH vanaf een andere computer verder zetten. De component is succesvol geladen als in het menu een nieuwe optie De installatie verder van op afstand doorlopen via SSH verschijnt.

Nadat u deze nieuwe optie heeft geselecteerd, zal u worden gevraagd naar een wachtwoord waarmee de verbinding met het installatiesysteem zal worden gerealiseerd en een bevestiging daarvan. Dat is alles. Vervolgens zal u een melding worden getoond met instructies om vanaf een ander systeem in te loggen als gebruiker installer met het wachtwoord dat u daarnet heeft ingevoerd. Een ander belangrijk detail op dit scherm is de vingerafdruk van dit systeem. U dient deze op een veilige manier beschikbaar te stellen aan degene die de installatie op afstand zal vervolgen.

¹⁰Dat is: op de Alt-toets links van de spatiebalk drukken en tezelfdertijd op de functietoets F2.
Indien u besluit de installatie lokaal te volgen, kunt u altijd met behulp van de Enter terugkeren naar het hoofdmenu, waar u een andere component kunt selecteren.

Laten we ons nu verplaatsen naar het andere einde van de netwerkconnector. Voordat u de verbinding kunt opzetten, dient u uw terminal te configureren voor UTF-8, aangezien dat door het installatiesysteem wordt gebruikt. Als u dit niet doet, is installatie vanaf afstand nog wel mogelijk, maar kunt u vreemde effecten op uw scherm zien, zoals kapotte randen van dialoogvensters of onleesbare niet-ASCII karakters. U brengt de verbinding met het installatiesysteem eenvoudig tot stand door het volgende te typen:

```
$ ssh -l installer nieuw_systeem
```

Daarbij is nieuw_systeem ofwel de naam ofwel het IP-adres van de computer waarop het systeem wordt geïnstalleerd. Voordat daadwerkelijk wordt ingelogd zal de vingerafdruk van dat systeem worden getoond en zult u moeten bevestigen dat die correct is.

OPMERKING

De ssh-server in het installatiesysteem gebruikt een standaardconfiguratie waarbij geen pakketten verzonden worden om de verbinding in leven te houden. In principe zou een verbinding met de computer waarop de installatie gebeurt, onbeperkt open moeten blijven. Nochtans kan het in sommige omstandigheden — afhankelijk van de instellingen van uw lokaal netwerk — gebeuren dat de verbinding na een bepaalde periode van inactiviteit verloren gaat. Een veel voorkomende situatie waarin dit kan gebeuren is wanneer een systeem tussen de cliënt en het systeem waarop de installatie plaats heeft, een vorm van Network Address Translation (NAT) plaatst. Afhankelijk van het punt in de installatie waarop de verbinding verloren ging, kan het zijn dat u wel of niet in staat bent om de installatie voort te zetten nadat u een nieuwe verbinding tot stand bracht.

U kunt mogelijk vermijden dat de verbinding wegvalt door bij het starten van de ssh-verbinding de optie `-- ServerAliveInterval=waarde` toe te voegen of die optie in uw configuratiebestand van ssh op te nemen. Merk evenwel op dat deze optie gebruiken in sommige gevallen ook de oorzaak voor het wegvallen van de verbinding kan zijn (bijvoorbeeld als blijf-in-leven-pakketten verzonden worden tijdens een korte onderbreking in de netwerkverbinding waarvan ssh zich anders hersteld zou hebben). Gebruik dit dus enkel als het nodig is.

OPMERKING

Als u meerdere computers na elkaar installeert en deze hetzelfde IP-adres of dezelfde computernaam krijgen, zal ssh weigeren om de verbinding te maken met een dergelijke computer. De reden is dat opeenvolgende systemen een andere vingerafdruk zullen hebben, wat meestal een indicatie is van een “spoofing”-aanval. Als u er zeker van bent dat dit niet het geval is, dient u de betreffende regel te verwijderen uit `~/.ssh/known_hosts`. Waarna u een nieuwe poging kunt doen.

Met het volgende commando verwijdert u de regel met betrekking tot een bepaalde computer: `ssh-keygen -R < computernaamIP-adres >`. Nadat u bent ingelogd zal een aanvangsscherm worden getoond met twee opties die als naam hebben: Menu starten en Shell starten. De eerste optie geeft toegang tot het hoofdmenu van het installatiesysteem vanwaar u de installatie zoals gebruikelijk kunt volvervolgen. De laatste optie start een shell op het nieuwe systeem die u kunt gebruiken om het systeem te onderzoeken en eventueel te repareren. U zou maximaal één SSH-sessie mogen starten met het installatiemenu, maar u kunt desgewenst meerdere sessies starten met een shell.
6.4 Ontbrekende firmware laden

Zoals beschreven wordt in Paragraaf 2.2, is het voor sommige apparaten noodzakelijk dat er firmware geladen wordt. In de meeste gevallen zal het apparaat zonder firmware helemaal niet werken. Soms heeft het ontbreken van firmware gevolgen voor de basisfuncties, maar is de firmware enkel nodig om geavanceerde functies te kunnen gebruiken.

Indien een stuurprogramma voor een apparaat firmware nodig heeft die niet beschikbaar is, zal debian-installer met een dialoogvenster u aanbieden om de ontbrekende firmware te laden. Indien u deze optie selecteert, zal debian-installer op beschikbare opslagapparaten zoeken naar afzonderlijke firmwarebestanden of naar pakketten met firmware. Indien de firmware gevonden wordt, zal ze naar de juiste plaats (/lib/firmware) gekopieerd worden en zal de stuurprogrammamodule opnieuw geladen worden.

Welke apparaten doorzocht worden en welke bestandssystemen ondersteund worden is afhankelijk van de architectuur, de installatiemethode en de fase van de installatie. In het bijzonder tijdens de vroege fases van de installatie, is de kans het grootst dat het laden van de firmware slaagt als dat gebeurt vanaf een voor FAT geformatteerde USB-stick.

Merk op dat het mogelijk is om het laden van de firmware over te slaan als u weet dat het apparaat ook zonder die firmware zal functioneren of als het apparaat niet nodig is tijdens de installatie. debian-installer vraagt enkel naar firmware die nodig is voor kernelmodules die tijdens de installatie geladen worden. Niet alle stuurprogramma’s werden opgenomen in debian-installer. In het bijzonder is dat voor radeon het geval. Dit houdt in dat de mogelijkheden van sommige apparaten op het einde van de installatie niet verschillen van aan het begin van de installatie. Als gevolg daarvan kan het zijn dat van sommige onderdelen van uw hardware niet alle mogelijkheden benut worden. Indien u vermoedt dat dit het geval is, of indien u gewoon nieuwsgierig bent, is het geen kwaad idee om op het vers opgestart systeem de uitvoer van het commando dmesg na te kijken en te zoeken naar “firmware”.

6.4.1 Een medium voorbereiden

Officiële installatie-images bevatten geen niet-vrije firmware. De meest gebruikelijke methode om dergelijke firmware te laden, is van een verwijderbaar medium zoals een USB-stick. Een alternatieve mogelijkheid zijn niet-officiële installatie-images met niet-vrije firmware die u kunt vinden op https://cdimage.debian.org/cdimage/unofficial/non-free/cd-including-firmware/. Wilt u een USB-stick (of een ander medium zoals een partitie van een harde schijf) klaar maken, dan moet u de firmware-bestanden of -pakketten plaatsen in de basismap (root) ofwel in een map die /firmware heet. Het wordt aanbevolen om FAT als bestandssysteem te gebruiken omdat tijdens de vroege stadia van het installatieproces dat bestandssysteem de grootste kans maakt om ondersteund te worden.

Tar-archieven en zip-bestanden met de huidige pakketten voor de meest courante firmware zijn te vinden op:

• https://cdimage.debian.org/cdimage/unofficial/non-free/firmware/

Download gewoon het tar-archief of het zip-bestand voor de juiste release en pak het op het bestandssysteem van het medium uit.

Indien de firmware die u nodig heeft zich niet in het tar-archief bevindt, kunt u ook specifieke firmware-pakketten downloaden van (de sectie non-free van) het archief. Het volgende overzicht vermeldt de meeste van de beschikbare
firmware-pakketten, maar het overzicht is niet gegarandeerd volledig en kan ook pakketten bevatten die geen firmware zijn:

- https://packages.debian.org/search?keywords=firmware

U kunt ook individuele firmwarebestanden kopiëren naar het medium. Aparte firmware is bijvoorbeeld te vinden op een reeds geïnstalleerd systeem of bij de leverancier van de hardware.

6.4.2 Firmware en een geïnstalleerd systeem

Alle firmware die tijdens de installatie geladen wordt, zal automatisch gekopieerd worden naar het geïnstalleerde systeem. In de meeste gevallen zal dit ervoor zorgen dat het apparaat dat de firmware nodig heeft, ook correct zal werken nadat de computer opnieuw opgestart werd met het geïnstalleerde systeem. Indien het geïnstalleerde systeem een andere kernelversie gebruikt dan het installatiesysteem, is er een kleine kans dat de firmware niet geladen kan worden wegens een versiesverschil.

Indien de firmware van een firmwarepakket geladen werd, zal debian-installer dit pakket ook installeren op het geïnstalleerde systeem en zal het de sectie non-free van het pakketarchief ook automatisch toevoegen in het bestand sources.list van APT. Dit heeft het voordeel dat de firmware automatisch opgewaardeerd zal worden als een meer recente versie beschikbaar wordt.

Indien het laden van de firmware overgeslagen werd tijdens de installatie, zal het betrokken apparaat wellicht niet werken op het geïnstalleerde systeem totdat de firmware (of het firmware-pakket) handmatig geïnstalleerd werd.

6.4.3 Het geïnstalleerde systeem voltooien

Afhankelijk van hoe de installatie is uitgevoerd, kan het zijn dat de behoefte aan bepaalde firmware niet werd gedetecteerd tijdens de installatie, dat de betreffende firmware niet beschikbaar was, of dat men ervoor koos om bepaalde firmware op dat moment niet te installeren. In sommige gevallen kan een succesvolle installatie nog steeds eindigen in een zwart scherm of een vervormd scherm bij het opnieuw opstarten van het geïnstalleerde systeem. Wanneer dat gebeurt, kunnen de volgende tijdelijke oplossingen worden geprobeerd:

- Aan de opdrachtregel van de kernel de optie `nomodeset` opgeven. Dit kan helpen om op te starten in een "grafische nood"-modus.

- De toetsencombinatie Ctrl-Alt-F2 gebruiken om over te schakelen naar VT2, die een functionele login-prompt kan bieden.

Eens u ingelogd bent op het geïnstalleerde systeem, is het mogelijk om de detectie van ontbrekende firmware te automatiseren evenals het uitvoeren van de vereiste stappen om deze te activeren door deze procedure toe te passen:

Meestal is herstarten de eenvoudigste manier om er zeker van te zijn dat alle kernelmodules juist geïnitialiseerd zijn; dat is vooral belangrijk wanneer men het systeem heeft opgestart met de optie `nomodeset` als tussentijdse maatregel.
Het installeren van firmwarepakketten vereist zeer waarschijnlijk het inschakelen van de sectie non-free van het pakketarchief. Vanaf Debian GNU/Linux 11.0, zal het uitvoeren van het commando `isenkram-autoinstall-firmware` dat automatisch doen door een speciaal bestand (`/etc/apt/sources.list.d/isenkram-autoinstall-firmware.list`) aan te maken dat verwijst naar een generieke spiegelserver.

6.5 Aanpassingen maken

Met behulp van de shell (zie Paragraaf 6.3.9.2), kan het installatieproces zorgvuldig worden aangepast, zodat het geschikt is voor uitzonderlijke gebruikssituaties:

6.5.1 Een ander init-systeem installeren

Debian gebruikt systemd als het standaard init-systeem. Andere init-systemen (zoals sysvinit en OpenRC) worden echter ondersteund, en het gemakkelijkste moment om een alternatief init-systeem te selecteren is tijdens het installatieproces. Raadpleeg de Init-pagina op de Debian-wiki voor gedetailleerde instructies om dit te doen.
Hoofdstuk 7

De computer opstarten met uw nieuwe Debian systeem

7.1 Het moment van de waarheid

De eerste keer dat u uw computer opnieuw opstart met uw nieuwe Debian systeem is een soort “vuurdoop”.

Als het systeem niet juist opstart, raak dan vooral niet in paniek. Als de installatie succesvol is afgerekend, dan is de kans groot dat slechts een relatief klein probleem het opstarten van het systeem met Debian verhindert. In de meeste gevallen kunnen zulke problemen worden opgelost zonder de installatie te moeten overdoen. Eén van de beschikbare opties om opstartproblemen te verhelpen is het gebruik van de ingebouwde herstelmodus van het installatiesysteem (zie Paragraaf 8.6).

Als Debian en Linux nieuw zijn voor u, dan kunt u hierbij mogelijk wat hulp gebruiken van meer ervaren gebruikers. Voor minder gangbare architecturen zoals 64-bit ARM, kunt u best hulp vragen op de mailinglijst debian-arm (in het Engels). Ook kunt u ons (in het Engels) een installatieverslag sturen, zoals beschreven in Paragraaf 5.4.5. Probeer daarbij uw probleem helder te omschrijven en integreer in het verslag eventuele meldingen die weergegeven werden en die anderen kunnen helpen het probleem te diagnosticeren.

7.2 Geëncrypteerde volumes aankoppelen

Indien u tijdens de installatie geëncrypteerde volumes aanmaakte en er aankoppelpunten aan toekende, zal u tijdens het opstarten gevraagd worden om voor elk van die volumes de wachtwoordzin te geven.

Bij partities die met dm-crypt geëncrypteerd werden, zult u tijdens het opstarten de volgende prompt zien:

Starting early crypto disks... part_crypt(starting)

Enter LUKS passphrase:

In de eerste regel van de prompt is part de naam van de onderliggende partitie, bijv. sda2 of md0. U vraagt zich nu wellicht af voor welk volume u eigenlijk de wachtwoordzin geeft. Is het voor /home? Of is het misschien voor /var? Als u natuurlijk maar één geëncrypteerde volume heeft, is het gemakkelijk en kunt u gewoon de wachtwoordzin geven die u gebruikte bij het instellen van dat volume. Indien u bij de installatie meer dan één geëncrypteerde volume instelde, komen de notities die u nam tijdens de laatste stap in Paragraaf 6.3.4.6 van pas. Indien u niet eerder notitie nam van de samenhang tussen elk part_crypt en zijn overeenkomstig aankoppelpunt, kunt u daar alsnog zicht op krijgen in /etc/crypttab en /etc/fstab van uw nieuw systeem.

Het kan zijn dat de prompt er wat anders uitziet als een geëncrypteerde root-bestandssysteem aangekoppeld wordt. Dit is afhankelijk van welk programma als initramfs-generator gebruikt werd voor het genereren van het initrd-bestand waarmee het systeem wordt opgestart. Het hierna volgende voorbeeld geldt voor een initrd dat aangemaakt werd met initramfs-tools:

Begin: Mounting root file system... ...
Begin: Running /scripts/local-top ...

Enter LUKS passphrase:

Er zullen geen tekens (zelfs geen sterretjes) weergegeven worden terwijl de wachtwoordzin ingevoerd wordt. Indien u de verkeerde wachtwoordzin geeft, krijgt u nog twee extra kansen. Na de derde poging zal het opstartproces dit volume overslaan en voortgaan met het aankoppelen van het volgende bestandssysteem. Raadpleeg Paragraaf 7.2.1 voor bijkomende informatie.
HOOFDSTUK 7. DE COMPUTER OPSTARTEN MET ...

7.3. INLOGGEN

Nadat u alle wachtwoordzinnen ingegeven heeft, zou het opstartproces zoals gewoonlijk moeten voortgaan.

7.2.1 Problemen oplossen

Indien bepaalde geëncrypteerde volumes niet aangekoppeld konden worden omdat een foute wachtwoordzin gegeven werd, zult u ze zelf moeten aankoppelen na het opstarten. Er kunnen zich verschillende scenario’s voordoen.

- In een eerste scenario gaat het om de root-partitie. Als die niet correct aangekoppeld wordt, stopt het opstartproces en zult u de computer opnieuw moeten opstarten en nogmaals moeten proberen.

- Het gemakkelijkste scenario is dat waarbij het om geëncrypteerde volumes gaat waarop gegevens staan zoals /home of /srv. U kunt ze gewoon handmatig aankoppelen na het opstarten.

Met dm-crypt is dat echter een beetje gecompliceerd. Eerst moet u de volumes bij device mapper registreren met de opdracht:

```
# /etc/init.d/cryptdisks start
```

Hierdoor worden alle volumes die in /etc/crypttab vermeld worden, onderzocht en nadat de correcte wachtwoordzin opgegeven werd, wordt een passend apparaat aangemaakt onder de map /dev. (Reeds geregistreerde volumes worden overgeslagen. U kunt dit commando dus zonder problemen verschillende keren na elkaar gebruiken.) Na een succesvolle registratie kunt u de volumes op de gebruikelijke manier aankoppelen:

```
# mount /aankoppel_punt
```

- Indien een volume met niet-cruciale systeembestanden niet aangekoppeld kon worden (/usr of /var), zal het systeem nog altijd opstarten en zult u ze zoals in het vorige scenario handmatig kunnen aankoppelen. U zult echter de diensten die u op een volledig functioneel systeem gewoonlijk gebruikt, moeten (her)starten omdat de kans groot is dat ze niet opgestart werden. De gemakkelijkste manier is de computer gewoon herstarten.

7.3 Inloggen

Nadat het systeem is opgestart, wordt de login-prompt getoond. Meld u aan met uw persoonlijke gebruikersaccount door de gebruikersnaam en het wachtwoord die u tijdens de installatie heeft geselecteerd, in te voeren. Uw systeem is nu klaar voor gebruik.

Als u een nieuwe gebruiker bent, is het misschien nog een goed idee om, terwijl u het systeem begint te gebruiken, de documentatie te verkennen dat reeds op het systeem geïnstalleerd is. Momenteel zijn er verschillende documentatiesystemen in gebruik, maar er wordt gewerkt aan een integratie van de verschillende types documentatie. Hierna volgen enkele aanknopingspunten.

De documentatie bij programma’s die u heeft geïnstalleerd, kunt u vinden in /usr/share/doc/ onder een onderliggende map die naar het programma genoemd werd of juist naar het Debian pakket dat het programma bevat. Meer uitgebreide documentatie wordt echter vaak afzonderlijk verpakt in speciale documentatiepakketten die over het algemeen niet standaard geïnstalleerd worden. Documentatie over het pakketbeheersysteem apt kan bijvoorbeeld gevonden worden in de pakketten apt-doc en apt-howto.

Een eenvoudige manier om deze documenten met een tekstgeoriënteerde browser te bekijken, is met de volgende commando’s:

```
$ cd /usr/share/doc/
$ w3m .
```

De punt achter het commando w3m bepaalt dat de inhoud van de huidige map moet worden getoond.

Als u een grafische desktopomgeving heeft geïnstalleerd, kunt u ook de bijbehorende webbrowser gebruiken. Start de browser vanuit het toepassingsmenu en typ /usr/share/doc/ in de adresregel.

U kunt ook info commando of man commando typen om documentatie te bekijken over de meeste opdrachten die aan de commandoregel gebruikt kunnen worden. Als u help typ, krijgt u hulp over shell-commando’s. En als u een commando typ gevolgd door --help, krijgt u over het algemeen een korte samenvatting over het gebruik van het betreffende commando. Als de uitvoer van een commando niet op één scherm past, typ dan | more achter het
commando, zodat de uitvoer gepauzeerd wordt voordat deze voorbij de bovenkant van het scherm schuift. U kunt een overzicht krijgen van alle opdrachten die met (een) bepaalde letter(s) beginnen door direct achter de letter(s) tweemaal op de tab-toets te drukken.
Hoofdstuk 8

De volgende stappen en waar u hierna nog terecht kunt

8.1 Het systeem afsluiten

Als u een werkend Debian GNU/Linux systeem wilt afsluiten, mag u het systeem niet herstarten met de reset-knop vooraan of achteraan op de computer of mag u hem niet gewoon uitzetten. Debian GNU/Linux moet op een gecontroleerde manier afgesloten worden, anders bestaat de kans dat er bestanden verloren gaan en/of dat de schijf beschadigd wordt. Indien u in een desktopomgeving werkt, is er in het toepassingsmenu gewoonlijk een optie beschikbaar om zich “af te melden”. Daarmee kunt u het systeem afsluiten (of opnieuw opstarten).

Anders kunt u gebruik maken van de toetsencombinatie Ctrl-Alt-Del. Als die toetsencombinatie niet werkt, is een laatste mogelijkheid om als systeembeheerder in te loggen en de vereiste commando's in te typen. Gebruik reboot om het systeem opnieuw te laten opstarten. Gebruik halt om het systeem te stoppen zonder het uit te zetten¹. Om een systeem uit te zetten gebruikt u poweroff of shutdown -h now. Het systeem init-systeem biedt extra commando's die dezelfde rol vervullen, bijvoorbeeld systemctl reboot of systemctl poweroff.

8.2 Zich mentaal instellen op Debian

Debian verschilt een beetje van andere distributies. Zelfs als u vertrouwd bent met Linux in andere distributies, zijn er zaken die u moet weten over Debian om uw systeem in een goede en zuivere staat te kunnen houden. Dit hoofdstuk bevat materiaal dat u kan helpen bij het vinden van de juiste richting. Het is niet opgevat als een beginnershandleiding over het gebruik van Debian. Het biedt slechts een vluchtige inkijk in het systeem ten behoeve van wie erg gehaast is.

8.2.1 Het pakketbeheersysteem van Debian

Het belangrijkste concept dat u goed moet begrijpen is het systeem van pakketbeheer in Debian. In essentie komt het erop neer dat een groot deel van uw systeem gecontroleerd wordt door dat pakketbeheer systeem. Daaronder vallen:

- /usr (met uitzondering van /usr/local)
- /var (maar u kunt /var/local aanmaken en daarin bent u dan veilig)
- /bin
- /sbin
- /lib

Als u bijvoorbeeld /usr/bin/perl vervangt, zal dat werken, maar als u nadien uw perl-pakket opwaardeert, zal het bestand dat u daar geplaatst had, vervangen worden. Geoeefende gebruikers kunnen dit omzeilen door in aptitude pakketten te markeren als “te handhaven” (zie on “hold” te plaatsen).

Een van de beste installatiemethodes is apt. U kunt de commandoregelversie van apt gebruiken of gereedschap zoals aptitude of synaptic (die alleen maar grafische frontends zijn voor apt). Merk op dat apt u toelaat de pakketbronnen main, contrib en non-free te combineren, zodat u tegelijk pakketten met verspreidingsbeperkingen (die strikt genomen niet tot Debian behoren) als pakketten van Debian GNU/Linux kunt gebruiken.

¹Onder het SysV init-systeem had het commando halt hetzelfde effect als het commando poweroff, maar met systemd als init-systeem (sinds jessie is dit het standaard init-systeem) hebben beide commando's een ander effect.
8.2.2 Extra software die voor Debian beschikbaar is

Er zijn officiële en niet-officiële softwarebronnen die bij een standaardinstallatie van Debian niet automatisch ge-activeerd worden. Ze bevatten software die veel mensen belangrijk vinden en waarvan ze ook verwachten dat ze beschikbaar is. Informatie over die extra bonnen kunt u vinden op deze Wiki-pagina van Debian: The Software Available for Debian’s Stable Release (De software die voor de stabiele uitgave van Debian beschikbaar is).

8.2.3 Het versiebeheer van toepassingssoftware

Het beheer van verschillende versies van een bepaalde toepassing gebeurt met update-alternatives. Indien u meerdere versies van een toepassing behoudt op uw systeem, lees dan de man-pagina van update-alternatives.

8.2.4 Het beheer van cron-taken

Alle taken die tot het bevoegdheidsgebied van de systeembeheerder behoren, moeten zich in /etc bevinden, vermits het om configuratiebestanden gaat. Indien u werkt met dagelijkse, wekelijkse of maandelijkse cron-taken van de systeembeheerder, moet u ze respectievelijk in /etc/cron.{daily, weekly, monthly} opnemen. Deze taken worden vanuit /etc/crontab aangeroepen en worden na elkaar in alfabetische volgorde uitgevoerd.

Anderzijds, als u een cron-taak heeft die (a) door een specifieke gebruiker of (b) op een specifiek moment of met een specifieke frequentie uitgevoerd moet worden, kunt u ofwel /etc/crontab gebruiken, of nog beter zelfs, /etc/cron.d/willekeurige-naam. Deze specifieke bestanden bevatten een extra veld waarin u kunt specificeren onder welke gebruikersaccount de taak uitgevoerd wordt.

8.3 Aanvullende lectuur en informatie

Op de Website van Debian vindt u een grote hoeveelheid documentatie over Debian. Bekijk vooral eens de Debian GNU/Linux FAQ en de Debian Referentiehandleiding. Een uitgebreider overzicht van documentatie over Debian vindt u op de pagina van het Debian Documentationproject. De Debian-gemeenschap werkt zelfvoorzienend. Om in te tekenen op een of meer van de mailinglijsten van Debian, gaat u naar de pagina Abonnementen op mailinglijsten.

Indien u informatie nodig heeft over een specifiek programma, moet u eerst proberen die op te vragen met behulp van het commando man programma of info programma.

Het Linux Documentation Project is een bron van algemene informatie over GNU/Linux. Daar vindt u de HOWTO’s en verwijzingen naar andere zeer waardevolle informatie over de onderdelen van een GNU/Linux systeem.

Linux is een implementatie van Unix. Het Linux Documentation Project (LDP) verzamelt een aantal HOWTO’s en online-boeken in verband met Linux.

Indien u niet vertrouwd bent met Unix, doet u er wellicht goed aan enkele boeken te gaan kopen en er wat in te lezen. Deze lijst met Unix FAQ’s bevat een aantal UseNet-documenten die een mooi historisch overzicht bieden.

8.4 Uw systeem instellen voor het gebruik van e-mail

Tegenwoordig bekleedt e-mail een belangrijke plaats in het leven van veel personen. Aangezien er veel verschillende manieren zijn waarop e-mail ingesteld kan worden en vermits het belangrijk is voor sommige Debian hulpprogramma’s dat dit op een correcte manier gebeurt, zullen we in dit onderdeel de basisbeginselen ervan trachten te bespreken.

Een e-mail systeem bestaat uit drie hoofdfuncties. In de eerste plaats heeft men de zogenaamde Mail User Agent (MUA - het e-mail-gebruikersprogramma). Daarmee wordt het programma bedoeld waarmee een gebruiker zijn e-mailberichten maakt en leest. Vervolgens is er de Mail Transfer Agent (MTA - de e-mail-transporteur). Dat is het programma dat instaat voor het transfereren van een bericht van de ene naar de andere computer. Tenslotte is
er de Mail Delivery Agent (MDA - de e-mail-bezorger). Dit programma draagt er zorg voor dat inkomende e-mail afgeleverd wordt in het Postvak IN van de gebruiker.

Deze drie functies kunnen door afzonderlijke programma’s vervuld worden, maar ze kunnen ook gekombineerd worden in een of twee programma’s. Het is ook mogelijk dat verschillende programma’s deze functies opnemen voor verschillende soorten e-mail.

Op Linux- en Unix-systemen is mutt van oudsher een erg populaire MUA. Zoals de meeste traditionele Linux-programma’s is het tekstgeoriënteerd. Vaak wordt het gebruikt in combinatie met exim of sendmail als MTA en procmail als MDA.

Met de toenemende populariteit van grafische desktopsystemen zijn ook grafische e-mailprogramma’s, zoals evolution onder GNOME, kmail onder KDE of Mozilla’s thunderbird populairder geworden. Deze programma’s combineren de functies van MUA, MTA en MDA, maar kunnen ook gebruikt worden in combinatie met het traditionele Linux-gereedschap — en in de praktijk is dat ook vaak het geval —.

8.4.1 Een standaard e-mailconfiguratie

Zelfs als u van plan bent om een grafisch e-mailprogramma te gebruiken, is het nuttig dat op uw Debian GNU/Linux systeem ook een traditionele MTA/MDA geïnstalleerd en correct ingesteld wordt. De reden hiervoor is dat verschillende hulprogramma’s die actief zijn op het systeem², via e-mail belangrijke berichten kunnen sturen naar de systeembeheerder om hem te informeren over wijzigingen of (mogelijke) problemen.

Om die reden kunt u exim4 en mutt installeren met apt install exim4 mutt. exim4 is een relatief kleine maar toch erg flexibele gecombineerde MTA/MDA. Het programma wordt standaard ingesteld om enkel lokale e-mail af te handelen op het systeem zelf, en om e-mail die aan de systeembeheerder (root-account) gericht is, af te leveren bij het account van de gewone gebruiker die tijdens de installatie aangemaakt werd³.

Het afleveren van e-mail die afkomstig is van het systeem, gebeurt door de berichten toe te voegen aan een bestand in /var/mail/account_naam. De berichten kunnen met mutt gelezen worden.

8.4.2 E-mails versturen buiten het systeem

Zoals eerder reeds aangegeven, wordt het geïnstalleerde Debian systeem ingesteld om enkel e-mail af te handelen die op het systeem zelf gegenereerd wordt, en niet om e-mail berichten te versturen naar of te ontvangen van andere systemen.

Indien u wilt dat exim4 ook externe e-mail verwerkt, raadpleeg dan het volgende onderdeel waarin enkele mogelijke basissettingen voor de configuratie besproken worden. Zorg ervoor dat u zeker uittest of e-mail wel degelijk correct verstuurd en ontvangen kan worden.

Indien u van plan bent om een grafisch e-mailprogramma te gebruiken samen met de e-mailserver van uw internetaanbieder (Internet Service Provider - ISP) of van uw bedrijf, dan is er eigenlijk geen enkele reden waarom u exim4 zou instellen om externe e-mail te verwerken. Stel uw favoriete grafische e-mailprogramma gewoon in om de juiste servers te gebruiken voor het verzenden en ontvangen van e-mail (hoe u dit doet, valt buiten het bestek van deze handleiding).

In dat geval kan het echter wel zijn dat u individuele hulprogramma’s moet instellen zodat ze e-mails correct versturen. Een dergelijk hulprogramma is reportbug, een programma dat ondersteuning biedt bij het verstoren van een bugrapport over een Debian pakket. Standaard verwacht het dat het gebruik kan maken van exim4 bij het versturen van een bugrapport.

Om reportbug op een correcte manier in te stellen op het gebruik van een externe e-mailserver, moet u het commando reportbug --configure gebruiken. Op de vraag of er een MTA beschikbaar is, moet u dan “no” antwoorden. Dan zal u gevraagd worden welke SMTP-server gebruikt moet worden voor het insturen van een bugrapport.

8.4.3 De Exim4 Mail Transport Agent configureren

Indien u wilt dat uw systeem ook externe e-mail verwerkt, zult u het pakket exim4 opnieuw moeten configureren⁴:

```bash
# dpkg-reconfigure exim4-config
```

Nadat u dit commando gegeven heeft (als systeembeheerder), zal u gevraagd worden of u de configuratie wilt opdelen in kleine bestanden. Selecteer bij twijfel de voorgestelde optie.

²Voorbeelden zijn: cron, quota, logcheck, aide, ...
³Het doorsturen van aan de systeembeheerder gerichte e-mail naar de gewone gebruiker wordt geconfigureerd in /etc/aliases. Indien er geen account voor een gewone gebruiker aangemaakt werd, zal de e-mail uiteraard afgeleverd worden bij de root-account zelf.
⁴U kunt natuurlijk ook exim4 verwijderen en vervangen door een andere MTA/MDA.
Vervolgens zult u kunnen kiezen uit verschillende gebruikelijke e-mailscenario's. Selecteer het scenario dat het dichtst aansluit bij uw behoeften.

internet-site Uw systeem is aangesloten op een netwerk en uw e-mail wordt rechtstreeks verzonden en ontvangen met behulp van SMTP. Op de daaropvolgende schermen worden u enkele basisvragen gesteld, zoals de mail-naam van uw computer en een lijst van domeinen waarvoor u e-mail aanvaardt of doorzendt.

e-mail versturen via smarthost In dit scenario wordt uw uitgaande e-mail doorgestuurd naar een andere computer, die men een "smarthost" noemt en die het verzenden van de berichten naar de bestemming voor zijn rekening neemt. Meestal bewaart de smarthost ook inkomende e-mail die gericht is aan uw computer, zodat uw computer niet permanent online moet zijn. Dit impliceert ook dat u uw e-mailberichten moet ophalen bij de smarthost via programma's zoals fetchmail.

In veel gevallen is de smarthost de mailserver van uw internetaanbieder (ISP). Daardoor is deze optie erg geschikt voor gebruikers van inbelverbindingen. De smarthost kan ook de mailserver zijn van het bedrijf of mogelijk zelfs een ander systeem binnen uw eigen netwerk.

e-mail verzenden via smarthost; geen lokale e-mail Deze optie is in principe gelijk aan de vorige, behalve dat het systeem niet ingesteld wordt om e-mail te verwerken voor een lokaal e-maildomein. E-mail op het systeem zelf (bijv. voor de systeembeheerder) wordt wel verwerkt.

alleen lokale e-mail Standaard wordt uw systeem op deze optie ingesteld.

nu niet configureren Kies hiervoor enkel als u absoluut overtuigd bent dat u weet wat u doet. Bij deze optie blijft u achter met een e-mail systeem dat niet geconfigureerd is — tot u het zelf instelt, zult u niet in staat zijn om e-mail te verzenden of te ontvangen en is er een kans dat u belangrijke berichten van hulpprogramma's op het systeem misloopt.

Indien geen enkel van deze scenario's aan uw behoeften beantwoordt, of indien u behoefte heeft aan een meer verfijnde instelling, zult u de configuratiebestanden in de map `/etc/exim4` moeten bewerken na het beëindigen van de installatie. Meer informatie over `exim4` vindt u onder `/usr/share/doc/exim4`. Het bestand `README.Debian.gz` bevat meer details over hoe `exim4` geconfigureerd wordt en vermeldt ook waar u aanvullende documentatie kunt vinden.

Merk op dat e-mail rechtstreeks naar het internet versturen hoewel u niet over een officiële domeinnaam beschikt, ertoe kan leiden dat uw e-mail door een ontvangende server verworpen wordt in het kader van anti-spammaatregelen. De voorkeur moet uitgaan naar het gebruiken van de mailserver van uw ISP. Indien u toch e-mail rechtstreeks wenst te versturen, zult u best een ander e-mailadres gebruiken dan datgene wat standaard aangemaakt wordt. Indien u `exim4` als MTA gebruikt, kunt u dit doen door een regel toe te voegen aan `/etc/email-addresses`.

8.5 Een nieuwe kernel compileren

Waarom zou iemand een nieuwe kernel willen compileren? Dit is hoogstwaarschijnlijk niet noodzakelijk, aangezien de standaardkernel die door Debian geleverd wordt, bijna met alle configuraties overweg kan.

Indien u toch uw eigen kernel wilt compileren, is dit uiteraard mogelijk en raden we aan het netto Pakketten "make deb-pkg" te gebruiken. Lees voor bijkomende informatie het Debian Linux Kernel Handbook.

8.6 Een defect systeem herstellen

Soms gaat er iets mis en gebeurt het dat het systeem dat u met zorg installeerde, niet meer kan opstarten. Misschien geraakte de configuratie van de bootloader defect toen u een aanpassing wilde uitproberen, of misschien kan een nieuwe kernel die u installeerde, niet opstarten, of misschien werd uw harde schijf getroffen door een kosmische straling waardoor in `/sbin/init` een bitje gewijzigd werd. Wat de oorzaak ook moge zijn, om het defect systeem te repareren zult u een systeem moeten hebben dat wel werkt en daarvoor kan de reparatiemodus erg handig zijn.

Om in de reparatiemodus te geraken, moet u in het opstartmenu `rescue` (reparatiemodus) selecteren, of aan de `boot: -prompt rescue` typen, of opstarten met de opstartparameter `rescue/enable=true`. U krijgt dan de eerste schermen van het installatiesysteem te zien, met in een hoek van het scherm een aanwijzing dat u zich in de reparatiemodus bevindt en dat het niet gaat om een volledige installatie. Wees niet bezorgd dat uw systeem zal overschreven worden! De reparatiemodus maakt gewoon nuttig gebruik van de hardwareherkenningscapaciteiten waarover het installatiesysteem beschikt, zodat u tijdens de reparatie van het systeem gebruik kunt maken van uw schijven, netwerkapparatuur enzovoort.
In plaats van het hulpprogramma voor schijfindeling, krijgt u nu een lijst met de partities die zich op uw systeem bevinden en de vraag om er een te selecteren. Normaal moet u de partitie selecteren waarop zich het basisbestandsysteem bevindt dat u moet repareren. U kunt zowel partities op RAID- en LVM-apparaten selecteren als die welke rechtstreeks op schijf gecreëerd werden.

Als dit mogelijk is, zal het installatiesysteem u nu in het door u geselecteerde bestandssysteem een shell-prompt geven, waarvan u gebruik kunt maken om de noodzakelijke reparatiehandelingen uit te voeren.

Indien het installatiesysteem er niet in slaagt om in het door u geselecteerde basisbestandssysteem een bruikbare shell te openen, misschien omdat dat bestandssysteem defect is, zal het u waarschuwen en voorstellen om in de plaats daarvan een shell te openen binnen de omgeving van het installatiesysteem. In die omgeving staan u mogelijk niet evenveel hulpmiddelen ter beschikking, maar vaak is dit toch voldoende voor het repareren van uw systeem. Het door u geselecteerde basisbestandssysteem zal aangekoppeld worden op de map `/target`.

In de beide gevallen zal het systeem herstarten nadat u de shell heeft verlaten.

Merk op dat het repareren van een defect systeem moeilijk kan zijn. Deze handleiding tracht niet in te gaan op alles wat fout kan gaan en hoe u dat kunt repareren. Raadpleeg een expert als u met problemen geconfronteerd wordt.
Bijlage A

Installatie-howto

Dit document beschrijft hoe u Debian GNU/Linux bullseye voor de 64-bit ARM ("arm64") installeert met de nieuwe debian-installer. Het is een snelle presentatie van het installatieproces die alle noodzakelijke informatie zou moeten bevatten die men voor de meeste installaties nodig heeft. Als meer informatie nuttig kan zijn, zullen we doorverwijzen naar meer gedetailleerde informatie uit andere delen van dit document.

A.1 Voorbereidselen

Indien u tijdens uw installatie met bugs af te rekenen krijgt, raadpleeg dan Paragraaf 5.4.5 voor instructies over hoe u ze kunt rapporteren. Indien u vragen heeft die niet door dit document beantwoord worden, stel ze dan aan de mailinglijst debian-boot (in het Engels) (debian-boot@lists.debian.org) of stel uw vraag op IRC (in het Engels) (#debian-boot op het OFTC-netwerk).

A.2 Het installatiesysteem opstarten

Sommige installatiemethodes hebben andere images nodig dan deze voor optische media. Paragraaf 4.2.1 legt uit waar u op de Debian spiegelservers images kunt vinden.

In de volgende onderdelen geven we meer informatie over welke images u nodig heeft voor alle mogelijke installatiemethodes.

A.2.1 Optische schijf

Het “netinst” CD-image is een populair image dat gebruikt kan worden voor het installeren van bullseye met de debian-installer. Met deze installatiemethode is het de bedoeling om vanaf dat image op te starten en dan bijkomende pakketten over het netwerk te installeren. Vandaar de naam “netinst”. Het image bevat de softwarecomponenten die nodig zijn om het installatieprogramma uit te voeren en de basispakketten te installeren om zo een minimaal bullseye-systeem te bekomen. Indien u dat verkiest kunt u ook een volledig CD/DVD-image ophalen, waarbij u het netwerk niet nodig heeft voor de installatie. U heeft enkel het eerste image van een dergelijke reeks nodig.

Download het type dat u verkies en brandt het op een optische schijf.

A.2.2 USB-geheugenstick

U kunt de installatie ook uitvoeren met een verwijderbaar USB-opslagapparaat. Een USB-stick kan een handig Debian installatiemedium zijn dat u overal met u mee kunt nemen.

De makkelijkste manier om uw USB-geheugenstick klaar te maken, is een Debian CD- of DVD-image dat er op past downloaden en het image rechtstreeks op de geheugenstick schrijven. Uiteraard zal dit alles wat reeds op de geheugenstick stond, vernietigen. Dit werkt op die manier omdat de Debian CD/DVD-images zogenaamde “isohybrid” images zijn, waarmee u zowel vanaf een optisch station als vanaf een USB-station kunt opstarten.

Er bestaan ook meer flexibele manieren om een geheugenstick in te richten om het debian installatiesysteem te gebruiken, en het is mogelijk om het systeem te laten functioneren met een kleinere geheugenstick. Meer informatie vindt u in Paragraaf 4.3.
A.2.3 Opstarten van het netwerk

Het is ook mogelijk om debian-installer volledig over het netwerk op te starten. De verschillende methodes om over het netwerk op te starten houden verband met de architectuur en met hoe opstarten over het netwerk opgezet werd. De bestanden in netboot/ kunnen gebruikt worden om debian-installer over het netwerk op te starten.

A.2.4 Opstarten vanaf harde schijf

Het is mogelijk om het installatiesysteem op te starten zonder verwisselbare media, maar met enkel een bestaande harde schijf, waarop een andere besturingssysteem kan staan. Download hd-media/initrd.gz, hd-media/vmlinuz en een Debian CD/DVD-image naar de basismap van de harde schijf. Zorg ervoor dat de naam van het image eindigt op .iso. Nu komt het er nog enkel op aan om linux op te starten met het initrd-bestand.

A.3 De installatie

Nadat het installatiesysteem opgestart is, zult u begroet worden door een openingsscherm. Druk op Enter om op te starten of lees de instructies voor andere opstartmethodes en parameters (zie Paragraaf 5.3).

Na een poosje zal u gevraagd worden uw taal te selecteren. Gebruik de pijltjestoetsen om een taal te kiezen en druk op Enter om voort te gaan. Daarna zal u gevraagd worden uw land te selecteren uit een lijst van mogelijke landen waarin uw taal gesproken wordt. Indien uw land niet in die verkorte lijst voorkomt, kunt u een lijst krijgen van alle landen ter wereld.

U zult mogelijk de indeling van uw toetsenbord moeten bevestigen. Kies voor de voorgestelde optie tenzij u een betere mogelijkheid kent.

Nu kunt u rustig achteroverleunen terwijl het installatiesysteem van Debian nagaat welke hardware u heeft en de rest van het installatie-image ophaalt.

Daarna zal het installatiesysteem uw netwerkhardware trachten te herkennen en het netwerk instellen met behulp van DHCP. Indien u zich niet in een netwerk bevindt of geen DHCP heeft, zult u de kans krijgen om het netwerk handmatig te configureren.

Na het instellen van het netwerk volgt het aanmaken van gebruikersaccounts. Standaard wordt u gevraagd om een wachtwoord in te geven voor het account van “root” (de systeembeheerder). Er wordt ook naar de informatie gevraagd die nodig is om een account aan te maken voor een gewone gebruiker. Indien u geen wachtwoord opgeeft voor gebruiker “root”, zal dat account gedeactiveerd worden en zal later het sudo-pakket geïnstalleerd worden om het mogelijk te maken om beheerstaken uit te voeren op het nieuwe systeem. Standaard zal de eerste gebruiker die aangemaakt wordt op het systeem de toelating hebben om het commando sudo te gebruiken om gebruiker root te worden.

De volgende stap is het instellen van de klok en de tijdzone. Het installatiesysteem zal proberen contact te maken met een tijdserver op het internet om er voor te zorgen dat de klok juist ingesteld wordt. De tijdzone wordt gebaseerd op het land dat u eerder selecteerde en enkel wanneer het land meerdere tijdzones heeft, zal het installatiesysteem u vragen er een te selecteren.

Nu is de tijd aangebroken om uw schijven in te delen. Eerst zult u de mogelijkheid krijgen om automatisch een volledige harde schijf of alle vrije ruimte op een schijf in te delen (zie Paragraaf 6.3.4.2). Dit wordt aanbevolen voor nieuwe gebruikers en voor wie gehaast is. Indien u de automatische schijfindeling niet wenst, kiest u in het menu voor Handmatig.

Op het volgende scherm krijgt u de partitietabel te zien, hoe die partities geformatteerd zullen worden en waar ze zullen aangekoppeld worden. Selecteer een partitie als u die wilt wijzigen of verwijderen. Indien u voor automatische schijfindeling koos, zult u in het menu enkel kunnen kiezen voor De schijfindeling afroden en de wijzigingen weg-schrijven naar schijf om op die manier toe te passen wat het systeem instelde. Denk eraan om minstens een partitie voor te behouden voor wisselgeheugen (swap space) en een partitie aan te koppelen op / . Voor meer gedetailleerde informatie over het gebruik van het schijfindelingssysteem, kunt u terecht in Paragraaf 6.3.4. De appendix Bijlage C bevat meer algemene informatie over het indelen van schijven.

Nu formateert debian-installer uw partities en begint met de installatie van het basissysteem. Dit kan enige tijd in beslag nemen. Hierop volgt de installatie van de kernel.

Het eerder geïnstalleerde basissysteem resulteert in een werkende, maar erg minimale installatie. Om een meer functioneel systeem te bekomen, kunt u in de volgende stap extra pakketten installeren via het selecteren van taken. Vooraleer er pakketten geïnstalleerd kunnen worden, moet apt geconfigureerd worden, omdat dit definieert waar de pakketten zulle opgehaald worden. De taak “Standaardsysteem” wordt standaard geselecteerd en moet normaal gesproken geïnstalleerd worden. Selecteer de taak “Desktopomgeving” als u na de installatie over een grafische werk-omgeving wilt beschikken. Raadpleeg Paragraaf 6.3.6.2 voor bijkomende informatie over deze stap.
De laatste stap bestaat uit het installeren van een bootloader. Indien het installatiesysteem andere besturingssyste-temen aantreft op uw computer, zal het die toevoegen aan het opstartmenu en u hierover informeren.

debian-installer zal u nu laten weten dat de installatie afgerond is. Verwijder de CD of een ander opstartmedium en druk op Enter om uw computer opnieuw op te starten. Deze zou nu moeten opstarten in het pas geïnstalleerde systeem en u de mogelijkheid bieden in te loggen. Dit wordt toegelicht in Hoofdstuk 7.

Als u meer informatie nodig heeft over het informatieproces, raadpleeg dan Hoofdstuk 6.

A.4 Stuur ons een installatieverslag

Indien u met succes een installatie uitvoerde met debian-installer, neem dan even de tijd om ons een verslag te bezorgen. De eenvoudigste manier om dit te doen is het pakket reportbug te installeren (apt install reportbug), reportbug te configureren zoals uitgelegd wordt in Paragraaf 8.4.2 en het commando reportbug installation-reports te geven.

Indien u de installatie niet kon afronden, bent u waarschijnlijk gestoten op een bug in het installatiesysteem van Debian. Om het installatiesysteem te kunnen verbeteren is het belangrijk dat we er kennis van krijgen. Neem daarom de tijd om ze te rapporteren. U kunt een installatieverslag gebruiken om problemen te rapporteren. Als de installatie volledig mislukt, raadpleeg dan Paragraaf 5.4.4.

A.5 En tenslotte...

hopen we dat uw Debian installatie leuk is en dat u Debian nuttig vindt. Mogelijk bent u geïnteresseerd in Hoofdstuk 8.
Bijlage B

De installatie automatiseren door antwoorden vooraf in te stellen

In deze bijlage wordt uitgelegd hoe u antwoorden op vragen van debian-installer vooraf kunt instellen (in het Engels gebruikt men hiervoor de term preseeding) om op die manier de installatie automatisch te laten verlopen.

De configuratiefragmenten die in deze bijlage gebruikt worden, zijn ook terug te vinden in een voorbeeldconfiguratiefbestand uit https://www.debian.org/releases/bullseye/example-preseed.txt.

B.1 Inleiding

Zaken vooraf instellen is een manier om antwoord te geven op de vragen die tijdens het installatieproces gesteld worden, zonder dat u die antwoorden zelf moet ingeven terwijl het installatieproces bezig is. Dit maakt het mogelijk om de meeste installatietypes volledig te automatiseren en het biedt zelfs enige functionaliteit die tijdens een gewone installatie niet beschikbaar is.

Zaken vooraf instellen is niet verplicht. Indien u gebruik maakt van een leeg antwoordbestand (ook wel preconfiguratiefbestand genoemd - in het Engels preseed file), zal het installatiesysteem zich gedragen op precies dezelfde manier als wanneer het een gewone handmatige installatie betreft. Elk antwoord dat u vooraf geeft (als u dit op de juiste manier doet!), heeft tot gevolg dat het verloop van de installatie in bepaalde mate afwijkt van dit basisgegeven.

B.1.1 Methodes om preconfiguratie toe te passen

De volgende tabel laat zien welke preconfiguratiemethodes gebruikt kunnen worden bij welke installatiemethodes.

<table>
<thead>
<tr>
<th>Installatiemethode</th>
<th>initrd</th>
<th>bestand</th>
<th>netwerk</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD/DVD/USB</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>net-opstart</td>
<td>ja</td>
<td>neen</td>
<td>ja</td>
</tr>
<tr>
<td>hd-media (inclusief usb-stick)</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
</tr>
</tbody>
</table>

Een belangrijk verschil tussen de preconfiguratiemethodes is het punt waarop het bestand met preconfiguratie-instellingen geladen en verwerkt wordt. Bij de initrd-methode van vooraf configureren is dit onmiddellijk bij het begin van de installatie, zelfs nog vooreer de eerste vraag gesteld wordt. Vooraf configureren vanaf de commandoregel van de kernel vindt vlak daarna plaats. Het is dus mogelijk om een configuratie-instelling die via initrd ingesteld werd te wijzigen door de commandoregel van de kernel te bewerken (ofwel handmatig op het moment van opstarten bij bootloaders die dit ondersteunen). Het vooraf configureren met behulp van een bestand vindt plaats nadat het installatie-image geladen werd. Het vooraf configureren over het netwerk vindt pas plaats nadat het netwerk geconfigureerd werd.

¹maar enkel als er netwerktoegang is en als preseed/url passend ingesteld is
B.2. VOORAF CONFIGUREREN IN DE PRAKTIJK

Belangrijk

Vanzelfsprekend is preconfiguratie niet mogelijk voor de vragen die aan bod komen vooraleer het antwoordbestand geladen wordt (dit betreft ook vragen die slechts gesteld worden bij een gemiddelde of lage prioriteit, zoals bij de eerste ronde van de hardwareherkenning). Een niet erg handige manier om deze vragen te vermijden is de antwoorden vooraf configureren met behulp van opstartparameters, zoals beschreven wordt in Paragraaf B.2.2.

Om op een gemakkelijke manier de vragen te vermijden die normaal gesproken gesteld zouden worden vooraleer het vooraf configureren in werking treedt, kunt u het installatiesysteem starten in de modus “auto”. Dit stelt de vragen uit die normaaliter vanuit het oogpunt van preconfiguratie te vroeg aan bod komen (met name taal, land en de selectie van het toetsenbord). Die vragen worden dan uitgesteld tot het ogenblik waarop het netwerk klaar is, waardoor het mogelijk wordt ze via preconfiguratie te beantwoorden. In deze modus verloopt de installatie volgens de zogenaamde kritieke of cruciale prioriteit, waardoor veel onbelangrijke vragen overgeslagen worden. Zie Paragraaf B.2.3 voor meer informatie.

B.1.2 Beperkingen

Hoewel met deze methode de meeste antwoorden op vragen die door debian-installer gesteld worden, vooraf geconfigureerd kunnen worden, zijn er enkele vermeldenswaardige uitzonderingen. U dient een volledige schijf (opnieuw) in te delen of beschikbare vrije ruimte op een schijf te gebruiken. Het is niet mogelijk om bestaande partities te gebruiken.

B.2 Vooraf configureren in de praktijk

Een voorbeeld van een antwoordbestand dat u als basis kunt gebruiken voor uw eigen preconfiguratiebestand is te vinden op https://www.debian.org/releases/bullseye/example-preseed.txt. Dit bestand is gebaseerd op de configuratiefragmenten die in deze bijlage gebruikt worden.

B.2.1 Het antwoordbestand laden

Indien u de preconfiguriemethode met initrd gebruikt, moet u er alleen voor zorgen dat u een bestand met de naam preseed.cfg in de basismap van initrd heeft staan. Het installatiesysteem zal automatisch nagaan of zich daar een dergelijk bestand bevindt en het dan laden.

Voor de andere preconfiguriemethodes moet u het installatiesysteem bij het opstarten zeggen welk bestand het moet gebruiken. Dit wordt gewoonlijk gedaan door de kernel een opstartparameter mee te geven, ofwel handmatig bij het opstarten ofwel via het bewerken van het configuratiebestand van de bootloader (bijv. syslinux.cfg) en de parameter toe te voegen aan het einde van de ‘append’-regel(s) voor de kernel.

Indien u het preconfiguratiebestand vermeldt in de configuratie van de bootloader, zou u de configuratie zo kunnen aanpassen dat u niet op de enter-toets moet drukken om het installatiesysteem op te starten. Voor syslinux betekent dit in syslinux.cfg de pauzetijd (timeout) instellen op 1.

Om er zeker van te zijn dat het installatiesysteem het juiste antwoordbestand gebruikt, kunt u facultatief de checksum van het bestand vermelden. Momenteel moet dat een md5sum zijn en als u dit vermeldt moet de checksum wel passen bij het antwoordbestand, anders zal het installatiesysteem weigeren het bestand te gebruiken.

Opstartparameters die u moet opgeven:
- indien u over het netwerk opstart:
B.2. VOORAF CONFIGUREEREN IN DE PRAKTIJK

B.2.2 Met opstartparameters vooraf installatievragen beantwoorden

Als er geen gebruik gemaakt kan worden van een antwoordbestand om voor sommige stappen de antwoorden vooraf te geven, kan de installatie nog steeds volledig geautomatiseerd worden, aangezien u preconfiguratiewaarden aan de commandoregel kunt geven bij het opstarten van het installatiesysteem.

Opstartparameters kunnen ook gebruikt worden als u niet echt vooraf wilt configureren, maar enkel een antwoord op een specifieke vraag wilt meegeven. Elders in deze handleiding worden enkele voorbeelden gegeven van situaties waarin dit zinvol kan zijn.

Om een waarde in te stellen die binnenzitten in de configuratievariabele die in de voorbeelden in deze bijlage verwijderd wordt, kunt u voor elk preconfiguratiedeelbeeld die in de voorbeelden in deze bijlage vermeld wordt, gewoon het volgende opgeven: `pad/naar/variabele=waarde`

Indien het een waarde betreft die gebruikt moet worden om een pakket voor het doelstelsel te configureren, moet u de `eigenaar`² van de variabele voorvoegen, zoals in dit voorbeeld: `eigenaar:pad/naar/variabele=waarde`.

Indien u geen eigenaar vermeldt, zal de waarde van de variabele niet gekopieerd worden naar de databank van debconf op het doelstelsel en dus niet gebruikt worden tijdens de configuratie van het betreffende pakket.

Als u een vraag op deze manier vooraf beantwoordt, heeft dat tot gevolg dat ze normaal gezien niet zal gesteld worden. Wilt u voor een bepaalde vraag een specifieke waarde als standaard instellen, maar wilt u ook dat de vraag toch nog gesteld wordt, gebruik dan “?=” in plaats van “=” als operator. Zie ook Paragraaf B.5.2.

Merk op dat sommige variabelen die frequent aan de opstartprompt ingevoerd worden, een verkorte alias hebben.

Indien er een alias bestaat, wordt die in de voorbeelden in deze bijlage gebruikt in plaats van de volledige variabele. Voor de variabele `preseed/url` bijvoorbeeld, wordt de alias `url` gebruikt. Een ander voorbeeld is de alias `tasksel`, die staat voor `tasksel/tasksel/first`.

Een “---” in de opstartopties heeft een bijzondere betekenis. Kernelparameters die na de laatste “---” staan, zullen gekopieerd worden naar de configuratie van de bootloader van het geïnstalleerde systeem (als het installatiesysteem dit voor die bootloader ondersteunt). Het installatiesysteem zal automatisch elke optie die het herkent (zoals preconfigureeringsopties), uitfilteren.

OPMERKING

De huidige linux kernels (2.6.9 en recenter) accepteren maximaal 32 commandoregelopties en 32 omgevingsopties, inclusief die opties die standaard gebruikt worden voor het installatiesysteem. Indien deze aantallen overschreden worden, zal de kernel panikeren (crashen). (Bij oudere kernels lagen deze aantallen lager.)

Bij de meeste installaties mogen sommige van de standaardopties in het configuratiebestand van de bootloader, zoals `vga=normal`, probleemloos verwijderd worden, waardoor u meer preconfiguratieopties kunt gebruiken.

²De eigenaar van een debconf-variabele (of sjabloon) is normaal gezien de naam van het pakket dat het overeenkomstige debconf-sjabloon bevat. Voor variabelen die in het installatiesysteem zelf worden gebruikt, is de eigenaar “d-i”. Sjablonen en variabelen kunnen meer dan één eigenaar hebben en dit gegeven kan helpen bij het bepalen of een bepaalde variabele uit de databank van debconf verwijderd mag worden als een pakket op het systeem gewist wordt (d.w.z. als apt met het commando purge gebruikt wordt).
B.2.3 Automatische modus

Er kunnen verschillende eigenschappen van het installatiesysteem van Debian gecombineerd worden, waardoor met een redelijk eenvoudig commando aan de opstartprompt een vrij gekozen aangepaste complexe automatische installatie gerealiseerd kan worden.

Dit is mogelijk als u bij het opstarten kiest voor Geautomatiseerde installatie. Bij sommige architecturen of opstartmethodes wordt dit ook auto genoemd. In dit onderdeel staat auto dus niet voor een parameter, maar wel voor het selecteren van die opstartkeuze, waarbij de erop volgende opstartparameters toegevoegd worden aan de opstartprompt.

Ter illustratie geven we hier enkele voorbeelden die aan de opstartprompt gebruikt kunnen worden:

```
auto url-autoserver
```

Dit rekent erop dat er een DHCP-server beschikbaar is die de machine tot op het punt kan krijgen waarop autoserver door DNS opgezocht kan worden, nadat er eventueel het lokale domein aan toegevoegd werd als dat door DHCP vermeld wordt. Indien dit toegepast wordt op een site waarvan het domein example.com is, en waarvan de DHCP-configuratie op een verstandige manier aangepakt is, heeft dit tot gevolg dat het volgende antwoordbestand opgehaald wordt:

```
http://autoserver.example.com/d-i/bullseye/./preseed.cfg
```

Het laatste deel van die url (d-i/bullseye/./preseed.cfg) is afkomstig van auto-install/defautroot. Standaard bevat die de map bullseye om toe te laten dat toekomstige versies een eigen codenaam gebruiken en om een dergelijke verwijzing op een gecontroleerde manier te kunnen aanpassen. Het element /./ wordt gebruikt om een basismap aan te geven. Erop volgende paden worden daaraan relatief verankerd (om in preseed/include en preseed/run gebruikt te worden). Dit maakt het mogelijk om bestanden op te geven aan de hand van een volledige URL, of met een pad dat begint met een / en dat dus verankerd is, of zelfs met een pad dat relatief is ten opzichte van de plaats waar het laatste antwoordbestand gevonden werd. Men kan hiervan gebruik maken om scripts te maken die beter transponeerbaar zijn, waardoor een samenhangend geheel van scripts verplaatst kan worden naar een andere locatie zonder dat ze onklaar worden. Een voorbeeld zou kunnen zijn ze naar een USB-stick kopieren terwijl ze oorspronkelijk op een webserver dienst deden. Als het antwoordbestand uit dit voorbeeld preseed/run instelt op /scripts/late_command.sh, dan zal het bestand opgehaald worden van:

```
http://autoserver.example.com/d-i/bullseye/./scripts/late_command.sh
```

Als er geen lokale netwerkinfrastructuur voor DHCP of DNS aanwezig is, of als u het standaardpad naar preseed.cfg niet wilt gebruiken, kunt u nog steeds een expliciete URL gebruiken en als u het element /./ niet gebruikt, zal de verankering aan het begin van het pad (d.w.z. de derde / in de URL) gebeuren. Hierna volgt een voorbeeld dat minimale ondersteuning vraagt van de lokale netwerkinfrastructuur:

```
auto url=http://192.168.1.2/pad/naar/mijnantwoord.bestand
```

Dit werkt als volgt:

- als de URL geen protocol vermeldt, wordt http verondersteld,
- als het element computernaam geen punt bevat, wordt de van DHCP afkomstige domeinnaam eraan toegevoegd,
- als er na de computernaam geen /'s staan, dan wordt het standaardpad eraan toegevoegd.

Naast de URL, kunt u ook nog instellingen opgeven die niet onmiddellijk het gedrag van debian-installer zelf beïnvloeden, maar die doorgegeven kunnen worden aan scripts die in het geladen antwoordbestand vermeld worden met behulp van preseed/run. Momenteel is het enige voorbeeld hiervan auto-install/classes, waarvoor classes een alias is. Dit kan als volgt gebruikt worden:

```
auto url-example.com classes=klasse_A;klasse_B
```

De klassen zouden bijvoorbeeld het type systeem kunnen vermelden dat geïnstalleerd moet worden of de te gebruiken lokalisatie.
Het is uiteraard mogelijk om dit concept uit te breiden en als u dit doet, is het redelijk om daarvoor de naamruimte auto-install te gebruiken. Zo zou men iets kunnen hebben als auto-install/style, hetgeen dan in uw scripts gebruikt wordt. Indien u de behoefte voelt om dit te doen, gelieve het dan te vermelden op de mailinglijst debian-boot@lists.debian.org, zodat we naamruimteconflicten kunnen vermijden en eventueel een alias voor de parameter kunnen toevoegen.

De opstartoptie auto is nog niet op alle architecturen gedefinieerd. U kunt hetzelfde effect bekomen door gewoon de twee parameters auto=true priority=critical toe te voegen aan de commandoregel van de kernel. De kernelparameter auto is een alias voor auto-install/enable en die op true instellen stelt de vragen over taalgebied en toetsenbordindeling uit tot na het moment waarop er een mogelijkheid was om ze via een antwoordbestand te beantwoorden. De parameter priority is een alias voor debconf/priority en als die op critical ingesteld wordt, worden geen vragen meer gesteld die een lagere prioriteit hebben.

Andere opties die interessant kunnen zijn in het geval u een installatie tracht te automatiseren waarin van DHCP gebruik gemaakt wordt zijn:

```
interface=auto netcfg/dhcp_timeout=60
```

Deze opties zorgen ervoor dat de machine kiest voor de eerste bruikbare netwerkkaart (NIC) en meer geduld heeft bij het wachten op een antwoord op zijn DHCP-aanvraag.

Tip

Een uitgebreid voorbeeld van het gebruik van dit raamwerk, met inbegrip van voorbeeldscripts en klassen, kunt u vinden op de website van de ontwikkelaar. De voorbeelden die u daar aantreft tonen ook veel andere leuke effecten die u met een creatief gebruik van preconfiguratie kunt bekomen.

B.2.4 Nuttige aliassen bij het vooraf configureren

De volgende aliassen kunnen nuttig zijn als u gebruik maakt van preconfiguratie (eventueel in automatische modus). Merk op dat dit gewoon korte aliassen zijn voor de namen van de vragen en dat u ook steeds een waarde moet opgeven: bijvoorbeeld auto=true of interface=eth0.

<table>
<thead>
<tr>
<th>parameter</th>
<th>naamraum/alias</th>
</tr>
</thead>
<tbody>
<tr>
<td>priority</td>
<td>debconf/priority</td>
</tr>
<tr>
<td>fb</td>
<td>debian-installer/framebuffer</td>
</tr>
<tr>
<td>language</td>
<td>debian-installer/language</td>
</tr>
<tr>
<td>country</td>
<td>debian-installer/country</td>
</tr>
<tr>
<td>locale</td>
<td>debian-installer/locale</td>
</tr>
<tr>
<td>theme</td>
<td>debian-installer/theme</td>
</tr>
<tr>
<td>auto</td>
<td>auto-install/enable</td>
</tr>
<tr>
<td>classes</td>
<td>auto-install/classes</td>
</tr>
<tr>
<td>bestand</td>
<td>preseed/file</td>
</tr>
<tr>
<td>url</td>
<td>preseed/url</td>
</tr>
<tr>
<td>domain</td>
<td>netcfg/get_domain</td>
</tr>
<tr>
<td>hostname</td>
<td>netcfg/get_hostname</td>
</tr>
<tr>
<td>interface</td>
<td>netcfg/choose_interface</td>
</tr>
<tr>
<td>protocol</td>
<td>mirror/protocol</td>
</tr>
<tr>
<td>suite</td>
<td>mirror/suite</td>
</tr>
<tr>
<td>modules</td>
<td>ana/choose_modules</td>
</tr>
<tr>
<td>recommends</td>
<td>base-installer/install-recommends</td>
</tr>
<tr>
<td>tasks</td>
<td>tasksel:tasksel/first</td>
</tr>
<tr>
<td>desktop</td>
<td>tasksel:tasksel/desktop</td>
</tr>
<tr>
<td>dmraid</td>
<td>disk-detect/dmraid/enable</td>
</tr>
<tr>
<td>keymap</td>
<td>keyboard-configuration/xkb-keymap</td>
</tr>
<tr>
<td>preseed-md5</td>
<td>preseed/file/checksum</td>
</tr>
</tbody>
</table>

B.2.5 Preconfiguratievoorbeelden voor de opstart-prompt

Hier volgen enkele voorbeelden van hoe de opstart-prompt er kan uitzien (u zal dit aan uw behoeften moeten aanpassen).
Bijlage B. De installatie automatiseren… B.3. Een antwoordbestand aanmaken

B.2.6 Een DHCP-server gebruiken om antwoordbestanden op te geven

Het is ook mogelijk om DHCP te gebruiken om een antwoordbestand op te geven dat van het netwerk opgehaald moet worden. DHCP laat toe om een bestandsnaam op te geven. Gewoonlijk is dat een bestand dat gebruikt wordt bij het opstarten over het netwerk, maar als blijkt dat het een URL is, dan zullen installatiemedia die preconfiguratie over het netwerk ondersteunen, het bestand ophalen op die URL en het gebruiken als antwoordbestand. Hierna volgt een voorbeeld van de manier waarop dit voor versie 3 van de ISC DHCP-server (het Debian pakket isc-dhcp-server) opgezet kan worden in het bestand dhcpcd.conf.

```bash
if substring (option vendor-class-identifier, 0, 3) = "d-i" { filename "http://host/preseed.cfg";
}
```

Merk op dat het bovenstaande voorbeeld dit bestand voorbehoudt voor de DHCP-cliënten die zichzelf als “d-i” identificeren, zodat het geen invoel heeft op gewone DHCP-cliënten, maar enkel gebruikt wordt voor het installatiesysteem. U kunt de tekst ook in een informatieblok plaatsen dat geldt voor één enkele computer, zodat u kunt vermijden dat preconfiguratie gebruikt wordt voor alle installaties die op uw netwerk uitgevoerd worden.

Een goede manier om gebruik te maken van preconfiguratie via DHCP is om dit te reserveren voor het vooraf configureren van waarden (antwoorden) die specifiek zijn voor uw netwerk, zoals de te gebruiken Debian spiegelserver. Op die manier zullen installaties op uw netwerk automatisch een goede spiegelserver selecteren, terwijl de rest van de installatie interactief uitgevoerd kan worden. Preconfiguratie via DHCP gebruiken om installaties van Debian volledig te automatiseren, zou enkel met de nodige voorzichtigheid mogen gebeuren.

B.3 Een antwoordbestand aanmaken

Een antwoordbestand wordt opgemaakt in de indeling die door het commando `debconf-set-selections` gebruikt wordt. De algemene indeling van een regel in een antwoordbestand is:

```xml
<eigenaar> <naam_van_de_vraag> <vraagtype> <waarde>
```

Het bestand moet beginnen met `#_preseed_V1`

U moet enkele regels in acht nemen als u een antwoordbestand schrijft:

- Plaats slechts één spatie of tab tussen type en waarde: eventuele extra witruimte zal als onderdeel van de waarde geïnterpreteerd worden.
- Een regel kan in meerdere regels opgesplitst worden door een backslash (\") toe te voegen als teken dat de regel voortgaat op de volgende regel. Een goede plaats om een regel te splitsen is na de naam van de vraag. Een slechte plaats om te splitsen is tussen type en waarde. Gesplitste regels zullen tot één regel samengevoegd worden en daarbij wordt alle voorafgaande witruimte tot één spatie gereduceerd.
- Voor debconf-variabelen (sjablonen) die enkel in het installatiesysteem zelf gebruikt worden, moet “d-i” als eigenaar opgegeven worden. Om variabelen vooraf te configureren die gebruikt worden in het geïnstalleerde systeem, moet de naam gebruikt worden van het pakket dat het overeenkomstige debconf-sjabloon bevat. Enkel de variabelen met een andere eigenaar dan “d-i” zullen overgedragen worden naar de debconf-databank op het geïnstalleerde systeem.
• Bij het vooraf geven van een antwoord moet voor de meeste vragen een waarde opgegeven worden die geldig is in het Engels en niet de vertaling ervan. Nochtans moet voor sommige vragen (bijvoorbeeld in partman) wel de vertaling van de waarde gebruikt worden.

• Sommige vragen krijgen een code als waarde in plaats van de Engelse tekst die tijdens de installatie te zien is.

• Begin met

• Een commentaar is een regel die begins met een hekje (“#”) en strekt zich over de volledige lengte van die regel uit.

De makkelijkste manier om een antwoordbestand te maken is om het voorbeeldbestand waarnaar in Paragraaf B.4 gerefereerd wordt, te gebruiken als basis en daarop voort te werken.

Een andere methode is om een handmatige installatie uit te voeren en nadien, na het opnieuw opstarten van het systeem, het commando debconf-get-selections uit het pakket debconf-utils te gebruiken om zowel de debconf-databank als de cdebconf-databank van het installatiesysteem te dumpen naar één bestand:

```bash
$ echo "#_preseed_V1" > bestand
$ debconf-get-selections --installer >> bestand
$ debconf-get-selections >> bestand
```

Een bestand dat op deze manier gegenereerd wordt, bevat echter enkele elementen die niet gebruikt zouden mogen worden in een antwoordbestand en voor de meeste gebruikers is het voorbeeldbestand een beter aanknopingspunt.

Opmerking

Deze methode betrouw de feit dat aan het einde van de installatie de cdebconf-databank van het installatiesysteem opgeslagen wordt in /var/log/installer/cdebconf op het geïnstalleerde systeem. Maar omdat de databank gevoelige informatie kan bevatten, kunnen de bestanden standaard enkel door de systeembeheerder gelezen worden.

De map /var/log/installer en alle bestanden die ze bevat, zullen van uw systeem verwijderd worden als u het pakket installation-report wilt met het commando purge.

Om mogelijke waarden voor vragen te controleren, kunt u nano gebruiken om de bestanden in /var/lib/cdebconf na te kijken terwijl een installatie bezig is. Bekijk templates.dat voor de ruwe sjablonen en questions.dat voor de huidige waarden en voor de waarden die aan variabelen toegekend werden.

Om na te gaan of de indeling van uw antwoordbestand geldig is, vooral meer een installatie gaat uitvoeren, kunt u het commando gebruiken debconf-set-selections -c preseed.cfg (waarbij preseed.cfg de naam van het antwoordbestand is).

B.4 Inhoud van het antwoordbestand (voor bullseye)

De configuratiefragmenten die in deze bijlage gebruikt worden, zijn ook terug te vinden in een voorbeeldconfiguratiefbestand uit https://www.debian.org/releases/bullseye/example-preseed.txt.

Merk op dat dit voorbeeld gebaseerd is op een installatie voor de architectuur x86 van Intel. Indien u een installatie uitvoert op een andere architectuur, kan het zijn dat sommige voorbeelden (zoals de selectie van het toetsenbord en de installatie van de bootloader) niet relevant zijn en vervangen moeten worden door debconf-instellingen die aangepast zijn aan uw architectuur.

Gedetailleerde informatie over de eigenlijke werking van de verschillende componenten van het installatiesysteem van Debian kunt u vinden in Paragraaf 6.3.

B.4.1 Lokalisatie

Tijdens een gewone installatie worden de vragen over lokalisatie eerst gesteld, en dus kunnen deze waarden enkel voor geconfigureerd worden via de methode met initrd of via kernelstartparameters. De modus auto (Paragraaf B.2.3) stelt auto-install/enable=true in (gewoonlijk via de preconfiguratiefalias auto). Dit stelt de lokalisatievragen uit, zodat ze vooraf geconfigureerd kunnen worden met gelijkelijke welke methode.
Het taalgebied kan gebruikt worden om zowel de taal als het land te specificeren en kan om het even welke combinatie zijn van een door debian-installer ondersteunde taal en een erkend land. Indien de combinatie van beide elementen geen geldig taalgebied is, zal het installatiesysteem zelf automatisch een taalgebied selecteren dat geldig is voor de geselecteerde taal. Om het taalgebied via een opstartparameter te specificeren, gebruikt u bijvoorbeeld `locale=nl_BE` (of `nl_NL`).

Hoewel deze methode makkelijk in gebruik is, laat ze niet toe om in een preconfiguratie alle mogelijke combinaties van taal, land en taalgebied³ te vormen. Als alternatieve mogelijkheid kunt u dus de verschillende waarden apart preconfigureren. Taal en land kunnen ook als opstartparameters opgegeven worden.

```bash
# Enkel locale (taalgebied) preconfigureren stelt zowel taal, land als taalgebied
# in.
d-i debian-installer/locale string en_US

# Met het oog op meer flexibiliteit kunnen de waarden ook apart
# gepreconfigureerd worden.
#d-i debian-installer/language string en
#d-i debian-installer/country string NL
#d-i debian-installer/locale string en_GB.UTF-8
# Eventueel kunt u ook extra te genereren taaldefinities opgeven.
#d-i localechooser/supported-locales multiselect en_US.UTF-8, nl_NL.UTF-8
```


```bash
# Toetsenbordselectie.
d-i keyboard-configuration/xkb-keymap select us
# d-i keyboard-configuration/toggle select No toggling
```

Om de toetsenbordconfiguratie over te slaan, gebruikt u de preconfiguratie `keymap` met `skip-config`. Het resultaat is dat de toetsenbordindeling van de kernel actief blijft.

B.4.2 Netwerkconfiguratie

Uiteraard zal het configureren van het netwerk via een antwoordbestand niet lukken als u het antwoordbestand over het netwerk moet ophalen. Maar het gaat perfect als u opstart van een optische schijf of een USB-stick. Als u antwoordbestanden ophalt over het netwerk, kunt u configuratieparameters voor het netwerk opgeven onder de vorm van opstartparameters voor de kernel.

Indien u een specifieke netwerkkaart moet gebruiken bij het opstarten over het netwerk vooraleer een antwoordbestand via het netwerk opgehaald wordt, moet u een opstartparameter gebruiken zoals `interface=eth1`.

De configuratie van het netwerk vooraf instellen is normaal gezien niet mogelijk als u met een antwoordbestand op het netwerk werkt (met "preseed/url"). U kunt echter het volgende trucje toepassen om dit te omzeilen, bijvoorbeeld als u een statisch adres wilt instellen voor de netwerkkaart. De truc bestaat erin om af te dwingen dat de netwerkconfiguratie opnieuw uitgevoerd wordt nadat het antwoordbestand geladen is door een "preseed/run"-script te maken dat de volgende commando's bevat:

```bash
kill-all-dhcp; netcfg
```

De volgende debconf-variabelen zijn relevant voor de configuratie van het netwerk.

```bash
# Disable network configuration entirely. This is useful for cdrom
# installations on non-networked devices where the network questions,
# warning and long timeouts are a nuisance.
#d-i netcfg/enable boolean false

# netcfg will choose an interface that has link if possible. This makes it
# skip displaying a list if there is more than one interface.
```

³Als u bijvoorbeeld in de preconfiguratie locale zou instellen op `en_NL` zou dit resulteren in `en_US.UTF-8` als standaardtaalgebied voor het geïnstalleerde systeem. Indien u bijvoorbeeld `en_GB.UTF-8` wenselijker zou vinden, zou u de individuele waarden apart moeten preconfigureren.
Merk op dat netcfg het netwerkmasker automatisch zal vaststellen als netcfg/get_netmask niet vooraf geconfigureerd is. In dergelijk geval moet bij automatische installaties de variabele als `seen` gemarkeerd worden.
Evenzo zal netcfg een passend adres kiezen als netcfg/get_gateway niet ingesteld werd. Een bijzondere toepassing is dat u netcfg/get_gateway kunt instellen op “none” om aan te geven dat er geen gateway gebruikt moet worden.

B.4.3 Netwerkconsole

- # Gebruik de volgende instellingen als u de netwerkconsolecomponent
- # wilt gebruiken voor een installatie vanop afstand via SSH. Dit is
- # enkel zinvol als u de rest van de installatie handmatig wilt uitvoeren.
- #d-i anna/choose_modules string network-console
- #d-i network-console/authorized_keys_url string http://10.0.0.1/openssh-sleutel
- #d-i network-console/password password IkBenr00t
- #d-i network-console/password-again password IkBenr00t

Meer informatie in verband met network-console is te vinden in Paragraaf 6.3.10.

B.4.4 Spiegelserverinstellingen

Afhankelijk van de installatiemethode die u gebruikt, kan een spiegelserver gebruikt worden om bijkomende componenten van het installatiesysteem op te halen, om het basissysteem te installeren of om het bestand /etc/apt/sources.list op het geïnstalleerde systeem in te stellen.

De parameter mirror/suite bepaalt welke suite (voorbeelden zijn stable, testing, enz.) op het geïnstalleerde systeem gebruikt wordt.

De parameter mirror/udeb/suite bepaalt welke suite gebruikt moet worden voor de bijkomende componenten van het installatiesysteem. Het is enkel zinvol om dit in te stellen als er inderdaad componenten over het netwerk opgehaald worden. De ingestelde waarde moet overeenkomen met de suite die gebruikt werd voor het bouwen van het initrd van de gebruikte installatiemethode. Normaal gezien kiest het installatiesysteem automatisch de correcte waarde en is het niet nodig om deze in te stellen.

- # Spiegelserver-protocol:
 - # Indien u ftp selecteert, moet de waarde voor mirror/country niet ingesteld worden.
 - # Standaardwaarde voor het spiegelserver-protocol: http.
 - #d-i mirror/protocol string ftp
 - d-i mirror/country string manual
 - d-i mirror/http/hoststring string ftp.nl.debian.org
 - d-i mirror/http/directory string /debian
 - d-i mirror/http/proxy string

- # Te installeren suite.
 - #d-i mirror/suite string testing
 - # Te gebruiken suite voor het ophalen van componenten van het installatiesysteem (facultatief).
 - #d-i mirror/udeb/suite string testing

B.4.5 Accounts instellen

Het wachtwoord voor het account van root (de systeembeheerder) en de naam en het wachtwoord van de eerste gewone gebruiker kunnen vooraf geconfigureerd worden. Voor de wachtwoorden kunt u ofwel gebruik maken van waarden in ongecodeerde tekst of in crypt(3) hashes.
WAARSCHUWING

U moet weten dat wachtwoorden vooraf configureren via een antwoordbestand niet volledig veilig is, aangezien iedereen die toegang heeft tot het antwoordbestand deze wachtwoorden kan kennen. Het opslaan van wachtwoorden in de vorm van een hashcode wordt als veilig beschouwd tenzij een zwak hashalgoritme gebruikt wordt, zoals DES of MD5. Deze kunnen met brute kracht gekraakt worden. Aanbevolen algoritmes voor het hashen van wachtwoorden zijn SHA-256 en SHA512.

De variabelen passwd/root-password-crypted en passwd/user-password-crypted kunt u in de preconfiguratie ook de waarde “!” geven. In dat geval wordt het betreffende account uitgeschakeld. Dit kan handig zijn voor het account van root, uiteraard op voorwaarde dat een andere methode ingesteld wordt om het uitvoeren van beheerstaken of het inloggen van root mogelijk te maken (bijvoorbeeld door bij SSH gebruik te maken van authenticatie via een sleutel of door gebruik te maken van NTP).

Het volgende commando (te vinden in het pakket whois) kan gebruikt worden om een SHA-512 crypt(3) hash te genereren voor een wachtwoord:

```
mkpasswd -m sha-512
```

B.4.6 Instellen van klok en tijdzone

```
# Bepaalt of de hardwareklok op UTC ingesteld moet worden.
-d i clock-setup/utc boolean true

# U kunt dit instellen op elke geldige waarde voor $TZ; raadpleeg voor
# mogelijke waarden de inhoud van /usr/share/zoneinfo/.
-d i time/zone string US/Eastern

# Bepaalt of tijdens de installatie NTP moet gebruikt worden
# om de tijd in te stellen
-d i clock-setup/ntp boolean true
```
B.4.7 Schijfindeling

Wat u op het vlak van het indelen van de harde schijf kunt doen met een antwoordbestand, is gelimiteerd tot wat door partman-auto ondersteund wordt. U kunt ofwel kiezen voor het indelen van bestaande vrije ruimte op een harde schijf, ofwel voor het indelen van een volledige harde schijf. De indeling van de schijf kan bepaald worden door gebruik te maken van een vooraf gedefinieerd schema, van een aangepast schema uit een bestand of van een schema dat in het antwoordbestand opgenomen wordt.

Het vooraf configureren van gespecialiseerde schijfindelingsopstellingen met RAID, LVM en encryptie wordt ondersteund, maar niet met de volledige flexibiliteit die beschikbaar is bij een schijfindeling tijdens een installatie zonder preconfiguratie.

WAARSCHUWING

Het identificeren van schijven is afhankelijk van de volgorde waarin hun stuurprogramma's geladen worden. Indien het systeem verschillende schijven bevat, moet u er heel zeker van zijn dat de correcte schijf geselecteerd zal worden voordat u de preconfiguratie gaat gebruiken.

B.4.7.1 Een schijfindelingsvoorbeeld

```
# Indien er op het systeem vrije ruimte is, kunt u ervoor
# kiezen om enkel die in te delen. Dit wordt enkel gehonoreerd
# als partman-auto/method (hieronder) niet ingesteld werd.
#d-i partman-auto/init_automatically_partition select biggest_free

# Een andere mogelijkheid is om op te geven dat een specifieke schijf
# ingedeeld moet worden. Als het systeem maar één schijf heeft, zal het
# installatiesysteem standaard die gebruiken, maar anders moet de
# naam van de schijf opgegeven worden in het gebruikelijke
# nyt-devfs formaat (dus bijv. /dev/sda en niet /dev/disks/disc0/disc).
# Om bijvoorbeeld de eerste SCSI/SATA harde schijf te gebruiken:
#d-i partman-auto/disk string /dev/sda
# Bovendien moet u de te gebruiken methode opgeven.
# De methodes die momenteel gebruikt mogen worden, zijn:
#  - regular: gebruik de voor uw architectuur gewone schijfindelingstypes
#  - lvm: gebruik LVM om de schijf in te delen
#  - crypto: gebruik LVM binnen een geëncrypteerde partitie
#d-i partman-auto/method string lvm

# U kunt definiëren hoeveel ruimte gebruikt zal worden voor de
# LVM-volumegroep. Dit kan een grootte, uitgedrukt in een bepaalde
# eenheid zijn (bijv. 20 GB), een percentage van de vrije ruimte of
# het trefwoord 'max'.
#d-i partman-auto-lvm/guided_size string max

# Indien een van de schijven die automatisch ingedeeld zal worden, een oude
# LVM-configuratie bevat, krijgt de gebruiker normaal gezien een waarschuwing.
# Met behulp van preconfiguratie kan men die uitzetten...
#d-i partman-lvm/device_remove_lvm boolean true
# Hetzelfde geldt in het geval er al een software RAID aanwezig is:
```
B.4. INHOUD VAN HET ANTWOORDBESTAND

BIJLAGE B. DE INSTALLATIE AUTOMATISEREN

```bash
d-i partman-md/device_remove_md boolean true
# Op dezelfde manier kan men het schrijven van de lvm-partities bevestigen.
d-i partman-lvm/confirm boolean true
d-i partman-lvm/confirm_nooverwrite boolean true

# U kunt gebruik maken van een van de drie voorgedefinieerde indelingsschema’s:
# - atomic: alle bestanden in één partitie
# - home: aparte partitie voor /home
# - multi: aparte partities voor /home, /var en /tmp

# Of u kunt een eigen schema aanreiken...
# Indien u een methode heeft om een bestand dat het schema bevat, in de
# omgeving van debian-installer te krijgen, kunt u er gewoon naar verwijzen.
#d-i partman-auto/expert_recipe_file string /hd-media/recipe

Is dit niet het geval, dan kunt u een volledig schema plaatsen in
het antwoordbestand in de vorm van één (logische) regel.
In dit voorbeeld wordt een kleine /boot-partitie gemaakt en een passende
swap-partitie, terwijl de overige ruimte naar de root-partitie gaat:
#d-i partman-auto/expert_recipe_string
  # boot-root ::
  # 40 50 100 ext3
  # $primary{ } $bootable{ }
  # method{ format } format{ }
  # use_filesystem{ } filesystem{ ext3 }
  # mountpoint{ /boot }
  # .
  # 500 10000 1000000000 ext3
  # method{ format } format{ }
  # use_filesystem{ } filesystem{ ext3 }
  # mountpoint{ / }
  # .
  # 64 512 300% linux-swap
  # method{ swap } format{ }
  # .

De volledige indeling van een schema of zogenaamd recept wordt
# toegevoegd in het bestand partman-auto-recipe.txt dat in het pakket
# ’debian-installer’ te vinden is en ook in het depot met de broncode van D-I.
# Daarin wordt ook uitgelegd hoe u instellingen zoals bestandssysteemlabels
# en volumegroepnamen moet opgeven en hoe u kunt aangeven welke fysieke
# apparaten in een volumegroep opgenomen moeten worden.

## Schijfindeling voor EFI
# Indien uw systeem een EFI-partitie nodig heeft, zou u iets als het volgende
# kunnen toevoegen aan het bovenstaande recept, als het eerste element van het
# recept:
# 538 538 1075 free
# $iflabel{ gpt }
# $reusemethod{ }
# method{ efi }
# format{ }
# .

Het bovenstaande fragment is voor de amd64-architectuur; voor een andere
architectuur kunnen de details verschillen. Het pakket ‘partman-auto’ in de
opslagruimte met de broncode van D-I bevat mogelijk een voorbeeld dat u
kunt volgen.

Hiermee laat u partman de schijfindeling automatisch uitvoeren zonder
# om bevestiging te vragen, in de veronderstelling dat u het programma
# met een van de bovenstaande methodes aangaf wat er moet gebeuren.

```
B.4.7.2 Schijfindeling met RAID

U kunt het instellen van schijfpartities op een software RAID ook vooraf configureren. De ondersteunde RAID-niveaus zijn 0, 1, 5, 6 en 10. Ook het creëren van een aangetaste array en het opgeven van reserveapparaten worden ondersteund.

Waarschuwing

Dit type van automatische schijfindeling kan gemakkelijk fout lopen. Het gaat ook om een functionaliteit die relatief weinig getest wordt door de ontwikkelaars van Debian-installer. Het valt onder de verantwoordelijkheid van de gebruiker om de verschillende schema’s op een correcte manier toe te passen (zodanig dat ze zin hebben en geen conflicten veroorzaken). Raadpleeg `/var/log/syslog` mocht u in de problemen komen.

Parameters zijn:

- `<raidtype>` <schijfnummer> <reserveschijfnummer> <bestandssysteemtype>
- `<aankoppelpunt>` <schijven> <reserveschijven>

Als methode moet "raid" ingesteld worden.
d-i partman-auto/method string raid
Geef de in te delen schijven op. Ze krijgen alle dezelfde indeling,
zodat dit enkel werkt bij schijven van dezelfde grootte.
d-i partman-auto/disk string /dev/sda /dev/sdb

Vervolgens moet u de fysieke partities die gebruikt moeten worden, opgeven.
d-i partman-auto/expert_recipe string \n# multiraid :: \
1000 5000 4000 raid \
$primary{ } method{ raid } \
. \
64 512 300% raid \
method{ raid } \
. \
500 10000 1000000000 raid \
method{ raid } \
.

Tenslotte moet u opgeven hoe de hiervoor gedefinieerde partities in de
RAID-opstelling gebruikt moeten worden. Gebruik voor logische partities
de correcte partitienummers. RAID-niveaus 0, 1, 5, 6 en 10 worden
ondersteund; schijven worden onderling gescheiden door "#".
Parameters zijn:
<raidtype> <schijfnummer> <reserveschijfnummer> <bestandssysteemtype>
<aankoppelpunt> <schijven> <reserveschijven>
d-i partman-auto-raid/recipe string \n
B.4. De installatie automatiseren

B.4.7.3 De aankoppeling van partities sturen

Gewoonlijk worden bestandssystemen aangekoppeld op basis van hun unieke identiteitssleutel (UUID). Daardoor kunnen ze juist aangekoppeld worden, zelfs als hun schijfnaam wijzigt. UUID's zijn lang en moeilijk te lezen en dus kan het installatiesysteem, als u dat verkiest, bestandssystemen aankoppelen op basis van hun traditionele schijfnaam of op basis van een label dat u aan hen toekent. Indien u het installatiesysteem vraagt om de aankoppeling te doen op basis van een label, zal elk bestandssysteem zonder label aangekoppeld worden op basis van zijn UUID.

For schijven met stabiele namen, zoals logische LVM-volumes, blijft gelden dat hun traditionele benaming gebruikt wordt in plaats van hun UUID.

WAARSCHUWING

De traditionele benaming van schijven kan veranderen op basis van de volgorde waarin de schijven bij het opstarten door de kernel ontdekt worden. Dit kan ertoe leiden dat het verkeerde bestandssysteem aangekoppeld wordt. Labels van hun kant kunnen samenvallen als u een nieuwe schijf of USB-schijf plaatst en als dit gebeurt, dan wordt het gedrag van uw systeem bij het opstarten onvoorspelbaar.

B.4.8 De installatie van het basissysteem

Voor dit stadium kan eigenlijk niet veel vooraf geconfigureerd worden. De enige vragen die gesteld worden, hebben betrekking op de installatie van de kernel.
B.4.9 Apt instellen

Het instellen van `/etc/apt/sources.list` en het instellen van de basisopties verlopen volledig automatisch op basis van uw installatiemethode en uw eerdere antwoorden. Eventueel kunt u andere (lokale) pakketbronnen toevoegen.

```bash
# Choose, if you want to scan additional installation media
# (default: false).
d-i apt-setup/cdrom/set-first boolean false
# You can choose to install non-free and contrib software.
#d-i apt-setup/non-free boolean true
#d-i apt-setup/contrib boolean true
# Uncomment the following line, if you don't want to have the sources.list
# entry for a DVD/BD installation image active in the installed system
# (entries for netinst or CD images will be disabled anyway, regardless of
# this setting).
#d-i apt-setup/disable-cdrom-entries boolean true
# Uncomment this if you don't want to use a network mirror.
#d-i apt-setup/use_mirror boolean false
# Select which update services to use, define the mirrors to be used.
# Values shown below are the normal defaults.
#d-i apt-setup/services-select multiselect security, updates
#d-i apt-setup/security_host_string security security.debian.org

# Additional repositories, local[0-9] available
#d-i apt-setup/local0/repository string \
#  http://Local.server/debian stable main
#d-i apt-setup/local0/comment string local server
# Enable deb-src lines
#d-i apt-setup/local0/source boolean true
# URL to the public key of the local repository; you must provide a key or
# apt will complain about the unauthenticated repository and so the
# sources.list line will be left commented out.
#d-i apt-setup/local0/key string http://Local.server/key
# If the provided key file ends in ".asc" the key file needs to be an
# ASCII-armoured PGP key, if it ends in ".gpg" it needs to use the
# "GPG key public keyring" format, the "keybox database" format is
# currently not supported.

# By default the installer requires that repositories be authenticated
# using a known gpg key. This setting can be used to disable that
# authentication. Warning: Insecure, not recommended.
#d-i debian-installer/allow_unauthenticated boolean true

# Uncomment this to add multiarch configuration for i386
#d-i apt-setup/multiarch string i386
```

B.4.10 Pakketselectie

U kunt voor elke mogelijke combinatie van beschikbare taken kiezen. Op dit ogenblik zijn de volgende taken beschikbaar:

- **standard** (standaard gereedschappen)
- **desktop** (grafische werkomgeving)
- **gnome-desktop** (Gnome desktopomgeving)
- **xfce-desktop** (XFCE desktopomgeving)
• **kde-desktop** (KDE Plasma desktopomgeving)
• **cinnamon-desktop** (Cinnamon desktopomgeving)
• **mate-desktop** (MATE desktopomgeving)
• **lxde-desktop** (LXDE desktopomgeving)
• **web-server** (webserver)
• **ssh-server** (SSH-server)

U kunt er ook voor kiezen om geen taken te installeren en op een andere manier het installeren van een aantal pakketten af te dwingen. We raden u aan om steeds de taak **standard** te installeren.

Or if you don’t want the tasksel dialog to be shown at all, preseed pkgsel/run_tasksel (no packages are installed via tasksel in that case).

Indien u individuele pakketten wenst te installeren naast de pakketten die door de taken geïnstalleerd worden, kunt u de parameter pkgsel/include gebruiken. De waarde van deze parameter kan een lijst van pakketten zijn die onderling gescheiden zijn door ofwel een komma of een spatie, waardoor dit ook gemakkelijk aan de commandoregel van de kernel toegepast kan worden.

```bash
#tasksel tasksel/first multiselect standard, web-server, kde-desktop
# Or choose to not get the tasksel dialog displayed at all (and don’t install any packages):
#d-i pkgsel/run_tasksel boolean false

# Individual additional packages to install
#d-i pkgsel/include string openssh-server build-essential
# Whether to upgrade packages after debootstrap.
#d-i pkgsel/upgrade select none

# You can choose, if your system will report back on what software you have installed, and what software you use. The default is not to report back, but sending reports helps the project determine what software is most popular and should be included on the first CD/DVD.
#popularity-contest popularity-contest/participate boolean false
```

B.4.11 De installatie afronden

```bash
# Tijdens een installatie vanaf een seriële console, worden normaal de gewone virtuele consoles (VT1-VT6) uitgezet in /etc/inittab.
# Verwijder het commentaarteken van de volgende regel om dit te voorkomen.
#d-i finish-install/keep-consoles boolean true

# Vermijd de laatste melding die zegt dat de installatie afgerond is.
#d-i finish-install/reboot_in_progress note

# Dit zal voorkomen dat het installatiesysteem de CD uitwerpt bij het herstarten, wat in sommige situaties nuttig kan zijn.
#d-i cdrom-detect/eject boolean false

# Op de volgende manier laat u het installatiesysteem afsluiten als het klaar is, zonder dat nadien het geïnstalleerde systeem opgestart wordt.
#d-i debian-installer/exit/halt boolean true
# Hiermee stopt u de machine niet alleen, maar zet u ze ook uit.
#d-i debian-installer/exit/poweroff boolean true
```
BIJLAGE B. DE INSTALLATIE AUTOMATISEREN …

B.5. OPTIES VOOR GEVORDERDEN

B.4.12 Andere pakketten vooraf configureren

```
# Onder invloed van welke software u installeert, of indien er zaken fout lopen
# tijdens het installatieproces, is het mogelijk dat andere vragen gesteld
# worden.
# Ook hiervoor kunt u uiteraard de antwoorden vooraf configureren.
# Om een overzicht te bekomen van alle mogelijke vragen die tijdens
# een installatie gesteld kunnen worden, moet u een installatie
# uitvoeren en nadien de volgende commando’s geven:
# debconf-get-selections --installer > bestand
# debconf-get-selections >> bestand
```

B.5 Opties voor gevorderden

B.5.1 Aangepaste commando’s uitvoeren tijdens de installatie

Een erg krachtige en flexibele optie die geboden wordt door de preconfiguratieregearmpjes is de mogelijkheid om
op bepaalde punten in de installatie commando’s of scripts uit te voeren.

Als het bestandsysteem van het doelsysteem aangekoppeld is, is het beschikbaar in /target. Wanneer een
installatie-CD gebruikt wordt, is die beschikbaar in /cdrom als die aangekoppeld is.

```
# Het toepassen van preconfiguratie met d-i is inherent onveilig.
# Het installatiesysteem bevat geen enkele controle op eventuele pogingen
# om via een buffer overflow of op een andere manier de waarden uit een
# antwoordbestand, zoals dit hier, te compromitteren. Gebruik enkel
# antwoordbestanden die afkomstig zijn van locaties die u vertrouwt!
# Om dit te beklemtomen en omdat het ook een algemeen nut heeft,
# tonen we u hier een manier om elk gewenst shell-command automatisch
# uit te voeren binnen het installatiesysteem.
# Dit eerste commando wordt zo vroeg mogelijk uitgevoerd,
# net nadat de preconfiguratie ingelezen werd.
#d-i preseed/early_command string anna-install some-udeb
# Dit commando wordt uitgevoerd vlak voordat de schijfendeling begint.
# Het kan nuttig zijn om voor het schijfendelingsprogramma een dynamische
# preconfiguratie te gebruiken die rekening houdt met de toestand van de
# schijven (die mogelijk niet bekend is op het ogenblik dat de commando’s van
# preseed/early_command uitgevoerd worden).
#d-i partman/early_command
  # string debconf-set partman-auto/disk "$(list-devices disk | head -n1)"
# Dit commando wordt uitgevoerd vlak voor de installatie beëindigd wordt, maar
# de map /target nog gebruikt kan worden. U kunt chrooten naar /target
# en het rechtstreeks gebruik van de commando’s apt-install en in-target
# gebruiken om op een eenvoudige manier pakketten te installeren en
# commando’s uit te voeren op het doelsysteem.
#d-i preseed/late_command string apt-install zsh; in-target chsh -s /bin/zsh
```

B.5.2 Gebruik maken van preconfiguratie om standaardwaarden aan te passen

Het is mogelijk om preconfiguratie te gebruiken om het standaardantwoord op een vraag aan te passen, terwijl de
vraag nog steeds gesteld wordt. Om dit te doen moet de seen-vlag (de gezien-vlag) teruggezet worden op “false” nadat
de waarde voor een antwoord ingesteld werd.

```
d-i foo/bar string waarde
```

```
d-i foo/bar seen false
```

Hetzelfde effect kunt u bereiken voor alle vragen door aan de opstartprompt de parameter preseed/interactive=true
in te stellen. Dit kan ook nuttig zijn om uw antwoordbestand te testen of te debuggen.

Merk op dat u “d-i” als eigenaar enkel mag gebruiken voor variabelen die in het installatiesysteem zelf gebruikt
worden. Voor variabelen die behoren tot pakketten die op het doelsysteem geïnstalleerd worden, moet u de naam van
dat pakket gebruiken als eigenaar. Zie de voetnoot bij Paragraaf B.2.2.
Indien u vooraf configureert met behulp van opstartparameters, kunt u het installatiesysteem de betreffende vraag laten stellen door de operator “?”= te gebruiken, d.w.z. foo/bar?=waarde (of eigenaar: foo/bar?=waarde). Dit zal natuurlijk enkel effect hebben voor parameters die betrekking hebben op vragen die werkelijk gesteld worden tijdens een installatie en niet voor “interne” parameters.

Om meer debug-informatie te krijgen, moet u de opstartparameter DEBCONF_DEBUG=5 gebruiken. Daardoor zult debconf veel meer gedetailleerde informatie geven over de huidige instellingen van elke variabele en over zijn voortgang in de installatiescripts van elk pakket.

B.5.3 Een aaneenschakeling van antwoordbestanden laden

Het is mogelijk om in een antwoordbestand andere antwoordbestanden te laten opnemen. Alle instellingen uit deze bestanden zullen eerder gemaakte instellingen uit eerder geladen bestanden vervangen. Dit maakt het mogelijk om bijvoorbeeld de voor uw locatie algemeen geldende netwerkinstellingen in een bestand te plaatsen en meer specifieke instellingen voor bepaalde configuraties in andere bestanden.

```bash
# Meer dan één bestand kan vermeld worden, onderling gescheiden door een spatie;
# ze zullen allemaal opgenomen worden. De opgenomen bestanden kunnen op hun
# beurt ook zelf opdrachten van het type preseed/include bevatten.
# Merk op dat als de bestanden een relatieve naam hebben, die bestanden
# uit dezelfde map geladen worden als het antwoordbestand dat ze opneemt.
#d-i preseed/include string x.cfg

# Het installatiesysteem kan eventueel checksums van antwoordbestanden
# controleren vooraleer deze te gebruiken. Momenteel worden enkel md5sums
# ondersteund. Vermeld de md5sums in dezelfde volgorde als die welke
# gehanteerd wordt voor de lijst van de op te nemen bestanden.
#d-i preseed/include/checksum string 5da499872beccfeda2c8472f971c3d

# Deze meer flexibele methode voert een shell-commando uit en als de uitvoer
# ervan de namen geeft van antwoordbestanden, worden deze bestanden opgenomen.
#d-i preseed/include_command 
#     string if [ "'hostname'" = bob ]; then echo bob.cfg; fi

# Deze meest flexibele methode van allemaal downloadt een programma en voert
# het uit. Het programma kan commando’s gebruiken zoals debconf-set om de
# debconf-databank te bewerken. Meerdere scripts kunnen vermeld worden,
# onderling gescheiden door spaties. Merk op dat als de bestanden een relatieve
# naam hebben, die bestanden uit dezelfde map geladen worden als het
# antwoordbestand dat ze uitvoert.
#d-i preseed/run string foo.sh
```

Het is eveneens mogelijk om vanuit de initrd-preconfiguratiefase of vanuit de preconfiguratiefase die met een antwoordbestand werkt, de koppeling te maken naar de fase van preconfiguratie die via het netwerk verloopt, door in de eerdere bestanden preseed/url in te stellen. Hierdoor zal het preconfigureren via het netwerk uitgevoerd worden bij de activatie van het netwerk. Als u dit toepast moet u dit met zorg doen, vermits er twaalfmaal een preconfiguratiefase zal zijn. Dit betekent bijvoorbeeld dat u nog een kans heeft om het commando preseed/early uit te voeren. De tweede maal vindt dan plaats na de activatie van het netwerk.
Bijlage C

Schijven indelen voor Debian

C.1 Keuzes maken in verband met Debian partities en hun grootte

Als absolute minimum heeft GNU/Linux zelf één partitie nodig. U kunt één enkele partitie hebben met daarop zowel het volledige besturingssysteem als de toepassingen en uw persoonlijke bestanden. De meeste mensen vinden dat een aparte swap-partitie (wisselgeheugenpartitie) ook noodzakelijk is, al is dat strikt genomen niet het geval. “Swap” is kladruimte voor een besturingssysteem, wat het systeem toelaat om schijfopslagruimte te gebruiken als “virtueel geheugen”. Door wisselgeheugen op een aparte partitie te plaatsen, kan Linux er veel efficiënter gebruik van maken. Het is mogelijk om Linux te dwingen een gewoon bestand als wisselgeheugen te gebruiken, maar dit wordt niet aanbevolen.

De meeste mensen kiezen er evenwel voor om GNU/Linux meer dan het minimum aantal partities te geven. Er zijn twee redenen waarom u het bestandssysteem wellicht zult willen opsplitsen in een aantal kleinere partities. De eerste reden is veiligheid. Indien er iets gebeurt dat het bestandssysteem beschadigt, wordt meestal slechts één partitie getroffen. En dus moet u slechts een deel van uw systeem vervangen (met behulp van de reservekopieën die u zorgvuldig bijgehouden heeft). Als absolute minimum zou u moeten overwegen om wat men gewoonlijk een “root-partitie” noemt, aan te maken. Deze bevat de meest essentiële componenten van het systeem. Als een van de andere partities beschadigd raakt, kunt u toch nog altijd GNU/Linux opstarten om het systeem te repareren. Dit kan u de moeite besparen om het hele systeem helemaal opnieuw te moeten installeren.

De tweede reden heeft over het algemeen meer betrekking op een bedrijfscontext, hoewel het echt afhankelijk is van het gebruik dat u van de machine maakt. Bij een e-mailserver bijvoorbeeld, die overspoeld wordt met spamberichten, kan een partitie gemakkelijk vollopen. Indien u op de e-mailserver een aparte partitie aanmaakte voor /var/mail, zal het systeem grotendeels blijven functioneren, zelfs als u af te rekenen krijgt met een spamtoevloed.

Het enige nadeel van het gebruik van meerdere partities is, dat het dikwijls moeilijk vooraf in te schatten welke uw behoeften zullen zijn. Indien u een bepaalde partitie te klein maakt, zult u ofwel het systeem opnieuw moeten installeren of voortdurend zaken moeten verplaatsen om in de te kleine partitie vrije ruimte te creëren. Als u daarentegen de partitie te groot maakt, verspilt u ruimte die wellicht elders nuttig gebruikt kon worden. Tegenwoordig is schijfruimte wel goedkoop, maar toch kunt u zich blijven afvragen of u geen geld aan het verspillen bent.

C.2 De mappenboom

Debian GNU/Linux volgt voor het benoemen van mappen en bestanden de Filesystem Hierarchy Standard (de standaard die de hiërarchische opbouw van het bestandssysteem bepaalt). Deze standaard maakt het mogelijk voor gebruikers en softwareprogramma’s om vooraf te weten op welke plaats bestanden en mappen te vinden zullen zijn. De map op het basisscherm wordt gewoon voorgesteld door een slash / . In deze basismap bevinden zich op alle Debian systemen de volgende mappen:

<table>
<thead>
<tr>
<th>Map</th>
<th>Inhoud</th>
</tr>
</thead>
<tbody>
<tr>
<td>bin</td>
<td>Essentiële commando’s in binaire vorm</td>
</tr>
<tr>
<td>boot</td>
<td>Statische bestanden van de bootloader</td>
</tr>
<tr>
<td>dev</td>
<td>Apparaat-bestanden</td>
</tr>
<tr>
<td>etc</td>
<td>Computerspecifieke systeemconfiguratie</td>
</tr>
<tr>
<td>home</td>
<td>Persoonlijke mappen van gebruikers</td>
</tr>
<tr>
<td>lib</td>
<td>Essentiële gedeelde bibliotheken en kernelmodules</td>
</tr>
<tr>
<td>media</td>
<td>Bevat aankoppelpunten voor verwijderbare media</td>
</tr>
</tbody>
</table>
Hierna volgt een lijst met belangrijke overwegingen in verband met mappen en partities. Merk op dat het schijfgebruik erg verschillend kan zijn naargelang de systeemconfiguratie en de specifieke taken die de computer moet vervullen. De hierna gegeven aanbevelingen zijn algemene richtlijnen die een aanknopingspunt bieden voor de schijfindeling.

- **De root-partitie** / moet fysiek steeds de mappen /etc, /bin, /sbin, /lib en /dev bevatten, anders zal de computer niet kunnen opstarten. Voor de root-partitie is gewoonlijk 250–350MB vereist.

- **/usr**: bevat alle gebruikersprogramma’s (/usr/bin), bibliotheken (/usr/lib), documentatie (/usr/share/doc), enz. Dit onderdeel van het bestandssysteem neemt meestal de meeste ruimte in. U moet er minstens 500MB schijfruimte voorzien. Afhankelijk van het aantal en het type pakketten dat u denkt te zullen installeren, moet u dit getal verhogen. Een rijkelijk gestoffeerd werkstation of een server hebben hiervoor ongeveer 4–6GB nodig.

- Het wordt tegenwoordig aanbevolen dat /usr op de root-partitie / staat, anders is het mogelijk dat er zich bij het opstarten problemen manifesteren. Dit betekent dat u voor de root-partitie met inbegrip van /usr minstens 600–750MB schijfruimte moet voorzien of wanneer het een werkstation of een server betreft, 5–6GB.

- **/var**: variabele data, zoals nieuwsartikels, e-mails, websites, databanken, de cache van het pakketbeheersysteem, enz., worden onder deze map geplaatst. De grootte van deze map is sterk afhankelijk van het gebruik dat van het systeem gemaakt wordt, maar bij de meeste mensen wordt ze vooral bepaald door wat het gereedschap voor pakketbeheer nodig heeft. Indien u in één enkele sessie een volledige installatie van zowat alles wat Debian te bieden heeft, gaat uitvoeren, zou 2 tot 3 GB schijfruimte voorzien voor /var moeten volstaan. Indien u zin- nens bent de installatie in verschillende fases uit te voeren (dat wil zeggen, eerst diensten en hulpprogramma’s installeren, nadien tekstgereedschappen, dan X, ...), kunt reeds genoeg hebben aan 300–500 MB. Indien harde schijfruimte een primaire bekommernis is, en u niet zinnens bent om grote systeemupdates te doen, kunt u zelfs volstaan met een uiterst beperkte 30 tot 40 MB.

- **/tmp**: tijdelijke data die door programma’s gecreëerd worden, komen meestal in deze map terecht. 40–100MB zou normaal moeten volstaan. Sommige toepassingen — zoals gereedschap waarmee u archieven of CD’s/DVD’s kunt bewerken, en multimediasoftware — maken mogelijk gebruik van /tmp om tijdelijk imagebestanden op te slaan. Indien u plant om dergelijke toepassingen te gebruiken, moet u de ruimte die u voorziet voor /tmp daaraan aanpassen.

- **/home**: iedere gebruiker zal zijn persoonlijke documenten in een onderliggende map van deze map plaatsen. De grootte is dus afhankelijk van het aantal gebruikers op het systeem en van welk soort bestanden er in hun persoonlijke map terecht zullen komen. Afhankelijk van waarvoor u het systeem denkt te zullen gebruiken, moet u ongeveer 100MB per gebruiker voorzien. Maar pas deze waarde wel aan uw behoeften aan. Voorzie veel meer ruimte als u zinnens bent om veel multimediabestanden (foto’s, MP3-muziekbestanden, films) op te slaan in uw persoonlijke map.

C.3 Aanbevolen schijfindelingsschema

Voor een nieuwe gebruiker, een persoonlijke Debian computer, een thuiscomputer en andere situaties waarin de computer hoofdzakelijk slechts voor één persoon bestemd is, is een opstelling met één enkele /-partitie (plus swap) wellicht de makkelijkste en eenvoudigste oplossing. Het aanbevolen partitietype is ext4.
Voor systemen met meerdere gebruikers en systemen met veel schijfruimte is het beter om /var, /tmp en /home telkens op een eigen partitie te plaatsen, los van de /-partitie.

Misschien heeft u een aparte /usr/local-partitie nodig als u veel programma's denkt te installeren die geen deel uitmaken van de Debian-distributie. Als uw computer dienst zal doen als een e-mailserver, moet u misschien een aparte partitie voorzien voor /var/mail. Indien u een server met veel gebruikersaccounts installeert, is het over het algemeen aangewezen om een ruime partitie te hebben voor /home. Over het algemeen verschilt de toegepaste schijfindeling per computer naargelang het gebruik dat er van gemaakt wordt.

Voor erg complexe systemen raadpleegt u best de Multi Disk HOWTO. Die bevat diepgaande informatie die vooral nuttig is voor aanbieders van internetdiensten (ISP's) en voor mensen die servers beheren.

Er bestaan verschillende opvattingen over de grootte van de wisselgeheugenpartitie (swap). Een goede vuistregel is om evenveel swap te gebruiken als het werkgeheugen waarover uw computer beschikt. In de meeste gevallen zou die partitie ook niet kleiner dan 512MB mogen zijn. Natuurlijk zijn er uitzonderingen op deze algemene regel.

Een mogelijk voorbeeld is een oudere thuiscomputer met 512MB RAM-geheugen en een SATA harde schijf van 20GB op /dev/sda. Deze zou een partitie kunnen hebben van 8GB op /dev/sda1 met daarop een ander besturingssysteem, een swap-partitie van 512MB op /dev/sda3 en een Linux-partitie van ongeveer 11.4GB op /dev/sda2.

Als u een idee wilt krijgen van de ruimte die ingenomen wordt door bepaalde taken die u na de installatie van het systeem zou willen installeren, kunt u Paragraaf D.2 raadplegen.

C.4 De benaming van apparaten in Linux

De ontwikkelaars van Debian hebben verschillende aantallen schijfindelingsprogramma's aangepast om uiteenlopende types harde schijven en computerarchitecturen te kunnen bedienen. Hierna volgt basisinformatie over het naamgevingsschema:

- De harde schijf die eerst aangetroffen wordt, heet /dev/sda.
- De harde schijf die als tweede aangetroffen wordt, heet /dev/sdb, enzovoort.
- Het eerste SCSI CD-station heet /dev/scd0 en is ook gekend als /dev/sr0.

De partities op iedere schijf worden voorgesteld door aan de naam van de schijf een decimaal getal toe te voegen: sda1 en sda2 stellen de eerste en de tweede partitie voor op de eerste SCSI-schijf op uw systeem.

Hierna volgt een voorbeeld uit de praktijk. Laten we aannemen dat u een systeem heeft met 2 SCSI-schijven, de ene op het SCSI-adres 2 en de andere op het SCSI-adres 4. De eerste schijf (op adres 2) krijgt dan de naam sda en de tweede sdb. Als er zich op de schijf sda3 partities bevinden, zullen die sda1, sda2 en sda3 heten. Hetzelfde geldt voor schijf sdb en haar partities.

Merk op dat als uw computer twee computerbusadapters voor SCSI heeft (d.w.z. twee SCSI-controllers), er verwarring kan ontstaan over de volgorde van de schijven. In dat geval is de beste oplossing om de opstartberichten in het oog te houden en deze informatie te koppelen aan wat u weet over het type en de grootte van de schijven.

C.5 Debian schijfindelingsprogramma’s

De ontwikkelaars van Debian hebben verschillende aantallen schijfindelingsprogramma's aangepast om uiteenlopende types harde schijven en computerarchitecturen te kunnen bedienen. Hierna volgt een lijst met de programma's die voor uw architectuur van toepassing zijn.

partman Het aanbevolen schijfindelingsgereedschap in Debian. Dit Zwitserse zakmes is ook in staat de partitiegrootte te wijzigen, bestandssystemen aan te maken en ze toe te wijzen aan aankoppelpunten.

fdisk Het originele Linux schijfindelingsprogramma; goed voor goeroes.

Wees voorzichtig als uw machine bestaande FreeBSD-partities heeft. De kernels van het installatiesysteem ondersteunen deze partities, maar de wijze waarop fdisk ze voorstelt (of dat niet doet) kan maken dat de benaming van de schijven verschilt. Zie de Linux+FreeBSD HOWTO.

cfdisk Een gemakkelijk te gebruiken schijfindelingsprogramma in een volledig scherm voor de rest onder ons.

Merk op dat cfdisk helemaal geen notie heeft van FreeBSD-partities, en nogmaals, als gevolg daarvan kan de benaming van de schijven verschillend zijn.

Een van deze programma's zal standaard uitgevoerd worden als u Schijven indelen (of iets dergelijks) selecteert. Het is mogelijk om een ander schijfindelingsprogramma te gebruiken aan de commandoregel op VT2, maar dit wordt niet aangeraden.
Bijlage D

Varia

D.1 Linux-apparaten

In Linux kunt u verschillende bijzondere bestanden vinden in de map `/dev`. Deze bestanden worden apparaatbestanden (device files) genoemd en gedragen zich niet als gewone bestanden. De meest gebruikelijke types apparaatbestanden zijn die voor blok-apparaten en teken-apparaten. Deze bestanden vormen een interface voor het eigenlijke stuurprogramma (onderdeel van de Linux-kernel) dat op zijn beurt de hardware benadert. Een ander minder gebruikelijk type apparaat-bestand is de zogenaamde named `pipe` (een pijp met een naam). De belangrijkste apparaatbestanden worden in de onderstaande tabellen vermeld.

<table>
<thead>
<tr>
<th>Apparaatbestand</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>sda</td>
<td>Eerste harde schijf</td>
</tr>
<tr>
<td>sdb</td>
<td>Tweede harde schijf</td>
</tr>
<tr>
<td>sda1</td>
<td>Eerste partitie van de eerste harde schijf</td>
</tr>
<tr>
<td>sdb7</td>
<td>Zevende partitie van de tweede harde schijf</td>
</tr>
<tr>
<td>sr0</td>
<td>Eerste CD-station</td>
</tr>
<tr>
<td>sr1</td>
<td>Tweede CD-station</td>
</tr>
<tr>
<td>ttyS0</td>
<td>Seriële poort 0, COM1 onder MS-DOS</td>
</tr>
<tr>
<td>ttyS1</td>
<td>Seriële poort 1, COM2 onder MS-DOS</td>
</tr>
<tr>
<td>psaux</td>
<td>PS/2-muis</td>
</tr>
<tr>
<td>gpmdata</td>
<td>Pseudoapparaat, repeaterdata van de GPM-achtergronddienst (muis)</td>
</tr>
<tr>
<td>cdrom</td>
<td>Symbolische koppeling naar het CD-station</td>
</tr>
<tr>
<td>mouse</td>
<td>Symbolische koppeling naar het apparaat-bestand voor de muis</td>
</tr>
<tr>
<td>null</td>
<td>Alles wat naar dit apparaat geschreven wordt, verdwijnt</td>
</tr>
<tr>
<td>zero</td>
<td>Uit dit apparaat kan men onbeperkt nullen blijven inlezen</td>
</tr>
</tbody>
</table>

D.1.1 Uw muis instellen

Opdat uw muis zou werken, moeten bepaalde kernelmodules geladen worden. In de meeste gevallen worden de
correcte modules automatisch gedetecteerd, maar dit is niet altijd het geval voor de oudere seriële en bus-muizen\footnote{Een seriële muis heeft meestal een connector in de vorm van een D en met 9 gaatjes. Een bus-muis heeft een ronde connector met 8 pinnetjes. Men mag dit niet verwarren met de ronde connector met 6 pinnetjes van een PS/2-muis of met de ronde connector met 4 pinnetjes van een ADB-muis.}, die erg zeldzaam zijn behalve op zeer oude computers. Samenvattend zijn de volgende Linux kernelmodules nodig voor de verschillende muistypes:

<table>
<thead>
<tr>
<th>Module</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>psmouse</td>
<td>PS/2-muis (wordt automatisch gedetecteerd)</td>
</tr>
<tr>
<td>usbhid</td>
<td>USB-muis (wordt automatisch gedetecteerd)</td>
</tr>
<tr>
<td>sermouse</td>
<td>De meeste seriële muizen</td>
</tr>
<tr>
<td>logibm</td>
<td>Bus-muis aan Logitech adapterkaart</td>
</tr>
<tr>
<td>inport</td>
<td>Bus-muis aan ATI of Microsoft InPort-kaart</td>
</tr>
</tbody>
</table>

Om een struurprogrammamodule voor een muis te laden kunt u het commando `modconf` (uit het gelijknamige pakket) gebruiken. U moet zoeken in de categorie `kernel/drivers/input/mouse`.

D.2 De hoeveelheid schijfruimte die nodig is voor taken

Een standaardinstallatie voor de amd64-architectuur met alle standaardpakketten en de standaardkernel neemt 971MB schijfruimte in beslag. Een minimale basisinstallatie, zonder de taak “Standaardsysteem”, gebruikt 769MB.

Belangrijk

In beide gevallen gaat het over de effectief gebruikte schijfruimte na het beëindigen van de installatie en nadat alle tijdelijke bestanden gewist werden. Er wordt ook geen rekening gehouden met eventuele overhead die door het bestandssysteem gebruikt wordt, bijvoorbeeld voor journaalbestanden. Dit betekent dat in de praktijk aanzienlijk meer schijfruimte vereist is, zowel tijdens de installatie als nadien voor een normaal gebruik van het systeem.

De volgende tabel geeft de grootte weer die aptitude rapporteert voor de taken die in `tasksel` vermeld worden. Merk op dat sommige taken overlappende componenten hebben, waardoor twee taken samen in totaal na installatie minder ruimte kunnen innemen dan wat een gewone optelling zou laten vermoeden.

Standaard installeert het installatiesysteem de grafische werkomgeving GNOME. U kunt echter ook voor een andere grafische werkomgeving kiezen door ofwel een van de speciale installatie-images te gebruiken ofwel door de gewenste grafische werkomgeving op te geven tijdens de installatie (zie Paragraaf 6.3.6.2). Merk op dat u voor het bepalen van de grootte van partities, de in deze tabel vermelde groottes moet optellen bij de grootte van de standaardinstallatie. Het grootste deel van wat vermeld wordt onder “Geïnstalleerde grootte” komt terecht in `/usr` en in `/lib`. De grootte die vermeld wordt onder “Download-grootte” is (tijdelijk) nodig in `/var`.

<table>
<thead>
<tr>
<th>Taak</th>
<th>Geïnstalleerde grootte (MB)</th>
<th>Download-grootte (MB)</th>
<th>Voor de installatie benodigde ruimte (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grafische werkomgeving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• GNOME (standaard)</td>
<td>2790</td>
<td>786</td>
<td>3576</td>
</tr>
<tr>
<td>• KDE Plasma</td>
<td>4122</td>
<td>1212</td>
<td>5334</td>
</tr>
<tr>
<td>• Xfce</td>
<td>2187</td>
<td>621</td>
<td>2808</td>
</tr>
<tr>
<td>• LXDE</td>
<td>2271</td>
<td>653</td>
<td>2924</td>
</tr>
<tr>
<td>• MATE</td>
<td>2574</td>
<td>711</td>
<td>3285</td>
</tr>
<tr>
<td>• Cinnamon</td>
<td>4197</td>
<td>1251</td>
<td>5448</td>
</tr>
<tr>
<td>Web-server</td>
<td>44</td>
<td>11</td>
<td>55</td>
</tr>
<tr>
<td>SSH-server</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Indien u de installatie in een andere taal dan het Engels uitvoert, zal `tasksel` mogelijk automatisch een lokalisatietaak installeren als een dergelijke taak voor uw taal beschikbaar is. Hoeveel ruimte daarvoor vereist is, verschilt naargelang de taal. U zou in totaal 350MB moeten voorzien voor het downloaden en installeren ervan.
D.3 Debian GNU/Linux installeren vanuit een Unix/Linux-Systeem

In dit onderdeel wordt beschreven hoe u Debian GNU/Linux installeert vanuit een bestaand Unix- of Linux-systeem zonder gebruik te maken van het menu-georiënteerde installatiesysteem waarover het in de rest van deze handleiding gaat. Om een dergelijke “cross-installatie” HOWTO werd verzocht door gebruikers die naar Debian GNU/Linux wilden overschakelen vanuit Red Hat, Mandriva, en SUSE. In dit onderdeel wordt ervan uitgegaan dat u tot op zekere hoogte vertrouwd bent met het geven van *nix-commando's en met het laveren door het bestandssysteem. In dit onderdeel symboliseert $ een commando dat uitgevoerd moet worden in het huidige systeem van de gebruiker, terwijl # verwijst naar een commando dat in de Debian chroot uitgevoerd wordt.

Nadat het nieuwe Debian systeem naar uw voorkeur geconfigureerd werd, kunt u de (eventuele) bestaande gebruikersgegevens eraartoe verplaatsen terwijl het systeem blijft functioneren. Daarom is dit een installatie van Debian GNU/Linux “zonder dat het systeem een tijd onbereikbaar is”. Het is ook een handige manier om met hardware om te gaan waarmee diverse opstart- en installatiemedia anders moeilijk overweg kunnen.

OPMERKING

Vermits het grootste deel van deze procedure handmatig uitgevoerd moet worden, moet u er rekening mee houden dat u een groot deel van de basisconfiguratie van het systeem zelf zult moeten uitvoeren, wat over het algemeen ook een grondiger kennis van Debian en van Linux vereist dan een gewone installatie. U kunt niet verwachten dat u met deze werkwijze een systeem bekomt dat identiek is aan een systeem dat op een gewone manier geïnstalleerd werd. U moet er ook rekening mee houden dat in de hier beschreven werkwijze enkel de basissappen voor het opzetten van een systeem beschreven worden. Mogelijk zijn bijkomende stappen op het gebied van installatie en/of configuratie nodig.

D.3.1 Aan de slag

Met het schijfindelingsgereedschap van uw huidig *nix-systeem moet u volgens uw behoeften de harde schijf herindelen en minstens één bestandssysteem en een wisselgeheugenpartitie creëren. U moet minstens ongeveer 769MB beschikbaar hebben voor de installatie van een systeem waarin u enkel aan de console kunt werken, of ongeveer 2271MB als u zinnens bent X te installeren (en meer als u grafische werkomgevingen zoals GNOME of KDE Plasma wilt installeren).

Maak vervolgens bestandssystemen aan op de partities. Om bijvoorbeeld een ext3-bestandssysteem te creëren op partitie /dev/sda6 (dat is de root-partitie in ons voorbeeld), geeft u de opdracht

```bash
# mke2fs -j /dev/sda6
```

Om in de plaats daarvan een ext2-bestandssysteem te creëren, laat u -j weg.

Initialiseer en activeer het wisselgeheugen (swap) (vervang het partitienummer door het nummer van de partitie die u wilt gebruiken als Debian swap-partitie):

```bash
# mkswap /dev/sda5
# sync
# swapon /dev/sda5
```

Koppel een partitie aan als /mnt/debinst (het installatiepunt dat op uw nieuwe systeem het root-bestandssysteem (/) zal zijn). De naam van het aankoppelpunt is puur arbitrair gekozen; hieronder blijven we diezelfde naam ervoor gebruiken.

```bash
# mkdir /mnt/debinst
# mount /dev/sda6 /mnt/debinst
```
De hulpprogramma dat door het installatiesysteem van Debian gebruikt wordt en dat geldt als de officiële manier voor het installeren van een Debian basissysteem, is debootstrap. Het maakt gebruik van wget en van ar, maar voorts gebruikt het enkel /bin/sh en het basisgereedschap van Unix/Linux². Installeer wget en ar als zij nog niet aanwezig zijn op uw huidige systeem en download en installeer vervolgens debootstrap.

Ou kunt de volgende werkwijze gebruiken om het handmatig te installeren. Maak een werkmap aan om het .deb-bestand in uit te pakken:

```bash
# mkdir werk
# cd werk
```

Het programma debootstrap bevindt zich in het Debian-archief (zorg ervoor om het bij uw architectuur passende bestand te selecteren). Download het debootstrap.deb-bestand uit de pool, kopieer het pakket naar de werkmap en pak er de bestanden uit. U moet over de rechten van systeembeheerder beschikken om de bestanden te installeren.

```bash
# ar -x debootstrap_0.X.X_all.deb
# cd /
# zcat /volledig-pad-naar-werk/werk/data.tar.gz | tar xv
```

Het programma debootstrap uitvoeren

Indien u een installatie-image met bullseye Debian GNU/Linux aangekoppeld heeft op /cdrom, kunt u de http-URL vervangen door de bestands-URL: file:/cdrom/debian/

Vervang in het debootstrap-commando ARCH door een van de volgende architectuurnamen: amd64, arm64, armel, armhf, i386, mips64el, mipsel, ppc64el, s390x.

```bash
# /usr/sbin/debootstrap --arch ARCH bullseye \
/mnt/debinst http://ftp.us.debian.org/debian
```

Als de doelarchitectuur verschilt van die van de host, moet u de optie --foreign toevoegen.

Het basissysteem configureren

U heeft nu op schijf een echt, hoewel eerder afgeslankt, Debian-systeem. chroot er naartoe:

```bash
# LANG=C.UTF-8 chroot /mnt/debinst /bin/bash
```

Als de doelarchitectuur verschilt van die van de host, moet u eerst qemu-user-static kopiëren naar de nieuwe host:

```bash
# cp /usr/bin/qemu-ARCH-static /mnt/debinst/usr/bin
# LANG=C.UTF-8 chroot /mnt/debinst qemu-ARCH-static /bin/bash
```

Na het chrooten moet u mogelijk de terminaldefinitie instellen om ze compatibel te maken met het Debian basissysteem, bijvoorbeeld:

```bash
# export TERM=xterm-color
```

²Het betreft hier de belangrijkste GNU hulpprogramma's en commando's zoals sed, grep, tar en gzip.
Afhankelijk van de waarde van TERM, kan het zijn dat om voor de terminal ondersteuning te krijgen, u het pakket `ncurses-term` moet installeren.

Als de doelarchitectuur verschilt van die van de host, moet u de meerfasige bootstrap afronden:

```
/debootstrap/debootstrap --second-stage
```

D.3.4.1 Apparaatbestanden creëren

Op dit punt bevat `/dev/` slechts heel basale apparaatbestanden. Mogelijk zijn bijkomende apparaatbestanden nodig voor de volgende stappen van de installatie. Er zijn verschillende manieren om dit aan te pakken. Welke methode u moet gebruiken hangt af van het host-systeem dat u voor de installatie gebruikt, van het feit of u al dan niet een modulaire kernel gaat gebruiken en of u zinnens bent om voor het nieuwe systeem dynamische (bijvoorbeeld door `udev` te gebruiken) dan wel statische apparaatbestanden te gebruiken.

Enkele van de beschikbare opties zijn:

- het pakket `makedev` installeren en (na het chrooten) een standaardset van statische apparaatbestanden creëren met
  ```
  # apt install makedev
  # mount none /proc -t proc
  # cd /dev
  # MAKEDEV generic
  ```

- enkel specifieke apparaatbestanden handmatig creëren met `MAKEDEV`

- de map `/dev` van uw host-systeem met de optie bind (mount --bind) aankoppelen bovenop `/dev` van het doel-systeem. Merk op dat de postinstallatiescripts (postinst) van sommige pakketten apparaatbestanden proberen aan te maken. Gebruik deze mogelijkheid dus met zorg.

D.3.4.2 Partities aankoppelen

U moet `/etc/fstab` creëren.

```
# editor /etc/fstab
```

Hier volgt een voorbeeld dat u volgens uw behoeften kunt aanpassen:

```
# /etc/fstab: informatie over het statische bestandssysteem.
#
# bestandssysteem aankoppelpunt type opties dump pass
/dev/XXX / ext3 defaults 0 1
/dev/XXX /boot ext3 ro,nosuid,nodev 0 2
/dev/XXX none swap sw 0 0
/proc /proc proc defaults 0 0
/dev/cdrom /media/cdrom iso9660 noauto,ro,user,exec 0 0
/dev/XXX /tmp ext3 rw,nosuid,nodev 0 2
/dev/XXX /var ext3 rw,nosuid,nodev 0 2
/dev/XXX /usr ext3 rw,nodev 0 2
/dev/XXX /home ext3 rw,nodev 0 2
```

Gebruik `mount -a` om alle bestandssystemen die u opgegeven heeft in uw `/etc/fstab` aan te koppelen. Of gebruik het volgende commando om bestandssystemen apart aan te koppelen:

```
# mount -pad
```

De huidige Debian-systemen plaatsen hun aankoppelpunten voor verwijderbare media onder `/media`, maar behouden uit compatibiliteitsoverwegingen symbolische koppelingen in `/`. Maak die waar nodig aan, bijvoorbeeld:

```
# cd /media
# mkdir cdrom0
# ln -s cdrom0 cdrom
# cd /
# ln -s media/cdrom
```
U kunt het proc-bestandssysteem meerdere keren en op willekeurige plaatsen aankoppelen, hoewel /proc gangbaar is. Indien u niet \texttt{mount -a} gebruikte, moet u voor u verdergaat eerst proc aankoppelen:

\begin{verbatim}
mount -t proc proc /proc
\end{verbatim}

Met het commando \texttt{ls /proc} zou u nu een niet-lege map te zien moeten krijgen. Mocht dit mislukken, dan kunt u mogelijk proc aankoppelen van buiten de chroot:

\begin{verbatim}
mount -t proc proc /mnt/debinst/proc
\end{verbatim}

\subsection*{D.3.4.3 De tijdzone instellen}

Door de derde regel van het bestand \texttt{/etc/adjtime} in te stellen op “UTC” of “LOCAL” bepaalt u of het systeem de tijd van de hardwareklok zal interpreteren als respectievelijk aangeduid in UTC of in de lokale tijd. Het volgende commando stelt u in staat om dit in te stellen.

\begin{verbatim}
editor /etc/adjtime
\end{verbatim}

Hierna volgt een voorbeeld:

\begin{verbatim}
0.0 0 0.0
0
UTC
\end{verbatim}

Het volgende commando laat u toe uw tijdzone te kiezen.

\begin{verbatim}
dpkg-reconfigure tzdata
\end{verbatim}

\subsection*{D.3.4.4 Het netwerk configureren}

Om het netwerk te configureren moet u \texttt{/etc/network/interfaces}, \texttt{/etc/resolv.conf}, \texttt{/etc/hostname} en \texttt{/etc/hosts} bewerken.

\begin{verbatim}
editor /etc/network/interfaces
\end{verbatim}

Hier volgen enkele eenvoudige voorbeelden uit \texttt{usr/share/doc/ifupdown/examples}:

\begin{verbatim}
##
/etc/network/interfaces -- configuratiebestand voor ifup(8), ifdown(8)
Zie de manpagina interfaces(5) voor informatie over beschikbare
opties.
##

De interface loopback is niet langer vereist, maar kan zo nodig
gebruikt worden.
#
auto lo
iface lo inet loopback
#
Om dhcp te gebruiken:
#
auto eth0
iface eth0 inet dhcp
#
Een voorbeeld van een configuratie met een statisch IP-adres:
(network, broadcast en gateway zijn facultatief)
#
auto eth0
iface eth0 inet static
address 192.168.0.42
network 192.168.0.0
netmask 255.255.255.0
broadcast 192.168.0.255
gateway 192.168.0.1
##
\end{verbatim}
Geef uw naamserver en opzoekingsrichtlijnen op in /etc/resolv.conf:

```
# editor /etc/resolv.conf
```

Een eenvoudig voorbeeld van het bestand /etc/resolv.conf:

```
search example.com
nameserver 10.1.1.36
nameserver 192.168.9.100
```

Geef de hostnaam van uw systeem op (2 tot 63 lettertekens):

```
# echo DebianComputerNaam > /etc/hostname
```

En een basaal bestand /etc/hosts met ondersteuning voor IPv6:

```
127.0.0.1 localhost
127.0.1.1 DebianComputerNaam

# De volgende regels zijn wenselijk bij IPv6-compatibele computers
::1   ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts
```

Indien u verschillende netwerkkaarten heeft, moet u de namen van de stuurprogrammamodules in het bestand /etc/modules in de gewenste volgorde plaatsen. Tijdens het opstarten zal iedere kaart dan geassocieerd worden met de verwachte interfacenaam (eth0, eth1, enz.)

D.3.4.5 Apt configureren

Debootstrap zal een heel basaal bestand /etc/apt/sources.list aangemaakt hebben, waardoor het installeren van bijkomende pakketten mogelijk is. Mogelijk wilt u echter extra pakketbronnen toevoegen, bijvoorbeeld voor broncodepakketten en voor beveiligingsupdates:

```
deb-src http://ftp.nl.debian.org/debian bullseye main
deb http://security.debian.org/ bullseye-security main
deb-src http://security.debian.org/ bullseye-security main
```

Denk eraan om het commando **apt update** uit te voeren nadat u de lijst met pakketbronnen wijzigde.

D.3.4.6 Het taalgebied en het toetsenbord configureren

Om de lokalisatie-instellingen zo te configureren dat een andere taal dan het Engels gebruikt wordt, moet u het pakket dat ondersteuning biedt voor locales installeren en configureren. Tegenwoordig wordt aanbevolen om een lokalisatie van het type UTF-8 te gebruiken.

```
# apt install locales
# dpkg-reconfigure locales
```

Om zo nodig uw toetsenbord te configureren:

```
# apt install console-setup
# dpkg-reconfigure keyboard-configuration
```

Merk op dat u het toetsenbord niet kunt instellen terwijl u zich in de chroot bevindt, maar dat het op deze manier geconfigureerd wordt in functie van de volgende herstart van de computer.

D.3.5 Een kernel installeren

Indien u zinnens bent om dit systeem op te starten, zult u wellicht een Linux kernel en een bootloader willen hebben. Ga na welke voorverpakte kernals beschikbaar zijn met:

```
# apt search linux-image
```
Installeer vervolgens het kernelpakket van uw keuze aan de hand van zijn pakketnaam.

```
# apt install linux-image-arch-enz
```

D.3.6 Zet de bootloader op

Om te maken dat uw Debain GNU/Linux-systeem kan opstarten, moet u uw bootloader instellen om de geïnstalleerde kernel met uw nieuwe root-partitie te laden. Merk op dat debootstrap geen bootloader installeert, maar dat u **apt** binnen uw Debain chroot kunt gebruiken om dat te doen.

Merk op dat dit ervan uitgaat dat er een apparaatbestand `/dev/sda` gecreëerd werd. Er bestaan andere mogelijkheden om **grub2** te installeren, maar die vallen buiten het bestek van deze bijlage.

D.3.7 Toegang vanop afstand: SSH installeren en de toegang opzetten

Indien u via de console op het systeem kunt inloggen, kunt u dit onderdeel overslaan. Indien het systeem later toegankelijk moet zijn over het netwerk, dient u SSH te installeren en de toegang op te zetten.

```
# apt install ssh
```

Standaard staat voor root (de systeembeheerder) inloggen met een wachtwoord uitgeschakeld. Dus kan het instellen van de toegang gebeuren door een wachtwoord in te stellen en inloggen met een wachtwoord voor root terug mogelijk te maken:

```
# passwd
# editor /etc/ssh/sshd_config
```

De volgende optie moet geactiveerd worden:

```
PermitRootLogin yes
```

De toegang kan ook mogelijk gemaakt worden door aan het account van root een ssh-sleutel toe te voegen:

```
# mkdir /root/.ssh
# cat << EOF > /root/.ssh/authorized_keys
ssh-rsa ....
EOF
```

Tenslotte kan de toegang ook mogelijk gemaakt worden door een gewone gebruiker toe te voegen en voor deze een wachtwoord in te stellen:

```
# adduser joe
# passwd joe
```

D.3.8 Afwerking

Zoals reeds eerder vermeld werd, zal het geïnstalleerde systeem erg basaal zijn. Indien u liever heeft dat het systeem wat meer voldragen is, kunt u op een makkelijke manier alle pakketten installeren die een prioriteit “standard” (standaard) hebben:

```
# taskel install standard
```

U kunt natuurlijk ook gewoon **apt** gebruiken om individuele pakketten te installeren.

Na de installatie zullen er zich in `/var/cache/apt/archives/` een heleboel gedownloade pakketten bevinden. U kunt schijfruimte vrijmaken met de opdracht:

```
# apt clean
```
D.4 Debian GNU/Linux installeren met PPP over Ethernet (PPPoE)

In sommige landen is PPP over Ethernet (PPPoE) een gebruikelijk protocol voor de breedbandverbinding (ADSL of kabel) met de aanbieder van internetdiensten (ISP). Een netwerkverbinding opzetten met PPPoE wordt standaard niet ondersteund in het installatiesysteem, maar ze kan heel eenvoudig tot stand gebracht worden. In dit onderdeel leggen we uit hoe.

De PPPoE-verbinding die tijdens de installatie opgezet wordt zal ook na het heropstarten van het geïnstalleerde systeem, beschikbaar zijn (zie Hoofdstuk 7).

Om de mogelijkheid te hebben om tijdens de installatie PPPoE in te stellen en te gebruiken, zult u de installatie moeten uitvoeren met een van de beschikbare CD/DVD-images. In de andere installatiemethodes (bijv. netboot) wordt dit niet ondersteund.

Het uitvoeren van de installatie over PPPoE verloopt grotendeels gelijk elke andere installatie. In de volgende stappen leggen we de verschillen uit.

- Start het installatiesysteem op met de opstartparameter `modules=ppp-udeb`. Dit garandeert dat de component die instaat voor het opzetten van PPPoE (`ppp-udeb`) automatisch geladen en opgestart wordt.
- Volg de gewone eerste stappen van de installatie (selecteren van taal, land en toetsenbord, het laden van bijkomende componenten van het installatiesysteem³).
- De volgende stap is de detectie van netwerkhardware om eventuele ethernetkaarten op het systeem te identificeren.
- Daarna wordt met het eigenlijke opzetten van PPPoE begonnen. Het installatiesysteem zal alle gedetecteerde ethernetkaarten afzoeken in een poging om een PPPoE-concentrator (een servertype dat PPPoE-verbindingen afhandelt) te vinden.
- Het is mogelijk dat bij de eerste poging de concentrator niet gevonden wordt. Dit kan sporadisch gebeuren op trage of zwaar belaste netwerken of met ondeugdelijke servers. In de meeste gevallen is een tweede poging om de concentrator te detecteren wel succesvol. Om opnieuw te proberen moet u in het hoofdmenu van het installatiesysteem Een PPPoE-verbinding configureren en starten selecteren.
- Nadat een concentrator gevonden werd, zal de gebruiker gevraagd worden om de aanmeldinformatie in te typen (de gebruikersnaam en het wachtwoord voor PPPoE).
- Op dit punt zal het installatiesysteem de verstrekte informatie gebruiken om de PPPoE-verbinding op te zetten. Indien de juiste informatie verstrekt werd, zou de PPPoE-verbinding geconfigureerd moeten worden en zou het installatiesysteem in staat moeten zijn te gebruiken om de verbinding met het internet te maken en over die verbinding pakketten op te halen (als dat nodig is). Is de aanmeldinformatie niet correct of trad er een fout op, dan zal het installatiesysteem stoppen, maar u kunt een nieuwe configuratiepoging ondernemen door het menu-item Een PPPoE-verbinding configureren en starten te selecteren.

³De component `ppp-udeb` wordt in deze stap als een van de bijkomende componenten geladen. Indien u de installatie wilt uitvoeren met ‘medium’ of ‘low’ als prioriteit (gemiddelde of lage prioriteit), kunt u ook zelf handmatig de `ppp-udeb` selecteren in plaats van de “modules”-parameter op te geven aan de opstartprompt.
Bijlage E

Administrivia

E.1 Over dit document

Deze handleiding werd gemaakt voor het Debian installatiesysteem van Sarge en was gebaseerd op de installatie-handling van Woody voor een installatie met diskettes. Die was op zijn beurt gebaseerd op eerdere installatie-handelingen van Debian en op de handleiding voor de Progeny distributie die in 2003 uitgegeven werd onder een GPL-licentie.

Dit document werd in DocBook XML geschreven. Uitvoerformaten ervan worden gegenereerd door verschillende programma’s die informatie gebruiken uit de pakketten docbook-xml en docbook-xsl.

E.2 Een bijdrage leveren aan dit document

Indien u in verband met dit document problemen ziet of suggesties heeft, kunt u ze wellicht best signaleren via een bugrapport over het pakket installation-guide. Raadpleeg het pakket reportbug of lees de online-documentatie van het Debian bugopvolgingssysteem. Het zou vriendelijk zijn mocht u eerst de openstaande bugs voor het pakket installation-guide willen nakijken om te zoeken of uw probleem reeds gesignaleerd werd. Mocht dit het geval zijn dan kunt u bijkomende nuttige informatie of een bevestiging van het probleem sturen naar xxxxx@bugs.debian.org, waarbij xxxxx het nummer is van de reeds gerapporteerde bug.

Nog beter is om een kopie van de DocBook-broncode voor dit document op te halen en er patches met aanpassingen voor te produceren. De DocBook-broncode is te vinden op de projectpagina installation-guide op salsa. Indien u niet vertrouwd bent met DocBook, moet u zich geen zorgen maken: in de map van de handleidingen vindt u een eenvoudig spiekbriefje dat u op weg kan helpen. DocBook is te vergelijken met html, maar is georiënteerd op de betekenis van de tekst eerder dan op de presentatie ervan. Patches die ingediend worden op de mailinglijst debian-boot (zie hieronder) zijn welkom. Zie README in de basismap van de broncode voor instructies voor het ophalen van de broncode via git.

Geliève de auteurs van dit document niet rechtstreeks te willen contacteren. Er bestaat ook een mailinglijst voor de coördinatie van de ontwikkeling van debian-installer, en daaronder valt ook deze handleiding. Het betreft de mailinglijst debian-boot@lists.debian.org. De voertaal is Engels. Hoe u zich op de lijst kunt inschrijven wordt uitgelegd op de webpagina Abonnementen op mailinglijsten. U kunt ook online de Mailinglijstarchieven van Debian doorbladeren.

E.3 Belangrijkste bijdragen

Dit document werd oorspronkelijk geschreven door Bruce Perens, Sven Rudolph, Igor Grobman, James Treacy en Adam Di Carlo. Sebastian Ley schreef de Installatie Howto.
Veel van de nieuwigheden in het installatiesysteem van Debian bij de uitgave van Sarge werden door Miroslav Kuře beschreven. Bij de releases van Etch, Lenny en Squeeze fungeerde Frans Pop als hoofdauteur en als coördinator van de release.

Heel veel Debian-gebruikers en -ontwikkelaars droegen bij tot dit document. Een bijzondere vermelding verdienen Michael Schmitz (m68k-ondersteuning), Frank Neumann (originele auteur van de Installatiehandleiding voor Amiga), Arto Astala, Eric Delaunay/Ben Collins (SPARC-informatie), Tapio Lehtonen en Stéphane Bortzmeyer voor de talloze bijdragen en correcties. Pascal Le Bail moeten we danken voor de nuttige informatie over het opstarten met een USB-geheugenstick.

Erg nuttige informatie vonden we onder meer ook in de HOWTO van Jim Mintha over opstarten over het netwerk (een URL ontbreekt), in de Debian FAQ, de Linux/m68k FAQ, de Linux for SPARC Processors FAQ, de Linux/-Alpha FAQ. De auteurs en onderhouders van deze vrij beschikbare rijke bronnen van informatie verdienen onze erkenning.

Het onderdeel uit deze handleiding over installaties in een chroot (Paragraaf D.3) is deels gebaseerd op documenten waarvan het copyright berust bij Karsten M. Self.

E.4 Handelsmerken

Alle handelsmerken zijn eigendom van hun respectieve eigenaars.
Bijlage F

GNU General Public License — GNU Algemene Publieke Licentie

OPMERKING

This is an unofficial translation of the GNU General Public License into Dutch. It was not published by the Free Software Foundation, and does not legally state the distribution terms for software that uses the GNU GPL — only the original English text of the GNU GPL does that. However, we hope that this translation will help Dutch speakers to better understand the GNU GPL.

Dit is een niet-officiële vertaling naar het Nederlands van de GNU General Public License. Deze vertaling is niet gemaakt door de Free Software Foundation en bevat niet de juridisch bindende distributievoorwaarden voor software die gebruik maakt van de GNU GPL — alleen de originele Engelse tekst van de GNU GPL is juridisch bindend. Wij hopen echter dat deze vertaling Nederlandstaligen zal helpen de GNU GPL beter te begrijpen.

Deze vertaling is geen origineel werk, maar maakt zoveel mogelijk gebruik van reeds geleverd vertaalwerk. In eerste instantie wordt dankbaar gebruik gemaakt van de niet-officiële vertaling van versie 2 van de licentie die te vinden is op http://users.skynet.be/sterm/gpld.txt. Waar de tekst tussen de versies 2 en 3 van de GPL ongewijzigd bleef, gingen we ook te rade bij de Nederlandse vertaling door Bart Beuving en Maurits Westerik van GPLv3 die u vindt op https://bartbeuving.files.wordpress.com/2008/07/gpl-v3-nl-101.pdf.

Versie 2, juni 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.

Het is iedereen toegestaan om letterlijke kopieën van deze licentievoorwaarden te maken en te verspreiden. Het wijzigen van deze licentievoorwaarden is niet toegestaan.

F.1 Preambule

De licenties voor de meeste software zijn ontworpen om u het recht te ontnemen om deze software te delen en te wijzigen. In tegenstelling hiermee is de GNU Algemene Publieke Licentie bedoeld om u het recht te garanderen op het delen en wijzigen van vrije software — om ervoor te zorgen dat het vrije software blijft voor alle gebruikers. Deze Algemene Publieke Licentie is van toepassing op de meeste software van de Free Software Foundation en op elk ander programma waarvan de auteurs zich engageren om ze te gebruiken. (Sommige software van de Free Software Foundation valt evenwel onder de GNU Library General Public License — de GNU Algemene Publieke Licentie voor Softwarebibliotheken.) U kunt deze licentie ook op uw programma’s van toepassing verklaren.
Wanneer wij het hebben over vrije software, dan bedoelen wij vrijheid, niet kostprijs. Onze GNU Algemene Publieke Licenties zijn geschreven om ervoor te zorgen dat u de vrijheid heeft om kopieën van vrije software te verspreiden (en voor deze dienst een vergoeding te vragen als u dat wenst), dat u de broncode ontvangt of desgewenst kunt krijgen, dat u de software kunt wijzigen of stukken ervan kunt gebruiken in nieuwe vrije programma’s en dat u weet dat u deze dingen kunt doen.

Om uw rechten te beschermen, moeten wij beperkingen instellen die anderen verbieden u deze rechten te ontzeggen of u te vragen afstand te doen van deze rechten. Deze restricties brengen enkele verantwoordelijkheden mee voor u als u kopieën van de software verspreidt, of als u deze software wijzigt.

Bijvoorbeeld, als u kopieën van een dergelijk programma verspreidt, of het nu gratis is of tegen een vergoeding, dan moet u aan de ontvangers alle rechten geven die u zelf heeft. U moet zorgen dat ook zij de broncode ontvangen of kunnen verkrijgen. Ook moet u ze deze voorwaarden tonen zodat zij hun rechten kennen.

Wij beschermen uw rechten in twee stappen: (1) auteursrecht plaatsen op de software, en (2) u deze licentie aanbieden die u juridisch gezien toestemming geeft om deze software te kopiëren, verspreiden en/of te wijzigen.

Ter bescherming van elke auteur en van onszelf, willen we tevens ook zeker zijn dat iedereen begrijpt dat er geen garanties op deze vrije software zitten. Als de software door iemand anders gewijzigd en verspreid wordt, willen we dat de ontvangers van deze software weten dat zij niet de originele versie ervan hebben, zodat eventuele problemen die anderen introduceerden niet onterecht de reputatie van de originele auteur zouden beschadigen.

Tot slot, elk vrij programma wordt voortdurend bedreigd door softwareoctrooien. Wij willen het gevaar vermijden dat verdelers van een vrij programma zelf octrooien zouden verwerven en op die manier dat programma feitelijk 'gesloten software' zouden maken. Om dit te voorkomen stellen we duidelijk dat een eventueel octrooi in licentie moet gegeven worden met het oog op een vrij gebruik door iedereen of helemaal niet in licentie gegeven moet worden.

De precieze bepalingen en voorwaarden inzake kopiëren, verspreiden en wijzigen volgen hierna.

F.2 GNU GENERAL PUBLIC LICENSE — GNU ALGEMENE PUBLIEKE LICENTIE

BEPALINGEN EN VOORWAARDEN INZAKE KOPIËREN, VERSPREIDEN EN WIJZIGEN

0. Deze licentie is van toepassing op elk programma of ander werk dat een vermelding bevat van de copyrighthouder, waarin staat dat het mag verspreid worden onder de bepalingen van deze Algemene Publieke Licentie. Als hierna “Programma” gebruikt wordt, verwijst dit naar elk dergelijk programma of werk en een “op het Programma gebaseerd werk” betekent het Programma of elk afgeleid werk volgens de copyrightwetgeving: dit wil zeggen, een werk dat het Programma bevat of een gedeelde ervan, ofwel letterlijk of gewijzigd en/of naar een andere taal vertaald. (In wat hierna volgt is vertaling zonder beperking inbegrepen in de term “wijziging”.) Elke licentiehouder wordt aangesproken als “u”.

Andere handelingen dan kopiëren, verspreiden en wijzigen vallen niet onder deze Licentie. Hiervoor is deze niet bedoeld. Er staan geen beperkingen op het uitvoeren van het Programma en de uitvoer die het Programma produceert, valt enkel onder deze licentie indien de inhoud van die uitvoer een op het Programma gebaseerd werk vormt (los van het feit dat het gerealiseerd werd door het Programma zelf). (In wat hierna volgt is vertaling zonder beperking inbegrepen in de term “wijziging”). Elke licentiehouder wordt aangesproken als “u”.

1. U mag letterlijke kopieën van het broncode van het Programma zoals je die zelf gekregen hebt, kopiëren en verspreiden op elk medium, op voorwaarde dat u ook letterlijk of gewijzigd en/of naar een andere taal vertaald. (In wat hierna volgt is vertaling zonder beperking inbegrepen in de term “wijziging”). Elke licentiehouder wordt aangesproken als “u”.

2. U mag uw kopie van het Programma of elk deel ervan wijzigen, en aldus een op het Programma gebaseerd werk vormen, en u mag dergelijke wijzigingen kopiëren en verspreiden onder de bepalingen van Paragraaf 1 hiervoren, indien U ook aan al deze voorwaarden voldoet:
 a. U moet ervoor zorgen dat de gewijzigde bestanden een duidelijke vermelding bevatten van het feit dat U het bestand gewijzigd hebt en van de datum van elke wijziging.
 b. U moet elk werk dat U verspreidt of publiceert en dat het Programma geheel of gedeeltelijk bevat of van dat Programma of van een deel ervan afgeleid is, in zijn geheel onder de bepalingen van deze Licentie kosteloos in licentie geven aan alle derde partijen.
 c. Indien het gewijzigde programma normaal gezien op een interactieve manier commando's verwerkt wanneer het uitgevoerd wordt, dan moet u ervoor zorgen dat, als het voor een dergelijk interactief gebruik in zijn meest
eenvoudige vorm opgestart wordt, het een kennisgeving afdrukt of weergeeft met een passende copyrightvermelding en met de vermelding dat er geen garantie geboden wordt (of anders, dat U een garantie voorziet) en dat gebruikers het programma mogen verspreiden onder deze voorwaarden en waarin de gebruiker geïnformeerd wordt over hoe hij een kopie van deze Licentie kan bekijken. (Uitzondering: als het Programma zelf interactief is maar normaal geen dergelijke kennisgeving afdrukt, dan moet uw op het Programma gebaseerd werk evenmin die kennisgeving afdrukken.)

Deze vereisten zijn van toepassing op het werk in zijn geheel. Als duidelijke onderdelen van dat werk niet afgeleid zijn van het Programma en redelijkerwijs beschouwd kunnen worden als op zich staande onafhankelijke en afzonderlijke werken, dan is deze Licentie en zijn bepalingen niet van toepassing op die onderdelen als U die als aparte werken verspreidt. Maar als u diezelfde onderdelen verspreidt als deel van een geheel dat een op het Programma gebaseerd werk is, dan moet de verspreiding van het geheel gebeuren in overeenstemming met de bepalingen van deze Licentie, waarvan de vergunningen voor andere licentiehouders betrekking hebben op het volledige geheel, en dus op elk onderdeel, ongeacht wie het schreef.

Het is dus niet de bedoeling van deze paragraaf om aanspraak te maken op rechten op werk dat geheel door uzelf geschreven is of uw rechten op dat werk te betwisten. Het is eerder de bedoeling om het recht uit te oefenen op controle over de verspreiding van afgeleide of collectieve werken gebaseerd op het Programma.

Daarenboven geldt dat het louter samenbrengen van een ander werk dat niet op het Programma gebaseerd is met het Programma (of met een op het Programma gebaseerd werk) op een opslagmedium of een verspreidingsmedium, dat ander werk niet doet vallen onder de bepalingen van deze Licentie.

3. U mag het Programma (of een volgens paragraaf 2 erop gebaseerd werk) verspreiden en kopieren in objectcode of uitvoerbare vorm onder de bepalingen van bovenstaande paragrafen 1 en 2 op voorwaarde dat U ook aan een van de volgende voorwaarden voldoet:

a. Dat u de volledige bijbehorende mechanisch afleesbare broncode eraan toevoegt, die verspreid moet worden onder de bepalingen van de bovenstaande paragrafen 1 en 2 op een medium dat gebruikelijk is voor het uitwisselen van software, of

b. Dat u een schriftelijk aanbod toevoegt, dat minstens drie jaar geldig blijft, om aan elke derde een volledige mechanisch afleesbare kopie van de bijbehorende broncode te verstrekken onder de bepalingen van de bovenstaande paragrafen 1 en 2 op een medium dat gebruikelijk is voor het uitwisselen van software tegen een vergoeding die niet hoger ligt dan de materiële kost voor het verspreiden van de broncode, of

c. Dat u de informatie toevoegt die u ontving met betrekking tot het aanbod om de bijbehorende broncode te verkrijgen. (Dit alternatief is enkel toegestaan voor een niet-commerciële verspreiding en enkel als u het programma ontving in objectcode of in uitvoerbare vorm met een dergelijk aanbod in overeenstemming met de bovenstaande subparagraaf b.)

Onder de broncode van een werk wordt die vorm van het werk verstaan waarin het bij voorkeur bewerkt wordt. Voor een uitvoerbaar werk betekent volledige broncode alle broncode van alle modules waaruit het werk bestaat, plus alle bestanden die een eventuele erbij horende interface definiëren, plus de scripts voor het compileren en het installeren van het uitvoerbare programma. Bij wijze van bijzondere uitzondering geldt echter dat in de gedistribueerde broncode niets moet opgenomen worden dat normaal verspreid wordt (in broncode of in uitvoerbare vorm) via de hoofdcomponenten (compiler, kernel, enz.) van het besturingssysteem waaronder het programma uitgevoerd wordt, tenzij die component zelf bij het uitvoerbare bestand hoort.

Als de verspreiding van het uitvoerbare bestand of de objectcode gebeurt door het bieden van de mogelijkheid om deze te kopiëren van een bepaalde plaats, dan geldt het bieden van de mogelijkheid om de broncode van diezelfde plaats te kopiëren als het verspreiden van de broncode, zelfs indien men niet verplicht is ook de broncode te kopiëren samen met de objectcode.

4. U mag het Programma niet kopiëren, wijzigen, sublicentiëren of verspreiden op een andere wijze dan uitdrukkelijk is toegestaan onder deze Licentie. Elke andere poging om het Programma te kopiëren, te wijzigen, te sublicentiëren of te verspreiden is nietig en zal automatisch uw rechten onder deze Licentie beëindigen. Echter, derden die van u kopieën of rechten op deze Licentie ontvangen hebben, blijven hun rechten behouden zolang ze de voorwaarden niet schenden.

6. Telkens u het Programma (of een op het Programma gebaseerd werk) verspreidt, krijgt de ontvanger automatisch de toelating van de originele licentiegever om het Programma te kopiëren, te verspreiden of te wijzigen onder
elijke bepalingen en voorwaarden. U mag de ontvanger geen andere beperkingen opleggen inzake de uitoefening van de rechten die hierin bepaald zijn. U bent niet verantwoordelijk voor het afdwingen van de naleving door derden van deze Licentie.

7. Als u ten gevolge van een gerechtelijk bevel of van een beschuldiging van inbreuk op een octrooi of om eender welke andere reden (niet beperkt tot octrooiwetgeving) voorwaarden opgelegd worden (zij het bij gerechtelijk bev尔斯chrift, in onderlinge overeenkomst of op een andere wijze) die in tegenspraak zijn met de voorwaarden van deze Licentie, ontslaan deze u niet van de voorwaarden van deze Licentie. Als u de verspreiding niet zodanig kunt doen dat u tegelijk voldoet aan de bepalingen van deze Licentie en aan eventuele andere toepasselijke verplichtingen, is de consequentie dat u het Programma helemaal niet mag verspreiden. Als bijvoorbeeld een octrooilicentie niet zou toestaan dat het Programma zonder royalty’s verder verspreid wordt door diegenen die het Programma direct of indirect via u verkrijgen, dan zou de enige manier waarop u zowel daaraan als aan deze Licentie kunt voldoen, zijn, dat u zich volledig onthoudt van het verspreiden van het Programma.

Als een deel van dit artikel als ongeldig wordt beschouwd of ten gevolge van een specifieke omstandigheid niet kan afgeworven worden, dan wordt de rest van het artikel van kracht geacht. In andere omstandigheden wordt het artikel in zijn geheel geacht van kracht te zijn.

Het is niet de bedoeling van dit artikel om u aan te zetten tot inbreuken tegen octrooien of tegen andere aanspraken op eigendomsrechten of tot het aanvechten van de geldigheid van zulke aanspraken. Het enige doel van dit artikel is het beschermen van de integriteit van het distributiesysteem van vrije software dat via het aanwenden van een openbare licentie gestalte krijgt. Veel mensen hebben grootmoedig bijgedragen aan een grote verscheidenheid van vrije software ondanks auteursrechten of tot het aanvechten van de geldigheid van zulke aanspraken. Het enige doel van dit artikel is het beschermen van het distributiesysteem van vrije software dat via het aanwenden van een openbare licentie gestalte krijgt. Veel mensen hebben grootmoedig bijgedragen aan een grote verscheidenheid van vrije software.

De Free Software Foundation kan zo nu en dan herziene en/of nieuwe versies publiceren van de Algemene Publieke Licentie. Zulke nieuwe versies zullen in dezelfde geest zijn opgesteld als de huidige versie, maar kunnen in de details afwijken om nieuwe aanvallen tegen auteursrechten te verhelpen. Elke versie krijgt een onderscheidend versienummer. Als het Programma specificeert dat een bepaalde genummerde versie van de Algemene Publieke Licentie en “elke latere versie” van toepassing is, heeft u de vrijheid om te handelen overeenkomstig de bepalingen en de voorwaarden van die genummerde versie of van elke latere versie die door de Free Software Foundation gepubliceerd werd. Als het Programma geen versienummer van de Algemene Publieke Licentie specificereert, kunt u gelijk welke versie kiezen die ooit door de Free Software Foundation werd gepubliceerd.

Indien u delen van het Programma wilt invoegen in andere vrije programma’s waarvoor andere verspreidingsvoorwaarden gelden, dan moet u de auteur van dat programma om schriftelijke toestemming vragen. Voor software waarvan het auteursrecht bij de Free Software Foundation berust moet u naar de Free Software Foundation schrijven. We maken hiervoor soms een uitzondering. Onze beslissing zal ingevolge van de wegens voorgeschreven of overeenkomstig de regelgeving. Behalve wanneer dit anderszins SCHRIFTELIJK IS BEVESTIGD, BIEDEN DE AUTEURSRECHTSHEBBENDE EN/OF ANDERE PARTIJEN DIT PROGRAMMA AAAN “ZOALS HET IS”, ZONDER ENIGE GARANTIE, EXPLICIET OF IMPLICIET, WAARONDER MAAR NIET HIERTOE BEPERKT DE IMPLICIETE GARANTIES DIE GEBRUIKELIJK ZIJN IN DE HANDEL EN DE GARANTIE VAN BRUIKBAARHEID VOOR EEN SPECIFIEK DOEL. HET VOLLEDIGE RISICO MET BETREKKING TOT DE KWALITEIT EN DE PRESTATIES VAN HET PROGRAMMA BURST BIJ U. MOCHT HET PROGRAMMA GEBREKEN BIJEN TE VERTONEN, DAN DIEN'T U ALLE NOODZAKELIJKE SERVICE-, REPARATIE- OF RECTIFICATIEKOSTEN VOOR EIGEN REKENING TE NEMEN.

11. VERMITS HET PROGRAMMA KOSTELOOS IN LICENTIE GEGEVEN WORDT, WORDEN GEEN GARANTIES GEGEVEN VOOR HET PROGRAMMA VOOR ZOVER TOEGESTAAN DOOR DE TOEPASSelijke REGELGEVING. BEHALVE WANNEER DIT ANDERSZINS SCHRIFTELIJK IS BEVESTIGD, BIEDEN DE AUTEURSRECHTSHEBBENDE EN/OF ANDERE PARTIJEN DIT PROGRAMMA AAN “ZOALS HET IS”, ZONDER ENIGE GARANTIE, EXPLICIET OF IMPLICIET, WAARONDER MAAR NIET HIERTOE BEPERKT DE IMPLICIETE GARANTIES DIE GEBRUIKELIJK ZIJN IN DE HANDEL EN DE GARANTIE VAN BRUIKBAARHEID VOOR EEN SPECIFIEK DOEL. HET VOLLEDIGE RISICO MET BETREKKING TOT DE KWALITEIT EN DE PRESTATIES VAN HET PROGRAMMA BURST BIJ U. MOCHT HET PROGRAMMA GEBREKEN BIJEN TE VERTONEN, DAN DIEN'T U ALLE NOODZAKELIJKE SERVICE-, REPARATIE- OF RECTIFICATIEKOSTEN VOOR EIGEN REKENING TE NEMEN.

12. IN GEEN GEVAL, TENZIJ VEREIST DOOR DE TOEPASSelijke REGELGEVING OF SCHRIFTELIJK OVEREENGENOM MEN, ZAL ENIGE AUTEURSRECHTSHEBBENDE, OF ENIGE ANDERE PARTIJ DIE HET PROGRAMMA WUIGT EN/OF VERSPREIDT OVEREENKOMSTIG DE HIERVER GEGEVEN TOESTEMMING, AANSPRAKELIJK ZIJN TEGENOVER U VOOR TOEGEBRACHTE SCHADE, INCLUSIEF ELKE ALGEMENE, SPECIALE, INCIDENTELE OF GEVOLGSCHADE DIE VOORTVLOEIT UIT HET GE-
F.3 Hoe u deze bepalingen kunt toepassen op uw nieuwe programma's

Als u een nieuw programma ontwikkelt en u wenst dat het van het grootst mogelijke nut is voor het publiek, kunt u dit het best bereiken door het vrije software te maken die door iedereen verder kan worden verspreid en gewijzigd onder deze voorwaarden.

Dat doet u door de volgende kennisgeving aan het programma toe te voegen. Het is het veiligste om ze aan het begin van elk broncodebestand op te nemen om zo op de meest effectieve wijze elke aansprakelijkheid uit te sluiten; en elk bestand zou tenminste de “copyright”-regel moeten bevatten en een verwijzing naar waar de volledige kennisgeving gevonden kan worden.

| een regel om de naam van het programma weer te geven en een korte omschrijving ← van wat het programma doet. |
| Copyright (C) jaar naam van de auteur |
| Dit programma is vrije software; u mag het verder verspreiden en/of wijzigen onder de voorwaarden van de GNU Algemene Publieke Licentie zoals gepubliceerd door de Free Software Foundation, ofwel versie 2 van de Licentie of (naar uw keuze) elke latere versie. |
| Dit programma wordt gedistribueerd in de hoop dat het nuttig zal zijn, maar ZONDER ENIGE GARANTIE, zelfs zonder de impliciete garanties die GEBRUIKKELIJK ZIJN IN DE HANDEL OF DE GARANTIE VAN BRUIKBAARHEID VOOR EEN SPECIFIEK DOEL. Zie de GNU Algemene Publieke Licentie voor meer details. |
| U zou samen met dit programma een kopie van de GNU Algemene Publieke Licentie ontvangen moeten hebben. Is dit niet het geval, schrijf dan naar de Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |

Voeg ook informatie toe over hoe men u via elektronische en traditionele post kan bereiken.

Betreft het een interactief programma, laat het dan bij het opstarten in interactieve modus een korte melding zoals deze weergeven:

| Gnomovision versie 69, Copyright (C) jaar naam van de auteur |
| Er zit absoluut geen garantie op Gnomovision; typ show w voor meer informatie. Dit is vrije software en u bent van harte uitgenodigd om het onder bepaalde voorwaarden verder te verspreiden; typ show c voor meer informatie. |
| De hypothetische commando’s “show w” en “show c” dienen de gepaste delen van de Algemene Publieke Licentie te tonen. Natuurlijk kunnen de commando’s die u gebruikt anders zijn dan “show w” en “show c”; het kunnen zelfs muisklikken zijn of menu-items — wat ook maar best geschikt is voor uw programma. |
| U moet er ook voor zorgen dat uw werkgever (als u werkt als programmeur) of uw school, voor zover relevant, een “verklaring van afstand van copyright”öndertekent met betrekking tot het programma. Hierna volgt een voorbeeld; pas de namen aan: |
| Yoyodyne, NV., ziet hierbij af van elk copyrightbelang in het programma Gnomovision (een doorgeefluik naar compilatieprogramma's), geschreven door James Hacker. |
| handtekening van Ty Coon, 1 april 1989 Ty Coon, Vicevoorzitter |

¹Enkel de oorspronkelijke Engelse tekst van de kennisgeving heeft bindende waarde en niet de hiernavolgende vertaling ervan.
Deze Algemene Publieke Licentie staat niet toe dat uw programma wordt opgenomen in zogenaamde niet-vrije of gesloten software. Als uw programma een bibliotheek met subroutines is, kan het zijn dat u het zinvoller acht om gesloten software toe te staan te linken naar deze bibliotheek. Als u dit wilt doen, gebruik dan de GNU Minder Algemene Publieke Licentie (GNU Lesser General Public License) in plaats van deze Licentie.