Tento manuál je volně šířitelný; můžete ho distribuovat nebo pozměnit za podmínek uvedených v licenci GNU General Public Licence. Text licence naleznete v F.
Obsah

1 Vítejte v Debianu 1

1.1 Co je Debian? 1
1.2 Co je GNU/Linux? 1
1.3 Co je Debian GNU/Linux? 2
1.4 Získání Debianu 3
1.5 Získání nejnovější verze této příručky 3
1.6 Organizace příručky 3
1.7 O licenčních ujednáních 3

2 Požadavky na počítač 5

2.1 Podporovaná zařízení 5

2.1.1 Podporované počítačové architektury 5
2.1.2 Tři hlavní ARM porty 6
2.1.3 Různé návrhy ARM procesorů a náročnost podpory 6
2.1.4 Platformy podporované v Debian/armel 6
2.1.5 Platformy a zařízení dále nepodporované v Debian/armel 7
2.1.6 Podpora grafických karet 7
2.1.7 Hardware pro připojení k síti 7
2.1.8 Ostatní zařízení 7

2.2 Ovladače vyžadující firmware 7
2.3 Hardware určený pro GNU/Linux 8

2.3.1 Vyvarujte se uzavřených technologií 8

2.4 Instalační média 8

2.4.1 CD-ROM/DVD-ROM/BD-ROM 8
2.4.2 Síť 8
2.4.3 Pevný disk 9
2.4.4 Un*x nebo systém GNU 9
2.4.5 Podporovaná datová média 9

2.5 Požadavky na operační paměť a diskový prostor 9

3 Než začnete s instalací 10

3.1 Přehled instalačního procesu 10
3.2 Zálohujte si svá data! 11
3.3 Dále budete potřebovat 11

3.3.1 Dokumentace 11

3.3.1.1 Instalační manuál 11
3.3.1.2 Domumentace k hardwaru 11

3.3.2 Hledání zdrojů informací o hardwaru 11
3.3.3 Hardwarová kompatibilita 12

3.3.3.1 Testování kompatibility hardware pomocí Live systému 12
3.3.4 Nastavení sítě 13

3.4 Splnění minimálních hardwarových požadavků 13
3.5 Předrozdělení disku pro více operačních systémů 14

3.6 Než začnete s instalací 14

3.6.1 ARM firmware 14
3.6.2 Nastavení ethernetové MAC adresy v U-Bootu 15
3.6.3 Problémy s přesunem jádra/initrd/stromu zařízení v U-Bootu 15

4 Získání instalačních médií 16

4.1 Oficiální sada CD/DVD-ROM 16
4.2 Stažení souborů ze zrcadel Debianu 16

4.2.1 Kde se nalézají instalační obrazy? 16

4.2.1.1 Instalační soubory pro Kurobox Pro 16
4.2.1.2 Instalační soubory pro HP mv2120 17
4.2.1.3 Instalační soubory pro QNAP Turbo Station .. 17
4.2.1.4 Instalační soubory pro zásuvkové počítače a OpenRD 17
4.2.1.5 Instalační soubory pro NASy LaCie ... 17

4.3 Příprava souborů pro zavedení ze sítě pomocí TFTP .. 17
4.3.1 Nastavení RARP serveru .. 17
4.3.2 Nastavení DHCP serveru ... 17
4.3.3 Nastavení BOOTP serveru ... 18
4.3.4 Povolení TFTP serveru .. 18
4.3.5 Přesun TFTP obrazů na místo ... 19

4.4 Automatická Instalace ... 19
4.4.1 debian-installer ... 19

5 Zavedení instalačního systému ... 20
5.1 Zavedení instalátoru na 32-bit soft-float ARM .. 20
5.2 Zpřístupnění ... 22
5.2.1 Uživatelské rozhraní instalačního systému .. 22
5.2.2 Zařízení připojené rovnou na sběrnici ... 22
5.2.3 Kontrastní těma ... 22
5.2.4 Změna velikosti písma .. 22
5.2.5 Záchranný režim, expertní a automatizované instalace 22
5.2.6 Zpřístupnění v nainstalovaném systému .. 22

5.3 Zaváděcí parametry ... 22
5.3.1 Zaváděcí konzole .. 23
5.3.2 Parametry instalačního programu ... 23
5.3.3 Použití zaváděcích parametrů pro zodpovězení otázek 25
5.3.4 Předávání parametrů jaderným modulům ... 25
5.3.5 Zapsání jaderných modulů na černou listinu .. 26

5.4 Problémy s instalačním systémem .. 26
5.4.1 Spolehlivost CD .. 26
5.4.2 Zaváděcí konfigurace .. 27
5.4.3 Význam hlášek při zavádění jádra .. 27
5.4.4 Hlášení problémů s instalací .. 28
5.4.5 Pošlete nám zprávu o instalaci .. 28

6 Používáme instalační program Debianu .. 29
6.1 Základní principy ... 29
6.1.1 Používání grafického instalátoru .. 29
6.2 Úvod do komponent ... 30
6.3 Použití jednotlivých komponent ... 31
6.3.1 Nastavení instalačního programu a rozpoznání hardwaru 31
6.3.1.1 Kontrola dostupné paměti / nízkopaměťový režim 31
6.3.1.2 Výběr místního prostředí .. 32
6.3.1.3 Výběr klávesnice ... 32
6.3.1.4 Hledání instalačního ISO obrazu ... 32
6.3.1.5 Nastavení sítě ... 33
6.3.1.5.1 Automatické nastavení sítě ... 33
6.3.1.5.2 Ruční nastavení sítě .. 33
6.3.1.5.3 IPv4 a IPv6 ... 33
6.3.1.6 Výběr síťového zrcadla .. 33
6.3.1.7 Nastavení hodin a časového pásma ... 34
6.3.2 Nastavení uživatelů a hesel .. 34
6.3.2.1 Nastavení rootova hesla ... 34
6.3.2.2 Vytvoření uživatelského účtu ... 35
OBSAH

6.3.3 Rozdělení disku a výběr připojných bodů .. 35
6.3.3.1 Podporované možnosti dělení disků .. 35
6.3.3.2 Asistované dělení ... 36
6.3.3.3 Ruční dělení ... 37
6.3.3.4 Nastavení vícediskových zařízení (Softwarevý RAID) 37
6.3.3.5 Nastavení manažera logických svazků (LVM) 40
6.3.3.6 Nastavení šifrovaných svazků ... 41
6.3.4 Instalace základního systému .. 42
6.3.5 Instalace dodatečného softwaru .. 43
6.3.5.1 Nastavení apt .. 43
6.3.5.1.1 Instalace z více CD/DVD ... 43
6.3.5.1.2 Používání sítového zrcadla ... 44
6.3.5.1.3 Výběr sítového zrcadla .. 44
6.3.5.2 Výběr a instalace softwaru .. 44
6.3.6 Nastavení zavádění systému .. 45
6.3.6.1 Nalezení ostatních operačních systémů 45
6.3.6.2 Nastavit systém jako zaveditelný pomocí flash-kernel 46
6.3.6.3 Pokračovat bez zavedění .. 46
6.3.7 Dokončení instalace .. 46
6.3.7.1 Nastavení systémových hodin ... 46
6.3.7.2 Dokončení instalace a restart do nového systému 46
6.3.8 Řešení problémů ... 46
6.3.8.1 Uložení záznamů o instalaci .. 46
6.3.8.2 Používání shellu a prohlížení logů 47
6.3.9 Instalace přes síť .. 47
6.4 Nahrání chybějícího firmwaru ... 48
6.4.1 Příprava média ... 49
6.4.2 Firmware a instalovaný systém .. 49

7 Zavedení vašeho nového systému ... 50
7.1 Okamžik pravdy ... 50
7.2 Připojení zašifrovaných svazků ... 50
7.2.1 Řešení problémů ... 50
7.3 Přihlášení do systému .. 51

8 Co dáš? ... 52
8.1 Vypínání systému ... 52
8.2 První kroky se systémem UNIX .. 52
8.3 Orientace v Debianu ... 52
8.3.1 Balíčkovací systém Debianu ... 52
8.3.2 Další software pro Debian .. 53
8.3.3 Správa různých verzí programů ... 53
8.3.4 Správa Cronu ... 53
8.4 Další dokumentace ... 53
8.5 Nastavení poštovního systému ... 53
8.5.1 Výchozí nastavení pošty .. 54
8.5.2 Odesílání pošty mimo systém ... 54
8.5.3 Nastavení poštovního serveru Exim4 54
8.6 Kompilace nového jádra ... 55
8.6.1 Správa jader ... 55
8.7 Obnovení poškozeného systému ... 56

A Jak na instalaci .. 57
A.1 Příprava ... 57
A.2 Zavedení instalačního programu ... 57
A.2.1 CDROM ... 57
A.2.2 Zavedení ze sítě ... 57
A.2.3 Zavedení z pevného disku ... 57
A.3 Instalace ... 57

iv
A.4 Pošlete nám zprávu o instalaci .. 58
A.5 A na závěr.. 58

B Automatizování instalací pomocí přednastavení .. 59
B.1 Úvod ... 59
B.1.1 Způsoby přednastavení ... 59
B.1.2 Omezení .. 60
B.2 Použití .. 60
B.2.1 Nahrání souboru s přednastavením .. 60
B.2.2 Použití zaváděcích parametrů jako formy přednastavení 60
B.2.3 Automatický režim .. 61
B.2.4 Úžitečné aliasy .. 62
B.2.5 Použití DHCP serveru pro určení souboru s přednastavením 63
B.3 Vytvoření souboru s přednastavením .. 63
B.4 Obsah souboru s přednastavením (pro stretch) .. 64
B.4.1 Lokalizace .. 64
B.4.2 Nastavení sítě .. 65
B.4.3 Síťová konzole ... 66
B.4.4 Nastavení zrcadla .. 66
B.4.5 Nastavení účtů .. 67
B.4.6 Nastavení hodin a časového pásma ... 68
B.4.7 Rozdělení disku ... 68
B.4.7.1 Příklad dělení disku .. 68
B.4.7.2 Rozdělení při použití RAIDu .. 69
B.4.7.3 Způsob připojení oblastí ... 70
B.4.8 Instalace základního systému ... 71
B.4.9 Nastavení APT ... 71
B.4.10 Výběr balíků ... 72
B.4.11 Dokončení instalace ... 72
B.4.12 Přednastavení ostatních balíků ... 73
B.5 Pokročilé možnosti .. 73
B.5.1 Spouštění vlastních příkazů během instalace 73
B.5.2 Použití přednastavení pro změnu výchozích hodnot 73
B.5.3 Zřetězené nahrávání souborů s přednastavením 74

C Poznámky k rozdělování disku ... 75
C.1 Počet a velikost oblastí ... 75
C.2 Strom adresářů ... 75
C.3 Doporučená rozdělení disku .. 76
C.4 Jak Linux pojmenovává pevné disky ... 77
C.5 Dělící programy v Debianu .. 77

D Co se jinam nevešlo ... 78
D.1 Zařízení v Linuxu ... 78
D.1.1 Nastavení myši .. 78
D.2 Místo potřebné pro úlohy .. 79
D.3 Jak nainstalovat Debian GNU/Linux ze stávajícího unixového/linuxového systému ... 80
D.3.1 Přípravné práce ... 80
D.3.2 Instalace balíku debootstrap ... 81
D.3.3 Spuštění debootstrapu .. 81
D.3.4 Nastavení základního systému .. 81
D.3.4.1 Vytvoření souborů zařízení .. 81
D.3.4.2 Připojení oblastí ... 82
D.3.4.3 Nastavení časového pásma .. 82
D.3.4.4 Nastavení sítě ... 83
D.3.4.5 Nastavení APT .. 84
D.3.4.6 Nastavení místního prostředí a klávesnice 84
D.3.5 Instalace jádra .. 84
D.3.6 Nastavení zavaděče .. 84
OBSAH

D.3.7	Vzdálený přístup: Instalace SSH a nastavení přístupu	84
D.3.8	Závěrečné kroky	85
D.4	Jak nainstalovat Debian GNU/Linux pomocí PPP přes Ethernet (PPPoE)	85

E Administrivia

E.1	O tomto dokumentu	87
E.2	Jak přispět k tomuto návodu	87
E.3	Hlavní spoluautoři	87
E.4	Český překlad	88
E.5	Ochranné známky	88

F Český překlad GNU General Public License

F.1	Preambule	91
F.2	GNU GENERAL PUBLIC LICENSE	91
F.3	Jak uplatnit tato ustanovení na vaše nové programy	93
Seznam tabulek

3 Než začnete s instalací
 3.1 Hardwarové informace užitečné pro instalaci .. 12
 3.2 Doporučené minimální požadavky .. 13
Abstrakt

Dokument obsahuje návod na instalaci systému Debian GNU/Linux 9 (kódové označení „stretch“), pro počítače 32-bit soft-float ARM („armel“). Kromě návodu zde naleznete odkazy na další dokumentaci, která vám pomůže s detailnějším nastavením a vyladěním nového systému.

POZNÁMKA

Přestože je příručka kompletní, očekáváme její drobné rozšiřování a upravování i po oficiálním uvedení Debiana 9 (stretch). Nejnovější verzi příručky naleznete na Internetu na domovské stránce debian-installeru, kde se také mohou nacházet nové překlady do dalších jazyků.
Instalace systému Debian GNU/Linux 9 na architektuře armel

Jsme potěšeni, že jste se rozhodli vyzkoušet právě Debian. Poznáte, že je mezi distribucemi operačních systémů zcela výjimečný. Debian GNU/Linux přináší kvalitní svobodný software z celého světa a spojuje jej do koherentního celku. Věříme, že zjistíte, že i zde platí pravidlo synergie: přínos softwaru v distribuci Debian je mnohem vyšší než celkový přínos samostatných programů.

Chápeme, že mnoho čtenářů bude chtít přeskočit tuto příručku a začít rovnou s instalací (a instalační program se snaží, aby to bylo možné). Pokud tedy nemáte čas číst celou instalační příručku, přečtěte si alespoň krátký dokument nazvaný „Jak na instalaci“, který vás provede základní instalací. Pro případ, že se něco pokazí, nebo pro popis složitějších technik, v něm naleznete odkazy do této instalační příručky. Krátký dokument se nalézá v A.

Ve světle řečeného doufáme, že si naleznete čas přečíst většinu této příručky, protože získáte nejen zajímavé informace, ale také budete mít z instalace lepší zážitek.
Kapitola 1

Vítejte v Debianu

V této kapitole se stručně seznámíte s historií projektu Debian a s distribucí Debian GNU/Linux. Pokud jste nedočkaví a chcete přejít rovnou k instalaci, přeskočte klidně na následující kapitolu.

1.1 Co je Debian?

Debian je výhradně dobrovolnická organizace věnující se vývoji svobodného softwaru a šíření myšlenek Free Software Foundation. Debian vznikl v roce 1993, když se Ian Murdock rozhodl vytvořit kompletní a jednotnou softwarovou distribuci založenou na relativně novém jádře Linux. Ian rozeslal otevřenou výzvu softwarovým vývojářům, kteří by chtěli k projektu přispívat. Relativně malá skupina zasvěcených nadšenců, původně financovaná Free Software Foundation a ovlivněna filosofií GNU, se během let rozrostla do organizace sestávající z asi 1062 vývojářů.

Vývojáři jsou zapojeni do mnoha aktivit zahrnujících správu služeb WWW a FTP, vytváření grafického designu, právní analýzy softwarových licencí, psaní dokumentace a samozřejmě správu softwarových balíků. V zájmu sdělování své filosofie a přilákání vývojářů, kteří věří tomu, co Debian reprezentuje, jsme publikovali množství dokumentů, které vysvětlují naše hodnoty a slouží jako návody těm, kteří se chcějí stát debianími vývojáři.

- Novým vývojářem se může stát kdokoli, kdo souhlasí se závazky plynoucí z Debian Social Contract. Každý vývojář může k distribuci připojit další softwarový balík za předpokladu, že program je podle našich kritérií volně šiřitelný a balík splňuje naše standardy kvality.
- Dokument Debian Free Software Guidelines je jasný a výstižný souhrn kritérií, která Debian klade na svobodný software. Tento dokument má ve světě svobodného softwaru velký vliv a je základem pro The Open Source Definition.

Vývojáři Debianu jsou rovněž zainteresováni v řadě dalších projektů, z nichž některé úzce souvisí přímo s Debianem, jiné se dotýkají celé linuxové komunity. Například:

- Přispívání do Linux Standard Base (LSB). Projekt LSB se zaměřuje na standardizaci základního systému GNU/Linuxu, což umožní vývojářům softwaru a hardwaru třetích stran vyvíjet pro GNU/Linux takové programy a zařízení, které budou fungovat v Linuxu obecně a ne jen v konkrétních vybraných distribucích.
- Projekt Filesystem Hierarchy Standard (FHS) se snaží standardizovat umístění souborů v linuxovém systému. Softwarové vývojáři se tak budou moci plně koncentrovat na vývoj svých programů a nebudou se muset dále starat o to, zda jejich balík bude fungovat na jiné distribuci GNU/Linuxu.
- Debian Jr. je interní projekt Debianu zaměřený především na naše nejmenší uživatele.

Pokud se chcete o Debianu dozvědět více, podívejte se na Debian FAQ.

1.2 Co je GNU/Linux?

Linux je operační systém, což je skupina programů, které vám mimo jiné umožňují komunikovat s počítačem a spouštět další programy.
Operační systém se skládá z řady základních programů, které potřebuje každý počítač, aby byl schopen pracovat s různými perifériemi (např. pracovat s daty na disicích a přístup do tiskáren, přidělovat paměť, ...), komunikovat s uživatelmi a spouštět programy. Nejdůležitější částí operačního systému je jádro, což je v systému GNU/Linux právě Linux. Zbytek systému okolo jádra je tvořen nejrůznějšími programy, z nichž spousta byla napsána v rámci projektu GNU. Protože jádro samotné netvoří funkční operační systém, preferujeme pro označení takového systému termín „GNU/Linux“.

Linux byl od počátku navržen jako operační systém unixového typu s podporou souběžné práce více uživatelů, kteří mohou mít najednou spuštěno několik programů (multitasking). Na rozdíl od některých jiných operačních systémů Linux nikdo nevlastní a velkou měrou se na jeho vývoj podílí neplacení dobrovolníci.

Počátky toho, co se později stalo GNU/Linuxem, sahají do roku 1984, když Free Software Foundation zahájila vývoj svobodného operačního systému podobného Unixu nazvaného GNU.

Projekt GNU vytvořil úplnou sadu svobodných softwarových nástrojů použitelných s operačním systémem Unix™ a systémy Unix podobnými, jako je třeba Linux. Tyto nástroje umožňují uživateli provádět celou škálu úkolů v rámci více uživatelů od méně přehledných úkolů jako je kopírování nebo mazání souborů přes dávnou úpravu dokumentů až po zábavné programování a překlad programů.

Přestože k vývoji Linuxu přispělo mnoho skupin a jednotlivců, největším přispěvatelem je stále Free Software Foundation (FSF), která nejen že vytvořila většinu nástrojů použitelných v Linuxu, ale také dala vzniknout filozofii a komunitě vývojářů, bez kterých by se Linux nikdy nerozšířil.

První linuxové jádro se objevilo v roce 1991 a napsal jej Fin Linus Torvalds, tehdejší student Helsinské univerzity, jako náhradu za Minix (viz Historie Linuxu).

Nyní na jádře aktivně pracuje několik stovk tuně lidí a Linux koordinuje vývoj za pomoci několika oprav, které mají na úrovni většinu nástrojů použitelných v Linuxu, a které dělá více větší významně filozofii a komunitě vývojářů, bez kterých by se Linux nikdy nerozšířil.

První linuxové jádro se objevilo v roce 1991 a napsal jej Fin Linus Torvalds, tehdejší student Helsinské univerzity, jako náhradu za Minix (viz Historie Linuxu).

Nyní na jádře aktivně pracuje několik stovk tuně lidí a Linux koordinuje vývoj za pomoci několika oprav, které mají na úrovni většinu nástrojů použitelných v Linuxu, a které dělá více větší významně filozofii a komunitě vývojářů, bez kterých by se Linux nikdy nerozšířil.

První linuxové jádro se objevilo v roce 1991 a napsal jej Fin Linus Torvalds, tehdejší student Helsinské univerzity, jako náhradu za Minix (viz Historie Linuxu).

První linuxové jádro se objevilo v roce 1991 a napsal jej Fin Linus Torvalds, tehdejší student Helsinské univerzity, jako náhradu za Minix (viz Historie Linuxu).
Pokud chcete získat podporu pro svůj systém s Debian GNU/Linuxem, nebo jen chcete komunikovat s vývojáři distribuce, můžete tak učinit pomocí více jak 283 diskusních klubů, které Debian spravuje. Pro přihlášení do některého z nich stačí vyplnit formulář na přihlašovací stránce.

1.4 Získání Debianu

Informace o stažení systému Debian GNU/Linux z Internetu nebo seznam míst dodávajících oficiální CD s Debianem můžete nalézt na distribuční stránce. Seznam zrcadel Debianu obsahuje kompletní seznam oficiálních serverů, ze kterých si můžete Debian stáhnout.

Aktualizace Debianu je velmi jednoduchá, protože systém je navržený tak, aby jej nebylo třeba přeinstalovávat. S prvotním nastavením systému pro budoucí aktualizace vám pomůže instalací program.

1.5 Získání nejnovější verze této příručky

Tato příručka je živý dokument — stále se mění, aktualizuje a zlepšuje. Nejčerstvější informace o systému Debian GNU/Linux verze 9, které se objevily až po oficiálním vydání, můžete najít na stránkách pro Debian 9. Aktualizované verze této příručky je rovněž k dispozici na stránkách oficiálního instalacního manuálu.

1.6 Organizace příručky

Tato příručka si klade za cíl sloužit jako manuál pro nové uživatele Debianu a od čtenáře neočekává žádné speciální znalosti a zkušenosti. Předpokládá však, že máte obecnou představu o tom, jak funguje váš hardware.

Také uživatelé-experti mohou v tomto dokumentu najít zajímavé informace jako např. velikost minulé instalace, detaily týkající se hardwaru podporovaného instalací systémem Debianu apod. Zkušeným uživatelům doporučujeme některé pasáže přeskočit.

Obecně lze říci, že je tento dokument pojet přímočaře a provede vás instalací krok za krokem. Následující seznam zachycuje jednotlivé kroky instalace a kapitoly, které se jimi zabývají.

2. Záloha dat, naplánování instalace a konfigurace hardwaru předcházející instalaci systému, viz 3. Jestliže se chystáte instalovat na pevný disk s více operačními systémy, budete možná muset na Debian vytvořit místo na diskovou oblast.
4. 5 popisuje zavedení instalacího systému. Zde také naleznete různé rady jak postupovat, pokud zavedení systému selže.
5. Samotnou instalaci vás provede 6. To zahrnuje výběr jazyka, nastavení modulů zařízení, zprovoznění sítě, aby se zbývající instalace soubory mohly stáhnout ze serveru poskytujícího Debian (pokud tedy neinstalujete z CD/DVD), rozdělení disku, instalaci základního systému a výběr a instalaci úloh. (Technickými detaily pro nastavení diskových oblastí se zabývá C.)

Jakmile nainstalujete systém, měli byste si přečíst 8. Tato kapitola vysvětluje, kam se máte podívat po dalších informacích o Unixu a Debianu a jak aktualizovat jádro systému.

Konečně informace o tomto dokumentu a způsobu, jak do něj přispět, obsahuje E.

1.7 O licenčních ujednáních

Licenční podmínky většiny programů opravňují k používání programu pouze na jednom počítači. Debian GNU/Linux taková omezení nemá. Budeme rádi, pokud ho nainstalujete na další počítače ve škole či zaměstnání, zapůjčíte známým a pomůžete jim s instalací. Můžete dokonce vyrobit týšce kopií a prodat je. Stačí dodržet jistá pravidla. To všechno je možné díky tomu, že Debian je založen na svobodném softwaru.

Slovo svobodný neznamená, že software postrádá copyright, nebo že se distribuice zdarma na CD. Znamená to, že licence jednotlivých programů nevyžadují poplatek za právo program kopírovat. Kdokoli může program rozšířit, přizpůsobit, pozměnit a výsledné dílo šířit dál.
Hodně programů v systému je licencovaných podle GNU General Public License (obecná veřejná licence) neboli krátce GPL. Licence GPL vyžaduje, abyste kdykoliv, když distribuujete kopii programu, zajistili dostupnost zdrojových kódů programu; to zaručuje, že ty, jako uživatelé, můžete dále modifikovat kód a přizpůsobit si software svým potřebám. Proto jsou ke všem takovým programům v systému Debian dostupné i zdrojové kódy. \footnote{Pokud se chcete dozvědět více o licencích a o tom, co Debian pokládá za svobodný software, podívejte se na Debian Free Software Guidelines.}

Některé programy v Debianu používají i jiná licenční ujednání. Autorská práva a licenční ujednání ke každému balíku lze nalézt v souboru \texttt{/usr/share/doc/jméno-balíku/copyright}. Pokud se chcete dozvědět více o licencích a o tom, co Debian pokládá za svobodný software, podívejte se na Debian FAQ na část „Basics of the Debian Package Management System“. \footnote{Pokud se chcete dozvědět více o licencích a o tom, co Debian pokládá za svobodný software, podívejte se do Debian FAQ na část „Basics of the Debian Package Management System“.}
Kapitola 2

Požadavky na počítač

V této kapitole se dozvíte informace o hardwarových požadavcích distribuce a také zde naleznete odkazy na další informace o zařízeních podporovaných jádrem Linux a GNU programy.

2.1 Podporovaná zařízení

Debian neklade na hardware jiná omezení než ta, která jsou dána jádrem Linuxu nebo kFreeBSD a programy GNU. Tedy na libovolné počítačové architektuře, na kterou bylo přeneseno jádro Linuxu nebo kFreeBSD, knihovna libc, překladač gcc atd., a pro kterou existuje port Debiana, můžete Debian nainstalovat. Viz stránka s porty (http: //www.debian.org/ports/arm/).

Než abychom se snažili popsat všechny podporované konfigurace hardwaru pro architekturu 32-bit soft-float ARM, zaměříme se spíše na obecné informace a uvedeme odkazy na doplňující dokumentaci.

2.1.1 Podporované počítačové architektury

Debian GNU/Linux 9 podporuje deset hlavních počítačových architektur a několik jejich variant.

<table>
<thead>
<tr>
<th>Architektura</th>
<th>Označení v Debianu</th>
<th>Podarchitektura</th>
<th>Varianta</th>
</tr>
</thead>
<tbody>
<tr>
<td>založené na Intel x86</td>
<td>i386</td>
<td>standardní počítače x86</td>
<td>výchozi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xen PV</td>
<td>xen</td>
</tr>
<tr>
<td>AMD64 & Intel 64</td>
<td>amd64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARM</td>
<td>armel</td>
<td>Marvell Kirkwood a Orion</td>
<td>marvell</td>
</tr>
<tr>
<td>ARM s hardwarovým FPU</td>
<td>armhf</td>
<td>multiplatformní</td>
<td>armmp</td>
</tr>
<tr>
<td>64 bitové ARM</td>
<td>arm64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 bitové MIPS (big endian)</td>
<td>mips</td>
<td>MIPS Malta</td>
<td>4kc-malta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td>64 bitové MIPS (little-endian)</td>
<td>mips64el</td>
<td>MIPS Malta</td>
<td>5kc-malta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loongson 3</td>
<td>loongson-3</td>
</tr>
<tr>
<td>32bit MIPS (little endian)</td>
<td>mipsel</td>
<td>MIPS Malta</td>
<td>4kc-malta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td>Loongson 3</td>
<td>loongson-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Systems</td>
<td>ppc64el</td>
<td>IBM POWER8 nebo novější</td>
<td></td>
</tr>
<tr>
<td>64 bitové IBM S/390</td>
<td>s390x</td>
<td>IPL z VM-reader a DASD</td>
<td>generic</td>
</tr>
</tbody>
</table>

Tato verze dokumentu se zabývá instalací Debiana s jádrem Linux na architektuře 32-bit soft-float ARM. Pro ostatní podporované architektury jsou návody na stránkách Debian-Ports.
2.1.2 Tři hlavní ARM porty

Architektura ARM se vyvíjí a moderní ARM procesory nabízí možnosti, které nejsou na starších modelech dostupné. Debian proto nabízí tři základní ARM porty pro nejlepší podporu širokého spektra systémů:

- Debian/armel cílí na starší 32 bitové ARM procesory bez hardwarové podpory výpočtů s plovoucí desetinnou čárkou (nemají FPU)
- Debian/armhf běží jen na novějších 32 bitových ARM procesorech, které implementují alespoň architekturu ARMv7 s 3. verzí ARM specifikace pro vektorové výpočty s plovoucí desetinnou čárkou (VFPv3). Debian/armhf využívá tyto rozšířené možnosti a vyšší výkon nových modelů.
- Debian/arm64 funguje na 64 bitových ARM procesorech implementujících alespoň architekturu ARMv8.

Technicky mohou všechny aktuálně dostupné ARM procesory běžet v obou režimech adresování („little-endian“ i „big-endian“), avšak v praxi používá většina ARM systémů adresování „little-endian“. V tomto duchu podporuje Debian/arm64, Debian/armhf i Debian/armel pouze systémy „little-endian“.

2.1.3 Různé návrhy ARM procesorů a náročnost podpory

Systémy ARM jsou mnohem různorodější, než systémy založené na architektuře i386/amd64, takže podpora může být složitější. Architektura ARM se používá hlavně v řešeních vše v jednom, tzv. SoC („system-on-chip“). Tyto SoC navrhuje spousta společností z nejrůznějších hardwarových součástí, které se liší i v tak základní funkcionality, jako je zavedení systému.

Systémy využívající tyto čipy obvykle postrádají jednotné rozhraní v podobě systémového firmwaru a ve výsledku se linuxové jádro na architektuře ARM musí starat o spousty nízkoúrovňových detailů specifických pro konkrétní systém, o což by se ve světě PC postaral BIOS.

To znamenalo, že když Linux získal podporu architektury ARM, muselo se pro každý systém sestavovat speciální jádro, na rozdíl od architektury i386/amd64, kde jedno jádro běží na téměř libovolném hardwaru. Tento přístup samozřejmě nebyl s ohromným počtem různých systémů udržitelný a vývojáři začali pracovat na tom, aby se podobně jako u PC dalo jedno jádro použít na různých ARM systémech. Toto jádro se pak nazývá multiplatformní a podporuje většinu novějších systémů. V Debianu je na architektuře Debian/armhf označeno jako armmp. Stále však existují starší systémy, které vyžadují speciální jádro. Z tohoto důvodu podporuje standardní Debian instalaci jen na několik vybraných starších systémů.

2.1.4 Platformy podporované v Debian/armel

Debian/armel podporuje následující platformy. Tyto platformy vyžadují specifická jádra.

Kirkwood Orion je řešení typu vše v jednom (SoC — System on a Chip) od Marvelu, které v jediném čipu integruje procesor ARM, ethernet, SATA, USB a další funkcionalitu. V současné době podporujeme následující zařízení založené na Kirkwoodu:

- zásuvkové počítače (SheevaPlug, GuruPlug, DreamPlug a Seagate FreeAgent DockStar)
- QNAP Turbo Station (všechny modely TS-11x/TS-12x, HS-210, TS-21x/TS-22x a TS-41x/TS-42x)
- NASy LaCie (Network Space v2, Network Space Max v2, Internet Space v2, d2 Network v2, 2Big Network v2 a 5Big Network v2)
- OpenRD (OpenRD-Base, OpenRD-Client a OpenRD-Ultimate)

Orion5x Orion je řešení typu vše v jednom (SoC — System on a Chip) od Marvelu, které v jediném čipu integruje procesor ARM, ethernet, SATA, USB a další funkcionalitu. Na trhu existuje mnoho NAS zařízení (Network Attached Storage) založených právě na tomto čipu. V současné době podporujeme Buffalo Kurobox, HP mv2120 a QNAP TS-109, TS-209, TS-409, TS-409U a jejich varianty.

Versatile Platforma Versatile je emulovaná v QEMU a je tudíž příjemnou možností, jak testovat/používat Debian na platformě ARM v případě, že nedisponujete příslušným hardwarem.
2.1.5 Platformy a zařízení dále nepodporované v Debian/armel

Orion5x S Debianem 9 byla z platformy Orion5x odebrána podpora pro zařízení D-Link DNS-323 a Conceptronic CH3SNAS, protože se linuxové jádro na těchto zařízeních již nevešlo do flash paměti. Ostatní Orion zařízení jako Buffalo Kurobox a HP mv2120 jsou nadále podporovány.

2.1.6 Podpora grafických karet

Podpora grafických karet v grafickém režimu závisí na tom, zda pro kartu existuje ovladač v projektu X.Org a v jádru. Základní podpora grafického framebufferu je poskytována jádrem, desktopová prostředí používají X.org. Podpora pokročilých vlastností, jako je hardwarová akcelerace 3D a videa, závisí na použitím hardwaru a v některých případech i na instalaci dodatečného „firmware“ (viz 2.2).

Téměř všechny ARMové počítače mají grafický hardware zabudovaný přímo v sobě. Počítače se slotem pro zasu- nutí samostatné grafické karty existují, ale je jich jako safránu. Naopak celkem běžný je hardwarová navržená zcela bez grafického výstupu. Základní zobrazování přes jaderný framebuffer by mělo fungovat na všech zařízeních s grafickým hardwarem, avšak rychlá 3D grafika nutně vyžaduje binární ovladač. Situace se mění docela rychle, ale v době vydání stretch jsou k dispozici svobodné ovladače pro nouveau (SoC Nvidia Tegra K1) a freedreno (SoC Qualcomm Snapdragon).

2.1.7 Hardware pro připojení k síti

Libovolná síťová karta (NIC) podporovaná jádrem Linux by měla být podporována i instalačním systémem. Ovladače by se měly zavádět automaticky.

Na architektuře 32-bit soft-float ARM je podporována většina integrovaných ethernetových zařízení a dostupné jsou i moduly pro přídavná PCI a USB zařízení.

2.1.8 Ostatní zařízení

Linux umožňuje používat nejrůznější hardwarové vybavení jako myši, tiskárny, scannery, televizní karty a zařízení PCMCIA/CardBus/ExpressCard a USB. Většina z nich však není pro instalaci nutná.

2.2 Ovladače vyžadující firmware

Některý hardware vyžaduje kromě samotného ovladače zařízení také firmware nebo mikrokód, který je třeba do zařízení před použitím nahrát. Nejčastěji se s tím setkáme u síťových kart (obzvláště bezdrátových), ale jsou známa i některá USB zařízení a dokonce řadiče disků. U mnoha grafických karet je základní funkčnost dostupná i bez dodatečného firmware, nicméně pro využití pokročilejších vlastností je třeba mít v systému nachystaný příslušný soubor s firmwarem.

Ve starších zařízeních býval firmware nahrán permanentně v EEPROM nebo Flash paměti zařízení přímo od výrobce. To už se dnes příliš nenosí a proto je nutné firmware do zařízení nahrát při každém startu počítače.

Naštěstí to nemusíme dělat ručně, ale postará se o to operační systém.

Ve většině případů je firmware dle definice Debianu nesvobodný a tudíž nejelze zařadit ani do distribuce, ani do instalačního systému. Jestliže je ovladač samostatný součástí Debianu a firmware je možná legálně distribuovat, je možné, že ho naleznete jako samostatný balík v sekci non-free.

Ve většině případů bývá firmware dle definice Debianu nesvobodný a tudíž nelze zařadit ani do distribuce, ani do instalačního systému. Jestliže je ovladač samostatný součástí Debianu a firmware je možno legálně distribuovat, je možné, že ho naleznete jako samostatný balík v sekci non-free.

Naštěstí to neznamená, že takový hardware nemůžete pro instalaci použít. Počínaje Debianem 5.0 podporuje deb ian-installer nahrávání firmware z výměnných médií, jako jsou diskety nebo USB klíčenky. Tomuto tématu se podrobněji věnuje kapitola 6.4.

Pokud se instalací systému zeptá na soubor s firmwarem pro nějaké zařízení a vy zrovna firmware nemáte, nebo nechcete do systému instalovat nesvobodný balík, můžete zkusit použít ovladače firmware, které jsou vyhradeny pro nesvobodný firmware. Je docela možné, že zařízení bude fungovat, pouze nebudou dostupné některé pokročilejší funkce.
2.3 Hardware určený pro GNU/Linux

V současnosti již někteří prodejci dodávají počítače s nainstalovaným Debianem, případně jinou distribucí GNU/Linux. Patrně si za tuto výhodu něco připlatíte, ale zbavíte se starosti, poněvadž může jistotu, že hardware počítače je se systémem GNU/Linux plně kompatibilní.

Ať už zakoupíte počítač se systémem GNU/Linux nebo bez něj, je důležité se přesvědčit, že je hardware podporován jádrem operačního systému. Zkontrolujte si, jestli jsou všechna zařízení v počítači uvedena ve výše zmíněných odkazech jako podporované. Při nákupu se netajte tím, že kupujete počítač, na kterém poběží Linux. Dejte přednost zboží, jehož výrobci Linux podporují.

2.3.1 Vyvarujte se uzavřených technologií

Někteří výrobci hardwaru nám neposkytují informace potřebné k napsání ovladačů pro Linux, případně požadují podepsat smlouvu o uchování těchto informací v tajnosti před třetími osobami, což znemožňuje uveřejnění zdrojového kódu pro takový ovladač.

Z důvodu nedostupnosti dokumentace pro tento hardware neexistují ovladače pro Linux.

V mnoha případech existují standardy (nebo alespoň nepsané standardy), které popisují, jak má operační systém komunikovat s určitou skupinou zařízení. Všechna zařízení, která takový (nepsaný) standard dodržují, mohou být obsluhována jediným společným ovladačem. Konkrétním příkladem skupin zařízení, kde to funguje extrémně dobře, jsou třeba USB Human Interface Devices (klávesnice, myši, herní ovladače) nebo USB Mass Storage Devices (USB klíčenky a čtečky paměťových karet), kde prakticky každé zařízení na trhu odpovídá standardům.

V případě existence uzavřeného ovladače od výrobce mějte na paměti, že praktická životnost takového zařízení je omezena na dobu, po kterou je dostupný ovladač. Se zkrácením životního cyklu výrobku není neobvyklé, že výrobce přestane aktualizovat ovladač krátce po ukončení výroby daného zařízení. Pokud po aktualizaci systému přestane uzavřený ovladač fungovat, stává se tím jinak funkční zařízení hromadou nepoužitelného šrotu. Takovému hardwaru je dobré se zdaleka vyhnout a to bez ohledu na operační systém, se kterým chcete zařízení provozovat.

Pomoci můžete tím, že výrobce uzavřeného hardwaru požádáte o uvolnění nezbytné dokumentace, podle které můžeme napsat svobodné ovladače pro jejich hardware.

2.4 Instalační média

Tato podkapitola popisuje různé druhy instalací médii, která můžete použít pro instalaci Debianu. Výhody a nevýhody jednotlivých medií pak podrobněji rozebírá kapitola 4.

2.4.1 CD-ROM/DVD-ROM/BD-ROM

Kdykoliv v této příručce uvidíte napsáno „CD-ROM“, čtěte to jako „CD-ROM, DVD-ROM nebo BD-ROM“, protože z hlediska operačního systému není mezi těmito technologiemi žádný rozdíl.

Většina architektur umožňuje instalaci z CD. I v případě, že váš počítač neumí zavádět systém přímo z CD, můžete CD-ROM využít po počátečním zavedení systému z jiného média, viz 5.

2.4.2 Síť

Během instalace můžete pro stažení potřebných souborů použít síť (konkrétně služny HTTP nebo FTP). To, zda se síť použije, závisí na typu instalace, který si zvolíte, a na vašich odpovědích během instalace. Instalační systém
podporuje většinu typů síťových připojení včetně PPPoE, výjimkou jsou ISDN nebo PPP. Po instalaci můžete svůj systém nastavit i pro tato připojení.
Instalační systém také můžete zavést ze sítě bez použití dalšího média jako CD/DVD nebo USB klíčenky.
Příjemnou možností je bezdisková instalace. Systém se zavede z lokální sítě a všechny lokální souborové systémy se připojí přes NFS.

2.4.3 Pevný disk

Pro mnoho architektur je také zajímavá možnost zavedení instalačního systému z pevného disku. To však vyžaduje jiný operační systém, pomocí kterého nahraješ na disk instalační program.

2.4.4 Un*x nebo systém GNU

Pokud používáš jiný unixový systém, můžete jej využít pro instalaci Debianu a úplně tak obejít debian-installer popisovaný ve zbytku příručky. Tento způsob instalace je vhodný zejména pro uživatele s podivným hardwarem, který jinak není podporován instalačními médii, nebo na počítačích, které si nemohou dovolit prostoje. Jstež jste váš zmíněná technika zajímá, přeskočte na D.3.

2.4.5 Podporovaná datová média

Zaváděcí disky Debianu obsahují jádro s velkým množstvím ovladačů, aby fungovaly na co nejširší škále počítačů.

2.5 Požadavky na operační paměť a diskový prostor

Instalace na systémech s menší pamětí nebo dostupným místem na disku se může podařit, ale je doporučena pouze pro zkušené uživatele.
Kapitola 3

Než začnete s instalací

Tato kapitola se zabývá přípravou pro instalaci Debianu ještě před zavedením instalačního programu. To zahrnuje zazálohování dat, zjištění informací o hardwaru a další nezbytné kroky.

3.1 Přehled instalačního procesu

Jenom na okraj bychom chtěli poznamenat, že kompletní reinstalace Debianu je velmi výjimečná událost, kterou má nejčastěji na svědomí mechanická závada pevného disku.

Na rozdíl od mnoha známých operačních systémů, které musíte při přechodu na novější verzi instalovat úplně znovu, nebo alespoň přeinstalovat aplikace, Debian GNU/Linux se umí aktualizovat za běhu. Pokud by nová verze programu vyžadovala nové verze ostatních balíků, nebo byla nějakým způsobem konfliktní s jiným programem, balíčkovací systém Debianu se o vše postará. Protože máte k dispozici mocné aktualizační nástroje, měli byste o kompletní reinstalaci uvažovat pouze jako o poslední možnosti. Instalační systém není navržen aktualizaci staršího systému.

Následuje stručný přehled instalačního procesu:

1. Nejprve si zazálohujete všechna důležitá data (hlavně dokumenty).
2. Poté posbíráté co nejvíce informací o svém počítači a seženete si potřebnou dokumentaci (např. dokumenty odkazované z této příručky).
3. Na pevném disku vytvoříte volné rozdělitelné místo (pro Debian).
4. Stáhnete si soubory instalačního systému, potřebné ovladače a soubory s firmwarem.
5. Připravíte si zaváděcí média jako CD/DVD/USB klíčenky, nebo vytvoříte síťovou infrastrukturu pro zavedení instalace ze sítě.
7. Zvolíte jazyk pro instalaci.
8. Nastavíte síťové připojení.
9. Vytvoříte a připojíte oblásti pro Debian.
10. Můžete pozorovat automatické stažení, instalaci a nastavení základního systému.
11. Volitelně můžete nainstalovat další software pomocí předpřipravených úloh.
12. Nainstalujete zaváděč, kterým budete spouštět Debian GNU/Linux (případně i původní operační systém).

Pokud máte s některým instalačním krokem problémy, je dobré vědět, který balík je za danou situaci zodpovědný. Nuže, představujeme vám hlavní softwarové role v tomto instalačním dramatu:

- debian-installer (instalační program) je hlavní náplní této příručky. Rozpoznává hardware a nahrává správně ovladače, rozděluje disky, instaluje jádro systému a dohlíží na programy dhcp-client, aby nastavil síťové připojení, debootstrap, aby nainstaloval balíky základního systému a tasksel, aby doinstaloval dodatečný...
3.2 Zálohujte si svá data!

Před instalací si vytvořte zálohu všech souborů, které máte na disku, protože byste o ně při instalaci mohli přijít. Je totiž velmi pravděpodobné, že budete muset přerušit pevný disk, abyste si pro Debian GNU/Linux udělali místo. Při rozdělování disku byste vždy měli počítat s tím, že můžete ztratit všechna data. Instalační programy jsou docela spolehlivé a většina z nich je prověřená lety používáním, ale jedna chybná odpověď by se vám mohla zle vymstít. I po uchování obsahu disků můžete dojít k potenciálnímu vymazání. Dvě minuty přemýšlení mohou ušetřit hodiny zbytečné práce.

Jestliže budete instalovat Linux na počítač, kde již máte jiný operační systém, přesvědčte se, že máte po ruce média pro jeho instalaci. Obvykle to není potřeba, ale zvláště v případě, kdy byste se chystali přerušit systémový disk, by se vám mohlo stát, že bude nutné znovu nainstalovat zaváděč původního systému, nebo dokonce celý systém.

3.3 Dále budete potřebovat

3.3.1 Dokumentace

3.3.1.1 Instalační manuál

Dokument, který právě čtete, je oficiální verze instalační příručky pro vydání Debianu stretch a je dostupný v různých formátech a jazykových verzích.

3.3.1.2 Domumentace k hardwaru

Obsahuje spousta užitečných informací o konfiguraci resp. provozování různého hardwaru.

3.3.2 Hledání zdrojů informací o hardwaru

V mnoha případech umí instalační program rozpoznat hardware automaticky, ale podle hesla „vždy připraven“ doporučujeme, abyste se před instalací se svým hardwarem seznámili poněkud důvěrněji.

Informace o hardwaru můžete získat:

• Z manuálů, které jste získali spolu s příslušným hardwarem.
• Z BIOSu vašeho počítače. K těmto informacím se dostanete, když během startupu počítače stisknete určitou kombinaci kláves. Často to bývá klávesa Delete nebo F2. Obvykle je tato klávesa zmíněna na obrazovce při startupu počítače, nebo v příručce k základní desce.
• Z krabic, ve kterých byly části hardware zabaleny.
• Ze systémových příkazů nebo nástrojů původního operačního systému. Zvláště užitečné informace jsou o pevném disku a paměti RAM.
• Od vašeho správce nebo poskytovatele Internetu. Tyto informace vám mohou pomoci při nastavení sítě a elektronické pošty.
KAPITOLA 3. NEŽ ZAČNETE S INSTALACÍ

3.3. DÁLE BUDETE POTŘEBOVAT

Tabulka 3.1 Hardwarové informace užitečné pro instalaci

<table>
<thead>
<tr>
<th>Hardware</th>
<th>užitečné informace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pevná disky</td>
<td>Počet, jejich pořadí v systému.</td>
</tr>
<tr>
<td></td>
<td>Typ IDE (těž známně jako PATA), SATA nebo SCSI</td>
</tr>
<tr>
<td></td>
<td>Dostupné volné místo.</td>
</tr>
<tr>
<td></td>
<td>Diskové oddíly.</td>
</tr>
<tr>
<td>Siťová rozhraní</td>
<td>Oddíly, na kterých jsou nainstalovány jiné operační systémy</td>
</tr>
<tr>
<td>Tiskárna</td>
<td>Výrobce a model síťových adaptérů.</td>
</tr>
<tr>
<td>Grafická karta</td>
<td>Výrobce a model.</td>
</tr>
</tbody>
</table>

3.3.3 Hardwarová kompatibilita

Mnoho výrobků pracuje v operačním systému Linux bez problémů a podpora hardwaru pro něj se zlepšuje každým dnem. Přes to všechno Linux nepodporuje tolik typů hardwaru jako některé jiné operační systémy.

Ovladače v jadře Linux většinou nejsou psány pro konkrétní „výrobek“ nebo „značku“, ale pro konkrétní čipovou sadu. Mnoho na první pohled odlišných zařízení/značek bývá založeno na stejné hardwaru, často přímo na tzv. referenčním návrhu, který poskytuje výrobce čipů a ostatní firmy jej pak prodávají pod svými vlastními názvy.

To má výhody i nevýhody. Výhodou je, že ovladač pro jednu čipovou sadu funguje se širokou škálou zařízení od různých výrobků. Nevýhodou je, že často není jednoduché poznat, který čip je v jakém zařízení použit, protože některé výrobci občas změní hardwar produktu bez změny názvu zařízení, nebo alespoň verze. Může se tak stát, že stejný výrobek koupený později, může mít zcela jiný hardware, pro který je potřeba použít jiný ovladač, nebo pro něj dokonce ani ovladač existovat nemusí.

Pro USB a PCI/PCI-Express/ExpressCard zařízení se dá zjistit identifikační číslo zařízení (ID) a podle něj pak dohledat čipovou sadu, na které je výrobek založen.

V Linuxu můžete tato ID zjistit příkazem `lsusb` pro USB zařízení, nebo příkazem `lspci -nn` pro zařízení PCI/PCI-Express/ExpressCard. ID obvykle vypadá jako dvě čísla v šestnáctkové soustavě oddělená dvojtečkou, např., „1d6b:0001“, kde „1d6b“ je ID výrobce a „0001“ je ID zařízení.

Příklady výstupů obou příkazů:

```
# lsusb
Bus 001 Device 001: ID 1d6b:000000002 Linux Foundation 2.0 root hub
```

```
# lspci -nn
03:00.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8111/8168B <->
PCI Express Gigabit Ethernet controller [10ec:8168] (rev 06)
04:00.0 VGA compatible controller [0300]: Advanced Micro Devices [AMD] nee ATI <->
RV710 [Radeon HD 4350] [1002:954f]
```

Na druhém příkladu vidíme dvě zařízení - síťovou kartu od výrobce s ID „10ec“ a grafickou kartu od výrobce s ID „1002“.

Na systémech Windows můžete zjistit ID zařízení ve Správce zařízení na záložce „Podrobnosti“. ID výrobce má předponu „VEN_“, ID zařízení pak předponu „DEV_“. U Windows 7 a novějších navíc musíte na záložce Podrobnosti vybrat ze seznamu vlastnost „Hardwarová ID“, jelikož jinak byste ID neviděli.

3.3.3.1 Testování kompatibility hardware pomocí Live systému

Debian GNU/Linux je též na některých architekturách dostupný ve formě tzv. „live systému“. Jedná se o předpřipravené obrazy systému, které se dájí spustit přímo z USB klíčenky, CD nebo DVD a bez dalšího nastavování okamžitě používat. Výhodou je, že se v takovém systému ve výchozím nastavení nic nezapisuje na disk, vše se odehrává jen v operační paměti a po restartu počítače se vše vrátí do původního stavu. Nejpohodlnější cestou je zjistění, zda je daný hardware systémem Debian GNU/Linux podporován, je tedy spustit Debian live a zkusit ho chvíli používat.

Při používání live systému je třeba mít na paměti několik omezení. Jelikož se vše odehrává v paměti, je třeba mít dostatek paměti. Dalším omezením pro testování hardwarové kompatibility může být fakt, že oficiální
live obrazy systému Debian GNU/Linux obsahují pouze svobodné součásti, což znamená, že na nich nenaleznete například nesvobodný firmware. Ten sice můžete následně doinstalovat ručně, ale nebude to tak automatické, jako když se debian-installer sám dotáhal po chybějících souborech s firmwarem.

Podrobnější informace o dostupných obrazech Debian live nalézete na stránce Debian Live.

3.3.4 Nastavení sítě

Pokud bude váš počítač trvale připojen do sítě (mysli se ethernetové a obdobné připojení, ne PPP), kterou spravuje někdo jiný, zjistěte si od správce sítě následující informace.

- Název počítače (možná si počítač pojmenujete sami).
- Název vaší domény.
- IP adresu vašeho počítače.
- Síťovou masku.
- IP adresu brány tj. počítače spojujícího vaši síť s další sítí (nebo Internetem), pokud na vaší síti brána je.
- IP adresu jmenného serveru, který zprostředkovává převod názvů počítačů na IP adresy (DNS).

Pokud daná síť používá pro nastavení parametrů DHCP (Dynamic Host Configuration Protocol), nemusíte tyto informace zjišťovat, protože DHCP server nastaví váš počítač automaticky.

Při připojení přes DSL nebo kabelovou televizi obvykle dostanete router, přes který se připojujete, a na kterém obvykle bývá DHCP zapnuto.

Používáte-li bezdrátové připojení, měli byste navíc zjistit:
- ESSID (jméno) vaší bezdrátové sítě.
- Bezpečnostní klíč WEP nebo WPA/WPA2 pro přístup k síti (pokud jej používáte).

3.4 Splnění minimálních hardwarových požadavků

Porovnejte seznam svého hardware s následující tabulkou, ve které zjistíte, zda můžete použít zamýšlený typ instalace.

Skutečné minimální požadavky mohou být nižší než uvádí tabulka, ale většina uživatelů by asi nebyla spokojena s rychlostí systému. Vždy záleží na konkrétních požadavcích a možnostech.

<table>
<thead>
<tr>
<th>Typ instalace</th>
<th>RAM (minimální)</th>
<th>RAM (doporučená)</th>
<th>Pevný disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bez desktopového prostředí</td>
<td>128 MB</td>
<td>512 MB</td>
<td>2 GB</td>
</tr>
<tr>
<td>Desktopové prostředí</td>
<td>256 MB</td>
<td>1 GB</td>
<td>10 GB</td>
</tr>
</tbody>
</table>

Konkrétní minimální paměťové požadavky jsou o něco nižší, čísla uváděná v tabulce. Podle architektury je možné instalovat Debian s pouhými 60MB RAM (na amd64). Něco podobného platí i pro požadavky na diskový prostor a hodně závisí na tom, které aplikace si nainstalujete. Více informací naleznete v tabulce D.2.

Konkrétní minimální požadavky jsou o něco nižší, čísla uváděná v tabulce. Podle architektury je možné instalovat Debian s pouhými 60MB RAM (na amd64). Něco podobného platí i pro požadavky na diskový prostor a hodně závisí na tom, které aplikace si nainstalujete. Více informací naleznete v tabulce D.2.

I na starších systémech je možné provozovat grafické desktopové prostředí, ale v takovém případě je doporučeno nainstalovat méně náročné prostředí než KDE Plasma nebo GNOME. Mezi populární alternativy patří xfce4, icewm a wmaker, ale na výběr máte i přehršle dalších.

Pro serverové nasazení je téměř nemožné určit paměťové nebo diskové požadavky, protože ty se liší podle konkrétního nasazení.

Pamatujte, že všechny uvedené velikosti jsou orientační a že neobsahují další věci, které obvykle v systému bývají (jako třeba pošta, soubory uživatelů, data). Při přidělování místa pro své vlastní soubory a data je vždy lepší být velkorysý.

3.5 Předrozdělení disku pro více operačních systémů

Rozdělením disku se na disku vytvoří několik vzájemně nezávislých oddílů (angl. partition). Každý oddíl je nezávislý na ostatních. Dá se to přirovnat k bytu rozčleněnému zdmi — přidání nábytku do jedné místnosti nemá na ostatní míístnosti žádný vliv.

Jestliže už na počítači máte nějaký operační systém a chcete na stejný disk ještě umístit Debian, patrně se nevynystate předrozdělení disku. Debian pro sebe potřebuje vlastní diskové oblasti a nemůžete být nainstalováni na oblasti systému Windows nebo třeba MacOS X. Je sice možné sdílet některé oblasti s jinými systémy, ale popis je mimo rozsah tohoto dokumentu. Minimalně budete potřebovat jednu oblast pro kofenový souborový systém.

Informace o aktuálním rozdělení disku můžete získat dělícím programem svého stávajícího operačního systému. Každý dělící nástroj umožňuje prohlížet oblasti bez jejich modifikace.

Obecně změna oddílu, na kterém je souborový systém, znamená ztrátu dat, takže si raději disk před změnami do tabulky diskových oddílů zazálohujte. Podle analogie s bytem a zdmi, z bytu také raději vynesete veškerý nábytek, než budete přestavovat zdí.

Přestože některé moderní operační systémy zvládají přesun a změnu velikosti některých oddílů bez znícení obsahu, takže by se dalo vytvořit místo pro Debian beze ztrát dat, jedná se o inherentně nebezpečnou operaci a proto bude to měli spáchat až po kompletní záloze všech dat.

VAROVÁNÍ

Pokud startujete instalační systém z pevného disku a potom tento disk rozdělíte, smažete si zaváděcí soubory a musíte doufat, že se instalace povede napovpřev. (Minimalně v tomto případě je dobré mít u sebe nástroje pro oživení počítače, jako jsou zaváděcí diskety nebo CD s původním systémem a podobně.)

I když s diskovými oblastmi mohou manipulovat jak debian-installer, tak nástroje ve stávajícím operačním systému, vždy hýba nejlepší, když si své oblasti vytváří vždy ten systém, který je bude používat, protože sám nejlépe ví, co mu chutná. To znamená, že oblasti pro Debian GNU/Linux bude měli vytvořit v debian-installer.

Jestliže budete mít na počítači více operačních systémů, měli byste tyto systémy instalovat před Debianem. Instalační programy Windows a jiných systémů by mohly zabraňit startu Debanu nebo vás navést k přeformátování některých důležitých oblastí.

Tyto problémy můžete úspěšně vyřešit, případně se jim úplně vyhnout, ale nejjistější je instalovat Debian jako poslední systém.

3.6 Než začnete s instalací ...

Tato část vás provede nastavením hardwaru, který je občas potřeba před vlastní instalací mírně připravit. Obecně se tím myslí kontrola a případná změna nastavení BIOSu/systémového firmware. „BIOS“ nebo „systémový firmware“ je nejnižší úroveň softwaru, který je využíván zařízeními v počítači a rozhodujícím způsobem ovlivňuje start počítače po jeho zapnutí.

3.6.1 ARM firmware

Jak jsme již zmínilí dříve, na systémech ARM bohužel neexistuje standard pro systémový firmware a proto se různé systémy, které nominálně používají stejný firmware, mohou chovat zcela odlišně. To pramení z faktu, že se ARM architektura používá hlavně v embedded zařízeních, pro které výrobci vytváří vlastní upravené firmwary a přidávají záplavy pro konkrétní zařízení. Výrobci bohužel často zapomenou zaslat své úpravy zpět vývojářům původního firmware, takže se jejich změny neobjeví v novějších verzích daného firmware.

Výsledkem je, že i nové systémy často používají firmware, který je založený na nějaké prehistorické verzii firmware, kterou si výrobci kdyši upravili, přičemž vývoj původního firmware mezitím pokračoval a nyní nabízí nové vlastnosti, nebo v některých ohledech jiné chování. Výrobci upravených firmwarů navíc nepojmenovávají integrovaná zařízení konzistentně, takže i když se jedná o stejný základní firmware, je na platformě ARM téměř nemožné poskytnout obecně platné informace.
3.6.2 Nastavení ethernetové MAC adresy v U-Bootu

MAC adresa každého ethernetového rozhraní by měla být celosvětově unikátní, resp. musí být unikátní minimálně v rámci dané ethernetové broadcastovací domény. Výrobce si pro sebe obvykle alokuje blok MAC adres z centrálně spravované zásoby (za což zaplatí nějaký poplatek) a pak příslušně nakonfiguruje každé vyrobené zařízení tak, aby mělo unikátní adresu.

V případě vývojářských desek se chce někdy výrobce vyhnout placení poplatků a proto unikátní MAC adresu na ethernetové zařízení nenastaví. V takových případech musí MAC adresu nastavit uživatel. Některé ovladače síťových karet, když zjistí, že MAC adresa není přiřazena, vygenerují náhodnou MAC adresu, která se může při každém restartu měnit. Pro uživatele to pak vypadá, že síťování v zásadě funguje, ale některé služby nemusí být zrovna spolehlivé, jako třeba přiřazování semi-statických IP adres pomocí DHCP na základě MAC adresy.

Aby se předešlo konfliktům se stávajícími, oficiálně přiřazenými MAC adresami, existuje blok adres, které je rezervován pro takzvaně „místně spravované“ adresy. Blok je definován hodnotou dvou konkrétních bitů v prvním bajtu adresy. V praxi to znamená, že se jako lokálně spravovaná adresa dá použít například libovolná adresa začínající hexadecimálním `ca` (jako třeba `ca:ff:ee:12:34:56`.

3.6.3 Problémy s přesunem jádra/initrd/stromu zařízení v U-Bootu

Na některých systémech se starší verzi U-Bootu se mohou objevit problémy s korektním přesunem linuxového jádra, úvodního ramdisku a binárky se stromem zařízení během zavádění. Projevuje se to tak, že U-Boot vypíše hlášku `Starting kernel ...`, ale systém dál zamrzne bez jakéhokoliv výstupu. Problém byl vyřešen v novějších verzích U-Bootu, tj. od verze v2014.07 dále.

Problém se může projevit i v případě, že systém původně používal verzi U-Bootu starší než v2014.07 a teprv následně byl aktualizován. Aktualizace U-Bootu totiž obvykle nemění stávající proměnné prostředí a oprava problému vyžaduje, aby se nastavila nová proměnná prostředí `bootm_size`, což U-Boot provádí automaticky pouze u nových instalací v čistém prostředí. Ručně tuto novou proměnnou nastavíte v promptu U-Bootu příkazem `env default bootm_size; saveenv`.

Jinou možností, jak obejít problém s přesunem, je v promptu U-Bootu spustit příkaz `setenv fdt_high ffffffff; setenv initrd_high 0xffffffff; saveenv`, kterým zcela zakážete přesun úvodního ramdisku a binárky se stromem zařízení.
Kapitola 4

Získání instalačních médií

4.1 Oficiální sada CD/DVD-ROM

Nejsnázši cesta k instalaci Debianu vede přes oficiální sadu CD/DVD s Debianem (viz seznam dodavatelů). Pokud máte rychlé připojení k síti a vypalovací mechaniku, můžete si stáhnout obrazy CD/DVD z debianího zrcadla a vyropit si vlastní sadu. (Postup naleznete na webové stránce debianích CD.) Jestliže již CD máte a vaš počítač má CD-ROM, můžete přeskočit rovnou na 5. Přestože Debian zabírá mnoho CD, je nepravděpodobné, že byste potřebovali všechny disky, protože balíky jsou na nich seřazené podle oblíbenosti, takže většinu programů nainstalujete z prvního CD. Také můžete použít DVD verzi, která vám ušetří místo na polici a navíc se vyhnute diskžokejské práci s hromadou CD.

Kap. 4

Poznámka

Poznamenejme, že obě hlavní desktopové prostředí GNOME a KDE jsou tak rozsáhla, že se nevejdou na jediné CD a proto při instalaci počítejte s tím, že budete muset použít více CD, nebo nechat stáhnout zbývající balíky ze sítě.

Pokud sice CD máte, ale váš počítač nepodporuje zavádění z CD-ROM, můžete zahájit instalaci zavedením instalace systému z sídla, nebo ručním zavedením jádra z CD. Soubory, které potřebuji instalace systému na CD, se rovněž nacházejí na CD. Organizace adresářů na CD je shodná s strukturou debianího archívu na Internetu, takže cesty k souborům uváděné dále v dokumentu můžete jednoduše vyhledat jak na CD, tak i na síti.

Pokud sadu CD nemáte, budete si muset stáhnout soubory instalace systému a nakopírovat je na připojený počítač.

4.2 Stažení souborů ze zrcadel Debianu

Nejbližší (a tedy pravděpodobně nejrychlejší) zrcadlo naleznete v seznamu zrcadel Debianu.

Budete-li stahovat soubory z debianího zrcadla pomocí FTP, použijte binární mód, ne textový nebo automatický.

4.2.1 Kde se nalézají instalační obrazy?

Instalační obrazy jsou umístěny na každém zrcadle Debianu v adresáři debian/dists/stretch/main/installer-armel/-current/images/. Význam jednotlivých obrazů popisuje soubor MANIFEST.

4.2.1.1 Instalační soubory pro Kurobox Pro

Kurobox Pro vyžaduje jádro a ramdisk na oblasti formátované souborovým systémem ext2. Oblast se musí nacházet na disku, na který chcete Debian nainstalovat. Tyto obrazy jsou k dispozici ke stažení na ../images/orion5x/network-console/buffalo/kuroboxpro.
4.2.1.2 Instalační soubory pro HP mv2120

Pro HP mv2120 existuje obraz firmware, který automaticky zavede debian-installer. Tento obraz je k dispozici ke stažení na ...

4.2.1.3 Instalační soubory pro QNAP Turbo Station

Instalační soubory pro QNAP Turbo Station se skládají z jádra, ramdisku a skriptu, který tyto soubory zapíše do flash paměti zařízení. Příslušné instaláční soubory pro QNAP TS-109, TS-209, TS-409 a TS-409U můžete stáhnout z ...
.../images/orion5x/network-console/qnap/, soubory pro QNAP TS-11x/TS-12x, HS-210, TS-21x/TS-22x a TS-41x naleznete na ...
.../images/kirkwood/network-console/qnap/.

4.2.1.4 Instalační soubory pro zásuvkové počítače a OpenRD

Instalační soubory pro zásuvkové počítače (SheevaPlug, GuruPlug, DreamPlug apod.) a zařízení OpenRD se skládají z jádra a initrd pro U-Boot. Oba soubory můžete stáhnout z ...
.../images/kirkwood/netboot/marvell/.

4.2.1.5 Instalační soubory pro NASy LaCie

Instalační soubory pro NASy LaCie (Network Space v2, Network Space Max v2, Internet Space v2, d2 Network v2, 2Big Network v2 a 5Big Network v2) se skládají z jádra a initrd pro U-Boot. Oba soubory můžete stáhnout z ...
.../images/kirkwood/network-console/lacie/.

4.3 Příprava souborů pro zavedení ze sítě pomocí TFTP

Pokud je váš počítač připojen do lokální sítě, můžete jej zavést ze sítě pomocí TFTP. Jestliže chcete pomocí TFTP zavést instalacní systém, musíte na vzdáleném počítači nakopírovat zaváděcí soubory do specifických adresářů a povolit zavádění vaší stanice.

Musíte nastavit TFTP server a často i DHCP server nebo RARP nebo BOOTP server.

Klientovi můžete sdělit jeho IP adresu protokolem RARP (Reverse Address Resolution Protocol) nebo BOOTP. BOOTP je IP protokol, který informuje počítač o jeho IP adrese a prozradí mu, odkud si má stáhnout zaváděcí obraz. DHCP (Dynamic Host Configuration Protocol) je flexibilnější, zpětně kompatibilní rozšíření protokolu BOOTP. Některé systémy mohou být nastaveny pouze pomocí DHCP.

Pro přenos zaváděcího obrazu ke klientovi se používá protokol TFTP (Trivial File Transfer Protocol). Teoreticky můžete použít server na libovolné platformě, která jej implementuje. Ukázky v této kapitole se vztahují k operačním systémům SunOS 4.x, SunOS 5.x (neboli Solaris) a GNU/Linux.

4.3.1 Nastavení RARP serveru

Pro úspěšné nastavení RARP serveru potřebujete znát etheretovou adresu klienta (stanice, kterou zavádíte), jinými slovy MAC adresu. Pokud tuto informaci nemáte k dispozici, můžete ji zavést do záchranného (rescue) režimu (např. pomocí záchranné diskety) a použít příkaz ip addr show dev eth0.

Na linuxových systémech, případně na systémech SunOS/Solaris máte k dispozici program rarpd. Nejprve musíte zaručit, že ethernetová adresa klienta bude zaznamenána v databázích „ethers“ (tj. bud v souboru /etc/ethers nebo pomocí NIS/NIS+) a „hosts“. Pak můžete spustit RARP démona. Na většině linuxových systémů a na SunOS 5 (Solaris 2) to provedete (jako superuživatel root) příkazem /usr/sbin/rarpd -a, na jiných systémech příkazem /usr/sbin/in.rarpd -a a na SunOS 4 (Solaris 1) příkazem /usr/etc/rarpd -a.

4.3.2 Nastavení DHCP serveru

Jedním ze svobodných DHCP serverů je ISC dhcpd. Debian GNU/Linux jej obsahuje jako balík isc-dhcp-server. Následuje ukázka jednoduchého konfiguračního souboru (obykle /etc/dhcp/dhcpd.conf):

```
option domain-name "priklad.cz";
option domain-name-servers ns1.priklad.cz;
option subnet-mask 255.255.255.0;
default-lease-time 600;
max-lease-time 7200;
```

KAPITOLA 4. ZÍSKÁNÍ INSTALAČNÍCH MÉDIÍ

4.3. PŘÍPRAVA SOUBORŮ PRO ZAVEDENÍ ZE...

```plaintext
server-name "karel";

subnet 192.168.1.0 netmask 255.255.255.0 {
    range 192.168.1.200 192.168.1.253;
    option routers 192.168.1.1;
}

host clientname {
    filename "/tftpboot.img";
    server-name "karel";
    next-server dalsiserver.priklad.cz;
    hardware ethernet 01:23:45:67:89:AB;
    fixed-address 192.168.1.90;
}
```

V tomto příkladu máme jeden server jménem karel, který obstarává práci DHCP a TFTP serveru a také slouží jako brána do sítě. Ve svém nastavení si musíte změnit doménové jméno, jméno serveru a hardwarovou adresu klienta. Položka filename by měla obsahovat název souboru, který si klient stáhne přes TFTP.

Po úpravách konfiguračního souboru musíte restartovat `dhcppd` příkazem `/etc/init.d/isc-dhcp-server restart`.

4.3.3 Nastavení BOOTP serveru

V GNU/Linuxu můžete použít v zásadě dva BOOTP servery. Jednak je to CMU `bootpd` a druhý je vlastně DHCP server — ISC `dhcpd`. V distribuci Debian GNU/Linux jsou k dispozici balíčky `bootp` a `isc-dhcp-server`.

Pokud chcete použít CMU `bootpd`, musíte nejprve odkomentovat (nebo přidat) jeden důležitý řádek v souboru `/etc/inetd.conf`. V systému Debian GNU/Linux můžete spustit `update-inetd --enable bootps` a následně restartovat inetd pomocí `/etc/init.d/inetd reload`. V jiných systémech přidejte řádku, která bude vypadat zhruba takto:

```plaintext
bootps  dgram  udp  wait  root  /usr/sbin/bootpd  bootpd  -i  -t 120
```

Nyní musíte vytvořit soubor `/etc/bootptab`. Jeho struktura je velmi podobná té, co používají staré dobře soubory `printcap`, `termcap` a `disktab` ze systému BSD. Blížší informace jsou v manuálové stránce `bootptab`. Pokud používáte CMU `bootpd`, musíte rovněž znát hardwarovou (MAC) adresu klienta. Následuje příklad souboru `/etc/bootptab`:

```plaintext
client:
    hd=/tftpboot:;
    bf=tftpboot.img:;
    ip=192.168.1.90:;
    sm=255.255.255.0:;
    sa=192.168.1.1:;
    ha=0123456789AB:
```

Z příkladu budete muset změnit minimálně volbu „ha“, která značí hardwarovou adresu klienta. Volba „bf“ specifikuje soubor, který si klient stáhne protokolem TFTP, viz 4.3.5.

V kontrastu s předchozím je nastavení BOOTP pomocí ISC `dhcppd` velmi jednoduché, protože `dhcppd` považuje BOOTP klienty za speciální případ DHCP klientů. Některé architektury však vyžadují pro zavádění klientů pomocí BOOTP komplikované nastavení. Je-li to váš případ, přečtěte si 4.3.2. V opačném případě stačí v konfiguračním souboru `/etc/dhcp/dhcpd.conf` vložit do bloku podsítě, ve které se nachází klient, direktivu `allow bootp`. Potom restartujte `dhcppd` server příkazem `/etc/init.d/isc-dhcp-server restart`.

4.3.4 Povolení TFTP serveru

Aby vám TFTP server fungoval, měli byste nejprve zkontrolovat, zda je `tftpd` povolen.

POZNÁMKA

TFTP servery historicky používaly pro uložení nabízených obrazů adresář \tftpboot. Aby byl Debian v souladu se standardem FHS, mohou debianí balíky používat jiná umístění. Například tftpd-hpa implicitně používá adresář /srv/tftp. Je proto možné, že budete muset cesty uváděné v této kapitole upravit pro konkrétní situaci.

Všechny alternativní in.tftpd v Debianu by měly automaticky zaznamenávat všechny požadavky, které jim byly zaslány, do systémových logů. To se hodí zejména v situaci, kdy zavádění neprobíhá tak, jak má. Některé TFTP servery umí zvýšit svou upovídanost parametrem \-v.

4.3.5 Přesun TFTP obrazů na místo

Dále je potřeba umístit příslušný TFTP obraz (viz 4.2.1) do adresáře, kde má tftpd uloženy obrazy. Bohužel TFTP klient očekává jméno souboru v určitém tvaru, pro který neexistují žádné závazné standardy. Proto ještě musíte na příslušný obraz vytvořit odkaz, který tftpd použije pro zavedení konkrétního klienta.

4.4 Automatická Instalace

Pokud spravujete více obdobných počítačů, můžete využít plně automatickou instalaci. Příslušné balíky se jmenují fai-quickstart a samozřejmě debian-installer. Více informací o FAI naleznete na domovské stránce FAI.

4.4.1 debian-installer

Instalační program Debianu podporuje automatické instalace pomocí předkonfiguračních souborů. Předkonfigurační soubor obsahuje odpovědi na otázky, které se debian-installer ptá během instalace. Tento soubor můžete nahrát ze sítě nebo z vyměnitelného média.

Kompletní dokumentaci o přednastavení včetně funkčního příkladu naleznete v B.
Kapitola 5

Zavedení instalačního systému

5.1 Zavedení instalátoru na 32-bit soft-float ARM

5.1.1 Formáty zaváděcích obrazů

Systémy založené na architektuře ARM většinou používají dva formáty zaváděcích obrazů:

- Standardní linuxové jádro ve formátu zImage („vmlinuz”) spolu se standardním linuxovým ramdiskem („initrd.gz”).
- Jádro ve formátu uImage („uImage”) ve spojení s odpovídajícím ramdiskem („uInitrd”).

Formáty uImage/uInitrd jsou speciálně navrženy pro firmware U-Boot, který se používá na mnoha (většinou starších 32 bitových) ARMových systémek. Starší verze U-Bootu uměly zavádět pouze soubory ve formátu uImage/uInitrd, proto se používaly hlavně na starších systémech armel. Novější verze U-Bootu již umí kromě uImage/uInitrd zavádět také standardní linuxová jádra a initrd, ale syntaxe se trošku liší.

Na systémech používajících multiplatformní jádro je kromě jádra a initrd ještě zapotřebí soubor se stromem zařízení (device-tree blob, „dtb”), který je specifický pro každý systém a obsahuje popis toho konkrétního hardwaru.

dtb by měl být obsažen přímo ve firmwaru zařízení, ale ve skutečnosti je často třeba nahrát novější verzi.

5.1.2 Zavedení z TFTP

Zavedení se sítě vyžaduje síťové připojení, funkční TFTP server a nejspíš i DHCP, RARP nebo BOOTP server pro automatické nastavení sítě.

Nastavení zavádění ze sítě je popsáno v 4.3.

5.1.2.1 Zavedení z TFTP přes U-Boot

Zavedení z TFTP přes U-Boot se skládá ze tří kroků: nastavení sítě, zavedení obrazů jádra, initrd a dtb do paměti a konečně spuštění nahraného jádra.

Síť můžete nastavit buď automaticky pomocí DHCP:

```bash
setenv autoload no
dhcp
```

nebo ručně nastavením několika proměnných:

```bash
setenv ipaddr ip_adresa_klienta
setenv netmask maska
setenv serverip ip_adresa_TFTP_serveru
setenv dnsip ip_adresa_DNS_serveru
setenv gatewayip ip_adresa_výchozi_brány
```

Budete-li chtít toto nastavení uložit trvale, použijte příkaz

```bash
saveenv
```
Nyní musíte nahrát obrazy jádra, initrd a dtb do paměti, což se provádí příkazem `tftpboot`. jako parametr příkazu musíte zadať adresu v paměti, na kterou se má obraz nahrát. Bohužel, mapa paměti se liší systému od systému a proto nemůžeme vypsat pevné adresy platné pro všechny.

Na některých systémech si U-Boot přededefinovává proměnné prostředí s vhodnými adresami. Jsou to proměnné `kernel_addr_r`, `ramdisk_addr_r` a `fdt_addr_r`. Zda jsou ve vašem případě nastaveny, a připraveny k použití, si můžete ověřit příkazem:

```
printenv kernel_addr_r ramdisk_addr_r fdt_addr_r
```

Nejsou-li definovány, budete si muset konkrétní hodnoty zjistit v dokumentaci k vašemu systému a nastavit je ručně. Například na systémech založených na SOC Allwinner SunXi (třeba Allwinner A10, architektura „sun4i“ nebo Allwinner A20, architektura „sun7i“) můžete použít následující hodnoty:

```
setenv kernel_addr_r 0x46000000
setenv fdt_addr_r 0x47000000
setenv ramdisk_addr_r 0x48000000
```

Po nastavení adres můžete stáhnout obrazy z dříve definovaného TFTP serveru a nahrát je do paměti příkazy:

```
tftpboot ${kernel_addr_r} název_souboru_s_obrazem_jádra
tftpboot ${fdt_addr_r} název_souboru_s_dtb
tftpboot ${ramdisk_addr_r} název_souboru_s_obrazem_initrd
```

Nyní zbývá nastavit parametry jádra a spustit ho. U-Boot předá jádru parametry přes proměnnou prostředí `bootargs`, takže do ní nastavte veškeré potřebné parametry jádra a instalačního systému, jako je třeba konzole (5.3.1) nebo přednastavení (5.3.2 a B). Například:

```
setenv bootargs console=ttyS0,115200 rootwait panic=10
```

Samotné spuštění jádra závisí na použitém formátu. Pro uImage/uInitrd vypadá příkaz následovně:

```
bootm ${kernel_addr_r} ${ramdisk_addr_r} ${fdt_addr_r}
```

a pro nativní linuxový formát takto:

```
bootz ${kernel_addr_r} ${ramdisk_addr_r}:${filesize} ${fdt_addr_r}
```

POZNÁMKA

Při zavádění standardních linuxových obrazů je důležité nahrát obraz úvodního ramdisku až po jádru a dtb, jelikož U-Boot automaticky uloží do proměnné `filesize` velikost posledně nahraného souboru. Aby příkaz `bootz` fungoval správně, potřebuje znát velikost ramdisku, kterou mu předáte právě z proměnné `filesize`. Jestliže zavádíte jádro sestavené pro konkrétní platformu (tj. bez stromu zařízení), jednoduše vynechejte parametr `${fdt_addr_r}`.

5.1.3 Zavedení z USB klíčenky přes U-Boot

Mnohé moderní verze U-Bootu podporují USB a umožňují zavádění z úložných USB zařízení, jako jsou USB klíčenky. Přesný postup se ale bohužel liší systému od systému.

U-Boot v2014.10 přinesl sjednocené zpracování příkazové řádky a framework pro automatické zavádění. To umožňuje vytvářet obecné zaváděcí obrazy, které pracují na všech systémech implementujících tento framework.

debian-installer na těchto systémech podporuje instalaci z USB zařízení.

Pro vytvoření USB klíčenky pro instalaci Debianu musí USB klíčenka obsahovat souborový systém podporovaný U-Bootem (novější verze obvykle podporují FAT16, FAT32, ext2, ext3 a ext4). Na tento souborový systém rozbalte archiv `hd-media` (viz 4.2.1) a pak přikopírujte ISO obraz prvního instalacího CD/DVD Debianu.

Framework pro automatické zavádění v novějších verzích U-Bootu funguje podobně jako volby pro zavádění v BIOSu PC, tj. postupně prozkoumá seznam možných zaváděcích zařízení, zda na nich nenalezne platný zaveditelný obraz a spustí první, který nalezen. Pokud na zařízení není nainstalovaný žádný operační systém, mělo by zasunout
USB klíčenky a zapnutí systému způsobit zavedení instalačního systému. Zavedení z USB můžete také vyvolat ručně na výzvě U-Bootu příkazem run bootcmd_usb0.

Jedním problémem, se kterým byste se mohli potkat při zavádění z USB a použití sériové konzole, je rozdílné nastavení přenosové rychlosti konzoly. Je-li v U-Bootu nastavena proměnná konzoly, předá ji zaváděcí skript jádru, aby ji použilo jako primární konzoli a případně nastavilo přenosovou rychlost. Na některých platformách specifikuje proměnná rychlost i konzoly (např. „console=ttys0,115200”), zatímco na jiných obsahuje pouze název zařízení („console=ttys0“). Pokud se výchozí přenosová rychlost U-Bootu (často 115200) liší od výchozí přenosové rychlosti jádra (tradičních 9600), vede to ve druhém případě k nečitelnému výstupu. Pokud to nastane, měli byste ručně upravit proměnnou console, aby obsahovala správnou rychlost pro váš systém, a pak zavést instalátor příkazem run bootcmd_usb0.

5.2 Zpřístupnění

Někteří uživatelé mohou vyžadovat speciální podporu, například z důvodu zrakového postižení. Většinu zpřístupňujících vlastností je třeba zapnout ručně. Zavaděče na většině architektur interpretují klávesnici jako QWERTY.

5.2.1 Uživatelské rozhraní instalačního systému

Instalační systém Debiana podporuje několik rozhraní pro komunikaci s uživatelem, které se liší v míře zpřístupnění. Například rozhraní text používá čistý text, zatímco rozhraní newt využívá textová dialogová okna. Konkrétní rozhraní si můžete zvolit před zavedením instalačního systému, jak je popsáno v dokumentaci proměnné DEBIAN_FRONTEND v kapitole 5.3.2.

5.2.2 Zařízení připojená rovnou na sběrnici

Některá zařízení jsou dodávána jako karty zapojené uvnitř počítače, které čtou text přímo z videopaměti. Aby tyto karty fungovaly, musíte vypnout framebuffer zaváděcím parametrem fb=false. Tím však také snížíte počet dostupných jazyků.

5.2.3 Kontrastní téma

Uživatelé se zhoršeným zrakem mohou při instalaci použít vysoce kontrastní téma, které by mělo zlepšit čitelnost. Pro zapnutí stačí přidat zaváděcí parametr theme=dark.

5.2.4 Změna velikosti písma

5.2.5 Záchranný režim, expertní a automatizované instalace

Zpřístupnění funguje i v režimech Expert, Rescue a Automatizovaná instalace. V zaváděcím menu je naleznete pod nabídkou „Advanced options“, do které se dostanete stiskem klávesy a. Na systémech s BIOSem (v zaváděním menu se ozvalo jedno pípnutí) musíte každou volbu potvrdit ještě klávesou Enter. Pro povolení syntézy hlasu stiskněte klávesu s (na systémech s BIOSem opět následovanou klávesou Enter). Zde můžete použít klávesy x pro expertní režim, r pro záchranný režim nebo a pro automatizovaný režim.

Volba automatizované instalace umožňuje nainstalovat Debian zcela automaticky pomocí přednastavení. Tomuto způsobu se podrobně věnuje kapitola B.

5.2.6 Zpřístupnění v nainstalovaném systému

Problematickou zpřístupnění v nainstalovaném systému se zabývá wiki stránka Debian Accessibility.

5.3 Zaváděcí parametry

Parametry pro zavádění jsou vlastně parametry pro jádro Linuxu, které se používají v případech, kdy chceme zajistit, aby jádro korektně pracovalo s neposlušnými zařízeními. Ve většinu je jádro schopno rozpoznat všechna zařízení automaticky, ale v některých speciálních případech musíte trochu pomoci.
5.3.1 Zaváděcí konzole

Jádro by mělo být schopno rozpoznat, že zavádíte systém ze sériové konzoly. Pokud máte v zaváděném počítači rovněž grafickou kartu (framebuffer) a připojenou klávesnici, měli byste při zavádění zadat parametr \texttt{console=zařízení}, kde \texttt{zařízení} je vaše sériové zařízení, což je obvykle něco jako \texttt{ttyS0}.

Někdy je potřeba zadat konkrétní parametry sériového portu, jako je jeho rychlost a parita, např. \texttt{console=ttyS0,9600n8}. Další obvyklé rychlosti bývají 57600 a 115200. Ujistěte se, že tento parametr přidáte až za \texttt{---}, aby se toto nastavení zkopírovalo i do konfigurace zaváděče v instalovaném systému. (Pokud to instalátor pro daný zaváděč umožňuje.)

Abyste zajistili, že instalace používá typ terminálu kompatibilní s vaším emulátorem terminálu, můžete přidat parametr \texttt{TERM=typ}. Instalační systém podporuje následující typy terminálů: \texttt{linux}, \texttt{bterm}, \texttt{ansi}, \texttt{vt102} a \texttt{dumb}. Pro sériovou konzoli v \texttt{debian-installer} je výchozím typem \texttt{vt102}. Používáte-li IPMI konzoli, nebo virtualizační nástroj (např. QEMU/KVM), který sám o sobě nenabízí konverzi do daných typů terminálu, můžete jej spustit uvnitř \texttt{screen}. To totiž zajistí automatický převod na typ terminálu \texttt{screen}, který je velmi podobný typu \texttt{vt102}.

5.3.2 Parametry instalačního programu

Instalační systém rozpoznává několik užitečných parametrů.

Mnoho parametrů má i svou zkrácenou formu, která usnadňuje zadávání a také pomáhá obejít omezení příkazové řádky jádra. Pokud máte do zaváděče několik parametrů, můžete je použít stejně jako jiné parametry. Některé parametry můžete použít na více místech.

<table>
<thead>
<tr>
<th>Deconf/priority (priority)</th>
<th>Nastavení tohoto parametru můžete změnit nejníží prioritou zobrazených otázek.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardní instalace používá nastavení \texttt{priority=high}, což znamená, že se zobrazí jak kritické, tak důležité hlášky, ale normální a nevýznamné zprávy jsou přeskočeny. Jestliže se vyskytne problém, instalátor upraví priority otázek podle potřeb.</td>
<td></td>
</tr>
<tr>
<td>Když použijete parametr \texttt{priority=medium}, zobrazí se instalační menu a získáte nad instalací větší kontrolu. Při použití \texttt{priority=low}, nic se nepřeskačuje a zobrazí se všechny hlášky instalačního programu (to je ekvivalentní zaváděcí metodě \texttt{expert}. Hodnotou \texttt{priority=critical} se potlačí všechny zprávy a otázky se stupněm důležitosti menším než kritickým. Pro tyto potlačené otázky se použijí přednastavené hodnoty.</td>
<td></td>
</tr>
</tbody>
</table>

\texttt{DEBIAN_FRONTEND} Ovlivňuje uživatelské rozhraní, ve kterém bude instalace probíhat. Dostupné volby jsou:

- \texttt{DEBIAN_FRONTEND=noninteractive}
- \texttt{DEBIAN_FRONTEND=text}
- \texttt{DEBIAN_FRONTEND=newt}
- \texttt{DEBIAN_FRONTEND=gtk}

Výchozí rozhraní je \texttt{DEBIAN_FRONTEND=newt}. Pro instalaci přes sériovou konzolu může být vhodnější \texttt{DEBIAN_FRONTEND=text}. Některé specializované typy instalačních médií mohou nabízet jen omezený výběr rozhraní, nicméně rozhraní \texttt{newt} a \texttt{text} by měla být dostupná na většině instalačních médií. Na architekturách, kde to je možné, využívá grafický instalátor rozhraní \texttt{gtk}.

\texttt{BOOT_DEBUG} Tímto parametrem můžete kontrolovat množství zpráv, které se zapisují do instalačního logu.

- \texttt{BOOT_DEBUG=0} Toto je standardní hodnota.
- \texttt{BOOT_DEBUG=1} Upovídánější než obvykle.
- \texttt{BOOT_DEBUG=2} Spousty ladících informací.
- \texttt{BOOT_DEBUG=3} Pro opravdu detailní ladění se během zavádění několikrát spustí shell, ve kterém můžete kontrolovat a ovlivňovat náběh systému. Když shell ukončíte, bude zavádění pokračovat.

\texttt{S aktuálními jádry (od verze 2.6.9) lze použít až 32 parametrů a 32 proměnných prostředí. Pokud tato čísla překročíte, jádro zpanikaří.}
KAPITOLA 5. ZAVEDENÍ INSTALAČNÍHO SYSTÉMU 5.3. ZA VÁDĚCÍ PARAMETRY

INSTALL_MEDIA_DEV Hodnota tohoto parametru zadává cestu k zařízení, ze kterého se má nahrát instalační systém, například `INSTALL_MEDIA_DEV=/dev/floppy/0`
Normálně se totiž zaváděcí diskeťa nájší net kořenou disketu na všech dostupných disketových mechanikách. Tímto parametrem ji sdělíte, že se má podívat jenom na zadané zařízení.

log_host, log_port Způsobí, že instalátor nebude ukládat logovací hlášky na lokálního souboru, ale bude je také posílat přes síť vzdálenému syslogu běžícímu na zadaném počítači a portu. Jestliže parametr log_port vynecháte, bude se předpokládat standardní port syslogu 514.

lownem Můžete vynutit, aby instalátor použil agresivnější nízkopaměťový režim, než by nastavil podle skutečné dostupné paměti. Možné hodnoty jsou 1 a 2. Více naleznete v 6.3.1.1.

noshell Zabrání instalátoru, aby na druhé a třetí virtuální konzoli nabízel interaktivní shell, což je užitečné při automatizovaných zvdáleních instalacích, kdy je fyzická bezpečnost omezena.

debian-installer/framebuffer (fb) Některé architektury využívají pro instalaci v různých jazycech jaderný framebuffer (grafická konzole). Pokud na svém systému zaznamenáte symptomy jako chybové hlášky o btermu a bohlu, černou obrazovku nebo zamrznutí instalace po několika minutách od spuštění, můžete framebuffer vypnout parametrem `fb=false`.

debian-installer/theme (theme) Téma určuje vzhled uživatelského rozhraní instalačního systému (barvy, ikony, atd.). Dostupná témata se liší podle použitého rozhraní. Rozhraní newt i gtk nyní podporují pouze alternativní téma „dark“, které bylo navrženo pro zrakově postižené uživatele. Téma můžete nastavit zaváděcím parametrem `theme=dark`.

netcfg/disable_autoconfig Standardně se debian-installer snaží získat nastavení sítě přes automatické nastavení sítě IPv6 a DHCP. Je-li získáno nějaké nastavení, instalační systém se na nic nebude ptát a automaticky bude pokračovat v instalaci. K ručnímu nastavení sítě se dostanete pouze v případě, že automatické nastavení selže.
Máte-li tedy na místní síti DHCP server nebo IPv6 router, ale z nějakého důvodu jej nechcete použít (protože např. pro účely instalace vrací špatné hodnoty), můžete použít parametr `netcfg/disable_autoconfig=true`, kterým zabráníte automatickému nastavení sítě (ať už verze 4 nebo 6) a rovnou budete požádáni o ruční nastavení síťových údajů.

hw-detect/start_pcmcia Pokud chcete zabránit startu PCMCIA služeb, nastavte tento parametr na hodnotu `false`. Některé notebooky jsou totiž nechvalně známé tím, že při startu PCMCIA služeb zaseknu celý systém.

preseed/url (url) Zde můžete zadat url k souboru s přednastavením, podle kterého se má provést automatická instalace, viz 4.4.

preseed/file (file) Zde můžete zadat soubor s přednastavením, podle kterého se má provést automatická instalace, viz 4.4.

preseed/interactive Nastavením na hodnotu `true` se zobrazí i otázky, které byly přednastaveny. To může být užitečné pro testování nebo ladění souboru s přednastavením. Nastavení se neprojeví u otázek, které byly zadány jako parametry při zavádění systému. Pro ty však existuje speciální syntaxe, viz B.5.2.

auto-install/enable (auto) Při nastavení na hodnotu `true` odsune otázky obvykle zobrazované před začátkem přednastavení až za nastavení sítě. Podrobnosti o automatizaci instalací pomocí této možnosti naleznete v části B.2.3.

finish-install/keep-consoles Během instalaci skrze sériovou nebo správcovskou konzoli jsou tradiční virtuální konzoly (VT1-VT6) v souboru `/etc/inittab` zakázány. Chcete-li tomu zabránit, nastavte na hodnotu `true`.

cdrom-detect/eject Před restartem debian-installer do nového systému se implicitně vysune optické médium použité během instalace. To někdy není potřeba (např. systém není nastaven pro automatické zavádění z CD-ROM) a v některých případech může být vysunutí dokonce nežádoucí. Například pokud mechanika neumí nahráv medíum sama a uživatel zrovna není na místě, aby to provedl ručně. Příkladem takovýchto mechanik jsou mechaniky v přenosných počítačích a mechaniky se štěrbinovým podáváním.
Pro zakázání automatického vysunutí nastavte parametr na hodnotu `false`. 24
5.3. Použití zaváděcích parametrů pro zodpovězení otázek

Na stejném místě, kam se zadávají parametry pro jádro nebo instalacní program, můžete zadat odpověď na téměř každou otázku, se kterou se můžete při instalaci potkat. Tato možnost se využívá spíše ve specifických případech a je zde vypsáno jen několik příkladů. Podrobnější informace naleznete v dodatku B.2.2.

5.3.3 Použití zaváděcích parametrů pro zodpovězení otázek

base-installer/install-recommends (recommends) Nastavením na hodnotu false se systém pro správu balíků nebudou pokoušet o instalaci doporučených balíků jak během instalace, tak později v nainstalovaném systému. Více naleznete v kapitole 6.3.4.

Použitím této volby můžete získat štíhlejší systém, ale také je možné, že zmizí některé vlastnosti, které bste normálně od systému očekávali. Pro získání požadované funkčnosti pak můžete ručně doinstalovat některé vybrané doporučované balíky, nicméně musíte vědět, které balíky potřebujete a proto by toto možnost měli používat pouze zkušené harcovníci.

rescue-enable Nastavíte-li tento parametr na hodnotu true, spustí se místo běžné instalace záchranný režim. Viz 8.7.

5.3.4 Předávání parametrů jaderným modulům

Jestliže jsou ovladače zakompilovány přímo do jádra, můžete jim předávat parametry tak, jak je popsáno v dokumentaci k jádru. Pokud však jsou ovladače zakompilovány jako moduly, znamená to, že jsou při instalaci zaváděny odlišným způsobem než při zavádění nainstalovaného systému a nemůžete jim předat parametry klasickým postupem. Musíte použít speciální syntaxi, kterou instalátor rozpozná a zařadí, aby se tyto parametry uložily do příslušných konfiguračních souborů a posléze se v pravý čas použily. Tyto parametry se automaticky přenesou i do nainstalovaného systému.

Poznamenejme, že v dnešní době je používání parametrů modulů téměř raritou, protože jádro ve většině případů správně rozpozná přítomný hardware a nastaví pro něj vhodné hodnoty automaticky. Pokud tomu tak není, stále můžete použít ruční nastavení.

Syntaxe pro nastavení parametrů modulu je následující:

```
název_modulu.název_parametru=hodnota
```

Potřebujete-li modulu předat několik parametrů, stačí syntaxi několikrát zopakovat. Například pro nastavení staré síťové karty 3Com, aby použila konektor BNC (koaxiální) a IRQ 10, zadá-li-hyste:
5.3.5 Zapsání jaderných modulů na černou listinu

Někdy je nutné zanést modul na černou listinu a zabránit tak jádru a udevu, aby jej automaticky zavedli. Jedním z důvodů bývá ten, že modul způsobuje na vašem hardwaru problémy. Někdy také jádro registruje pro jedno zařízení dva ovladače, což může vytvářet problémy v případech, kdy jsou tyto ovladače navzájem konfliktní, nebo pokud zařízení funguje správně jen s jedním z ovladačů a jádro nejprve zavede ten chybý ovladač.

Moduly můžete na černou listinu přidat následovně: jméno_modulu.blacklist=yes. Prakticky to znamená, že se modul zapíše do souboru /etc/modprobe.d/blacklist.local, což ho vytvoří jako během instalace, tak v nově nainstalovaném systému.

Poznamenejme, že modul stále může být zaveden explicitně přímo instalačním systémem. Předejít tomu můžete instalací v expertním režimu a odebráním modulu ze seznamu modulů, který se zobrazuje během několika fází rozpoznávání hardwaru.

5.4 Problémy s instalačním systémem

5.4.1 Spolehlivost CD

Občas, obzvláště se staršími CD mechanikami, se nemusí podařit zavést instalační systém. Dokonce je možné, že se systém zavede, ale poté již CD mechaniku nenalezní, nebo během instalace bude čtení vracet chyby.

Možných příčin je spousta a můžeme zde vypsat jen ty nejběžnější, resp. můžeme zmínit obecné postupy. Zbytek je na vás.

Nejprve byste měli vyzkoušet dvě nejjednodušší věci.

• Pokud z CD nejde zavést, zkontrolujte, že je disk vložen správně a že není špinavý.
• Pokud systém sice naběhne, ale rozpoznání CD selže, zkuste z menu opakovaně vybrat možnost Rozpoznat a připojit CD-ROM. Je známo, že se tím vyřeší některé problémy s DMA muzeárních CD mechanik.

Jestliže to stále nepomohlo, zkuste některý z návrhů níže. Většina návrhů platí jak pro CD mechaniky, tak pro DVD, Blue Ray a podobné mechaniky.

Jako poslední záchrana zde stále existuje možnost zvolit instalaci z jiného média, např. ze sítě.

5.4.1.1 Běžné problémy

• Některé starší CD mechaniky nepodporují čtení disků vypálených na novějších vypalovačkách vyššími rychlostmi.
• Některé hodně staré CD mechaniky nefungují správně při povoleném DMA „direct memory access“.

5.4.1.2 Jak zjistit o problému co nejvíce (a možná jej vyřešit)

Pokud se nedaří z CD zavést systém, zkuste následující.

• Zkontrolujte, zda je v BIOSu povoleno zavádění z CD a že vaše CD mechanika podporuje média, která používáte.
• Pokud jste si stáhli iso obraz, zkontrolujte, že souhlasí kontrolní součet s tím, který se nachází v souboru MD5SUMS. Soubor by měl ležet na stejném místě, ze kterého jste stáhli obraz.

```
md5sum debian-testing-1386-netinst.iso
a20391b12f7ff22ef705cee4059c6b92
debian-testing-1386-netinst.iso
```

Dále zkontrolujte, že kontrolní součet souhlasí i po vypálení obrazu.

```
dd if=/dev/cdrom | 
> head -c `stat --format=%s debian-testing-1386-netinst.iso` | 
> md5sum
a20391b12f7ff22ef705cee4059c6b92  262668+0 records in
262668+0 records out
134486016 bytes (134 MB) copied, 97.474 seconds, 1.4 MB/s
```

26
Pokud se podařilo zavést instalační systém, ale ten už CD nerozpozná, postačí někdy z hlavního instalačního menu znovu spustit krok rozpoznání CD. Máte-li více mechaniků, zkuste použít nějakou jinou. Jestliže to nepomáhá, nebo se při čtení objevují chyby, zkuste některou z rad níže. Pro následující kroky je třeba základní znalost jádra Linux.

Pro spouštění různých příkazů byste se měli přepnout na druhou virtuální konzolu (VT2) a aktivovat tam spící shell.

- Zkontrolujte podezřelé hlášky na čtvrté virtuální konzoli, nebo si editorem nano prohlédněte obsah souboru /var/log/syslog. Poté zkontrolujte výstup příkazu dmesg.

- Ve výpisu příkazu dmesg se podívejte, zda byla vaše CD mechanika nalezena. Měli byste tam vidět něco podobného (ne nutně v tomto pořadí):

  ```
  ata1.00: ATAPI: MATSHITADVD-RAM UJ-822S, 1,61, max UDMA/33
  ata1.00: configured for UDMA/33
  scsi 0:0:0:0: CD-ROM MATSHITA DVD-RAU UJ-822S 1.61 PQ: 0 ANSI: 5
  sr0: scsi3-mmc drive: 24x/24x writer dvd-ram cd/rw xa/form2 cdda tray
  cdrom: Uniform CD-ROM driver Revision: 3.20
  ```

 Nevidíte-li nic podobného, je možné, že řadič, ke kterému je vaše CD mechanika připojena, nebyl rozpoznán, nebo není podporován. Jestliže víte, který ovladač je vyžadován pro váš řadič, můžete jej zkusit nahrát ručně příkazem modprobe.

 - Zkontrolujte, zda se v adresáři /dev/ vytvořil soubor zařízení odpovídající vaší CD mechanice. Podle výše uvedeného příkladu by to byl soubor /dev/sr0. Také by měl existovat symbolický odkaz /dev/cdrom.

 - Příkazem mount se přesvědčte, zda je CD připojeno. Pokud ne, zkuste je připojit ručně.

    ```
    $ mount /dev/hdc /cdrom
    ```

 Podívejte se, zda tento příkaz nevyvolal nějaká chybová hlášení.

 - Zkontrolujte, zda je DMA zapnuté:

    ```
    $ cd /proc/ide/hdc
    $ grep using_dma settings
    using_dma 1 0 1 rw
    ```

 Číslo „1“ v prvním sloupci za textem using_dma znamená, že je DMA povoleno. Pokud je, zkuste je vypnout:

    ```
    $ echo -n "using_dma:0" >settings
    ```

 Před spuštěním příkazu se ujistěte, že jste v adresáři zařízení, které odpovídá vaší CD mechanice.

 - Pokud se během instalace vyskytou problémy, zkuste zkontrolovat integritu média pomocí volby v hlavním menu instalacního systému. Toto menu můžete použít jako rozumný test, zda je možné spolehlivě přečíst celé CD.

5.4.2 Zaváděcí konfigurace

Pokud se jádro zasekne během zavádění, nerozezná připojená zařízení, nebo disky nejsou korektně rozpoznány, v prvé řadě zkontrolujte parametry jádra, kterými se zabývá 5.3.

V některých případech může za nefunkčnost zařízení chybějící firmware, jak popisují části 2.2 a 6.4.

5.4.3 Význam hlášek při zavádění jádra

Během zavádění systému můžete vidět spoustaní hlášení typu can’t find not present, can’t initialize ... nebo this driver release depends on Většina těchto hlášení je neškodná. Výjimka je proto, že jádro instalacního systému je přeloženo tak, aby mohlo běžet na počítačích s odlišnými hardwarovými konfiguracemi a mnoha různými periferními zařízeními. Samozřejměže je nutné běžet jeho příklad na odpovídající zařízení. Všechna příkazy se úspěšně natáčí a pak je ukládáno do systému. Pokud se vám začne poražovat, zkuste všichňo začátku a také přidat vlastní jádro (viz 8.6).
5.4.4 Hlášení problémů s instalací

Jestliže se dostanete přes úvodní fázi zavedení systému, ale nemůžete instalaci dokončit, můžete použít menu Uložit záznamy pro pozdější ladění. Tato volba vám umožní uložit na disketu nebo zpřístupnit přes webové rozhraní chybové hlášky, stav systému a jiné užitečné informace, které vám mohou naznačit, v čem je problém a jak ho vyřešit. Tyto údaje nám také můžete poslat spolu s hlášením o chybě.

Další užitečné informace můžete najít během instalace v adresáři /var/log/ a později v novém systému ve /var/log/installer/.

5.4.5 Pošlete nám zprávu o instalaci

Pokud problém přetrvává, prosíme vás o zaslání zprávy o průběhu instalace. Zprávu o instalaci můžete zaslat i v případě, že vše proběhlo bez problémů — získáme tak přehled o nejrůznějších hardwarových konfiguracích.

Zprávu o instalaci budou publikovány v našem systému sledování chyb (BTS, Bug Tracking System) a budou přeposlány do veřejného diskusního listu. Proto se ujistěte, že použijete emailovou adresu, u které vám nevadí, že bude zveřejněna.

Máte-li funkční systém s Debianem, je nejjednodušší zaslat zprávu pomocí balíku reportbug. Nainstalujte si potřebné balíky (apt install installation-report reportbug), nastavte reportbug podle kapitoly 8.5.2 a spusťte příkaz reportbug installation-reports.

Při psaní zprávy můžete využít následující šablonu, kterou pak zašlete jako hlášení o chybě vůči pseudobalíku installation-report na adresu submit@bugs.debian.org.

```
Package: installation-reports

Boot method: <Jak jste zavedli instalaci? CD? Disketa? Sít?>
Image version: <Celé url, odkud jste stáhli obraz(y)>
Date: <Datum a čas instalace>

Machine: <Popis počítače (např. IBM Thinkpad T41)>
Processor:
Memory:
Partitions: <Výstup příkazu df -Tl;>
Output of lspci -knn (or lspci -nn):

Base System Installation Checklist:
[0] = OK, [E] = Error (please elaborate below), [ ] = didn’t try it

Initial boot: [ ]
Detect network card: [ ]
Configure network: [ ]
Detect CD: [ ]
Load installer modules: [ ]
Detect hard drives: [ ]
Partition hard drives: [ ]
Install base system: [ ]
Clock/timezone setup: [ ]
User/password setup: [ ]
Install tasks: [ ]
Install boot loader: [ ]
Overall install: [ ]

Comments/Problems:

<Zde se můžete rozepsat o způsobu instalace, zmínit nápady a postřehy, které vás napadly během instalace.>
```

V samotné zprávě podrobně popište problém, včetně posledních viditelných hlásek jádra v okamžiku zaseknutí počítače. Také nezapomeňte popsat kroky, kterými jste se do problémové části dostali.
Kapitola 6

Používáme instalační program Debianu

6.1 Základní principy

Instalační program Debianu se skládá z mnoha malých, jednoúčelových komponent. Každá komponenta má na starosti jeden krok instalace (od úvodního dialogu pro výběr jazyka až po závěrečný restart do nového systému). Komponenty se snaží pracovat samostatně, ale pokud je to nutné, zeptají se uživatele na další postup.

Otázky samotné mají přiřazeny různé priority. Uživatel si může nastavit úroveň zobrazených otázek, takže uživatel začátečník se nemusí zatěžovat nepodstatnými věcmi (instalační program dosáhne „rozumně“ hodnoty). Implicitně se debian-installer ptá pouze na otázky s vysokou prioritou, což vede k poměrně automatickému procesu s minimem uživatelských zásahů.

Pokud se vyskytne problém, zobrazí se chybová obrazovka s popisem problému a následně se objeví hlavní menu instalacího programu, kde můžete situaci napravit. V ideálním případě uživatel menu vůbec neuvidí a bude pouze odpovídat na otázky jednotlivých komponent. Oznámení o vážných problémech mají nastavenou „kritickou“ prioritu, tudíž budou zobrazeny vždy.

Některá výchozí nastavení instalacího programu lze změnit pomocí zaváděcích parametrů při startu debian-installeru. Například pokud si chcete vynutit statické nastavení síť (implicitně se používá DHCP nebo automatické nastavení IPv6), použijte parametr netcfg/disable_autoconfig=true. Seznam dostupných parametrů naleznete v kapitole 5.3.2.

Pokročilí uživatelé jistě ocení přístup do (standardně skrytého) menu, ve kterém mohou kontrolovat každý krok instalace. Menu vyvoláte tak, že při startu přidáte zaváděcí parametr priority=medium.

Jestliže váš hardware vyžaduje zadat při instalaci jaderných modulů nějaké parametry, je nutné spustit instalací program v „expertním“ režimu. Toho docílíte tak, že spustíte instalátor příkazem expert, nebo použijete zaváděcí parametr priority=low. Expertní režim vám dá plnou kontrolu nad instalací procesem.

Některé dialogy mohou obsahovat podrobnější nápovědu, což je indikováno ve spodním řádku obrazovky textem „F1 nápověda“.

Chybové hlášky jsou přesměrovány na čtvrtou konzolu (známou jako tty4). Do této konzoly se můžete přepnout klávesami Levý Alt-F4 (držte levou klávesu Alt a stiskněte funkční klávesu F4). Zpět do instalacího programu se vrátíte stiskem Levý Alt-F1.

6.1.1 Používání grafického instalátoru

Grafický instalátor pracuje úplně stejně jako instalátor textový a tedy můžete pro instalaci plně využít informací sepsaných ve zbytku příručky.

Preferujete-li ovládání pomocí klávesnice, měli být vėdėt dvė vėcė. Pro rozbalení/sbalení seznamu (např. při výběru kontinentů a zemí) můžete použít klávesy + a -. U otázek, kde můžete vybrat více než jednu možnost (např.
výběr úloh), musíte pro pokračování dále nejprve přeskákat tabulátorom na tlačítko Pokračovat a poté stisknout Enter. Pokud byste stiskli Enter rovnou, změnily byste výběr položky, ale na tlačítko Pokračovat by to nemělo žádný vliv.

Pokud dialog obsahuje další návodové zobrazi se tlačítko Nápověda. Kromě aktivování tlačítka (myší nebo klávesnicí) můžete nápovědu vyvolat také klávesou F1.

6.2 Úvod do komponent

V následujícím seznamu komponent instalacího programu je uveden pouze stručný popis komponenty. Detaily po-užití konkrétní komponenty jsou v 6.3.

main-menu Zobrazuje seznam komponent, které můžete spustit. Hlavní menu má prioritu „normální“, takže se ne-zobrazí při „vysoké“ (přednastaveno) nebo „kritické“ prioritě. Pokud se vyskytne problém, který vyžaduje zásah uživatele, je prioritu otázek dočasně snížena a objeví se menu, ve kterém můžete problém odstranit.

Zpět do menu se můžete dostat opakovaným stiskem tlačítka Jít zpět.

localechooser Umožní uživateli výběr jazyka, země a národního prostředí, které se použijí jak během instalace, tak v novém systému. Za předpokladu, že je překlad kompletní, bude instalační program zobrazovat zprávy ve vybraném jazyce. Pokud není, některé texty se zobrazí anglicky.

console-setup Zobrazí seznam klávesnic, ze kterých si můžete vybrat nejvhodnější model odpovídající připojené klávesnici.

hw-detect Automaticky rozpozná většinu zařízení připojených k počítači (síťové karty, pevné disky, PCMCIA).

cdrom-detect Vyhledá a připojí instalační CD Debianu.

netcfg Nastaví síťová připojení, aby se mohl zbytek systému instalovat ze síť.

iso-scan Hledá souborové systémy ISO-9660, které se nachází na pevném disku v podobě ISO obrazů.

choose-mirror Předloží seznam zrcadel s debianími archivy, ze kterého si můžete vybrat, odkud se balíky stáhnou.

cdrom-checker Zkontroluje integritu CD-ROM. Takto si můžete ověřit, že instalační CD-ROM nejsou poškozená.

lowmem Lowmem se snaží rozpoznat systémy s malou operační paměti a poté se v určitém okamžiku snaží z paměti odstranit nepotřebné části debian-installeru. Poznamenejte, že to provádí na úkor funkčnosti instalacího programu.

anna Anna’s Not Nearly APT, tedy v češtině Anna není ani zdáleka jako APT, instaluje stažené balíky.

user-setup Nastaví heslo uživatele root a vytvoří neprivilegovaného uživatele pro běžnou práci.

clock-setup Aktualizuje systémové hodiny a určí, zda jsou nastaveny na univerzální koordinovaný čas.

tzsetup Podle dříve zvolené kombinace jazyk/země nastaví časové pásmo.

partman Umožní vám rozdělit disky připojené k systému, vytvořit souborové systémy na vybraných oblastech a svázat je s připojenou úlohou. Součástí programu je i možnost automatického rozdělení disku, nebo podpora pro LVM. Partman je překladem Debianu upřednostňovaným dělicím programem.

partitioner Umožní vám rozdělit disky připojené k systému. Pro dělení se vybere program dle architektury vašeho počítače.

partconf Zobrazí seznam oblastí a podle vašich pokynů na nich vytvoří souborové systémy.

lvmcfg Pomůže s nastavením LVM (Logical Volume Manager, tedy český manažer logických svazků).

mdcfg Umožní vám nastavit softwarový RAID (Redundant Array of Inexpensive Disks). Tento softwarový RAID bývá obvykle lepší než levně (pseudohardwarové) RAID řadiče na novějších základních deskách.

base-installer Nainstaluje základní množinu balíků, které jsou potřeba pro samostatný běh Debianu.
apt-setup Nastaví apt, což se většinou děje automaticky na základě média, ze kterého je spuštěn instalační systém.

pkgsel Umožní vybrat a nainstalovat dodatečný software pomocí nástroje tasksel.

os-prober Umí rozpoznat operační systémy nainstalované na počítači. Tuto informaci pak předá následující komponentě (bootloader-installer), která vám může nabídnout možnost přidat objevené operační systémy do startovacího menu zaváděče. Takto si můžete při startu počítače vybrat, který operační systém chcete zavést.

bootloader-installer Nainstaluje na disk některý z dostupných zaváděčů. Tento krok je důležitý, protože bez něj byste museli Debian zavádět z diskety nebo CD-ROM. Mnoho zaváděčů vám při startu nabídně možnost zavést i jiné operační systémy.

shell Umožní vám spustit shell (buď z menu, nebo na druhé konzoli).

save-logs Umí na disketu, síť, pevný disk nebo jiné médium uložit informace, které se vám mohou hodit při analyzování případného problému.

6.3 Použití jednotlivých komponent

V této části podrobně popíšeme každou komponentu instalačního programu. Komponenty jsou seskupeny do celků podle kontextu, ve kterém se během instalace vyskytují. Poznamenejme, že při instalaci se nemusí vždy využít všechny komponenty — to závisí na způsobu instalace a na dostupném hardwaru.

6.3.1 Nastavení instalačního programu a rozpoznání hardwaru

Během této fáze si jistě všimnete, že debian-installer několikrát rozpoznává hardware. Poprvé je účelem řízení instalace, která by mohla obsahovat další části instalačního programu, tj. CD mechaniky nebo síťové karty. Další rozpoznávání hardwaru probíhá později, když se hledají pevné disky, protože před prvním rozpoznáváním ještě nemusí být k dispozici všechny ovladače.

Při rozpoznávání hardwaru si debian-installer kontroluje, zda ovladače pro nalezený hardware vyžaduje a zavede jeho rozšíření. Jestliže požadovaný firmware není dostupný, zobrazí se nabídka na jeho nahrání z výměnného média. Podrobnosti naleznete v části 6.4.

6.3.1.1 Kontrola dostupné paměti / nízkopaměťový režim

Jednou z prvních věcí, které debian-installer zkontroloval, je velikost operací paměti. Pokud má váš systém málo paměti, tak se tato komponenta pokusí provést změny v instalačním procesu tak, aby byla instalace možná i na tomto počítači.

Prvním krokem ke snížení paměťové náročnosti je vyhození všech překladů, což znamená že instalace bude probíhat pouze v angličtině. Samozřejmě, že po dokončení instalace si můžete systém lokalizovat dle potřeb (viz Lokalizace Debianu).

Pokud to nestačí, instalace přejde na dietu, při které nabízí pouze ty komponenty, které jsou nezbytné pro dokončení instalace. Tím se o něco sníží funkčnost systému. Sice budete mít možnost nabízet dodatečné komponenty ručně, ale může to být náročné, protože instalace se může zpomalit dle potřeb.

Když instalace probíhá v nízkopaměťovém režimu, je doporučeno použít odkládací oblast o velikosti nejméně 64–128 MB. Odkládací oblast se použije jako řešení v případě únavy systému. Instalace budou probíhat v omezené části instalačního oblasti.

Pokud to nestačí, instalace přejde na dietu, při které nabízí pouze ty komponenty, které jsou nezbytné pro dokončení instalace. Tím se o něco sníží funkčnost systému. Sice budete mít možnost nabízet dodatečné komponenty ručně, ale může to být náročné, protože instalace se může zpomalit dle potřeb.

Když instalace probíhá v nízkopaměťovém režimu, je doporučeno použít odkládací oblast o velikosti nejméně 64–128 MB. Odkládací oblast se použije jako řešení v případě únavy systému. Instalace budou probíhat v omezené části instalačního oblasti.

Pokud to nestačí, instalace přejde na dietu, při které nabízí pouze ty komponenty, které jsou nezbytné pro dokončení instalace. Tím se o něco sníží funkčnost systému. Sice budete mít možnost nabízet dodatečné komponenty ručně, ale může to být náročné, protože instalace se může zpomalit dle potřeb.
6.3. POUŽITÍ JEDNOTLIVÝCH KOMPONENT

Důraznější nízkopaměťový režim lze vynutit i v případech, kdy by podle dostupné paměti měla fungovat jeho méně náročná varianta nebo dokonce i běžná instalace. Stačí použít parametr „lowmem“, jak popisuje část 5.3.2.

6.3.1.2 Výběr místního prostředí

První uživateli viditelný krok instalace slouží k výběru národního prostředí, které se použije jak během instalace, tak později v novém systému. Nastavení se skládá z výběru jazyka, geografického umístění a tzv. locales.

Některé jazyky mají k dispozici více variant (např. portugalská a brazilská portugalština). Seznam je seřazen abecedně podle levého sloupce (anglických názvů). Drobnou výjimkou je položka „C“ na počátku seznamu.

Zvolíte-li ze seznamu položku „C“, bude instalace pokračovat v angličtině a instalovalý systém nebude mít podporu pro národní prostředí, protože se nenainstaluje balík locales. Tato volba může být zajímavá pro některé správce, kteří tvrdí, že lokalizace nemá na serveru co dělat.

6.3.1.3 Výběr klávesnice

Klávesnice bývají obvykle přizpůsobeny znakům používaným v daném jazyce. Vyberte klávesnici, která odpovídá vašemu národnímu rozložení, nebo je alespoň velmi podobná. Po skončení instalace si můžete vybrat vhodné klávesové rozložení z mnohem většího spektra (jako uživatel root spusťte příkaz dpkg-reconfigure keyboard-configuration).

Šipkami přesuňte kurzor na vybrané klávesové rozložení a stiskněte Enter. (Šipky by měly být na všech klávesnicích na stejném místě, takže jsou nezávislé na zvoleném rozložení.)

6.3.1.4 Hledání instalačního ISO obrazu

Při instalaci metodou hd-media nastane okamžik, kdy budete muset instalační program navést k ISO obrazu instalačního systému Debianu, na kterém se nachází zbytek instalací souborů. Přístup obraz nemuselí hledat ručně, pomůže vám s tímto úkolem komponenta iso-scan.

1 Ve výjimečných případech se může stát, že ve vybraném jazyce nebudou některé texty instalace přeloženy — pak se zobrazí anglicky.
2 Technicky řečeno: pokud k jazyku existuje více locales s různými kódy zemí.
KAPITOLA 6. POUŽÍVÁME INSTALAČNÍ HERRUMENTY

6.3. POUŽITÍ JEDNOTLIVÝCH KOMPONENT

iso-scan nejprve připojí všechna bloková zařízení (např. diskové oblasti), na kterých se nachází známý souborový systém a poté na nich hledá soubory končící příponou .iso (resp. .ISO). Po nalezení každého iso obrazu si iso-scan zkонтroluje jeho obsah a zjistí, zda se jedná o plný obraz instalačního CD. Pokud ano, máme vyhráno a instalace může pokračovat. V opačném případě se hledá další obraz. Pokud toto hledání neuspěje, ještě není vše ztracené. První pokus totiž kvůli rychlosti prohledá pouze kořenový adresář a první úroveň jeho podadresářů. Tzn. nalezne /cokoliv.iso, /data/cokoliv.iso, ale ne /data/tmp/cokoliv.iso.

Selhalo-li tedy první hledání, iso-scan se zeptá, zda chcete spustit důkladnější proces. Tento druhý pokus se nedivá pouze do nejvyšších adresářů, ale opravdu prohledá celý disk.

Pokud iso-scan neuspěje ani na druhý pokus, vratte se zpět k původním operačním systému a zkontrolujte, zda má soubor správnou příponu (končící na .iso), zda je umístěn na souborovém systému, který umí debian-installer rozpoznat a zda není iso obraz poškozený (zkontrolujte kontrolní součet). Zkušenější unixoví uživatelé mohou v prvním případě přepnut do druhé konzoly a pokračovat znewuzením.

6.3.1.5 Nastavení sítě

Pokud na začátku toho kroku instalátor zjistí, že máte více síťových rozhraní, budete si muset vybrat jedno, které použijete jako hlavní, tj. to, ze kterého budete instalovat. Zbylé rozhraní zůstanou nenastavena a budete je muset nastavit po skončení instalace ručně — viz manuálová stránka interfaces(5).

6.3.1.5.1 Automatické nastavení sítě

Implicitně se debian-installer snaží nastavit síť automaticky přes DHCP. Pokud DHCP uspěje, vše je nastaveno. Jestliže DHCP skončí s chybou, můžete smyšlet o podíve kolem a doprodelovat síťové konfigurace (včetně odzadování cesty ke serverům DNS a dalším řízením). Jestliže DHCP selhává, může to být původně příčinou výběr DHCP servera, který nezvládne potřebné konfigurace.

Pokud DHCP uspěje, můžete nastavení ověřit pomocí nástroje netcfg. Ověřte, zda jednotlivá síťová konfigurace odpovídají předchozímu nastavení.

6.3.1.5.2 Ruční nastavení sítě

Při ručním nastavení sítě vás netcfg vyzve k zadání údajů z 3.3 (IP adresa, Síťová maska, Brána, Adresy jmenných serverů a Název počítače). Pokud k instalaci používáte bezdrátové připojení, budete dotázané ještě na Bezdrátové ESSID (název bezdrátové sítě) a WEP klíč nebo přístupovou frázi WPA/WPA2.

POZNÁMKA

6.3.1.5.3 IPv4 a IPv6

6.3.1.6 Výběr síťového zrcadla

Tato komponenta se spustí pouze v případě, že instalací program potřebuje nahrát své další komponenty nebo základní systém ze sítě.

Nejprve se zobrazí seznam zemí ze zrcadly Debianu, přičemž předvolena bude země, kterou jste vybrali na začátku instalace.
6.3. POUŽITÍ JEDNOTLIVÝCH KOMPONENT

Po výběru země se nabídne seznam zrcadel v dané zemi. Dobrou volbou bývají „hlavní“ zrcadla, která mají tvar ftp.kód_země.debian.org.

Pokud nechcete použít oficiální zrcadlo, vyberte v seznamu zemí možnost zadat informace ručně. Budete dotážáni na jméno počítače, ze kterého se mají části Debianu stáhnout.

Instalujete-li v expertním režimu, nebo pokud snížíte prioritu otázek na střední, budete moci navíc zvolit časové pásmo UTC (Univerzální koordinovaný čas).

Pokud z nějakého důvodu chcete po instalovaný systém použít časové pásmo, které neodpovídá zvolenému místu, máte dvě možnosti.

1. Nejjednodušší možností je počkat s výběrem jiného časové pásmo až po dokončení instalace. V nainstalovaném systému pak stačí spustit příkaz:

 # dpkg-reconfigure tzdata

2. Alternativně můžete zadat časové pásmo na úplném začátku instalace přidáním zaváděcího parametru timezone=časové_pásma, kde hodnota by mělo být platné časové pásmo, například Europe/Prague nebo UTC.

Pro automatizované instalace můžete požadované časové pásmo nastavit také pomocí přednastavení (viz dodatek B, přesněji část B.4.6).
6.3.2.2 Vytvoření uživatelského účtu

Nyní nastal čas rozdělit pevné disky. Pokud se při dělení disků zrovna necítíte silní v kramflecích, nebo pokud chcete dobrovolně rozdělit buď celý disk, nebo dobrovolně volitelné místo na disku. Pokud nechcete o rozdělování disků dozvědět více, podívejte se do dodatku *C*.

Instalační systém umožňuje použít různé druhy pokročilého dělení disku a zajímavých úložných zařízení, často i kombinované.

- **Logical Volume Management (LVM)**
- **Softwarový RAID**
- **Šifrování**
- **Multipath** (experimentálně)

Podporovány jsou RAID úrovně 0, 1, 4, 5, 6 a 10.

Instalační systém umožňuje použít různé druhy pokročilého dělení disku a zajímavých úložných zařízení, často i kombinované.

- **Logical Volume Management (LVM)**
- **Softwarový RAID**
- **Šifrování**
- **Multipath** (experimentálně)

Podporovány jsou RAID úrovně 0, 1, 4, 5 a 10.

Instalační systém umožňuje použít různé druhy pokročilého dělení disku a zajímavých úložných zařízení, často i kombinované.

- **Logical Volume Management (LVM)**
- **Softwarový RAID**
- **Šifrování**
- **Multipath** (experimentálně)

Podporovány jsou RAID úrovně 0, 1, 4, 5 a 10.

Instalační systém umožňuje použít různé druhy pokročilého dělení disku a zajímavých úložných zařízení, často i kombinované.

- **Logical Volume Management (LVM)**
- **Softwarový RAID**
- **Šifrování**
- **Multipath** (experimentálně)

Podporovány jsou RAID úrovně 0, 1, 4, 5 a 10.

Instalační systém umožňuje použít různé druhy pokročilého dělení disku a zajímavých úložných zařízení, často i kombinované.

- **Logical Volume Management (LVM)**
- **Softwarový RAID**
- **Šifrování**
- **Multipath** (experimentálně)

Podporovány jsou RAID úrovně 0, 1, 4, 5 a 10.

Instalační systém umožňuje použít různé druhy pokročilého dělení disku a zajímavých úložných zařízení, často i kombinované.

- **Logical Volume Management (LVM)**
- **Softwarový RAID**
- **Šifrování**
- **Multipath** (experimentálně)

Podporovány jsou RAID úrovně 0, 1, 4, 5 a 10.

KAPITOLA 6. POÚŽÍVÁME INSTALAČNÍ ...

6.3. POÚŽITÍ JEDNOTLIVÝCH KOMPONENT

• jffs2
 Na některých systémech se používá pro čtení flash paměti. Není možné vytvářet nové souborové systémy tohoto typu.

• FAT16, FAT32

6.3.3.2 Asistované dělení

Zvolíte-li automatické rozdělování, měli byste mít na výběr několik možností: vytvořit oblasti přímo na disku (klasický způsob), použít Logical Volume Management (LVM), nebo použít šifrované LVM\(^5\). Ve druhém a třetím případě vytvoří instalátor většinu oblastí uvnitř jedné veliké; výhoda je ta, že oblasti uvnitř této veliké oblasti pak můžete relativně jednoduše zvětšovat a případně zmenšovat. U šifrovaného LVM bude tato veliká oblast šifrovaná a pro přístup k datům na ni uloženým budete muset znát přístupovou frázi. Šifrované LVM má ještě jednu výhodu, a to tu, že před použitím se celá oblast přepíše náhodnými daty, takže nebude možné rozeznat, které části oblasti se aktuálně používají, a také tím zrušíte stopy po předchozích instalacích. Musíte však počítat s tím, že mazání zabere určitý čas, který může být u větších oblastí docela značný.

POZNÁMKA

(Šifrované) LVM nemusí být k dispozici na všech architekturách.

POZNÁMKA

Při automatickém rozdělení pomocí LVM (nebo šifrovaného LVM), se budou muset na zvolený disk zapsat některé změny provedené v tabulce oblastí. Tyto změny z disku efektní smažou všechna stávající data a tento krok nebudete moci vrátit znovu. Před samotným zápisem však budete pro jistotu dotázáni.

<table>
<thead>
<tr>
<th>Způsob dělení</th>
<th>Minimalní místo</th>
<th>Vytvořené oblasti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Všechny soubory v jedné oblasti</td>
<td>600MB</td>
<td>/. , swap</td>
</tr>
<tr>
<td>Samostatná oblast pro /home</td>
<td>500MB</td>
<td>/. , home , swap</td>
</tr>
<tr>
<td>Samostatné oblasti pro /home, /var a /tmp</td>
<td>1GB</td>
<td>/. , home , /var , /tmp , swap</td>
</tr>
</tbody>
</table>

Pokud jste zvolili automatické rozdělení pomocí (šifrovaného) LVM, vytvoří se také malá oblast pro /boot. Ostatní oblasti, včetně odkládacích, budou vytvořeny uvnitř LVM.

Na další obrazovce se zobrazí tabulka rozdělení disku(ů) společně s informacemi o souborových systémech a připojených bodech. Seznam oblastí může vypadat třeba takto:

<table>
<thead>
<tr>
<th>SCS11</th>
<th>(0,0,0)</th>
<th>sda</th>
<th>6.4 GB</th>
<th>WDC AC36400L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. primární</td>
<td>32.4 MB</td>
<td>B ext2</td>
<td>/boot</td>
<td></td>
</tr>
<tr>
<td>2. primární</td>
<td>551.0 MB</td>
<td>swap</td>
<td>swap</td>
<td></td>
</tr>
<tr>
<td>3. primární</td>
<td>5.8 GB</td>
<td>ntfs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pri/log</td>
<td>8.2 MB</td>
<td>VOLNÉ MÍSTO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^5\) Instalátor zašifruje skupinu svazků pomocí 256 bitového klíče AES a využije pro to „dm-crypt“, který je součástí linuxového jádra.
KAPITOLA 6. POUŽÍVÁME INSTALAČNÍ

6.3. POUŽITÍ JEDNOTLIVÝCH KOMPONENT

SCSI2 (1,0,0) (hdb) - 80.0 GB ST380021A
1. primární 15.9 MB ext3
2. primární 996.0 MB fat16
3. primární 3.9 GB xfs /home
5. logická 6.0 GB f ext4 /
6. logická 1.0 GB f ext4 /var
7. logická 498.8 MB ext3
8. logická 551.5 MB f swap swap
9. logická 65.8 GB ext3

Tímto je automatické rozdělení disků u konce. Pokud jste s navrženým rozdělením spokojeni, stačí z nabídky vybrat Ukončit rozdělování. V opačném případě můžete zvolfit možnost Vrátit zpět změny provedené na oblastech a znovu spustit automatické rozdělování, případně podle návodu níže ručně doladit změny v navrhovaném rozdělení disku.

6.3.3.3 Ruční dělení
Zvolíte-li ruční rozdělení disků, objeví se podobná obrazovka jako o dva odstavce výše, ale zatím nebude mít přiřazené přípojně body.

Pokud chcete v tabulce něco změnit, vyberte ze seznamu objekt, který chcete upravit a stiskněte Enter. Objektem je měněn disk, oblast nebo volné místo. S každým objektem můžete provádět různé akce.

Nejůzitejší volbou Použít jako: můžete změnit souborový systém dané oblasti včetně možnosti použít oblast jako odkládací prostor, softwarevý RAID, LVM nebo ji použít vůbec. Až budete s oblasti spokojeni, vyberte položku Skončit s nastavováním oblastí, což vás vrátí zpět do hlavní obrazovky rozdělování disků.

Pokud se rozhodnete, že chcete něco změnit na stávající oblasti, jednoduše ji vyberte a stiskněte Enter. Ocitnete se ve stejné obrazovce jako při vytváření nové oblasti a tedy můžete ji stejně možnosti nastavení. Jedna věc, která nemusí být na první pohled zcela zřejmá je fakt, že u veškeré oblasti můžete změnit jejich velikost - stačí vybrat položku, která zobrazuje velikost oblasti. Změna velikosti by měla fungovat minimálně se souborovými systémy fat16, fat32, ext2, ext3 a swap. Pokud se vám oblast nelíbí, můžete ji také smazat.

Nezapomeňte vytvořit aspoň dvě oblasti — jednu pro odkládací prostor ("swap") a jednu pro kořenový souborový systém (ktorý musí být připojen jako /). Bez připojeného kořenového souborového systému vám partman nedovolí pokračovat. Chcete-li s rozdělovacím pomocí, můžete kdykoliv z rozdělovačního menu vybrat možnost Automaticky rozdělit disk nebo Automaticky rozdělit volné místo.

Jestliže budete ve vytváření své tabulky oblastí přišli kreativní a uvedete ji do nepoužitelného stavu, můžete se vždy vrátit do výchozího bodu vytvořením nové oblasti. Výsledek se však výhodně liší od progrese ve vytváření nového disku a tedy můžete této vzdání stykat se.

partman samotný je poměrně malý a hloupý program, avšak jeho schopnosti mohou být rozšiřovány moduly instalováním. Pokud tedy nevidíte všechny mužních modulu, můžete je získat od architektury.

Až budete s rozdělením disků hotovi, vyberte z nabídky Ukončit rozdělování a zaplatí změny na disk. Zobrazi se seznam provedených změn a budete požádáni o potvrzení, zda opravdu chcete vytvořit nové souborové systémy.

6.3.3.4 Nastavení vicediskových zařízení (Softwarevý RAID)
Jestliže máte ve svém počítači více než jeden pevný disk, můžete vytvořit vášní souborový systém (MD) a/nebo kořenový souborový systém (MD) nebo podle své nejznámější.

V určitých případech (jako je použití LVM) nebudete moci vrátit všechny změny, protože některé z nich jsou již zapsány na disku. Naštěstí vás však instalací program bude před každou trvalou změnou varovat.

Ve skutečnosti můžete MD vytvořit i z oblastí ležících na jednom fyzickém disku, ale nezískáte tím žádnou popisovanou výhodu.
varianty softwarový RAID).

Jednoduše řečeno je MD množina oblastí umístěných na různých discích. Tyto oblasti se v mdefg spojí dohromady a vytvoří logické zařízení. Toto zařízení pak můžete používat jako běžnou oblast (například v partmanu ji můžete zformátovat, přiřadit ji přípojný bod atd.).

Co vám tato operace přinese, závisí na typu vícídiskového zařízení, které vytváříte. Momentálně jsou podporovány:

RAID0

Je hlavně zaměřen na rychlost. RAID0 rozdělí všechna příchozí data na proužky (stripes) a ty pak rovnoměrně rozmístí na každý disk v poli. To může zvýšit rychlost čtení a zápisu, ovšem pokud jeden z disků odejde do věčných lovišť, odejde s ním všechna data (část informace je stále na zdravém disku (discích), zbývající část byla na vadném disku).

Typicky se RAID0 používá pro oblast na střihání videa.

RAID1

Je vhodný systémy, kde je spolehlivost na prvním místě. Skládá se z několika (obvykle dvou) stejně velkých oblastí, kde každá oblast obsahuje naprosto shodná data. Prakticky to znamená tři věci. Za prvé, pokud jeden z disků selže, stále máte data zrcadlena na zbývajících discích. Za druhé, k dispozici máte pouze část celkového rozsahu informatione (přesněji to je velikost nejmenší oblasti v poli). Za třetí, pokud se vyskytne větší počet požadovaných disků, můžete vytvořit zápisový server, který může rozdělit data rovnoraměrně do všech disicích v poli.

Volitelně můžete v poli rezervní disk, který se normálně nevyužívá a v případě výpadku jednoho z disků okamžitě nahradí jeho místo.

RAID5

Je rozumným kompromisem mezi rychlostí, spolehlivostí a redundancí dat. RAID5, podobně jako RAID0, rozdělí všechna příchozí data na proužky (stripes) a poté je rovnoměrně rozmístí na disky v poli. Oproti RAID0 je zde však podstatný rozdíl v tom, že se samotná data zapisují pouze na n - 1 disků. Zbývající n disk nezahálí, ale zapisuje se na jeho paritní informace. Paritní disk není statický (to by se pak jednalo o RAID4), ale pravidelně se posouvá tak, aby byly paritní informace rozmístěny rovnoměrně na všech discích v poli. V případě výpadku jednoho z disků se může chybějící informace dopočítat ze zbývajících dat a jejich parity. RAID5 se musí skládat z alespoň trí aktivních zařízení. Volitelně můžete v poli rezervní disk, který se normálně nevyužívá a v případě výpadku jednoho z disků okamžitě nahradí jeho místo.

Jak je vidět, RAID5 nabízí podobný stupeň spolehlivosti jako RAID1, ovšem dosahuje menší míry redundance dat. Čtecí operace budou stejně rychlé jako na RAID0, ovšem zápis bude mírně pomalejší kvůli počítání paritních informací.

RAID6

Je podobný jako RAID5, ale používá pro paritní informace dva disky, což vede k tomu, že přežije výpadek dvou disků.

RAID10

RAID10 se dá použít pro dosažení spolehlivosti a redundance bez nutnosti počítání parit.

<table>
<thead>
<tr>
<th>Typ</th>
<th>Minimálně zařízení</th>
<th>Rezervní zařízení</th>
<th>Přežije výpadek disku?</th>
<th>Dostupné místo</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID0</td>
<td>2</td>
<td>ne</td>
<td>ne</td>
<td>velikost nejmenšího zařízení krát počet aktivních zařízení v in RAIDu</td>
</tr>
<tr>
<td>RAID1</td>
<td>2</td>
<td>volitelně</td>
<td>ano</td>
<td>velikost nejmenšího zařízení v RAIDu</td>
</tr>
<tr>
<td>Typ</td>
<td>Minimálně zařízení</td>
<td>Rezervní zařízení</td>
<td>Přežije výpadek disku?</td>
<td>Dostupné místo</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>RAID5</td>
<td>3</td>
<td>volitelně</td>
<td>ano</td>
<td>velikost nejmenšího zařízení krát (počet akt. zařízení v RAIDu - 1)</td>
</tr>
<tr>
<td>RAID6</td>
<td>4</td>
<td>volitelně</td>
<td>ano</td>
<td>velikost nejmenšího zařízení krát (počet akt. zařízení v RAIDu - 2)</td>
</tr>
<tr>
<td>RAID10</td>
<td>2</td>
<td>volitelně</td>
<td>ano</td>
<td>součet všech oblastí děleno počet kopií (standardně dvě)</td>
</tr>
</tbody>
</table>

Chcete-li se o Softwarovém RAIDu dozvědět více, rozhodně se podívejte na Software RAID HOWTO.

Pro vytvoření vizualizativého zařízení musí být oblasti, ze kterých se má zařízení skládat, označeny pro použití v RAIDu. (To se provádí v partmanu v menu Nastavení oblasti, kde byste měli nastavit položku Použít jako: na hodnotu fyzický svazek pro RAID.)

POZNÁMKA

Při rozdělování disku počítejte s tím, že při použití RAIDu pro kořenový souborový systém (/) je obvykle potřeba vytvořit samostatnou oblast pro /boot. Většina zařízavících podporuje zrcadlený RAID1 (pozor, ne RAID0), takže je např. možné použít RAID5 pro / a RAID1 pro /boot.

Na první obrazovce mdcfg jednoduše vyberte Vytvořit MD zařízení. Bude vám nabídnut seznam podporovaných typů vícidiskových zařízení, ze kterého si jeden vyberte (např. RAID1). Co bude následovat, závisí na typu vybraného zařízení.

- RAID0 je velmi jednoduchý — vaším jediným úkolem je vybrat z nabidnutoho seznamu RAIDových oblastí ty, které budou tvořit pole.
- RAID1 je trošku složitější. Nejprve musíte zadat počet aktivních a počet rezervních zařízení (oblastí), které budou tvořit RAID. Dále musíte ze seznamu dostupných RAIDových oblastí vybrat ty, které mají být aktivní a poté ty, které mají být rezervní. Počty vybraných oblastí se musí rovnat číslům, která jste zadali před chvílí. Pokud uděláte chybu a vyberete jiný počet oblastí, nic se neděje — debian-installer vás nenechá pokračovat, dokud vše nespravíte.
- RAID5 se nastavuje stejně jako RAID1 s drobnou výjimkou — musíte použít nejméně tři aktivní zařízení.
- RAID5 se nastavuje stejně jako RAID1 s drobnou výjimkou — musíte použít nejméně čtyři aktivní zařízení.
- Základní nastavení RAID10 je stejně jako u RAID1. V experimentálním režimu debian-installer budete navíc dotázaní na na rozložení pole. Rozložení se skládá ze dvou částí. První část určuje typ rozložení, druhá pak počet kopií každého bloku dat. Typ rozložení může být n (pro blízké kopie), f (pro vzdálené kopie) nebo o (pro offsetové kopie). Počet kopií musí být menší nebo roven počtu zařízení, aby bylo zaručeno, že se každá kopie zapíše na jiné zařízení.

Poznamenejme, že můžete používat více typů vizualizativých zařízení najednou. Například pokud máte pro MD vyhraněny tři 200 GB pevné disky a na každém můžete dvě 100 GB oblasti, můžete z prvních oblastí všech disků sestavit pole RAID0 (rychlá 300 GB oblast pro stříhání video) a ze zbývajících tři oblastí (2 aktivní a 1 rezervní) sestavit RAID1 (rozumně spolehlivá 100 GB oblast pro domovské adresáře uživatelů).

Až nastavite vizualizativní zařízení podle chuti, můžete ukončit mdcfg a vratit se tak do partmanu, kde těmto zařízením přiřadíte obvyklé atributy jako souborové systémy a přípojné body.
6.3.3.5 Nastavení manažera logických svazků (LVM)

Pracujete-li si počítač na pozici správce systému nebo pokročilého uživatele, jistě jste zažili situaci, kdy na jedné oblasti docházelo volné místo, zatímco jiná oblast jej měla nadbytek. Zpravidla pak nastouplo nesouhlasí, přesouvání a propojování adresářů přes symbolické odkazy.

Abyste se budoucně předešli popsané situaci, můžete použít manažer logických svazků (Logical Volume Manager). Co takový manažer dělá? Jednoduše řečeno, spojí diskové oblasti (v žargonu LVM se nazývají fyzické svazky) do virtuálního disku (tzv. skupina svazků), který pak můžete rozdělit na virtuální oblasti (logické svazky). Jak se tyto virtuální oblasti liší od těch fyzických, na kterých jsou vybudovány? Pointa je v tom, že logické svazky (a samozřejmě pod nimi ležící skupiny svazků) se mohou rozprostírat přes několik fyzických disků.

Například nyní, když si všimnete, že potřebujete více místa na starší 160 gigabajtové oblasti s domovskými adresáři, můžete jednoduše dokoupit nový 300GB disk, připojit jej ke stávající skupině svazků a rozšířit logický svazek, který slouží jako oblast pro /home. Výsledkem bude jedna velká, 460 gigabajtová oblast, kterou uživatelům zde chcete vystačit. Popsaný příklad je samozřejmě hodně zjednodušený, ale pěkně nastiňuje využití LVM v praxi. Pokud jste jejště nečtli, měli byste si projít LVM HOWTO.

Nastavení LVM v instalačním programu Debianu je poměrně jednoduché a plně integrované do partmanu. Nejprve musíte označit fyzické oblasti, které mají být spravovány přes LVM. To se provádí v menu Nastavení oblasti, kde měli nastavit položku Použít jako: na hodnotu fyzický svazek pro LVM.

Po návratu na hlavní obrazovku partmanu uvidíte nové menu Nastavit manažer logických svazků (LVM). Po jeho výběru budete nejprve dotázáni, abyste potvrdili všechny dosud neprovedené změny v tabulce oblastí (pokud takové existují) a vzápětí se objeví konfigurační menu LVM, nad kterým je zobrazen krátký přehled současného nastavení. Menu samotné je kontextově závislé a zobrazuje pouze akce použitelné v daný okamžik. Mezi dostupné akce patří:

- Zobrazit podrobné nastavení, což zobrazí strukturu LVM zařízení včetně jmen a velikostí fyzických svazků, logických svazků a samořežejmé skupin svazků.
- Vytvořit skupinu svazků z dosud nevyužitých fyzických svazků.
- Zrušit skupinu svazků a uvolnit tak fyzické svazky, ze kterých se skupina skládá.
- Rozšířit skupinu svazků o nevyužité fyzické svazky.
- Zmenšit skupinu svazků o některé fyzické svazky a tudíž je dát k dispozici jiným skupinám, nebo z nich v partmanu udělat „běžné“ oblasti.
- Vytvořit logický svazek z volného místa ve skupině svazků.
- Zrušit logický svazek ve skupině svazků.
- Skončit, čímž se vrátíte zpět do hlavního rozdělovacího menu.

Poznámka

Při vytváření skupiny svazků nebo logického svazku budete požádáni o zadání jejich názvu. Tyto názvy by měly být krátké a výstižné, protože v běžícím systému se podle těchto názvů vytvoří nová bloková zařízení v adresáři /dev/, která se budou používat pro přímý přístup k daným logickým svazkům. Tedy tam, kde by se běžně používalo např. /dev/hda3 se nyní použije /dev/mapper/jmskupiny-jmsvazku. (Pěkně to bude vidět v souboru /etc/fstab nebo na výstupu příkazů mount a df.)

Až budete s nastavením LVM spokojeni, vraťte se zpět do partmanu, kde uvidíte všechny vytvořené logické svazky. Logické svazky se chovají jako obyčejné oblasti, tudíž už asi víte, co s nimi máte dělat.9

9 Nápověda: vytvořit souborové systémy, vybrat připojné body, apod.
6.3.3.6 Nastavení šifrovaných svazků

Největší smysl má šifrování oblasti s domovskými adresáři, kde se nachází vaše soukromá data, a oblasti s oddělujícím prostorem, kde se mohou dočasně ocitnout citlivá data z operační paměti. Samozřejmě vám nic nebrání šifrovat libovolnou jinou oblast, například /var, kam si ukládají databázové servery své databáze, poštovní servery poštu, tiskové servery frontu úlohu, nebo třeba adresář /tmp, kde se mohou nacházet potenciálně zajímavá data. (dočasné pracovní kopie vašich dokumentů). Existují i lidé, kteří si šifrují celý systém. Jedinou výjimkou, která musí zůstat nešifrovaná, je oblast obsahující /boot, protože momentálně neexistuje způsob, jak zavést jádro ze šifrované oblasti.

Rychlost čtení/zápisu ze šifrovaných oblastí bude o něco nižší než rychlost na nešifrovaných oblastech, protože se data musí odšifrovat/zašifrovat při každém čtení a zápisu. Konkrétní vliv na rychlost závisí na výkonu procesoru, zvolené šifře a délce klíče.

Abyste mohli využívat šifrování, musíte vybrat stávající oblast, což může být běžná oblast, logický svazek LVM nebo svazek RAID. (Pokud ještě oblast neexistuje, musíte ji nejprve vytvořit z dostupného volného místa.) V menu pro nastavení oblasti nastavte možnost Použít jako: na hodnotu fyzický svazek pro šifrování. Zbytek menu se poté změní a bude obsahovat několik kryptografických nastavení pro danou oblast.

debian-installer podporuje šifrování pomocí dm-crypt (součástí novějších Linuxových jader, schopný hostit fyzické svazky pro LVM).

Podívejte se na možnosti, které jsou k dispozici, pro šifrování přes Device-mapper (dm-crypt). Pokud jste na pochybách, ponechejte výchozí hodnoty, protože ty byly zvoleny s ohledem na bezpečnost. Neuvážená kombinace voleb může způsobit nízkou kvalitu šifrování, které tak vytváří pouze falešný pocit bezpečí.

Algoritmus IV: xts-plain64 Initializační vektor nebo též algoritmus IV se používá v kryptografii pro zajištění, že aplikováním šifry na stejný nezašifrovaný text za použití stejného klíče vždy dostaneme jiný šifrovaný text. Cílem je zabránit útočníkovi v odvození informací na základě opakujících se vzorků v šifrovaných datech. Z nabízených alternativ je xts-plain64 momentálně nejméně zranitelný vzhledem ke známým útokům. Ostatní možnosti použijete pouze v případě, kdy potřebujete zaručit zpětnou kompatibilitu s dříve instalovaným systémem, který neumí používat novější algoritmy.

Šifrovací klíč: Přístupová fráze Zde si můžete zvolit typ šifrovacího klíče pro toto oblast.

Přístupová fráze: Šifrovací klíč bude vypočítán na základě textové fráze, kterou zadáte později.

Náhodný klíč: Nový šifrovací klíč bude vytvořen z náhodných dat pokudkáže, když se pokusíte šifrovat oblast použít poprvé od startu systému. Jinými slovy po každém vypnutí/restartu systému bude oblasti ztracen, protože se klíč z oblasti smaže. (Samozřejmě že se můžete pokusit uhádnout klíč hrubou silou, ale pokud v šifrovacím algoritmu není nějaká neznámá slabina, během našeho života se to nepodaří.)
Náhodné klíče se hodí pro odkládací oblasti, protože se pak nemusíte trápit s pamatováním dalších přístupových frází, nebo s ručním mazáním dat z odkládací oblasti před každým vypnutím počítače. Na druhou stranu to také znamená, že nebudeš moci využít vlastnost „uspání na disk“, která je součástí novějších linuxových jader, protože při následujícím startu nebude možno obnovit obsah operační paměti, který byl odložen do odkládací oblasti.

Smazat data: ano

Určuje, zda se má před samotným zašifrováním oblasti přepsat její obsah náhodnými znaky. Je doporučeno tuto možnost povolit, protože jinak by mohli útočníci rozpoznat, které části oblasti se používají a které ne. Kromě toho tím ztížíte vyňášení dat, která mohla v oblasti zůstat po předchozí instalaci.

Po výběru požadovaných parametrů vaší šifrované oblasti se vraťte zpět do hlavního rozdělovacího menu, kde by měla nově vzniknout položka nazvaná Nastavit šifrované svazky. Po jejím výběru budete požádáni o povolení smazat data na oblastech, které jste vybrali. To bude zopakováno pro každou oblast označenou pro šifrování.

Po návratu do hlavního rozdělovacího menu uvidíte všechny šifrované svazky jako další oblasti, které můžete nastavit úplně stejně jako běžné oblasti. Následující příklad ukazuje svazek zašifrovaný pomocí dm-crypt.

```
Šifrovaný svazek (sda2_crypt) - 115.1 GB Linux device-mapper
#1 115.1 GB F ext3
```

Nyní je čas přiřadit svazkům přípojné body a případně změnit ostatní parametry, pokud vám nevyhovují (souborový systém, rezervované bloky, atd.).

Jedna věc, kterou byste si měli poznačit do budoucna, jsou kombinace identifikátorů v závorkách (v tomto příkladu sda2_crypt) a přípojných bodů, které jsou ke každému šifrovanému svazku připojeny. Tato informace se vám bude hodit později, až budete zavádět svůj nový systém. Rozdíly mezi běžným zaváděním systému a zaváděním se šifrovanými svazky bude včas popsáno v kapitole 7.2.

Až budete s rozdělením disku spokojeni, můžete pokračovat v instalaci.

6.3.4 Instalace základního systému

Přestože je toto část nejméně problematická, zabere dosti času, protože musí stáhnout, ověřit a rozbalit celý základní systém. Pokud máte pomalý počítač a/nebo síťové připojení, může to chvíli trvat.

Během instalace základního systému jsou hlásky o rozbíhání a nastavování balíků přesměrovány na třetí virtuální konzoli tty4. Můžete se na ni přepnout klávesami Levý Alt-F4, zpět se dostanete kombinací Levý Alt-F1.

Tyto hlásky jsou také uloženy do souboru /var/log/syslog, což se může hodit v případě, že instalujete systém přes sériovou konzoli.

Během instalace se nainstaluje i jádro Linux. Při standardní prioritě vám debian-installer vybere jádro, které nejvíce odpovídá vašemu hardwaru. Při nižších prioritách si budete moci sami vybrat ze seznamu dostupných jader.

10 Obecně se vždy, že agenti z třípísmenných agentur umí obnovit data z magnetooptických médií i po několika přepsáních.
Při instalaci balíků se automaticky nainstalují také balíky, které jsou instalovanými balíku doporučovány. Doporučené balíky nejsou pro funkčnost zvoleného software striktně vyžadovány, nicméně nějakým způsobem rozšiřují jeho funkcionality a v očích správců balíků by se měly instalovat společně.

6.3. POUŽITÍ JEDNOTLIVÝCH KOMPONENT

6.3.5 Instalace dodatečného softwaru

V tento okamžik máte sice použitelný, nicméně poněkud omezený systém. Většina uživatelů si bude chlit do systému doinstalovat další software a upravit tak systém svým potřebám, s čímž vám instalátor ochotně pomůže. Jestliže máte pomalejší počítač nebo síťové připojení, může tento krok trvat ještě déle než instalace základního systému.

6.3.5.1 Nastavení apt

Uživatelé obvykle instalují balíky programem `apt` z balíku `apt`, případně některou nadstavbou typu `aptitude` nebo `synaptic`.11 Uživatelé si tyto nadstavby oblibili pro jejich pokročilé funkce jako je hledání dle různých kritérií nebo interaktivní řešení závislostí.

Aby `aptitude` nebo `apt` věděli, odkud mají získávat balíky, musí se nastavit. S tím pomůže komponenta `apt-setup`, která výsledky svého snažení zapíše do souboru `/etc/apt/sources.list` a který můžete po instalaci prozkoumat a v případě potřeby upravit.

Instaluji-li se výchozí prioritou otázek, instalátor nastaví většinu věcí automaticky na základě typu instalace (síťová, CD/DVD) a drží zodpovězených otázek. Jestliže jste například zavedli instalaci ze sítě, zvolili jako výchozí jazyk češtinu a neměnili nastavení zrcadla, použije se pravděpodobně síťový zdroj `ftp.cz.debian.org`. Ve většině případů se automaticky přidá zrcadlo s bezpečnostní aktualizacemi a v případě stabilní verze distribuce také archiv služby „stable-updates“, která poskytuje novější verze rychle se měnících balíků, jako jsou vzory a pravidla pro antivirové a antispamové programy.

Při instalaci s nižší prioritou otázek (např. v expertním režimu) můžete rozhodovat o více nastaveních. Můžete si sami vybrat, zda budete používat bezpečnostní aktualizace a službu stable-updates a také zda chcete mít přístupné balíky ze sekcí „contrib“ a „non-free“.

6.3.5.1.1 Instalace z více CD/DVD

Instaluji-li z CD nebo DVD, které je součástí celé sady, instalátor se zeptá, zda chcete prozkoumat dodatečná CD/DVD. Pokud taková média máte, doporučujeme souhlasit, protože pak můžete jednoduše instalovat balíky na nich uložené.

Nemáte-li další média, nic se neděje — jejich použití není nutné. Nepoužijete-li ani síťové zrcadlo (další kapitola), znamená to pouze, že se nemusí nainstalovat všechny balíky z úloh, které si vyberete v příštím kroku.

Balíky jsou na médiích uloženy podle popularity, což znamená, že pro nejběžnější instalace postačí pouze několik prvních CD. Balíky z posledního CD využije jen velmi málo uživatelů.

To také znamená, že zakoupení nebo stažení a vypálení celé sady CD je jen plýtvání, protože většinu médií stejně nevyužijete. Ve většině případů je rozumné stáhnout nejvyšší prvních 8 CD (často postačí první 3) a případně další balíky instalovat z Internetu. Pro DVD platí něco podobného — jedno nebo dvě DVD pokryjí většinu potřeb.

11 Ve skutečnosti balíky instaluje program na nižší úrovni: `dpkg`, `dpkg` je podle potřeby volán z nástroje `apt`, který se stará o získání potřebných balíků ze sítě, CD nebo jiného zdroje a také o vyřešení závislostí mezi nimi.
Pořadí, ve kterém necháte média prozkoumat, nehraje žádnou roli. Je ovšem vhodné nechat prozkoumat média pouze ze stejné sady, protože tak předejdete potenciálním problémům se závislostmi balíků.

6.3. Používání síťového zrcadla

Jednou z otázek, která se zobrazí téměř ve všech případech, je použití síťového zrcadla. Většinou použijte výchozí možnost, ale existuje několik výjimek.

Pokud neinstalujete z velkého CD nebo DVD, případně z obrazu velkého CD/DVD, měli byste použít síťové zrcadlo jenkdy, protože jinak skončíte pouze s minimálním systémem. Máte-li pomalé internetové připojení je lepší použít síťové zrcadlo jen k instalaci jádra. Další balíky pak můžete doinstalovat po skončení instalace ze svého nového systému.

Pokud neinstalujete z velkého CD nebo obrazu velkého CD/DVD, měli byste použít síťové zrcadlo nejčastěji, protože jinak skončíte pouze s minimálním systémem. Máte-li pomalé internetové připojení je lepší použít síťové zrcadlo jen k instalaci jádra. Další balíky pak můžete doinstalovat po skončení instalace ze svého nového systému.

Jednou z výhod použití síťového zrcadla je, že pokud od vytvoření médii vyšla nová verzí Debianu, automaticky získáte aktualizované balíky z novějších vydání (r1, r2, r3, ...). Můžete tak prodloužit životnost médii bez obav o bezpečnost nebo stabilitu systému.

Další možností, zatím ne zcela oficiální, je při ručním zadávání zrcadla zadat `httpredir.debian.org`. NE-jedná se o fyzické zrcadlo, ale o službu, která vás automaticky přesměruje na topologicky nejbližší zrcadlo. Služba bere v úvahu i protokol, kterým k ní přistupujete, takže v případě IPv6 by vás měla přesměrovat na blízké zrcadlo podporující právě protokol IPv6.

Pokud máte pomalé internetové připojení, je možné použít síťové zrcadlo dobrý nápad. Bude-li stejná verze balíku k dispozici na síti i na CD/DVD, instalátor vždy použije balík z CD/DVD. Množství stažených dat závisí na: 1. úlohách vybraných v dalším kroku, 1. balících, které jsou k dispozici na CD/DVD, 3. zda se na síťových zrcadelech vyskytují novější verze balíků, než jsou na CD/DVD (opravy závažných chyb, bezpečnostní aktualizace).

Poslední bod znamená, že i když použijete síťové zrcadlo, je možné, že se z Internetu stáhnou balíky, ve kterých byla nalezena bezpečnostní chyba, nebo pro které existuje novější verze na službě "stable-updates" (za předpokladu, že jste použili těchto služeb také nezakázali).

6.3.5.2 Výběr a instalace softwaru

Během instalace vám bude nabídnuta možnost nainstalovat další software. V této fázi jste máte k dispozici 74534 dostupných balíků, ale protože jen jejich projíždí zabere hodně (tím myslím opravdu hodně) času, nabízí Debian instalaci připravených úloh a volitelně i číslo portu. Při zadávání IPv6 adresy je nutné ji obklopit hranatými závorkami, např. `\[2001:db8::1\]`.

Během instalace vám bude nabídnuta možnost nainstalovat další software. V této fázi jste máte k dispozici 74534 dostupných balíků, ale protože jen jejich projíždí zabere hodně (tím myslím opravdu hodně) času, nabízí Debian instalaci připravených úloh a volitelně i číslo portu. Při zadávání IPv6 adresy je nutné ji obklopit hranatými závorkami, např. `\[2001:db8::1\]`.

Během instalace vám bude nabídnuta možnost nainstalovat další software. V této fázi jste máte k dispozici 74534 dostupných balíků, ale protože jen jejich projíždí zabere hodně (tím myslím opravdu hodně) času, nabízí Debian instalaci připravených úloh a volitelně i číslo portu. Při zadávání IPv6 adresy je nutné ji obklopit hranatými závorkami, např. `\[2001:db8::1\]`.
Podle odhadnutého typu počítače mohou být některé úlohy předvybrány. (Např. pokud si debian-installer myslí, že instalujete notebook, předvybere úlohu „Notebook.“) Nesouhlasíte-li s výběrem, můžete nechtěné úlohy zase odebrat. Dokonce nemusíte instalovat žádnou úlohu.

TIP

Ve výchozím prostředí instalačního systému se úlohy (od)vybírají klávesou mezera.

POZNÁMKA

Úloha „Desktopové prostředí“ nainstaluje výchozí grafické deskstopové prostředí. Preferujete-li jiné prostředí, můžete je zvolit jako alternativní úlohu přímo během instalace. Dokonce je možné vybrat několik prostředí najednou, ale u některých kombinací není zaručeno, že se instalace podaří.

To samozřejmě bude fungovat pouze v případě, že jsou balíky tvořící zvolené deskstopové prostředí k dispozici. Naznačujeme tím, že pokud k instalaci používáte pouze první CD, musí se tyto balíky stáhnout ze síťového zrcadla, jelikož se na první CD nevejde. U všech ostatních typů instalace (z DVD nebo rovnou ze sítě) by se mělo deskstopové prostředí nainstalovat bez problémů.

Různé serverové úlohy nainstalují zhruba následující software. Webový server: apache2; Tiskový server: cups; SSH server: openssh.

Úloha „Standardní systém“ nainstaluje všechny balíky s prioritou „standardní“. To zahrnuje spoustu běžných nástrojů, které se obvykle nachází na každém linuxovém nebo unixovém systému. Pokud zrovna nestavíte minimalistický systém a pokud přesně nevíte, co dělat, měli byste tuto úlohu ponechat vybranou.

Jestliže jste při výběru jazyka zvolili jakoukoli jinou možnost než „C“, taskset nyní zkontroluje, zda pro zvolený jazyk/místní prostředí neexistuje lokalizační úloha a automaticky se ji pokusí nainstalovat. Lokalizační úlohy typicky obsahují balíky se slovníky a fonty vhodnými pro daný jazyk. Pokud jste zvolili i úlohu „Desktopové prostředí“, mohou se doinstalovat další lokalizační balíky (pokud jsou dostupné).

Až skončíte s výběrem, vyberte tlačítko Pokračovat. Tím se na pozadí spustí aptitude, která nainstaluje vybrané balíky.

Programy apt-get a dpkg pak zajistí stažení, rozbalení a instalaci všech balíků obsažených ve zvolených úlohách. Pokud instalace balíku vyžaduje od uživatele nějaký vstup, budete dotáženy stejně jako třeba při vytváření nového uživatele.

Měli býste mít na paměti, že úloha desktopové prostředí je opravdou velká. Pocítíte to obzvláště v případě, kdy instalujete z běžného CD v kombinaci se síťovým zrcadlem, což může při pomalém připojení trvat poměrně dlouho. Po zahájení instalace neexistuje žádná uživatelské jednoduchá možnost, jak instalaci přerušit.

Instalační systém může některé balíky stahovat ze sítě i v případě, že se balíky nachází na CD. To se stává tehdy, když se na síťovém zrcadle nachází novější verze balíků, než na CD. U stabilní distribuce to znamená po vydání nové revize (po 9r vyjde 9r1, 9r2, …), u testovací distribuce se s tímto potkáte již několik dnů až týdnů po stažení obrazu CD.

6.3.6 Nastavení zavádění systému

Pokud instalujete bezdiskovou stanici, zavádění systému z lokálního disku evidentně nebude nejsmysluplnější volba - tento krok přeskočte.

6.3.6.1 Nalezení ostatních operačních systémů

Před instalací zavaděče se debian-installer pokusí vyhledat jiné operační systémy instalované na počítači. Pokud nějaké najde, budete o tom informováni během instalace zavaděče a počítač bude nastaven tak, aby kromě Debiangu zaváděl i nalezené operační systémy.
KAPITOLA 6. POŽÍVÁME INSTALAČNÍ …

6.3. Používání jednotlivých komponent

Zavádění více operačních systémů na jednom počítači je stále něco jako černá magie. Kvalita automatického rozpoznávání operačních systémů a následné nastavení zaváděče se liší na jednotlivých architekturách a dokonce i na jejich podarchitekturách. Pokud něco nebudete fungovat, měli byste si dobře prostudovat dokumentaci použitého zaváděče.

6.3.6.2 Nastavit systém jako zaveditelný pomocí flash-kernel

Jelikož na ARM platformě neexistuje jednotné rozhraní k firmware, liší se konkrétní kroky pro nastavení zavádění systému zařízení od zařízení. Debian používá nástroj flash-kernel, který obsahuje databázi zařízení a seznam kroků, které je třeba na konkrétním zařízení vykonat, aby se z něj dal zavádět systém. Pokud flash-kernel zjistí, že je dané zařízení podporováno, automaticky na něm příslušné kroky provede.

Na zařízeních, které zavádění z interní NOR- nebo NAND- flash paměti, zapíše flash-kernel jádro a ramdisk do této interní paměti. Tento způsob je běžný obvykle pouze za starších zařízení armel. Většina těchto zařízení neumožňuje uchovávat v interní paměti více jader a ramdisků, což znamená, že spuštění flash-kernel obvykle přepíše předchozí obsah flash paměti!

Systémy ARM, které používají jako systémový firmware U-Boot, zavádí jádro a ramdisk z externího média, jako jsou MMC/SD karty, zařízení USB mass storage nebo pevné disky IDE/SATA. V těchto případech vygeneruje flash-kernel příslušný zaváděcí skript, který umožní automatické zavádění bez zásahu uživatele.

6.3.6.3 Pokračovat bez zaváděče

Pomocí této komponenty můžete získat zaveditelný systém, i když se nenainstaluje žádný zaváděč — ať už proto, že na této architektuře žádný neexistuje, nebo proto, že jej nechcete nainstalovat (třeba chcete použít stávající zaváděč).

V tomto okamžiku je vhodné prozkoumat obsah adresáře /target/boot a poznačit si název jádra a případného ramdisku (initrd), protože je budete muset sdělit svému zaváděči spolu s dalšími důležitými informacemi, jako je oblast s kořenovým souborovým systémem a oblast pro /boot (pokud máte /boot na samostatné oblasti).

6.3.7 Dokončení instalace

Toto jsou poslední drobnosti, které je třeba vykonat před zavedením nového systému. Většina práce spočívá v uklazení po debian-installer.

6.3.7.1 Nastavení systémových hodin

debian-installer se může zeptat, zda jsou hardwarové hodiny počítače nastaveny na univerzální časové pásmo (UTC). Systém se snaží odpověď odhadnout například podle nalezených operačních systémů. Při expertní instalaci se otázka zobrazí vždy.

V tento okamžik se debian-installer pokusí uložit aktuální čas do hardwarových hodin počítače. V závislosti na předchozí odpovědi bude čas uložen buď v UTC nebo v místním čase.

6.3.7.2 Dokončení instalace a restart do nového systému

Toto je poslední krok debian-installeru. Budete vyzváni k odstranění zaváděčích médií (CD, disketa, apod.), která jste použili pro zavedení instalačního systému. debian-installer provede poslední úklidové práce a restartuje počítač do vašeho nového systému.

6.3.8 Řešení problémů

Následující komponenty se obvykle do instalačního procesu nezapojují, ale těšte čekají v pozadí, aby vám pomohly v případě, že se něco pokazí.

6.3.8.1 Uložení záznamů o instalaci

Pokud byla instalace úspěšná, budou záznamy vytvořené během instalace uloženy v novém systému v adresáři /var/log/installer/. Pokud během instalace zaznamenáte kritické chyby, můžete tyto informace uložit na disketu, síť, pevný disk nebo jiné médium a v klidu si je prostudovat na jiném počítači, nebo je přiložit k hlášení o chybě.

K tomu slouží právě menu Uložit záznamy pro pozdější ladění.
6.3.8.2 Používání shellu a prohlížení logů

Shell můžete během instalace získat několika způsoby. Pokud zrovna neinstallujete přes sériovou konzoli, je nej jednodušší se přepnout na druhou virtuální konzoli klávesami Levý Alt-F2 (na macintoshí klávesnici Option-F2), kde běží samostatný klon Bourne shellu nazvaný ash. Zpět do instalátoru se dostanete klávesovou zkratkou Levý Alt-F1.

Pokud se nemůžete přepínat mezi virtuálními konzolami, můžete shell spustit z hlavního menu příkazem Spustit shell. Po vykonání potřebných příkazů se zpět do menu vrátíte příkazem exit.

V tomto okamžiku běží systém z RAMdisku a nabízí několik základních unixových nástrojů. Seznam dostupných programů můžete zjistit příkazy ls /bin /sbin /usr/bin /usr/sbin a help. Shell má některé přijemné vlastnosti svých větších bratříčků, jako je historie a automatické doplňování příkazů.

Pro úpravu souborů máte k dispozici textový editor nano.

Přestože můžete v shellu provádět téměř cokoliv, co vám umožní, měli byste raději používat menu instaláčního programu — shell a jeho příkazy jsou zde jen pro případ, že se něco pokazí. Ruční spouštění příkazů ze shellu totiž může kolidovat s instaláčním procesem. Konkrétně pro inicializaci odkládací oblasti měli měli použít menu a ne shell, protože instaláční program jinak nepozná, že jste tento krok již provedli.

6.3.9 Instalace přes síť

Jednou ze zajímavějších komponent je network-console, která vám umožní provádět větší část instalace vzdáleně přes SSH. Použití sítě naznačuje, že budete muset provést několik prvních kroků instalace (minimálně po nastavení sítě) lokálně a teprve pak pokračovat vzdáleně. Lokální část však můžete automatizovat použitím 4.4.4.

Tato komponenta se implicitně nenahrává do instaláčního menu a proto o ni budete muset požádat. Nejprve musíte zavést instaláční systém do sebě ohledně klíčů, proto nebo jiným způsobem vyvolat hlavní instaláční menu a vybírat položku Nahrát komponenty instalátoru z CD (nebo ze sítě) a ze seznamu dodatečných komponent vybrat network-console: Continue installation remotely using SSH. Úspěšně načtení komponenty se projeví tak, že v menu přibude nová položka nazvaná Pokračovat v instalaci vzdáleně přes SSH.

Po výběru této nové položky budete požádáni o zadání nového hesla, které se použije pro připojení do instalovaného systému. Následuje rutinní potvrzení hesla, zda bylo zadáno správně. Toť vše. Nyní uveďte obrazovku s nápovědou, která je stejná jako uživatel installer s heslem, které jste právě zadali. Další důležitá věc na obrazovce je kryptografický otisk tohoto systému. Tento otisk musíte zabezpečit před osobou, která bude v instalaci pokračovat vzdáleně.

Pokud byste se náhodou rozhodli pokračovat v instalaci lokálně, můžete vždycky stisknout Enter, což vás vrátí zpět do hlavního menu, kde můžete vybrat další krok.

$k ssh -l installer instalovany_pocitac kde instalovany_pocitac je buď jméno nebo IP adresa instalovaného počítače. Před samotným přihlášením se zobrazí kryptografický otisk vzdáleného systému, který budete muset potvrdit, zda je správný.

POZNÁMKA

ssh server v instaláčním systému používá výchozi nastavení, které neposlá pakety pro udržování spojení. Teoreticky to nic nevadí, ale prakticky se může stát, že se po určité době neaktivití spojení rozpadne. Typickým příkladem může být překlad adres (NAT) někde po cestě mezi klientem a instalovaným systémem. Opětovné připojení a pokračování v instalaci se může, ale nemusí podařit — závisí na kroku instalace, ve kterém se spojení přerušilo.

Rozpadávání spojení můžete předejít tak, že při spuštění ssh klienta použijete parametr -o ServerAliveInterval= hodnota, případně že tento parametr zdaďe do konfiguračního souboru ssh. Mějte však na paměti, že v některých případech může právě tento parametr způsobit rozpadávání spojení (například pokud se udržovací paket odešle během krátkodobého výpadku sítě, která by jinak ssh ustála).
6.4 Nahrání chybějícího firmwaru

Jak je zmíněno v 2.2, některá zařízení vyžadují pro svou práci kroné ovladače zařízení také firmware. Ve většině případů znamená chybějící firmware nefunkční zařízení. Existují však výjimky, kdy zařízení bez firmware funguje alespoň v základním režimu a firmware je potřeba až pro povolení speciálních vlastností.

Pokud víte, že zařízení není pro instalaci potřeba, nebo pokud zařízení funguje i bez firmware, můžete zavedení firmware přeskočit.

debian-installer se ptá pouze na firmware vyžadovaný jadernými moduly používanými během instalace. Například jedním z ovladačů, které debian-installer během instalace nepoužívá, je modul radeon pro grafické karty AMD/ATI. To znamená, že se pro některý hardware nenhraje firmware a takový hardware pak nemusí být využíván naplno. Pokud máte podezření, že to je váš případ, zkontrolujte si v nově zavedeném systému výstup příkazu dmesg a hledejte řádky obsahující slovo „firmware".

Po přihlášení vám bude nabídнутa úvodní obrazovka, kde můžete volit mezi možností Spustit menu a Spustit shell. První možnost vás přenese do hlavního instalačního menu, kde můžete pokračovat v instalaci obvyklým způsobem. Druhá možnost spustí shell, ve které můžete zkoumat a případně opravit vzdálený systém. Přestože počet SSH spojení do instalovaného systému není omezen, měli byste mít pouze jedno spojení, kterým ovládáte instalaci (na rozdíl od shellů, kterých si můžete spustit dle libosti).
KAPITOLA 6. POUŽÍVÁME INSTALAČNÍ …

6.4. NAHRÁNÍ CHYBĚJÍCÍHO FIRMWARU

6.4.1 Příprava média

Archivy obsahující nejnovější balíky pro nejběžnější firmware jsou dostupné z:

- http://cdimage.debian.org/cdimage/unofficial/non-free/firmware/

Stačí stáhnout archiv pro příslušné vydání a rozbalit jej na médium.

Jestliže se požadovaný firmware v archivu nenachází, můžete se zkusit podívat do sekce non-free. Následující přehled by měl obsahovat většinu dostupných balíků s firmwarem (nemusí být úplný):

- http://packages.debian.org/search?keywords=firmware

Na médium je také možné zkopírovat jednotlivé soubory s firmwarem (tzn. ne balíky). Takovéto soubory můžete obvykle získat z již instalovaného systému, nebo od dodavatele hardwaru.

6.4.2 Firmware a instalovaný systém

Všechny firmwary, které se zavedou během instalace, se automaticky nakopírují do instalovaného systému. To by mělo zajistit, že zařízení vyžadující firmware budou fungovat i po restartu do nového systému. Stále zde však existuje drobné riziko v případě, kdy nainstalovaný systém používá jinou verzi jádra, než instalací systém. V takovém případě je možné, že se firmware nepodává zavést kvůli rozdílné verzi.

Pokud byl firmware nainstalován z balíku s firmwarem, debian-installer do instalovaného systému nainstaluje i tento balík a automaticky přidá do konfiguračního souboru sources.list sekci non-free. Výhodou je to, že se firmware bude aktualizovat automaticky.

Jestliže jste při instalaci přeskočili možnost nahrání firmwaru, nebude dané zařízení nejspíš fungovat ani v nainstalovaném systému. Pro jeho zprovoznění budete muset doinstallovat firmware ručně.
Kapitola 7
Zavedení vašeho nového systému

7.1 Okamžik pravdy

Teď přichází chvíle zahoření systému.
Pokud Debian z disku nenaběhne, nepanikařte. Byla-li instalace úspěšná, je velká šance, že se jedná jen o relativně drobný problém. Ve většině případů je možné tyto problémy spravit bez opakování celé instalace. Jednou z možností je použít záchranný režim zabudovaný přímo do instalačního systému (viz část 8.7).

Jestliže se systémem Debian začínáte, může se vám hodit pomoc zkušenějších uživatelů. Pro méně rozšířené architektury jako 32-bit soft-float ARM bude nejlepší zeptat se v poštovní konferenci debian-arm. Dále nám můžete poslat zprávu o instalaci (viz 5.4.5). Svůj problém popište stručně a jasně a opište z obrazovky všechny hlášky, které by mohly ostatním pomoci v určení problému.

7.2 Připojení zašifrovaných svazků

Jestliže jste při instalaci vytvořili nějaká shifrované svazky a přiřadili jim přípojné body, budete během zavádění dotázaní na přístupovou frázi ke každému takovému svazku.

Pro oblasti zašifrované pomocí dm-crypt uvidíte při zavádění výzvu podobnou této:

Starting early crypto disks... part_crypt(starting)
Enter LUKS passphrase:

kde oblast je název oblasti, která byla zašifrována. Možná nyní přemýšlíte, pro který svazek vlastně frázi zadáváte. /home? /var? Samozřejmě pokud máte jen jediný šifrovaný svazek, tyto pochyby vás trápí nemusí a stačí zadat frázi, kterou jste použili při vytváření svazku. Pro ostatní se nyní hodí poznamky, které jste si poznali jako poslední krok 6.3.3.6. Pokud jste si nepoznali dvojice oblast_crypt a přípojný bod, můžete tuto informaci najít v souboru /etc/fstab (a částečně v /etc/crypttab) ve svém novém systému.

Při připojování kořenového souborového systému může výzva k zadání fráze vypadat mírně jinak. Vzhled závisí na generátoru, kterým byl initrd vytvořen. Initrd v následujícím příkladu byl vytvořen nástrojem initramfs-tools:

Begin: Mounting root file system... ...
Begin: Running /scripts/local-top ...
Enter LUKS passphrase:

Po zadání všech přístupových frází by mělo zavádění pokračovat jako obvykle.

7.2.1 Řešení problémů

Pokud se některé šifrované svazky nepodařilo připojit kvůli chybným přístupovým frázím, budete je muset připojit po zavádění systému ručně. Existuje několik možností.

- První případ se zabývá kořenovou oblastí. Pokud se tato nepřipojí, zavádění se zastaví a pro další pokus budete muset počítač restartovat.
KAPITOLA 7. ZAVEDENÍ VAŠEHO NOVÉHO SYSTÉMU

7.3. PŘIHĽÁŠENÍ DO SYSTÉMU

• Nej jednodušší případ se týká datových oblastí typu /home nebo /srv. Po zavedení je stačí ručně připojit.

U dm-crypt nejpřímo musíte zaregistrovat svazky do části jádra nazvané device mapper. Slouží to k tomu příkaz

```
/etc/init.d/cryptdisks start
```

ktorý prohledá všechny svazky zmíněné v souboru /etc/crypttab a po zadání správných přístupových frází vytvoří příslušné zařízení v adresáři /dev. (Již zaregistrované svazky budu přeskočeny, takže můžete příkaz spustit bez obav i několikrát po sobě.) Po úspěšné registraci můžete svazky připojit tradičním

```
mount /pripojny_bod
```

• Pokud se nepodařilo připojit svazky obsahující nekritické části systému (např. /usr nebo /var), systém by se měl stále zavést a měli byste mít možnost připojit svazky ručně stejně jako v předchozím případě. Navíc byste ale měli nastartovat (resp. restartovat) služby, které se spouštějí ve vašem výchozím runlevelu, protože je velmi pravděpodobné, že se nespustily. Nej jednodušší cestou je asi restart celého počítače.

7.3 Přihlášení do systému

Po zavedení Debianu se setkáte s výzvou k přihlášení do systému (tzv. login prompt). Přihlaste se pod svým osobním účtem, který jste si vytvořili během instalace. Systém je připraven k používání.

Pokud jste začínající uživatel, asi si budete chtít prohlédnout dokumentaci dostupnou v systému. V současné době existuje několik dokumentačních systémů, ale pracuje se na jejich sjednocení.

Dokumentace vztahující se k instalovaným programům je v adresáři /usr/share/doc/ v podadresáři se jménem programu (přesněji se jménem balíku). U rozsáhlejší dokumentace bývá tato zabalena v samostatném balíku, který je většinou potřeba doinstalovat včetně částí systému.

Například příručku pro použití programu apt naleznete v balíku apt-doc nebo apt-howto.

```
```

Tyto dokumenty můžete jednoduše prohlížet pomocí textového prohlížeče. Zadejte:

```
$ cd /usr/share/doc/
$ w3m .
```

Tečka za příkazem w3m říká, že má zobrazit obsah aktuálního adresáře.

Máte-li nainstalovalné desktopové grafické prostředí, můžete použít v něm obsažený grafický webový prohlížeč. Spusťte prohlížeč z nabídky aplikací a do řádku s adresou zadejte /usr/share/doc/.

Kapitola 8

Co dál?

8.1 Vypínání systému

Běžící systém Debian GNU/Linux nesmíte vypínat tlačítkem reset nebo prostým vytažením napájecí šnůry ze zásuvky. Pokud se operační systém nevypne řízeně, mohou se soubory na disku ztratit nebo poškodit. Používání-li desktopové prostředí, obvykle se v menu vyskytuje položka „Odhlásit“, která vám umožní systém vypnout (případně restartovat).

Na konzoli můžete použít klávesovou kombinaci Ctrl-Alt-Del. Pokud žádná z předchozích možností nefungovala, můžete si přihlásit jako uživatel root a zadat příslušný příkaz ručně. Systém restartujete příkazem `reboot`, zastavíte příkazem `halt` (bez vypnutí napájení) a zcela vypnete příkazem `poweroff` nebo `shutdown -h now`. Nový init systém systémnd nabízí podobné příkazy se stejnou funkcionalitou, a sice `systemctl reboot`, `systemctl halt` a `systemctl poweroff`.

8.2 První kroky se systémem UNIX

Jestliže se systémem Unix začínáte, měli byste si pořídit (a hlavně přečíst) nějakou literaturu. Mnoho hodnotných informací naleznete v Debian Reference. Za shlédnutí stojí také seznam unixových FAQ, který obsahuje spoustu usenetových dokumentů, jež mohou sloužit jako pohled do historie.

8.3 Orientace v Debianu

Debian GNU/Linux se od ostatních distribucí mírně odlišuje. Proto i když jste již s Linuxem nebo jiným unixovým systémem pracovali, pokud si chcete udržet systém v pořádku, je třeba se seznámit s tím, jak distribuce funguje. Tato kapitola vám pomůže se v Debianu lépe zorientovat. Opět se jedná pouze o letní přehled.

8.3.1 Balíčkovací systém Debianu

Nejdůležitější je pochopit, jak pracuje balíčkovací software, protože systém je z velké části spravován právě balíčko-

vácím systémem. Jedná se o adresáře:

- `/usr (vyjma /usr/local)
- `/var (vyjma /var/local)
- `/bin
- `/sbin

1 S dřívějším init systémem SysV se příkaz `halt` chová stejně jako `poweroff`, ale s init systémem systemd (výchozí od Debianu 8) se jejich chování změnilo.
KAPITOLA 8. CO DÁL?

8.4. DALŠÍ DOKUMENTACE

- /lib

Do vyjmenovaných adresářů byste neměli zasahovat, protože byste mohli narušit informace udržované balíčkovacím systémem a mohlo by to vést až k nefunkčním aplikacím. Například když nahradíte program /usr/bin/perl nejspíš bude vše fungovat, ale s přechodem k novější verzi balíku perl o své úpravy přijdete. Zkušení uživatelé tomu dokáží zabránit převedením balíku do stavu „hold“.

Jedna z nejlepších instalačních metod je určitě apt. Můžete ji použít z příkazové řádky programem apt, nebo v celoobrazkové textové aplikaci aptitude. Apt vám dovolí sloučit všechny archivy (main, contrib a non-free), takže můžete instalovat jak standardní, tak exportně omezené verze balíčků.

8.3.2 Další software pro Debian

I když máte po instalaci systému Debian k dispozici oficiální repositáře balíčků, je možné, že budete potřebovat software, který se v nich nenachází. V takovém případě se můžete pohlednout na dalších více či méně oficiálních repositářích, které mohou daný software obsahovat. Jeden komentovaný seznam repositářů naleznete Wiki stránce Dostupný software pro Debian (stabilní vydání)

8.3.3 Správa různých verzí programů

Pokud udržujete více verzí různých aplikací, bude vás zajímat manuálová stránka příkazu update-alternatives.

8.3.4 Správa Cronu

Všechny periodické úlohy spojené se správou systému by měly být v adresářích /etc, protože to jsou konfigurační soubory. Pokud spouštíte administrátorské úlohy denně, týdně, nebo měsíčně, umístěte je do /etc/cron.{daily, weekly, monthly}. Spouštění těchto úloh je řízeno souborem /etc/crontab. Úlohy poběží postupně podle abecedního pořadí.

Jestliže však máte speciálnější požadavky (potřebujete úlohu spouštět pod jiným uživatelem nebo chcete úlohu pouštět v určitém čase nebo intervalu), můžete použít soubor /etc/crontab, nebo ještě lépe /etc/cron.d/cokoliv. Tyto soubory mají navíc pole pro jméno uživatele, pod kterým se má úloha spustit.

V obou případech stačí přidat/upravit soubory a cron je automaticky rozpozná a začne používat — není potřeba spouštět žádný příkaz. Další informace jsou v cron(8), crontab(5) a /usr/share/doc/cron/README.

Debian.

8.4 Další dokumentace

Hledáte-li popis nějakého programu, vyzkoušejte nejprve kombinaci man program a info program.

Webové stránky Debianu sdružují ohromné množství informací. V první řadě se podívejte do Debian GNU/Linux FAQ a Debian Reference. Seznam další dokumentace vztahující se k Debianu naleznete na stránkách Debian Documentation Project. Ohromné množství informací obsahuje také archiv debianích diskusních listů. Komunita okolo Debianu si navzájem pomáhá (uživatelům uživatelům), takže pokud se chcete přihlásit k některému z Debianích diskusních listů, podívejte se na stránku přihlášení do diskusních listů.

Základním zdrojem informací o Linuxu je Linux Documentation Project, kde mimo jiné naleznete návody HOWTO (jak na to) a odkazy na další dokumenty o jednotlivých částech systému GNU/Linux.

8.5 Nastavení poštovního systému

V dnešní době je elektronická pošta důležitou součástí našich životů. Protože existuje spoustu způsobů, jak poštu nastavit, a protože na ni spoléhají některé nástroje, zkusíme zde pokrýt alespoň základy.

Poštovní systém se skládá ze tří částí. Uživatelé nejlépe získávají klientský program (MUA), jenž uživatel používá pro čtení a psaní pošty. Dále je zde poštovní server (MTA), který se stará o přenos pošty mezi různými počítači. A na závěr je zde doručovací agent (MDA), který se stará o doručení pošty do uživatelovy schránky. Tyto tři funkce mohou vykonávat samostatné programy, nebo mohou být sloučeny do dvou, případně jediného programu.
8.5 NASTAVENÍ POŠTOVNÍHO SYSTÉMU

Na unixových systémech je historicky velmi populární MUA mutt a jako většina tradičních programů je textový. Jako MTA se často používá exim nebo sendmail a funkci MDA vykonává procmail nebo maildrop. S rostoucí popularitou grafických desktopových prostředí se začíná používat více grafických poštovních klientů jako evolution pro prostředí GNOME, kmail pro prostředí KDE, nebo multiplatformní thunderbird (v Debianu dostupný jako icedove). Tyto programy kombinují funkce MUA, MTA a MDA dohromady, ale mohou být — a často jsou — používány v kombinaci s tradičními unixovými nástroji.

8.5.1 Výchozí nastavení pošty

I když plánujete používat grafický poštovní program typu vše v jednom, je důležité, aby byl nainstalován i tradiční MTA/MDA. Důvodem jsou různé nástroje, které mohou elektronickou poštu zasílat správci a/nebo uživatelům důležitá upozornění.

K těmto účelům se při standardní instalaci (pokud jste nezrušili výběr úlohy "standardní") nainstalují balíky exim4 a mutt. exim4 kombinuje MTA a MDA, je relativně malý, jednoduchý na pochopení a zároveň je dostatečně pružný, aby vyhověl i náročnějším požadavkům. Ve výchozí konfiguraci je nastaven tak, aby zpracovával pouze lokální poštu (tj. tu, která vznikla na tomto systému) a veškeré zprávy adresované systémovému správci (účet root) posílal na účet běžného uživatele, který byl vytvořen během instalace.

Pošta je při doručení přidána do souboru /var/mail/jmeno_uctu. Tuto poštu můžete číst například programem mutt.

8.5.2 Odesílání pošty mimo systém

Jak bylo zmíněno dříve, po základní instalaci Debianu umí systém zpracovávat pouze poštu pocházející ze stejného počítače. Odesílání nebo přijímání pošty z jiných systémů není nastaveno.

Chcete-li, aby exim4 zpracovával i externí poštu, podívejte se na následující podkapitolu, kde naleznete základní možnosti. Nezapomeňte pak otestovat, zda odesílání a přijímání pošty funguje bez problému.

Jelikož plánujete používat grafický poštovní program ve spojení s poštovním serverem vašeho poskytovatele Internetu nebo s poštovním serverem vaší firmy, není důvod, abyste nastavovali exim4. Stačí nastavit grafický poštovní klient, aby používal pro přijímání a odesílání správné poštovní servery (konkrétní nastavení spadá mimo rozsah této příručky).

I při použití grafického poštovního klienta a externího poštovního serveru je někdy potřeba nastavit některé konkrétní programu pro posílání pošty mimo systém. Jedná se o takové programy jako reportbug, který zajišťuje odesílání hlášení o chybách v Debianích balicích. Ve výchozím nastavení očekává, že bude pro odesílání chybových hlášení používat exim4.

Abyste reportbug přemluvili, aby používal externí poštovní server, spusťte příkaz reportbug --configure a na otázku, zda je MTA dostupný, odpovězte „ne“. Poté budete dotázaní na SMTP server, který se má používat pro odesílání chybových hlášení. Sem vyplňte stejné jméno nebo IP adresu, jakou jste zadali v konfiguraci grafického poštovního klienta.

8.5.3 Nastavení poštovního serveru Exim4

V případě, že na svém systému chcete zpracovávat i externí poštu, musíte změnit nastavení balíku exim4:

```
# dpkg-reconfigure exim4-config
```

Po zadání příkazu budete nejprve dotáženi, zda chcete rozdělit konfiguraci do menších souborů. Pokud si nejste jisti, ponecháte výchozí možnost.

Další obrazovka vám nabídne několik typických scénářů použití. Vyberte z nich ten, který nejvíce odpovídá zamýšlenému použití:

internetový počítač

Váš systém je připojen k počítačové síti a pošta je odesílána/přijímána přímo protokolem SMTP. Na následujících obrazovech budete dotáženi několik základních údajů, jako je poštovní jméno nebo seznam domén, pro které chcete přijímat nebo předávat poštu.

2 cron, quota, logcheck, aide, ...

3 Přeposílání pošty uživatelů do účtu běžného uživatele se nastavuje v souboru /etc/aliases. Jestliže jste během instalace přeskočili vytvoření běžného uživatele, pak bude pošta samozřejmě doručována přímo uživateli root.

4 Samozřejmě vám nic nebrání exim4 odstranit a nahradit alternativním MTA/MDA.
odesílání pošty přes chytrý počítač Podle tohoto scénáře je veškerá odchozí pošta posílána „chytrému“ počítači, který ji za vás rozešle. Chytrý počítač také často ukládá vaši příchozí poštu, tudíž nemusíte být neustále připojeni. To pak znamená, že poštu musíte číst na chytrém počítači, nebo ji z něj stahovat programem typu fetchmail.

Chytrý počítač obvykle bývá poštovní server vašeho poskytovatele připojen, což je obzvláště vhodné pro uživatele s vytáčeným připojením. Jinak to může být třeba firemní poštovní server, nebo i jiný počítač na vaší síti.

odesílání pošty přes chytrý počítač; žádná lokální pošta Tato volba je v podstatě shodná s předchozí, až na fakt, že systém nebude zpracovávat poštu pro lokální poštovní doménu. Zpracovávat se bude pouze pošta vzniklá na systému (např. pro systémového správce).

pouze lokální pošta Systém není připojen k síti a pošta se rozesílá pouze mezi lokálními uživateli. Tato volba je důrazně doporučena i když neplánujete posílání žádných zpráv, protože různé systémové nástroje mohou elektronickou poštu zasílat nejrůznější výstrahy a varování (například oblibené „Překročili jste diskovou kvótu“). Tato volba je také vhodná pro nové uživatele, protože se neptá žádné další otázky.

žádné nastavení Tuto možnost vyberte jedině pokud přesně víte, co děláte, protože dokud systém neméníte, bude možné přijímat a odesílat žádnou poštu a můžete tak přijít o důležité zprávy od systémových programů.

8.6 Kompilace nového jádra

Proč byste si chtěli sestavit nové jádro? Obvykle nejde o nutnost, poněvadž jádro dodávané s Debianem funguje ve většině počítačů. V Debianu také bývají dostupná alternativní jádra, která mohou odpovídat vašemu hardwaru lépe než jádro výchozí, takže byste se na ně určitě měli podívat. Nicméně nové jádro může být užitečné v následujících situacích:

• Potřebujete vyřešit hardwarový konflikt zařízení nebo speciální nároky hardwaru, které dodávané jádro nezvládne.
• Ve standardním jádře postrádáte podporu zařízení nebo nějakou službu (např. podporu vysoké paměti).
• Chcete menší jádro bez ovladačů, které nepoužíváte. Urychlíte start systému a ušetříte paměť.
• Chcete monolitické jádro místo modulárního.
• Chcete jádro z vývojové řady.
• Chcete se o jádře dozvědět něco víc.

8.6.1 Správa jader

Nebojte se kompilace jádra, je to zábava a budete znát více o jádro. Doporučený způsob kompilace jádra v Debianu vyžaduje tyto balíky: fakeroot, kernel-package, linux-source-2.6 a další, které již máte patrně nainstalované (úplný seznam je v souboru /usr/share/doc/kernel-package/README.gz).

Tato metoda vytvoří ze zdrojových textů jádra .deb balíček, a jestliže používáte nestandardní moduly, taktéž z nich vyrobí aktuální balíček. Při instalaci bude do adresáře /boot uložená aktuální konfigurace. S poštovním serverem Exim můžete přidat nový záznam do /etc/email-addresses.

V dalším budeme předpokládat, že zdrojové texty jádra verze 3.16 uložíme někam do svého domovského adresáře.

V prostředí X11 nakonfigurujte jádro příkazem `make xconfig`, nebo v terminálu příkazem `make menuconfig` (musíte mít nainstalovaný balíček `ncurses-dev`). Pročtěte si nápovědu a pozorně vybírejte z nabízených možností. Pokud si v některém bodu nabudete vědět rady, je většinou lepší zařízení do jádra vložit. Volby, kterým nerozumíte a které se nevztahují na přednastavené hodnoty, nezapořejte do jádra zahrnující „Kernel module loader“ (tj. automatické vkládání modulů) v sekci „Loadable module support“, které přednastavené nebyvá, avšak Debian tuto službu předpokládá.

Příkazem `make-kpkg clean` pročistíte strom zdrojových textů a vynulujete předchozí nastavení balíku `kernel-package`.

Kompilaci jádra provedete příkazem `fakeroot make-kpkg --initrd --revision=1.0.moje kernel_image`. Číslo verze „1.0.moje“ si můžete zvolit podle vlastního uválení, slouží pouze k vaší orientaci v přípravě zdrojových balíčích. Kompilace zabere chvíli času, záleží na výpočetním výkonu vašeho počítače.

Pro spuštění záchranného režimu vyberte ze zaváděcího menu položku `rescue`, na výzvu `boot:` zadejte `rescue`, nebo použijte běžnou instalaci metodu se zaváděcím parametrem `rescue/enable=true`. Nejprve se zobrazí několik prvních obrazovek z instalace, pouze v rohu obrazovky bude poznámka, že se jedná o záchranný režim. Namísto nástroje pro dělení disků by se vám měl zobrazit seznam nalezených oblastí s pobídkou, abyste jednu z oblastí vybrali. Obvykle byste měli vybrat oblast, na které se nachází kořenový souborový systém, kde se váš výběr systému položí. Kromě běžných „fyzických“ oblastí můžete samozřejmě vybíret i oblasti „virtuální“ ležící na softwarovém RAIDu nebo LVM.

Pokud se nepodaří spustit použitelný příkazový řádek ve vybraném souborovém systému, který vás měl zobrazit seznam nálezů, budete potřebovat funkční systém, ze kterého můžete věci opravit. Jednou z možností je záchranný režim instalačního systému.

Na závěr mějte na paměti, že oprava poškozených systémů může být obtížná a popis všech možností, které mohou nastat, je mimo rozsah této příručky. Pokud máte problémy, obraťte se na speciálního.
Příloha A

Jak na instalaci

Tento dokument popisuje, jak nainstalovat Debian GNU/Linux stretch pro architekturu 32-bit soft-float ARM („armel“) pomocí nového instalačního programu. Jedná se o rychlého průvodce instalačním procesem, který by měl pokrýt většinu typických instalací. V případech, kdy je vhodné sdělit více informací, se odkazujeme do ostatních částí tohoto dokumentu.

A.1 Příprava

Zaznamenáte-li během instalace nějaké chyby, podívejte se do 5.4.5, kde naleznete instrukce, jak je nahlásit. Pokud máte otázky, na které nemůžete nalézt odpovědi v tomto dokumentu, ptejte se v diskusní skupině debian-boot (debian-boot@lists.debian.org) nebo na IRC (kanál #debian-boot v síti OFTC).

A.2 Zavedení instalačního programu

Tým debian-cd nabízí obrazy CD s debian-installerem na stránce Debian CD. Více informací o získání CD naleznete v kapitole 4.1.

Některé metody instalace vyžadují jiné soubory než obrazy CD. Kapitola 4.2.1 vysvětluje, jak najít na zrcadlech Debianu ty správné obrazy. Následující podkapitoly osvětlují, které obrazy byste měli použít pro který typ instalace.

A.2.1 CDROM

Populární volbou pro instalaci stretch je obraz „síťového“ CD. Tento obraz slouží k zavedení instalačního systému z CD, instalaci minimálního funkčního systému a k instalaci ostatních balíků ze sítě (proto mu říkáme „síťový“). Pokud budejte raději nepoužívat síť, můžete si stáhnout i plné CD, které k instalaci síť nepotřebují. (Z celé sady vám bude stačit pouze první obraz.)

Stáhněte si preferovaný obraz a vypalte jej na CD.

A.2.2 Zavedení ze sítě

Další z možností, jak zavést debian-installer je pomocí síť. Konkrétní postup závisí na vaší architektuře a síťovém prostředí. Obecně budete potřebovat soubory z adresáře netboot/.

A.2.3 Zavedení z pevného disku

A.3 Instalace

Po startu instalačního programu budete uvítáni úvodní obrazovkou. Nyní si můžete buď přečíst návod pro různé způsoby zavádění (viz 5.3), nebo jednoduše stisknout Enter a zavést instalaci.
A.4 Pošlete nám zprávu o instalaci

Pokuď jste zdárně dokončili instalaci Debianu, najděte si chvílku a pošlete nám o tom krátkou zprávu. Nejednoušiš možnost jí nainstalovat si balík reportbug (apt install reportbug), nastav jej podle 8.5.2 a spustit příkaz reportbug installation-reports.

Pokud instalaci nedokončili, pravděpodobně jste narazili na chybu v debian-installeru. Abychom mohli tuto chybu odstranit a instalátor vylepšit, potřebujeme o tom problémech vědět. Najděte si prosím chvíli a nahlásit zjištěné chyby (viz 5.4.4).

A.5 A na závěr...

Doufáme, že se vám instalace Debianu líbí a že shledáváte Debian užitečným. Nyní biste si možná chtěli přečíst kapitolu 8.
Příloha B

Automatizování instalací pomocí přednastavení

Tento dodatek vysvětluje taje a základnosti přednastavení odpovědí na otázky debian-installeru za účelem zautomatizování instalačního procesu.

Utržky konfigurace použitě v této části jsou také dostupné jako samostatný soubor na http://www.debian.org/releases/stretch/example-preseed.txt.

B.1 Úvod

Přednastavení nabízí možnost předem odpovědět na otázky, které se ptá instalační program. Díky tomu pak nemusíte do většiny instalací zasahovat a dokonce můžete využít některých vlastností, které jinak nejsou dostupné.

B.1.1 Způsoby přednastavení

Přednastavení existuje ve třech variantách: initrd, soubor a síť. Initrd funguje s každým typem instalace, podporuje přednastavení více odpovědí, ovšem vyžaduje nejvíce příprav. Přednastavení přes lokální soubor nebo přes síť se používají pro různé typy instalací.

Následující tabulka ukazuje, které způsoby přednastavení fungují s kterými způsoby instalací.

<table>
<thead>
<tr>
<th>Způsob instalace</th>
<th>initrd</th>
<th>soubor</th>
<th>síť</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD/DVD</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>zavedení ze sítě</td>
<td>ano</td>
<td>ne</td>
<td>ano</td>
</tr>
<tr>
<td>z pevného disku</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
</tr>
</tbody>
</table>

U jednotlivých způsobů přednastavení je významný okamžik, kdy je soubor nahrán a zpracován. Pro initrd to je okamžitě po startu instalace, ještě před první otázkou. Přednastavení pomocí zaváděcích parametrů jádra se děje hned poté a je tedy možné přepsat odpověď nachystanou v initrd přidáním parametru na příkazovou řádku jádra (buď v konfiguračním souboru zavaděče, nebo ručně při zavádění). Přednastavení v lokálním souboru se načte po připojení CD nebo jeho obrazu. Přednastavení ze sítě je evidentně dostupné až po nastavení sítě.

Prakticky to znamená, že přednastavení pomocí souboru a síť se nahrávají až po zodpovězení otázek ohledně jazyka, země a klávesnice. (V případě přednastavení ze sítě navíc až po všech otázkách týkajících se síťového nastavení.) Instalujete-li se střední nebo nízkou prioritou, do cesty se vám připletou ještě otázky ohledně rozpoznávání hardwaru.

Abyste mohli přednastavit i otázky, které se zobrazí před nahráním souboru s přednastavením, můžete využít zaváděcí parametry jádra, viz část B.2.2.

Jinou možností, jak se vyhnout otázkám, které se zobrazují před nahráním souboru s přednastavením, je spustit instalátor v „automatickém“ režimu. Tím se odsunou všechny brzké otázky až za okamžik načtení sítě a navíc se zobrazí jen otázky s kritickou prioritou, což odfiltruje několik zbytečných otázek. Podrobnosti naleznete v B.2.3.

1 Ovšem pouze pokud máte přístup k síti a správně nastavíte preseed/url.
B.1.2 Omezení

Přestože takto můžete přednastavit většinu otázek debian-installeru, existuje několik výjimek. Při dělení disku musíte rozdělit buď celý disk, nebo použít stávající volné místo — není možné použít existující oblasti.

B.2 Použití

Nejprve samozřejmě musíte vytvořit soubor s přednastavením a umístit jej na vhodné místo, odkud jej budete používat.

Ukázkový soubor s přednastavením, jež můžete využít jako základ pro své pokusy, naleznete na http://www.debian.org/releases/stretch/example-preseed.txt. Tento soubor je poskládán z ukázek prezentovaných v tomto dodatku.

B.2.1 Nahrání souboru s přednastavením

Používáte-li přednastavení z initrd, musíte zajistit, aby se soubor jmenoval preseed.cfg a aby se nacházel v kořenovém adresáři initrd. O vše ostatní se postará instalační program. Ten se podívá, zda je soubor přítomen, a pokud ano, tak jej nahráje.

Pokud to váš zavaděč umožnuje, nemusí být od věci jej nastavit tak, aby nečekal se zavedením instalaci na stisk klávesy Enter, ale aby dále pokračoval automaticky. V případě syslinuxu to znamená nastavit v souboru syslinux.cfg parametr timeout na hodnotu 1.

Pokud zadáte preseed/url nebo preseed/file jako zaváděcí parametr, můžete použít zkrácenou verzi url, resp. file. Obdobně lze zkrátit preseed/file/checksum na pouhé preseed-md5.

B.2.2 Použití zaváděcích parametrů jako formy přednastavení

I když nemůžete přednastavit některé kroky přípravnými odpovědmi v souboru, stále můžete dosáhnout plně automatické instalace, protože můžete zadat hodnoty pro přednastavení jako zaváděcí parametry jádra. Zaváděcí parametry jádra můžete též využít v případě, kdy nechcete použít celé přednastavení, ale jen předodpovědět nějakou konkrétní otázku.
Pro nastavení hodnoty libovolné proměnné zmíněné v tomto dodatku stačí zadat `cesta/k/proměnné=hodnota`.
Jestliže se má hodnota použít k přednastavení balíku v cílovém systému, musíte předřadit ještě `vlastník:cesta/k/proměnné=hodnota`. Nezadáte-li vlastníka, hodnota proměnné se nezkopíruje do databáze debconfu v cílovém systému a tudíž zůstane při konfiguraci daného balíku nevyužita.

Předzodpovězení otázky popsaným způsobem způsobí, že se tato otázka nezobrazí. Chcete-li otázecké přednastavit konkrétně odpověď, ale přesto chcete, aby se otázka zobrazila, použijte místo „=" operátor „?=". Více též B.5.2.

Některé často používané proměnné mohou mít i kratší variantu. Vlastníkem debconf proměnné (nebo šablony) je obvykle jméno balíku, který obsahuje odpovídající debconf šablony. U proměnných používaných přímo v instalacním systému je vlastníkem „d-i“. Šablony a proměnné mohou mít více vlastníků, což pomáhá při rozhodování, zda je možné je při odinstalování balíku odstranit z databáze debconfu.

POZNÁMKA

Pro většinu instalací můžete celkem bez problémů odstranit implicitní volby jako `vga=normal`, což vám umožní přidat další volby pro přednastavení.

POZNÁMKA

V některých případech není možné zadat hodnotu obsahující mezeru, a to i v případě, kdy hodnotu obklopíte uvozovkami.

B.2.3 Automatický režim

Díky několika pokročilým (někteří říkají zmateným) vlastnostem instalačního systém Debianu je možné, aby se jednoduchý zaváděcí parametr rozvinul do komplexní a na míru upravené automatické instalace.

Zařizuje to zaváděcí volba `Automated install`, na některých architekturách nebo zavaděčích nazývaná též `auto`. V této části příručky tedy `auto` není zaváděčem parametrem, ale návěstím zavaděče, které připojí příslušné zaváděcí parametry.

Pro ilustraci uvádíme několik příkladů, které můžete zadat na zaváděcí výzvě.

```
auto url=autoserver
```

Toto spoléhá na fakt, že na síti existuje DHCP server, který dostane počítač do bodu, kdy bude možné přes DNS přeložit jméno `autoserver`. Pokud DHCP server poskytne cestu k názvu domény, tak se zkusí i variantu, kdy se za název počítače přidá právě poskytovaná doména. Například pokud je přes DHCP poskytnuta doména `priklad.cz`, vyústí to ve stažení souboru s přednastavením z adresy `http://autoserver.priklad.cz/d-i/stretch/./preseed.cfg`.

Poslední část `d-i/stretch/./preseed.cfg` pochází z proměnné `auto-install/default wreakoot`. Proměnná implicitně obsahuje adresát `stretch`, aby jste s příchodem novějších verzí Debianu a nových kóduvých označení nemigrovali na nové verze automaticky, ale kontrolováni (po explicitním zadání nového kóduvě jména). Část `/.` indikuje kořen, vůči kterému můžete zadávat relativní cesty (používá se v `preseed/include` a `preseed/run`). To umožňuje zadávat cesty k souborům jako kompletní URL, cesty začínající na `/` jsou připojeny ke kořenu, nebo jako cesty relativní k umístění, kde byl nalezen poslední soubor s přednastavením. To

2 Vlastníkem debconf proměnné (nebo šablony) je obvykle jméno balíku, který obsahuje odpovídající debconf šablonu. U proměnných používaných přímo v instalacním systému je vlastníkem „d-i“. Šablony a proměnné mohou mít více vlastníků, což pomáhá při rozhodování, zda je možné je při odinstalování balíku odstranit z databáze debconfu.

Pokud na dané síti není vybudována vhodná DHCP a DNS infrastruktura, nebo pokud nechcete použít výchozí cestu k souboru preseed.cfg, můžete zadat explicitní URL. Nebude-li URL obsahovat prvek /./, bude automatičky připojen na začátek cesty, tj. za třetí lomítko URL. Příklad vyžadující jen minimální podporu od místní síťové infrastruktury:

```
auto url=http://192.168.1.2/cesta/k/preseed.souboru
```

Celé to funguje tak, že

- pokud v URL chybí protokol, předpokládá se http,
- pokud název počítače neobsahuje tečky, připojí se k němu doména odvozená z DHCP a
- pokud za názvem počítače není žádné lomítko, přidá se výchozí cesta.

Kromě zadávání URL můžete zadat i parametry, které přímo neovlivňují chování debian-installeru samotného, ale které mohou být předány do skriptů spouštěných z nahraného souboru s přednastavením pomocí preseed/run. V současnosti to je pouze auto-install/classes, ve zkrácené verzi classes. Příklad použití:

```
auto url=autoserver classes=trida_A;trida_B
```

Třídy mohou například označovat typ systému, který se má instalovat, nebo jazykové prostředí, které se má nastavit.

Tento koncept je možné dále rozšiřovat. Pokud toho ve svých skriptech využijete, je rozumné použít jmenný prostor auto-install, například auto-install/style. Jestliže si myslíte, že máte pro další parametry vhodné příslušné aliasy.

Příklad auto zatím není definován na všech architekturách. Stejného výsledku však můžete dosáhnout přidáním dvou parametrů auto=true priority=critical ke konfiguraci jádra. Parametr jádra auto je vlastní alias pro auto-install/enable a potlačuje zobrazení otázek ohledně místního prostředí a nastavení klávesnice až do bodu, kdy je bude možné přednastavit. Parametr priority je alias pro debconf/priority a nastavením na hodnotu critical zajistíte, aby se zobrazovaly pouze otázky s kritickou prioritou, kterých při instalaci moc není.

Další parametry, které mohou vážně ovlivnit přednastavení, jsou interface=auto netcfg/dhcp_timeout=60, které způsobí, že se k instalaci použije první funkční síťové rozhraní a že instalátor bude trpělivěji při čekání na odpovědi od DHCP serveru.

Tip

Rozsáhlý příklad použití této infrastruktury naleznete na webových stránkách autora. Kromě ukázkových skriptů a tříd tam také naleznete zajímavé výsledky kreativního použití přednastavení.

B.2.4 Užitečné aliasy

Při použití (automatického) přednastavení se mohou hodit následující aliasy. Poznamenejme, že aliasy zkracují pouze jméno otázky. Vždy je třeba přidat ještě hodnotu, například auto=true nebo interface=eth0.

<table>
<thead>
<tr>
<th>Priority</th>
<th>Debconf/priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>fb</td>
<td>debian-installer/framebuffer</td>
</tr>
<tr>
<td>language</td>
<td>debian-installer/language</td>
</tr>
<tr>
<td>country</td>
<td>debian-installer/country</td>
</tr>
<tr>
<td>locale</td>
<td>debian-installer/locale</td>
</tr>
<tr>
<td>theme</td>
<td>debian-installer/theme</td>
</tr>
<tr>
<td>auto</td>
<td>auto-install/enable</td>
</tr>
<tr>
<td>classes</td>
<td>auto-install/classes</td>
</tr>
</tbody>
</table>

62
B.3. VYTVOŘENÍ SOUBORU S PŘEDNASTAVENÍM

Soubor s přednastavením soubor má stejný formát jako používá příkaz debconf-set-selections. Běžný řádek pak má tvar

```bash
<vlastnik> <jméno otázky> <typ otázky> <hodnota>
```

Soubor by měl začínat komentářem `#_preseed_V1`
Při vytváření souboru s přednastavením biste měli mít na paměti několik pravidel.

- Mezi typ a hodnotu vkládejte pouze jednu mezeru nebo tabulátor — případné další bílé znaky budou považovány za součást hodnoty.

- Dlouhý řádek můžete pro lepší čitelnost rozdělit na několik řádků tak, že na konec řádku přidáte znak pro pokračování řádku „\“ (zpětné lomítko). Je vhodné rozdělit řádek mezi názvem a typem otázky, ne mezi typem a hodnotou. Po spojení řádků bude bílé místo ze začátku/konce řádku spojeno do jediné mezery.

- Pro debconf proměnné (šablony), které jsou součástí pouze samotného instalačního programu, by měl být vlastník nastaven na „d-i“. Pro přednastavení ostatních proměnných používaných během instalace by se mělo jako vlastník používat název balíku, který obsahuje příslušnou šablonu. Do debconf databáze v nainstalovaném systému se přenesou pouze proměnné, které mají jako vlastníka nastaveno něco jiného než „d-i“.

- Většina otázek vyžaduje zadání hodnot v angličtině, avšak existují výjimky jako třeba partman, kde musíte použít přeložené hodnoty.

- Dále pak některé otázky vyžadují hodnotu formou kódu (a ne text, který se zobrazuje během instalace).

- Na začátku souboru uvede #_preseed_V1
Nejednodušší způsob vytvoření souboru s přednastavením je použít ukázkový soubor z B.4 jako základ a upravit si jej dle potřeb.

Jiná možnost je provést ruční instalaci a po restartu do nového systému použít příkaz `debconf-get-selections` (z balíku `debconf-utils`) a uložit databázi debconfu i cdebconfu do jediného souboru:

```
$ echo "#_preseed_V1" > soubor
$ debconf-get-selections --installer >> soubor
$ debconf-get-selections >> soubor
```

Tento přístup má tu nevýhodu, že vytvořený soubor bude obsahovat i položky, které by se neměly přednastavit. Z tohoto pohledu je pro většinu uživatelů vhodnější použití ukázkového souboru.

Poznámka

Tento způsob se spoléhá na fakt, že se na konci instalace uloží databáze cdebconfu do instalovaného systému do souboru `/var/log/installer/cdebconf`. Protože tato databáze může obsahovat důvěrné informace, jsou tyto soubory čtění pouze pro uživatele root.

Pokud ze systému vyčistíte balík `installation-report`, bude smazán také adresář `/var/log/installer`.

Seznam možných hodnot pro otázky můžete zjistit během instalace ze souborů umístěných v adresári `/var/lib/cdebconf` (např. pomocí editoru `nano`). Samotné šablony se nacházejí v souboru `templates.dat`, aktuální hodnoty naleznete v souboru `questions.dat`.

Ještě před instalací je vhodné zkontrolovat formát předkonfiguračního souboru příkazem `debconf-set-selections -c preseed.cfg`.

B.4 Obsah souboru s přednastavením (pro stretch)

Útržky konfigurace použité v této části jsou také dostupné jako samostatný soubor na http://www.debian.org/releases/stretch/example-preseed.txt.

Tento příklad je založen na instalaci pro architekturu Intel x86. Jestliže instalujete na jinou architekturu, není nutné všechna uvedená nastavení přepisovat do aplikaci `debconf-utils`, ale je nutné zařadit vhodné hodnoty.

Podrobnosti o tom, jak jednotlivé komponenty installačního systému pracují, naleznete v kapitole 6.3.

B.4.1 Lokalizace

Nastavení lokalizačních proměnných bude fungovat pouze v případě, když používáte přednastavení přes initrd, nebo pomocí zaváděcích parametrů jádra. U ostatních způsobů se totiž soubor s přednastavením nahraje až po zobrazení těchto otázek. Výjimkou je automatický režim (B.2.3), který odsune otázky ohledně lokalizace na později a umožní je tak přednastavit všemi známými způsoby.

Místní prostředí (locale) slouží k současnému zadání jazyka i země. Například pomocí zaváděcího parametru jádra můžete zadat `locale=cs_CZ`.

Tento způsob je velice jednoduchý, ale neumožňuje přednastavit všechny možné kombinace jazyka, země a místního prostředí.

Volitelné tedy můžete přednastavit jednotlivé proměnné.

```
# Přednastavením locale se automaticky nastaví jazyk, země a locale.
d-i debian-installer/locale string cs_CZ

# Pro větší pružnost je těžko možno nastavit hodnoty samostatně.
#d-i debian-installer/language string en
#d-i debian-installer/country string NL
#d-i debian-installer/locale string en_GB.UTF-8
# Volitelně můžete zadat další locale, která se má vygenerovat.
```

3 Například přednastavením locale na hodnotu `en_NL` by se jako výchozí locale pro instalovaný systém použilo `en_US.UTF-8`. Jestliže preferujete britský standard angličtiny (`en_GB.UTF-8`), musíte přednastavit jednotlivé proměnné.
B.4.2 Nastavení sítě

Potřebujete-li při zavádění ze sítě vybrat konkrétní síťové rozhraní ještě před nahráním souboru s přednastavením, použijte zaváděcí parametr `interface=`.

Přestože přednastavení síťování není běžně dostupné při přednastavení ze sítě (tj. při použití „preseed/url“), můžete to obejít následujícím hackem (např. pokud chcete síťovému rozhraní nastavovat statickou adresu). Hack spočívá ve vynucení opětovné konfigurace sítě po načtení souboru s přednastavením. Stačí vytvořit skript pro „preseed/run“ obsahující následující příkazy:

```
kill -all-dhcp; netcfg
```

Pro nastavení sítě lze využít následující proměnné:

```
# Kompletně zakáže nastavení síť. Hodi se pro instalace z CD
# na nezasíťovaných zařízeních, kde by byly síťové otázky,
# varování o nedostupné síti a dlouhé čekací doby na obtíž.
#d-i netcfg/enable boolean false

# netcfg zkusí použít rozhraní, jehož druhý konec je aktivní
# a tím pádem přeskočí výběr ze seznamu nalezených rozhraní.
#d-i netcfg/choose_interface select auto

# Výběr konkrétního síťového rozhraní:
#d-i netcfg/choose_interface select eth0

# Rozpoznání aktivního síťového připojení může někdy trvat déle než
# výchozí 3 sekundy. V takovém případě pomůže zvýšení této hodnoty.
#d-i netcfg/link_wait_timeout string 10

# Máte-li pomalejší dhcp server a instalačním systému vyprší čas při
# čekání na odpověď, bude užitečné následující.
#d-i netcfg/dhcp_timeout string 60
#d-i netcfg/dhcptv6_timeout string 60

# Pokud dáváte přednost ručnímu nastavení síť:
#d-i netcfg/disable_autoconfig boolean true

# Má-li tento soubor s přednastavením fungovat na systémech s i bez
# dhcp serveru, odkomentujte následující žáky a také statické
# nastavení síť níže.
#d-i netcfg/dhcp_failed note
#d-i netcfg/dhcp_options select Configure network manually

# Statické nastavení síť.
#
# Příklad IPv4
```
Pokud není proměnná `netcfg/get_netmask` přednastavená, `netcfg` si síťovou masku dopočítá automaticky. Pro plně automatické instalace musíte v takovém případě nastavit proměnnou jako `seen`, aby instalace nečekala na potvrzení spočetné masky. Obdobně je možné ne)přednastavovat proměnnou `netcfg/get_gateway` a nechat `netcfg`, aby automaticky automaticky odhalil adresu brány. Jako speciální případ je možné nastavit proměnnou `netcfg/get_gateway` na hodnotu „none“, což znamená, že se brána nemá použít vůbec.

B.4.3 Síťová konzole

```bash
# Následující nastavení se hodí v situacích, kdy chcete instalovat
# vzdáleně přes SSH pomocí komponenty network-console.
# Toto přednastavení má smysl pouze pokud plánujete dokončit
# instalaci ručně.
#d-i anna/choose_modules string network-console
#d-i network-console/authorized_keys_url string http://10.0.0.1/openssh-key
#d-i network-console/password password r00tme
#d-i network-console/password-again password r00tme
```

B.4.4 Nastavení zrcadla

V závislosti na způsobu instalace můžete zrcadlo použít pro stažení dodatečných komponent instalačního systému, stažení základního systému a pro nastavení souboru `/etc/apt/sources.list`.

Parametru `mirror/suite` určuje verzi instalovaného systému.

Parametru `mirror/udeb/suite` určuje verzi Debianu, ze které se stáhnují dodatečné komponenty instalačního systému. Nastavení této proměnné má smysl pouze v případě, že komponenty stahujete ze sítě a potřebujete, aby odpovídaly verzi initrd, který se používá pro instalaci. Instalační systém obvykle zvolí správnou hodnotu, takže by neměl být důvod tuto proměnnou měnit.
Instalační systém umožňuje přednastavit jak heslo uživatele root, tak jméno a heslo prvního běžného uživatele systému. Heslo můžete zadat buď v nešifrované podobě, nebo jako crypt(3) hash.

Přednastavení hesel není bezpečné, protože kdokoliv s přístupem k souboru s přednastavením si tato hesla může přečíst. Z pohledu bezpečnosti je použití hashů lepší, ovšem vzhledem k možným útokům hrubou silou je třeba zvolit silný algoritmus jako SHA-256 nebo SHA512. Dřívější hashovací algoritmy jako DES a MD5 jsou považovány za slabé.

B.4.5 Nastavení účtů

PŘÍLOHA B. AUTOMATIZOVÁNÍ INSTALACI

Zvolíte-li ftp, nemusíte nastavovat mirror/country
#d-i mirror/protocol string ftp
d-i mirror/country string manual
d-i mirror/http/hostname string ftp.cz.debian.org
d-i mirror/http/directory string /debian
d-i mirror/http/proxy string

Verze pro instalaci.
#d-i mirror/suite string testing
Verze, ze které nahrát komponenty instalátoru (volitelné).
#d-i mirror/udeb/suite string testing

Přeskoči vytvoření účtu pro roota (běžný uživatel bude moci použit
sudo).
#d-i passwd/root-login boolean false
Volitelně přeskoči vytvoření běžného uživatelského účtu.
#d-i passwd/make-user boolean false

Rootovo heslo v čitelném tvaru
#d-i passwd/root-password password r00tme
d-i passwd/root-password-again password r00tme
nebo šifrované pomocí crypt(3) hashe.
d-i passwd/root-password-crypted password [crypt(3) hash]

Vytvoření účtu běžného uživatele.
#d-i passwd/user-fullname string Jan Novak
d-i passwd/username string jan
heslo běžného uživatele v čitelném tvaru
#d-i passwd/user-password password nebezpecne
d-i passwd/user-password-again password nebezpecne
nebo šifrované pomocí crypt(3) hashe.
d-i passwd/user-password-crypted password [crypt(3) hash]
Nastaví UID běžného uživatele (jinak se použije výchozí hodnota).
d-i passwd/user-uid string 1010
Uživatelský účet bude automaticky přidán do několika standardních
skupin. Chcete-li to změnit, zadejte seznam požadovaných skupin.
#d-i passwd/user-default-groups string audio cdrom video

Do proměnných passwd/root-password-crypted a passwd/user-password-crypted můžete jako hodnotu zadat znak vykrčnění „!“, což znamená, že daný účet bude zakázán. To se může hodit například pro účet root, což ovšem předpokládá, že máte nastavenu nějakou jinou možnost, jak počítač spravovat (například pomocí sudo nebo autentizace přes SSH klíče).

SHA-512 hash hesla můžete vygenerovat následujícím příkazem (z balíku whois):

mkpasswd -m sha-512
B.4.6 Nastavení hodin a časového pásma

Určuje, zda jsou hardwarové hodiny nastaveny na UTC.
d-i clock-setup/utc boolean true

Proměnnou můžete nastavit na libovolnou platnou hodnotu $TZ;
Seznam časových pásem naleznete v /usr/share/zoneinfo/.
d-i timezone string Europe/Prague

Určuje, zda se mají při instalaci nastavit hodiny pomocí NTP.
d-i clock-setup/ntp boolean true
NTP server, který se má použít. Výchozí hodnota je většinou
dostačující.
#d-i clock-setup/ntp-server string tak.cesnet.cz

B.4.7 Rozdělení disku

Dělení disku je víceméně omezeno možnostmi, které nabízí partman-auto. Můžete zvolit rozdělení buď stávajícího volného místa, nebo celého disku. Rozvržení oblasti můžete určit pomocí předdefinovaného schematu, vlastního schematu ze souboru nebo schematu obsaženém v souboru s přednastavením.

Přednastavení pokročilejších konfigurací s RAIDem, LVM a šifrováním je sice podporováno, ale ne s takovými možnostmi, jako při ručním dělení.

VAROVÁNÍ

Označení disků závisí na pořadí, ve kterém jsou nahrány jejich ovladače. Jestliže se v systému nachází více disků, tak se ubezpečte, že jste vybrali ten správný.

B.4.7.1 Příklad dělení disku

Má-li systém nějaké volné místo, můžete si vybrat, zda chcete
automaticky rozdělit pouze toto volné místo. To však funguje pouze
pokud není nastavena proměnná partman-auto/method (níže).
#d-i partman-auto/init Automatically_partition select biggest_free

Alternativně můžete zadat k automatickému dělení celý disk.
Obsahuje-li systém pouze jediný disk, použije se tento automaticky.
V opačném případě musíte zadat název příslušného zařízení
v tradičním formátu a ne ve formátu devfs (tj. musíte zadat něco
jako /dev/sda, ne /dev/discs/disc0/disc).
Například pro použití prvního SCSI/SATA disku:
#d-i partman-auto/disk string /dev/sda
#
Dále musíte zvolit metodu, která se má použít. Momentálně jsou
dostupné metody
- regular: použijte typ oblastí typický na vaši architektuře
- lvm: pro rozdělení disku použijte LVM
- crypto: použijte LVM nad zašifrovanou oblastí
#d-i partman-auto/method string lvm

Pokud některý z disků určených k automatickému rozdělení obsahuje
požadavek z předchozího LVM, zobrazí se varování. Tímto můžete
varování potlačit...
B.4.7.2 Rozdělení při použití RAIDu

Pomocí přednastavení též můžete nastavit oblasti na polích softwarového RAIDu. Podporovány jsou RAID úrovně 0, 1, 5, 6 a 10, vytváření degradovaných polí a určení rezervních zařízení.
B.4. OBSAH SOUBORU S PŘEDNASTAVENÍM (PRO...

VAROVÁNÍ

Metoda by měla být nastavena na "raid".
#d-i partman-auto/method string raid
Zadejte disky k rozdělení. Na všech bude nakonec stejné rozložení,
takže to bude fungovat pouze pokud mají disky stejnou velikost.
#d-i partman-auto/disk string /dev/sda /dev/sdb

Dále musíte zadat fyzické oblasti, které se mají použít.
#d-i partman-auto/expert_recipe string
multiraid ::
1000 5000 4000 raid
$primary{ } method{ raid }
.
64 512 300% raid
method{ raid }
.
500 10000 1000000000 raid
method{ raid }
.

Na závěr musíte zadat, jakým způsobem se mají dříve definované oblasti
použít v nastavení RAIDu. Důležité je použít správná čísla logických
oblastí. Podporovány jsou RHID úrovně 0, 1, 5, 6 a 10; zařízení jsou
oddělena pomocí
Parametry jsou:
<typraidu> <početzařízení> <početrezerv> <typss> <přípobd>
<zařízení> <rezervnízařízení>

#d-i partman-auto-raid/recipe string
1 2 0 ext3 /
.
1 2 0 swap -
.
0 2 0 ext3 /home
.

Vice informací naleznete v souboru partman-auto-recipe.txt dostupném
v balíku "debian-installer" nebo ve zdrojovém repositáři D-I.

Toto zajistí, že se partman nebude při rozdělovačí ptát na potvrzení.
#d-i partman-md/confirm boolean true
#d-i partman-partitioning/confirm_write_new_label boolean true
#d-i partman/choose_partition select finish
#d-i partman/confirm boolean true

B.4.7.3 Způsob připojení oblastí

Souborové systémy se obvykle připojují pomocí jedinečného univerzálního identifikátoru, tzv. UUID. To umožňuje korektní připojení oblasti i v případech, kdy se změní jejich jména zařízení. UUID jsou dlouhé a špatně se čtou, takže pokud si budete přát, může instalátor připojit souborové systémy pomocí tradičních jmen zařízení, nebo pomocí názvů oblastí, které jim přidělíte. Zvolíte-li připojení pomocí názvů oblastí, budou oblasti bez nastaveného názvu připojeny pomocí UUID.
Zařízení se stabilními jmény, jako např. logické svazky LVM, budou místo UUID nadále používat připojení pomocí tradičních jmen zařízení.

VAROVÁNÍ

Tradiční jména zařízení se mohou měnit v závislosti na pořadí, ve kterém jádro při zavádění zařízení objeví. To může způsobit připojení chybějícího souborového systému. Podobný problém existuje v případě použití názvů oblastí, protože při zapojení dalšího disku (i externího) mohou použité názvy oblasti kolidovat a tím pádem není zaručeno, která oblast se připojí.

```
# Výchozi je připojování pomocí UUID, ale můžete zvolit též "traditional"
# pro použití tradičních jmen zařízení, nebo "label" pro použití názvů
# oblastí (se záchytnou možností použití UUID).
#d-i partman/mount_style select uuid
```

B.4.8 Instalace základního systému

V této fázi instalace se toho moc nastavit nedá. Jediné otázky se týkají instalace jádra.

```
# Nastaví APT, aby implicitně neinstaloval doporučené balíky. Použití
# této volby může znamenat instalaci nekompletního systému a měli by
# ji používat pouze k zkušené uživatelé.
#d-i base-installer/install-recommends boolean false

# (Meta) balík jádra, který se má nainstalovat; nechcete-li instalovat
# žádné jádro, zadejte "none".
#d-i base-installer/kernel/image string linux-image-686
```

B.4.9 Nastavení APT

Nastavení souboru /etc/apt/sources.list a několika základních parametrů je plně řízeno typem instalace a dříve zodpovězenými otázkami. Volitelně můžete přidat další (lokální) archivy.

```
# Můžete si zvolit instalaci softwaru ze sekci non-free a contrib.
#d-i apt-setup/non-free boolean true
#d-i apt-setup/contrib boolean true
# Odkomentujte, pokud nechcete používat citové zrcadlo.
#d-i apt-setup/use_mirror boolean false
# Vyberte, které aktualizační služby chcete využívat a zadejte
# jejich zrcadla. Příklad ukazuje výchozí hodnoty.
#d-i apt-setup/services-select multiselect security, updates
#d-i apt-setup/security_host string security.debian.org

# Další archivy, k dispozici jsou local[0-9]
#d-i apt-setup/local0/repository string \ http://muj.server/debian stable main
#d-i apt-setup/local0/comment string local server
#d-povolí čády deb-src
#d-i apt-setup/local0/source boolean true
# URL k veřejnému klíči lokálního archivu; Klíč musíte zadat, protože
# jinak si apt bude stěžovat na neautentizovaný archiv a příslušný
# řádek v sources.list zůstane zakomentován
#d-i apt-setup/local0/key string http://muj.server/klc

# Instalace vyžaduje, aby byly všechny repositáře autentizovány
# známým gpg klíčem. Tímto nastavením můžete autentizaci potlačit.
# Varování: Nebezpečné, není doporučeno.
#d-i debian-installer/allow_unauthenticated boolean true
```
B.4.10 Výběr balíků

Můžete nainstalovat libovolnou kombinaci dostupných úloh. V době psaní to zahrnuje:

- **standard** (standardní unixové nástroje)
- **desktop** (grafické prostředí)
- **gnome-desktop** (prostředí Gnome)
- **xfce-desktop** (prostředí XFCE)
- **kde-desktop** (prostředí KDE Plasma)
- **cinnamon-desktop** (prostředí Cinnamon)
- **mate-desktop** (prostředí MATE)
- **lxde-desktop** (prostředí LXDE)
- **web-server** (webový server)
- **print-server** (tiskový server)
- **ssh-server** (SSH server)

Instalaci úloh můžete vynechat a instalovat balíky nějakou jinou cestou. Úlohu standard však doporučujeme instalovat vždy.

Chcete-li kromě balíků v úlohách instalovat také nějaké samostatné balíky, můžete použít parametr pkgsel/include. Hodnotou parametru je čárkami nebo mezerami oddělený seznam, takže jej můžete jednoduše použít i na příkazové řádce jádra.

```
# tasksel tasksel/first multiselect standard, web-server, kde-desktop
# Samostatné balíky pro instalaci.
#d-i pkgsel/include string openssh-server build-essential
# Zda se mají balíky po rozbalení debootstrapem aktualizovat.
# Povolené hodnoty: none, safe-upgrade, full-upgrade
#d-i pkgsel/upgrade select none

# Některé verze instalačního systému mohou vývojářům Debianu hlásit
# seznam balíků, které jste nainstalovali, což pomáhá při
# rozhodování, který software je oblibený a proto by měl být zařazen
# na CD. Výchozi hodnotou je zákal posilání tohoto seznamu, ale měli
# byste zvážit jeho povolení.
#popularity-contest popularity-contest/participate boolean false
```

B.4.11 Dokončení instalace

```
# Při instalaci skrze sériovou konzoli jsou tradiční virtuální konzoly
# (VT1-VT6) v /etc/inittab zakázány. Chcete-li je nechat povolené,
# odkomentujte následující řádek.
#d-i finish-install/keep-consoles boolean true

# Vynechá poslední hlášku, že je instalace kompletní.
d-i finish-install/reboot_in_progress note

# Zakáže vysunutí CD během restartu, což se občas může hodit.
d-i cdrom-detect/eject boolean false
```
Tímto se počítač po skončení instalace místo restartu do nového systému zastaví, případně zcela vypne.
#-i debian-installer/exit/halt boolean true
Tímto se počítač nejen zastaví, ale i vypne.
#-i debian-installer/exit/poweroff boolean true

B.4.12 Přednastavení ostatních balíků

Je možné, že se objeví další otázky v závislosti na tom, jaký software nainstalujete, nebo podle toho, co se během instalace pokazí. Seznam všech možných otázek během instalace získáte příkazy:
debconf-get-selections --installer > soubor
debconf-get-selections >> soubor

B.5 Pokročilé možnosti

B.5.1 Spouštění vlastních příkazů během instalace

Nástroje pro přednastavení nabízejí velice mocnou vlastnost, kterou je možnost spouštění libovolných příkazů nebo skripů v určitých bodech instalace.

Po připojení souborového systému instalovaného systému je tento dostupný v adresáři /target. Pokud pro instalaci používáte CD, je po připojení dostupné přes /cdrom.

Je možné, že se objeví další otázky v závislosti na tom, jaký software nainstalujete, nebo podle toho, co se během instalace pokazí. Seznam všech možných otázek během instalace získáte příkazy:
debconf-get-selections --installer > soubor
debconf-get-selections >> soubor

B.5.2 Použití přednastavení pro změnu výchozích hodnot

Pomocí přednastavení můžete dosáhnout i toho, že se otázka normálně zobrazí, ale změní se její výchozí odpověď. (Například na úvodní otázce ohledně jazyka můžete přednastavit místo anglické češtinu, takže uživateli stačí stisknout Enter, ale stále mu necháváte možnost volby jiného jazyka.) Dosáhněte toho tak, že po nastavení proměnné změněte příznak seen na hodnotu „false“.

d-i foo/bar string hodnota

d-i foo/bar seen false

Chcete-li stejného výsledku dosáhnout pro všechny otázky, můžete použít zaváděcí parametr preseed/interactive=true, což se může hodit pro testování a ladění konfiguračního souboru s přednastavením.
Zopakuji, že vlastník „d-i“ by se měl používat pouze pro proměnné používané samotným instalačním systémem. Pro proměnné nacházející se v instalovaných balicích byste měli jako vlastník použít jméno příslušného balíku (viz poznámka pod čarou u B.2.2).

Pro více řadících informací můžete použít zaváděcí parametr `DEBCONF_DEBUG=5`, který zajistí, že debconf bude mnohem upovídaněji, co se týče aktuálního nastavení proměnných a postupu instalačními skripty.

B.5.3 Zřetězené nahrávání souborů s přednastavením

Přestože je použití jednoho velkého souboru s přednastavením jednoducho, zdaleka nemusí být přehledné a navíc postrádá flexibilitu. Z tohoto důvodu je možné nastavení rozdělit do několika samostatných souborů a ty pak skládat dohomady. Protože později uvedené volby přepisují volby zadané dříve, přímo se nabízí vytvoření hlavního (sdíleného) souboru s obecnými předvolbami a k němu několik dalších souborů se specifickým nastavením pro danou situaci.

```bash
# Zadat můžete i více souborů najednou, stačí je oddělit mezery.
# Vložené soubory mohou obsahovat jak deklarace pro přednastavení,
# tak příkazy pro zavedení dalších souborů. Pokud cestu zadáte
# relativně, hledají se soubory ve stejném adresáři, jako nadřízený
# soubor.
#d-i preseed/include string x.cfg

d-i může volitelně kontrolovat kontrolní součty souborů
s přednastavením. V současnosti jsou podporovány pouze md5 součty.
Seznam součtů zadejte ve stejném pořadí, v jakém se budou načítat
soubory s přednastavením.
#d-i preseed/include/checksum string 5da499872becccfeda2c4872f9171c3d

Mnohem pružnější je použití shellového příkazu, který vrátí názvy
souborů, jež se mají nahrát.
#d-i preseed/include_command

string if [ "'hostname'" = bob ]; then echo bob.cfg; fi

# Nejpružnější možnost stáhne program a spustí jej. Program může
# používat příkazy pro manipulaci s databází debconfu jako např.
# debconf-set. Pokud jsou názvy souborů relativní, berou se ze
# stejného adresáře jako soubor s přednastavením, který je spouštět.
# Zadat můžete i více skriptů, stačí je oddělit mezery.
#d-i preseed/run script foo.sh
```

Zřetězené nahrávání souborů s přednastavením funguje i mezi různými typy přednastavení. Například pokud používáte přednastavení z initrd nebo ze souboru, můžete v nich uvést proměnnou `preseed/url` a po naběhnutí sítě tak plynule přejít do souboru s přednastavením staženým ze sítě. Musíte však být opatrní, protože to také znamená, že se proces přednastavení spustí znovu a mimo jiné tím dostanete šanci na druhé spuštění příkazu `preseed/early`, tentokráte po naběhnutí sítě.
Příloha C

Poznámky k rozdělování disku

C.1 Počet a velikost oblastí

Jako úplné minimum potřebuje GNU/Linux jeden diskový oddíl. Tento oddíl je využit pro operační systém, programy a uživatelská data. Většina uživatelů navíc pokládá za nutnost mít vydělenou část disku pro virtuální paměť (swap). Tento oddíl slouží operačnímu systému jako odkládací prostor. Vydělení „swap“ oblasti umožní efektivnější využití disku jako virtuální paměti. Je rovněž možné pro tento účel využít obyčejný soubor, ale není to doporučené řešení.

Většina uživatelů vyčlení pro GNU/Linux více než jeden oddíl na disku. Jsou k tomu dva důvody. Prvním je bezpečnost, pokud dojde k poškození souborového systému, většinou se to týká pouze jednoho oddílu, takže potom musíte nahradit ze záloh pouze část systému. Minimálně můžete uvážit vydělení kořenového svazku souborů. Ten obsahuje zásadní komponenty systému. Jestliže dojde poškození nějakého dalšího oddílu, budete stále schopni spustit GNU/Linux a provést nápravu, což vámi může ušetřit novou instalaci systému.

Druhý důvod je obyčejně závažnější při produkčním nasazení. Představte si situaci, kdy nějaký proces začne nekontrolovaně zabírat diskový prostor. Pokud se jedná o proces se superuživatelskými právy, může zaplnit celý disk a narušit tak chod systému, poněvadž Linux potřebuje při běhu vytvářet soubory. K takové situaci může dojít i z vnějších příčin, například kdy se stanete obětí spamu a nevyžádané e-maily vám lehce zaplní celý disk. Rozdělením disku na více oddílů se lze před podobnými problémy uchránit. Pokud třeba vydělíte pro /var/mail samostatnou oblast, bude systém fungovat, i když bude zahalen nevyžádanou poštou.

Jedinou nevýhodou při používání více diskových oddílů je, že je obtížné predopreděm odhadnout kapacitu jednotlivých oddílů. Jestliže vytvoříte některý oddíl příliš malý, budete muset systém instalovat znovu, a nebo se budete potýkat s přesunováním souborů z oddílu, jehož velikost jste podhodnotili. V opačném případě, kdy vytvoříte zbytečně velký oddíl, plytváte diskovým prostorem, který by se dal využít jinde. Diskový prostor je dnes síce levný, ale proč vyhazovat peníze oknem?

C.2 Strom adresářů

Debian GNU/Linux dodržuje standard pro pojmenování souborů a adresářů (Filesystem Hierarchy Standard), což zaručuje, že uživatelé i programy mohou odhadnout umístění souborů či adresářů. Kořenový adresář je reprezentován lomítkem / a na všech Debianích systémech obsahuje tyto adresáře:

<table>
<thead>
<tr>
<th>Adresař</th>
<th>Obsah</th>
</tr>
</thead>
<tbody>
<tr>
<td>bin</td>
<td>Důležité programy</td>
</tr>
<tr>
<td>boot</td>
<td>Statické soubory zavaděče</td>
</tr>
<tr>
<td>dev</td>
<td>Soubory zařízení</td>
</tr>
<tr>
<td>etc</td>
<td>Konfigurační soubory závislé na systému</td>
</tr>
<tr>
<td>home</td>
<td>Domovské adresáře uživatelů</td>
</tr>
<tr>
<td>lib</td>
<td>Podstatné sdílené knihovny a moduly jádra</td>
</tr>
<tr>
<td>media</td>
<td>Obsahuje přípojné body pro výměnná média</td>
</tr>
<tr>
<td>mnt</td>
<td>Místo pro dočasné připojování souborových systémů</td>
</tr>
<tr>
<td>proc</td>
<td>Virtuální adresář obsahující systémové informace</td>
</tr>
<tr>
<td>root</td>
<td>Domovský adresář správce systému</td>
</tr>
<tr>
<td>run</td>
<td>Proměnlivá data platná po dobu běhu systému</td>
</tr>
<tr>
<td>sbin</td>
<td>Důležité systémové programy</td>
</tr>
<tr>
<td>srv</td>
<td>Data nabízená systémem</td>
</tr>
</tbody>
</table>
PŘÍLOHA C. POZNÁMKY K ROZDĚLOVÁNÍ DISKU

C.3. DOPORUČENÉ ROZDĚLENÍ DISKU

<table>
<thead>
<tr>
<th>Adresář</th>
<th>Obsah</th>
</tr>
</thead>
<tbody>
<tr>
<td>sys</td>
<td>Virtuální adresář pro systémové informace</td>
</tr>
<tr>
<td>tmp</td>
<td>Dočasné soubory</td>
</tr>
<tr>
<td>usr</td>
<td>Druhá úroveň hierarchie</td>
</tr>
<tr>
<td>var</td>
<td>Proměnlivá data</td>
</tr>
<tr>
<td>opt</td>
<td>Softwarevá balíky třetích stran</td>
</tr>
</tbody>
</table>

Následující seznam by vám měl pomoci při rozhodování o rozdělení disku na oblasti. Berte prosím na vědomí, že využití disku se velmi liší podle způsobu používání systému a proto jsou následující doporučení pouze obecné a měly by sloužit jen jako možný základ pro dělení disku.

- /: Kořenový adresář musí vždy fyzicky obsahovat adresáře `etc`, `/bin`, `/sbin`, `/lib` a `/dev`, protože jinak byste nemohli zavést systém. Typicky je potřeba 250–350 MB, ale v konkrétních podmínkách se požadavky mohou lišit.
- /usr: obsahuje všechny uživatelské programy (`/usr/bin`), knihovny (`/usr/lib`), dokumentaci (`/usr/share/doc`), atd. Protože tato část souborového systému spotřebuje nejvíce místa, měli byste jí na disku poskytnout alespoň 600–750 MB. Pokud budete instalovat hodně balíčků, měli byste tomuto adresáři vyhradit ještě více místa. Velkoryse pojatá instalace pracovní stanice nebo serveru může klidně zabrat i 5–6 GB.
- /tmp: sem programy většinou zapisují dočasná data. Obvykle by mělo stačit 40–100 MB. Některé aplikace — včetně nadstaveb archivačních programů, authoringových CD/DVD nástrojů a multimediálních programů, včetně nově instalovaných programů, měli byste dostupné místo příslušně zvýšit.
- /home: každý uživatel si bude ukládat data do svého podadresáře v tomto adresáři. Jeho velikost závisí na tom, kolik uživatelů bude systém používat a jaké soubory se v jejich adresářích budou uchovávat. Pro každého uživatele měli by mít počítat alespoň 100 MB místa, ale opět závisí na konkrétní situaci.

C.3. DOPORUČENÉ ROZDĚLENÍ DISKU

Pro nové uživatele, domácí počítače a jiné jednouživatelské stanice je asi nejjednodušší povolit jednu oblast jako kořenovou (a případně jednu pro virtuální paměť). Pokud bude některá oblast větší než 6 GB, použijte raději jiný souborový systém než standardní ext2 (např. ext3). Oblasti se souborovým systémem ext2 se totiž musí pravidelně kontrolovat, což může u větších oblastí trvat poměrně dlouho a prodlužuje se tím nákladů systému.

Jak jsme řekli dříve, pro víceuživatelské systémy je lepší použít pro `/var`, `/tmp` a `/home` samostatné oblasti. Chcete-li instalovat hodně programů, které nejsou přímo součástí distribuce, může se vám hodit samostatný oddíl pro `/usr/local`. Na počítači, který slouží jako poštovní server, má smysl vyhradit pro `/var/mail` a `/home` samostatné oblasti.

Při instalaci komplikovanějšího systému (serveru) se podíváme do Multi Disk HOWTO na podrobnější informace. Tento odkaz může být zajímavý rovněž pro zprostředkovatele připojení k Internetu.

Na některých 32-bitových architekturách (m68k a PowerPC) využije Linux z jednoho odkládacího oddílu maximálně 2 GB, takže není důvod, proč překračovat tuto hranici. Můžete-li větší nároky na virtuální paměť, zkuste umístit
odkládací oddíly na různé fyzické disky, a pokud možno, na různé IDE nebo SCSI kanály. Jádro bude automaticky vyrovňávat zátěž mezi jednotlivé oblasti, což se projeví ve zvýšení rychlosti.

Například starší domácí počítač může mít 32 MB paměti a 1,7 GB IDE disk na zařízení /dev/sda. Řekněme, že na /dev/sda1 je oblast pro druhý operační systém o velikosti 500 MB. Odkládací oddíl má 32 MB a je na /dev/sda3. Zbytek, tj. asi 1,2 GB na /dev/sda2 je kořenový svazek pro Linux.

Pro představu, kolik místa zaberou jednotlivé úlohy, se podívejte na D.2.

C.4 Jak Linux pojmenovává pevné disky

Disky a oddíly na nich mají v Linuxu odlišné názvy než v jiných operačních systémech. Tyto názvy budete potřebovat při rozdělování disku a připojování oblastí. Základní zařízení:

- První disketová jednotka je nazvána /dev/fd0.
- Druhá disketová jednotka je /dev/fd1.
- První rozpoznaný disk má název /dev/sda.
- Druhý rozpoznaný disk má název /dev/sdb atd.
- První SCSI CD mechanice odpovídá /dev/scd0 nebo také /dev/sr0.

Oddíly na discích jsou rozlišeny připojením čísla k názvu zařízení: sda1 a sda2 představují první a druhý oddíl prvního disku.

Například uvažujme počítač s dvěma disky na SCSI sběrnici na SCSI adresách 2 a 4. Prvnímu disku (na adrese 2) odpovídá zařízení sda, druhému sdb. Tři oddíly na disku sda by byly pojmenovány sda1, sda2, sda3. Stejné schéma značení platí i pro disk sdb a jeho oblasti.

Máte-li v počítači dva SCSI řadiče, pořadí disků zjistíte ze zpráv, které Linux vypisuje při startu.

C.5 Dělící programy v Debianu

K rozdělení disku nabízí každá architektura různé prostory. Pro váš typ počítače jsou k dispozici:

- partman Doporučený nástroj, který umí kromě dělení disků i měnit velikost oblastí, vytvářet souborové systémy a přiřadit je k připojným bodům.
- fdisk Původní linuxový program pro správu oddílů, vhodný pro guru.

Obzvláště opatrní musíte být v případě, že máte na disku oblasti systému FreeBSD. Instalační jádra sice obsahují podporu pro tyto oblasti, ale způsob, jakým je fdisk (ne)reprezentuje, může změnit názvy zařízení. Viz Linux+FreeBSD HOWTO.

- cfdisk Jednoduchý, celoobrazovkový program pro správu oddílů se vyznačuje snadným ovládáním.

Poznamenejme, že cfdisk oblasti FreeBSD nerozpozná vůbec a tím pádem se názvy zařízení mohou změnit.

Jeden z těchto programů se spustí automaticky, když vyberete krok Rozdělit disky (nebo podobný). Teoreticky je možné přepnout se na druhou konzoli (tty2) a použít jiný nástroj na dělení disku, avšak prakticky se to nedoporučuje.
Příloha D

Co se jinam nevešlo

D.1 Zařízení v Linuxu

<table>
<thead>
<tr>
<th>Soubor</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>fd0</td>
<td>první disketová mechanika</td>
</tr>
<tr>
<td>fd1</td>
<td>druhá disketová mechanika</td>
</tr>
<tr>
<td>sda</td>
<td>první pevný disk</td>
</tr>
<tr>
<td>sdb</td>
<td>druhý pevný disk</td>
</tr>
<tr>
<td>sda1</td>
<td>první oblast na prvním pevném disku</td>
</tr>
<tr>
<td>sdb7</td>
<td>sedmá oblast na druhém pevném disku</td>
</tr>
<tr>
<td>sr0</td>
<td>první CD-ROM</td>
</tr>
<tr>
<td>sr1</td>
<td>druhá CD-ROM</td>
</tr>
<tr>
<td>ttyS0</td>
<td>sériový port 0, pod MS-DOSem COM1</td>
</tr>
<tr>
<td>ttyS1</td>
<td>sériový port 1, pod MS-DOSem COM2</td>
</tr>
<tr>
<td>lp0</td>
<td>první paralelní port</td>
</tr>
<tr>
<td>lp1</td>
<td>druhý paralelní port</td>
</tr>
<tr>
<td>psaux</td>
<td>rozhraní myši na portu PS/2</td>
</tr>
<tr>
<td>gpmdata</td>
<td>pseudozařízení - jenom opakuje data získaná z GPM (ovladač myši)</td>
</tr>
<tr>
<td>cdrom</td>
<td>symbolický odkaz na CD-ROM mechaniku</td>
</tr>
<tr>
<td>mouse</td>
<td>symbolický odkaz na rozhraní myši</td>
</tr>
<tr>
<td>null</td>
<td>cokoliv pošlete na toto zařízení, zmizí beze stopy</td>
</tr>
<tr>
<td>zero</td>
<td>z tohoto zařízení můžete až do nekonečna číst nuly</td>
</tr>
</tbody>
</table>

D.1.1 Nastavení myši

Aby myš fungovala, musí být zavedeny některé moduly jádra. Ve většině případů jsou správné moduly rozpoznány a zavedeny automaticky. Výjimkou mohou být staré sériové a sběrnicové myši, které jsou dnes spíše raritou ve velmi starých počítačích. Typické moduly, které jsou potřeba pro různé typy myší:

<table>
<thead>
<tr>
<th>Modul</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>psmouse</td>
<td>PS/2 myši (měl by být rozpoznán automaticky)</td>
</tr>
<tr>
<td>usbhid</td>
<td>USB myši (měl by být rozpoznán automaticky)</td>
</tr>
<tr>
<td>sermouse</td>
<td>Většina sériových myší</td>
</tr>
<tr>
<td>logibm</td>
<td>Sběrnicová myš připojená k adaptérové kartě</td>
</tr>
<tr>
<td></td>
<td>Logitech</td>
</tr>
<tr>
<td>import</td>
<td>Sběrnicová myš připojená ke kartě ATI nebo</td>
</tr>
<tr>
<td></td>
<td>Microsoft InPort</td>
</tr>
</tbody>
</table>

Pro zavedení modulu s ovladačem můžete použít příkaz `modconf` z balíku stejného jména a hledat v kategorii `kernel/drivers/input/mouse.`

D.2 Místo potřebné pro úlohy

Standardní instalace na architektuře amd64 zabere na disku včetně všech standardních balíků 800MB. Menší instalace bez úlohy „Standardní systém” zabere 613MB.

V obou případech je zabrané místo počítáno po dokončení instalace a smazání všech dočasných souborů. Výpočet také nebere v úvahu režii souborového systému, například pro žurnálovací soubory. To znamená, že během instalace a také později při samotném používání systému bude potřeba mnohem více místa na dočasné soubory (stažené balíky) a uživatelská data.

Následující tabulka ukazuje velikosti úloh tak, jak je vypisuje program aptitude. Protože se mohou balíky v některých úlohách překrývat, je možné, že celková velikost instalovaných úloh bude menší než součet jejich velikostí.

<table>
<thead>
<tr>
<th>Úloha</th>
<th>Instalovaná velikost (MB)</th>
<th>Stáhne se (MB)</th>
<th>Místo během instalace (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notebook</td>
<td>29</td>
<td>9</td>
<td>38</td>
</tr>
<tr>
<td>Webový server</td>
<td>40</td>
<td>9</td>
<td>49</td>
</tr>
<tr>
<td>Tiskový server</td>
<td>407</td>
<td>95</td>
<td>502</td>
</tr>
<tr>
<td>SSH server</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>• GNOME (výchozí)</td>
<td>3163</td>
<td>935</td>
<td>4098</td>
</tr>
<tr>
<td>• KDE Plasma</td>
<td>3044</td>
<td>911</td>
<td>3955</td>
</tr>
<tr>
<td>• Xfce</td>
<td>2122</td>
<td>593</td>
<td>2715</td>
</tr>
<tr>
<td>• LXDE</td>
<td>2133</td>
<td>602</td>
<td>2735</td>
</tr>
<tr>
<td>• MATE</td>
<td>2288</td>
<td>644</td>
<td>2932</td>
</tr>
<tr>
<td>• Cinnamon</td>
<td>2878</td>
<td>843</td>
<td>3721</td>
</tr>
</tbody>
</table>

Důležité

Úloha Instalovaná velikost (MB)	Stáhne se (MB)	Místo během instalace (MB)
Notebook | 29 | 9 | 38
Webový server | 40 | 9 | 49
Tiskový server | 407 | 95 | 502
SSH server | 1 | 0 | 1

1 Sériové myši mají obvykle konektor tvaru D s devíti otvory. Sběrnicové myši mají kulatý 8 pinový konektor. Pozor, neplést s 6 pinovým kulatým konektorem PS/2 a 4 pinovým kulatým konektorem ADB.
Instalujete-li v jiném jazyce než angličtině, je možné, že tasksel automaticky nainstaluje lokalizační úlohu pro daný jazyk. Velikost lokalizační úlohy závisí na tom, co do ni její tvůrci umístili za balíky.

D.3 Jak nainstalovat Debian GNU/Linux ze stávajícího unixového/linuxového systému

Tato kapitola se, na rozdíl od zbytku příručky, nezabývá oficiálním instalaci programem, ale popisuje instalaci Debianu ze stávajícího unixového nebo linuxového systému. Tuto kapitolu si vyžádali uživatelé přecházející z distribucí Red Hat, Mandriva a SUSE. Předpokládáme zde jisté znalosti s používáním *nixových příkazů a pohybem v souborovém systému. V této sekci platí, že příkazy uvozené promptem $ zadáváte ve svém stávajícím systému, zatímco příkazy uvozené # se spouštějí v chrootovaném prostředí.

Až si Debian GNU/Linux vyladíte k obrazu svému, můžete do něj převést stávající uživatelská data a plynule přejít k nové distribuci bez zbytečných prostojů. Tento druh instalace je též vhodný pro systémy s podivným hardwarem, který jinak není podporován instalacičními médii.

POZNÁMKA

Protože se z velké části jedná o ruční postup, měli byste mít na paměti, že spoustu věcí, které běžně řeší instalaci program sám, nyní budete muset provádět sami. To také kladou větší nároky na znalosti Debianu a unixových systémů obecně. Následující návod řeší pouze základní nastavení systému, je možné, že bude potřeba provést další kroky.

D.3.1 Přípravné práce

Nejprve si rozdělte disk. Budete potřebovat aspoň jeden oddíl (kořenový) plus oblast pro virtuální paměť (swap). Pro čistě konzolovou instalaci potřebujete oblast velkou minimálně 613 MB, jestliže budete instalovat i X Window System, počítejte s nejméně 2133 MB.

Na nových oddílech vytvořte souborové systémy. Například souborový systém ext3 na oblasti /dev/sda6 vytvoříte příkazem:

```
# mke2fs -j /dev/sda6
```

(Ve zbytku návodu budeme předpokládat, že kořenový oddíl je /dev/sda6.) Jestliže chcete vytvořit systém ext2, vynechejte parametr -j.

Inicializujte a aktivujte odkládací oddíl (nezapomeňte změnit číslo oblasti podle skutečnosti):

```
# mkswap /dev/sda5
# sync
# swapon /dev/sda5
```

Připojte budoucí kořenovou oblast (/) do adresáře /mnt/debinst. Na jméně připojeného adresáře nezáleží.

```
# mkdir /mnt/debinst
# mount /dev/sda6 /mnt/debinst
```

POZNÁMKA

Chcete-li mít části souborového systému (např. /usr) připojené na různých oblastech, musíte tyto adresáře vytvořit a připojit ručně ještě před přiští kapitolou.
D.3.2 Instalace balíku debootstrap

debootstrap je program, kterým se v Debianu instaluje základní systém. Má minimum závislosti (pouze /bin/sh, ar, wget a základní unixové/linuxové nástroje³), takže se dá použít na téměř libovolném systému. Pokud ještě wget a ar nemáte, nainstalujte si je.

Poslední možností je ruční instalace. Vytvořte si pracovní adresář, do kterého později balík rozbalíte:

```bash
# mkdir work
# cd work

Z poolu si stáhněte balík debootstrap pro svou architekturu, uložte jej do pracovního adresáře a vybalte z něj potřebné soubory. K instalaci souborů musíte mít rootovská práva.

# ar --x debootstrap_0.X.X_all.deb
# cd /
# zcat /cesta-k-pracovnimu-adresari/work/data.tar.gz | tar xv
```

D.3.3 Spuštění debootstrape

Pokud máte první oficiální CD, můžete jej připojit jako /cdrom a místo síťové adresy použít odkaz na soubor: file:/cdrom/debian/.

V ukázkovém příkazu debootstrap nahraďte ARCH jedním z následujících: amd64, arm64, armel, armhf, i386, mips, mips64el, mipsel, powerpc, ppc64el nebo s390x.

```bash
# /usr/sbin/debootstrap --arch ARCH stretch \
```

Pokud se cílová architektura liší od hostitelské, měli byste přidat ještě parametr --foreign.

D.3.4 Nastavení základního systému

V adresáři /mnt/debinst teď máte opravdový, i když minimální, systém Debian. Nastal čas se do něj přesunout:

```bash
# LANG=C.UTF-8 chroot /mnt/debinst /bin/bash
```

Pokud se cílová architektura liší od hostitelské, budete ale nejprve muset do nového systému nakopírovat qemu-user-static:

```bash
# cp /usr/bin/qemu-ARCH-static /mnt/debinst/usr/bin
# LANG=C.UTF-8 chroot /mnt/debinst qemu-ARCH-static /bin/bash
```

V novém systému možná budete muset nastavit definici terminálu tak, aby byla kompatibilní se základním systémem Debianu:

```bash
# export TERM=xterm-color
```

Abyste mohli použít některé hodnoty proměnné TERM, budete možná muset nainstalovat balík ncurses-term.

Jestliže se cílová architektura liší od hostitelské, musíte dokončit druhou fázi nastavení:

```bash
/debootstrap/debootstrap --second-stage
```

D.3.4.1 Vytvoření souborů zařízení

Adresář /dev nyní obsahuje několik základních souborů zařízení, avšak pro další instalaci může být zapotřebí dalších zařízení. Další postup závisí na různých faktorech, jako je typ hostitelského systému, zda hodláte použít modulární jádro a zda chcete soubory zařízení v novém systému spravovat staticky nebo dynamicky (například pomocí udev).

Několik možných postupů:

- V chrootu vytvořte základní sadu statických souborů zařízení příkazy:

2 Sem patří GNU core utilities a příkazy typu sed, grep, tar a gzip.
• Pomocí příkazu \texttt{MAKEDEV} ručně vytvořte pouze ty soubory zařízení, které potřebujete.

• Do instalovaného systému připojte adresář \texttt{/dev} z hostitelského systému (parametr \texttt{bind} příkazu \texttt{mount}). S touto možností biste však měli být opatrní, protože některé balíky při instalaci vytvářejí nová zařízení, což nemusí být to, co chcete, aby se promířilo do hostitelského systému.

D.3.4.2 Připojení oblastí

Nejprve musíte vytvořit soubor \texttt{/etc/fstab}.

\begin{verbatim}
editor /etc/fstab
\end{verbatim}

Jako vzor můžete použít následující šablonu (místo \texttt{XXX} dosaďte vlastní oblasti):

\begin{verbatim}
/etc/fstab: static file system information.
#
file system mount point type options dump pass
/dev/XXX /boot ext3 defaults 0 1
/dev/XXX / ext3 ro,nosuid,nodev 0 2

/dev/XXX none swap sw 0 0
proc /proc proc defaults 0 0

/dev/fd0 /media/floppy auto noauto,rw,sync,user,exec 0 0
/dev/cdrom /media/cdrom iso9660 noauto,ro,user,exec 0 0
/dev/XXX /tmp ext3 rw,nosuid,nodev 0 2
/dev/XXX /var ext3 rw,nosuid,nodev 0 2
/dev/XXX /usr ext3 rw,nosuid,nodev 0 2
/dev/XXX /home ext3 rw,nosuid,nodev 0 2

Souborové systémy, které jste zadali do \texttt{/etc/fstab} můžete připojit všechny najednou příkazem \texttt{mount -a}, nebo individuálně příkazem:

\begin{verbatim}
mount /cesta # např.: mount /usr
\end{verbatim}

Připojné body pro výměnná média se v aktuálních verzích Debianu nachází v adresáři \texttt{/media}, ale pro zachování zpětné kompatibility na ně existují i symbolické odkazy v kořenu \texttt{/}. Příklad:

\begin{verbatim}
cd /media
mkdir cdrom0
ln -s cdrom0 cdrom
cd /
ln -s media/cdrom
\end{verbatim}

Před další prací si ověřte, že máte připojený virtuální souborový systém \texttt{/proc}. Pokud tomu tak není, připojte jej:

\begin{verbatim}
mount -t proc /proc
\end{verbatim}

Příkaz \texttt{ls /proc} by nyní měl vypsat neprázdný adresář. Pokud by se tak nestalo, stále biste měli být schopni připojit \texttt{proc} z vnějšího chrootu:

\begin{verbatim}
mount -t proc /mnt/debinst/proc
\end{verbatim}

D.3.4.3 Nastavení časového pásma

Nastavením třetího řádku v souboru \texttt{/etc/adjtime} na hodnotu „LOCAL“ resp. „UTC“ systému říkáte, zda má hardwareové hodiny počítače interpretovat jako místní čas, resp. jako čas v UTC.

\begin{verbatim}
editor /etc/adjtime
\end{verbatim}
D.3. NAINSTALOVÁT DEBIAN GNU/LINUX

Příloha D. CO SE JINAM NEVEŠLO

Příklad souboru /etc/adjtime:

```
0.0 0 0.0
0
UTC
```

Své časové pásmo můžete nastavit příkazem:

```
# dpkg-reconfigure tzdata
```

D.3.4.4 Nastavení sítě

Síťování se nastavuje v souborech /etc/network/interfaces, /etc/resolv.conf, /etc/hostname a /etc/hosts.

```
# editor /etc/network/interfaces
```

Pro začátek vám mohou pomoci ukázky z /usr/share/doc/ifupdown/examples:

```
######################################################################
# /etc/network/interfaces -- configuration file for ifup(8), ifdown(8)
# See the interfaces(5) manpage for information on what options are
# available.
######################################################################

# Virtuální loopback chceme vždy.
# auto lo
iface lo inet loopback

# Použití dhcp:
# auto eth0
# iface eth0 inet dhcp

# Statická IP adresa: (broadcast a gateway jsou volitelné)
# auto eth0
# iface eth0 inet static
# address 192.168.0.42
# network 192.168.0.0
# netmask 255.255.255.0
# broadcast 192.168.0.255
# gateway 192.168.0.1

Do /etc/resolv.conf zadejte nastavení jmenných serverů (DNS):

```
editor /etc/resolv.conf
```

Jednoduchá ukázka /etc/resolv.conf:

```
search hqdom.local
nameserver 10.1.1.36
nameserver 192.168.9.100
```

Zadejte název svého systému (délka aspoň 2 a nejvýše 63 znaky):

```
echo JmenoPocitace > /etc/hostname
```

A vytvořte základní /etc/hosts s podporou IPv6:

```
127.0.0.1 localhost
127.0.1.1 JmenoPocitace

The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
```
PŘÍLOHA D. CO SE JINAM NEVEŠLO

D.3. JAK NAINSTALOVAT DEBIAN GNU/LINUX…

ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts

Jestliže máte více síťových karet, měli byste si pohrát s názvy modulů v /etc/modules, aby se karty vždy přiřadily ke stejnému rozhraní (eth0, eth1, atd.)

D.3.4.5 Nastavení APT

Debootstrap sice vytvořil základní soubor /etc/apt/sources.list, který umožní instalaci dalších balíků, ale je možné, že budete chtít přidat další zdroje, například pro bezpečnostní aktualizace, nebo pro zdrojové balíky:

deb-src http://ftp.cz.debian.org/debian stretch main
deb http://security.debian.org/ stretch/updates main
deb-src http://security.debian.org/ stretch/updates/main

Po úpravách seznamu zdrojů nezapomeňte spustit příkaz apt update.

D.3.4.6 Nastavení místního prostředí a klávesnice

Aby se s vámi systém bavil v jiném jazyce než je angličtina, musíte nainstalovat a nastavit balík pro podporu národních prostředí. V současnosti se doporučuje použít prostředí v kódování UTF-8.

# apt install locales
# dpkg-reconfigure locales

Pokud je to potřeba, můžete nakonfigurovat klávesnici:

# apt install console-setup
# dpkg-reconfigure keyboard-configuration

Klávesnici nemůžete nastavit v chrootu, změna se projeví až po příštím restartu.

D.3.5 Instalace jádra

Jestliže budete chtít tento systém i zavádět (na 99% ano), musíte si nainstalovat jádro (a možná zavaděč). Následujícím příkazem zjistíte dostupná připravená jádra:

# apt search linux-image

Poté balík s vybraným jádrem nainstalujte:

# apt install linux-image-arch-std

D.3.6 Nastavení zavaděče

Abyste mohli zavádět svůj Debian GNU/Linux, nastavte v zavaděči, aby nahrál instalované jádro s novou kořenovou oblastí. debootstrap sám o sobě zavaděč neinstaluje, takže jej budete muset doinstalovat zvlášť (např. pomocí apt uvnitř chrootovaného prostředí).

D.3.7 Vzdálený přístup: Instalace SSH a nastavení přístupu

Pokud se do systému můžete přihlásit přes konzoli, můžete tento krok přeskočit. Jestliže však má být počítač dostupný přes síť, měli byste nainstalovat SSH a nastavit přístup.

# apt install ssh

Uživatel root má implicitně zakázané přihlášení pomocí hesla. Pokud mu chcete povolit přístup pomocí hesla tak, jako to bývalo běžné dříve, musíte mu nastavit heslo a povolit přihlášení pomocí hesla:

# passwd
# editor /etc/ssh/sshd_config

84
kde musíte povolit volbu

```
PermitRootLogin yes
```

Přístup můžete moderněji nastavit také přidáním ssh klíče do seznamu autorizovaných klíčů uživatele root:

```
mkdir /root/.ssh
chmod 700 /root/.ssh
cat << EOF > /root/.ssh/authorized_keys
ssh-rsa
EOF
```

Poslední možností je dát přístup běžnému uživateli:

```
adduser franta
passwd franta
```

### D.3.8 Závěrečné kroky

Jak již bylo řečeno dříve, nainstalovaný systém bude poměrně jednoduchý. Chcete-li z něj udělat systém o něco vyspělejší, doinstalujte alespoň balíky s prioritou „standardní“:

```
tasksel install standard
```

Nic vám samozřejmě nebrání nainstalovat jednotlivé balíky pomocí `apt`

Po instalaci zůstanou stažené `.deb` soubory v adresáři `/var/cache/apt/archives/`. Nějaké místo můžete uvolnit jejich smazáním:

```
apt clean
```

### D.4 Jak nainstalovat Debian GNU/Linux pomocí PPP přes Ethernet (PPPoE)

V některých zemích (např. v České republice) se mezi poskytovatelem širokopásmového připojení k Internetu pomocí ADSL nebo kabelové televize a koncovým zákazníkem běžně používá protokol PPP přes Ethernet (PPPoE). Použití PPPoE během instalace není v běžném instalátoru podporováno, ale podpora existuje a stačí ji zapnout. Tato kapitola vysvětluje jak.

PPPoE spojení vytvořené během instalace bude k dispozici i po restartu do nového systému (viz 7).

Abyste mohli během instalace nastavit a využít PPPoE, musíte k instalaci použít obraz některého z dostupných CD/DVD. Ostatní způsoby instalace (zavádění ze sítě) PPPoE nepodporují.

Instalace pomocí PPPoE je téměř shodná s ostatními instalacemi, drobné rozdíly jsou zachyčeny v následujících bodech.

- Instalační systém zavede se zaváděcím parametrem `modules=ppp-udeb`. Tímto zajistíte, aby se automaticky zavedla komponenta zodpovědná za nastavení PPPoE (`ppp-udeb`).
- Stejně jako v běžné instalaci projděte nastavením jazyka, země, klávesnice a zavedením dodatečných komponent instalačního systému.
- Dalším krokem je rozpoznání síťového hardwaru v systému.
- Poté se spustí vlastní nastavení PPPoE. Instalační systém postupně zkouší na každém rozpoznaném ethernetovém rozhraní nalézt PPPoE koncentrátor (to je typ serveru, který se stará o PPPoE spojení).

Je možné, že se koncentrátor nepodaří nalézt na první pokus. To se občas stává na pomalých nebo hodně zatížených sítích, případně u porouchaných serverů. Opakovaný pokus o nalezení koncentrátoru většinou bývá úspěšný. Pro opakování vyberte z hlavního menu instalačního systému položku Nastavit a spustit PPPoE spojení.
- Po nalezení koncentrátoru budete dotázaní na přihlašovací informace (PPPoE jméno uživatele a heslo).

---

3 V tomto kroku se nahráje komponenta `ppp-udeb`. Instalujete-li se střední nebo nízkou prioritou (expertní režim), můžete zde ručně zvolit `ppp-udeb` a nemusíte používat zaváděcí parametr „modules“ z předchozího kroku.
V tomto okamžiku se instalační systém pokusí navázat PPPoE spojení. Jestliže byly zadané informace správné, PPPoE spojení se nastaví a bude k dispozici po zbytek instalace. Pokud jste zadali chybné přihlašovací informace, nebo pokud se vyskytnou nějaká jiná chyba, instalace se zastaví, ale stále budete mít možnost se vrátit do hlavního menu a zkusit krok zopakovat; stačí znovu vybrat možnost Nastavit a spustit PPPoE spojení.
Příloha E

Administrivia

E.1 O tomto dokumentu

Tato příručka byla vytvořena pro instalaci distribuce Sarge (debian-installer). Příručka vychází z dřívějšího manuálu pro Woodyho (boot-floppies), který je zase založen na předchozích instalacních manuálech. Využili jsme i částí manuálu distribuce Progeny, který byl v roce 2003 uvolněn pod licencí GNU GPL.


Abyste byl dokument lépe udržovatelný, používáme různé výhody XML, jako jsou entity a profilovací atributy, které nahrazují proměnné a podmínky z programovacích jazyků. Zdrojový text příručky například obsahuje pohromadě informace pro všechny podporované typy počítačových architektur. Pomocí profilovacích atributů jsou různé pasáže textu označeny jako závislé na dané architektuře a při překladu se zobrazí jenom v určitých verzích dokumentu.

E.2 Jak přispět k tomuto návodu

Problémy a vylepšení týkající se tohoto dokumentu zasílejte formou bug reportu (hlášení o chybě) v balíku installation-guide. (Viz popis v balíku reportbug nebo online dokumentace Debian Bug Tracking System.) Před nahlášením problému je vždy dobré nejprve zkontrolovat databázi otevřených chyb balíku installation-guide, zda již chyba nebyla hlášena. Pokud stejný problém najdete mezi neuzavřenými chybami, můžete doplnit existující popis o váš poznatek zasláním zprávy na adresu xxxx@bugs.debian.org, kde xxxx je číslo již nahlášeného problému.

Ještě lepší je získat zdrojový text dokumentu ve formátu DocBook a vytvářet záplaty (patch) přímo proti němu. Pokud jste se s formátém DocBook ještě nesetkali, pro začátečníkům pomůže soubor cheatsheet.txt nacházející se v adresáři se zdrojovými texty příručky. Ty můžete nalézt na stránce debian-installer WebSVN. Návod, jak získat soubory ze SVN, najdete v souboru README.


E.3 Hlavní spoluautoři

Tento dokument původně napsali Bruce Perens, Sven Rudolph, Igor Grobman, James Treacy a Adam Di Carlo. Sebastian Ley sepsal Installation Howto.

Miroslav Kuře zdokumentoval (prý velké) části funkcionality nového instalačního programu pro Sarge. Frans Pop byl hlavním editorem a release managerem během vydání Etche, Lennyho a Squeeze.

K tomuto dokumentu přispělo mnoho užívatelů a vývojářů Debiannya. Zmiňme alespoň Michaela Schmitze (m68k), Franka Neumann (je autorem instalacního manuálu pro Amigu). Dále to jsou Arto Astala, Eric Delaunay/Ben Collins (SPARC), Tapio Lehtonen a Stéphane Bortzmeyer (mnoho oprav a textu). Také je třeba poděkovat Pascalu Le Bailovi za užitečné informace o zavádění z USB zařízení.

Velmi užitečné informace jsme nalezeny v dokumentech „Jim Mintha’s HOWTO for network booting“ (neznamá adresa), Debian FAQ, Linux/m68k FAQ, Linux for SPARC Processors FAQ, Linux/Alpha FAQ a dalších. Uznání samozřejmě patří i lidem, kteří tyto volně dostupné a bohaté zdroje informací spravují.
Část manuálu zabývající se chrootovanou instalací (D.3) je částečně odvozena z dokumentů na něž vlastní copy-right Karsten M. Self.

**E.4 Český překlad**

Tento dokument smí být šířen za podmínek uvedených v GNU General Public License. Vlastníkem autorských práv k překladu je Miroslav Kuře kurem@debian.cz a historicky též Jiří Mašík masik@debian.cz a Vilém Vychodil vychodiv@debian.cz.

**E.5 Ochranné známky**

Všechny ochranné známky jsou majetkem svých vlastníků.
Příloha F

Český překlad GNU General Public License
Abstrakt

This is an unofficial translation of the GNU General Public License into Czech. It was not published by the Free Software Foundation, and does not legally state the distribution terms for software that uses the GNU GPL — only the original English text of the GNU GPL does that. However, we hope that this translation will help Czech speakers to better understand the GNU GPL.

Tento text je neoficiálním překladem GNU General Public License (GNU GPL). Nebyl vydán nadací Free Software Foundation a nevyjadřuje právní podstatu podmínek pro šíření softwaru používajícího GNU GPL — tomuto účelu slouží výhradně původní anglická verze GNU GPL. Přesto doufáme, že tento překlad pomůže českým čtenářům lépe porozumět licenci GNU GPL.
Český překlad verze 2, červen 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.

Kopírování a distribuce doslovných kopii tohoto licenčního dokumentu jsou dovoleny komukoliv, jeho změny jsou však zakázány.

F.1 Preambule

Software licence jsou většinou navrženy tak, že vám odebírají právo svobodného sdílení a úprav programů. Smyslem GNU General Public License je naproti tomu zaručit svobodu ke sdílení a úpravám svobodného softwaru — pro zajištění svobodného přístupu k tomuto softwaru pro všechny jeho uživatele. Tato General Public License se vztahuje na většinu softwaru nadace Free Software Foundation a na jakýkoli jiný program, jehož autor se přikloní k jejímu používání. (Některý další software od Free Software Foundation je namísto toho pokryt GNU Lesser General Public License.) Můžete ji rovněž použít pro své programy.

Pokud mluvíme o svobodném softwaru, máme na mysli svobodu, nikoliv cenu. Naše General Public License je navržena pro zajištění toho, že můžete svobodně šířit kopie svobodného softwaru (a užívat si poplatek za tuto službu, pokud chcete), že obdržíte zdrojový kód anebo jej můžete získat, pokud ho chcete, že můžete tento software modifikovat nebo jeho části použít v nových svobodných programech; a že věte, že tyto věci vám nic nezátěžují.

Abychom mohli chránit vaše práva, musíme vytvořit omezení, která zakáží komukoliv vám tato práva odepírat nebo vás žádat, abyste se těchto práv vzdali. Tato licence se promítá do jistých povinností, kterým můžete dostát, pokud šíříte kopie dotyčného softwaru anebo ho modifikujete.


Vaše práva chráníme ve dvou krocích: (1) autorizací softwaru a (2) nabídkou této licence, která vám dává právoplatné svolení ke kopírování, šíření a modifikaci softwaru.

Kvůli ochraně každého autora i nás samotných chceme zajistit, aby každý chápal skutečnost, že pro svobodné software neplatí žádné záruky. Je-li software někým jiným modifikován a poslán dále, chceme, aby příjemci věděli, že to, co mají, není originál, takže jakékoliv problémy vnesené jinými se neodrazí na reputaci původních autorů.

Konečně, každý svobodný program je neustále ohrožen softwarovými patenty. Přejeme si zamezit nebezpečí, že redistribuóři svobodného programu obdrží samostatně patentová osvědčení a tím učiní program vázaný. Abychom tomu zamezili, deklarovali jsme, že každý patent musí být buď vydán s tím, že umožňuje každému svobodně užít, anebo nesní být vydán vůbec.

Přesná ustanovení a podmínky pro kopírování, šíření a modifikaci jsou uvedeny dále.

F.2 GNU GENERAL PUBLIC LICENSE

USTANOVENÍ A PODMÍNKY PRO KOPÍROVÁNÍ, DISTRIBUCI A MODIFIKACI

0. Tato licence se vztahuje na kterýkoliv program či jiné dílo, které obsahuje zmínku, umístěnou v něm držitelem autorských práv, o tom, že dílo může být šířeno podle ustanovení GNU General Public License. V dalším textu znamená „program“ každý takový program nebo dílo a „dílo založené na programu“ znamená buď program samotný anebo každé jiné dílo z něj odvozené, které podléhá autorskému zákonu: tím se míní dílo obsahující program nebo jeho část, buď doslovně anebo s modifikacemi, popřípadě v překladu do jiného jazyka. (Nadále je překlad zahrnován bez omezení pod pojem „modifikace“.) Každý uživatel licence je označován jako „vy“.

Jiné činnosti než kopírování, šíření a modifikace nejsou touto licencí pokryty; sahají mimo její rámec. Akt spuštění programu není ustanoven a výstup z programu je pokryt pouze tehdy, jestliže obsahuje důležité informace nebo výsledky. Při vytváření programu je však nejlepší, aby byly všechny části programu zapsány v originálním jazyce, které není primitivní.

1. Můžete kopírovat a šířit doslovně kopie zdrojového kódu programu tak, jak je určeno v licenci, a také vytvářet nové dílo na základě existujících dílů. V tomto souvislosti je důležité, aby byly všechny části programu zapsány v originálním jazyce, které není primitivní.

2. Můžete modifikovat svou kopii či kopie programu anebo jiného programu a tím vytvořit nové dílo, které je založeno na programu a které se modifikace nebo nové dílo. V tomto souvislosti je důležité, aby byly všechny části programu zapsány v originálním jazyce, které není primitivní.
a. Modifikované soubory musíte opatřit zřetelnou zmínkou uvádějící, že jste soubory změnili a také uvést datum každé změny.

b. Musíte umožnit, aby jakékoli vámí publikované či rozšířované dílo, které obsahuje zcela nebo zčásti program nebo jakoukoli jeho část, popřípadě je z programu nebo jeho části odvozeno, mohlo být jako celek bezplatně poskytnuto každé třetí osobě v souladu s ustanoveními této licence.

c. Pokud modifikovaný program pracuje normálně tak, že čte interaktivně povely, musíte zajistit, že při nejběžnějším způsobu jeho spuštění vytiskne nebo zobrazí hlášení zahrnující příslušnou zmínku o autorském právu a uvede, že neexistuje žádná záruka (nebo případně, že záruku poskytuje vy), a že uživatel má mohou za těchto podmínek program redistribuovat, a musí uživateli sdělit, jakým způsobem může nahlédnout do kopie této licence. (Výjimka: v případě, že sám program je interaktivní, avšak žádné takové hlášení nevypisuje, nepožaduje se, aby vaše dílo založené na programu takové hlášení vypisaše.)

Tyto požadavky se vztahují k modifikovanému dílu jako celku. Pokud lze identifikovat části takového díla, které zřejmě nejsou odvozeny z programu a mohou být samy o sobě rozumně považovány za nezávislá a samostatná díla, pak se toto licence a její ustanovení nevztahují na tyto části, jsou-li šířeny jako nezávislá díla. Avšak jakmile tytéž části rozšiřujete jako část celku, jinž je dílo založené na programu, musí být rozšiřování tohoto celku podřízeno ustanovením této licence tak, že povolení poskytnutá dalším uživatelům se rozšíří na celé dílo, tedy na všechny jeho části bez ohledu na to, kdo kteřou část napsal.

Smyslem tohoto paragrafu tedy není získání práv na dílo zcela napsané vám ani popírání vašich práv vůči němu; skutečným smyslem je výkon práva na řízení distribuce odvozených nebo kolektivních děl založených na programu.

Pouhé spojení jiného díla, jež není na programu založeno, s programem (anebo dílem založeným na programu) na pamětovém nebo distribučním médiu neuvazuje toto jiné dílo do působnosti této licence.

3. Můžete kopírovat a rozšiřovat program (nebo dílo na něm založené, viz paragraf 2) v objektové anebo spustitelné podobě podle ustanovení paragrafů 1 a 2 výše, pokud splníte některou z následujících náležitostí:

a. Doprovodíte jej zdrojovým kódem ve strojově čitelné formě. Zdrojový kód musí být rozšiřován podle ustanovení paragrafů 1 a 2 výše, a to na médiu běžně používaném pro výměnu softwaru; nebo

b. Doprovodíte jej přízemnou nabídkou s platností nejméně tří roky, podle níž poskytnete jakékoliv třetí straně, za poplatek nepřevyšující vaše výdaje vynaložené na fyzickou výrobou zdrojové distribuce, kompletní strojové čitelnou kopii odpovídajícího zdrojového kódu, jenž musí být řízen podle ustanovení paragrafů 1 a 2 výše na médiu běžně používaném pro výměnu softwaru; nebo

c. Doprovodíte jej informacemi, které jste dostali ohledně nabídky na poskytnutí zdrojového kódu. (Tato alternativa je povolena jen pro nekomerční šíření a jenom tehdy, pokud jste obdržel program v objektovém nebo spustitelném tvaru spolu s takovou nabídkou, v souladu s položkou b výše.)

Zdrojový kód k dílu je nejvhodnější formou díla z hlediska jeho případných modifikací. Pro dílo ve spustitelném tvaru znamená úplný zdrojový kód veškerý zdrojový kód pro všechny moduly, které obsahuje, plus jakékoliv další soubory pro definici rozhraní, plus dávkové soubory potřebné pro kompilaci a instalaci spustitelného programu. Zvláštní výjimkou jsou však ty softwarové komponenty, které jsou normálně šířeny (buď ve zdrojové nebo binární formě) s hlavními součástmi operačního systému, na němž spustitelný program běží (tj. s překladačem, jádrem apod.). Tyto komponenty nemusí být šířeny na zdrojovým kódu, pokud ovšem komponenta sama nedoprovází spustitelnou podobu díla.

Je-li šíření objektového nebo spustitelného kódu činěno nabídkou přístupu ke kopírování z určitého místa, potom se za distribuci zdrojového kódu počítá i nabídnutí ekvivalentního přístupu ke kopírování zdrojového kódu spolu s objektovým.

4. Nesmíte kopírovat, modificovat, poskytovat sublicence anebo šířit program jiným způsobem než výslovně uvedeným v této licenci. Jakýkoli jiný pokus o kopírování, modifikování, poskytnutí sublicence anebo šíření programu je neplatný a automaticky ukončí vaše práva podle této licenci. Strany, které od vás obdržely kopie anebo práva v souladu s touto licencí, však nemají své licence ukončeny, dokud se jim plně podřizují.

5. Nesmíte pro jejich povinnost tuto licenci přijmout, protože jste ji nepodepsal. Nic jiného vám však nedává možnost kopírovat nebo šířit program nebo sublicence anebo program odvozené dílo. V případě, že tuto licenci nepřijmou, je možné činnosti zákonom zakázané. Tím pádem modifikaci anebo řízení programu (anebo každého díla založeného na programu) vyjadřujete své podřízení se licencí a podmínkám pro kopírování, modifikování a šíření programu a děl na něm založených.

6. Pokaždé, když redistribuujete program (nebo dílo založené na programu), získává příjemce od původního držitele licence právo kopírovat, modifikovat a šířit program v souladu s těmito ustanoveními a podmínkami. Nesmíte
F.3 Jak uplatnit tato ustanovení na vaše nové programy

Pokud vyvinete nový program a chcete, aby byl veřejnosti co nejvíce k užitku, můžete toho nejlépe dosáhnout tím, že jej prohlásíte za svobodný software, který může kdokoliv redistribuovat a ménit za zde uvedených podmínek.

K tomu stačí připojit k programu následující údaje. Nejbezpečnější cestou je jejich připojení na začátek každého těho soudu, smlouvy nebo jinak), které se vylučují s podmínkami této licence, nejste tím osvozen od podmínek této licence. Pokud nemáteš šířit program tak, abyste vyhověl záruce svým závazkům vyplývajícím z této licence a jiným platným závazkům, nesmíte jej v důsledku toho šířit vůbec. Pokud by například patentové osvědčení nepovolalo bezplatnou redistribuci programu všemi, kdo vaším přičiněním získáli přímo nebo nepřímo jeho kopie, pak by jediný možný způsob jak vyhovět zároveň patentovému osvědčení i této licence spočíval v ukončení distribuce programu.

Pokud by se za nějakých specifických okolností jevila některá část tohoto paragrafu jako neplatná nebo nevyhovující, považujete se za směrodatně rovnocenná výhrady tímto paragrafem a paragraf jako celek se považuje za směrodatný jiným okolnostem.

Smyslem tohoto paragrafu není navádět vás k porušování patentů či jiných ustanovení vlastnického práva, anebo tato ustanovení zpochybňovat; jediným jeho smyslem je ochrana integrity systému šíření svobodného software, který je podložen veřejnými licenčními předpisy. Mnozí lidé poskytli své příspěvky do širokého okruhu softwaru šířeného tímto systémem, spolehnuvše se na jeho důsledné uplatňování; záleží na autorovi/dárce, aby rozhodl, zda si přeje šířit software pomocí nějakého jiného systému a šíření je povoleno jen v těch zemích nebo mezi těmi zeměmi, které nejsou tímto způsobem vyhověny. Toto licence zahrnuje v tomto případě takové omezení přesně tak, jako by bylo zapsáno v textu této licence.


Pokud by se za nějakých specifických okolností jevila jiná část tohoto paragrafu jako neplatná nebo nevyhovující, považujete se za směrodatný jiným okolnostem. Vzhledem k bezplatnému poskytnutí licence k programu se na program nevztahuje žádná záruka, a to v míře povolené platným zákonem. Pokud není písemně stanoveno jinak, poskytují držitelé autorských práv popřípadě jiné strany program „tak, jak je“, bez záruky jakéhokoli druhu, ať výslovné nebo vyplývající, včetně, ale nikoli jen, záruk prodejnosti a vhodnosti pro určitý účel. Pokud jde o kvalitu a výkonnost programu, leží veškeré riziko na vás. Pokud by se na něj vztahovala žádná záruka, můžete se podle uvážení řídit podmínkami této licence.

10. Pokud je šíření či použití programu v některých zemích omezeno buď patenty anebo autorským právem, může držitelů původních autorských práv, který svěřuje program do působnosti této licence, přidat výslovné omezení pro geografické šíření, vylučující takové země, takže šíření je povoleno jen v těch zemích nebo mezi těmi zeměmi, které nejsou tímto způsobem vyhověny. Tato licence zahrnuje v tomto případě takové omezení přesně tak, jako by bylo zapsáno v textu této licence.

11. V žádném případě, s výjimkou toho, kdyto to vyžaduje platný zákon, anebo když to bylo písemně odsouhlaseno, vám nebude žádný z držitelů autorských práv ani žádná jiná strana, která smí modifikovat či šířit program v souladu s předchozími ustanoveními, odpovědni za škody, včetně všech obecných, speciálních, nahodilých nebo následných škod vyplývajících z užívání anebo neschopnosti užívat programu (včetně, ale nikoli jen, ztráty nebo zkreslení dat, nebo trvalých škod způsobených vám nebo třetím stranám, nebo selhání funkcí programu v součinnosti s jinými programy), a to v případě, že takový držitel autorských práv nebo jiná strana byl upozornění na možnost takových škod.

KONEC USTANOVENÍ A PODMÍNEK
Tento program je svobodný software; můžete jej šířit a modifikovat podle ustanovení GNU General Public License, vydávané Free Software Foundation; a to buď verze 2 této licence anebo (podle vašeho uvážení) kterékoli pozdější verze.

Tento program je rozšířován v naději, že bude užitečný, avšak BEZ JAKÉKOLI ZÁRUKY; neposkytují se ani odvozené záruky PRODEJNOSTI anebo VHODNOSTI PRO URČITÝ ÚČEL. Další podrobnosti hledejte ve GNU General Public License.

Kopii GNU General Public License jste měli obdržet spolu s tímto programem; pokud se tak nestalo, napište o ni Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Připojte rovněž informaci o tom, jak je možné se s vámi spojit elektronickou a papírovou poštou.

Pokud je program interaktivní, zařiďte, aby se při startu v interaktivním módu vypsalo hlášení podobné tomuto:

Gnomovision verze 69, Copyright (C) rok jméno autora.

Program Packal je absolutně bez záruky; podrobnosti se dozvíte zadáním ‘show w’.

Toto je svobodný software a jeho šíření za jistých podmínek je vítáno; podrobnosti získáte zadáním ‘show c’.

Hypotetické povely `show w’ a `show c’ by měly zobrazit příslušné pasáže General Public License. Odpovídající povely ovšem nemusí být právě `show w’ a `show c’; mohou to být třeba stisky tlačítka na myši nebo položky v menu — cokoliv, co se do vašeho programu hodí.

Pokud je to nutné, měli byste také přimět svého zaměstnavatele (jestliže pracujete jako programátor) nebo představitele vaší školy, je-li někdo takový, k tomu, aby podepsal „zřeknutí se autorských práv“. Zde je vzor; jména pozměňte:

Jojotechna, a.s., se tímto zřiká veškerého zájmu o autorská práva k programu ‘Packal’ (překladač s nakladačem) napsanému Jakubem Programátorem.

Tomáš Ředitel - podpis, 1. dubna 1989

Tomáš Ředitel, více než prezident

Tato General Public License neumožňuje zahrnutí vašeho programu do jiných než svobodných programů. Je-li váš program knihovnou podprogramů, můžete zvážit, zda je užitečné umožnit sestavování i vázaných aplikačních programů s vaší knihovnou. V takovém případě použijte GNU Lesser General Public License namísto této licence.