Debian GNU/Linux - Ghid de instalare

19 mai 2024
Debian GNU/Linux - Ghid de instalare

Copyright © 2004 – 2023 echipa Programului de instalare Debian

Acest manual este software liber; poate fi distribuit și/sau modificat în termenii licenței publice generale GNU. Vă rugăm să citiți licența la Anexa F.

Versiunea de redactare a acestui manual: 20230508+deb12u1.
Cuprins

1 Bine ați venit în Debian 1
 1.1 Ce este Debian? .. 1
 1.2 Ce este GNU/Linux? .. 2
 1.3 Ce este Debian GNU/Linux? 2
 1.4 Ce este programul de instalare Debian? 3
 1.5 Cum obțineți Debian ... 3
 1.6 Cum obțineți cea mai recentă versiune a acestui document 3
 1.7 Organizarea acestui document 3
 1.8 Despre drepturile de autor și licența de software 4

2 Cerințele sistemului de operare 6
 2.1 Componente electronice compatibile (plăci și dispozitive) .. 6
 2.1.1 Arhitecturi compatibile 6
 2.1.2 Trei adaptoare ARM diferite 7
 2.1.3 Variațiile în proiectarea procesorului ARM și complexitatea suportului .. 7
 2.1.4 Platforme compatibile cu Debian/armel 7
 2.1.5 Dispozitivele care nu mai au suport în Debian/armel 8
 2.1.6 Suport pentru plăcile grafice 8
 2.1.7 Plăci de conectare la rețea 8
 2.1.8 Periferice și alte dispozitive 8
 2.2 Dispozitive care necesită firmware 8
 2.3 Achiziționarea echipamentului specific pentru GNU/Linux 9
 2.3.1 Evitați componentele, dispozitivele și echipamentele proprietare sau închise .. 9
 2.4 Mediul de instalare .. 10
 2.4.1 CD-ROM/DVD-ROM/BD-ROM 10
 2.4.2 Rețeaua ... 10
 2.4.3 Discul dur sau solid hdd/ssd 10
 2.4.4 Sistem Un*x sau GNU ... 10
 2.4.5 Sisteme de stocare acceptate 10
 2.5 Cerințe de memorie și spațiu pe disc 10

3 Înainte de a instala Debian GNU/Linux 12
 3.1 Prezentare generală a procesului de instalare 12
 3.2 Faceți o copie de rezervă a datelor existente! 13
 3.3 Informații de care veți avea nevoie 13
 3.3.1 Documentație .. 13
 3.3.1.1 Manual de instalare 13
 3.3.1.2 Documentație componente și dispozitive 13
 3.3.2 Găsirea surselor de informații privind componentele și dispozitive .. 13
 3.3.3 Compatibilitate componente și dispozitive 14
 3.3.3.1 Testarea compatibilității componentelor și dispozitivelor cu un sistem „Live” 15
 3.3.4 Configurarea rețelei ... 15
 3.4 Îndeplinirea cerințelor minime de către componente și dispozitive .. 16
 3.5 Pre-partiționare pentru sisteme multi-pornire 16
 3.6 Configurarea componentelor, dispozitivelor și a sistemului de operare înainte de instalare 17
 3.6.1 Firmware-ul ARM ... 17
 3.6.2 Configurarea adresei MAC Ethernet în U-Boot 17
 3.6.3 Probleme de realocare Nucleu/Initrd/Device-Tree în U-Boot 17
CUPRINS

4 Obținerea unui mediu de instalare a sistemului 19
4.1 Imagini oficiale de instalare pentru Debian GNU/Linux 19
4.2 Descărcarea fișierelor din oglinzile Debian 19
 4.2.1 Unde găsiți fișierele de instalare 19
 4.2.1.1 Fișiere de instalare Kurobox Pro 19
 4.2.1.2 Fișiere de instalare HP mv2120 20
 4.2.1.3 Fișiere de instalare QNAP Turbo Station 20
 4.2.1.4 Fișiere de instalare pentru Plug Computer și OpenRD 20
 4.2.1.5 Fișiere de instalare LaCie NAS 20
4.3 Pregătirea fișierelor pentru pornirea prin rețea utilizând TFTP 20
 4.3.1 Configurarea serverului RARP 20
 4.3.2 Configurarea unui server DHCP 20
 4.3.3 Configurarea unui server BOOTP 21
 4.3.4 Activarea serverului TFTP 22
 4.3.5 Mutăți Imaginile TFTP la locul lor 22
4.4 Instalare automată 22
 4.4.1 Instalare automată folosind programul de instalare Debian 22
4.5 Verificarea integrității fișierelor de instalare 22

5 Pornirea sistemului de instalare 24
5.1 Pornirea programului de instalare pe 32-bit soft-float ARM 24
 5.1.1 Formate de imagine de pornire 24
 5.1.2 Pornire prin TFTP 24
 5.1.2.1 Pornirea prin TFTP din U-Boot 24
 5.1.3 Formate de imagine de instalare 25
 5.2 Accesibilitate 25
 5.2.1 Interfața programului de instalare 25
 5.2.2 Plăci Braile 26
 5.2.3 Temă cu contrast ridicat 26
 5.2.4 Zoom 26
 5.2.5 Instalare în modul expert, modul de recuperare, instalare automată 26
 5.2.6 Accesibilitatea sistemului instalat 26
5.3 Parametrii de pornire 26
 5.3.1 Consola de pornire 26
 5.3.2 Parametrii programului de instalare Debian 27
 5.3.3 Utilizarea parametriilor de pornire pentru a răspunde la întrebări 29
 5.3.4 Transmiterea de parametri către modulele nucleului 29
 5.3.5 Punerea modulelor nucleului în lista neagră 29
5.4 Rezolvarea problemelor din procesul de instalare 30
 5.4.1 Fiabilitatea mediilor optice 30
 5.4.1.1 Probleme obișnuite 30
 5.4.1.2 Cum să investigați și, eventual, să rezolvați problemele 30
 5.4.2 Configurarea pornirii 31
 5.4.3 Interpretarea mesajelor de pornire a nucleului 31
 5.4.4 Raportarea problemelor de instalare 32
 5.4.5 Trimiterea raportelor de instalare 32

6 Utilizarea programului de instalare Debian 34
6.1 Cum funcționează programul de instalare 34
6.2 Componentele - Introducere 35
6.3 Utilizarea de componente individuale 36
 6.3.1 Configurarea programului de instalare Debian și a configurăției calculatorului 36
 6.3.1.1 Verificarea memoriile disponibile / modul cantitatea redusă de memorie 36
 6.3.1.2 Selectarea opțiunilor de configurație regională 37
 6.3.1.3 Alegeți tastaturii 38
 6.3.1.4 Căutați imaginii ISO a programului de instalare al Debian 38
 6.3.1.5 Configurarea rețelei 38
 6.3.1.5.1 Configurarea automată a rețelei 38
 6.3.1.5.2 Configurarea manuală a rețelei 39
 6.3.1.5.3 IPv4 și IPv6 39
CUPRINS

6.3.2 Configurarea utilizatorilor și a parolelor ... 39
6.3.2.1 Configurarea parolei pentru „root” .. 39
6.3.2.2 Crearea unui utilizator obișnuit .. 39
6.3.3 Configurarea ceasului și a fusului orar .. 40
6.3.4 Partiționarea și selectarea punctelor de montare ... 40
6.3.4.1 Opțiuni de particaționare acceptate .. 40
6.3.4.2 Partiționarea ghidată .. 41
6.3.4.3 Partiționarea manuală .. 42
6.3.4.4 Configurarea dispozitivelor multi-disc (RAID software) 43
6.3.4.5 Configurarea Managerului de volume logice („Logical Volume Manager”: LVM) .. 45
6.3.4.6 Configurarea volumelor criptate .. 46
6.3.5 Instalarea sistemului de bază ... 48
6.3.6 Instalarea de software suplimentar .. 49
6.3.6.1 Configurarea lui «apt» .. 49
6.3.6.1.1 Instalarea de pe mai multe imagini CD sau DVD 49
6.3.6.1.2 Utilizarea unei oglinzi de rețea .. 49
6.3.6.1.3 Alegerea unei oglinzi din rețea .. 50
6.3.6.2 Selectarea și instalarea software-ului .. 50
6.3.7 Facetă ca sistemul să fie capabil să pornească ... 51
6.3.7.1 Detectarea altor sisteme de operare ... 51
6.3.7.2 Facetă un sistem capabil să pornească cu flash-kernel 52
6.3.7.3 Continuăți fără încărcătorul de pornire .. 52
6.3.8 Se finalizează instalarea .. 52
6.3.8.1 Configurați ceasul sistemului ... 52
6.3.8.2 Repornirea sistemului ... 52
6.3.9 Rezolvarea problemelor .. 52
6.3.9.1 Salvarea jurnalelor de instalare ... 53
6.3.9.2 Utilizarea Shell și vizualizarea jurnalelor .. 53
6.3.10 Instalarea prin consola de rețea (network-console) 53
6.4 Încărcarea firmware-ului lipsă ... 54
6.4.1 Pregătirea unui mediu .. 55
6.4.2 Firmware-ul și sistemul instalat .. 55
6.4.3 Finalizarea sistemului instalat .. 56
6.5 Personalizare .. 56
6.5.1 Instalarea unui sistem alternativ de «init» (inițiere) 56

7 Pornirea în noul dumneavoastră sistem Debian .. 57
7.1 Momentul adevărului .. 57
7.2 Montarea volumelor criptate .. 57
7.2.1 Rezolvarea problemelor ... 58
7.3 Autentificarea în cont ... 58

8 Pașii următoari și unde să mergeți de aici ... 59
8.1 Oprirea sistemului .. 59
8.2 Orientându-vă către Debian .. 59
8.2.1 Sistemul de împachetare Debian ... 59
8.2.2 Software suplimentar disponibil pentru Debian ... 60
8.2.3 Gestionarea versiunilor aplicațiilor ... 60
8.2.4 Gestionarea sarcinilor cu «cron» ... 60
8.3 Lectură și informații suplimentare .. 60
8.4 Configurarea sistemului pentru a utiliza poșta electronică 60
8.4.1 Configurația de poșta electronică implicită .. 61
8.4.2 Trimiterea de corespondență în afara sistemului 61
8.4.3 Configurarea agentului de transport de corespondență Exim4 61
8.5 Compilarea unui nou nucleu .. 62
8.6 Recuperarea unui sistem deteriorat ... 62
A Rețetarul instalării 64
A.1 Preliminarii .. 64
A.2 Pornirea programului de instalare 64
A.2.1 Disc optic ... 64
A.2.2 Pornire din rețea .. 64
A.2.3 Pornire de pe un disc dur/solid 64
A.3 Instalarea ... 65
A.4 Trimitite-ne un raport de instalare 65
A.5 Și, în sfârșit... 65
B Automatizarea instalării folosind preconfigurarea 66
B.1 Introducere ... 66
B.1.1 Metode de preconfigurare ... 66
B.1.2 Limitări ... 67
B.2 Utilizarea preconfigurării ... 67
B.2.1 Încărcarea fișierului de preconfigurare 67
B.2.2 Utilizarea parametrilor de pornire pentru a preconfigura întrebări 68
B.2.3 Modul auto ... 69
B.2.4 Alias utile cu preconfigurarea 70
B.2.5 Exemple de preconfigurare a promptului de pornire 70
B.2.6 Utilizarea unui server DHCP pentru a specifica fișierele de preconfigurare 71
B.3 Crearea unui fișier de preconfigurare 71
B.4 Conținutul fișierului de preconfigurare (pentru bookworm) 72
B.4.1 Localizarea ... 72
B.4.2 Configurarea rețelei .. 73
B.4.3 Consola de rețea .. 75
B.4.4 Configurări pentru oglindă ... 75
B.4.5 Configurarea contului ... 75
B.4.6 Configurarea ceasului și a fusului orar 76
B.4.7 Partiționarea ... 77
B.4.7.1 Exemplu de partiționare ... 77
B.4.7.2 Partiționarea utilizând RAID 79
B.4.7.3 Controlarea modului de montare a partițiilor 80
B.4.8 Instalarea sistemului de bază 81
B.4.9 Configurarea lui «apt» ... 81
B.4.10 Selectarea pachetelor .. 82
B.4.11 Finalizarea instalării .. 83
B.4.12 Preconfigurarea altor pachete 83
B.5 Opțiuni avansate ... 84
B.5.1 Rularea comenziilor personalizate în timpul instalării 84
B.5.2 Utilizarea preconfigurării pentru a modifica valorile implicate 84
B.5.3 Încărcarea în lanț a fișierelor de preconfigurare 85
C Partiționarea pentru Debian 86
C.1 Deciderea partițiilor și a dimensiunii lor în Debian 86
C.2 Arborele de directoare .. 86
C.3 Scheme de partiçãoare recomandate 87
C.4 Numele dispozițivelor în Linux 88
C.5 Programe de partiçãoare în Debian 88
D Informații diverse 89
D.1 Dispozițive Linux ... 89
D.1.1 Configurarea mouse-ului .. 89
D.2 Spațiu pe disc necesar pentru sarcini 90
D.3 Instalarea Debian GNU/Linux dintr-un sistem Unix/Linux 91
D.3.1 Să începem ... 91
D.3.2 Instalați debootstrap ... 92
D.3.3 Rulați debootstrap ... 92
D.3.4 Configurați sistemul de bază 92
Listă de tabele

3 Înainte de a instala Debian GNU/Linux
 3.1 Informații despre componente și dispozitive utile pentru o instalare 14
 3.2 Cerințe minim de sistem recomandate .. 16
Rezumat

Acest document conține instrucțiuni de instalare pentru sistemul Debian GNU/Linux 12 (nume în cod „bookworm”), pentru arhitectura 32-bit soft-float ARM („armel”). Conține, de asemenea, indicații pentru a găsi mai multe informații, în general, și informații legate de felul în care puteți să profitați la maxim de noul dumneavoastră sistem Debian, în particular.

Această traducere este în lucru. Sugestiiile, indicațiile pentru corectarea posibilelor erori și în general ajutorul de orice fel în ridicarea nivelului calității traducerii, și de ce nu, a cantității acesteia, este binevenit. Contactul cu echipa de traducere se poate face pe lista de discuții a echipei române din Debian: debian-l10n-romanian@lists.debian.org. Vă mulțumim!
Instalarea Debian GNU/Linux 12 pentru armel

Suntem încântați că v-ați decis să încercați Debian, și suntem siguri că veți afla că distribuția Debian GNU/Linux este unică. Debian GNU/Linux aduce la oaltă software liber de înaltă calitate de peste tot din lume, integrându-l într-un tot coerent. Credem că veți considera că rezultatul este, într-adevăr, mai bun decât părțile însumatate.

Înțelegem că mulți dintre voi doriți să instalați Debian fără să citiți acest manual, iar programul de instalare Debian este conceput astfel încât să facă acest lucru posibil. Dacă nu aveți timp să citiți în întregime ghidul de instalare chiar acum, vă recomandăm să citiți Rețetarul instalării, care vă va conduce prin procesul de instalare de bază, și face referiri la manual, în cazul subiectelor mai avansate sau pentru cazurile în care lucrurile merg rau. Rețetarul de instalare poate fi găsit în Anexa A.

Acestea fiind zise, sperăm că veți avea timp să citiți cea mai mare parte din acest manual, iar acest lucru vă va conduce către o instalare în cunoștință de cauză și cu șanse mai mari de a avea o experiență de instalare încununată de succes.
Capitolul 1

Bine ați venit în Debian

Acest capitol oferă o vedere de ansamblu asupra Proiectului Debian și Debian GNU/Linux. Dacă cunoașteți deja istoria Proiectului Debian și distribuția Debian GNU/Linux, puteți să treceți direct la capitolul următor.

1.1 Ce este Debian?

Debian este o organizație bazată exclusiv pe voluntariat, dedicată dezvoltării de software liber și promovarea idealurilor comunității de software liber (Free Software community). Proiectul Debian a început în anul 1993, când Ian Murdock a lansat o invitație deschisă către dezvoltatorii de software să contribuie la o distribuție de software completă și coerentă bazată pe nucleul pe atunci, relativ nou, numit Linux. Acel grup relativ mic de entuziași dedicat, fondat inițial de Fundația pentru software liber (Free Software Foundation) și influența de filosofia GNU, a crescut de-a lungul anilor, devenind o organizație ce numără în jur de 1000 de dezvoltatori Debian.

Dezvoltatorii Debian sunt implicați în diverse activități, inclusiv administrarea paginilor Web și a siturilor FTP, designul de grafică, analiza legală a licențelor de software, scrierea de documentație și, desigur, menținerea pachetelor de software.

În scopul de a comunica filosofia noastră și în scopul atragerii altor dezvoltatori care cred în principiile pentru care Debian luptă, Proiectul Debian a publicat o serie de documente ce subliniază valorile noastre și servec drept ghid pentru a înțelege ce înseamnă a fi dezvoltator Debian:

- **Contractul social al Debian** este o declarație a Debian în care se afirmă angajamentul acestuia față de comunitatea Software-ului Liber. Oricine este de acord să respecte contractul social poate deveni un responsabil de pachet (înțelegător). Orice responsabil de pachet poate introduce software nou în Debian — cu condiția ca software-ul să respecte criteriile noastre de libertate, iar pachetul să respecte standardele noastre de calitate.

- **Ghidul Debian pentru software-ul liber** (DFSG) este o declarație clară și concisă a criteriilor Debian pentru software-ul liber. DFSG-ul (eng., acronim pentru Debian Free Software Guidelines) este un document foarte influent în mișcarea pentru „Software liber”, și a fost temelia definiției pentru Open Source.

- **Manualul Regulilor Debian** este un set de specificații extensive a standardelor de calitate ale proiectului Debian.

Dezvoltatorii Debian sunt implicați și în alte proiecte; unele sunt specifice Debian, iar altele implică o parte sau întreaga comunitate Linux. Iată câteva exemple:

- **Standardul pentru iarharia sistemului de fișiere** (FHS, acronim al Filesystem Hierarchy Standard) este un efort de standardizare a aranjamentului sistemului de fișiere Linux. FHS va permite dezvoltatorilor de software să-și concentreze efortul pentru a proiecta programe, fără să se preocupe asupra felului în care pachetul va fi instalat în diferitele distribuții GNU/Linux.

- **Debian Jr.** este un proiect intern, care este menit scopului de-a asigura că Debian are ceva de oferit celor mai tineri utilizatori ai noștri.

Pentru mai multe informații generale despre Debian, a se vedea Debian FAQ (Răspunsuri la întrebările frecvente despre Debian).
1.2 Ce este GNU/Linux?

GNU/Linux este un sistem de operare: o serie de programe care vă permit să interacționați cu calculatorul și să rulați alte programe.

Un sistem de operare este format din diverse programe fundamentale care sunt necesare calculatorului dumneavoastră pentru ca acesta să comunice și să recepționeze instrucțiuni de la utilizatori; citirea și scrierea datelor pe discurile dure, casete, și imprimante; controlul utilizării memoriei; și rularea de alte programe. Cea mai importantă parte a unui sistem de operare este nucleul. Într-un sistem GNU/Linux, Linux este nucleul. Restul sistemului este format din alte programe, multe dintre acestea fiind scrise de sau pentru proiectul GNU. Deoarece doar nucleul Linux nu formează un sistem de operare funcțional, noi preferăm să folosim termenul „GNU/Linux” pentru a ne referi la sistemele pe care mulți oameni le numesc neglijent „Linux”.

GNU/Linux este modelat pe baza sistemului de operare Unix. De la început a fost proiectat să fie un sistem de lucrări multiple și de multipli utilizatori. Aceste lucruri sunt deajuns pentru a face ca GNU/Linux să fie diferit față de alte sisteme de operare binecunoscute. Totuși, GNU/Linux este încă și mai diferit, mai mult decât v-ați putea imagina. În contrast cu alte sisteme de operare, nimeni nu deține GNU/Linux. Mare parte din dezvoltarea sa este făcută de către voluntari neplătiți.

Dezvoltarea a ceea ce mai târziu a devenit GNU/linux începe în 1984, când Free Software Foundation sau, pe scurt, FSF (Fundația pentru Software Liber) a început dezvoltarea unui sistem de operare liber asemănător Unix-ului, numit GNU.

Proiectul GNU a dezvoltat un set cuprinzător de instrumente software libere pentru a fi utilizeze cu Unix™ și sisteme de operare asemănătoare Unix-ului, precum GNU/Linux. Aceste instrumente permit utilizatorilor să realizeze operați de la cele mai uzuale (cum ar fi copierele sau ștergerile fișierelor din sistem) până la cele mai complicate (cum ar fi scrierea și compilarea de programe, sau editările sofisticate într-o varietate de formate de documente).

În timp ce multe grupuri și persoane au contribuit la GNU/Linux, cel mai mare contributor este în continuare Fundația pentru Software Liber care a creat nu numai majoritatea instrumentelor folosite în GNU/Linux, ci și filosofia și comunitatea care au făcut ca GNU/Linux să fie posibil.

Nucleul Linux a apărut pentru prima dată în 1991, când un student finlandez care studia informatica, numit Linus Torvalds a anunțat în grupul de știri Usenet comp.os.minix o versiune incipientă a unui nucleu cu înlocuia nucleul Minix. Pentru mai multe informații, consultați Pagina istoriei Linux de Linux International.

Linus Torvalds continuă să coordoneze munca a câtorva sute de dezvoltatori cu ajutorul unui anumit număr de responsabili de subsistem. Există o pagină web oficială pentru nucleul Linux. Mai multe informații despre lista de corespondențălinux-kernel pot fi găsite pe pagina cu răspunsuri la întrebările frecvente despre lista linux-kernel.

Utilizatorii de GNU/Linux au o libertate imensă de alegere a software-ului lor. De exemplu, aceștia pot alege dintr-o dizină de shell-uri pentru linia de comandă și mai multe medi grafice de birou. Atâta posibilitatea de alege, dezorientează adesea utilizatorii altor sisteme de operare, care nu sunt obișnuiți să se gândească la linia de comandă sau la mediul grafic de birou (desktop) ca la ceva ce pot simba.

De asemenea, GNU/Linux este mai puțin probabil să se blocheze, mai capabil să ruleze mai multe programe în același timp și mai sigur decât multe sisteme de operare. Cu aceste avantaje, GNU/Linux este sistemul de operare cu cea mai mare rată de creștere de pe piața de servere. În ultimul timp, GNU/Linux a început să fie popular și între utilizatorii casnici și cei din mediul de afaceri.

1.3 Ce este Debian GNU/Linux?

Combinarea dintre filosofia și metodologia lui Debian și instrumentele GNU, nucleul Linux și alte programe libere importante, formează o distribuție unică de software numită Debian GNU/Linux. Această distribuție este formată dintr-un număr mare de software numit de parchete de software. Fiecare pachet din distribuție conține executabile, scripuri, documentație și informații de configurare, și au un responsabil care este în special delegat să mențină pachetul actualizat, să urmărească raporturile de probleme și să comunice cu autorul sau autorii software-ului împachetat. Numărul nostru extrem de mare de utilizatori, combinat cu sistemul nostru de urmărire a erorilor, asigură că problemele sunt găsite și rezolvate rapid.

Atenția proiectului Debian la detalii îi permite să producă o distribuție de înaltă calitate, stabilă și scalabilă. Instalările pot fi configurate ușor să servească pentru mai multe scopuri, de la paravane de protecție simple sau stații de lucru științifice cu mediu grafic de birou până la servere de rețea profesionale.

Debian este în special popular printre utilizatorii avansați datorită calității sale tehnice excelente și angajamentului său profund față de nevoile și așteptările comunității Linux. Debian a introdus, de asemenea, multe caracteristici în Linux care, în prezent, sunt foarte comune.

De exemplu, Debian a fost prima distribuție care a introdus un sistem de gestionare al pachetelor pentru instalarea și ștergerea facilă a pieselor de software (biblioteci, programe, documentație, etc.). A fost, de asemenea, prima distribuție
Linux care putea fi actualizată fără a necesita reinstalarea.

Debian continuă să fie un lider în dezvoltarea Linux. Procesul său de dezvoltare este un exemplu care arată cât de bine poate funcționa modelul de dezvoltare Open Source — chiar și pentru sarcini complexe precum construirea și întreținerea unui sistem de operare complet.

Caracteristica ce distinge Debian de celelalte distribuții Linux este sistemul său de gestionare al pachetelor. Aceste instrumente, oferă administratorului unui sistem Debian, controlul complet asupra pachetelor instalate pe acel sistem, inclusiv abilitatea de a instala un singur pachet, sau de a actualiza complet întregul sistem de operare. Pachetele individuale pot fi, de asemenea, protejate împotriva actualizării. Puteți chiar comunica sistemului de gestionare a pachetelor informații în legătură cu programele pe care le-ați compilat și ce dependentă îndeplinește.

Pentru a vă proteja sistemul de „cai troieni” și alte programe malițioase, serverele Debian verifică dacă pachetele publicate provin de proprii responsabili Debian. Responsabili de pachete au o grijă foarte mare să-și configureze pachetele într-o manieră sigură. Atunci când apar probleme de securitate în pachetele livrate, versiuni reparate apar, de obicei, foarte repede. Cu opțiunile de actualizare simple ale Debian, pachetele corectate pot fi descărcate și instalate automat prin intermediul Internetului.

Metoda principală, și cea mai bună, de a primi suport pentru sistemul dumneavoastră Debian GNU/Linux și de a comunica cu dezvoltatorii Debian, este prin intermediul listelor de discuții care sunt întreținute de proiectul Debian (existând mai mult de 327 la momentul scrierii acestui document). Cel mai ușor mod de a vă înscrie pe una sau mai multe dintre aceste liste, este de a vizita pagina de înscrieri la listele de discuții Debian și de a completa formularul de pe care-l veți găsi acolo.

1.4 Ce este programul de instalare Debian?

Programul de instalare Debian, cunoscut și sub numele de „d-i”, este programul pentru a instala un sistem Debian funcțional de bază. Este acceptată o gamă largă de echipamente electronice, cum ar fi dispozitive încorporate, laptupuri, calculator de birou și servere și este oferit un set mare de software liber pentru mai multe scopuri.

Instalaarea se realizează răspunzând la o serie de întrebări de bază. De asemenea, sunt disponibile un „mod expert” care permite controlul fiecărui aspect al instalării și o funcție avansată pentru a efectua instalări automate. Sistemul instalat poate fi utilizat ca atare sau personalizat ulterior. Instalaarea poate fi efectuată dintr-o multitudine de surse: memorii sau alte dispozitive de stocare USB, CD/DVD/Blu-Ray sau din rețea. Programul de instalare furnizează instalări localizate (tradus și cu configurații regionale adecvate) în peste 80 de limbi.

Programul de instalare își are originea în proiectul „boot-floppies” și a fost menționat pentru prima dată de Joey Hess în 2000. De atunci, sistemul de instalare a fost dezvoltat continuu de către voluntari, îmbunătățindu-l și adăugându-i mai multe funcții.

Mai multe informații pot fi găsite în pagina programului de instalare Debian, în pagina Wiki a programului de instalare și în lista de discuții debian-boot.

1.5 Cum obțineți Debian

Pentru mai multe informații legate de felul în care se poate descărca Debian GNU/Linux din Internet sau de la cine se poate cumpăra suporturi media oficiale Debian, consultați pagina de distribuție. Lista oglinzilor Debian conține o serie completă de oglinzi Debian oficiale, astfel încât să puteți găsi cu ușurință pe cea mai apropriată.

Debian poate fi actualizat după instalare, foarte ușor. Procedura de instalare vă va ajuta să configurați sistemul astfel încât să puteți să faceți actualizările, la terminarea instalării, dacă este nevoie.

1.6 Cum obțineți cea mai recentă versiune a acestui document

Acest document este revizuit în mod constant. Asigurați-vă că verificați paginile Debian 12 pentru orice informații de ultimă oră despre versiunea 12 a sistemului Debian GNU/Linux. Versiunile actualizate ale acestui manual de instalare sunt disponibile și pe paginile oficiale ale Manualului de instalare.

1.7 Organizarea acestui document

Acest document este menit să servească drept manual pentru acele persoane ce utilizează Debian pentru prima dată. Încearcă să facă cât mai puține presupuneri în legătură cu nivelul dumneavoastră de cunoștințe. Cu toate acestea, presupunem că aveți o idee generală despre felul în care funcționează componentele din calculatorul dumneavoastră.
CAPITOLUL 1. BINE AȚI VENIT ÎN DEBIAN

1.8 DESPRE DREPTURI DE AUTOR ȘI LICENȚE…

Utilizatorii experimentați pot găsi, de asemenea, informații de referință interesante în acest document, inclusiv dimensiunile minime de instalare, detalii legate de componentele recunoscute de sistemul de instalare Debian și compatibile cu acesta ș.a.m.d. Încurajăm utilizatorii experimentați să răsfoiască în voie acest document.

În general, acest manual este dispus într-o manieră liniară, ghidându-vă prin procesul de instalare, de la început până la sfârșit. Iată pașii necesari pentru a instala Debian GNU/Linux și secțiunile acestui document care se corelează cu fiecare pas:

1. Determinați dacă componentele calculatorului dvs. îndeplinesc condițiile necesare pentru a folosi sistemul de instalare, în Cap. 2.

2. Faceți o copie de rezervă a sistemului, planificați și configurați, în caz că este nevoie, componentele, înainte de a instala Debian, așa cum se indică în Cap. 3. Dacă pregătiți un sistem cu mai multe sisteme de operare, probabil că va trebui să creați spațiu partiționabil pe discul dur(hdd)/solid(ssl) pentru a fi folosit de Debian.

3. În Cap. 4, veți obține fișierele necesare instalării, conform cu metoda dumneavoastră de instalare.

4. Următorul Cap. 5 descrie pornirea sistemului de instalare. În acest capitol se comentează, de asemenea, procedurile de depanare în cazul în care aveți probleme cu acest pas.

5. Efectuarea propriu-zisă a instalării, conform cu Cap. 6. Acest lucru implică alegerea limbii, configurarea modulelor controlorilor dispositivelor periferice, configurarea conexiunii la rețea, astfel încât restul fișierelor de instalare să poată fi obținute direct de la un server Debian (dacă nu instalați de la un set de imagini de instalare CD/DVD), partaționarea discurilor hdd/ssd și instalarea sistemului de bază, apoi selectarea și instalarea sarcinilor de instalare a obiectivelor predefinite, precum: „Server Web”, „Server de fișiere”, „Server de împrimare”, diverse „Medii grafice de birou” ca: CDE, Gnome, LXDE, LXQt, Plasma, XFCE; câteva informații de bază în legătură cu configurarea partații pentru sistemul dumneavoastră Debian sunt prezente în Anexa C.

6. Pornirea în sistemul de bază proaspăt instalat, de la Cap. 7.

Odată instalat sistemul dumneavoastră, puteți citi Cap. 8. Acest capitol explică unde trebuie să căutați mai multe informații legate de Unix și de Debian, și cum să înlocuiți nucleul.

În cele din urmă, informații despre acest document și cum să contribuți la el pot fi găsite în Anexa E.

1.8 Despre drepturi de autor și licențe de software

Suntem siguri că ați citit unele dintre licențele care vin cu majoritatea programelor comerciale — de obicei spun că puteți folosi doar o copie a programului pe un singur calculator. Licența acestui sistem nu este deloc așa. Vă încurajăm să puneți o copie pe fiecare dintre calculatoarele din școala dvs., sau de la locul dvs. de muncă. Împrumutați mediul dvs. de instalare prietenilor dvs. și ajutați-i să instaleze sistemul pe calculatoarele lor! Puteți face chiar mii de copii și să le vindeți — cu câteva restricții. Libertatea, de a instala și folosi sistemul vine direct din faptul că Debian este bazat pe software liber.

Faptul că este numit liber nu înseamnă că software-ul nu este acoperit de drepturi de autor, și nici nu înseamnă că suporturile media care-l conțin trebuie să fie distribuite gratis. Software-ul liber, în parte, înseamnă că licențele individuale ale programelor nu vă obligă să plățiți pentru privilegiul de a distribui sau folosi acele programe. Software liber înseamnă nu numai că oricine poate extinde, adapta și modifica software-ul, dar și că oricine are voie să distribuie rezultatele muncii proprii.

Notă

Proiectul Debian, ca o concesie pragmatică în favoarea utilizatorilor săi, face disponibile și câteva pachete care nu respectă criteriile noastre de libertate. Aceste pachete nu fac, totuși, parte din distribuția oficială și sunt disponibile numai din zonile contrib sau non-free ale oglinzilor Debian sau pe CD/DVD-uri de la terții; a se vedea Răspunsurile la întrebările frecvente legate de Debian (Debian FAQ), în secțiunea „Arhivele FTP ale Debian”, pentru mai multe informații legate de aranjamentul și conținutul arhivelor.

Multe din programele din sistem sunt licențiate sub Licența Publică Generală GNU, căreia i se spune adesea „GPL”. Această licență (GPL) cere să faceți disponibil codul sursă al programelor, ori de câte ori distribuți o copie binară
a programului; această dispoziție a licenței asigură faptul că orice utilizator va putea modifica programul. Datorită acestei dispoziții, codul sursă pentru toate aceste programe este disponibil în sistemul Debian.

Există mai multe alte forme de declarații de drepturi de autor și licențe software utilizate în programele din Debian. Puteți găsi drepturile și licențele pentru fiecare pachet instalat în sistemul dumneavoastră dacă vă uitați în fișierul `/usr/share/doc/nume-pachet/copyright`, odată ce ați instalat un pachet în sistemul dumneavoastră.

Pentru mai multe informații legate de licențe și felul în care Debian determină dacă software-ul e încheiuns de liber pentru a fi inclus în distribuția principală, a se vedea Ghidul Debian pentru software-ul liber.

¹Pentru informații legate de modul în care puteți găsi, despacheta și construi pachete binare din pachetele sursă Debian, consultați Răspunsurile la întrebările frecvente despre Debian, în secțiunea „Bazele sistemului de gestionare al pachetelor Debian”.
Capitolul 2

Cerințele sistemului de operare

Această secțiune conține informații despre componentele electronice (plăci și dispozitive) de care aveți nevoie pentru a începe cu Debian. Veți găsi, de asemenea, trimiteri către informații suplimentare despre componentele electronice compatibile cu GNU și Linux.

2.1 Componente electronice compatibile (plăci și dispozitive)

Debian nu impune cerințe de componente electronice (plăci și dispozitive) dincolo de cerințele nucleului Linux sau kFreeBSD și ale setului de instrumente GNU. Prin urmare, orice arhitectură sau platformă la care au fost adaptate nucleul Linux sau kFreeBSD, libc, gcc etc. și pentru care o adaptare Debian există, poate rula Debian. Vă rugăm să consultați paginile de adaptări de la https://www.debian.org/ports/arm/ pentru mai multe detalii despre 32-bit soft-float ARM sisteme de arhitectură care au fost testate cu Debian GNU/Linux.

În loc să încerci să descrie toate configurațiile de component electronice diferite care sunt compatibile cu 32-bit soft-float ARM, această secțiune conține informații generale și indicații către unde pot fi găsite informații suplimentare.

2.1.1 Arhitecturi compatibile

Debian GNU/Linux 12 funcționează pe 9 arhitecturi principale și mai multe variante ale fiecărei arhitecturi cunoscute sub numele de „savori”.

<table>
<thead>
<tr>
<th>Arhitectura</th>
<th>Denumirea în Debian</th>
<th>Subarhitectura</th>
<th>Savoare</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD64 și Intel 64</td>
<td>amd64</td>
<td>mașini x86 implicite</td>
<td>varianta implicită</td>
</tr>
<tr>
<td>Bazată pe Intel x86</td>
<td>i386</td>
<td>numai domenii Xen PV</td>
<td>xen</td>
</tr>
<tr>
<td>ARM</td>
<td>armel</td>
<td>Marvell Kirkwood și Orion</td>
<td>marvell</td>
</tr>
<tr>
<td>ARM cu componente FPU</td>
<td>armhf</td>
<td>multiplatformă</td>
<td>armmp</td>
</tr>
<tr>
<td>ARM pe 64 de biți</td>
<td>arm64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIPS pe 64 de biți (little-endian)</td>
<td>mips64el</td>
<td>MIPS Malta</td>
<td>5kc-malta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loongson 3</td>
<td>loongson-3</td>
</tr>
<tr>
<td>MIPS pe 32 de biți (little-endian)</td>
<td>mipsel</td>
<td>MIPS Malta</td>
<td>4kc-malta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loongson 3</td>
<td>loongson-3</td>
</tr>
<tr>
<td>Power Systems</td>
<td>ppc64el</td>
<td>mașini IBM POWER8 sau mai noi</td>
<td></td>
</tr>
<tr>
<td>IBM S/390 pe 64 de biți</td>
<td>s390x</td>
<td>IPL de la VM-reader (lectorul de mașină virtuală) și DASD (accesul direct la dispozitivul de stocare)</td>
<td>generic</td>
</tr>
</tbody>
</table>

Aceast document acoperă instalarea pentru arhitectura 32-bit soft-float ARM folosind nucleul Linux. Dacă căutați
informații despre oricare dintre celelalte arhitecturi compatibile cu Debian, aruncați o privire la paginile Adaptările de Debian.

2.1.2 Trei adaptări ARM diferite

Arhitectura ARM a evoluat de-a lungul timpului, iar procesoarele ARM moderne oferă caracteristici care nu sunt disponibile la modelele mai vechi. Debian prin urmare, oferă trei adaptări ARM pentru a oferi cel mai bun suport pentru o gamă foarte largă de mașini diferite:

- Debian/armel vizează procesoarele ARM mai vechi pe 32 de biți fără suport pentru o unitate în virgulă mobilă la nivel de hardware (FPU),
- Debian/armhf funcționează numai pe procesoare ARM mai noi pe 32 de biți care implementează cel puțin arhitectura ARMv7 cu versiunea 3 a specificației vectorului ARM în virgulă mobilă (VFPv3). Utilizează funcțiile extinse și îmbunătățiriile de performanță disponibile pentru aceste modele.
- Debian/arm64 funcționează pe procesoare ARM pe 64 de biți care implementează cel puțin arhitectura ARMv8.

Din punct de vedere tehnic, toate procesoarele ARM disponibile în prezent pot fi rulate fie în modul endian („big” sau „little”), dar în practică marea majoritate utilizează modul „little-endian”. Toate sistemele Debian/arm64, Debian/armhf și Debian/armel funcționează numai în modul „little-endian”.

2.1.3 Variațiile în proiectarea procesoarelor ARM și complexitatea suportului

Sistemele ARM sunt mult mai etergene decât cele bazate pe arhitectura PC bazată pe i386/amd64, astfel încât situația de suport poate fi mult mai complicată. Arhitectura ARM este folosită în principal în așa-numitele „sisteme pe cip (system-on-chip)” (SoC). Aceste SoC-uri sunt proiectate de multe companii diferite cu componente hardware foarte diverse, chiar și pentru funcționalitățile elementare necesare pentru a porni sistemul. Interfetele firmware-ului sistemului au fost din ce în ce mai standardizate de-a lungul timpului, dar mai ales pe echipamentele mai vechi interfețele firmware/pornire variază foarte mult, așa că pe aceste sisteme nucleul Linux trebuie să se ocupe de multe probleme de nivel scăzut specific sistemului, care sunt gestionate de către BIOS/UEFI-ul plăcii de bază în lumea PC-urilor.

La începutul suportului ARM în nucleul Linux, varietatea de componente a dus la cerința de a avea un nucleu separat pentru fiecare sistem ARM, în contrast cu nucleul „unul-pentru-toate (one-fits-all)” pentru sistemele PC. Deoarece această abordare nu se extinde la un număr mare de sisteme diferite, s-a lucrat pentru a permite pornirea cu un singur nucleu ARM care poate rula pe sisteme ARM diferite. Suportul pentru sistemele ARM mai noi este acum implementat într-un mod care permite utilizarea unui astfel de nucleu multiplataformă, dar pentru mai multe sisteme mai vechi este încă necesar un nucleu specific separat. Din această cauză, distribuția standard Debian permite instalarea doar pe un număr restâns de astfel de sisteme ARM mai vechi, alături de sistemele mai noi care sunt suportate de nucleele multiplataformă ARM (numite „armmp”) în Debian/armhf.

2.1.4 Platforme compatibile cu Debian/armel

Următoarele platforme sunt compatibile cu Debian/armel; acestea necesită nuclee specifice platformei.

Kirkwood Kirkwood este un sistem pe cip (SoC) de la Marvell care integrează un procesor ARM, Ethernet, SATA, USB și alte funcționalități într-un singur cip. Debian acceptă în prezent următoarele dispozitive bazate pe Kirkwood:

- Calculatoare conectabile „plug” (SheevaPlug, GuruPlug, DreamPlug și Seagate FreeAgent DockStar)
- NAS-uri LaCie (Network Space v2, Network Space Max v2, Internet Space v2, d2 Network v2, 2Big Network v2 și 5Big Network v2)
- OpenRD (OpenRD-Base, OpenRD-Client și OpenRD-Ultimate)

Orion5x Orion este un sistem pe cip (SoC) de la Marvell care integrează un procesor ARM, Ethernet, SATA, USB și alte funcționalități într-un singur cip. Există multe dispozitive de „spațiu de stocare atașat la rețea” (Network Attached Storage: NAS) pe piață care se bazează pe un cip Orion. Debian în prezent acceptă următoarele dispozitive bazate pe Orion: Buffalo Kurobox.

Versatile Platforma Versatile este emulată de QEMU și, prin urmare, este o modalitate bună de a testa și rula Debian pe ARM, dacă nu aveți echipamentul real (mașina reală).
2.1.5 Dispozitivele care nu mai au suport în Debian/armel

Kirkwood Suportul pentru toate modelele QNAP Turbo Station (TS-xxx) a fost abandonat pentru Debian 11, deoarece nucleul Linux pentru ele nu mai poate fi construit, din cauza limitărilor echipamentului respectiv.

Orion5x Suportul pentru HP Media Vault mv2120 a fost abandonat pentru Debian 11, deoarece nucleul Linux pentru acesta nu mai poate fi construit, din cauza limitărilor echipamentului respectiv.

Este posibil să puteți menține în funcțiune dispozitivele enumerate mai sus pentru o perioadă de timp, consultați Notele de lansare pentru Debian 11.

2.1.6 Suportul pentru plăcile grafice

Suportul Debian pentru interfețele grafice este determinat de suportul subiacent găsit în sistemul X11 al X.Org și în nucleu. Grafica framebuffer de bază este furnizată de nucleu, în timp ce mediile de birou folosesc X11. Dacă sunt disponibile funcții avansate ale plăcii grafice, cum ar fi accelerarea în 3D a plăcii grafice (3D-hardware acceleration) sau video accelerat de componentele plăcii (hardware-accelerated video), depinde de placa grafică reală utilizată în sistem și, în unele cazuri, de instalarea de blocuri „firmware” suplimentare (consultați Secțiune 2.2).

Aproape toate mașinile ARM au placa grafică încorporată în placa bază, mai degrabă decât să fie pe o placă conectabilă. Unele mașini au sloturi de expansiune pentru conectarea dehui plăci grafice, dar aceasta este o raritate. Dispozitive concepute pentru a fi fără ecran și fără grafică sunt destul de comune. În timp ce suportul de bază pentru framebuffer-ul video furnizat de nucleu ar trebui să funcționeze pe toate dispozitivele care au placă grafică, accelerarea 3D este invariabil nevoie de controlori binari pentru a funcționa. Situația se schimbă rapid, dar în momentul lansării bookworm controlorii liberii „nouveau” (Nvidia Tegra K1 SoC) și „freedreno” (SoC-urile Qualcomm Snapdragon) sunt disponibile în această versiune. Alte dispozitive necesită controlorii care nu sunt liberii de la terțe părți.

Detalii despre plăcile grafice și dispozitivele de indicare acceptate pot fi găsite la https://wiki.freedesktop.org/xorg/. Debian 12 include X.Org versiunea 7.7.

2.1.7 Plăci de conectare la rețea

Aproape orice placă de interfață de rețea (Network Interface Card: NIC) acceptată de nucleul Linux ar trebui să fie acceptată și de sistemul de instalare; controlorii ar trebui să fie în mod normal încărcăți automat.

Pe 32-bit soft-float ARM, majoritatea dispozitivelor Ethernet incorporate sunt acceptate și sunt furnizate module pentru dispozitive PCI și USB suplimentare.

2.1.8 Periferice și alte dispozitive

Linux oferă suport pentru o mare varietate de dispozitive, cum ar fi mouse-uri, imprimate, scanere, PCMCIA/CardBus/ExpressCard și dispozitive USB. Cu toate acestea, majoritatea acestor dispozitive nu sunt necesare în timpul instalării sistemului.

2.2 Dispozitive care necesită firmware

Pe lângă disponibilitatea unui controlor de dispozitiv, unele dispozitive necesită, de asemenea, ca așa-numitul firmware sau microcod să fie încărcat în dispozitiv înainte ca acesta să devină operațional. Acest lucru este cel mai frecvent pentru plăcile de interfață de rețea (în special pentru cele fără fir), dar, de exemplu, unele dispozitive USB și chiar unii controlorii de discuri dure (hdd) necesită de asemenea firmware/microcod.

Cu multe plăci grafice, funcționalitatea de bază este disponibilă fără firmware suplimentar, dar utilizarea caracteristicilor avansate necesită instalarea unui fișier firmware corespunzător în sistem.

Pe multe dispozitive mai vechi care necesită firmware pentru a funcționa, fișierul firmware a fost placat permanent într-un cip EEPROM/Flash pe dispozitivul înșiși de către producător. În zilele noastre, majoritatea dispozitivelor noi nu mai au firmware-ul încorporat în acest fel, așa că fișierul firmware trebuie să fie încărcat în dispozitiv de către sistemul de operare gazdă de fiecare dată când sistemul pornește.

în majoritatea cazurilor, firmware-ul nu este gratuit conform criteriilor utilizate de proiectul Debian GNU/Linux și astfel nu poate fi inclus în distribuția principală sau în sistemul de instalare. Dacă controlorul de dispozitiv însuși este inclus în distribuție și dacă Debian GNU/Linux poate distribui legal firmware-ul, acesta va fi adesea disponibil ca pachet separat în secțiunea „non-free-firmware” a arhivei (înainte de Debian GNU/Linux 12.0: din secțiunea „non-free”).
CAPITOLUL 2. CERINȚELE SISTEMULUI DE...

2.3. ACHIZIȚIONAREA ECHIPAMENTULUI SPECIFIC PENTRU GNU/Linux

Există mai mulți furnizori, care livrează sisteme cu Debian sau alte distribuții GNU/Linux preinstalate. S-ar putea să plătești mai mult și să captișezi privilegiul, dar obținești un înalt nivel de liniște sufletească, deoarece puteți fi sigur că echipamentul respectiv este complet compatibil cu GNU/Linux.

Indiferent dacă cumpărăți sau nu un sistem cu Linux preinstalat, sau chiar un sistem folosit, este încă important să verificați dacă echipamentul este compatibil cu nucleul Linux. Verificați dacă componente și dispozitivele din sistemul dumneavoastră sunt listate în referințele oficiale de GNU/Linux. Spuneți agentuluidevânzări (dacă există) că sunteti în avan de a vă întoarce controlorul pentru a verifica dacă echipamentul respectiv este complet compatibil cu GNU/Linux.

2.3.1 Evitați componentele, dispozitivele și echipamentele proprietare sau închise

Unii producători de componente, dispozitive sau echipamente pur și simplu nu ne vor spune cum să scriem controlorii pentru produsul lor (produse închise). Alți tu nu vor permite accesul la documentație fără un acord de noul proprietar (produse proprietare) care ne-ar împiedica să eliberăm codul sursă al controlorului, care este unul dintre elementele mai multor de controale a dispozitivului. Cu toate acestea, acest lucru nu înseamnă că un astfel de dispozitiv nu poate fi utilizat în timpul unei instalări.

În multe cazuri, există standarde (sau cel puțin unele standarde de facto) care descriu modul în care un sistem de operare și controlorii săi de dispozitiv comună cu o anumită clasă de dispozitive. Toate dispozitivele care respectă standarde precum sunt disponibile pentru controlorii de dispozitiv comună cu acest sistem de operare și controlorii săi de dispozitiv comunică cu o anumită clasă de dispozitive. Toate dispozitivele care respectă standardul de facto pot fi utilizate cu singur controlorilor de dispozitiv generic și nu sunt necesari controlorilor specifci dispozitivului. Cu toate acestea, acest lucru nu înseamnă că un astfel de dispozitiv nu poate fi utilizat în timpul unei instalări. Deși există standarde și dispozitive închise pentru care nu dispunem de documentație utilizabilă, acestea sunt și nu există controlorii de dispozitiv generic și nu sunt necesari controlorilor specifci dispozitivului. Cu toate acestea, acest lucru nu înseamnă că un astfel de dispozitiv nu poate fi utilizat în timpul unei instalări.

1. Rezoluția generală 2022 despre firmware-ul non-free

Deși există standarde și dispozitive închise pentru care nu dispunem de documentație utilizabilă, acestea sunt și nu există controlorii de dispozitiv generic și nu sunt necesari controlorilor specifci dispozitivului. Cu toate acestea, acest lucru nu înseamnă că un astfel de dispozitiv nu poate fi utilizat în timpul unei instalări.
produsele lor.

2.4 Medii de instalare

Această secțiune vă va ajuta să determinați ce tipuri diferite de media puteți utiliza pentru a instala Debian. Există un întreg capitol dedicat media, Cap. 4, care enumera avantajele și dezavantajele fiecărui tip de media. Poate doriți să reveniți la această pagină după ce ajungeți la acea secțiune.

2.4.1 CD-ROM/DVD-ROM/BD-ROM

Instalarea de pe disc optic este acceptată pentru majoritatea arhitecturilor.

2.4.2 Rețea

Rețeaua poate fi utilizată în timpul instalării pentru a prelua fișierele necesare instalării. Dacă rețeaua este utilizată sau nu depinde de metoda de instalare pe care o alegeți sau dacă doriți să descărcați fișiere de pe rețea pentru a le instala. INSTALATORE (ini) este un disponibil în rețeaua dvs., acest lucru permite o implementare ușoară și rapidă a unui număr mare de mașini. Configurarea infrastructurii necesare necesită un anumit nivel de experiență tehnică, așa că acest lucru nu este recomandat pentru utilizatorii încăperiți.

Instalarea fără disc, folosind pornirea în rețea dintr-o rețea locală și montarea NFS a tuturor sistemelor de fișiere locale, este o altă opțiune.

2.4.3 Discul dur sau solid hdd/ssd

Pornirea sistemului de instalare direct de pe un disc dur sau solid este o altă opțiune pentru multe arhitecturi. Acest lucru va necesita un alt sistem de operare pentru a încărca programul de instalare pe discul respectiv. Această metodă este recomandată numai pentru cazurile speciale când nu este disponibilă nicio altă metodă de instalare.

2.4.4 Sistem Un*x sau GNU

2.4.5 Sisteme de stocare acceptate

Programul de instalare Debian conține un nucleu care este construit pentru a maximiza numărul de sisteme pe care rulează.

Sistemele IDE sunt de asemenea acceptate.

2.5 Cerințe de memorie și spațiu pe disc

Trebuie să aveți cel puțin 80MB de memorie și 1160MB de spațiu pe discul dur/solid pentru a efectua o instalare normală. Rețineți că acestea sunt numere destul de minime. Pentru cifre mai realiste, consultați Secțiune 3.4.

În mod normal, programul de instalare activează automat trucurile de economisire a memoriei pentru a putea rula pe un astfel de sistem cu memorie redusă, dar pe arhitecturile care sunt mai puțin testate este posibil să nu funcționeze. Cu toate acestea, poate fi activat manual prin adăugarea parametrului de pornire lowmem=1 sau chiar lowmem=2 (consultați, de asemenea, Secțiune 6.3.1.1 și Secțiune 5.3.2).
AVERTISMENT

Pe arhitectura armel nivelurile „lowmem” nu au fost testate, aşa că detectarea automată este probabil învechită şi, astfel, probabil că trebuie să păsaţi parametrul de pornire pentru „lowmem” dacă sistemul dumneavoastră are puţină memorie.

Instalarea pe sisteme cu mai puţină memorie sau spaţiu pe disc disponibil, este posibilă, dar este recomandată doar utilizatorilor experimentați.
Capitolul 3

Înainte de a instala Debian GNU/Linux

Acest capitol tratează pregătirea pentru instalarea Debian chiar înainte de a porni programul de instalare. Aceasta include realizarea de copii de rezervă a datelor, colectarea de informații despre componentele și dispozitivele dvs. și localizarea oricăror informații necesare.

3.1 Prezentare generală a procesului de instalare

În primul rând, doar o notă despre reinstalări. Cu Debian, o circumstanță care va necesita o reinstalare completă a sistemului este foarte rară; poate că defecțiunea mecanică a discului dur „hdd” ar fi cazul cel mai frecvent.

Multe sisteme de operare obișnuite pot necesita să fie efectuată o instalare completă atunci când au loc defecțiuni critice sau pentru actualizări la noi versiuni ale sistemului de operare. Chiar dacă nu este necesară o instalare complet nouă, de multe ori programele pe care le utilizați trebuie să fie reinstalate pentru a funcționa corect în noul sistem de operare.

Sub Debian GNU/Linux, este mult mai probabil că sistemul de operare să poată fi reparate în loc de-a fi înlocuit dacă lucrurile merg proast. Actualizările nu necesită niciodată o instalare totală; puteți oricând să faceți actualizarea asupra sistemului deja instalat. Iar programele sunt aproape întotdeauna compatibile cu versiunile succesive ale sistemului de operare. Dacă o nouă versiune de program necesită o bibliotecă mai nouă sau un nou program ca dependență, sistemul de gestionare al pachetelor Debian se asigură că tot software-ul necesar să fie identificat și instalat. Idea este că s-a depus mult efort pentru a evita necesitatea reinstalării, așa că gândiți-vă la aceasta ca fiind ultima opțiune. Programul de instalare nu este proiectat să reinstaleze peste un sistem existent.

Iată „o foaie de parcurs” pentru pași pe care îi veți parcurge în timpul procesului de instalare.

1. Faceți o copie de rezervă a oricăror date sau documente existente pe discul dur/solid pe care intenționați să instalați sistemul de operare.

2. Adunați informații despre calculatorul dumneavoastră și orice documentație necesară, înainte de a începe instalarea.

3. Creați spațiu pe care poate fi partidiționat, pentru Debian, pe discul dur/solid pe care intenționați să efectuați instalarea.

4. Localizați și/sau descărcați programul de instalare și programele de care aveți nevoie.

5. Configurați dispozitivele de pornire, cum ar fi CD-uri/DVD-uri/stick-uri USB sau furnizați o infrastructură de pornire în rețea de pe care să poată porni programele de instalare.

6. Porniți sistemul de instalare.

7. Selectați limba de instalare.

8. Activați conexiunea la rețeaua Ethernet, dacă este disponibilă.

10. Urmăriți descărcarea/installarea/configurarea automată a sistemului de bază.

11. Selectați și instalați software adițional.

12. Instalați un încarcător de pornire care poate porni Debian GNU/Linux și/sau sistemul dumneavoastră existent.
13. Încărcăți pentru prima dată sistemul nou instalat.

Dacă aveauți probleme în timpul instalării, cunoașterea pachetelor implicate în fiecare pas, poate ajuta la rezolvarea problemelor care pot apărea în timpul instalării. Fata acesta principal depinde de această „drămată” numită instalare:

Programul de instalare, debian-installer, este tema principală a acestui manual. Detectează componentele și dispozitivele și încarcă controlorii adecvați, folosește dhcp-client pentru a configura conexiunea la rețea, rulează debootstrap pentru a instala pachetele de bază ale sistemului și rulează tasksel pentru a vă permite să instalați anumite programe suplimentare. Multui mai mulți actorii joacă roluri mai mici în acest proces, dar debian-installer își încheie sarcina când încărcați noul sistem pentru prima dată.

Pentru a adapta sistemul la nevoile dumneavoastră, tasksel vă permite să alegeți pentru a le instala, diverse pachete predefinite de software, cum ar fi un server Web sau un mediu de Birou.

O opțiune importantă în timpul instalării este dacă se instalează sau nu un mediu de birou grafic, constând din sistemul X Window și unul dintre mediile de birou grafice disponibile. Dacă alegeți să nu selectați sarcina „Mediu de birou”, veți avea doar un sistem relativ simplu, bazat pe linia de comandă. Instalarea sarcinii pentru mediul de birou este opțională deoarece, în raport cu un sistem numai în modul text, necesită o cantitate relativ mare de spătăpă disc și pentru că multe sisteme Debian GNU/Linux sunt servere care nu au nevoie de o interfață grafică cu utilizatorul pentru a-și face treaba.

Trebuie să știi că sistemul X Window este complet separat de debian-installer și, de fapt, este mult mai complicat. Depanarea sistemului X Window nu face parte din domeniul de aplicare al acestui manual.

3.2 Faceți o copie de rezervă a datelor existente!

Înainte de a începe, asigurați-vă că faceți copii de rezervă pentru fiecare fișier care se află acum pe sistemul dvs. Dacă aceasta este prima dată când un sistem de operare non-nativ va fi instalat în calculatorul dvs., este foarte probabil că va trebui să re-partiționați discul pentru a face loc pentru Debian GNU/Linux. De fiecare dată când partitați discul, riscăți să pierdeți tot ce se află pe disc, indiferent de programul pe care îl utilizați pentru a face acest lucru. Programele utilizațe în instalarea Debian GNU/Linux sunt destul de fiabile și majoritatea au văzut ani de utilizare; dar sunt și destul de puternice și o mișcare falsă poate avea consecințe nefaste. Chiar și după ce ați făcut copii de rezervă, aveți grijă și găndeți-vă la răspunsurile și acțiunile dvs. Două minute de gândire pot economisi ore de muncă inutilă.

Dacă creați un sistem de pornire cu mai multe sisteme de operare, asigurați-vă că aveți medii de distribuție ale oricăror alte sisteme de operare existente la îndemână. Chiar dacă în mod normal acest lucru nu este necesar, ar putea exista situații în care vi se poate cere să reinstațiați încărcătorul de pornire al sistemului de operare pentru a porni sistemul sau, în cel mai rau caz, chiar trebuie să reinstațiați întregul sistem de operare și să restaurați copia de rezervă făcută anterior.

3.3 Informații de care veți avea nevoie

3.3.1 Documentație

3.3.1.1 Manual de instalare

Documentul pe care îl citiți acum, care este versiunea oficială a Ghidului de instalare pentru versiunea bookworm a Debian; disponibil în diverse formate și traduceri.

3.3.1.2 Documentație componente și dispozitive

Conține adesea informații utile despre configurarea sau utilizarea componentelor și a dispozitivelor.

3.3.2 Găsirea surselor de informații privind componentele și dispozitivele

În multe cazuri, programul de instalare va putea detecta automat le dumneavoastră. Dar, pentru a fi pregătiți, vă recomandăm să vă familiarizați cu acestea înainte de instalare.

Informațiile despre componente și dispozitive pot fi culese din următoarele surse:

• Manualele care vin cu fiecare componentă și dispozitiv.
• Ecranele de configurare BIOS/UEFI ale calculatorului. Puteți vizualiza aceste ecrane când porniți calculatorul apăsând o combinație de taste. Verificați manualul pentru afla combinația. Adesea, este tasta Del sau F2, dar unii producători folosesc alte taste sau combinațiile de taste. De obicei, la pornirea calculatorului, va apărea un mesaj care indică ce tastă trebuie apăsată pentru a intra în ecranul de configurare.
• Carcasele și cutiile pentru fiecare componentă și dispozitiv.
• Comenzi de sistem sau instrumente dintr-un alt sistem de operare, inclusiv cadrele de afișare managerului de fișiere. Această sursă este utilizată în special pentru informații despre memoria RAM și cantitatea de spațiu din disc.
• Administratorul dumneavoastră de sistem sau furnizorul de servicii de Internet. Aceste surse vă pot spune valorile parametrilor de care aveți nevoie pentru a vă configura rețeaua și e-mailul.

<table>
<thead>
<tr>
<th>Componente/dispozitive</th>
<th>Informații de care ați putea avea nevoie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discuri dure/solide</td>
<td>Ordinea lor în sistem.</td>
</tr>
<tr>
<td></td>
<td>Dacă sunt IDE (cunoscut și ca PATA), SATA sau SCSI.</td>
</tr>
<tr>
<td></td>
<td>Spațiul liber disponibil.</td>
</tr>
<tr>
<td></td>
<td>Partițiile.</td>
</tr>
<tr>
<td></td>
<td>Partițiile în care sunt instalații alte sisteme de operare.</td>
</tr>
<tr>
<td>Interfețe de rețea</td>
<td>Tipul/modelul de interfețe de rețea disponibile.</td>
</tr>
<tr>
<td>Imprimanta</td>
<td>Modelul și producătorul.</td>
</tr>
<tr>
<td>Placa video</td>
<td>Tipul/modelul și producătorul.</td>
</tr>
</tbody>
</table>

3.3.3 Compatibilitate componente și dispozitive

Multe produse funcționează fără probleme cu Linux. În plus, suportul pentru componente și dispozitive în Linux se îmbunătățește zilnic. Cu toate acestea, Linux încă nu rulează atât de multe tipuri diferite de componente și dispozitive ca unele sisteme de operare.

Controlorii din Linux, în cele mai multe cazuri, nu sunt scris pentru un anumit „produs” sau „marcă” de la un anumit producător, ci pentru o anumită piesă/chipset. Multe produse/mărci aparțin diferite se bazează pe aceeași schemă electronică; nu este neobișnuit ca producătorii de chipuri să furnizeze așa-numitele „proiecte de referință” pentru produse bazate pe chipurile lor, care sunt apoi utilizate de mai mulți producători diferiți de dispozitive și vândute sub o mulțime de nume diferite de produse sau mărci.

Acest lucru are avantaje și dezavantaje. Un avantaj este că un controlor pentru un chipset funcționează cu o mulțime de produse diferite de la diferiți producători, atât timp cât produsul lor se bazează pe același chipset. Dezavantajul este că nu este întotdeauna ușor să vezi ce chipset real este folosit într-un anumit produs/marcă. Din păcate, uneori, producătorii de dispozitive schimbă piesa centrală a produsului lor fără a schimba numele produsului sau cea puțin numărul versiunii produsului, astfel încât, atunci când aveți două articole cu aceeași marcă/nume de produs cumpărate în momente diferite, acestea pot fi uneori bazate pe două produse diferite. chipset-uri și, prin urmare, utilizați doi controlori diferiți sau este posibil să nu existe niciun controlor pentru unul dintre ele.

Pentru dispozitivele USB și plăcile PCI/PCI-Express/ExpressCard, o modalitate bună de a afla pe ce chipset se bazează este să vă uitai la ID-urile lor. Toate dispozitivele USB și plăcile PCI/PCI-Express/ExpressCard au așa-numitele ID-uri de „fabricant” și „produs”, iar combinația acestor două este de obicei aceeași pentru orice produs bazat pe același chipset.

În sistemele Linux, aceste ID-uri pot fi citite cu comanda `lsusb` pentru dispozitivele USB și cu comanda `lspci -nn` pentru plăcile PCI/PCI-Express/ExpressCard. ID-urile fabricantului și ale produsului sunt de obicei date sub formă de două numere hexazecimale, separate prin două puncte, cum ar fi „1d6b:0001”.

Un exemplu pentru ieșirea comenzii `lsusb`: „Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub”, în care 1d6b este ID-ul fabricantului și 0002 este ID-ul produsului.

Un exemplu pentru ieșirea comenzii `lspci -nn` pentru o placă Ethernet: „03:00.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller [10ec:8168] (rev 06)”. ID-urile sunt date în parantezele drepte din dreapta, adică aici 10ec este ID-ul fabricantului și 8168 este ID-ul produsului.

Ca un alt exemplu, o placă grafică ar putea oferi următoarea ieșire: „04:00.0 VGA compatible controller [0300]: Advanced Micro Devices [AMD] nee ATI RV710 [Radeon HD 4350] [1002:954f]”.

În sistemele Windows, ID-urile unui dispozitiv pot fi găsite în administratorul de dispozitive Windows în fila „detalii”, unde ID-ul fabricantului este prefixat cu VEN_ și ID-ul produsului este prefixat cu DEV_.
Windows 7, trebuie să selectați proprietatea „Hardware IDs” din fila de detaliu a managerului de dispozitive pentru a vedea de fapt ID-urile, deoarece acestea nu sunt afișate implicit.

O căutare în Internet cu ID-ul fabricantului/produsului, „Linux” și „controlor (driver)” ca termeni de căutare, oferă deseori informații privind starea suportului controlorului pentru un anumit chipset. Dacă o căutare pentru ID-ul fabricantului/produsului nu dă rezultate utilizabile, o căutare a numelor de cod ale cipului, care sunt adesea furnizate de comenzile `lsusb` și `lspci` („RTL8111E”, „RTL8168B” în exemplul plăcii de rețea și „RV710” în exemplul plăcii grafice), poate ajuta.

3.3.3.1 Testarea compatibilității componentelor și dispozitivelor cu un sistem „Live”

Debian GNU/Linux este disponibil și ca așa-numit „sistem „live” (rulează „pe viu” fără necesitatea de-a fi instalat)” pentru anumite arhitecturi. Un sistem „live” este un sistem preconfigurat, gata de utilizare, într-un format comprimat, care poate fi pornit și utilizat de pe un mediu de citire, cum ar fi un CD sau DVD. Folosirea lui în mod implicit nu creează nicio modificare permanentă pe calculator. Puteți modifica configurările utilizatorului și puteți instala programe suplimentare din sistemul „live”, dar toate acestea se întâmplă doar în memoria RAM a calculatorului, adică dacă opriți calculatorul și poziți din nou sistemul „live”, totul este reininiat la valorile implicite. Dacă vreți să vedeați dacă componentele și dispozitivele ce le aveți au suport în Debian GNU/Linux, cel mai simplu mod este să ruleți un sistem Debian „live” pe acel calculator, și încercați-l.

Există câteva limitări în utilizarea unui sistem „live”. Prima este că, deoarece toate modificările pe care le faceți în cadrul sistemului „live” trebuie să fie păstrate în memoria RAM a calculatorului dvs., aceasta funcționează numai pe sistemele cu suficientă memorie RAM pentru a face acest lucru, astfel încât instalarea de pachete software mari, suplimentare poate eșua din cauza constrângerilor de memorie. O altă limitare în ceea ce privește testarea compatibilității componentelor și dispozitivelor este că sistemul „live” oficial al Debian GNU/Linux conține doar componente libere, adică nu sunt incluse fișiere de firmware care nu sunt libere. Desigur, astfel de pachete non-libere „non-free” pot fi instalate manual în sistem, dar nu există o detectare automată a fișierelor firmware necesare, cum ar fi în debian-installer, așa că instalarea componentelor non-libere trebuie făcută manual dacă este necesar.

Informații despre variantele disponibile ale imaginilor „live” de Debian pot fi găsite în pagina web „Debian Live Images”.

3.3.4 Configurarea rețelei

Dacă calculatorul dumneavoastră este conectat la o rețea fixă (adică o conexiune Ethernet sau equivalentă, nu o conexiune dialup/PPP) care este administrată de altcineva, va trebui să întrebați administratorul de rețea dacă au aceste informații:

• Numele calculatorului în rețea (s-ar putea să puteți decide acest lucru pe cont propriu).

• Numele său de domeniu.

• Adresa IP a calculatorului.

• Mască de rețea de utilizat.

• Adresa IP a pasarelei (numită și „poartă de acces”) implicite prin care se face direcționarea traficului de date, dacă rețeaua dumneavoastră are o pasarela.

• Sistemul din rețeaua dvs. pe care ar trebui să-l utilizați ca server de nume de domenii („Domain Name Service”: DNS).

Dacă rețeaua la care sunteți conectat folosește protocolul de configurare dinamică a gazdei („Dynamic Host Configuration Protocol”: DHCP) pentru configurarea parametrilor de rețea, nu aveți nevoie de aceste informații deoarece serverul DHCP le va furniza direct calculatorului dumneavoastră în timpul procesului de instalare.

Dacă aveți acces la Internet prin DSL sau modem prin cablu (adică printr-o rețea de televiziune prin cablu) și aveți un router (deseori furnizat preconfigurat de furnizorul dumneavoastră de telefon sau catv) care se ocupă de conectivitatea la rețea, serverul DHCP este de obicei disponibil în mod implicit.

Dacă utilizați o rețea WLAN/WiFi, ar trebui să aflați:

• ESSID-ul („numele rețelei”) rețelei dumneavoastră fără fir.

• Cheia de securitate WEP sau WPA/WPA2 pentru a accesa rețeaua (dacă este cazul).
3.4 Îndeplinirea cerințelor minime de către componente și dispozitive

După ce ați adunat informații despre componentele și dispozitivele calculatorului, verificați dacă acestea vor permite să faceți tipul de instalare pe care doriti să-l faceți.

În funcție de nevoile dvs., este posibil să vă descurcați cu componente și dispozitive având caracteristici mai scăzute decât cele recomandate în tabelul de mai jos. Cu toate acestea, majoritatea utilizatorilor riscă să fie frustrați dacă ignoră aceste sugestii.

Tabela 3.2 Cerințe minime de sistem recomandate

<table>
<thead>
<tr>
<th>Tip de instalare</th>
<th>Memorie RAM (minimă)</th>
<th>Memorie RAM (recomandată)</th>
<th>Disc dur/solid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fără mediu grafic de birou</td>
<td>256 Megaocteți</td>
<td>512 Megaocteți</td>
<td>4 Gigaocteți</td>
</tr>
<tr>
<td>Cu mediu grafic de birou</td>
<td>1 Gigaocteți</td>
<td>2 Gigaocteți</td>
<td>10 Gigaocteți</td>
</tr>
</tbody>
</table>

Valorile minime presupun că spațiul de memorie de interschimb „swap” va fi activat și este utilizată o imagine non-liveCD. Valoarea „Fără mediu grafic de birou” presupune că este utilizat programul de instalare non-grafic (bazat pe text).

Cerințele minime reale de memorie sunt mult mai mici decât cele enumerate în acest tabel. Cu spațiul de memorie de interschimb „swap” activat, este posibil să instalați Debian cu doar 32MB de memorie RAM. Același lucru este valabil și pentru cerințele de spațiu pe disc, mai ales dacă alegeti ce aplicații să instalați; consultați Secțiune D.2 pentru informații suplimentare despre cerințele de spațiu pe disc.

Este posibil să rulați un mediu grafic de birou pe sisteme mai vechi sau cu prestări reduse, dar în acest caz este recomandat să instalați un administrator de ferestre care necesită mai puțin resurse decât mediile de birou „GNOME” sau „KDE Plasma”; alternativele includ xfce4, icewm și wmaker, dar există multe altele din care puteți să alegeti.

Este practic imposibil să se ofere cerințe generale de memorie sau spațiu pentru instalările de server, deoarece acestea depind foarte mult de domeniul de pe care urmează să fie utilizat serverul (web, imprimare, difuzare conținut multimedia, partajare fișiere, etc).

Rețineți că aceste dimensiuni nu includ toate celelalte lucruri care se găsesc de obicei, cum ar fi fișierele utilizatorului, corespondența și datele. Cel mai bine este întotdeauna să fii generos atunci când iei în considerare spațiul pentru propriile fișiere și date.

Spațiul pe disc necesar pentru buna funcționare a sistemului Debian GNU/Linux în sine este luat în considerare în aceste cerințe de sistem recomandate. În special, partitia /var conține o mulțime de informații de stare specifice pentru Debian pe lângă conținutul său obișnuit, cum ar fi fișierele jurnal. Fișierele dpkg (cu informații despre toate pachetele instalate) pot consuma cu ușurință 40 MB. De asemenea, apt pune pachetele descărcate aici înainte de a fi instalate. De obicei, ar trebui să alocați cel puțin 200 MB pentru /var și mult mai mult dacă instalați un mediu grafic de birou.

3.5 Pre-partiționare pentru sisteme multi-pornire

Partiționarea discului se referă pur și simplu la acțiunea de a împărți discul în secțiuni. Fiecare secțiune este apoi independentă de celelalte. Este aproximativ echivalent cu ridicarea pereților în interiorul unei case; dacă adăugați mobilier într-ocameră, această acțiune nu afecteză nicio altă cameră.

Puteți găsi informații despre configurația curentă a partiției utilizând un instrument de partiționare pentru sistemul dvs. de operare actual. Instrumentele de partiționare oferă întotdeauna o modalitate de a afișa partiții existente fără a face modificări.

În general, modificarea unei partiții cu un sistem de fișiere deja pe ea va distrage orice informație de acolo. Prin urmare, ar trebui să faceți întotdeauna copii de rezervă înainte de a face orice particări. Folosind analogya casei, probabil că ați dorit să mutați toată mobila în drum înainte de a muta un perete sau răciți-o s-o distrugați.

Multe sisteme de operare moderne oferă posibilitatea de a muta și redimensiona anumite partiții existente fără a le distruga conținutul. Acest lucru permite crearea de spațiu pentru partiții suplimentare fără a pierde datele existente. Chiar dacă acest lucru funcționează destul de bine în majoritatea cazurilor, efectuarea de modificări în partiționarea...
unui disc este o acțiune în mod inerent periculoasă și ar trebui făcută numai după ce ați făcut o copie de rezervă completă a tuturor datelor.

3.6 Configurarea componentelor, dispozitivelor și a sistemului de operare înainte de instalare

Această secție preinstalare, vă va ghida în configurarea componentelor și a dispozitivelor, dacă este cazul, pe care va trebui să o faceți înainte de a instala Debian. În general, aceasta implică verificarea și, eventual, modificarea configururilor microcodului BIOS/UEFI din sistem pentru sistemul dumneavoastră. „BIOS/UEFI” sau „microcodul sistemului (system firmware)” este software-ul de bază folosit de componente; este invocat cel mai critic în timpul procesului de pornire (după acționarea butonului de alimentare cu energie).

3.6.1 Firmware-ul ARM

După cum s-a menționat deja, nu există, din păcate, un standard pentru firmware-ul de sistem pe sistemele ARM. Chiar și comportamentul diferitelor sisteme care folosesc nominal același firmware poate fi destul de diferit. Acest lucru rezultă din faptul că o mare parte a dispozitivelor care utilizează arhitectura ARM sunt sisteme încorporate, pe care producătorii construiesc de obicei versiuni de firmware puternice personalizate și includ corecții specifice dispozitivului. Din păcate, producătorii nu au întotdeauna întotdeauna activat corect configurația firmware-ului în sistem, astfel încât modificările lor nu sunt integrate în versiunile mai noi ale firmware-ului original.

Pentru urmare, chiar și sistemele noi vândute folosesc adesea un firmware care se bazează pe o versiune modificată de producător de anii de zile a unui firmware al cărui cod bază a evoluat mult mai mult între timp și oferă o configurație suplimentară sau prezentă un comportament diferit în anumite aspecte. În plus, denumirea dispozitivelor integrate nu este corectă în anumite sisteme, iar modificările de sistem nu sunt date în unități de produs.
suplimentare (bootm_size), lucrul pe care U-Boot îl face automat numai în instalațiile noi, fără date de mediu existente. Este posibil să stabiliți manual „bootm_size” la valoarea implicită a noului U-Boot rulând comanda „env default bootm_size; saveenv” în linia de comandă a U-Boot.

O altă posibilitate de a evita problemele legate de realocare este să rulați comanda „setenv fdt_high ffffff; setenv initrd_high 0xffffffff; saveenv” în linia de comandă U-Boot pentru a dezactiva complet realocarea discului ram inițial și blocul arborelui de dispozitive.
Capitolul 4

Obținerea unui mediu de instalare a sistemului

4.1 Imagini oficiale de instalare pentru Debian GNU/Linux

De departe cel mai simplu mod de a instala Debian GNU/Linux este dintr-un set de imagini oficiale de instalare Debian. Puteți cumpăra un set de CD-uri/DVD-uri de la un furnizor (consultați pagina vânzătorilor de CD-uri). De asemenea, puteți descărca imagini de instalare de pe o glină Debian și poate instalați propriul set, dacă aveți o conexiune rapidă la rețea și un program de încărcare CD/DVD (consultați pagina CD/DVD Debian și Răspunsuri la întrebările frecvente despre CD/DVD Debian pentru instrucțiuni detaliate). Dacă aveți astfel de mediul de instalare și sunt capabile să pornească pe mașina dvs., puteți să rămâneți direct la Cap. 5. S-a depus mult efort pentru a se asigura că fișierele cele mai utilizate sunt pe prima imagine CD și DVD, astfel încât o instalare bazică de un mediu grafic de birou se poate face doar cu primul DVD sau - într-o măsură limitată - chiar și doar cu prima imagine pe CD.

Deoarece CD-urile au o capacitate destul de limitată în raport cu standardele actuale, nu toate mediile grafice de birou sunt instalabile doar cu primul CD; pentru unele medii de birou, o instalare pe CD necesită fie conectivitate la rețea în timpul instalării pentru a descărcă fișierele rămase, fie CD-uri suplimentare.

De asemenea, rețineți: dacă mediul de instalare pe care îl utilizați nu conține unele pachete de care aveți nevoie, puteți oricând să instalați acele pachete ulterior din noul sistem Debian care rulează (după ce instalarea s-a terminat). Dacă aveți în minte pe care imagine de instalare puteți să găsiți un anumit pachet, vizitați https://cdimage-search.debian.org/.

Dacă mașina dvs. nu acceptă pornirea de pe suporturi optice, dar aveți un set de CD/DVD, puteți utiliza o strategie alternativă cum ar fi o pornire din rețea, sau încărcarea manuală a nucleului de pe disc pentru a iniția pornirea programului de instalare a sistemului. Fișierele de care aveți nevoie pentru pornirea prin alte mijloace sunt adesea prezentate pe disc și sunt de obicei într-un director al imaginii de instalare. Dacă nu puteți utiliza acestea, consultați pagina CD/DVD Debian și Răspunsuri la întrebările frecvente despre CD/DVD Debian pentru instrucțiuni detaliate.

Odată ce programul de instalare este pornit, acesta va putea obține toate celelalte fișiere de care aveți nevoie de pe disc.

Dacă nu aveți în minte pe care mediul de instalare, va trebui să descărcați fișierele sistemului de instalare și să le plasați pe un calculator conectat în rețea și să le plasați pe un calculator conectat astfel încât acestea să poată fi folosite pentru a porni programul de instalare.

4.2 Descărcarea fișierelor din oglinzile Debian

Pentru a găsi cele mai apropiată (și, prin urmare, probabil cele mai rapide) oglindă, consultați lista de oglinzi Debian.

4.2.1 Unde găsiți fișierele de instalare

4.2.1.1 Fișiere de instalare Kurobox Pro

Kurobox Pro necesită un nuclee și o imagine ramdisk într-o partitie ext2 pe discul pe care instalați o imagine de instalare Debian. Aceste imagini pot fi obținute de la .../images/orion5x/network-console/buffalo/kuroboxpro.
4.2.1.2 Fișiere de instalare HP mv2120

4.2.1.3 Fișiere de instalare QNAP Turbo Station

4.2.1.4 Fișiere de instalare pentru Plug Computer și OpenRD
Fișierele de instalare pentru calculatoarele Plug (SheevaPlug, GuruPlug, DreamPlug etc) și dispozitivele OpenRD constau dintr-un nucleus și o imagine inînd pentru U-Boot. Puteți obține aceste fișiere de la ../images/kirkwood/netboot/marvell/.

4.2.1.5 Fișiere de instalare LaCie NAS
Fișierele de instalare pentru NAS-urile LaCie (Network Space v2, Network Space Max v2, Internet Space v2, d2 Network v2, 2Big Network v2 și 5Big Network v2) constau dintr-un nucleus și o imagine inînd pentru U-Boot. Puteți obține aceste fișiere de la ../images/kirkwood/network-console/lacie/.

4.3 Pregătirea fișierelor pentru pornire prin rețea utilizând TFTP
Dacă mașina dvs. este conectată la o rețea locală, este posibil să puteți porni prin rețea de pe o altă mașină, utilizând TFTP. Dacă intenționați să porniți sistemul de instalare de pe o altă mașină, fișierele de pornire vor trebui să fie plăsite în anumite locații de pe acea mașină, iar mașina să fie configurată să accepte pornirea mașinii dvs. specifică.

Trebuie să configurați un server TFTP și, pentru multe mașini, un server DHCP sau un server RARP sau un server BOOTP, de asemenea.

Protocolul de rezoluție inversă a adreselor („Reverse Address Resolution Protocol”: RARP) este o modalitate de a spune clientului dvs. ce adresă IP să folosească pentru el insuși. O altă modalitate este să utilizați protocolul BOOTP. BOOTP este un protocol IP care informează un calculator despre adresa sa IP și de unde poate obține o imagine de pornire din rețea. Protocolul de configurare dinamică a gazdei („Dynamic Host Configuration Protocol”: DHCP) este extens mai flexibilă, compatibilă cu versiunea inversă a BOOTP. Unele sisteme pot fi configurează numai prin DHCP.

Protocolul de transfer de fișiere trivial („Trivial File Transfer Protocol”: TFTP) este utilizat pentru a transfera imaginea de pornire către client. Teoretic, poate fi folosit orice server, pe orice platformă, care implementează aceste protocoale. În exemplele din această secțiune, vom furniza comenzi pentru SunOS 4.x, SunOS 5.x (alias Solaris) și GNU/Linux.

4.3.1 Configurarea serverului RARP
Pentru a configura RARP, trebuie să cunoașteți adresa Ethernet (cunoscută și sub numele de adresa MAC) a calculatoarelor care urmează să fie instalate. Dacă nu cunoașteți aceste informații, puteți porni în modul „Recuperare (Rescue)” și să utilizați comanda ip addr show dev eth0.

Pe un sistem server RARP care utilizează un nucleus Linux sau Solaris/SunOS, utilizați programul rarpd. Trebuie să vă asigurați că adresa plăcii Ethernet pentru client este listată în baza de date „ethers” (în fișierul /etc/ethers, fie prin NIS/NIS+) și în baza de date „hosts” (gazde). Apoi trebuie să porniți demonul RARP. Lansați comanda (ca root): /usr/sbin/rarpd -a pe majoritatea sistemelor Linux și SunOS 5 (Solaris 2), /usr/sbin/in.rarpd -a pe alte sisteme Linux sau /usr/etc/rarpd -a în SunOS 4 (Solaris 1).

4.3.2 Configurarea unui server DHCP
Un server DHCP cu software liber este ISC dhcpd. Pentru Debian GNU/Linux, este recomandat pachetul isc-dhcp-server. Iată un exemplu de fișier de configurare pentru acesta (consultați „/etc/dhcp/dhcpd.conf”):
CAPITOLUL 4. OBȚINEREA UNUI MEDIU DE...

4.3. PREGĂTIREA FIȘIÈRELOR PENTRU...

...
4.3.4 Activarea serverului TFTP

Pentru a pregăti serverul TFTP, mai întâi trebuie să vă asigurați că `tftpd` este activat.

În cazul `tftpd-hpa` există două moduri în care serviciul poate fi rulat. Poate fi pornit la cerere de demonul `inetsd` al sistemului sau poate fi configurat să ruleze ca un demon independent. Care dintre aceste metode este utilizată este selectată atunci când pachetul este instalat și poate fi schimbată prin reconfigurarea pachetului.

Notă

Toate alternativele `in.tftpd` disponibile în Debian ar trebui să înregistreze cererile TFTP în jurnalele de sistem în mod implicit. Unele dintre ele acceptă un argument `-v` pentru a crește nivelul de detalii al informațiilor. Este recomandat să verificați aceste mesaje de jurnal în cazul unor probleme de pornire deoarece sunt un bun punct de plecare pentru diagnosticarea cauzei erorilor.

4.3.5 Mutăți Imaginile TFTP la locul lor

După aceea, plasați imaginea de pornire TFTP de care aveți nevoie, așa cum se gâsește în Secțiune 4.2.1, în directorul de imagini de pornire `tftpd`. Poate fi necesar să faceți o legătură de la acel fișier către fișierul pe care `tftpd` îl va folosi pentru pornirea unui anumit client. Din păcate, numele fișierului este determinat de clientul TFTP și nu există standarde stabilite.

4.4 Instalare automată

Pentru instalarea pe mai multe calculatoare este posibil să se facă instalări complete automate. Pachetele Debian destinate acestui lucru includ `fai-quickstart` (care poate folosi un server de instalare) și programul de instalare Debian însuși. Aruncați o privire la pagina oficială a programului „Instalare complet automată” („Fully Automatic Installation”: FAI) pentru informații detaliate.

4.4.1 Instalare automată folosind programul de instalare Debian

Programul de instalare Debian acceptă automatizarea instalărilor prin fișiere de preconfigurare. Un fișier de preconfigurare poate fi încărcat din rețea sau de pe un mediu amovibil și utilizat pentru a completa răspunsurile la întrebările adresate în timpul procesului de instalare.

Documentația completă despre preconfigurare, inclusiv un exemplu de lucru pe care îl puteți edita, se află în Anexa B.

4.5 Verificarea integrității fișierelor de instalare

Puteți verifica integritatea fișierelor descărcate folosind sumele de control furnizate în fișierele `SHA256SUMS` sau `SHA512SUMS` din oglinzile Debian. Le puteți găsi în aceleași locuri ca și imaginile de instalare în sine. Vizitați următoarele locații:

- fișiere de sumă de control pentru imaginile CD,
- fișiere de sumă de control pentru imaginile DVD,
- fișiere de sumă de control pentru alte fișiere de instalare.

Pentru a calcula suma de control a unui fișier de instalare descărcat, utilizați:

`sha256sum filename.iso`
și apoi comparați suma de control afișată cu cea corespunzătoare din fișierul SHA256SUMS respectiv SHA512SUMS.

Răspunsuri la întrebările frecvente despre CD-ul Debian are mai multe informații utile despre acest subiect (cum ar fi scriptul check_debian_iso, pentru a semi-automatiza procedura de mai sus), precum și instrucțiuni despre cum să verificați integritatea fișierelor sumelor de control însăși.
Capitolul 5

Pornirea sistemului de instalare

5.1 Pornirea programului de instalare pe 32-bit soft-float ARM

5.1.1 Formate de imagine de pornire

Pe sistemele bazate pe ARM, în cele mai multe cazuri, se utilizează unul dintre cele două formate pentru imaginile de pornire: a) nuclee standard Linux în format zImage („vmlinuz”) împreună cu Linux standard („initrd.gz”) sau b) nuclee în format ulimage („ulimage”) împreună cu imaginile ramdisk inițiale corespunzătoare („ulinitrd”).

Pentru sistemele care utilizează un nucleu multiplatformă, pe lângă nucleu și imaginea ramdisk inițială, este necesar un așa-numit fișier de arbore de dispozitive (sau device-tree blob, „dtb”). Acesta este specific fiecărui sistem suportat și conține o descriere a componentelor și dispozitivelor specifice fiecărui sistem suportat. Dtb-ul ar trebui să fie furnizat de către firmware-ul sistemului, dar, în practică, de multe ori trebuie încărcat unul mai nou.

5.1.2 Pornire prin TFTP

Pornirea din rețea necesită să aveți o conexiune la rețea și un server de pornire în rețea TFTP (și probabil, de asemenea, un server DHCP, RARP sau BOOTP pentru configurarea automată a rețelei).

Configurarea serverului pentru a accepta pornirea din rețea este descrisă în Secțiune 4.3.

5.1.2.1 Pornirea prin TFTP din U-Boot

Pornirea din rețea pe sistemele care utilizează firmware-ul U-Boot constă în trei pași: a) configurarea rețelei, b) încărcarea imaginilor (nucleu/imagina ramdisk inițială/dtb) în memorie și c) executarea efectivă a codului încărcat anterior.

Mai întâi trebuie să configurați rețeaua, fie automat prin DHCP rulând

```
setenv autoload no
dhcp
```

fie manual setând mai multe variabile de mediu

```
setenv ipaddr <adresa IP a clientului>
setenv netmask <masca de reb’’tb’’ea>
setenv serverip <adresa IP a serverului tftp>
setenv dnsip <adresa IP a serverului de nume>
setenv gatewayip <adresa IP a pasarelei implicite>
```

Dacă preferați, puteți face aceste configurări permanente rulând

```
saveenv
```

După aceea, trebuie să încărcați imaginile (nucleu/imagina ramdisk inițială/dtb) în memorie. Acest lucru se face cu comanda «tftpboot», care trebuie furnizată cu adresa la care imaginea va fi stocată în memorie. Din păcate, adresa
CAPITOLUL 5. PORNIREA SISTEMULUI DE ...

5.2. ACCESIBILITATE

din memorie poate varia de la un sistem la altul, așa că nu există o regulă generală care să poată fi folosită pentru aceasta.

Pe unele sisteme, U-Boot predefineste un set de variabile de mediu cu adrese de încărcare adecvate: kernel_addr_r, ramdisk_addr_r și fdt_addr_r. Puteți verifica dacă sunt definite rulând:

```sh
printenv kernel_addr_r ramdisk_addr_r fdt_addr_r
```

Dacă nu sunt definite, trebuie să verificați documentația sistemului dumneavoastră pentru valorile adecvate și să le stabiliți manual. Pentru sistemele bazate pe SOC-uri Allwinner SunXi (de exemplu Allwinner A10, numele arhitecturii „sun4i” sau Allwinner A20, numele arhitecturii „sun7i”), puteți, să utilizați de exemplu, următoarele valori:

```sh
setenv kernel_addr_r 0x46000000
setenv fdt_addr_r 0x47000000
setenv ramdisk_addr_r 0x48000000
```

Când adresele de încărcare sunt definite, puteți încărca imaginile în memorie de pe serverul tftp definit anterior cu

```sh

tftphost ${kernel_addr_r} <numele de fib'"$b'ier al imaginii nucleului>
tftphost ${kernel_addr_r} <numele de fib'"$b'ier al dtb>
tftphost ${ramdisk_addr_r} <numele de fib'"$b'ier al imaginii ramdisk inib'"$b'" iale>
```

A treia parte este definirea liniei de comandă a nucleului și executarea efectivă a codului încărcat. U-Boot transmite conținutul variabilei de mediu „bootargs” ca linie de comandă către nucleu, astfel încât orice parametri pentru nucleu și pentru programul de instalare - cum ar fi dispozitivul de consolă (consultați Secțiune 5.3.1) sau opțiunile de preconfigurare (a se vedea Secțiune 5.3.2 și Anexa B) - pot fi stabilite cu o comandă ca

```sh
setenv bootargs console=ttyS0,115200 rootwait panic=10
```

Comanda exactă pentru a executa codul încărcat anterior depinde de formatul de imagine utilizat. Cu uImage/ulninitrd, comanda este:

```sh
bootm ${kernel_addr_r} ${ramdisk_addr_r} ${fdt_addr_r}
```

iar cu imaginile native Linux este:

```sh
bootz ${kernel_addr_r} ${ramdisk_addr_r}:${filesize} ${fdt_addr_r}
```

Notă: Când porniți imagini standard Linux, este important să încărcați imaginea ramdisk inițială după nucleu și dtb, deoarece U-Boot stabilește variabila dimensiunii fișierului la dimensiunea ultimului fișier încărcat, iar comanda bootz necesită dimensiunea imaginii ramdisk-ului. ca să funcționeze corect. În cazul pornirii unui nucleu specific platformei, adică un nucleu fără arbore de dispozitive, pur și simplu omiteți parametrul ${fdt_addr_r}.

5.2 Accesibilitate

Unii utilizatori pot avea nevoie de asistență specifică, de exemplu unele deficiențe de vedere. Cele mai multe caracteristici de accesibilitate trebuie să fie activeate manual. Unii parametri de pornire pot fi atașați pentru a activa funcțiile de accesibilitate. Rețineți că în majoritatea arhitecturilor, încărcațorul de pornire interpretează tastatura dvs. ca fiind o tastatură QWERTY.

5.2.1 Interfața programului de instalare

Debian Programul de instalare acceptă mai multe interfețe pentru adresarea întrebărilor, cu diferite convenții pentru accesibilitate: în special, **text** folosește text simplu, în timp ce **newt** folosește casete de dialog bazate pe text. Alegeria poate fi făcută în promptul de pornire, consultați documentația pentru **DEBIAN_FRONTEND** în Secțiune 5.3.2.

Cu interfața **newt** (folosită mai ales cu braille), cel mai adesea se selectează răspunsurile cu tastele săgeată și se apasă **Enter** pentru a valida alegerea. Apăsând tasta **Tab** sau **Shift - Tab** permite comutarea între elementele de dialog și, în special, accesarea butonului **Înapoi**, care readuce la întrebările anterioare. Unele casete de dialog conțin casete de validare, care pot fi bifate și dezactivate apăsând **Space**.

Cu interfața **text** (folosită mai ales cu sinteza vocală), se selectează în mare parte răspunsurile fie tastând numărul lor urmat de apăsarea tastei **Enter**, fie selectând un răspuns cu tastele săgeată și apăsând **Enter** pentru a valida alegerea. De asemenea, nu se poate scrie nicio cuvânt și doar apăsăți **Enter** pentru a accepta pur și simplu valoarea implicită. Tastând < și apăsând tasta **Enter** readuce la întrebările anterioare. Când trebuie făcută o selecție de alegeri (de exemplu, în timpul selectării sarcinii), se poate tasta ! pentru a exprima o selecție goală.
5.2.2 Plăci Braile
Unele dispozitive de accesibilitate sunt plăci reale care sunt conectate în interiorul aparatului și care citesc text direct din memoria video. Pentru a le face să funcționeze, suportul pentru framebuffer trebuie să fie dezactivat utilizând parametrul de pornire \texttt{fb=false}. Acest lucru va reduce însă numărul de limbi disponibile.

5.2.3 Temă cu contrast ridicat
Pentru utilizatorii cu vedere redusă, programul de instalare poate folosi o temă de culoare cu contrast ridicat care îl face mai lizibil. Pentru a-o activa, puteți utiliza intrarea „Accessible high contrast” din ecranul de pornire cu comanda rapidă \texttt{d} sau puteți adăuga parametrul de pornire \texttt{theme=dark}.

5.2.4 Zoom
Pentru utilizatorii cu vedere redusă, programul de instalare grafică are un suport de zoom foarte simplu: Control-+ și Control– sunt combinațiile de taste rapide ce mărește și micșorează dimensiunea fontului.

5.2.5 Instalare în modul expert, modul de recuperare, instalare automată
Opțiunile de instalare în modul expert, modul de recuperare și instalare automată sunt, de asemenea, disponibile cu suport pentru accesibilitate. Pentru a le accesa, trebuie mai întâi să intrați în submeniul „Opțiuni avansate” din meniul de pornire tastând \texttt{a}. Când utilizați un sistem BIOS (meniul de pornire va emite un bip doar o dată), acesta trebuie urmat de apăsarea tastei \texttt{Enter} ; pentru sistemele UEFI (meniul de pornire va fi semnalat de două ori) iar apăsarea tastei \texttt{Enter} nu este necesară. Apoi, pentru a activa sinteza vocală, tasta \texttt{s} poate fi apăsată opțional (urmată din nou de apăsarea tastei \texttt{Enter} pe sistemul BIOS, dar nu pe sistemele UEFI). De acolo, pot fi folosite diverse combinații de taste rapide: \texttt{x} pentru instalare expert, \texttt{p} pentru modul de recuperare sau \texttt{a} pentru instalare automată. Din nou, acestea trebuie urmate de apăsarea tastei \texttt{Enter} atunci când utilizați un sistem BIOS.

Alegerea de instalare automată permite instalarea complet automată a Debian prin utilizarea preconfigurării, a cărei sursă poate fi introdusă după ce funcțiile de accesibilitate au început. Preconfigurarea în sine este documentată în Anexa B.

5.2.6 Accesibilitatea sistemului instalat
Documentația privind accesibilitatea sistemului instalat este disponibilă pe pagina \url{wiki de accesibilitate Debian}.

5.3 Parametrii de pornire
Parametrii de pornire sunt parametrii nucleului Linux care sunt în general utilizați pentru a vă asigura că perifericile sunt tratate corect. În cea mai mare parte, nucleul poate detecta automat informații despre perifericile dvs. Cu toate acestea, în unele cazuri va trebui să ajutați puțin nucleul.

Dacă este prima dată când porniți sistemul, încercați parametrii de pornire implicați (adică nu încercați să definiți parametrii) și vedeti dacă funcționează corect. Probabil că așa va fi. Dacă nu, puteți reporni mai târziu și să căutați orice parametri speciali care informează sistemul despre dispozitivele dvs. înconfigurația.

Informații despre multi parametri de pornire pot fi găsite în pagina \url{Linux BootPrompt HOWTO}, inclusiv sfaturi pentru dispozitive mai puțin comune Această secțiune conține doar o schiță a parametrilor cei mai importanți. Câteva probleme comune sunt incluse mai jos în Secțiune 5.4.

5.3.1 Consola de pornire
Dacă porniți cu o consolă serială, în general, nucleul va detecta acest lucru automat. Dacă aveți o placă video (frame-buffer) și o tastatură atașată la calculatorul pe care doriți să-l porniți prin consola serială, poate fi necesar să transmitiți argumentul \texttt{console=dispozitiv}. Dacă nu, \texttt{dispozitiv} este un dispozitiv serial al \texttt{ttyS0}.

Poate fi necesar să specificați parametrii pentru portul serial, cum ar fi viteza și paritatea, de exemplu \texttt{console=ttyS0,9600n8}. Alte viteză tipice pot fi \texttt{57600} sau \texttt{115200}. Asigurați-vă că specificați această opțiune după „--” astfel încât să fie copiată în configurația încărcătorului de pornire pentru sistemul instalat (dacă este acceptată de programul de instalare pentru încărcătorul de pornire).

Pentru a vă asigura că tipul de terminal folosit de programul de instalare se potrivese cu emulatorul dvs. de terminal, poate fi adăugat parametrul \texttt{TERM=tipul_de_terminal}. Rețineți că programul de instalare acceptă

5.3.2 Parametrii programului de instalare Debian

Sistemul de instalare recunoaște câțiva parametri de pornire suplimentari⁴ care poate fi utilizat.

O serie de parametri au o „formă scurtă” care ajută la evitarea limitărilor opțiunilor din linia de comandă a nucleului și facilitează introducerea parametrilor. Dacă un parametru are o formă scurtă, acesta va fi listat între paranteze în spatele formei lungi (normale). Exemplele din acest manual vor folosi în mod normal și forma scurtă.

debconf/priority (priority) Acest parametru este folosit pentru a declara nivelul de prioritate de la care sunt afișate mesajele.

Instalarea implicită folosește priority=high. Aceasta înseamnă că sunt afișate atât mesajele cu prioritate ridicată, cât și cele cu prioritate critică, dar mesajele cu prioritate medie și scăzută sunt omise. Dacă se întâlnește probleme, programele de instalare ajustează prioritatea după cum este necesar.

Dacă adăugați priority=medium ca parametru de pornire, vi se va afișa meniul de instalare și veți obține mai mult control asupra instalării. Când se utilizează priority=low, toate mesajele sunt afișate (aceasta este echivalentă cu metoda de pornire expert). Cu priority=critical, sistemul de instalare va afișa numai mesaje critic, și va încerca să facă ceea ce trebuie fără „gâlăgie”.

DEBIAN_FRONTEND Acest parametru de pornire controlează tipul de interfață de utilizator utilizată pentru programul de instalare. Setările curente posibile ale parametrului sunt:

- DEBIAN_FRONTEND=noninteractive
- DEBIAN_FRONTEND=text
- DEBIAN_FRONTEND=newt
- DEBIAN_FRONTEND=gtk

Interfața implicită este DEBIAN_FRONTEND=newt. DEBIAN_FRONTEND=text poate fi preferat pentru instalări în consolă serială. Unele tipuri specializate de medii de instalare pot oferi doar o selecție limitată de interfețe, dar interfețele text sunt disponibile pe majoritatea mediilor de instalare implicate. Pe arhitecturile care îl acceptă, programul de instalare cu interfața grafică folosește interfața gtk.

BOOT_DEBUG Stabilirea acestui parametru de pornire la 2 va face ca procesul de pornire al programului de instalare să fie înregistrat în jurnal. Setarea lui la 3 face shell-urile de depanare să fie disponibile în punctele strategice ale procesului de pornire (ieșiri din shell pentru a continua procesul de pornire).

BOOT_DEBUG=0 Aceasta este valoarea implicită.

BOOT_DEBUG=1 Mai detaliat decât de obici. Informația despre procesul de pe comandă folosită de instalare pentru a permite aprofundarea detaliată. Ieșiri din shell pentru a continua încărcarea.

log_host, log_port Determină ca programul de instalare să trimită mesaje de jurnal către un jurnal de sistem la distanță pe gazda și portul specificat, precum și către un fișier local. Dacă nu este specificat, portul este implicit la portul syslog standard 514.

lowmem - «memorie redusă» Poate fi folosit pentru a forța programul de instalare la un nivel de memorie scăzut (lowmem) mai mare decât cel pe care îl stabilește implicit programul de instalare, pe baza memoriei disponibile. Valorile posibile sunt 1 și 2. Consultați și Secțiunea 6.3.1.1.

noshell Împiedică programul de instalare să ofere shell-urile interactive pe tty2 și tty3. Util pentru instalăriile nesupravegheate unde securitatea fizică este limitată.

⁴Cu nucleele actuale (2.6.9 sau mai noi) puteți utiliza 32 de opțiuni de linie de comandă și 32 de opțiuni de mediu. Dacă aceste valori sunt depășite, nucleul va intra în panică. De asemenea, există o limită de 255 de caractere pentru întreaga linie de comandă a nucleului, totul peste această limită poate fi trunchiat în tăcere.
5.3. PARAMETRI DE PORNIRE

debian-installer/framebuffer (fb) Unele arhitecturi folosesc framebuffer-ul nucleului pentru a oferi instalarea într-o serie de limbi. Dacă framebuffer provoacă o problemă în sistemul dumneavoastră, puteți dezactiva caracteristica utilizând parametrul \texttt{fb=false}. Simptomele problemei sunt mesaje de eroare despre bterm sau bogl, un ecran gol sau o blocare în câteva minute după pornirea instalării.

debian-installer/theme (theme) O temă determină modul în care arată interfața de utilizator a programului de instalare (căilor, pictograme etc.). Temele disponibile pot diferi în funcție de interfața folosită. În prezent, ambele interfețe newt și gtk au (în afară de aspectul implicit) o singură temă suplimentară numită tema „dark” (în- tucneată), care a fost concepută pentru utilizatorii cu deficiențe de vedere. Stabiliți această temă pornind cu \texttt{theme=dark} (există și comanda rapidă \texttt{d} pentru aceasta în meniul de pornire).

etcfg/disable_autoconfig În mod implicit, debian-installer testează automat configurarea rețelei prin auto-configurare IPv6 și DHCP. Dacă testarea reușește, nu veți avea șansa să revizuiți și să modificați configurațiile obținute. Puteți ajunge la configurarea manuală a rețelei numai în cazul în care configurarea automată eşuează. Dacă aveți un router IPv6 sau un server DHCP în rețeaua locală, dar doriti să le evitați deoarece, de exemplu dau răspunsuri greșite, puteți folosi parametrul \texttt{netcfg/disable_autoconfig=true} pentru a preveni orice configurare automată a rețelei (nici v4, nici v6) și pentru a introduce informațiile manuale.

hw-detect/start_pcmcia Stabiliți la \texttt{false} pentru a preveni pornirea serviciilor PCMCIA, dacă acest lucru cauzează probleme. Unele laptop-uri sunt bine cunoscute pentru acest comportament greșit.

preseed/url (url) Specificați adresa URL a unui fișier de preconfigurare pentru descărcare și utilizare pentru automatizarea instalării. Consultați Secțiune 4.4.

preseed/file (file) Specificați calea către un fișier de preconfigurare de încărcat pentru automatizarea instalării. Consultați Secțiune 4.4.

preseed/interactive Stabiliți la \texttt{true} pentru a afișa întrebări chiar dacă au fost preconfigurate. Poate fi util pentru testarea sau depanarea unui fișier de preconfigurare. Rețineți că acest lucru nu va avea niciodată efect asupra parametrilor care sunt trecuți ca parametri de pornire, dar pentru aceștia se poate folosi o sintaxă specială. Consultați Secțiune B.5.2 pentru detalii.

auto-install/enable (auto) Întârzie întrebările către un fișier de preconfigurare până după ce rețeaua este configurată. Consultați Secțiune B.2.3 pentru detalii despre utilizarea acestuia pentru a automatiza instalăriile.

finish-install/keep-consoles În timpul instalărilor de la consola serială sau de administrare, consolele virtuale obișnuite (de la VT1 la VT6) sunt dezactivate în mod normal în /etc/inittab. Stabiliți la \texttt{true} pentru a preveni acest lucru.

cdrom-detect/eject În mod implicit, înainte de repornire, debian-installer ejectează automat suportul optic utilizat în timpul instalării. Acest lucru poate fi inutil dacă sistemul nu poștează automat de pe astfel de suporturi. În unele cazuri, poate fi chiar nedorit, de exemplu dacă unitatea optică nu poate reintroduce suportul de stocare și utilizatorul nu este acolo pentru a face acest lucru manual. Multe unități de tipul: „slot loading”, „slim-line” și „caddy style” nu pot reincață automat suportul mediei. Stabiliți la \texttt{false} pentru a dezactiva ejectarea automată și rețineți că poate fi necesar să vă asigurați că sistemul nu poștează automat de pe unitatea optică după instalarea inițială.

base-installer/install-recommends (recommends) Stabilind această opțiune la \texttt{false}, sistemul de gestionare a pachetelor va fi configurat să nu instaleze automat pachetele recomandate„Recommends”, atât în timpul instalării, cât și pentru sistemul instalat. Consultați și Secțiune 6.3.5.

Rețineți că această opțiune vă permite să aveți un sistem mai „ușor” (ocupă ceva mai puțin spațiu), dar poate duce, de asemenea, la lipsa unor funcții la care v-ați putea aștepta în mod normal să fie disponibile. Poate fi necesar să instalați manual unele dintre pachetele recomandate pentru a obține funcționalitatea completă dorită. Prin urmare, această opțiune ar trebui să fie utilizată numai de utilizatorii foarte experimentați.

debian-installer/allow_unauthenticated În mod implicit, programul de instalare necesită ca depozitele arhivelor să fie autentificate folosind o cheie gpg cunoscută. Stabiliți la \texttt{true} pentru a dezactiva acea autentificare. Avertisment: nesigur, nerecomandat.

rescue/enable Stabiliți la \texttt{true} pentru a intra în modul de recuperare în loc să efectuați o instalare normală. Consultați Secțiune 8.6.
5.3.3 Utilizarea parametrilor de pornire pentru a răspunde la întrebări
Cu unele excepții, o valoare poate fi definită în promptul de pornire pentru orice întrebare adresată în timpul instalării, deși acest lucru este cu adevărat util doar în cazuri specifice. Instrucțiuni generale despre cum să faceți acest lucru pot fi găsite în Secțiune B.2.2. Câteva exemple specifice sunt enumerate mai jos.

debian-installer/language (language), debian-installer/country (country), debian-installer/locale (locale) Există două moduri de a specifica limba, țara și codificarea caracterelor de utilizat pentru instalare și sistemul instalat. Prima și cea mai simplă este să plasați doar parametruul locale. Limba și țara vor fi apoi derivate din valoarea acesteia. De exemplu, puteți utiliza locale=de_CH pentru a selecta germană ca limbă și Elveția ca țară (de_CH.UTF-8 va fi stabilită ca valoarea implicită a parametrilor regionali pentru sistemul instalat). Limitarea este că nu toate combinațiile posibile de limbă, țară și codificarea caracterelor pot fi realizate în acest fel.

A doua opțiune, mai flexibilă, este să specificați separat language (limba) și country (țara). În acest caz, locale (configurarea regională în ansamblu) poate fi adăugată opțional pentru a specifica o anumită configurație regională implicită pentru sistemul instalat. Exemplu: language=en country=DE locale=en_GB.UTF-8.

anna/choose_modules (modules) Poate fi folosit pentru a încărca automat componentele de instalare care nu sunt încărcate implicit. Exemple de componente opționale care pot fi utile sunt openssh-client-udeb (pentru a putea utiliza scp în timpul instalării) și ppp-udeb (a se vedea Secțiune D.4).

netcfg/disable_autoconfig Stabiliti la true dacă doriti să dezactivați configurarea automată IPv6 și DHCP și, în schimb, să forțați configurarea statică a rețelei.

taskset:tasksel/first (tasks) Poate fi folosit pentru a selecta sarcini care nu sunt disponibile în lista de sarcini interactive, cum ar fi sarcina kde-desktop. Consultați Secțiune 6.3.6.2 pentru informații suplimentare.

5.3.4 Transmiterea de parametri către modulele nucleului
Dacă controlorii sunt compilați în nucleu, le puteți transmite parametri așa cum este descris în documentația nucleului. Cu toate acestea, dacă controlorii sunt compilați ca module și deoarece modulele nucleului sunt încărcate puțin diferit în timpul unei instalări decât atunci când porniți un sistem instalat, nu este posibil să transmiteți parametri modulelor așa cum ați procedat în mod normal. În schimb, trebuie să utilizați o sintaxă specială recunoscută de programul de instalare, care apoi întâmplătorul să folosească protocolul respectiv. Rețineți că nu puteți selecta o oglindă ftp dintr-o listă, trebuie să introduceți manual numele gazdei.

Sintaxa de utilizat pentru a stabili parametri pentru module este:

| nume_modul.nume_parametru=valoare |

Dacă trebuie să transmiteți mai mulți parametri același module sau către module diferite, repetai acest lucru. De exemplu, pentru a configura o placă de interfață de rețea 3Com veche să utilizeze conectorul BNC (coaxial) și IRQ 10, veți trece:

```
3c509.xcvr=3 3c509.irq=10
```

5.3.5 Punerea modulelor nucleului în lista neagră

Puteți pune pe lista neagră un modul folosind următoarea sintaxă: nume_modul.blacklist=yes. Acest lucru va face ca modulul să fie inclus pe lista neagră în /etc/modprobe.d/blacklist.local atât în timpul instalării, cât și pentru sistemul instalat.
5.4 Rezolvarea problemelor din procesul de instalare

5.4.1 Fiabilitatea mediilor optice

Uneori, mai ales în cazul unităților mai vechi, programul de instalare poate eșua să pornească de pe un disc optic. Programul de instalare poate, de asemenea, — chiar și după porneirea cu succes de pe un astfel de disc — să nu recunoască discul sau să returneze eroori în timp ce citește de pe acesta în timpul instării.

Există multe cauze posibile diferite pentru aceste probleme. Putem enumera doar câteva probleme comune și să oferim sugestii generale despre cum să le rezolvați. Restul depinde de dumneavoastră.

Există două lucruri foarte simple pe care ar trebui să le încercați mai întâi.

- Dacă discul nu pornește, verificați dacă a fost introdus corect și că nu este murdar.
- Dacă programul de instalare nu reușește să recunoască discul, încercați să rulați opțiunea Detectați și montați mediul de instalare adouă oară. Se ţie că unele probleme legate de DMA cu unităţile CD-ROM foarte vechi sunt rezolvate în acest fel.

Dacă aceste lucruri nu funcționează, atunci încercați sugestiiile din subsecțiunile de mai jos. Cele mai multe, dar nu toate, sugestiiile discutate acolo sunt valabile pentru CD-ROM și DVD.

Dacă nu puteți face instalarea să funcționeze de pe un disc optic, încercați una dintre celelalte metode de instalare disponibile.

5.4.1.1 Probleme obișnuite

- Unele unități CD-ROM mai vechi nu acceptă citirea de pe discuri care au fost inscripționate la viteză mari folosind un inscripator de CD-uri modern.
- Unele unități CD-ROM foarte vechi nu funcționează corect dacă „accesul direct la memorie” (DMA) este activat pentru ele.

5.4.1.2 Cum să investigați și, eventual, să rezolvați problemele

Dacă discul optic nu reușește să pornească, încercați sugestiiile enumerate mai jos.

- Verificați dacă BIOS-ul/UEFI acceptă de fapt porneirea de pe disc optic (doar o problemă pentru sistemele foarte vechi) și că porneirea de pe astfel de suporturi este activată în BIOS/UEFI.
- Dacă ați descărcat o imagine ISO, verificați dacă suma md5 a acelei imagini se potrivește cu cea listată pentru imaginea din fișierul MD5SUMS care ar trebui să fie prezent în aceeași locație ca și imaginea ce ați descărcat-o.

```
$ md5sum debian-testing-i386-netinst.iso
a20391b12f7ff22ef705cee4059c6b92 debian-testing-i386-netinst.iso
```

Apoi, verificați dacă suma md5 a discului inscripționat se potrivește. Următoarea comandă ar trebui să funcționeze. Utilizează dimensiunea imaginii pentru a citi numărul corect de octeți de pe disc.

```
$ dd if=/dev/cdrom | \
> head -c `stat --format=%s debian-testing-i386-netinst.iso` | \
> md5sum
a20391b12f7ff22ef705cee4059c6b92
262668+0 records in
262668+0 records out
134486016 bytes (134 MB) copied, 97.474 seconds, 1.4 MB/s
```

Dacă, după ce programul de instalare a fost pornit cu succes, discul nu este detectat, uneori, simpla încercare din nou poate rezolva problema. Dacă aveți mai multe unități optice, încercați să schimbați discul cu cealaltă unitate. Dacă acest lucru nu funcționează sau dacă discul este recunoscut, dar există erori la citirea de pe el, încercați sugestionile enumerate mai jos. Câteva ținute de bază despre Linux este necesar pentru aceasta. Pentru a executa oricare dintre comenzi, trebuie mai întâi să comutați la o doua consolă virtuală (VT2) și să activați shell-ul acolo.
5.4. REZOLVAREA PROBLEMELOR DIN...

- Treceți la VT4 sau vizualizați conținutul /var/log/syslog (utilizați nano ca editor) pentru a verifica dacă există mesaje de eroare specifice. După aceea, verificați și rezultatul comenzii dmesg.

- Verificați în rezultatul dmesg dacă unitatea dvs. optică a fost recunoscută. Ar trebui să vedeti ceva de genul așa (liniile nu trebuie neapărat să fie consecutive):

```text
ata1.00: ATA/1: MATSHITADV-DVD-RA 822S, 1.61, max UDMA/33
ata1.00: configured for UDMA/33
scsi 0:0:0:0: CD-ROM MATSHITA DVD-RA 822S 1.61 PQ: 0 ANSI: 5
sr0: scsi3-mmc drive: 24x/24x writer dvd-ram cd/rw xa/for2 cdda tray
cdrom: Uniform CD-ROM driver Revision: 3.20
```

Dacă nu vedeti aşa ceva, este posibil ca interfața de control a dispozitivelor (IDE) la care este conectată unitatea dvs. să nu fie recunoscută sau să nu fie deloc compatibilă. Dacă știți ce controlor este necesar pentru această interfață, puteți încerca să îl încărcați manual folosind comanda modprobe.

- Verificați dacă există un nod de dispozitiv pentru unitatea dvs. optică sub /dev/. În exemplu de mai sus, acesta ar fi /dev/sr0. Ar trebui să existe și un /dev/cdrom.

- Utilizați comanda mount pentru a verifica dacă discul optic este deja montat; dacă nu, încercați să-l montați manual:

```text
$ mount /dev/hdc /cdrom
```

Verificați dacă există mesaje de eroare la rularea acestei comenzi.

- Verificați dacă DMA este activat în prezent:

```text
$ cd /proc/ide/hdc
$ grep using_dma settings
using_dma 1 0 1 rw
```

O valoare „1” în prima coloană după using_dma înseamnă că DMA este activat. Dacă este, încercați să-l dezactivați:

```text
$ echo -n "using_dma:0" >settings
```

Asigurați-vă că vă aflați în directorul dispozitivului care corespunde unității dvs. optice.

- Dacă există probleme în timpul instalării, încercați să verificați integritatea suportului de instalare folosind opțiunea din partea de jos a meniului principal al programului de instalare. Această opțiune poate fi folosită și ca un test general dacă discul poate fi citit în mod fiabil.

5.4.2 Configurarea pornirii

Dacă aveți probleme și nucleul se blochează în timpul procesului de pornire, nu recunoaște perifericile pe care le aveți de fapt sau unitățile nu sunt recunoscute corect, primul lucru pe care trebuie să-l verificați sunt parametrii de pornire, așa cum se discută în Secțiune 5.3.

În unele cazuri, defecțiunile pot fi cauzate de lipsa firmware-ului dispozitivului (consultați Secțiune 2.2 și Secțiune 6.4).

5.4.3 Interpretarea mesajelor de pornire a nucleului

În timpul sevenței de pornire, este posibil să vedeti multe mesaje sub forma can’t find ceva sau ceva not present, can’t initialize ceva sau chiar this driver release depends on ceva. Majoritatea acestor mesaje sunt inofensive. Le vedeti deoarece nucleul pentru sistemul de instalare este construit pentru a rula pe computere cu multe dispozitive și periferic diferite. Evident, nici un calculator nu va avea toate dispozitivele periferice posibile, așa că sistemul de operare poate emite câteva reclamații în timp ce cauță periferice pe care nu le dețineți. De asemenea, este posibil să vedeti că sistemul se întrerupe pentru un timp. Acest lucru se întâmplă atunci când așteaptă să răspundă un dispozitiv și acel dispozitiv nu este prezent pe sistemul dvs. Dacă considerați că timpul necesar pentru pornirea sistemului este inacceptabil de lung, puteți crea un nucleu personalizat mai târziu (consultați Secțiune 8.5).
5.4.4 Raportarea problemelor de instalare

Dacă treceți prin faza inițială de pornire, dar nu puteți finaliza instalarea, opțiunea de meniu Salvare jurnalele de depanare poate fi de ajutor. Vă permite să stocați jurnalele de erori de sistem și informațiile de configurare din programul de instalare pe un mediu de stocare sau să le descărcăți folosind un navigator web. Aceste informații pot oferi indicii cu privire la ce lucru a mers prost și cum să-l remediați. Dacă trimiteti un raport de eroare, poate doriți să atașați aceste informații la raportul de eroare.

Alte mesaje de instalare pertinente pot fi găsite în /var/log/ în timpul instalării și /var/log/installer/ după ce calculatorul a fost pornit în sistemul instalat.

5.4.5 Trimiterea rapoartelor de instalare

Dacă mai aveți probleme, vă rugăm să trimități un raport de instalare (în engleză, ori de câte ori este posibil). De asemenea, încurajăm să fie trimise rapoarte de instalare chiar dacă instalarea este reușită, astfel încât să putem obține cât mai multe informații despre un cât mai mare număr de configurații de echipamente posibil.

Rețineți că raportul dvs. de instalare va fi publicat în sistemul Debian de urmărire a erorilor („Debian Bug Tracking System”: BTS) și trimis către o listă publică de corresponsență. Asigurați-vă că utilizați o adresă de e-mail care nu vă deranjează să fie făcută publică.

Dacă aveți un sistem Debian funcțional, cel mai simplu mod de a trimite un raport de instalare este să instalați packagele installation-report și reportbug (apt install installation-report reportbug), configurați reportbug așa cum este explicat în Secțiunea 8.4.2 și rulați comanda reportbug installation-reports.

Alternativ, puteți utiliza acest șablon atunci când completați rapoartele de instalare și puteți înregistra raportul ca raport de eroare pentru pseudopachetul installation-reports, trimițându-l la adresa submit@bugs.debian.org.

```
Package: installation-reports

Boot method: <Cum ab’’tb’’i pornit programul de instalare? CD/DVD? stick USB? Reb ← ’’tb’’ea?>
Image version: <Cel mai bine este treceb’’tb’’i adresa URL completb’’ab’’ a ← imaginii pe care ab’’tb’’i descrb’’ab’’rcat-o>
Date: <Data b’’sb’’i ora instalb’’ab’’rii>

Machine: <Descrierea mab’’sb’’inii (de ex. IBM Thinkpad R32)>
Processor: 
Memory: 
Partitions: <iub’’sb’’irea comenzii «df -Tl», se preferb’’ab’’ tabelul de partib’’ ← ’’tb’’ii nemosifict>

Ieb’’sb’’irea comenzii «lspci -kn» (sau «lspci -nn»):
Base System Installation Checklist: 
[0] = OK, [E] = Eroare (detaiab’’tb’’i mai jos), [ ] = nu ab’’tb’’i încercat ← aceastb’’ab’’ etapb’’ab’’

Initial boot: [ ] <A funcb’’tb’’ionat pornirea inib’’tb’’ialb’’ab’’?>
Detect network card: [ ] <S-au detectat plb’’ab’’cile de reb’’tb’’ea?>
Configure network: [ ] <S-a configurat reb’’tb’’eaua?>
Detect media: [ ] <S-a detectat mediul de instalare?>
Load installer modules: [ ] <S-au încb’’ab’’rcat modulele programului de ← instalare?>
Detect hard drives: [ ] <S-au detectat discurile dure/solide?>
Partition hard drives: [ ] <S-au partib’’tb’’ionat discurile dure/solide?>
Install base system: [ ] <S-a instalat sistemul de bazb’’ab’’?>
Clock/timezone setup: [ ] <S-a configurat ora/fusul orar?>
User/password setup: [ ] <S-a configurat utilizatorul/parola?>
Install tasks: [ ] <S-au instalat sarcini preconfigure?>
Install boot loader: [ ] <S-a instalat incb’’ab’’rcb’’ab’’torul de pornire?>
Overall install: [ ] <Instalarea în ansamblu, a reub’’sb’’it?>

Comments/Problems:
<Descrierea instalb’’ab’’rii, în prozb’’ab’’, b’’sb’’i orice gânduri, comentarii>
```
În raportul de eroare, descrieți care este problema, inclusiv ultimele mesaje vizibile ale nucleului în cazul unei blocări a nucleului. Descrieți pașii pe care i-ați făcut și care au adus sistemul în starea de problemă.
Capitolul 6

Utilizarea programului de instalare Debian

6.1 Cum funcționează programul de instalare

Pentru această arhitectură, programul de instalare folosește o interfață în mod text. O interfață în mod grafic nu este în prezent disponibilă.

Programul de instalare Debian constă dintr-o serie de componente cu scop special pentru a efectua fiecare sarcină de instalare. Fiecare componentă își îndeplinește sarcina, punând utilizatorului întrebări după cum este necesar pentru a-și putea îndeplini sarcina. Întrebările în sine li se acordă un anumit nivel de prioritate, iar acest nivel de prioritate al întrebărilor care trebuie adresate este stabilit la pornirea programului de instalare.

Când se efectuează o instalare implicită, numai întrebările esențiale (prioritate mare) vor fi afișate utilizatorului. Aceasta duce la un proces de instalare puternic automatizat cu puține intervenții din partea utilizatorului. Componentele sunt rulate automat secvențial; alegerea componentelor care sunt rulate depinde în principal de metoda de instalare folosită și de componentele și dispozitivele calculatorului. Programul de instalare va folosi valorile implicite pentru întrebările care nu sunt adresate.

Dacă apare vreo problemă, utilizatorul va vedea un mesaj de eroare și este posibil ca meniul programului de instalare să fie afișat pentru a selecta o altă acțiune. Dacă nu apar probleme, utilizatorul nu va vedea deloc meniul, ci va răspunde la întrebările fiecărei componente, pe rând. Notificările legate de erorile grave au prioritatea „critică” astfel încât utilizatorul va fi mereu notificat.

Unele dintre valorile implicite pe care le folosește programul de instalare pot fi influențate, în parte, prin pasarea de argument la pornire, atunci când debian-installer este pornit. Dacă, de exemplu, doriți să forțați configurarea statică a rețelei (autoconfigurarea IPv6 și DHCP sunt utilizeate implicit dacă sunt disponibile), puteți adăuga parametrul de pornire netcfg/disable_autoconfig=true. Consultați Secțiune 5.3.2 pentru opțiunile disponibile.

Utilizatorii avansați se vor simți, probabil, mai confortabil într-o interfață bazată pe meniu, unde fiecare pas este controlat de utilizator în loc ca programul de instalare să efectueze automat și secvențial pașii necesari pentru instalare. Pentru a folosi mediul de instalare într-o manieră bazată pe meniu, adăugați la argumentele de pornire priority=medium.

Dacă componentele și/sau dispozitivele calculatorului necesită să pasăți opțiuni modulelor nucleului pe măsură ce acestea sunt instalate, va trebui să porniți programul de instalare în modul „expert”. Acest lucru se poate face fie folosind comanda expert pentru a porni programul de instalare, fie adăugând argumentul de pornire priority=low. Modul expert vă oferă controlul total asupra debian-installer.

În modul bazat pe text, utilizarea unui mouse nu este acceptată. Iată tastele pe care le puteți folosi pentru a naviga în diferitele casețe de dialog. Tasta Tab sau tasta cu sâgeată la dreapta deă la dreapta déplasează „înainte”, iar combinația de taste Shift-Tab sau tasta sâgeată la stânga déplasează „înapoi” între butoanele și opțiunile afișate. Sâgețile sus și jos selectează diferite elemente dintr-o listă care poate fi derulată și, de asemenea, derulează lista în sine. În plus, în listele lungi, puteți introduce o literă pentru ca lista să deruleze direct la secțiunea cu elemente care încep cu litera pe care ați introdus-o și utilizați Pg-Up și Pg-Down pentru a derula lista în secțiuni. Bara de spațiu selectează un element, cum ar fi o casetă de selectare. Utilizați Enter pentru a activa opțiunile.

Unele casețe de dialog pot oferi informații suplimentare de ajutor. Dacă ajutorul este disponibil, acesta va fi indicat pe linia de jos a ecranului, afișând că informațiile de ajutor pot fi accesate apăsând tasta F1.

Mesajele de eroare și jurnalele sunt redirecționate spre a patra consolă. Puteți activa această consolă apăsând Alt stânga-F4 (țineți apăsată tasta Alt stânga în timp ce apăsați tasta funcțională F4); vă puteți întoarce la procesul de instalare cu Alt stânga-F1.

și în /var/log/installer/ după ce calculatorul a pornit în sistemul instalat.

6.2 Componentele - Introducere

Iată o listă a componentelor programului de instalare cu o scurtă descriere a scopului fiecărei componente.DACă aveți nevoie să aflați mai multe detalii legate de utilizarea unei anumite componente le puteți găsi în Secțiune 6.3.

main-menu - «meniul principal» Afișează utilizatorului lista componentelor în timpul operării programului de instalare și pornește o componentă când este selectată. Întrebările meniului principal au prioritatea medie, deci, în cazul în care aveți prioritatea înaltă sau critică (înaltă este implicită), nu veți vedea meniul. Pe de altă parte, dacă apare o eroare care necesită intervenția dumneavoastră, este posibil ca prioritatea să fie coborâtă temporar pentru a vă permite să rezolvați problema în cauză, deci, în acest caz, este posibil să apară meniul. Puteți ajunge la meniul principal prin selectarea butonului Go Back în mod repetat până la ieșirea din componenta care rulează la acel moment.

localechooser - «selector configurare regională» Permite utilizatorului să selecțieze opțiuni ale configurării regionale pentru sistemul de instalare și pentru cel instalat: limba, țara și restul opțiunilor configurării regionale. Programul de instalare va afișa mesajele în limba selectată, dar dacă nu se întâmpină traducere pentru acea limbă să nu fie completă, caz în care unele mesaje ar putea fi afișate în engleză.

console-setup - «configurarea consolei» Afișează o listă de tastaturi (aranjamente) care au un tastator care se potrivește cu propriul său model.

hw-detect - «detectare componente, dispozitive și periferice» Detectează automat cele mai multe dintre componentele, dispozitivele și perifericele sistemului, inclusiv plăcile de rețea, discurile, imprimantele și PCMCIA (PC-card-urile pentru laptop-uri).

cdrom-detect - «detectare unitate de CD/DVD» Caută și montează un CD/DVD de instalare Debian.

netcfg - «configurare rețea» Configurează conexiunile la rețea ale calculatorului pentru a putea comunica prin internet.

iso-scan - «scanare(examinare) imagini ISO» Caută imagini ISO (.iso) pe discurile dure/solide (hdd/ssh).

choose-mirror - «alegere „oglindă” de arhive Debian» Prezintă o listă de oglinzi de arhivă Debian. Utilizatorul poate alege sursa pachetelor pe care le instalează.

cdrom-checker - «verificatorul de CD/DVD» Verifică integritatea suportului de instalare. În acest fel, utilizatorul se poate asigura că imaginea de instalare nu a fost coruptă.

partman - «managerul de partiții» Permite utilizatorului să particioneze discurile atașate la sistem, creează sisteme de fișiere pe partiții selectate și le atașează la punctele de montare. Sună incluse și facilități interesante precum modul complet automatizat sau suportul pentru LVM. Acesta este unealta de partiçãoare preferată în Debian.

partman-lvm - «managerul de volume» Ajută utilizatorul la configurarea LVM „Logical Volume Manager” (managerul de volume logice).
6.3 Utilizarea de componente individuale

În această secțiune vom descrie în detaliu fiecare componentă de instalare. Componentele au fost grupate în etape care ar trebui să fie recunoscute de utilizatori. Sunt prezentate în ordinea în care apar în timpul instalării. Rețineți că nu toate modulele vor fi utilizate pentru fiecare instalare; care module sunt utilizate efectiv depinde de metoda de instalare pe care o utilizați și de componentele, dispozitivele și perifericile calculatorului dumneavoastră.

6.3.1 Configurarea programului de instalare Debian și a configurației calculatorului

Să presupunem că programul de instalare Debian a pornit și că vă aflați în primul său ecran. În acest moment, capacitatea lui debian-installer sunt încă destul de limitate. Nu știe multe despre calculatorul dvs., limba preferată sau chiar despre sarcina pe care ar trebui să o îndeplinească. Nu vă faceți griji. Deoarece debian-installer este destul de inteligent, poate verifica automat calculatorul dvs., poate localiza restul componentelor sale și se poate actualiza pentru a deveni un sistem de instalare capabil. Cu toate acestea, mai trebuie să ajutați debian-installer cu unele informații pe care nu le poate determina automat (cum ar fi selectarea limbii preferate, aranjamentul tastaturii sau oglinda din rețea dorită).

Veți observa că debian-installer efectuează detecția componentelor și dispozitivelor calculatorului de mai multe ori în această etapă. Prima dată este direcționată în mod special către componentele și dispozitivele necesare pentru a încărca componentele de instalare (de exemplu, CD-ROM-ul sau placa de rețea). Deoarece nu toți controlorii pot fi disponibili în timpul acestei prime rulări, detectarea componentelor și dispozitivelor calculatorului trebuie repetată mai târziu în cadrul procesului de instalare.

În timpul detectării componentelor și dispozitivelor debian-installer verifică dacă vreunul dintre controlorii pentru dispozitivele din sistemul dumneavoastră necesită încărcarea firmware-ului. Dacă este solicitat vreun firmware, dar nu este disponibil, va fi afișat un dialog care permite încărcarea firmware-ului lipsă de pe un mediu amovibil. Consultați Secțiune 6.4 pentru mai multe detalii.

6.3.1.1 Verificarea memoriei disponibile / modul cantitate redusă de memorie

Unul dintre primele lucruri pe care le face debian-installer este verificarea memoriei disponibile. Dacă cantitatea de memorie disponibilă este redusă, această componentă va face unele modificări în procesul de instalare, care cu un pic de noroc vă vor permite să instalați Debian GNU/Linux pe sistemul dumneavoastră.
Prima măsură luată pentru a reduce consumul de memorie de către programul de instalare este dezactivarea traducerelor, ceea ce înseamnă că instalarea se poate face doar în limba engleză. Desigur, puteți defini parametrii regionali ai sistemului instalat după ce instalarea s-a terminat.

Dacă acest lucru nu este suficient, programul de instalare va reduce și mai mult consumul de memorie prin încărcarea doar a acelor componente esențiale pentru finalizarea unei instalațiilor de bază. Acest lucru reduce funcționalitatea sistemului de instalare. Vi se va oferi posibilitatea de a încărca manual componente suplimentare, dar ar trebui să realizați că fiecare componentă pe care o selectați va folosi memorie suplimentară și, prin urmare, poate duce la eșueră instalării.

Dacă programul de instalare rulează în modul „memorie puțină”, se recomandă crearea unei partitii de interschimb (swap) relativ mare (64–128Mo). Partiția de interschimb va fi folosită ca memorie virtuală și va crește cantitatea de memorie disponibilă în sistem. Programul de instalare va activa partiția de interschimb cât mai curând posibil în timpul procesului de instalare. A se reține că utilizarea masivă a partiției de interschimb va reduce performanța sistemului și poate duce la o activitate ridicată a disucului.

În ciuda acestor măsuri, este totuși posibil ca sistemul să se blocheze, să apară erori neașteptate sau ca procesele să fie omorate de către nucleu deoarece sistemul rămâne fără memorie (lucru care va rezulta în mesajă „Out of memory”, adică, „Memorie insuficientă” la VT4 - terminalul virtual 4 și în syslog).

De exemplu, au existat rapoarte că încercarea de a crea un sistem mare de fișiere ext3 în modul „memorie puțină” eșuează dacă nu există spațiu de interschimb (swap) suficient. Dacă nici un spațiu de interschimb mai mare nu ajută, încercați să creați sistemul de fișiere ca ext2 (componentă esențială a programului de instalare). O partiție ext2 poate fi schimbată în ext3 după instalare.

Programul de instalare poate fi forțat să folosească un nivel mai ridicat pentru limita de memorie puțină decât acea bazată pe memoria disponibilă prin intermediul parametrului de pornire „lowmem” așa cum este descris în Secțiune 5.3.2.

6.3.1.2 Selectarea opțiunilor de configurație regională

În cele mai multe cazuri, primele întrebări vor fi legate de selectarea opțiunilor configurației regionale care vor fi folosite atât pentru instalare cât și pentru sistemul instalat. Opțiunile configurației regionale sunt limba, țara și localele.

Limba aleasă va fi folosită pentru restul procesului de instalare, cu condiția să existe traduceri pentru diverse ferestre de dialog afișate. Dacă nu există o traducere validă pentru limba selectată, programul de instalare va folosi implicit engleza.

Locația geografică selectată (în majoritatea cazurilor o țară) va fi utilizată mai târziu în procesul de instalare pentru a selecta fusul orar corect și o oglindă Debian potrivită pentru acea țară. Limba și țara, împreună, vor ajuta la determinarea localizării implicate pentru sistemul dumneavoastră și la selectarea aranjamentului corect al tastaturii.

Veți fi întrebat mai întâi să selectați limba preferată. Numele limbilor sunt afișate atât în engleză (în partea stângă) cât și în limba respectivă (în partea dreaptă); numele din partea dreaptă sunt afișate chiar în tipul de scriere potrivit pentru limba. Lista este ordonată după numele englezesti. În capul listei există o opțiune suplimentară care vă permite să selectați locala „C” în loc de o limbă. Dacă alegeți locala „C”, procesul de instalare se va face în engleză; iar sistemul instalat nu va avea suport de configurație regională deoarece pachetul locales nu va fi instalat.

În continuare, vi se va cere să selectați locația dvs. geografică. Dacă ați selectat o limbă care este recunoscută ca limbă oficială pentru mai multe țări, veți fi afișată doar o listă cu acele țări. Pentru a selecta o țară care nu se află în lista respectivă, alegeți alta (ultima opțiune). Apoi vi se va prezenta o listă de continente; selectarea unui continent va duce la o listă de țări relevante de pe acel continent.

Dacă limba este asociată cu o singură țară, veți fi afișată o listă de țări pentru continentul sau regiunea căreia îi aparține țara, cu țara respectivă selectată ca implicită. Utilizați opțiunea „înapoi” pentru a selecta țări de pe un alt continent.

NOTă
Este important să selectați țara în care locuiți sau unde vă aflați, deoarece aceasta determină fusul orar care va fi configurat pentru sistemul instalat.

Dacă ați selectat o combinație de limbă și țară pentru care nu este definită nicio configurație regională și există mai multe configurații regionale pentru limba, atunci programul de instalare vă va permite să alegeți care dintre acele configurații regionale o preferați ca fiind configurația regională implicită pentru sistemul instalat. În toate celelalte

¹În termenii tehnici: atunci când există mai multe regiuni pentru acea limbă cu coduri de țară diferite.
²La prioritate medie și scăzută puteți oricând să selectați configurația regională preferată dintre cele disponibile pentru limba selectată (dacă există mai multe).
cazuri, o configurație regională implicită va fi selectată în funcție de limba și țara selectate.
Orice configurație regională implicită selectată așa cum este descris în paragraful anterior va folosi UTF-8 pentru codificarea caracterelor.
Dacă instalați cu prioritate scăzută (low), veți avea opțiunea de a selecta configurații regionale suplimentare, inclusiv așa-numitele configurații regionale „vechi (legacy)”, care urmează să fie generat pentru sistemul instalat; dacă o faceți, veți fi întrebat care dintre configurațiile regionale selectate ar trebui să fie implicită pentru sistemul instalat.

6.3. UTILIZAREA DE COMPONENTE INDIVIDUALE

6.3.1.3 Alegerea tastaturii
Tastaturile sunt adesea proiectate după caracterele utilizate într-o limbă. Selectați un aranjament care este conform cu tastatura folosită, sau selectați ceva apropriat, dacă aranjamentul de tastatură dorit nu este reprezentat. Odată instalat sistemul, veți putea să selectați un aranjament de tastatură dintr-o gamă mai largă de opțiuni (rulați comanda dpkg-reconfigure keyboard-configuration, ca root, după ce ați terminat instalarea).
Mutăți cursorul la selecția de tastatură dorită și apăsați tasta Enter. Folosiți sâgețile pentru a muta cursorul – se află în același loc pe aranjamentele de tastaturi naționale, deci sunt independente de configurația tastaturii.

6.3.1.4 Căutarea imaginii ISO a programului de instalare al Debian
Când se instalează folosind metoda hd-media, va exista un moment când va trebui să găsiți și să montați imaginea iso a programului de instalare al Debian, pentru a obține restul de fișiere de instalare. Componenta iso-scan face exact acest lucru.
La început, iso-scan montează automat toate dispozitivele bloc (ex.: particii și volume logice) care au un sistem de fișiere cunoscut pe ele și caută secevențial fișiere care se termină cu .iso sau .ISO. Atenție, prima încercare examinează doar fișierele din directorul rădăcină și de pe primul nivel de subdirector (mai exact, găsește /ceva.iso, /data/ceva.iso, dar nu /data/tmp/ceva.iso). După ce a fost găsită o imagine iso, iso-scan îi verifică conținutul pentru a determina dacă imaginea este sau nu o imagine iso validă pentru Debian. Dacă da, atunci procesul s-a terminat, în caz contrar, iso-scan caută o altă imagine.
În cazul în care încercarea anterioră de a găsi o imagine eșuează, iso-scan vă va întreba dacă să se efectueze o căutare mai amănunțită. Această căutare nu doar cauță în cele mai de sus directoare, ci chiar piaptă întregul sistem de fișiere.
Dacă iso-scan nu vă descoperă imaginea iso a programului de instalare, reporniți în sistemul de operare original și verificați dacă imaginea are numele corect (dacă se termină în .iso), dacă imaginea se află pe un sistem de fișiere recunoscut de debian-installer și dacă nu este coruptă (verificați suma de control). Utilizatorii experimentați de Unix ar putea face aceste lucruri fără a reporni, de la a doua consolă.
Rețineți că partitia (sau discul) care găzduiește imaginea ISO nu poate fi reutilizată în timpul procesului de instalare, deoarece va fi utilizată de instalator. Pentru a rezolva acest lucru și cu condiția să aveți suficientă memorie RAM în sistem, instalatorul poate copia imaginea ISO în RAM înainte de a o monta. Aceasta este controlată de întrebarea debconf iso-scan/copy_iso_to_ram cu prioritate scăzută (sunet întrebat doar dacă cerința de memorie este îndeplinită).

6.3.1.5 Configurarea rețelei
La intrarea în acest pas, dacă sistemul detectează că aveți mai mult de un dispozitiv de rețea, vi se va cere să alegeți care dispozitiv va fi interfața de rețea primară, adică aceea pe care doriti să o folosiți la instalare. Celelalte interfețe nu vor fi configurate la acest moment. Veți putea să configurați alte interfețe după ce se va termina instalarea; a se vedea pagina de manual interfaces(5).

6.3.1.5.1 Configurarea automată a rețelei
Implicit, debian-installer încearcă să configureze automat rețeaua calculatorului dumneavoastră, în măsura posibilului. Dacă configurația automată eșuează, aceasta poate fi cauzată de mulți factori, de la un cablu de rețea desconectat la infrastructura lipsă pentru configurarea automată. Pentru explicații suplimentare în cazul unor erori, verificați mesajele de eroare de pe a patra consolă. În orice caz, veți fi întrebat dacă doriti să reîncercați sau dacă doriti să efectuați o configurare manuală. Uneori, serviciile de rețea utilizate pentru autoconfigurare pot fi lente în răspunsurile lor, așa că, dacă sunteți sigur că totul este la locul său, pur și simplu începeți din nou încercarea de autoconfigurare. Dacă autoconfigurarea eșuează în mod repetat, puteți alege configurarea manuală a rețelei.

³Configurațiile regionale vechi sunt acele configurațiile regionale care nu folosesc codificarea UTF-8, ci unul dintre standardele mai vechi pentru codificarea caracterelor, cum ar fi ISO 8859-1 (folosit de limbi vest-europene) sau EUC-JP (folosit de japoneză).
6.3.1.5.2 Configurarea manuală a rețelei

Configurarea manuală a rețelei vă pune la rândul său o serie de întrebări despre rețeaua dumneavoastră, în special adresa IP, masca de rețea, adresa pasarelei, adrese ale serverelor de nume și numele mașinii (gazdei). În plus, dacă aveți o interfață de rețea fără fir, vi se va cere să furnizați ESSID-ul fără fir („numele rețelei fără fir”) și cheia WEP sau parola de acces WPA/WPA2. Pentru completarea acestor răspunsuri, consultați informațiile din Secțiune 3.3.

Notă

Câteva detalii pe care poate le veți găsi ca fiind utile (sau poate că nu): programul va presupune că adresa rețelei este rezultatul operației „AND” la nivel de biți dintre adresa dumneavoastră IP și masca de rețea. Adresa de difuzare implicită este calculată ca rezultat al operației „OR” la nivel de biți a adresei IP a sistemului dvs. cu valoarea negată la nivel de biți a măștii de rețea. De asemenea, vă va ghici adresa „pasarelei (poarții de acces)”. Dacă nu gășiți vreuna dintre aceste informații, folosiți răspunsurile sistemului — le puteți schimba, dacă este nevoie, imediat ce sistemul este instalat, prin editarea fișierului /etc/network/interfaces.

6.3.1.5.3 IPv4 și IPv6

De la Debian GNU/Linux 7.0 („Wheezy”) în continuare, debian-installer acceptă IPv6, precum și IPv4 „clasici”. Sunt acceptate toate combinațiile de IPv4 și IPv6 (doar IPv4, doar IPv6 și configurații duale cu cele două protocoale).

Autoconfigurarea pentru IPv4 se face prin DHCP (Dynamic Host Configuration Protocol). Configurarea automată pentru IPv6 acceptă configurarea automată fără stare folosind NDP (Neighbor Discovery Protocol, inclusiv atribuirea serverului DNS recursiv (RDNSS)), autoconfigurarea cu stare prin DHCPv6 și autoconfigurarea mixtă fără stare/cu stare (configurarea adresei prin NDP, parametri suplimentari prin DHCPv6).

6.3.2 Configurarea utilizatorilor și a parolelor

Chiar înainte de a configura ceasul, programul de instalare vă va permite să configurați contul „root” și/sau un cont pentru primul utilizator. Alte conturi de utilizator pot fi create după finalizarea instalației.

6.3.2.1 Configurarea parolei pentru „root”

Contul „root” este numit și contul „super-utilizatorului”; este o autenticare care ocolește toată protecția de securitate a sistemului dumneavoastră. Contul „root” ar trebui folosit doar pentru a efectua administrarea sistemului și trebuie folosit doar pentru a perora cât mai scurt posibil.

Orice parolă pe care o creați trebuie să conțină cel puțin 6 caractere și ar trebui să conțină atât caractere majuscule, cât și minuscule, precum și caractere de punctuație. Aveți grijă deoară când setați parola de root, deoarece este un cont dotat cu multe privilegii. Evitați cuvintele din dictionar sau utilizarea oricăror informații personale care ar putea fi ghițite.

Dacă cineva vă spune vreodată că are nevoie de parola dumneavoastră de root, fiți extrem de atenți. În mod normal, nu ar trebui să dați niciodată parola de root, cu excepția cazului în care administrați o mașină cu mai mult de un administrator de sistem.

În cazul în care nu specificați aici o parolă pentru utilizatorul „root”, acest cont va fi dezactivat, dar pachetul sudo va fi instalat ulterior pentru a permite efectuarea sarcinilor administrative pe noul sistem. În mod implicit, primului utilizator creat pe sistem îi se va permite să folosească comanda sudo pentru a deveni root.

6.3.2.2 Crearea unui utilizator obișnuit

Sistemul vă va întreba dacă doriti să creați un cont de utilizator obișnuit în acest moment. Acest cont ar trebui să fie utilizat ca principala cont personal de conectare în sistemul instalat. Ar trebui să nu să utilizați contul root pentru utilizarea zilnică sau precum cont personal de conectare.

De ce nu? Ei bine, un motiv pentru a evita utilizarea privilegiilor root este faptul că este foarte ușor să faci daune ireparabile ca root. Un alt motiv este că s-ar putea să fiți păcălit să rulați un program Trojan-horse (cal troian) — acesta este un program care profită de privilegiile dvs. de super-utilizator pentru a compromite securitatea sistemului
6.3. Configurarea ceasului și a fusului orar

Programul de instalare va încerca mai întâi să se conecteze la un server de timp din internet (folosind protocolul NTP) pentru a configura corect ora și data sistemului. Dacă aceasta nu reușește, programul de instalare va presupune că ora și data obținute de la ceasul sistemului la pornire sunt corecte. Ajustarea manuală a timpului sistemului (ora + data) în timpul instalării nu este posibilă.

În funcție de locația selectată mai devreme în procesul de instalare, este posibil să vi se afișeze o listă de fusuri orare relevante pentru acea locație. Dacă locația dumneavoastră are un singur fus orar și faceți instalarea implicită, nu veți fi întrebat nimic și sistemul va prelua acel fus orar.

În modul expert sau când instalați cu prioritate medie, veți avea opțiunea suplimentară de a selecta „Timp universal coordonat” (UTC) ca fus orar.

Dacă, dintr-un motiv sau altul doresc să folosiți în sistem instalat un fus orar care nu este specific locației selectate, există două opțiuni:

1. Cea mai simplă opțiune este să selectați un alt fus orar după terminarea instalării și după ce ați pornit sistemul instalat. Comanda pentru a face acest lucru este:

   ```
   # dpkg-reconfigure tzdata
   ```

2. O altă variantă este să definiți fusul orar chiar la începutul instalării cu parametrul de pornire `time/zone=valoare` pasat programului de instalare la pornirea acestuia. Valoarea, desigur, trebuie să fie un fus orar valid, de exemplu, `Europe/Bucharest` sau `UTC`.

Pentru instalările automate fusul orar poate fi configurat la orice valoare dorită folosind preconfigurarea.

6.3.4 Partiționarea și selectarea punctelor de montare

Acum, după ce detecția de dispozitive a fost executată o ultimă dată, `debian-installer` ar trebui să fie în deplină funcțiunea sale, particularizat pentru nevoile utilizatorului și este gata să facă lucruri utile. După cum indică și titlul acestei secțiuni, principala sarcină a următoarelor componente este de a partiționa discurile, de a crea sistemele de fișiere, de a asocia puncte de montare și, opțional, să configureze lucruri legate strâns de acestea, precum RAID, LVM sau dispozitive criptate.

Dacă nu vă simțiți confortabil în legătură cu partiționarea sau dacă doresc să aflați multe detalii, consultați Anexa C.

Mai întâi veți avea o listă definită de partitii care pot fi utilizate în sistem, inclusiv discuri dure/solide, discuri de memorie de mare capacitate, discuri SSD, etc. Acestea sunt categorizate în partitii diferite, de exemplu:

- **Gestionarea de volume logice (LVM)**
- **Software RAID**

Sunt acceptate nivelurile RAID 0, 1, 4, 5, 6 și 10.
6.3. UTILIZAREA DE COMPONENTE INDIVIDUALE

- Criptarea
- Multipath (experimental)
 Consultați wiki-ul nostru pentru mai multe informații. Suportul pentru căi multiple (multipath) este disponibil în prezent numai dacă este activat când programul de instalare este pornit.

Sunt acceptate următoarele sisteme de fișiere.

- ext2r0, ext2, ext3, ext4
 Sistemul de fișiere implicit selectat în majoritatea cazurilor este ext4; pentru particițiile /boot ext2 va fi selectat implicit atunci când se utilizează partționarea ghidată.
- jfs (nu este disponibil pe toate arhitecturile)
- xfs (nu este disponibil pe toate arhitecturile)
- reiserfs (opțional; nu este disponibil pe toate arhitecturile)

Suportul pentru sistemul de fișiere Reiser nu mai este disponibil în mod implicit. Când programul de instalare rulează cu prioritate „debconf” medie (medium) sau scăzută (low), acesta poate fi activat selectând componenta partman-reiserfs. Doar versiunea 3 a sistemului de fișiere este acceptată.
- jffs2
 Folosit pe unele sisteme pentru a citi memoria flash. Nu este posibil să se creeze noi particiții jffs2.
- FAT16, FAT32

6.3.4.2 Partiționarea ghidată

Dacă alegeți partționarea ghidată, puteți avea trei opțiuni: să creați particiții direct pe discul dur/solid (metoda clasică), să le creați folosind gestionarea de volume logice („LVM”) sau să le creați folosind „LVM” criptat. Programul de instalare va cripta grupul de volume LVM folosind o cheie AES de 256 de biți și folosește suportul „dm-crypt” al nucleului.

Notă
Opțiunea de a folosi LVM (criptat) este posibil să nu fie disponibilă pe toate arhitecturile.

Dacă se folosește „LVM” sau „LVM” criptat, programul de instalare va crea majoritatea particițiilor în interiorul unei particiții mari; avantajul acestei metode este că particițiile din această particie mare pot fi redimensionate relativ ușor, mai târziu. În cazul LVM-ului criptat, această particie mare nu va putea fi citită fără a cunoaște o parolă-frază specială, astfel oferind un nivel suplimentar de securitate pentru datele dumneavoastră (personale).

Când se folosește LVM criptat, programul de instalare va și șterge automat discul prin scrierea de date aleatoare pe el. Acest lucru îmbunătățește și mai mult securizarea (pentru că distincția dintre părțile goale și cele utilizate ale discului este imposibilă și pentru că eventualele urme ale instalărilor precedente sunt șterse), dar poate dura ceva timp, în funcție de dimensiunea discului.

Notă
Dacă alegeți partționarea ghidată folosind „LVM” sau „LVM” criptat, unele schimbări în tabela de particiții vor trebui scrisse pe discul selectat în timpul pregătirii „LVM”.
Aceste schimbări efectiv șterg datele care sunt în prezent pe discul dur/solid selectat și nu le veți putea anula mai târziu. Totuși, programul de instalare vă va cere să confirmați aceste schimbări înainte de a fi scrisse pe disc.

Dacă alegeți partționarea ghidată (fie clasică, fie folosind LVM (criptat)) pentru un disc întreg, vi se va cere să selectați discul pe care doriți să-l foloșiți. Verificați că toate discurile sunt afișate și, dacă aveți mai multe discuri,

Orice date de pe discul pe care îl selectați se vor pierde în cele din urmă, dar vi se va cere întotdeauna să confirmați orice modificări înainte ca acestea să fie scrise pe disc. Dacă ați selectat metoda clasrică de partitaționare, veți putea anula orice modificare până aproape de final; atunci când utilizați LVM (criptat) acest lucru nu este posibil.

În continuare, veți putea alege dintre schemele enumerate în tabelul de mai jos. Toate schemele au avantajele și dezavantajele lor, unele dintre ele fiind discutate în Anexa C. Dacă nu sunteți sigur, alegeți-o pe prima. Rețineți că partitaționarea ghidată necesită o anumită cantitate minimă de spațiu liber pentru a opera. Dacă nu îi acordați cel puțin aproximativ 1 GB de spațiu (depinde de schema aleasă), partitaționarea ghidată va eşua.

Schema de partitaționare

<table>
<thead>
<tr>
<th>Partiție</th>
<th>Spațiu minim</th>
<th>Partiții create</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toate fișierele într-o singură partiție</td>
<td>600MO</td>
<td>/, spațiu de interschimb (swap)</td>
</tr>
<tr>
<td>Partiție /home separată</td>
<td>500MO</td>
<td>/, /home, spațiu de interschimb (swap)</td>
</tr>
<tr>
<td>Partiții /home, /var și /tmp separate</td>
<td>1GO</td>
<td>/, /home, /var, /tmp, spațiu de interschimb (swap)</td>
</tr>
</tbody>
</table>

Dacă alegeți partitaționare ghidată folosind LVM (criptat), programul de instalare va crea și o partiție /boot separată. Celelalte partii, inclusiv partii spațiului de interschimb (swap), vor fi create în interiorul partii spațiului LVM.

După selectarea unei scheme, următorul ecran va afișa noul tabel de partii, inclusiv informații despre dacă și cum vor fi formate partii și unde vor fi montate.

Lista partii ar putea să arate așa:

```
Schema de partitia
Toate fisierele intr-o singura partiție 600MO /
Partiție /home separată 500MO /, /home, spațiu de interschimb (swap)
Partiții /home, /var și /tmp separate 1GO /, /home, /var, /tmp, spațiu de interschimb (swap)
```

Acest exemplu ilustrează două discuri dure/solide împărțite în mai multe partii; primul disc are ceva spațiu liber.

Fiecare linie de partitie constă din numărul partii, tipul său, dimensiunea, fanioane optionale, sistemul de fișiere și punctul de montare (dacă există). Notă: această configurare nu poate fi creată folosind partitaționarea ghidată, dar ilustrează variațiile posibile care pot fi obținute folosind partitaționarea manuală.

Cu aceasta se încheie partitaționarea ghidată. Dacă sunteți mulțumit cu tabela de partii generată, puteți alege „Finalizează partitaționarea și scrie modificările pe disc din meniu, pentru a pune în practică noua tabelă de partii după cum e descris la sfârșitul acestei secțiuni”. Dacă nu sunteți mulțumit, puteți alege „Anulează schimbările făcute asupra partii și rulați partitaționarea ghidată din nou sau să modificați schimbările propuse așa cum este descris mai jos pentru partitaționarea manuală.”

6.3.4.3 Partitaționarea manuală

Un ecran similar cu cel dinainte va fi afișat dacă alegeți partitaționarea manuală, cu excepția că va fi afișată tabela de partii actuală și punctele de montare nu vor fi afișate. Dacă veți selectați un disc nou care nu are nici partii nici spațiu liber, veți fi întrebat dacă doriti să creați o nouă tabelă de partii (acest lucru este necesar pentru a putea crea noi partii). După aceasta o linie nouă din partitația ghidată apare sub discul selectat.

Dacă veți aveți posibilitatea de a crea o nouă partitie, veți avea posibilitatea să creați și partii noi. Dacă veți face această alegere, veți fi întrebat dacă doriti să creați o nouă tabelă de partii (acest lucru este necesar pentru a putea crea noi partii). După aceasta o linie nouă din partitația ghidată ar trebui să apară sub discul selectat.

Dacă partitația spațiu și veți avea posibilitatea de a crea o nouă partitie, veți avea posibilitatea de a crea o nouă partitie. Dacă veți face această alegere, veți fi întrebat dacă doriti să creați o nouă tabelă de partii (acest lucru este necesar pentru a putea crea noi partii). După aceasta o linie nouă din partitația ghidată ar trebui să apară sub discul selectat.

Dacă veți avea posibilitatea de a crea o nouă partitie, veți avea posibilitatea de a crea o nouă partitie. Dacă veți face această alegere, veți fi întrebat dacă doriti să creați o nouă tabelă de partii (acest lucru este necesar pentru a putea crea noi partii). După aceasta o linie nouă din partitația ghidată ar trebui să apară sub discul selectat.
de montare și fanionul de pornire; ce opțiuni sunt afișate la un moment dat, depinde de modul în care va fi utilizată partita. Dacă nu vă plăcea valorile implicite preselectate, nu ezitați să le modificați după bunul plac. De exemplu, selectând opțiunea Utilizați ca, puteți alege un alt sistem de fișiere pentru această partitie, inclusiv opțiuni de utilizare a partitei pentru spațiu de interschimb (swap), software RAID, LVM, sau să n-o folosiți deloc. Când sunteți mulțumiți de noua partitie, selectați S-a finalizat pregătirea partitiei și veți reveni la ecranul principal al lui partman.

Dacă vă dickeri să schimbați ceva legat de partitie, pur și simplu selectați partitie, ceea ce vă va duce la meniul de configurare a partitiei. Deoarece este același ecran ca la crearea unei partitii, puteți schimba același set de opțiuni. Un lucru care poate nu este evident la prima vedere este că o partitie poate fi redimensionată prin selectare elementul care specifică dimensiunea partitiei. Sistemele de fișiere despre care se știe că pot fi redimensionate sunt fat16, fat32, ext2, ext3 și swap. Acest meniu vă permite să-i ștergeți o partitie.

Asigurați-vă că ați creat cel puțin două partitii: una pentru sistemul de fișiere rădăcină (care trebuie montat ca /) și una pentru spațiul de interschimb (swap). Dacă uitați să montați sistemul de fișiere rădăcină, partman nu vă va șansa să continuați până nu corectați această problemă.

După ce sunteți mulțumii de partitii de meniul de partitie, selectați Finalizează partitiorarea și scrie modificările pe disc. Dacă uitați să mențineți meniul, veți da un meniul de configurare a partitiei. Deoarece este aceeași ca și partman, puteți să-i ștergeți o partitie.

6.3.4.4 Configurarea dispozitivelor multi-disc (RAID software)

Dacă aveți mai mult de un disc dur/solid⁴ în calculator, puteți folosi partman-md pentru a configura dispozitivele pentru performanțe sporite și/sau siguranță sporită a datelor. Rezultatul este numit Dispozitiv multi-disc (sau, după cea mai falsă variantă a sa, „RAID software (reduzați ansamblurilor de discuri multiple)”).

MD este, de fapt, un ansamblu de partitii aflate pe discuri diferite și care, combinate, formează un dispozitiv logic. Acest dispozitiv poate fi folosit ca o partitie obișnuită (dread urmare, în partman îl puteți formata, îi puteți asocia un punct de montare, etc.).

Beneficiile obținute depind de tipul de dispozitiv MD pe care-l creați. În prezent sunt suportate:

RAID0 Este în principal direcționat spre performanță. RAID0 împarte toate datele primite în fâșii (eng. stripes) și le distribuie egal între fiecare dintre discurile din ansamblu. Acest lucru poate spori performanța la operatiile de citire/scriere, dar dacă unul dintre discuri se defectează, veți pierde tot (o parte din informații se vor afla încă pe discul/discurile fără probleme, însă cel mai neleagat punct de montare, etc.).

Scenariul tipic de utilizare a RAID0 este pentru prelucrare video.

RAID1 Este potrivit pentru configurații în care siguranța este preocuparea principală. Acesta constă în mai multe (uzual două) partitii de aceeași dimensiune în care fiecare partitie conține exact aceleași date. Acest lucru înseamnă în esență trei lucruri. În primul rând, în cazul în care unul dintre discuri se defectează, veți pierde tot (o parte din informații se vor afla încă pe discul/discurile fără probleme, însă cel mai neleagat punct de montare, etc.). În cel de-al doilea rând, puteți folosi doar o parte din capacitatea disponibilă (mai exact, este dimensiunea celei mai mici partitii din RAID). În cel de-al treilea rând, citirile sunt echilibrat distribuite între discuri, lucru care poate spori performanța pe un server, cum este un server de fișiere care are tendința de a fi mai incârcat cu operațiile de citire decât cu operațiile de scriere.

Opțional, puteți avea în ansamblu un disc de rezervă care să ia locul discului defect, dacă apare un asemenea caz.

RAID5 Este un bun compromis între viteză, siguranță și redundanță de date. RAID5 împarte datele primite în fâșii și le distribuie pe toate discurile, cu excepția unuia (la fel ca RAID0). Spre deosebire de RAID0, RAID5 calculează și o informație de paritate care va fi scrisă pe discul rămas. Discul de paritate nu este static (în acest caz ar fi fost RAID4), ci este schimbat periodic, astfel încât informația de paritate este distribuită uniform pe toate discurile. În cazul unui defect la unul dintre discuri, informația lipsă poate fi calculată din datele rămase și din informațiile de paritate. RAID5 trebuie să fie format din cel puțin trei partitii active. Opțional, puteți avea în ansamblu un disc de rezervă care să ia locul unui disc defect, dacă apare un asemenea caz.

După cum se poate observa, RAID5 are același grad de siguranță ca și RAID1 în timp ce realizează o redundanță mai slabă. De altă parte, acesta este posibil să fie puțin mai lent la operațiile de scriere decât RAID0 datorită calculului informației de paritate.

⁴De fapt, se poate construi un dispozitiv multi-disc chiar și cu partitii de pe același disc fizic, dar acest lucru nu va aducere nici un fel de beneficii.
RAID6 Este similar cu RAID5, cu excepția faptului că folosește două dispozitive de paritate în loc de unul.

Un ansamblu RAID6 poate supraviețui până la două erori de disc.

RAID10 RAID10 combină împărțirea în fâșii (ca în RAID0) și oglindirea (ca în RAID1). Acesta creează n copii ale datelor primate și le distribuie pe partitii, astfel încât niciuna dintre copiile acelorași date să nu fie pe același dispozitiv. Valoarea implicită a n este 2, dar poate fi stabilită la altă valoare în modul expert. Numărul de partitii utilizeze trebuie să fie de cel puțin n. RAID10 are diferite scheme pentru distribuirea copiilor. În mod implicit, este utilizat modul near (apropiat). În acest mod, copiile au aproximativ aceași poziție pe toate discurile. În modul far (depărtate), copiile au poziții diferite pe discuri. În modul offset (poziția), fâșia este copiată, nu blocul de date.

RAID10 poate fi folosit pentru a obține fiabilitate și redundanță fără dezavantajul de a fi necesar să se calculeze paritatea.

Pentru a rezuma:

<table>
<thead>
<tr>
<th>Tipul</th>
<th>Minim de dispozitive</th>
<th>Dispozitive de rezervă</th>
<th>Supraviețuiește la un defect de disc?</th>
<th>Spațiu disponibil</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID0</td>
<td>2</td>
<td>nu</td>
<td>nu</td>
<td>Dimensiunea celei mai mici partitii înmulțită cu numărul de dispozitive din RAID</td>
</tr>
<tr>
<td>RAID1</td>
<td>2</td>
<td>opțional</td>
<td>da</td>
<td>Dimensiunea celei mai mici partitii din RAID</td>
</tr>
<tr>
<td>RAID5</td>
<td>3</td>
<td>opțional</td>
<td>da</td>
<td>Dimensiunea celei mai mici partitii înmulțită cu (numărul de dispozitive din RAID minus unu)</td>
</tr>
<tr>
<td>RAID6</td>
<td>4</td>
<td>opțional</td>
<td>da</td>
<td>Dimensiunea celei mai mici partitii înmulțită cu (numărul de dispozitive din RAID minus două)</td>
</tr>
<tr>
<td>RAID10</td>
<td>2</td>
<td>opțional</td>
<td>da</td>
<td>Totalul partitiiți împărțit la numărul de copii în buctați (în mod implicit la două)</td>
</tr>
</tbody>
</table>

Dacă doriți să aflați mai multe despre Software RAID, consultați Rețetarul RAID software.

Pentru a crea un dispozitiv MD (multi-disc), trebuie ca partitii pe care le doriți să facă parte din RAID, să fie marcate precum „folosite într-un RAID”. (Aceasta se face în partman în meniul Configurația partitiei unde ar trebui să selectați Folosită ca: → volum fizic pentru RAID.)

Notă

Asigurați-vă că sistemul poate fi pornit cu schema de partționare pe care o planificați. În general, va fi necesar să creați un sistem de fișiere separat pentru /boot atunci când folosiți RAID pentru sistemul de fișiere rădăcina (/). Majoritatea încărcătoarelor de pornire nu au suport pentru RAID1 (RAID în modul oglindă, fără fâșii!), deci folosierea, de exemplu, a lui RAID5 pentru / și RAID1 pentru /boot poate fi o variantă posibilă.
În continuare, va trebui să alegeți Configurați RAID-ul software din meniul principial al lui partman. (Meniul va apărea după ce marcați cel puțin o partitură pentru utilizare ca volum fizic pentru RAID.) În primul ecran al partman-md doar selecția Creează dispozitiv MD. Vi se va afișa o listă de tipuri de dispozitive MD suportate din care trebuie să alegeți unul (ex: RAID1). Ceea ce va urma depinde de tipul de dispozitiv MD selectat.

- RAID0 este simplu — vi se va prezenta lista de partitii RAID disponibile și singurul lucru pe care va trebui să-l faceți este să selectați partitii care vor forma dispozitivul MD.
- RAID1 este un pic mai dificil. Mai întâi vi se va cere să introduceți numărul de dispozitive active și numărul de dispozitive de rezervă care vor forma dispozitivul MD. Apoi va trebui să selectați din lista de partitii RAID disponibile pe acelaie care vor fi active și pe cele care vor fi de rezervă. Numărul partitii care selectate trebuie să fie egal cu cel precizat mai devreme. Nu vă îngrijorați. Dacă greșiti și selectați un număr diferit de partitii, debian-installer nu va vă lasa să continuați până când nu corecția problema.
- RAID5 are o procedură de configurare similară cu cea pentru RAID1, cu excepția faptului că va trebui să folosiți cel puțin trei partitii active.
- RAID6 are, de asemenea, o procedură de configurare similară cea pentru RAID1, cu excepția faptului că va trebui să folosiți trei partitii active.

Și RAID10 are o procedură de pregătire similară cu cea pentru RAID1, exceptând modul expert. În modul expert debian-installer vă va cere să precizați schema de repartizare a datelor. Schema are două părți. Prima parte este tipul de schema. Este n (pentru copii în modul near (apropiate)), f (pentru copii în modul far (depărtate)), sau o (pentru copii în modul offset (poziția)). A doua parte este numărul de copii de făcut pentru date. Trebuie să fie cel puțin atât de multe dispozitive active ca acest număr, astfel încât copiile să fie distribuite pe discuri diferite.

Este posibil să aveți concomitent mai multe tipuri de dispozitive MD. De exemplu, dacă aveți trei discuri de câte 200GO pentru MD, fiecare conținând două partitii de 100GO, puteți să combinați primele partitii din cele trei discuri în RAID0 (partitie de 300GO, rapidă, pentru editare video) și să folosiți celelalte trei partitii (2 active și 1 de rezervă) pentru RAID1 (partitie de 100GO, destul de sigură pentru /home).

După ce configurați dispozitivele MD după bunul dumneavoastră plac, puteți selecta Finalizează din partman-md pentru a vă întoarce la partman pentru a crea sisteme de fișiere pe noile dispozitive MD și să le asociați atributelor obișnuite precum punctele de montare.

6.3.4.5 Configurarea Managerului de volume logice („Logical Volume Manager”: LVM)

Dacă luați cu calculatoarele ca administrator sau ca utilizator „avansat”, ati văzut, cu siguranță situația în care pe o partitură (de obicei, cea mai importantă) spațiul liber era foarte limitat, în timp ce o altă partitură era foarte puțin utilizată și a trebuit să rezolvați această problemă deplasând fișiere dintr-o parte în alta, făcând legături simbolice, etc.

Pentru a evita situația descrisă, puteți folosi managerul de volume logice (LVM). Pe scurt, cu LVM puteți combina partitii (volume fizice) în jargonul LVM pentru a forma un disc virtual (așa-numitul grup de volume) care poate fi apoi divizat în partitii virtuale (volume logice). Idea este că volumele logice (și, desigur, grupele de volume care sunt la baza acestora) se pot întinde peste mai multe discuri fizice.

Acum, în momentul în care vă dați seama că aveți nevoie de mai mult spațiu pentru vechia partitură /home de 160Go, puteți, pur și simplu, să adăugați un disc nou de 300Go la calculator, să îl adăugați la grupul de volume existent și să redimensionați volumul logic care conține sistemul de fișiere /home și, gata — utilizatorii vor avea din nou spațiu pe partitura reînnoită de 460GO. Acest exemplu este, desigur, un pic simplificat. Dacă nu l-ați citit încă, ar fi bine să citiți Rețetarul LVM.

Configurarea LVM în debian-installer este destul de simplă și complet integrată în partman. Mai întâi, va trebui să marcați partiturile care să fie folosite ca volume fizice pentru LVM. Acest lucru se face în meniul Configură partitii, unde va trebui să selectați Folositi ca: → volum fizic pentru LVM.
CAPITOLUL 6. UTILIZAREA PROGRAMULUI DE...

6.3. UTILIZAREA DE COMPONENTE INDIVIDUALE

Avertisment

Aveți grijă: noua configurare LVM va distruge toate datele de pe toate particițiile markate cu un cod de tip LVM. Deci, dacă aveți deja un LVM pe unele dintre discuri și doriți să instalați Debian suplimentar la aceea mașină, vecheul LVM (deja existent) va fi șters! Același lucru este valabil și pentru particițiile, care sunt (din orice motiv) markate în mod înșelător cu un cod de tip LVM, dar care conțin ceva diferit (cum ar fi un volum criptat). Trebuie să eliminați astfel de discuri din sistem înainte de a efectua o nouă configurare LVM!

Odată cu întoarcerea la ecranul principal al lui partman veți vedea o nouă opțiune Configurarea Managerului de volume logice (LVM). După selectarea acesteia, mai întâi vi se va cere să confirmați schimbările în așteptare ce se vor face asupra tabelei de particiții (dacă există) și apoi se va afișa meniul de configurare al LVM-ului. Meniul este sensibil la context și afișează doar acțiunile valide. Acțiunile posibile sunt:

- Afisăază detaliile de configurare: arată structura dispozitivului LVM, numele și dimensiunile volumelor logice și multe altele
- Creează grup de volume
- Creează volum logic
- Șterge grupul de volume
- Șterge volumul logic
- Extinde grupul de volume
- Reduce grupul de volume
- Finalizare: reveniți la ecranul partman principal

Folosiți opțiunile din acest meniu pentru a crea mai întâi un grup de volume și apoi creați volumele logice în interiorul acestuia.

După ce reveniți la ecranul principal al lui partman, toate volumele logice create vor fi afișate în același mod ca și particițiile obișnuite (și ar trebui să le tratați ca atare).

6.3.4.6 Configurarea volumelor criptate

debian-installer vă oferă posibilitatea să configurați particiții criptate. Orice fișier scris pe o asemenea particiție este imediat salvat pe dispozitiv în formă criptată. Accesul la datele criptate este permis doar după introducerea frazei de acces folosite când a fost creată partitia criptată. Această caracteristică este utilă pentru protejarea datelor confidențiale în eventualitatea furterii laptopului sau a discului dur/solid. Hoțul ar putea câștiga acces fizic la discul dur/solid, dar fără a cunoaște fraza de acces corectă, datele de pe disc vor arăta ca niște caractere aleatorii.

Cele mai importante două particiții de criptat sunt: particiția „home”, unde se află datele private ale dumneavoastră și particiția spațiului de interschimb (swap), unde este posibil ca date confidențiale să fie stocate temporar în timpul funcționării. Desigur, nimic nu vă împiedică să criptați orice altă particiție care ar putea prezentă interes. De exemplu, /var, unde serverele de baze de date, serverele de poșta electronică și serverele de imprimare își stochează datele, sau /tmp care este folosit de diverse programe să stocheze fișiere temporare potențial interesante. Unele persoane ar putea să cripteze întregul sistem. Singura excepție este partitia /boot care trebuie să rămână necriptată deoarece în prezent nu există nici o metodă de a încărca noulul de pe un sistem de fișiere criptat (GRUB este acum capabil să facă asta, dar debian-installer în prezent nu are suport nativ pentru /boot criptat. Prin urmare, configurarea este acoperită într-un document separat).

Noră

A se reține că performanța particițiilor criptate va fi mai scăzută decât cea a particițiilor necriptate deoarece datele trebuie să fie criptate sau decriptate pentru fiecare operațiune de scriere sau citire. Impactul asupra performanței depinde de viteza procesorului, tipul de cifrare ales și lungimea cheii.
Pentru a folosi criptarea trebuie să creați o nouă partitură selectând în meniul principal al programului de partitiune un spațiu liber. O altă opțiune este selectarea unei particii existente (ex. o partitură obișnuită, un volum logic LVM sau un volum RAID). În meniul Configurația partitiei trebuie să selectați volum fizic pentru criptare la opțiunea Folosește ca.. Meniul se va schimba apoi și va include opțiune criptografice pentru acea partitură.

Metoda de criptare acceptată de debian-installer este dm-crypt (inclus în nucleele Linux mai noi, capabil să găzduiască volume fizice LVM).

Mai întâi să vedem opțiunile disponibile la selectarea lui Device mapper (dm-crypt) ca metodă de criptare. Ca de obicei, dacă aveți îndoii, folosii valorile implicite deoarece au fost alese cu grijă, având în vedere securitatea.

Dimensiunea cheii: 256 Aici puteți preciza lungimea cheii de criptare. Cu cât dimensiunea cheii este mai mare, cu atât criptarea este mai puternică. De a adă parte, mărirea cheii duce, de obicei, la o degradare a performanței. Disponibilitatea diverselor dimensiuni de chei depinde de algoritmul de cifrare.

Algoritmul VI: xts-plain64 Vectorul de Inițializare sau algoritmul VI (în eng. „Initialization Vector”: IV) este utilizat în criptografie pentru a se asigura că aplicarea cifrului pe aceleași date de text clar cu aceeași cheie produce întotdeauna un text cifrat unic. Idea este de a preveni încercarea unui atacator de a deduce informații din șabloane repetate în datele criptate.

Dintre alternativele oferite, cea implicită, xts-plain64 este în prezent cea mai puțin vulnerabilă la atacurile cunoscute. Folosiți celelalte alternative doar dacă trebuie să asigurați compatibilitatea cu un alt sistem instalat anterior care nu poate folosi algoritmul mai noi.

Cheia de criptare: Frază de acces Aici puteți alege tipul de cheie de criptare pentru această partitură.

Faza de acces Cheia de criptare va fi calculată pe baza unei fraze de acces pe care o veți putea introduce mai târziu în decursul procesului.

Cheie aleatoare O nouă cheie de criptare va fi generată din date aleatoare de fiecare dată când încercați să inițiaziți partituria criptată. Cu alte cuvinte, la fiecare oprire conținutul partitiei se va pierde deoarece cheia este ștersă din memorie (desigur, ati putea să încercați să găsiți cheia cu un atac de tip „forță brută”, dar acest lucru nu este realizabil în decursul unei întregi vieți, decât dacă există o slăbiciune necunoscută în algoritmul de cifrare).

Cheile aleatorii sunt utile pentru partitiile de spațiu de interschimb (swap), deoarece nu trebuie să vă deranjezi să vă amintiți fraza de acces sau să ștergeți informații sensibile din partitură de spațiu de interschimb (swap) înainte de a închide computerul. Totuși, înseamnă, de asemenea, că nu veți putea utiliza funcționalitatea „suspend-to-disk” (suspendare pe disc) oferită de nucleele Linux mai noi, deoarece va fi imposibil (în timpul unei porniri ulterioare) pentru a recupera datele suspendate scrise pe partitură de spațiu de interschimb (swap).

Ștergeți datele: da Stabilește dacă conținutul acestei particii trebuie suprascris cu date aleatorii înainte de a configura criptarea. Acest lucru este recomandat deoarece, altfel, ar putea fi posibil ca un atacator să discerne care părți ale partitiei sunt în uz și care nu. În plus, acest lucru va înregistra recuperarea oricărui date rămase din instalările anterioare.

După ce ați selectat parametrii doritori pentru partitiile criptate, reveniți la meniul principal de partitiunea. Ar trebui să existe acum un nou element de meniu numit Configurarea volumelor criptate. După ce îl selectați, vi se va cere să confirmați ștergerea datelor de pe partiturile marcate pentru a fi șterse și, eventual, alte acțiuni, cum ar fi scrierea unui nou tabel de partii. Pentru partitii mari, acest lucru poate dura ceva timp.

În continuare, vi se va cere să introduceți o frază de acces pentru partiturile configurate să utilizeze una. Frazele de acces bune trebuie să aibă mai mult de 8 caractere, trebuie să fie un amestec de litere, cifre și alte caractere și nu trebuie să conțină cuvinte comune din dicționar sau informații ușor de asociat cu dvs. (cum ar fi datele de naștere, hobby-uri, nume de animale de companie, numele membrilor familiei sau ale rudei, etc.).

5 Folosirea unei fraze de acces pe post de cheie în prezent înseamnă că partituia va fi configurată folosind LUKS.
6 Se crede că băieți de la agentii cu trei litere pot restaura datele chiar și după mai multe rescrieri ale mediilor magnetooptice.
Avertisment

Înainte de a introduce fraze de acces, ar fi trebuit să vă asigurați că tastatura este configurată corect și generează caracterele așteptate. Dacă nu sunteți sigur, puteți trece la o doua consolă virtuală și puteți tasta ceva text la prompt. Acest lucru vă asigură că nu veți fi surprinzat mai târziu, de ex. încercând să introduceți o expresie de acces folosind un aranjament de tastatură „qwerty” când ați folosit un aranjament „azerty” în timpul instalării. Această situație poate avea mai multe cauze. Poate că ați trecut la un alt aranjament de tastatură în timpul instalării sau este posibil ca aranjamentul de tastatură selectat să nu fi fost încă configurat când ați introdus fraza de acces pentru sistemul de fișiere rădăcină.

Dacă ați ales să utilizați alte metode decât o frază de acces pentru a crea chei de criptare, acestea vor fi generate acum. Deoarece este posibil ca nucleul să nu fi adunat o cantitate suficientă de entropie în această etapă incipiență a instalării, procesul poate dura mult timp. Puteți ajuta la accelerarea procesului prin generarea de entropie: de ex. prin apăsarea tasteelor de formă aleatorie sau prin trecerea la shell-ul de pe a doua consolă virtuală și generaerea de trafic de rețea și de disc (descărcarea unor fișiere, introducerea de fișiere mari în /dev/null etc.). Acest lucru se va repetata pentru fiecare partitie care urmează să fie criptată.

După revenirea la meniul principal de partiçãoare, veți vedea toate volumele criptate ca partii suplimentare care pot fi configurate în același mod ca și partiiile obișnuite. Următorul exemplu arată un volum criptat prin «dm-crypt».

```
Volum criptat (sda2_crypt) - 115.1 GB Linux device-mapper
  #1 115.1 GB F ext3
```

Acum este momentul să atribuiți puncte de montare volumelor și să schimbați opțional tipurile de sisteme de fișiere dacă cele implicate nu vi se potrivească.

Acordați atenție identificatorilor din paranteze (sda2_crypt în acest caz) și punctelor de montare pe care le-ați atribuit fiecărui volum criptat. Veți avea nevoie de aceste informații mai târziu când porniți noul sistem. Diferențele dintre procesul de pornire obișnuit și procesul de pornire cu volume criptate vor fi acoperite mai târziu în Secțiune 7.2.

Odată ce sunteți mulțumiți de schema de partiçãoare, continuați cu instalarea.

6.3.5 Instalarea sistemului de bază

Deși această etapă este cea mai puțin problematică, consumă o parte semnificativă a instalării, deoarece descarcă, verifică și deschidează întregul sistem de bază. Dacă aveți o conexiune lentă la computer sau la rețea, acest lucru ar putea dura ceva timp.

În timpul instalării sistemului de bază, mesajele de deschidere și de configurare a pachetului sunt redirecționate către tty4 (terminalul 4). Puteți accesa acest terminal apăsând Alt stânga-F4: reveniți la procesul principal de instalare cu Alt stânga-F1.

Mesajele de deschidere/configurare generate în această fază sunt de asemenea salvate în /var/log/syslog. Le puteți verifica acolo dacă instalarea se realizează printr-o consolă serială.

Ca parte a instalării, va fi instalat un nuclel Linux. La prioritatea implicită, instalatorul va alege pentru dvs. una care se potrivește cel mai bine cu echipamentul dvs. În moduluri cu prioritate inferioară, veți putea alege dintr-o listă de nuclee disponibile.

Când pachetele sunt instalate utilizând sistemul de gestionare a pachetelor, acesta va instala implicit și pachetele care sunt recomandate de acele pachete. Pachetele recomandate nu sunt strict necesare pentru funcționalitatea de bază a software-ului selectat, dar îmbrunățesc acel software și ar trebui, în opinia responsabililor de pachete, să fie instalate în mod normal împreună cu acel software.

Noră

Din motive tehnice, pachetele instalate în timpul instalării sistemului de bază sunt instalate fără „Recomandările”. Regula descrisă mai sus intră în vigoare numai după acest moment al procesului de instalare.
6.3.6 Instalarea de software suplimentar

În acest moment aveți un sistem utilizabil, dar limitat. Majoritatea utilizatorilor vor dori să instaleze software suplimentar pe sistem pentru a-l adapta nevoilor lor, iar programul de instalare vă permite să faceți acest lucru. Acest pas poate dura chiar mai mult decât instalarea sistemului de bază dacă aveți o conexiune lentă la computer sau la rețea.

6.3.6.1 Configurarea lui «apt»

Unul dintre instrumentele folosite pentru a instala pachete pe un sistem Debian GNU/Linux este programul apt, din pachetul apt⁷. Alte interfețe pentru gestionarea pachetelor, cum ar fi aptitude și synaptic, sunt de asemenea utilizate. Aceste interfețe sunt recomandate utilizatorilor noi, deoarece integrează unele caracteristici suplimentare (căutarea pachetelor și verificării de stare) într-o interfață de utilizator plăcută.

apt trebuie configurat astfel încât să știe de unde să recupereze pachetele. Rezultatele acestei configurări sunt scrise în fișierul /etc/apt/sources.list. Puteți examina și edita acest fișier după bunul plac după finalizarea instalării.

Dacă instalați cu prioritate implicită, programul de instalare se va ocupa în mare măsură de configurație automat, pe baza metodei de instalare pe care o utilizați și, eventual, folosind alegerile făcute mai devreme în instalare. În majoritatea cazurilor, programul de instalare va adăuga automat o oglindă de securitate și, dacă instalații distribuția stabilită, o oglindă pentru serviciul „stable-updates” (actualizări pentru distribuția stabilă).

Dacă instalați la o prioritate mai mică (de exemplu, în modul expert), veți putea lua mai multe decizii singur. Puteți alege dacă să utilizați sau nu serviciile de securitate și/sau de actualizări pentru distribuția stabilită și puteți alege să adăugați pachete din secțiunile „contrib”, „non-free” și „non-free-firmware” ale arhivei.

6.3.6.1.1 Instalarea de pe mai multe imagini CD sau DVD

Dacă instalați de pe o imagine CD sau DVD care face parte dintr-un set mai mare, programul de instalare vă va întreba dacă doriti să scape medii suplimentare de instalare. Dacă aveți la dispoziție astfel de suporturi suplimentare, probabil că doriți să faceți acest lucru, astfel încât instalatorul să poată folosi pachetele incluse pe ele.

Dacă nu aveți niciun suport suplimentar, aceasta nu este nicio problemă: utilizarea acestora nu este necesară. Dacă, de asemenea, nu utilizați o oglindă de rețea (după cum este explicat în secțiunea următoare), poate însemna că nu pot fi instalate toate pachetele care aparțin sarcinilor pe care le selectați în următorul pas al instalării.

Notă

Pachetele sunt incluse pe imaginile CD și DVD în ordinea popularității lor. Aceasta înseamnă că pentru cele mai multe utilizări este necesară doar prima imagine a unui set și că doar foarte puțini oameni folosesc de fapt oricare dintre pachetele incluse pe ultimele imagini ale unui set.

De asemenea, înseamnă că achiziționarea de la diversi vânzători sau descărcarea și înscrierea unui set complet de CD-uri este doar o risipă de bani, deoarece nu le veți folosi niciodată pe multe dintre ele. În cele mai multe cazuri, este mai bine să obțineți doar primele 3 până la 8 CD-uri și să instalați orice pachet suplimentar de care aveți nevoie din Internet, folosind o oglindă. Același lucru este valabil și pentru seturile de DVD-uri: primul DVD, sau poate primele două DVD-uri vor acoperi majoritatea nevoilor.

Dacă scanați mai multe medii de instalare, programul de instalare vă va solicita să le schimbați atunci când are nevoie de pachete de la unul care nu este în prezent în unitate. Rețineți că numai discurile care aparțin acelaiași set ar trebui scaneate. Ordinea în care sunt scanate nu contează cu adevărat, dar scanarea lor în ordine crescătoare va reduce șansele de greșeli.

6.3.6.1.2 Utilizarea unei oglinzii de rețea

O întrebare care va fi pusă în timpul majorității instalărilor este dacă să se folosească sau nu o oglindă de rețea ca sursă pentru pachete. În cele mai multe cazuri, răspunsul implicit ar trebui să fie cel adecvat, dar există câteva excepții.

⁷Rețineți că programul care instalează efectiv pachetele se numește dpkg. Cu toate acestea, acest program este mai mult un instrument de nivel scăzut. apt este un instrument de nivel superior, care va invoca dpkg după caz. Știe cum să recupereze pachetele din mediu de instalare, din rețea sau de orinde. De asemenea, este capabil să instaleze automat alte pachete care sunt necesare pentru ca pachetul pe care încercați să îl instalați să funcționeze corect.
6.3. UTILIZAREA DE COMPONENTE INDIVIDUALE

Dacă nu instalați de pe un set complet de imagini de CD/DVD, ar trebui să utilizați o oglindă de rețea, deoarece altfel veți ajunge cu un sistem foarte minim. Totuși, dacă aveți o conexiune limitată la Internet, cel mai bine este să nu selectați sarcina birou în următorul pas al instalației.

Dacă instalați de pe o singură imagine CD completă, utilizarea unei oglinzi de rețea nu este necesară, dar este totuși recomandată deoarece o singură imagine CD conține doar un număr destul de limitat de pachete. Dacă aveți o conexiune limitată la Internet, poate fi totuși cel mai bine să nu selectați o oglindă de rețea aici, ci să finalizați instalarea folosind doar cea ce este disponibilă pe imaginea de pe CD și să instalați selectiv pachete suplimentare după instalare (de ex. după ce ați repornit în noul sistem).

Dacă instalați de pe DVD, orice pachet necesar în timpul instalării ar trebui să fie prezent pe prima imagine DVD. Utilizarea unei oglinzi de rețea este opțională.

Un avantaj al adăugării unei oglinzi de rețea este că actualizările, care au avut loc de când imaginiile CD/DVD au fost create și au fost incluse într-o versiune punctuală, vor deveni disponibile pentru instalare, prelungind astfel durata de viață a setului de CD/DVD fără a compromite securitatea sau stabilitatea sistemului instalat.

În rezumat: selectarea unei oglinzi de rețea este în general o idee bună, cu excepția cazului în care nu aveți o conexiune bună la Internet. Dacă versiunea curentă a unui pachet este disponibilă de pe mediul de instalare, programul de instalare o va folosi în întotdeauna. Deci, cantitatea de date care va fi descărcată dacă selectați o oglindă depinde de

1. sarcinile pe care le selectați în următorul pas al instalării,
2. ce pachete sunt necesare pentru sarcinile respective,
3. care dintre aceste pachete sunt prezente pe suportul de instalare pe care l-ați scanat și
4. dacă versiunile actualizate ale pachetelor incluse pe suportul de instalare sunt disponibile dintr-o oglindă (fie o oglindă a pachetului obișnuit, fie una actualizată ale distribuției stabile).

Rețineți că ultimul punct înseamnă că, inclusiv dacă alegeți să nu utilizați o oglindă de rețea, unele pachete pot fi încă descărcate de pe Internet dacă există actualizări de securitate sau actualizări ale distribuției stabile disponibile pentru ele și acele servicii au fost configureate.

6.3.6.1.3 Alegerea unei oglinzi din rețea

Cu excepția cazului în care ați ales să nu utilizați o oglindă de rețea, vi se va prezenta o listă de oglinzi de rețea bazată pe selecția țării dvs. mai devreme în procesul de instalare. Alegerea implicită oferită este, de obicei, cea adecvată.

O oglindă poate fi, de asemenea, specificată manual, alegând „ introduceti manual informatiile”. Puteți specifica un nume de gazdă în oglindă și un număr de port opțional. Aceasta trebuie să fie de fapt o bază URL, adică atunci când specificați o adresă IPv6, trebuie să adăugați paranteze drept în jurul ei, de exemplu „ [2001:db8::1] ”.

6.3.6.2 Selectarea și instalarea software-ului

În timpul procesului de instalare, vi se oferă posibilitatea de a selecta software suplimentar de instalat. În loc să alegeți pachete software individuale din pachetele 93245 disponibile, această etapă a procesului de instalare se concentrează pe selectarea și instalarea colecțiilor predefinite de software pentru a configura rapid calculatorul pentru a efectua diverse sarcini.

Aceste sarcini reprezintă în mod vag un număr de activități sau lucruri diferite pe care doriti să le faceți cu calculatorul dvs., cum ar fi „Mediu de birou”, „Server web” sau „Server SSH”. Secțiunea D.2 enumeră cerințele de spațiu pentru sarcinile disponibile.

Trebuie să știți că pentru a prezenta această listă, programul de instalare doar invocă programul tasksel. Poate fi rulat în orice moment după instalare pentru a instala mai multe pachete (sau a le elimina), sau puteți utiliza un instrument mai precis, cum ar fi aptitude. Dacă sunteți în căutarea unui singur pachet specific, după finalizarea instalării, pur și simplu rulați aptitude install pachet, unde pachet este numele pachetului care caută.
Unele sarcini pot fi preselectate pe baza caracteristicilor calculatorului pe care instalați. Dacă nu sunteți de acord cu aceste selecții, le puteți deselecta. Puteți chiar să optați pentru a nu instala deloc sarcini în acest moment.

INDICAȚIE

În interfața cu utilizatorul standard a programului de instalare, puteți utiliza bara de spațiu pentru a comuta selectarea unei sarcini.

Notă

Sarcina „Mediu de birou” va instala un mediu grafic de birou.

Implicit, debian-installer instalează mediul de birou. Este posibil să selectați în mod interactiv un alt mediu de birou în timpul instalării. De asemenea, este posibil să instalați mai multe medii de birou, dar este posibil ca unele combinații dintre aceste medii de birou să nu fie coinstalabile.

Rețineți că acest lucru va funcționa numai dacă pachetele necesare pentru mediul de birou dorit sunt efectiv disponibile. Dacă instalați folosind o singură imagine CD completă, acestea vor trebui, eventual, să fie descărcate dintr-o oglindă de rețea, deoarece este posibil să nu fie disponibile pe imaginea CD din cauza cantității sale limitate de spațiu. Instalarea oricăruia dintre mediile de birou disponibile în acest fel ar trebui să funcționeze bine dacă utilizați o imagine DVD sau orice altă metodă de instalare.

Diferitele sarcini de server vor instala software aproximativ după cum urmează. Server web: apache2; Server SSH: openssh. Sarcina „Sistem standard” va instala orice pachet care are un „standard” prioritar. Aceasta include o mulțime de utilități comune care sunt disponibile în mod normal pe orice sistem Linux sau Unix. Ar trebui să știți această sarcină selectată dacă nu știți ce faceți și doriți un sistem cu adevărat minim.

Dacă în timpul selectării limbii a fost selectată o altă configurație regională implicită diferită de „C”, tasksel va verifica dacă sunt definite sarcini de localizare pentru acea configurație regională și va încerca automat să instaleze pachetele de localizare relevante. Aceasta include, de exemplu, pachete care conțin liste de cuvinte sau fonturi speciale pentru limba dumneavoastră. Dacă a fost selectat un mediu de birou, acesta va instala și pachetele de localizare adecvate pentru acesta (dacă sunt disponibile).

După ce ați selectat sarcinile, pulsați butonul Continue. În acest moment, apt va instala pachetele care fac parte din sarcinile selectate. Dacă un anumit program are nevoie de mai multe informații de la utilizator, acesta vă va solicita furnizarea lor în timpul acestui proces.

Ar trebui să știți că, în special, sarcina „Mediu grafic de birou” este foarte mare. Mai ales când se instalează pe un CD-ROM normal în combinație cu o oglindă pentru pachete care nu sunt de pe CD-ROM, programul de instalare poate dori să recupereze o mulțime de pachete prin rețea. Dacă aveți o conexiune la internet relativ lentă, acest lucru poate dura mult timp. Nu există niciodată de a anula instalarea pachetelor odată ce aceasta a început.

Chiar și atunci când pachetele sunt incluse pe CD-ROM, programul de instalare le poate prelua din oglindă dacă versiunea disponibilă pe oglindă este mai recentă decât cea inclusă pe CD-ROM. Dacă instalați distribuția stabilă, acest lucru se poate întâmpina după o lansare punctuală (o actualizare a versiunii stabile originale); dacă instalați distribuția de testare, acest lucru se va întâmpina dacă utilizați o imagine mai veche.

6.3.7 **Faceți ca sistemul să fie capabil să pornească**

Dacă instalați o stație de lucru fără disc, evident, pornirea de pe discul local nu este o opțiune semnificativă și acest pas va fi omis.

6.3.7.1 **Detectarea altor sisteme de operare**

Înainte ca un încărcațor de pornire să fie instalat, instalatorul va încerca să caute alte sisteme de operare care sunt instaleate în calculator. Dacă găsește un sistem de operare acceptat, veți fi informat despre acest lucru în timpul pasului
de instalare a încărcătorului de pornire, iar calculatorul va fi configurat să pornească acest alt sistem de operare în plus față de Debian.

Rețineți că mai multe sisteme de operare pornind pe o singură mașină este încă ceva ce ţine de magia neagră, oricum ceva mistic. Suportul automat pentru detectarea și configurarea încărcătoarelor de pornire pentru a porni alte sisteme de operare variază în funcție de arhitectură și chiar de subarhitectură. Dacă nu funcționează, ar trebui să consultați documentația gestionarului de pornire pentru mai multe informații.

6.3.7.2 Faceți un sistem capabil să pornească cu flash-kernel

Întrucât nu există o interfață de firmware comună pe toate platformele ARM, pașii necesari pentru ca sistemul să poată fi pornit pe dispozitivele ARM depind în mare măsură de dispozitiv. Debian folosește un instrument numit **flash-kernel** pentru a se ocupa de asta. Flash-kernel conține o bază de date care descrie operațiunile particulare care sunt necesare pentru ca sistemul să fie capabil să pornească pe diferite dispozitive. Detectează dacă dispozitivul actual este acceptat și, dacă da, efectuează operațiunile necesare.

Pe dispozitivele care pornesc din memoria flash NOR- sau NAND-internă, flash-kernel scrie nucleul și imaginea ramdisk inițială în această memorie internă. Această metodă este deosebit de comună pe dispozitivele ARM mai vechi. Vă rugăm să rețineți că majoritatea acestor dispozitive nu permit să aveți mai multe nuclee și imagini ramdisk în memoria lor flash internă, adică rularea flash-kernel-ului pe ele supraște obicei de obicei conținutul anterior al memoriei flash!

Pentru sistemele ARM care utilizează U-Boot ca firmware de sistem și pornesc nucleul și imaginea ramdisk inițială de pe medii de stocare externe (cum ar fi carduri MMC/SD, dispozitive de stocare în masă USB sau discuri IDE/SATA), flash-kernel generează un script de pornire pentru a permite pornirea automată fără interacțiunea utilizatorului.

6.3.7.3 Continuați fără încărcătorul de pornire

Această opțiune poate fi folosită pentru a finaliza instalarea chiar și atunci când nu trebuie instalat niciun încărcător de pornire, fie pentru că arhitectura/subarhitectura nu oferă unul, fie pentru că nu se doresc niciunul (de exemplu, veți folosi încărcătorul de pornire existent).

Dacă intenționați să configurați manual încărcătorul de pornire, ar trebui să verificați numele nucleului instalat în `/target/boot`. De asemenea, ar trebui să verificați acel director pentru prezența unui `initrd`; dacă există unul, probabil va trebui să instruiți încărcătorul de pornire să îl folosească. Alte informații de care veți avea nevoie sunt discul și partitia pe care le-ați selectat pentru sistemul dvs. de fișiere / și, dacă ați ales să instalați `/boot` pe o partitură separată, și sistemul de fișiere al `/boot`.

6.3.8 Se finalizează instalarea

Aceasta este ultimul pas în procesul de instalare al Debian în timpul căruia programul de instalare va efectua orice activitate de ultimă oră. Constă mai ales în a face ordine după `debian-installer`.

6.3.8.1 Configurați ceasul sistemului

Programul de instalare vă poate întreba dacă ceasul calculatorului este configurat la UTC. În mod normal, aceasta trebuie să fie așteptată, dacă este posibil și programul de instalare încerca să stabilească dacă ceasul este configurat la UTC pe baza unor lucruri precum alte sisteme de operare instalate.

În mod expert, veți putea întotdeauna să alegeți dacă ceas este sau nu configurat la UTC.

În acest punct `debian-installer` va încerca, de asemenea, să salveze ora curentă în ceasul mașinii dumneavoastră. Acest lucru se va face fie în UTC, fie în ora locală, în funcție de selecția care tocmia a fost făcută.

6.3.8.2 Repornirea sistemului

Vă solicit să eliminați mediul de pornire (CD, stick USB etc.) pe care l-ați folosit pentru a porni programul de instalare. După aceea, sistemul va fi repornit în noul dumneavoastră sistem Debian.

6.3.9 Rezolvarea problemelor

Componentele enumerate în această secțiune nu sunt de obicei implicate în procesul de instalare, dar așteaptă în fundal pentru a ajuta utilizatorul în cazul în care ceva nu merge bine.
6.3.9.1 Salvarea jurnalelor de instalare

Dacă instalarea are succes, fișierele jurnal create în timpul procesului de instalare vor fi salvate automat în /var/log/installer/ pe un stick USB. Alegerea opțiunii Salvează jurnalele de depanare în meniul principal vă permite să salvați fișierele de jurnal pe un stick USB sau alte medi. Acest lucru poate fi util dacă întâmpinați probleme fatale în timpul instalării și doriti să studiați jurnalele pe alt sistem sau să le atașați la un raport de instalare.

6.3.9.2 Utilizarea Shell și vizualizarea jurnalelor

Există mai multe metode pe care le puteți folosi pentru a obține un shell în timp ce rulați o instalare. Pe majoritatea sistemelor, dacă nu instalați printr-o consolă serială, cea mai ușoară metodă este să comutați la o consolă virtuală apăsând Alt stânga-F2. Dacă puteți comuta între console, există un element Execute a Shell în meniul principal care poate fi folosit pentru a porni un shell. Puteți ajunge la meniul principal din majoritatea dialogurilor apăsând butonul Go Back o dată sau de mai multe ori. Tastați exit pentru a închide shell-ul și a reveni la programul de instalare.

În acest moment, ați pornit de pe discul RAM și există un set limitat de utilități Unix disponibile pentru utilizare. Puteți vedea ce programe sunt disponibile cu comanda ls /bin /sbin /usr/bin /usr/sbin și tastând help. Shell-ul este o clonă Bourne numită ash și are câteva caracteristici drăguțe, cum ar fi completarea automată și istoricul.

Pentru a edita și vizualiza fișiere, utilizați editorul de text nano. Fișierele jurnal pentru sistemul de instalare pot fi găsite în directorul /var/log.

Notă

Deși puteți face practic orice într-un shell din lucrurile pe care comenzile disponibile vă permit să le faceți, optiunea de a folosi un shell este într-adevăr acolo doar în cazul în care ceva merge prost și pentru depanare.

A face lucruri manual din shell poate interfera cu procesul de instalare și poate duce la erori sau la o instalare incompletă. În special, ar trebui să lăsați întotdeauna programul de instalare să vă activeze partiția de swap și să nu faceți acest lucru singur din shell.

6.3.10 Instalarea prin consola de reţea (network-console)

Una dintre cele mai interesante componente este consola de rețea. Vă permite să faceți o mare parte a instalării prin rețea prin SSH. Utilizarea rețelei implică că va trebui să efectuați primii pași ai instalării din consolă, cel puțin până la configurarea rețelei. (Deși puteți automatiza acea parte cu Secțiune 4.4.)

Această componentă nu este încărcată în meniul principal de instalare în mod implicit, așa că trebuie să o solicitați în mod explicit. Dacă instalați de pe un mediu optic, trebuie să porniți cu prioritate medie sau să invocați în alt mod meniul principal de instalare și să alegeți Încărcarea componentelor de instalare din mediul de instalare și din lista de componente suplimentare selectați network-console: Se continuă instalarea de la distanță, utilizând SSH. Încărcarea reușită este indicată de o nouă intrare de meniu numită Continuați instalarea de la distanță folosind SSH.

După selectarea acestei noi intrări, vi se va solicita un parolă pentru a vă conecta la sistemul de instalare, iar acesta vă va cere confirmarea parolii. Asta e tot. Acum ar trebui să vedeți un ecran care vă indică că ați conectați de la distanță. Dacă utilizați installer cu parola, trebuie să vă conectați la distanță cu parola pe care tocmai ați furnizat-o. Un alt detaliu important de observat pe acest ecran este amprenta sistemului pe care va continua instalarea de la distanță.

Dacă decideți să continuați cu instalarea locală, puteți oricând să apăsați Enter, ceea ce vă va aduce înapoi la meniul principal, unde puteți selecta o altă componentă.

Acum să trecem la cealaltă parte a firului. Ca o condiție prealabilă, trebuie să vă configurați terminalul pentru codificarea UTF-8, deoarece asta este ceea ce folosește sistemul de instalare. Dacă nu o faceți, instalarea de la distanță va fi totuși posibilă, dar este posibil să întâmpinați artefakte cuvinte neconstituite, care ar fi margini de dialog distruse sau caractere non-asci necitibile. Stabilirea unei conexiuni cu sistemul de instalare este la fel de simplă ca și tastarea:

```bash
$ ssh -l installer install_host
```

Adâncă: apăsați tasta Alt din partea stângă a barei de spațiu și tasta funcțională F2 în același timp.

53
6.4 Încărcarea firmware-ului lipsă

După cum este descris în Secțiune 2.2, unele dispozitive necesită încărcarea firmware-ului. În majoritatea cazurilor, dispozitivul nu va funcționa deloc dacă firmware-ul nu este disponibil; uneori, funcționalitatea de bază nu este afectată dacă lipsese și firmware-ul este necesar doar pentru a activa funcții suplimentare.

Începând cu Debian GNU/Linux 12.0, urmând Rezoluția generală 2022 despre firmware non-free, imaginiile oficiale de instalare (cum ar fi „netinst”) pot include pachete de firmware „non-free”. Chiar și cu acele pachete de firmware
disponibile, unele fișiere de firmware ar putea să lipsească în continuare. Sau s-ar putea să folosească fișiere netboot, care nu includ pachete de firmware.

Notă

Ce dispozitive sunt scanate și ce sisteme de fișiere sunt acceptate depind de arhitectură, metoda de instalare și stadiul instalării. În special în primele etape ale instalării, încărcarea firmware-ului este cel mai probabil să reușească de pe un stick USB formatat FAT.

Rețineți că este posibil să omiteți încărcarea firmware-ului dacă știți că dispozitivul va funcționa și fără acesta sau dacă dispozitivul nu este necesar în timpul instalării.

6.4.1 Pregătirea unui mediu

Cea mai comună metodă de a încărca un astfel de firmware este de pe un mediu detasabil, cum ar fi un stick USB. Pentru a pregăti un stick USB (sau alt mediu cum ar fi o partitură de disc dur/solid), fișierele sau pachetele de firmware trebuie să fie plasate fie în directorul rădăcină, fie într-un director numit `firmware` al sistemului de fișiere de pe mediu. Sistemul de fișiere recomandat de utilizat este FAT, deoarece este cel mai sigur că va fi acceptat în primele etape ale instalării.

Arhivele comprimate și fișierele zip care conțin pachetele curente pentru cel mai comun firmware, și metadatele asociate pentru a asigura o detectare adecvată de către programul de instalare (directorul `debian-installer`), sunt disponibile de la:

- https://cdimage.debian.org/cdimage/firmware/bookworm/

Doar descărcați fișierul arhivei comprimate sau zip pentru versiunea corectă și despachetați-l în sistemul de fișiere de pe mediu.

De asemenea, este posibil să copiați fișiere firmware individuale pe mediu. Firmware-ul liber ar putea fi obținut, de exemplu, de la un sistem deja instalat sau de la un fabricant de dispozitive.

6.4.2 Firmware-ul și sistemul instalat

Orice firmware încărcat în timpul instalării va fi copiat automat în sistemul instalat. În cele mai multe cazuri, acest lucru va asigura că dispozitivul care necesită firmware va funcționa corect și după ce sistemul este repornit în sistemul instalat. Cu toate acestea, dacă sistemul instalat rulează o versiune de nucleu diferită de cea a programului de instalare, există o mică șansă ca firmware-ul să nu poată fi încărcat din cauza diferenței de versiuni.

Dacă firmware-ul a fost încărcat dintr-un pachet de firmware, `debian-installer` va instala, de asemenea, acest pachet pentru sistemul instalat și va adăuga automat secțiunea non-free-firmware a arhivei pachetului în `sources.list` APT. Acest lucru are avantajul că firmware-ul va fi actualizat automat dacă devine disponibilă o nouă versiune.

Dacă încărcarea firmware-ului a fost omisă în timpul instalării, dispozitivul relevant nu va funcționa probabil cu sistemul instalat până când firmware-ul (pachetul) este instalat manual.

Notă

Dacă firmware-ul a fost încărcat din fișiere firmware libere, firmware-ul copiat în sistemul instalat nu va fi actualizat automat decât dacă pachetul firmware corespunzător (dacă este disponibil) este instalat după finalizarea instalării.
6.4.3 Finalizarea sistemului instalat

În funcție de modul în care a fost efectuată instalarea, s-ar putea ca necesitatea unui firmware să nu fi fost detectată în timpul instalării, că firmware-ul relevant nu a fost disponibil sau că cineva a ales să nu instaleze un firmware la acel moment. În unele cazuri, o instalare reușită poate ajunge totuși într-un ecran negru sau într-un afișaj deformat la repornirea sistemului instalat. Când se întâmplă acest lucru, pot fi încercate următoarele soluții:

- Pasăți opțiunea `nomodeset` pe linia de comandă a nucleului. Acest lucru ar putea ajuta la pornirea într-un mod „grafic de rezervă” pentru un sistem grafic degradat.

- Utilizați combinația de taste Ctrl-Alt-F2 pentru a comuta la VT2, care ar putea oferi un prompt de conectare funcțional.

6.5 Personalizare

Folosind shell-ul (vezi Secțiune 6.3.9.2), procesul de instalare poate fi personalizat cu atenție, pentru a se potrivi cazurilor de utilizare excepționale:

6.5.1 Instalarea unui sistem alternativ de «init» (inițiere)

Debian folosește systemctl ca sistem de inițializare implicit. Cu toate acestea, alte sisteme de inițializare (cum ar fi sysvinit și OpenRC) sunt acceptate, iar cel mai ușor moment pentru a selecta un sistem de inițializare alternativ este în timpul procesului de instalare. Pentru instrucțiuni detaliate despre cum să faceți acest lucru, vă rugăm să consultați pagina Iniț pe wiki-ul Debian.
Capitolul 7

Pornirea în noul dumneavoastră sistem Debian

7.1 Momentul adevărului

Prima pornire a sistemului dvs. cu energie proprie este ceea ce inginerii electroniști numesc „testul de fum”.

Dacă sistemul nu reușește să pornească corect, nu intrați în panică. Dacă instalarea a avut succes, sunt șanse mari să existe doar o problemă relativ mică care împiedică sistemul să pornească Debian. În majoritatea cazurilor, astfel de probleme pot fi rezolvate fără a fi nevoie să repetați instalarea. O opțiune disponibilă pentru a remedia problemele de pornire este utilizarea modului de recuperare încorporat în programul de instalare (consultați Secțiune 8.6).

Dacă sunteți nou în Debian și Linux, este posibil să aveți nevoie de ajutor de la utilizatorii mai experimentați. Pentru arhitecturi mai puțin obișnuite, cum ar fi 32-bit soft-float ARM, cea mai bună opțiune este să întrebați pe lista de corespondență debian-arm. De asemenea, puteți depune un raport de instalare așa cum este descris în Secțiune 5.4.5. Asigurați-vă că descrieți problema în mod clar și includeți toate mesaje care sunt afișate și care pot ajuta pe alții să diagnosticeze problema.

7.2 Montarea volumelor criptate

Dacă ați creat volume criptate în timpul instalării și le-ați atribuit puncte de montare, vi se va cere să introduceți fraza de acces pentru fiecare dintre aceste volume în timpul pornirii.

Pentru partiții criptate folosind dm-crypt, vi se va afișa următorul prompt în timpul pornirii:

```
Starting early crypto disks... part_crypt(starting)
Enter LUKS passphrase:
```

În prima linie a promptului, part este numele partii subiacente, de exemplu sda2 sau md0. Probabil că acum vă întrebați pentru ce volum introduceți de fapt fraza de acces. Are legătură cu /home? Sau cu /var? Desigur, dacă ați configurat mai mult de un volum criptat în timpul instalării, notele pe care le-ați scris la ultimul pas în Secțiune 6.3.4.6 sunt utile. Dacă nu ați notat mai înainte asocierea dintre parte_crypt și punctele de montare, o puteți găsi în continuare în fișierele /etc/crypttab și /etc/fstab ale noului dumneavoastră sistem.

Promptul poate arăta oarecum diferit atunci când este montat un sistem de fișiere rădăcină criptat. Aceasta depinde de generatoarele initramfs a fost folosit pentru a genera inîntr-ul folosit pentru a porni sistemul. Exemplul de mai jos este pentru un inîntr generat folosind initramfs-tools:

```
Begin: Mounting root file system... ...
Begin: Running /scripts/local-top ...
Enter LUKS passphrase:
```

Nu vor fi afișate caractere (nici măcar asteriscuri) la introducerea frazei de acces. Dacă introduceți o frază de acces greșită, mai aștept două încercări de a o corecta. După a treia încercare, procesul de pornire va omite acest volum și va continua să monteze următorul sistem de fișiere. Consultați Secțiune 7.2.1 pentru mai multe informații.

După introducerea tuturor frazelor de acces, pornirea ar trebui să continue ca de obicei.
7.2.1 Rezolvarea problemelor

Dacă unele dintre volumele criptate nu au putut fi montate pentru că a fost introdusă o frază de acces greșită, va trebui să le montați manual după pornire. Se prezintă mai multe cazuri:

- Primul caz se referă la partitura rădăcină. Când nu este montată corect, procesul de pornire se va opri și va trebui să reporniți calculatorul pentru a încerca din nou.

- Cel mai simplu caz este pentru volumele criptate care dețin date precum /home sau /srv. Puteți să le montați pur și simplu manual după pornire.

Cu toate acestea, pentru «dm-crypt», acest lucru este puțin complicat. Mai întâi trebuie să înregistrați volumele cu device mapper rulând:

```
# /etc/init.d/cryptdisks start
```

Aceasta va scana toate volumele menționate în fișierul /etc/crypttab și va crea dispozitive adecvate în directorul /dev după introducerea frazelor de acces corecte (volumele deja înregistrate vor fi omise, așa că puteți repeta această comandă de mai multe ori fără să vă faceți griji). După înregistrarea cu succes, puteți monta pur și simplu volumele în modul obișnuit:

```
# mount /punctul_de_montare
```

- Dacă nu a putut fi montat niciun volum care conține fișiere de sistem necritiche (/usr sau /var), sistemul ar trebui să pornească în continuare și ar trebui să puteți monta volumele manual, ca în cazul precedent. Cu toate acestea, va trebui, de asemenea, să (re)porniți orice servicii care rulează de obicei la nivelul de rulare implicit, deoarece este foarte probabil să nu fi fost pornit. Cel mai simplu mod este să reporniți calculatorul.

7.3 Autentificarea în cont

Odată ce sistemul dvs. este complet încărcat, vi se va afla promptul de autentificare. Conectați-vă folosind numele de utilizator și parola personale pe care le-ați selectat în timpul procesului de instalare. Sistemul dvs. este acum gata de utilizare.

Dacă sunteți un utilizator nou, poate doriți să explorați documentația care este deja instalată pe sistemul dvs. pe măsură ce începeți să-l utilizați. În prezent există mai multe sisteme de documentare, se lucrează la integrarea diferitelor tipuri de documentație. Iată câteva puncte de plecare.

O modalitate ușoară de a vizualiza aceste documente folosind un navigator bazat pe text este să introduceți următoarele comenzi:

```
$ cd /usr/share/doc/
$ w3m
```

Punctul de după comanda w3m îi spune acesteia să afișeze conținutul directorului curent.

Dacă aveți instalat un mediu grafic de birou, puteți utiliza, de asemenea, navigatorul web al acestuia. Porniți navigațorul web din meniul aplicației și introduceți /usr/share/doc/ în bara de adrese.

De asemenea, puteți tasta info comandă sau man comandă pentru a vedea documentația despre majoritatea comenzilor disponibile la promptul de comandă. Tastarea help va afișa ajutor pentru comenzile shell. Și tastarea unei comenzi urmată de --help va afișa de obicei un scurt rezumat al utilizării comenzii. Dacă rezultatele unei comenzii defilează dincolo de partea de sus a ecranului, tastați | more după comandă pentru a face ca rezultatele să se întreprună înainte de a derula dincolo de partea de sus a ecranului. Pentru a vedea o listă cu toate comenzile disponibile care încep cu o anumită literă, tastați litera și apoi apăsați de două ori tasta «Tab»-ulator.
Capitolul 8

Pașii următori și unde să mergeți de aici

8.1 Oprirea sistemului

Pentru a închide un sistem Debian GNU/Linux care rulează, nu trebuie să reporniți cu comutatorul de resetare din partea din față sau din spate a computerului sau doar să opriți computerul. Debian GNU/Linux ar trebui să fie închis într-un mod controlat, altfel fișierele s-ar putea pierde și/sau ar putea apărea deteriorarea discului. Dacă rulați un mediu grafic de birou, există de obicei o opțiune de „închidere” disponibilă din meniul aplicației care vă permite să închideți (sau să reporniți) sistemul.

Alternativ, puteți apăsa combinația de taste Ctrl-Alt-Del . Dacă combinațiile de taste nu funcționează, o ultimă opțiune este să te autentifici ca root și să tastați comenzile necesare. Utilizați reboot pentru a reporni sistemul. Utilizați halt pentru a opri sistemul fără a-l opri . Pentru a opri aparatul, utilizați poweroff sau shutdown -h now. Sistemul de inițializare sistemului poate avea vă închideți (sau să reporniți) sistemul.

Pentru a opri aparatul, utilizați poweroff sau shutdown -h now. Sistemul de inițializare sistemului poate avea vă închideți (sau să reporniți) sistemul.

8.2 Orientându-vă către Debian

Debian este puțin diferit de alte distribuții. Chiar dacă sunteți familiarizat cu Linux din alte distribuții, există lucruri pe care ar trebui să le știți despre Debian pentru a vă ajuta să vă mențineți sistemul într-o stare bună, curată. Acest capitol conține materiale care să vă ajute să vă orientați; nu intenționează să fie un tutorial despre cum să utilizați Debian, ci doar o scurtă privire asupra sistemului pentru cei foarte grăbiți.

8.2.1 Sistemul de împachetare Debian

Cel mai important concept de înțeles este sistemul de împachetare Debian. În esență, părți mari ale sistemului dvs. ar trebui luate în considerare sub controlul sistemului de împachetare. Asta include:

- /usr (excluzând /usr/local)
- /var (puteți crea /var/local în deplină siguranță acolo)
- /bin
- /sbin
- /lib

De exemplu, dacă înlocuiți /usr/bin/perl, asta va funcționa, dar apoi dacă vă actualizați pachetul perl, fișierul pe care l-ați pus acolo va fi înlocuit. Explicații pot ocoli acest lucru punând pachetele în „hold” (păstrare) în aptitude.

Una dintre cele mai bune metode de instalare este «apt». Puteți folosi versiunea de linie de comandă a apt, precum și instrumente precum aptitude sau synaptic (care sunt doar interfețe grafice pentru apt). Rețineți că «apt» vă va permite, de asemenea, să fuzionați secțiunile „main”, „contrib”, „non-free” și „non-free-firmware” ale arhivei Debian, astfel încât să puteți avea pachete restricționate (strict vorbind care nu aparțin lui Debian), precum și pachete din Debian GNU/Linux în același timp.

¹În sistemul SysV init, halt a avut același efect ca și poweroff, dar cu sistemul ca sistem de inițializare (implicit de la jessie) efectele lor sunt diferite.
8.2.2 Software suplimentar disponibil pentru Debian

Există depozite de software oficiale și neoficiale care nu sunt activeate în instalarea implicită Debian. Acestea conțin software pe care mulți îl consideră important și se așteaptă să îl aibă. Informații despre aceste depozite suplimentare pot fi găsite pe pagina Wiki Debian intitulată Software-ul disponibil pentru versiunea stabilită a Debian.

8.2.3 Gestionarea versiunilor aplicațiilor

Versiunile alternative ale aplicațiilor sunt gestionate de „update-alternatives”. Dacă mențineți mai multe versiuni ale aplicațiilor, citiți pagina de manual a „update-alternatives”.

8.2.4 Gestionarea sarcinilor cu «cron»

Toate sarcinile aflate în competența administratorului de sistem ar trebui să fie în /etc, deoarece sunt fișiere de configurare. Dacă aveți o sarcină cron ca root pentru rulări zilnice, săptămânale sau lunare, puneți-o în /etc/cron. {daily, weekly, monthly}. Acestea sunt invocate din /etc/crontab și vor rula în ordine alfabetică, care le serializează (vor fi efectuate una după alta, în ordine alfabetică).

Pe de altă parte, dacă aveți o sarcină cron care (a) trebuie să ruleze ca utilizator special sau (b) trebuie să ruleze la o anume oră sau cu o anumită frecvență, puteți utiliza fie /etc/crontab sau, și pâine, /etc/cron.d/whatever. Aceste fișiere speciale au și un câmp suplimentar care vă permite să specificați contul de utilizator sub care rulează sarcina cron.

În ambele cazuri, doar editați fișierele și «cron» le va remarca automat. Nu este nevoie să rulați o comandă specială. Pentru mai multe informații, consultați cron(8), crontab(5) și /usr/share/doc/cron/README.Debian.

8.3 Lectură și informații suplimentare

Situl web Debian conține o cantitate mare de documentație despre Debian. Consultați, în special, Întrebări frecvente despre Debian GNU/Linux și Referință Debian. Un index cu mai multă documentație Debian este disponibil de la Proiectul de documentare Debian. Comunitatea Debian se autosușinze; pentru a vă abona la una sau mai multe dintre listele de corespondență Debian, consultați pagina Abonament la lista de corespondență. Nu în ultimul rând, Arhivele listelor de corespondență Debian conțin o mulțime de informații despre Debian.

Dacă aveți nevoie de informații despre un anumit program, ar trebui să încercați mai întâi man nume_program sau info nume_program.

O sură generală de informații despre GNU/Linux este Proiectul de documentare Linux. Acolo veți găsi HOWTO-uri și trimiteri către alte informații foarte valoroase despre părți ale unui sistem GNU/Linux.

Linux este o implementare a Unix. Proiectul de documentare Linux („Linux Documentation Project”: LDP) colectează o serie de HOWTO-uri și cărți online referitoare la Linux.

Dacă sunteți nou în Unix, probabil că ar trebui să își asumă niște cumpărăți niște cărți și să citiți ceva. Această listă derăspunsuri la întrebări frecvente Unix conține o serie de documente UseNet care oferă o referință istorică frumoasă.

8.4 Configurarea sistemului pentru a utiliza poșta electronică

Astăzi, poșta electronică este o parte importantă a vieții multor oameni. Deoarece există multe opțiuni cu privire la modul de configurare și pentru că este important să fie configurată corect pentru unele instrumente Debian, vom încerca să acoperim elementele de bază în această secțiune.

Există trei funcții principale care alcătuiesc un sistem de e-mail. Mai întâi este Agentul utilizatorului de e-mail („Mail User Agent”: MUA), care este programul pe care un utilizator îl folosește de fapt pentru a compune și a citi e-mailuri. Apoi, există Agentul de transfer de e-mail („Mail Transfer Agent”: MTA) care se ocupă de transportul mesajelor de la un computer la altul. Și în ultimul rând este Agentul de livrare a corespondenței („Mail Delivery Agent”: MDA) care se ocupă de livrarea corespondenței primite în căsuța de e-mail a utilizatorului.

Aceste trei funcții pot fi îndeplinite prin programe separate, dar pot fi și combinat în unul sau două programe. De asemenea, este posibil ca diferite programe să gestioneze aceste funcții pentru diferite tipuri de corespondență.
În sistemele Linux și Unix, mutt este, din punct de vedere istoric, un MUA foarte popular. La fel ca majoritatea programelor tradiționale Linux, este bazat pe text. Este adesea folosit în combinație cu exim sau sendmail ca MTA și procmail ca MDA.

Odată cu popularitatea tot mai mare a mediilor de birou grafice, utilizarea programelor de poștă electronică grafice precum evolution din GNOME, kmail din KDE sau thunderbird de la Mozilla a devenit din ce în ce mai populară. Aceste programe combină funcția unui MUA, MTA și MDA, dar pot fi — și adesea sunt — folosite în combinație cu instrumentele tradiționale Linux.

8.4. Configurația de poștă electronică

8.4.1 Configurația de poștă electronică implicită

Chiar dacă intenționați să utilizați un program de poștă electronică grafic, ar fi util să aveți un MTA/MDA tradițional instalat și configurat corect pe sistemul dumneavoastră Debian GNU/Linux. Motivul este că diverse instrumente care rulează pe sistem să poată trimite notificări importante prin e-mail pentru a informa administratorul de sistem despre probleme sau modificări (potențiale).

Pentru aceasta puteți instala exim4 și mutt cu apt install exim4 mutt. exim4 este o combinație MTA/MDA care este relativ mică, dar foarte flexibilă. În mod implicit, acesta va fi configurat să gestioneze numai corespondența locală a sistemului, iar mesajele adresate administratorului de sistem (contul root) vor fi livrate în contul de utilizator obișnuit creat în timpul instalării.

Când mesajele de sistem sunt livrate, acestea sunt adăugate într-un fișier în /var/mail/account_name. Mesajele pot fi citite folosind mutt.

8.4.2 Trimiterea de corespondență în afara sistemului

După cum am menționat mai devreme, sistemul Debian instalat este configurat doar pentru a gestiona corespondența locală din sistem, nu pentru a trimite mesaje altora sau pentru a primi mesaje de la alții.

Dacă doriti cu exim4 să se ocupe de corespondența externă, vă rugăm să consultați următoarea subsecțiune pentru opțiunile de configurare bazice disponibile. Asigurați-vă că testați dacă mesajele pot fi trimise și primite corect.

Dacă intenționați să utilizați un program de poștă electronică grafic și să utilizați serverul de poștă electronică al furnizorului dumneavoastră de servicii de internet (ISP) sau al firmei la care lucrați, nu este nevoie să configurați exim4 pentru gestionarea corespondenței externe. Trebuie doar să configurați programul de poștă electronică grafic preferat pentru a utiliza serverele corecte pentru a trimite și primi mesaje (cum să o faceți, este în afara domeniului de aplicare al acestui manual).

Cu toate acestea, în acest caz, poate fi necesar să configurați utilități individuale pentru a trimite mesaje externe. Un astfel de instrument este reportbug, un program care facilitează trimiterea de rapoarte de erori pentru pachetele Debian. În mod implicit, se aşteaptă să poată folosi exim4 pentru a trimite rapoarte de eroare.

Pentru a configura corect reportbug pentru a utiliza un server de poștă electronică extern, rulați comanda reportbug --configure și răspundeți „nu” la întrebarea dacă un MTA este disponibil. Apoi vi se va cere să utilizați serverul SMTP pentru a trimite rapoarte de erori.

8.4.3 Configurarea agentului de transport de corespondență Exim4

Dacă doriti ca sistemul dumneavoastră să gestioneze și mesajele externe, va trebui să reconfigurați pachetul exim4⁴:

```
# dpkg-reconfigure exim4-config
```

După ce ați introdus această comandă (ca root), veți fi întrebat dacă doriti să împărtășiți configurația în fișiere mici. Dacă nu sunteți sigur, selectați opțiunea implicită.

În continuare, vi se vor prezenta mai multe scenarii comune. Alege-l pe cel care se amână cel mai mult cu nevoile tale.

site internet Sistemul dumneavoastră este conectat la o rețea și corespondența dumneavoastră. Speră să rămâne și primită direct folosind SMTP.

În următoarele ecra ne vor să vor putea unește întrebări de bază, cum ar fi numele de poștă electronică al mașinii dumneavoastră sau o listă de domenii pentru care acceptați sau transmiteți mesaje.

mesaje trimise prin „smart host” În acest scenariu, mesajele trimise sunt redirecționate către o altă mașină, numită „smarthost”, care se ocupă de trimiterile mesajului la destinație. De asemenea, smarthost stochează de

⁴Exemple sunt: cron, quota, logcheck, aide, …

⁵Redirecționarea mesajelor pentru root către contul de utilizator obișnuit este configurată în fișierul /etc/aliases. Dacă nu a fost creat nicum cont de utilizator obișnuit, mesajele vor fi bineînțeles livrate către contul root.

⁶Desigur, puteți și asemenea elmina exim4 și să-l înlocuiți cu un MTA/MDA alternativ.
obicei mesajele primite adreseate calculatorului dvs., astfel incât nu trebuie să fiți permanent conectat la Internet. Aceasta înseamnă, de asemenea, că trebuie să vă descărcați corespondența de la smart host prin programe precum `fetchmail`.

În multe cazuri, smart host va fi serverul de poștă electronică al ISP-ului tău, ceea ce face ca această opțiune să fie foarte potrivită pentru utilizatorii „dial-up” (conexiune prin modem). Poate fi, de asemenea, un server de poștă electronică al firmei la care lucrați sau chiar un alt sistem din propria rețea.

mesaje trimise prin „smart host”; fără mesaje locale Această opțiune este practic aceeași cu cea anterioară, cu excepția faptului că sistemul nu va fi configurat pentru a gestiona corespondența pentru un domeniu local de poștă electronică. Mesajele din sistemul propriu-zis (de exemplu, pentru administratorul de sistem) vor fi gestionate în continuare.

doar mesaje locale Aceasta este opțiunea cu care este configurat implicit sistemul dumneavoastră.

nu se configurează acum Alegeți această opțiune dacă sunteți absolut convinși că știți ce faceți. Acest lucru vă va însorți cu un sistem de poștă electronică neconfigurat — până nu îl configurați, nu veți putea trimite sau primi niciun mesaj și este posibil să pierdeți câteva mesaje importante de la utilitățile sistemului dumneavoastră (precum cron, quota, logcheck, aide sau rkhunter).

Dacă niciunul dintre aceste scenarii nu se potrivește nevoilor dvs. sau dacă aveți nevoie de o configurare mai fină, va trebui să editați fișierele de configurare din directorul `/etc/exim4` după finalizarea instalării. Mai multe informații despre exim4 pot fi găsite în `/usr/share/doc/exim4;fișierul README.Debian.gz conține mai multe detalii despre configurarea exim4 și explică unde puteți găsi documentație suplimentară.

Rețineți că trimiterile de mesaje direct pe Internet atunci când nu aveți un nume de domeniu oficial poate duce la respingerea mesajelor dvs. din cauza măsurilor anti-spam pe serverele de primire. Este de preferat să utilizați serverul de poștă electronică al ISP-ului dumneavoastră. Dacă totuși doriti să trimiteți mesaje direct, este posibil să doriti să utilizați o adresă de poștă electronică diferită de cea generată în mod implicit. Dacă utilizați exim4 ca MTA, acest lucru este posibil prin adăugarea unei intrări în fișierul `/etc/email-addresses`.

8.5 Compilarea unui nou nucleu

8.6 Recuperarea unui sistem deteriorat
Uneori, lucrurile merg prost, iar sistemul pe care l-ați instalat cu atenție nu mai poate fi pornit. Poate că configurația încârcător de pornire s-a străduit în timp ce încercați o modificare, sau poate că un nucleu nou pe care l-ați instalat nu va porni, sau poate că razele cosmicv au lovit discul și au schimbat un bit din `/sbin/init`. Indiferent de cauza, veți avea nevoie de un sistem care să funcționeze și de la care să puteți lua pentru ameliorarea, iar modul de recuperare (‘rescue’ în eng.) poate fi util pentru aceasta. NT.: mai sus, apare un joc de cavinte : în eng. bit = biu sau nțiel, puțintel, pic; de ci acele raze au schimbat un pic binarul de inițializare al sistemului.

Pentru a accesa modul de recuperare, selectați ‘rescue’ din meniul de pornire, tastați rescue la promptul boot: sau porniți cu rescue/enable=true ca parametru de pornire. Vă se vor afișa primele câteva ecrane ale programului de instalare, cu o notă în colțul afişajului pentru a indica că acesta este modul de recuperare, nu o instalare completă. Nu vă faceți grijă, sistemul dumneavoastră nu este pe cale să fie suprascris! Modul de salvare profită pur și simplu de facilitățile de detectare a componentelor și dispozitivelor disponibile în programul de instalare pentru a se asigura că discurile, dispozitivele de rețea și așa mai departe sunt disponibile pentru dvs. în timp ce vă reparați sistemul. În loc de instrumentul de partiçãoare, acum ar trebui să vă prezintă listă cu particiții de pe sistemul dvs. și să vă solicite să selectați una dintre ele. În mod normal, ar trebui să selectați partita care conține sistemul de fișiere răcăcioasă pe care trebuie să o reparați. Puteți selecta partii pe dispozitivele RAID și LVM, precum și pe cele create direct pe discuri.

Dacă este posibil, programul de instalare vă va prezenta acum un prompt shell în sistemul de fișiere pe care l-ați selectat, pe care îl puteți utiliza pentru a efectua orice reparații necesare.
Dacă programul de instalare nu poate rula un shell utilizabil în sistemul de fișiere rădăcină pe care l-ați selectat, poate pentru că sistemul de fișiere este corupt, atunci va emite un avertisment și se va oferi în schimb să vă ofere un shell în mediul de instalare. Este posibil să nu aveți atât de multe instrumente disponibile în acest mediu, dar acestea vor fi adesea suficiente pentru a vă repara oricum sistemul. Sistemul de fișiere rădăcină pe care l-ați selectat va fi montat în directorul `/target`.

În oricare dintre cazuri, după ce părăsiți shell-ul, sistemul va reporni.

În cele din urmă, rețineți că repararea sistemelor deteriorate poate fi dificilă, iar acest manual nu încercă să intre în toate lucrurile care ar fi putut merge prost sau cum să le remediați. Dacă aveți probleme, consultați un expert.
Anexa A

Rețetarul instalării

Acest document descrie cum se instalează Debian GNU/Linux bookworm pentru 32-bit soft-float ARM („armel”) cu noul debian-installer. Este o prezentare rapidă a procesului de instalare, care ar trebui să conțină toate informațiile de care veți avea nevoie pentru majoritatea instalărilor. Când mai multe informații pot fi utile, vom face trimiteri către explicații mai detaliate aflate în alte părți ale acestui document.

A.1 Preliminarii

Dacă întâmpinați erori în timpul instalării, vă rugăm să consultați Secțiune 5.4.5 pentru instrucțiuni despre cum să le raportați. Dacă aveți întrebări la care acest document nu poate răspunde, vă rugăm să le direcționați către lista de corespondență debian-boot (debian-boot@lists.debian.org) sau întrebați pe IRC (#debian-boot din rețeaua OFTC).

A.2 Pornirea programului de instalare

Unele metode de instalare necesită alte imagini decât cele pentru mediile optice. Secțiune 4.2.1 explică cum să găsiți imagini în oglinzile Debian. Subsecțiunile de mai jos vă vor oferi detalii despre ce imagini ar trebui să obțineți pentru fiecare mijloc posibil de instalare.

A.2.1 Disc optic

Imaginea CD-ului „netinst” este o imagine populară care poate fi folosită pentru a instala bookworm cu debian-installer. Această metodă de instalare este destinată să pornească din imagine și să instaleze pachete suplimentare într-o rețea; de aici și numele „netinst”. Imaginea are componentele software necesare pentru a rula programul de instalare și pachetele de bază pentru a oferi un sistem minimal bookworm. Dacă preferați, puteți obține o imagine CD/DVD de dimensiune completă, care nu va avea nevoie de rețea pentru instalare. Aveți nevoie doar de prima imagine a unui astfel de set.

Descărcați orice tip de imagine preferați și inscripționați-l pe un disc optic.

A.2.2 Pornire din rețea

De asemenea, este posibil să porniți debian-installer complet din rețea. Diferitele metode de pornire prin rețea depind de arhitectura dvs. și de configurația de pornire prin rețea. Fișierele din netboot/ pot fi folosite pentru a porni debian-installer din rețea.

A.2.3 Pornire de pe un disc dur/solid

Este posibil să porniți programul de instalare nefolosind nici un mediu amovibil, ci doar un disc dur/solid existent, care poate avea un sistem de operare diferit. Descărcați hd-media/initrd.gz, hd-media/vmlinuz și o imagine CD/DVD Debian în directorul de nivel superior al discului dur/solid. Asigurați-vă că imaginea are un nume de fișier care se termină în .iso. Acum este doar o chestiune de pornire a linux-ului cu initrd.
A.3 Instalarea

Odată ce programul de instalare pornește, veți fi întâmpinat cu un ecran inițial. Apăsați tasta Enter pentru a porni sau citiți instrucțiunile pentru alte metode și parametri de pornire (consultați Secțiune 5.3).

După un timp veți fi întâmpinați cu un ecran inițial. Apăsați tasta Enter pentru a porni sau citiți instrucțiunile pentru alege o limbă și apăsați Enter a continuu. În continuare, veți fi întâmpinat cu ecranul pentru a selecta limba. Apăsați tasta Enter pentru a continua.

Configurarea rețelei este urmată de crearea conturilor de utilizator. În mod implicit, veți fi întâmpinat cu ecranul pentru a selecta limba. Apăsați tasta Enter pentru a continua.

Acum este vorba de a selecta unele discuri pentru a începe sistemul. Dacă nu aveți alte sisteme de operare, veți fi întâmpinat cu un ecran în care vă va fi oferit accesul la discurile și opțiunile de alimentare. Apăsați tasta Enter pentru a continua.

Ultimul ecran vă va oferi posibilitatea de a configura sistemul. Dacă aveți nevoie de mai multe informații, consultați Cap. 6.4.
Anexa B

Automatizarea instalării folosind preconfigurarea

Această anexă explică cum să preconfigurați răspunsurile la întrebările din debian-installer pentru a vă auto-
matiza instalarea.

Fragmentele de configurare utilizate în această anexă sunt, de asemenea, disponibile ca exemplu de fișier de pre-
configurare în https://www.debian.org/releases/bookworm/example-preseed.txt.

B.1 Introducere

Preconfigurarea oferă o modalitate de a oferi răspunsuri la întrebările adresate în timpul procesului de instalare, fără
a fi nevoie să introduceți manual răspunsurile în timpul instalării. Acest lucru face posibilă automatizarea completă a
majorității tipurilor de instalare și chiar oferă unele caracteristici care nu sunt disponibile în timpul instalărilor normale.

Preconfigurarea nu este necesară. Dacă utilizați un fișier de preconfigurare gol, programul de instalare se va
comporta la fel ca într-o instalare manuală normală. Fiecare întrebare pe care ați preconfigurat-o va modifica (dacă
ați completat-o corect!) instalarea față de cea de bază.

B.1.1 Metode de preconfigurare

Există trei metode care pot fi folosite pentru preconfigurare: initrd, file și network. Preconfigurarea „initrd” va funcționa
cu orice metodă de instalare și acceptă preconfigurarea mai multor lucruri, dar necesită cea mai mare pregătire.
Preconfigurările „file” și „network” pot fi utilizate cu diferite metode de instalare.

Următorul tabel arată ce metode de preconfigurare pot fi utilizate și cu ce metode de instalare.

<table>
<thead>
<tr>
<th>Metoda de instalare</th>
<th>initrd</th>
<th>file</th>
<th>network</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD/DVD/USB</td>
<td>da</td>
<td>da</td>
<td>da'</td>
</tr>
<tr>
<td>netboot</td>
<td>da</td>
<td>nu</td>
<td>da</td>
</tr>
<tr>
<td>hd-media</td>
<td>da</td>
<td>da</td>
<td>da'</td>
</tr>
</tbody>
</table>

O diferență importantă între metodele de preconfigurare este punctul în care fișierul de preconfigurare este încărcat
și procesat. Pentru preconfigurarea „initrd”, acesta este chiar la începutul instalării, înainte chiar să fie adresată prima
întrebare. Preconfigurarea din linia de comandă a nucleusului are loc imediat după. Este astfel posibil să se suprascrie
configurația stabilită în „initrd” prin editarea liniei de comandă a nucleusului (fie în configurația încărcătorului de pornire,
fie manual la momentul pornirii pentru încărcătoarele care permit acest lucru). Pentru preconfigurarea „file”, aceasta
se face după ce imaginea de instalare a fost încărcată. Pentru preconfigurarea „network”, aceasta se face doar după ce
rețeaua a fost configurată.

'1dar numai dacă aveți acces la rețea și configurați preseed/url în mod corespunzător

66
ANEXA B. AUTOMATIZAREA INSTALĂRII

B.2. UTILIZAREA PRECONFIGURĂRII

B.1.2 Limitări

Deși majoritatea întrebărilor folosite de debian-installer pot fi prestabilite folosind această metodă, există câteva excepții notabile. Trebuie să (re)partiționați un întreg disc sau să utilizați spațiul liber disponibil pe un disc; nu este posibilă utilizarea partiiilor existente.

B.2 Utilizarea preconfigurării

Mai întâi va trebui să creați un fișier de preconfigurare și să-l plasați în locația de unde doriți să-l utilizați. Crearea fișierului de preconfigurare este tratată mai târziu în această anexă. Plasarea acestuia în locația corectă este destul de simplă pentru preconfigurarea „network” sau dacă doriți să citiți fișierul de pe un stick USB. Dacă doriți să includeți fișierul într-o imagine ISO de instalare, va trebui să reamăsterizați imaginea. Cum să obțineți fișierul de preconfigurare inclus în initrd este în afara domeniului de aplicare al acestui document; pentru aceasta, consultați documentația dezvoltatorilor pentru debian-installer.

Un exemplu de fișier de preconfigurare pe care îl puteți folosi ca bază pentru propriul fișier de preconfigurare este disponibil la https://www.debian.org/releases/bookworm/example-preseed.txt. Acest fișier se bazează pe fragmentele de configurare incluse în această anexă.

B.2.1 Încarcarea fișierului de preconfigurare

Dacă utilizați preconfigurarea „initrd”, trebuie doar să vă asigurați că un fișier numit preseed.cfg este inclus în directorul rădăcină al initrd. Programul de instalare va verifica automat dacă acest fișier este prezent și îl va încărca.

Pentru celelalte metode de preconfigurare, trebuie să-i indați programului de instalare ce fișier să folosească atunci când îl porniți. Acest lucru se face în mod normal prin pasarea nucleului din argumentele de pornire, fie manual în momentul pornirii, fie prin editarea fișierului de configurare a încărcătorului de pornire (de exemplu, syslinux.cfg) și adăugând parametrul la sfârșitul liniei „append” pentru nucleu.

Dacă specificați fișierul de preconfigurare în configurația încărcătorului de pornire, este posibil să modificați configurația, astfel încât să nu fie nevoie să apăsați tasta «Enter» pentru a porni programul de instalare. Pentru syslinux, aceasta înseamnă stabilirea timpului de expirare la 1 în syslinux.cfg.

Pentru a vă asigura că programul de instalare preia fișierul de preconfigurare corespunzător, puteți specifica opțional o sumă de verificare pentru fișier. În prezent, aceasta trebuie să fie o sumă md5 și, dacă este specificată, trebuie să se potrivescă cu fișierul de preconfigurare sau programul de instalare va refuza să-l folosească.

Parametrii de pornire de specificat:
- dacb''ab' pornib''tb''i din reb''tb''ea:
 preseed/url=http://host/path/to/preseed.cfg
 preseed/url/checksum=5da499872becccfeda2c4872f9171c3d
- sau
 preseed/url=tftp://host/path/to/preseed.cfg
 preseed/url/checksum=5da499872becccfeda2c4872f9171c3d

B.2.2 Utilizarea preconfigurării

IMPORTANT

Evident, orice întrebări care au fost procesate înainte ca fișierul de preconfigurare să fie încărcat nu pot fi preconfigurate (aceasta va include întrebări care sunt afișate doar la prioritate medie (medium) sau scăzută (low), cum ar fi prima rulare de detectare a componentelor și dispozitivelor calculatorului). O modalitate mai puțin convenabilă de a evita adresarea acestor întrebări este să le preconfigurați prin intermediul parametrilor de pornire, așa cum este descris în Secțiune B.2.2.

Pentru a evita cu ușurință întrebările care ar apărea în mod normal înainte de intrarea în acțiune a preconfigurării, puteți porni programul de instalare în modul „auto”. Acest lucru întârzie întrebările care ar putea fi puse în mod normal prea devreme pentru preconfigurare (adică selecția limbii, țării și a tastaturii) până după ce apare rețeaua, permițând astfel să fie pre stabilite. De asemenea, rulează instalarea cu prioritate critică, ceea ce evită multe întrebări neimportante. Consultați Secțiune B.2.3 pentru detalii.
ANEXA B. AUTOMATIZAREA INSTALĂRII...

B.2. UTILIZAREA PRECONFIGURĂRII

- dacb''ăb’’ pornib''țb’’i o imagine de instalare remasterizatb’’ăb’’:
 presseed/file=/cdrom/preseed.cfg
 presseed/file=checksum-5da499872beccc6e2c4872f9171c3d

- dacb’’ăb’’ instalab’’țb’’i de pe un suport USB (puneb’’țb’’i fib’’ăb’’ierul de ← preconfigurare
 în directorul de nivel superior al stick-ului USB):
 presseed/file=/hd-media/preseed.cfg
 presseed/file=checksum-5da499872beccc6e2c4872f9171c3d

Rețineți că preseed/url poate fi scurtat la url, preseed/file la file și preseed/file=checksum la preseed-md5 atunci când acestea sunt transmise ca parametri de pornire.

B.2.2 Utilizarea parametrilor de pornire pentru a preconfigura întrebări

Dacă un fișier de preconfigurare nu poate fi utilizat pentru a preconfigura unei pași, instalarea poate fi în continuare complet automatizată, deoarece puteți trece valorile prestabilite în linia de comandă atunci când porniți programul de instalare.

Parametrizarea de pornire pot fi utilizați și dacă nu doriți cu adevărat să utilizați preconfigurarea, ci doriți doar să oferiți un răspuns la o anumită întrebare. Unele exemple în care acest lucru poate fi util sunt documentate în altă parte a acestui manual.

Pentru a defini o valoare care să fie utilizată în interiorul debian-installer, trebuie doar să indicați ruta/la/variabilă=valoare pentru oricare dintre variabilele prestabilite enumerate. Dacă urmează să fie utilizată o valoare pentru configurarea pacchetelor pentru sistemul existent, va trebui să adăugați înainte proprietarului variabilele ca în proprietar: ruta/la/variabilă=valoare. Dacă nu specificați proprietarul, valoarea variabilei nu va fi copiată în baza de date deconf din sistemul existent și astfel rămâne neutilizată în timpul configurării pacchetului relevant.

În mod normal, preconfigurarea unei întrebări în acest mod va însemna că întrebarea nu va fi adresată. Pentru a define o anumită valoare implicită pentru o întrebare, dar să aveți în continuare întrebarea, utilizați ?="" în loc de "=" ca operator. A se vedea, de asemenea, secțiune B.5.2.

Rețineți că unele variabile care sunt definite frecvent în promptul de pornire au un alias mai scurt. Dacă este disponibil un alias, acesta este folosit în exemplele din această anexă în loc de variabila completă. Variabila preseed/url, de exemplu, are ca alias url. Un alt exemplu este variabila-alias tasks, care reprezintă tasksel:tasksel/first.

Un "---" în opțiunile de pornire are o semnificație specială. Parametr lui nucleului care apar după ultimul "---" pot fi copiați în configurația încărcătorului de pornire pentru sistemul instalat (dacă sunt acceptați de instalatorul pentru încărcătorul de pornire). Programul de instalare va fi la automat orice opțiuni (cum ar fi opțiunile de preconfigurare) pe care le recunoaște.

Notă

Nucleele Linux actuale (2.6.9 și ulterioare) acceptă maximum 32 de opțiuni de linie de comandă și 32 de opțiuni de mediu, inclusiv orice opțiuni adăugate implicit pentru programul de instalare. Dacă aceste numere sunt depășite, nucleul va intra în panică (se va bloca); (pentru nucleele anterioare, aceste numere erau mai mici).

Pentru majoritatea instalărilor, unele dintre opțiunile implicite din fișierul de configurare a încărcătorului de pornire, cum ar fi vga=normal, pot fi eliminate în siguranță, ceea ce vă poate permite să adăugați mai multe opțiuni pentru preconfigurare.

Notă

Nu întotdeauna va fi posibil să specificați valori cu spații pentru parametri de pornire, chiar dacă le delimitați cu ghilimele.

²Proprietarul unei variabile deconf (sau șablon) este în mod normal numele pachetului care conține șablonul deconf corespunzător. Pentru variabilele utilizate în programul de instalare propriu-zis, proprietarul este "d-i". Șabloanele și variabilele pot avea mai mult de un proprietar, ceea ce așa să se determine dacă pot fi eliminate din baza de date deconf dacă pacchetul este curățat.
B.2.3 Modul auto

Există mai multe caracteristici ale programului de instalare Debian care se combină pentru a permite liniilor de comandă destul de simple din promptul de pornire să aibă ca rezultat instalări automate personalizate arbitrar și complexe.

Acest lucru este activat prin utilizarea opțiunii de pornire Instalare automată, numită și auto pentru unele arhitecturi sau metode de pornire. În această secțiune, auto nu este așadar un parametru, înseamnă selectarea aceleia opțiuni de pornire și adăugarea următorilor parametri de pornire la promptul de pornire.

Pentru a ilustra acest lucru, iată câteva exemple care pot fi folosite în promptul de pornire:

```
auto url=autoserver
```

Acest lucru se bazează pe exiștența unui server DHCP care va duce mașina la punctul în care autoserver poate fi rezolvat prin DNS, poate după adăugarea domeniului local dacă acesta a fost furnizat de DHCP. Dacă acest lucru s-a făcut pe un sit în care domeniul este exemplu.com și acesta are o configurare DHCP rezonabilă, ar avea ca rezultat preluarea fișierului de preconfigurare de la http://autoserver. exemplu.com/d-i/bookworm/.preseed.cfg.

Ultima parte a acestei adrese URL d-i/bookworm/.preseed.cfg este preluită de la auto-install/defaulttr

În mod implicit, acesta include directorul bookworm pentru a permite versiunilor viitoare să-și specifice propriul nume de cod și să permită oamenilor să migreze la următoarea versiune într-o manieră controlată. Elementul ./ este folosit pentru a indica o rădăcină, în raport cu care rutele ulterioare pot fi ancoreate (pentru a fi utilizate în preseed/include și preseed/run). Acest lucru permite fișierelor să fie specificate fie ca URL-uri complete, rute care încep cu / care sunt astfel ancoreate, fie chiar rute legate de locația în care a fost găsit ultimul fișier de preconfigurare. Acest lucru poate fi folosit pentru a construi mai multe scripturi portabile în care a întreagă ierarhie de scripturi poate fi mutată într-o nouă locație fără a of a rupture, de exemplu, copierea fișierelor pe un stick USB când înainte erau pe un server web. În acest exemplu, dacă fișierul de preconfigurare definește preseed/run la /scripts/late_command.sh, atunci acesta va fi preluit de la http://auto-installer.exemplu.com/d-i/bookworm/.scripts/late_command.sh.

Dacă nu există o infrastructură locală DHCP sau DNS sau dacă nu doriți să utilizați ruta implicită către preseed.cfg, puteți utiliza totuși o adresă URL explicită, iar dacă nu utilizați elementul ./, va fi ancoreat la începutul rutei (adică al treilea / din adresa URL). Iată un exemplu care necesită suport minim din partea infrastructurii rețelei locale:

```
auto url=<http://192.168.1.2/ruta/la/fib’’sb’’ierul_meu.preconfigurat
```

Modul în care funcționează acesta este următorului:

- dacă adresa URL nu indică un protocol, se presupune că este http,
- dacă secțiunea de nume de gazdă nu conține puncte, domeniul derivat din DHCP, va fi atașat acesteia și
- dacă nu există / după numele gazdei, atunci se adaugă ruta implicită.

Pe lângă specificarea adresei URL, puteți specifica, de asemenea, configurări care nu afectează direct comportamentul debian-installer în sine, dar pot fi transmise către scripturile specifice fososind preseed/run în fișierul de preconfigurare încărcat. În prezent, singurul exemplu în acest sens este auto-install/classes, care are un alias clase. Acesta poate fi folosit astfel:

```
auto url=exemplu.com classes=class_A;class_B
```

Clasele ar putea indica, de exemplu, tipul de sistem care urmează să fie instalat sau localizarea care trebuie utilizată.

Desigur, este posibil să extindați acest concept și, dacă o faceți, este rezonabil să utilizați spațiul de nume de instalare automată pentru aceasta. Deci s-ar putea să aibă ceva de genul auto-install/style care este apoi folosit în scripturile din adresa URL, de exemplu:

```
auto url=http://192.168.1.2/ruta/la/fib’’sb’’ierul_meu.preconfigurat
```

Alegerea de pornire auto nu este încă definită pe toate arhitecturile. Același efect poate fi obținut prin simpla adăugare a celor doi parametri auto=true priority=0 în linia de comandă a noului. Parametrul domeniului auto este un alias pentru auto-install/enable și fixarea acestuia la true împreună întrebările de localizare și de tastatură astfel încât acestea să poată fi preconfigurate, în timp ce priority este un alias pentru debian Boot/loader.select și fixarea acestuia la critmic oprește întrebările cu o prioritate mai scăzută.

Opțiuni suplimentare care pot fi de interes atunci când încercați să automatizați o instalare în timp ce utilizați DHCP sunt: interface=auto netconfig/dhcp_timeout=60, ceea ce face ca mașina să aibă primul NIC viabil și să aibă mai multă răbdare în a obține un răspuns la întrebarea DHCP.
B.2.4 Alias utile cu preconfigurarea

Următoarele alias pot fi utile atunci când utilizați preconfigurarea (modul automat). Rețineți că acestea sunt pur și simplu pseudonime scurte pentru numele întrebărilor și trebuie întotdeauna să specificați și o valoare: de exemplu, auto=true sau interface=eth0.

<table>
<thead>
<tr>
<th>priority</th>
<th>debconf/priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>fb</td>
<td>debian-installer/framebuffer</td>
</tr>
<tr>
<td>auto</td>
<td>auto-install/enable</td>
</tr>
<tr>
<td>classes</td>
<td>auto-install/classes</td>
</tr>
<tr>
<td>file</td>
<td>preseed/file</td>
</tr>
<tr>
<td>url</td>
<td>preseed/url</td>
</tr>
<tr>
<td>theme</td>
<td>debian-installer/theme</td>
</tr>
<tr>
<td>language</td>
<td>debian-installer/language</td>
</tr>
<tr>
<td>country</td>
<td>debian-installer/country</td>
</tr>
<tr>
<td>locale</td>
<td>debian-installer/locale</td>
</tr>
<tr>
<td>keymap</td>
<td>keyboard-configuration/skb-keymap</td>
</tr>
<tr>
<td>modules</td>
<td>anna/choose_modules</td>
</tr>
<tr>
<td>firmware</td>
<td>hw-detect/firmware-lookup</td>
</tr>
<tr>
<td>interface</td>
<td>netcfg/choose_interface</td>
</tr>
<tr>
<td>domain</td>
<td>netcfg/get_domain</td>
</tr>
<tr>
<td>hostname</td>
<td>netcfg/get_hostname</td>
</tr>
<tr>
<td>protocol</td>
<td>mirror/protocol</td>
</tr>
<tr>
<td>suite</td>
<td>mirror/suite</td>
</tr>
<tr>
<td>recommends</td>
<td>base-installer/install-recommends</td>
</tr>
<tr>
<td>tasks</td>
<td>tasksel:tasksel/first</td>
</tr>
<tr>
<td>desktop</td>
<td>tasksel:tasksel/desktop</td>
</tr>
<tr>
<td>preseed-md5</td>
<td>preseed/file/checksum</td>
</tr>
</tbody>
</table>

B.2.5 Exemple de preconfigurare a promptului de pornire

Iată câteva exemple despre cum ar putea arăta promptul de pornire (va trebui să o adaptați nevoilor dvs.).

Pentru a stabili română ca limbă ''ab'' b''šb''i România ca b''tb''arb''ab'':
/install/amd/vmlinuz vga=788 initrd=/install.amd/gtk/initrd.gz language=ro ←
country=RO --- quiet
Pentru a stabili engleza ca limbă ''ab'', Germania ca b''tb''arb''ab'' b''šb''i ←
sb''šab'' utilizab''tb''i un aranjament al tastaturii germane:
/install/amd/vmlinuz vga=788 initrd=/install.amd/gtk/initrd.gz language=en ←
country=DE locale=en_US.UTF-8 keymap=de --- quiet
Pentru a instala biroul MATE:
/install/amd/vmlinuz vga=788 initrd=/install.amd/gtk/initrd.gz desktop=mate-- ←
desktop --- quiet
Pentru a instala sarcina de server Web:
/install/amd/vmlinuz initrd=/install.amd/initrd.gz tasksel:tasksel/first=web-- ←
server ---
B.2.6 Utilizarea unui server DHCP pentru a specifica fșierele de preconfigurare

De asemenea, este posibil să utilizați DHCP pentru a specifica un fișier de preconfigurare de descărcat din rețea. DHCP permite specificarea unui nume de fișier. În mod normal, acesta este un fișier pentru pornirea din rețea (netboot), dar dacă pare a fi o adresă URL, mediile de instalare care acceptă preconfigurarea rețelei vor descărca fișierul de la adresa URL și il vor folosi ca fișier de preconfigurare. Iată un exemplu despre cum să-l definiți în fișierul „dhcpcd.conf” pentru versiunea 3 a serverului ISC DHCP (pachetul isc-dhcp-server Debian).

```
if substring (option vendor-class-identifier, 0, 3) = "d-i" {
    filename "http://host/preseed.cfg";
}
```

Rețineți că exemplul de mai sus limitează acest nume de fișier la clienții DHCP care se identifică ca „d-i”, astfel încât nu va afecta clienții DHCP obișnuiți, ci doar programul de instalare. De asemenea, puteți pune textul într-un bloc de instrucțiuni doar pentru o anumită gazdă, pentru a evita preconfigurarea tuturor instalărilor din rețea.

O modalitate bună de a utiliza preconfigurarea DHCP este să prevestiti numai valorile specifice rețelei dvs., cum ar fi oglinda Debian de utilizat. În acest fel, instalările în rețeaua dvs. vor obține automat o oglindă bună selectată, dar restul instalărilor poate fi efectuată interaktiv. Utilizarea preconfigurării DHCP pentru a automatiza complet instalăriile Debian ar trebui făcută numai cu multă grijă.

B.3 Crearea unui fișier de preconfigurare

Fișierul de preconfigurare este în formatul folosit de comanda `debconf-set-selections`. Formatul general al unei linii într-un fișier de preconfigurare este:

```
<proprietar> <numele întrebă’’ăb’’ii> <tipul întrebă’’ăb’’ii> <valoare>
```

Fișierul trebuie să înceapă cu `#_preseed_V1`

Există câteva reguli de reținut atunci când scrieți un fișier de preconfigurare.

- Punetă doar un singur spațiu sau tab între tip și valoare: orice spațiu alb suplimentar va fi interpretat ca aparținând valorii.
- O linie poate fi împărțită în mai multe linii adăugând o bară oblică inversă ("\") drept caracter de continuare a liniei. Un loc bun pentru a împărți o linie este după numele întrebării; un loc prost este între tip și valoare. Linile divizate vor fi unite într-o singură linie cu toate spațiile albe de început/finala condensate într-un singur spațiu.
- Pentru variabilele (șabloane) debconf utilizate numai în programul de instalare, proprietarul ar trebui să fie fixat la „d-i”: pentru a preconfigura variabilele utilizate în sistemul instalat, trebuie folosit numele pachetului care conține șablona debconf corespunzător. Numai variabilele care au proprietarul fixat la altceva decât „d-i” vor fi propagate în baza de date debconf pentru sistemul instalat.
- Majoritatea întrebărilor trebuie să fie presetate folosind valorile valabile în engleză și nu valorile traduse. Cu toate acestea, există câteva întrebări (de exemplu, în `partman`) în care trebuie folosite valorile traduse.
- Unele întrebări iau ca valoare un cod în loc de textul în limba engleză care este afișat în timpul instalării.
- Începe cu `#_preseed_V1`
- Un comentariu constă dintr-o linie care `incepe` cu un caracter hash („#”) și se extinde până la lungimea acelei linii.

Cel mai simplu mod de a crea un fișier de preconfigurare este să utilizați fișierul exemplu prezentat în Secțiune B.4 ca bază, și să lucrati de acolo.

O metodă alternativă este de a face o instalare manuală și apoi, după repornire, să utilizați `debconf-get-selections` din pachetul `debconf-utils` pentru a descărcă atât baza de date debconf, cât și baza de date cdebconf a programului de instalare într-un singur fișier:

```
$ echo "#_preseed_V1" | < i>fib’’gb’’ier</i>
$ debconf-get-selections --installer | < i>fib’’gb’’ier</i>
$ debconf-get-selections | < i>fib’’gb’’ier</i>
```
Cu toate acestea, un fișier generat în acest mod va avea unele elemente care nu ar trebui să fie preconfigure, iar fișierul exemplu este un loc de pornire mai bun pentru majoritatea utilizatorilor.

Notă
Această metodă se bazează pe faptul că, la sfârșitul instalării, baza de date cdeb-conf a programului de instalare este salvată în sistemul instalat în `/var/log/installer/cdebconf`. Cu toate acestea, deoarece baza de date poate conține informații sensibile, în mod implicit fișierele pot fi citite numai de către root.

Directorul `/var/log/installer` și toate fișierele din acesta vor fi șterse din sistemul dumneavoastră dacă ștergeți pachetul `installation-report`.

Pentru a verifica valorile posibile pentru întrebări, puteți utiliza editorul `nano` pentru a examina fișierele din `/var/lib/cdebconf` în timp ce o instalare este în curs. Vizualizați `templates.dat` pentru șabloanele brute și `questions.dat` pentru valorile curente și pentru valorile atribuite variabilor.

Pentru a verifica dacă formatul fișierului de preconfigurare este valid înainte de a efectua o instalare, puteți utiliza comanda `debconf-set-selections -c preseed.cfg`.

B.4 Conținutul fișierului de preconfigurare (pentru bookworm)

Fragmentele de configurare utilizeate în această anexă sunt, de asemenea, disponibile ca exemplu de fișier de preconfigurare în https://www.debian.org/releases/bookworm/example-preseed.txt.

Rețineți că acest exemplu se bazează pe o instalare pentru arhitectura Intel x86. Dacă instalați o arhitectură diferită, unele dintre exemple (cum ar fi selecția tastaturii și instalarea încărcătorului de pornire) pot să nu fie relevante și vor trebui înlocuite cu setările deconful adecvate pentru arhitectura dvs.

Detaliul despre modul în care funcționează efectiv diferitele componente ale programului de instalare Debian pot fi găsite în Secțiune 6.3.

B.4.1 Localizarea

În timpul unei instalări normale, întrebările despre localizare sunt puse mai întâi, astfel încât aceste valori pot fi pre stabilite numai prin metoda „intrîr” sau cea a parametrilor de pornire a nucleului. Modul automat (Secțiune B.2.3) include parametrul predefinit `auto-install/enable=true` (în mod normal prin variabila-alias de preconfigurare `auto`). Acest lucru întârzie adresarea întrebărilor de localizare, astfel încât acestea să poată fi pre stabilite prin orice metodă.

Localizarea poate fi folosită pentru a specifică atât limba, cât și țara și poate fi orice combinație de limbă acceptată de `debian-installer` și o țară recunoscută. Dacă combinația nu formează o localizare validă, programul de instalare va selecta automat o localizare care este validă pentru limba selectată. Pentru a specifica localizarea ca parametru de pornire, utilizați `locale=ro_RO`.

Deși această metodă este foarte ușor de utilizat, nu permite preconfigurarea tuturor combinațiilor posibile de limbă, țară și localizare locale⁵. Deci, alternativ, valorile pot fi preconfigurate individual. Limba și țara pot fi, de asemenea, specifice ca parametru de pornire.

Preconfigurând locale la en_GB, în exemplul dat, ar avea ca rezultat a en_GB.UTF-8 ca localizare implicită locale pentru sistemul instalat. Dacă de exemplu, se preferă en_US.UTF-8, valorile vor trebui să fie preconfigure individual.

³Preconfigurând locale la **en_NL**, în exemplul dat, ar avea ca rezultat a **en_US.UTF-8** ca localizare implicită locale pentru sistemul instalat. Dacă de exemplu, se preferă **en_GB.UTF-8**, valorile vor trebui să fie preconfigure individual.
Configurarea tastaturii constă în selectarea unui aranjament de tastatură și (pentru aranjamentele de tastaturi non-latine) o tastă de comutare pentru a comuta între aranjamentul tastaturii non-latine și aranjamentul tastaturii SUA. Doar variantele de bază ale aranjamentului de tastatură sunt disponibile în timpul instalării. Variante avansate sunt disponibile numai în sistemul instalat, prin `dpkg-reconfigure keyboard-configuration`.

```
# Selectarea tastaturii.
d-i keyboard-configuration/xkb-keymap select ro(Lat2-Terminus16)
```

Pentru a sări peste configurarea tastaturii, prefixați variabila `keymap` la valoarea `skip-config` (omite-configurarea). Acest lucru va duce la rămânerea activă a aranjamentului tastaturii nucleului.

B.4.2 Configurarea rețelei

Desigur, preconfigurarea rețelei nu va funcționa dacă încărcați fișierul de preconfigurare din rețea. Dar este perfectă când porniți de pe un disc optic sau un stick USB. Dacă încărcați fișier de preconfigurare din rețea, puteți pasă parametrii de configurare a rețelei utilizând parametrul `interface` în `preseed/url`, dacă doriti să deschideti fișierul de configurare din rețea. De exemplu, dacă doriți să configurați fișierul `network.config` (folosind „preseed/url”), puteți utiliza următorul truc pentru a ocoli acest lucru, de exemplu, dacă doriți să deschideți fișierul de configurare din rețea.

```
interface=eth1
```

Acest lucru vă permite să vindecați fișierul de configurare și să-l înlocuiți cu fișierul `network.config` pentru a continua instalarea.

Desigur, preconfigurarea rețelei nu este în mod normal posibilă atunci când se utilizează predefinirea rețelei (folosind „preseed/url”), puteți utiliza următorul truc pentru a deschide fișierul de configurare din rețea:

```
kill-all-dhcp; netcfg
```

Următoarele variabile de configundă sunt relevante pentru configurarea rețelei.

```
# Desactiveazăb''ăb'' complet configurab''țb''ia reb''țb''elei. Acest lucru este ←
util pentru
# instab''ăb''riele CDROM pe mab''șb''ini care nu sunt conectate la reb''țb''ea, ←
unde intrereb''ăb''rile
# de reb''țb''ea, avertismentele b''șb''i timpii de ab''șb''teptare lungi sunt o ←
pacoste.
#d-i netcfg/disable boolean false

# netcfg va alege o interfab''țb''b''ăb'' care are conexiune, dacab''ăb'' este ←
# lucru face ca sb''ăb'' nu se afib''șb''eze o listb''ăb'' dacab''ăb'' existb'' ←
''ăb'' mai mult de o interfab''țb''b''ăb''.
#d-i netcfg/choose_interface select auto

# În schimb, pentru a alege o anumitb''ăb'' interfab''țb''b''ăb'':
#d-i netcfg/choose_interface select eth1

# Pentru a stabiili un interval de timp diferit pentru detectarea conexiunii
# (valoarea implicitb''ăb'' este de 3 secunde). Valorile sunt interpretate ca ←
# secunde.
#d-i netcfg/link_wait_timeout string 10

# Dacb''ăb'' aveb''țb''i un server dhcp lent b''șb''i programul de instalare se ←
# oprebt''șb''te in
# ab''șb''teptarea acestuia, acest lucru ar putea fi uti:
#d-i netcfg/dhcp_timeout string 60
#d-i netcfg/dchpgrv6_timeout string 60

# În mod implicit, configurarea reb''țb''elei este automatb''ăb''.
# Dacb''ăb''i preferab''țb''i sb''ăb'' configurab''țb''i manual reb''țb''eaua, ←
# decomentab''țb''i acestab''ăb'' linie b''șb''i
# configurab''țb''ia staticb''ăb'' de reb''țb''ea de mai jos.
#d-i netcfg/disable_autoconfig boolean true

# Dacb''ăb'' dorib''țb''i ca fib''șb''ierul de preconfigurare sb''ăb'' funcb' ←
''țb''ioneze pe sisteme atât cu,
```
Vă rugăm să rețineți că netcfg va determina automat masca de rețea dacă netcfg/get_netmask nu este preconfigurată. În acest caz, variabilă trebuie să fie marcată ca seen pentru instalări automate. În mod similar, netcfg va alege o adresă adecvată dacă netcfg/get_gateway nu este definită. Ca un caz special, puteți definii netcfg/get_gateway la „none” pentru a specifica că nu trebuie utilizată nicio pasarela(poartă de acces).
B.4.3 Consola de rețea

Utilizab`'tb''i urmab''ab''toarele configurab''ab''ri dacab''ab'' dorib''tb''i sb'' ←
`ab'' utilizab''tb''i componenta consolab''ab''
de reb''tb''ea pentru instalarea de la distanb''tb''i''ab'' prin SSH. Acest ←
lucru are sens numai
dacab''ab'' intenb''tb''ionab''tb''i sb''ab'' efectuab''tb''i manual restul ←
instalb''ab''rii.
#d-i anna/choose_modules string network-console
#d-i network-console/authorized_keys_url string http://10.0.0.1/openssh-key
#d-i network-console/password password rootme
#d-i network-console/password-again password rootme

Mai multe informații referitoare la consola de rețea pot fi găsite în Secțiune 6.3.10.

B.4.4 Configurări pentru oglindă

În funcție de metoda de instalare pe care o utilizați, o oglindă poate fi utilizată pentru a descărca componentele suplimentare ale programului de instalare, pentru a instala sistemul de bază și pentru a crea fișierul de configurare /etc/apt/sources.list pentru sistemul instalat.

Parametrul mirror/suite determină distribuția pentru sistemul instalat.

Parametrul mirror/udeb/suite determină distribuția pentru componentele suplimentare ale programului de instalare. Este utilă să definiți acest parametru numai dacă componentele sunt efectiv descărcate prin rețea și ar trebui să corespundă distribuției care a fost utilizată pentru a construi fișierul „inițial” pentru metoda de instalare utilizată pentru instalare. În mod normal, programul de instalare va utiliza automat valoarea corectă și nu ar trebui să fie nevoie să definiți acest lucru.

Protocol oglindb''ab'':
Dacab''ab'' selectab''tb''i ftp, nu este necesar sb''ab'' definib''tb''i b''sb'' ←
irul b''i''b''mirror/countryb''b''.
Valoarea implicitb''ab'' pentru protocolul oglinzii este: http.
#d-i mirror/protocol string ftp
d-i mirror/country string manual
d-i mirror/http/name string http.us.debian.org
d-i mirror/http/directory string /debian
d-i mirror/http/proxy string

Distribub''tb''ia de instalat.
#d-i mirror/suite string testing
Distribub''tb''ia de utilizat pentru incb''ab''rcarea componentelor programului
de instalare (opb''tb''ional).
#d-i mirror/udeb/suite string testing

B.4.5 Configurarea contului

Parola pentru contul root și numele și parola pentru primul cont de utilizator obișnuit pot fi predefinite. Pentru parole puteți folosi fie valori în text clar, fie hashes crypt(3) (rezultatul algoritmilor de criptare asupra acestor valori în text clar).

AVERTISMENT

Rețineți că predefinirea parolelor nu este complet sigură, deoarece toți cei care au acces la fișierul de preconfigurare vor avea cunoștințe despre aceste parole. Stocarea parolelor cu algoritmi de criptare este considerată sigură, cu excepția cazului în care se utilizează un algoritm de criptare slab, cum ar fi DES sau MD5, care permite atacuri de „forță brută”. Algoritmi recomandați de criptare a parolei sunt SHA-256 și SHA512.
Omiteb’’tb’’i crearea unui cont root (contul de utilizator normal va putea
utiliza sudo).
#-d-i passwd/root-login boolean false
Alternativ, pentru a omite crearea unui cont de utilizator normal.
#-d-i passwd/make-user boolean false

Parola de root, fie în text clar ...
#-d-i passwd/root-password password Eu_r00t-Debian
#-d-i passwd/root-password-again password Eu_r00t-Debian
... fie criptatb’’ab’’ folosind un algoritm de criptare b’’b’’hash crypt(3)b’’
#-d-i passwd/root-password-crypted password [crypt(3) hash]

Pentru a crea un cont de utilizator normal.
#-d-i passwd/user-fullname string Debian User
#-d-i passwd/username string debian
Parola utilizatorului normal, fie în text clar ...
#-d-i passwd/user-password password eu_Utilizator-Debian
#-d-i passwd/user-password-again password eu_Utilizator-Debian
... fie criptatb’’ab’’ folosind un algoritm de criptare b’’b’’hash crypt(3)b’’
#-d-i passwd/user-password-crypted password [crypt(3) hash]
Creab’’tb’’i primul utilizator cu identificatorul de utilizator (UID) specifical
în loc de cel implicit.
#-d-i passwd/user-uid string 1010

Contul de utilizator va fi adb’’ab’’ugat la unele grupuri iniib’’tb’’iale standard. Pentru
a controla cb’’ab’’ror grupuri va fi adb’’ab’’ugat acest cont de utilizator, utilizab’’tb’’i de
exemplu:
#-d-i passwd/user-default-groups string audio cdrom video
pentru al adb’’ab’’uga grupurilor b’’b’’audiob’’b’’b’’ cdromb’’b’’b’’ b’’
#’’b’’videob’’b’’.

Variabilele passwd/root-password-crypted și passwd/user-password-crypted pot fi, de asemenea, predefinite cu „!” ca valoare. În acest caz, contul corespunzător este dezactivat. Acest lucru poate fi convenabil pentru contul root, cu condiția, desigur, că o metodă alternativă este configurată pentru a permite activități administrative sau autentificare root (de exemplu, folosind autentificarea cu cheie SSH sau comanda sudo).

Următoarea comandă (disponibilă din pachetul whois) poate fi folosită pentru a genera un hash crypt(3) bazat pe SHA-512 pentru o parolă (o parolă criptată utilizând algoritmul SHA-512):

mkpasswd -m sha-512

B.4.6 Configurarea ceasului și a fusului orar

Controleazăb’’ab’’ dacb’’ab’’ ceasul hardware este fixat la UTC.
#-d-i clock-setup/utc boolean true

Puteb’’tb’’i stabiliii aceasta la orice valoare validb’’ab’’ pentru STZ; consultab’’tb’’i
conb’’tb’’inutul directorului b’’b’’/usr/share/zoneinfo/b’’b’’ pentru valori valide.
#-d-i time-zone string Europe/Bucharest

Controleazăb’’ab’’ dacb’’ab’’ se utilizeazăb’’ab’’ NTP pentru a configura ceasul în timpul
instalb’’ab’’rii
#-d-i clock-setup/ntp boolean true
Server NTP de utilizat. Valoarea implicitb’’ab’’ este aproape întotdeauna bnb’’ab’’ aici.
B.4.7 Partiționarea

Utilizarea preconfigurării pentru partiționarea discului dur/solid este limitată la ceea ce este suportat de partman-auto. Puteți alege să partiționați fie spațiul liber existent pe un disc, fie un întreg disc. Dispunerea partițiilor pe disc poate fi determinată folosind o rețetă predefinită, o rețetă personalizată dintr-un fișier de rețetă sau o rețetă inclusă în fișierul de preconfigurare.

Preconfigurarea opțiunilor avansate de partiție folosind RAID, LVM și criptare este acceptată, dar nu cu flexibilitatea deplină oferită atunci când partiționați în timp unei instalații fără preconfigurare.

AVERTISMENT

Identificarea discurilor depinde de ordinea în care sunt încărcate controlorii acestora. Dacă există mai multe discuri în sistem, asigurați-vă că va fi selectat cel corect înainte de a utiliza preconfigurarea.

B.4.7.1 Exemplu de partiționare

```
# Dacă "abh" sistemul are spab"tb"iu liber, puteți "tb"i alege sb""abh" partib ← "tb"ionab""tb"i doar acel spab""tb"iu.
# Acest lucru este respectat numai dacă""abh" variabilab""b"partman-auto/ ← methodb""b" (mai
# jos) nu este definitb""abh".
#-d i partman-auto/init automatically_partition select biggest_free

# Alternativ, puteți "tb"i specifica un disc de partitib""tb"iionat. Dacă""abh" ← sistemul are un
# singur disc, programul de instalare îl va folosi implicit, dar în caz contrar,
# numele dispozitivului trebuie spab""abh" fie dat în format tradib""tb"iional, non ← -devfs (de
# exemplu, b""b"/dev/sdb""b" b""sb"i nu, de exemplu, b""b"/dev/discs/ ← disc0/discb""b"").
# De exemplu, pentru a utiliza primul disc dur/solid SCSI/SATA:
#-d i partman-auto/disk string /dev/sda
# În plus, va trebui sb""abh" specificab""tb"i metoda de utilizat.
# Metodele disponibile în prezent sunt urmab""toarele:
#- regular: utilizeazb""abh" tipurile obib""sb"nuite de partitib""tb"ii pentru ← arhitectura dvs.
#- lvm: utilizeazb""abh" LVM pentru a partitib""tb"iion discul
#- crypto: utilizeazb""abh" LVM în cadrul unei partitib""tb"ii criptate
#-d i partman-auto/method string lvm

# Puteți "tb"i defini cantitatea de spab""tb"iu care va fi utilizatb""abh" ← pentru grupul de
# volume LVM. Poate sb""abh" fie o dimensiune cu unitatea sa (de ex. 20 GB), un
# procent de spab""tb"iu liber sau cuvântul cheie b""b"maxb""b".
#-d i partman-auto/lvm/guided_size string max

# Dacă""abh" unul dintre discurile care urmeazb""abh" sb""abh" fie partitib""tb" ←
# iionate automat conib""tb"iine
# o configurab""tb"ie LVM veche, utilizatorul va primi în mod normal un ←
# avertisment.
# Acest lucru poate fi evitat, preconfigurând...
#-d i partman-lvm/device_remove_lvm boolean true
```
ANEXA B. AUTOMATIZAREA INSTALĂRII ...

B.4. CONŢINUTUL FIŞIERULUI DE ...

Acelaş' i lucră este valabil b'şb''i pentru ansamblul RAID software ←
preexistent:
d-i partman-md/device_remove_md boolean true
b'şb''i acelab'şb''i lucră este valabil b'şb''i pentru confirmarea de a ←
scrie partitb'tb''iile lvm:
d-i partman-lvm/confirm boolean true
d-i partman-lvm/confirm_nooverwrite boolean true

Puteb'tb''i alege una dintre cele trei reb''tb''ete de partitb''tb''ionare ←
predefinite:
- atomic: toate fib'şb''ierele într-o singurb'şb'' partitb''tb''ie
- home: partitb'tb''ie /home separatb'şb''
- multi: partitb'tb''ii /home, /var, b'şb''i /tmp separate
d-i partman-auto/choose_recipe select atomic

Sau oferib'tb''i o reb''tb''etb'şb'' proprietie...
Dacb'şb''u aveb'tb''i o modalitate de a introduce un fib'şb''ier de reb''tb'' ←
etb'şb'' în mediul d-i,
puteb'tb''i pur b'şb''i simplu sb'şb'' il indicab'tb''i.
#d-i partman-auto/expert_recipe_file string /hd-media/recipe

Dacb'şb'' nu, puteb'tb''i pune o reb''tb''etb'şb'' întreagb'şb'' în fib' ←
'sb''ierul de preconfigurare într-o
singurb'şb'' linie (logicb'şb''). Acest exemplu creeab'şb'' o partitb''tb'' ←
 ie micb'şb'' /boot, o partitb''tb''ie
pentru spab'tb''iul de interschimb (swap) adecvatb'şb'' b'şb''i foloseb' ←
'sb''te restul spab'tb''iului
pentru partitb''tb''ia rb'şb''db'şb''cinb'şb'':
#d-i partman-auto/expert_recipe string
boot-root ::
40 50 100 ext3
$primary{ } $bootable{ }
method{ format } format{ }
use_filesystem{ } filesystem{ ext3 }
mountpoint{ /boot }

500 10000 1000000000 ext3
method{ format } format{ }
use_filesystem{ } filesystem{ ext3 }
mountpoint{ / }

64 512 300% linux-swap
method{ swap } format{ }

Formatul complet al reb''tb''etei este documentat în fib''şb''ierul partman- ←
auto-recipe.txt
inclus în pachetul b''["b'"debian-installerb"b'" sau disponibil din depozitul ←
surs"b'" D-1.
Aceasta documenteazb'şb'', de asemenea, modul de specificare al opb''tb'' ←
iunilor,
cu ar fi etichetele sistemului de fib''şb''iere, numele grupurilor de volume b ←
''şb''i ce
dispozitive fizice sb''ab'' fie incluse într-un grup de volume.

Partitb'tb''ionarea pentru EFI
Dacb'şb'' sistemul dvs. are nevoie de o partitb''tb''ie EFI, puteb'tb''i adb' ←
''şb''uga ceva de genul
acesta la reb''tb''eta de mai sus, ca prim element din reb''tb''etb'şb'':
538 538 1075 free
$iflabel{ gpt }
$reusemethod{ }
method{ efi }
format{ }

Fragmentul de mai sus este pentru arhitectura b"\"b"\"amd64b"\"b"\"; detaliile ← pot fi # diferite pe alte arhitecturi. Pachetul b"\"b"\"partman-autob"\"b"\" din depozitul ← surse "\"a\"" D-I # poate avea un exemplu pe care il puteb"\"tb"\"i urma. # Acest lucru face ca partman\n\n``sb\"\"ab\"\" partib\"tb\"\'ioneze automat fb\"\"ab\"\"rb\"\' confirmare, cu # condib\"tb\"\'ia sb\"\"ab\"\"-i spuneb\"tb\"\'i ce sb\"\"ab\"\" facb\"\"ab\"\' folosind una ← dintre metodele de mai sus. d-i partman-partitioning/confirm_write_new_label boolean true d-i partman/choose_partition select finish d-i partman/confirm boolean true d-i partman/confirm_nooverwrite boolean true # Forb\"\"tb\"\'eazb\"\"ab\"\' pornirea UEFI (b"\"b"\"compatibilitatea BIOSb\"b"\" se va ← pierde). Implicit: b"\"b"\"falseb"\"b"\" #d-i partman-efi/non_efi_system boolean true # Asigurab\"tb\"\'i\-vb\"\"ab\"\" cb\"\"ab\"\' tabela de partib\"tb\"\'ii este GPT - acest ← lucru este necesar # pentru EFI: #d-i partman-partitioning/choose_label select gpt #d-i partman-partitioning/default_label string gpt # Când criptarea discului este activatb\"\"ab\"\', omite b\"\"sb\"\"tergerea prealabilb\" ← \"\"ab\"\' a partib\"tb\"\'iiilor: #d-i partman-auto-crypto/erase_disks boolean false

B.4.7.2 Partiționarea utilizând RAID

De asemenea, puteți utiliza preconfigurarea pentru a configura partitii pe ansambluri RAID software. Sunt acceptate nivelurile RAID 0, 1, 5, 6 și 10, creând ansambluri reduce și specificând dispozitive de rezervă.

AVERTISMENT

Acest tip de partiționare automată este ușor de greșit. Este, de asemenea, funcționalitatea care primește relativ puține teste de la dezvoltatorii debian-installer. Responsabilitatea de a obține diferitele rețete corecte (deci să albă sens și să nu între în conflict) revine utilizatorului. Verificați mesajele din fișierul /var/log/syslog dacă întâmpinați probleme.

```
# Metoda trebuie sb\"\"ab\"\" fie fixatb\"\"ab\"\' la b\"\"b\"\"raidb\"\"b\"\'. #d-i partman-auto/method string raid # Specificab\"\"tb\"\'i discurile care urmeazb\"\"ab\"\' sb\"\"ab\"\' fie partib\"\"tb\"\'ionate. ← Toate discurile vor # primi aceeab\"\"sb\"\'i schemb\"\"ab\"\' de partib\"\"tb\"\'ionate, deci acest lucru va ← funcb\"\"tb\"\'iona numai # dacb\"\"ab\"\' discurile au aceab\"\"sb\"\'i dimensiune. #d-i partman-auto/disk string /dev/sda /dev/sdb # Apoi, trebuie sb\"\"ab\"\" specificab\"\"tb\"\'i partib\"\"tb\"\'iiile fizice care vor fi ← utilizate. #d-i partman-auto/expert_recipe string 
    multiraid :: 
    # 1000 5000 4000 raid
    $primary{ } method{ raid }
    # .
    # 64 512 300% raid
    # method{ raid }
```
B.4.4. CONTINUTUL FIȘIERULUI DE CONFIGURARE

ANEXA B. AUTOMATIZAREA INSTALĂRII

B.4.7.3 Controlarea modului de montare a partițiilor

În mod normal, sistemele de fișiere sunt montate folosind un identificator unic universal (UUID); acest lucru le permite să fie montate corect chiar dacă numele dispozitivelui lor se schimbă. Identificatoarele acesteia sunt lungi și greu de citit, așa că dacă preferați, instalatorul poate monta sistemul de fișiere pe baza numelor tradiționale de dispozitiv sau pe baza unei etichete pe care o atribuiți. Dacă cereti instalatorului să monteze după etichetă, orice sistem de fișiere fără etichetă vor fi montate folosind un UUID.

Dispozitivele cu nume stabilă, cum ar fi volumele logice LVM, vor continua să folosească numele lor tradiționale, mai degrabă decât un UUID.

AVERTISMENT

Numele tradiționale de dispozitive se pot schimba în funcție de ordinea în care nucleul descoperă dispozitivele la pornire, ceea ce poate duce la montarea unui sistem de fișiere greșit. În mod similar, este posibil ca etichetele să intre în conflict dacă conectați un nou disc sau o unitate USB și, dacă se întâmplă acest lucru, comportamentul sistemului de montare va fi aleatoriu.
B.4.8 Instalarea sistemului de bază

Puşte elemente pot fi preconfigurate în această etapă a instalării. Singurele întrebări puse se referă la instalarea nucleului.

```
# Implicit este montarea prin UUID, dar puteb'ţb''i alege b''şb''i b''u''b''' ←
# a utiliza nume tradib'ţb'''ionale de dispozitive sau b''u''b''labelb'"b'" pentru ←
# a încerca
# etichete sistemului de fib'şb'iere înainte de a reveni la UUID.
#-d-i partman/mount_style select uuid
```

B.4.9 Configurarea lui «apt»

Configurarea fișierului /etc/apt/sources.list și a opțiunilor de configurare de bază este complet automatizată pe baza metodei dvs. de instalare și a răspunsurilor la întrebările anterioare. Puteți adăuga opțional și alte depozite (locale).

```
# Alegeb'ţb''i dacb'"b'' dorib'ţb''i sb''şb'' scanab'ţb''i medii de instalare ←
suplimentare
# (implicit: b''u''b''falseb''b'').
#-d-i apt-setup/cdrom/set-first boolean false
# Puteb'ţb''i alege sb''şb'' instalab'ţb''i software din arhivele b''u''b''non- ←
# freeb''b'' b''şb''i b''u''b''contribb'"b'".
#-d-i apt-setup/non-free boolean true
#-d-i apt-setup/contrb boolean true
# Înfb'şb'"eerul b''u''b'sources.listb'"b'' intrarea pentru o imagine de ←
# instalare DVD/BD activb'"b''
# În sistemul instalat (intrarile pentru imaginile netinst sau CD vor fi oricum
# dezactivate, indiferent de aceastb'"b'' setare).
#-d-i apt-setup/disable-cdrom-entries boolean true
# Înfb'şb'"eerul b''i de comentariu dacb'"b'' nu dorib'ţb''i sb''şb'' ←
# utilizab'ţb''i o oglindb'"b'' de reb'ţb''ea;
#-d-i apt-setup/use_mirror boolean false
# Selectab'ţb''i ce servicii de actualizare sb''şb'' utilizab'ţb''i; definib' ←
# 'ţb''i oglinziile care
# vor fi utilizate.
# Valorile prezentate mai jos sunt valorile implicite normale.
#-d-i apt-setup/services-select multiselect security, updates
#-d-i apt-setup/security_host string security.debian.org
# Depozite suplimentare, locale[0-9] disponibile:
#-d-i apt-setup/local0/repository string
# http://local.server/debian stable main
#-d-i apt-setup/local0/comment string local server
# Activab'ţb''i liniile b''u''b''deb-srcb'"b'':
#-d-i apt-setup/local0/source boolean true
# Adresa URL pentru cheia publicb'"b'' a depozitului local; trebuie sb''şb'' ←
# furnizab'ţb''i
```

81
B.4.10 Selectarea pachetelor

Puteți alege să instalați orice combinație de sarcini disponibile. Sarcinile disponibile la momentul scrierii acestui document includ:

- **standard** (Instrumente standard)
- **desktop** (Mediu de birou grafic)
- **gnome-desktop** (Mediu de birou Gnome)
- **xfce-desktop** (Mediu de birou XFCE)
- **kde-desktop** (Mediu de birou KDE Plasma)
- **cinnamon-desktop** (Mediu de birou Cinnamon)
- **mate-desktop** (Mediu de birou MATE)
- **lxde-desktop** (Mediu de birou LXDE)
- **web-server** (Server Web)
- **ssh-server** (Server SSH)

De asemenea, puteți alege să nu instalați sarcini și să forțați instalarea unui set de pachete într-un alt mod. Vă recomandăm să includeți întotdeauna sarcina `standard`.

Sau dacă doriti ca dialogul «tasksel» să nu fie afișat deloc, predefiniți `pkgsel/run_tasksel` (nu sunt instalate pachete prin «tasksel» în acest caz).

Dacă doriți să instalați unele pachete individuale în plus față de pachetele instalate de sarcinile predefinite de instalare, puteți utiliza parametrul `pkgsel/include`. Valoarea acestui parametr poate fi o listă de pachete separate prin virgule sau spații, ceea ce îi permite să fie folosit cu ușurință și pe linia de comandă a nucleului.
#tasksel tasksel/first multiselect standard, web-server, kde-desktop

Sau alegeb’’tb’’i sb’’âb’’ nu afib’’şb’’ab’’tb’’i deloc dialogul »tasksel« (b’’şb’’i nu instalab’’tb’’i niciun
pachet):
#d-i pkgsel/run_tasksel boolean false

Pachete suplimentare individuale de instalat
#d-i pkgsel/include string openssh-server build-essential
Dacb’’âb’’ se actualizeazb’’âb’’ pachetele dupb’’âb’’ debootstrap.
Valorile permise sunt: b’’mb’’’’noneb’’b’’ (niciunul), b’’mb’’’’safe-upgradeb’’b’’ (actualizare sigurb’’âb’’),
b’’mb’’’’full-upgradeb’’b’’ (actualizare completb’’âb’’)
#d-i pkgsel/upgrade select none

Puteb’’tb’’i alege dacb’’âb’’ sistemul dumneavoastrb’’âb’’ va raporta ce ←
software ab’’tb’’i instalat
b’’šb’’i ce software utilizab’’tb’’i. Implicit este de a nu raporta, dar ←
trimiterea de
rapoarte ajutb’’âb’’ proiectul sb’’âb’’ determine ce software este cel mai ←
popular b’’šb’’i ar
trebui inclus pe primul CD/DVD.
#popularity-contest popularity-contest/participate boolean false

B.4.11 Finalizarea instalării

În timpul instalb’’âb’’rilor din consola serialb’’âb’’”, consolele virtuale obib ←
’’şb’’nuite
(VT1–VT6) sunt în mod normal dezactivate în b’’mb’’/etc/inittabb’’b’’. Înlb’ ←
’’âb’’turab’’tb’’i marca
de comentariu din urnb’’âb’’toarea linie pentru a preveni acest lucru.
#d-i finish-install/keep-consoles boolean true

Evitab’’tb’’i ultimul mesaj despre finalizarea instalb’’âb’’rii.
#d-i finish-install/boost_in_progress note

Acest lucru va împedica programul de instalare sb’’âb’’ scoatb’’âb’’ CD-ul în ←
timpul
repornirii, ceea ce este util în unele situab’’tb’’ii.
#d-i cdrom-detect/eject boolean false

Acesta este modul în care puteb’’tb’’i face ca programul de instalare sb’’âb’’ ←
se opreascb’’âb’’
dupb’’âb’’ ce terminb’’âb’’, dar sb’’âb’’ nu reporneascb’’âb’’ în sistemul ←
instalat.
#d-i debian-installer/exit/halt boolean true

Acest lucru va deconecta mab’’šb’’ina în loc sb’’âb’’ o opreascb’’âb’’ pur b’ ←
’’šb’’i simplu.
#d-i debian-installer/exit/poweroff boolean true

B.4.12 Preconfigurarea altor pachete

În funcb’’tb’’ie de software-ul pe care alegeb’’tb’’i sb’’âb’’–1 instalab’’tb’’ ←
i sau dacb’’âb’’ lucrurile
merg prost în timpul procesului de instalare, este posibil sb’’âb’’ vi se punb’ ←
’’âb’’ alte
întreb’’âb’’rii. Le puteb’’tb’’i preconfigura b’’šb’’i pe acestea, desigur. ←
Pentru a obb’’tb’’ine o
listb’’âb’’ cu toate întreb’’âb’’riile posibile care ar putea fi puse în timpul ←
unei
B.5 Opțiuni avansate

B.5.1 Rularea comenzilor personalizate în timpul instalării

O opțiune foarte puternică și flexibilă oferită de instrumentele de preconfigurare este capacitatea de a rula comenzii sau scripturi în anumite puncte ale instalării.

Când sistemul de fișiere al sistemului țintă este montat, acesta este disponibil în /target. Dacă se folosește un CD de instalare, atunci când este montat, acesta este disponibil în /cdrom.

Preconfigurarea d-i este în mod inerent nesigurb'âb'. Nimic din programul de instalare nu verificb'âb' încercb'âb' rile de depb'âb' b'şb' iere a ← memorie tampon sau alte
exploitb'âb' ri ale valorilor unui fib'şb' ier de preconfigurare ca acesta. ← Utilizab'ţb' ini
numai fib'şb' iere de preconfigurare din locab'ţb' iia de încredere! Din acest ← motiv,
b'şb' i pentru cb'âb' este în general util, istb'âb' o modalitate de a ← rula automat orice
comandb'âb' de shell pe care o doib'ţb' i în interiorul programului de ← instalare.

Aceastb'âb' primb'âb' comandb'âb' este executab'âb' cât mai devreme ← posibil, imediat
dubp'âb' ce este citib'âb' preconfigurarea.
#d-i preseed/early_command string anna-install some-udeb
Aceastb'âb' comandb'âb' se executb'âb' imediat înainte de pornirea ← programului de
partib'ţb' ionare. Poate fi utilib'âb' pentru a aplica preconfigurarea ← dinamicb'âb' a
programului de partib'ţb' ionare, care depinde de starea discurilor (care ← poate
sb'şb' nu fie vizibilb'âb' atunci când se executb'âb' preseed/ ← early_command).
#d-i partn/early_command
string debconf-set partman-auto/disk "$(list-devices disk | head -n1)"
Aceastb'âb' comandb'âb' este rulatb'âb' chiar înainte de finalizarea ← instalb'âb' iei, dar când
incb'âb' mai existb'âb' un director /target utilizabil. Puteb'ţb' i sb' ← 'âb' faceb'ţb' i chroot la
/target b'sb' i s-o utilizab'ţb' i direct, sau sb'âb' utilizab'ţb' i ← comenziле «apt-install» b'sb' i
«in-target» pentru a instala cu ub'sb' urinb'ţb' b'sb' i pachete b'sb' i a ← rula comenzii în sistemul
b'ţb' intb'âb' .
#d-i preseed/late_command string apt-install zsh; in-target chsh -s /bin/zsh

B.5.2 Utilizarea preconfigurării pentru a modifica valorile implicite

Este posibil să se utilizeze preconfigurarea pentru a schimba răspunsul implicit la o întrebare, dar întrebarea să fie totuși adresată. Pentru a face acest lucru, fanionul seen trebuie restabilit la „false” după stabilirea valorii unei întrebări.

d-i foo/bar string value
d-i foo/bar seen false

Același efect poate fi obținut pentru toate întrebările prin pasarea parametrului preseed/interactive=true la promptul de pornire. Acest lucru poate fi util și pentru testarea sau depanarea fișierului de preconfigurare.
B.2.2

Rețineți că proprietarul „d-i” ar trebui folosit numai pentru variabilele utilizate în programul de instalare însuși. Pentru variabilele care aparțin pachetelor instalate pe sistemul țintă, ar trebui să utilizați în schimb numele pachetului respectiv. Consultați nota de subsol la Secțiune B.2.2.

Dacă preconfigurării folosind parametrii de pornire, puteți determina instalatorului să pună întrebarea corespunzătoare utilizând operatorul „?=" adică `foo/bar=valoare` sau `proprietar:foo/bar=valoare` . Desigur, acest lucru va avea efect numai pentru parametrii care corespund întrebărilor care sunt de fapt afișate în timpul unei instalări și nu pentru parametrii „interni”.

Pentru mai multe informații de depanare, utilizați parametrul de pornire `DEBCONF_DEBUG=5`. Acest lucru va face ca `debconf` să imprime mult mai multe detalii despre valorile curente ale fiecărei variabile și despre progresul acestuia prin scripturile de instalare ale fiecărui pachet.

B.5.3 Încârcarea în lanț a fișierelor de preconfigurare

Este posibil să includeți și alte fișiere de preconfigurare într-un fișier de preconfigurare. Orice configurări din acele fișiere vor înlocui configurările preexistente din fișierele încărcate anterior. Acest lucru face posibilă plasarea, de exemplu, de configurări generale de rețea pentru locația dvs. într-un fișier și configurări mai specifice pentru anumite configurații în alte fișiere.

```
# Pot fi listate mai multe fib`'})''iere, separate prin spab`'})'ii; toate vor ←
# fi
# încb`'})''rcate. Fib`'})''ierele incluse pot avea, de asemenea, directive de
# preconfigure/includere proprii. Reb`'})'ineb`'})'i ch`'})''arb'', dacb`'})'' ←
# numele fib`'})''ierelor
# sunt relative, acestea sunt preluate din acelab`'})''i director ca b`'})''i fib ←
# `'})''ierul
# de preconfigure care le include.
#d-i preseed/include string x.cfg

# Programul de instalare poate verifica opb`'})'ional sumele de control ale
# fib`'})''ierelor de preconfigure înainte de a le utiliza. În prezent, sunt
# acceptate doar sumele MD5; listab`'})'i sumele MD5 în aceeab`'})''i ordine ca ←
# b`'})''i
# lista de fib`'})''iere care trebuie include.
#d-i preseed/include/checksum string 5da499872becccfeda2c4872f9171c3d

# Mai flexibilb`'})''aceasta ruleazb`'})'' o comandb`'})'' shell b`'})''i, dacb ←
# `'})''i aceasta indicb`'})'' numele
# fib`'})''ierelor de preconfigure, include aceste fib`'})''iere.
#d-i preseed/include_command \ 
# string if [ `'})''hostname'' = bob ]; then echo bob.cfg; fi

# Cea mai flexibilb`'})'' dintre toate, aceasta descarcb`'})'' un program b`'})'' ←
# i 1 ruleazb`'})''.
# Programul poate folosi comenzii precum debconf-set pentru a manipula baza
# de date debconf.
# Pot fi listate mai multe scripturi, separate prin spab`'})'ii.
# Reb`'})'ineb`'})'i ch`'})''arb'', dacb`'})'' numele fib`'})''ierelor sunt relative ←
# , acestea sunt preluate
# din acelab`'})''i director ca b`'})''i fib`'})''ierul de preconfigure care le ←
# ruleazb`'})''.
#d-i preseed/run string foo.sh
```

De asemenea, este posibilă încărcarea în lanț de la faza de preconfigurare de tip „initrd” sau „file”, în faza de preconfigure de tip „network” prin configurarea „preseed/url” în fișierele anterioare. Acest lucru va face ca preconfigurarea din rețea (de tip „network”) să fie efectuată atunci când rețeaua se activează. Fiți atenți, deoarece vor exista două execuții separate ale preconfigurării. Aceasta înseamnă că puteți rula din nou comanda „preseed/early”, a doua oară după ce rețeaua se activează.
Anexa C

Partiționarea pentru Debian

C.1 Deciderea partițiilor și a dimensiunii lor în Debian

Ca o cerință minimă, GNU/Linux are nevoie de o partiție pentru sine. Puteți avea o singură partiție care conține întregul sistem de operare, aplicațiile și fișierele dumneavoastră personale. Majoritatea oamenilor consideră că o partiție de spațiu de interschimb (swap) separată este, de asemenea, o necesitate, deși nu este strict adevărat. „Swap” este spațiu de lucru pentru un sistem de operare, care permite sistemului să utilizeze stocarea pe disc ca „memorie virtuală”. Punând swap pe o partiție separată, Linux poate folosi acest spațiu mult mai eficient. Este posibil să forțați nucleusul Linux să utilizeze un fișier obișnuit ca spațiu de interschimb (swap), dar nu este recomandat.

Majoritatea oamenilor aleg să ofere sistemelor GNU/Linux mai mult decât numărul minim de partiții, totuși. Există două motive pentru care ați putea dori să dividați sistemul în mai multe partiții. Primul este pentru siguranță. Dacă se întâmplă ceva care corupe sistemul de fișiere, în general este afectată o singură partiție. Astfel, nu trebuie decât să îl înlocuiți (din copiile de rezervă pe care le-ați păstrat) sau un fișier din sistemul dumneavoastră. Cel puțin, ar trebui să luați în considerare crearea a ceea ce se numește în mod obișnuit o „partiție rădăcină”. Acesta conține cele mai esențiale componente ale sistemului. Dacă orice alte partiții sunt corupte, puteți încă porni în GNU/Linux pentru a repa ra sistemul. Acest lucru vă poate scuti de problemele de a trebui să reinstalați sistemul de la zero.

Al doilea motiv este, în general, mai important într-un cadru de afaceri, dar depinde de utilizare și utilizator. De exemplu, un server de poștă electronică care primește mesaje „spam” cu corespondență poate umple ușor partiția. Astfel, nu trebuie decât să găsești un sistem de fișiere separat pentru fiecare partitie pe care servingă. Majoritatea serviciilor de poștă electronică includ această partitie în sistemul GNU/Linux, iar aceasta este comodă pentru această utilizare. În plus, pentru siguranță, mai e mai bine să aveți mai mult spațiu liber pentru fiecare serviciu.

C.2 Arborele de directoare

Debian GNU/Linux aderă la Standardul ierarhiei sistemului de fișiere („Filesystem Hierarchy Standard”: FHS) pentru denumirea directoarelor și fișierelor. Acest standard permite utilizatorilor și programelor software să prezică locația fișierelor și directoarelor. Directorul la nivel rădăcină este reprezentat simplu de bara oblică încinsă / . La nivel de rădăcină, toate sistemele Debian includ aceste directoare:

<table>
<thead>
<tr>
<th>Director</th>
<th>Conținut</th>
</tr>
</thead>
<tbody>
<tr>
<td>bin</td>
<td>Binare de comenzi esențiale</td>
</tr>
<tr>
<td>boot</td>
<td>Fișiere statice ale încărcătorului de pornire</td>
</tr>
<tr>
<td>dev</td>
<td>Fișiere de dispozitive</td>
</tr>
<tr>
<td>etc</td>
<td>Configurație de sistem specifică mașinii</td>
</tr>
<tr>
<td>home</td>
<td>Directoarele personale ale utilizatorilor</td>
</tr>
<tr>
<td>lib</td>
<td>Biblioteci partajate esențiale și module de nucleu</td>
</tr>
<tr>
<td>media</td>
<td>Conține puncte de montare pentru suporturi de stocare amovibile</td>
</tr>
<tr>
<td>mnt</td>
<td>Punct de montare pentru montarea temporară a unui sistem de fișiere</td>
</tr>
</tbody>
</table>
Următoarea este o listă de considerații importante referitoare la directoare și partitii. Rețineți că utilizarea discului variază foarte mult, având în vedere configurația sistemului și modelele specifice de utilizare. Recomandările de aici sunt line directoare generale și oferă un punct de plecare pentru partitioare.

- Partiția rădăcină / trebuie să conțină întotdeauna fizic /etc, /bin, /sbin, /lib, /dev și /usr, altfel nu veți putea porni. Aceasta înseamnă că ar trebui să furnizați cel puțin 600–750 Mo de spațiu pe disc pentru partitia rădăcină, inclusiv /usr sau 5–6 Go pentru o stație de lucru sau un instalare de server.

- /var: date variabile cum ar fi articole de știri, mesaje poștă electronică, situri web, baze de date, fișierele de prestocare a datelor ale sistemului de împachetare etc. vor fi plasate în acest director. Dacă veți face o instalare completă cu aproape toate componentele Debian de oferit, totul într-o singură sesiune, rezervarea a 2 sau 3 Go de spațiu pentru /var ar trebui să fie suficient. Dacă intenționați să instalați servicii și utilități, umeată de text, apoi X, ..., puteți scăpa cu 300–500 Mo. În cazul în care partita rădăcină pe discul dur/solid este limitat și nu intenționați să faceți actualizări majore de sistem, vă puteți descurca cu doar 30 sau 40 Mo.

- /tmp: datele temporare create de programe vor merge cel mai probabil în acest director. 40–100 Mo ar trebui să fie de obicei suficienți. Unele aplicații — precum instrumentele de arhive, instrumentele de creare CD/DVD și software multimedia — pot folosi /tmp pentru a stoche temporar fișiere imagine. Dacă intenționați să utilizați astfel de aplicații, ar trebui să ajustați spațiul disponibil în /tmp în consecință.

- /home: fiecare utilizator își va pune datele personale într-un subdirector al acestui director. Dimensiunea sa depinde de câți utilizatori vor folosi sistemul și de ce fișiere vor fi stocate în directoroarele lor. În funcție de utilizarea planificată, ar trebui să rezervați aproximativ 100 Mo pentru fiecare utilizator, dar adaptați această valoare la nevoile dvs. Dacă intenționați să salvăți mulți fișiere multimedia (imagini, MP3, filme) în directorul dumneavoastră personal.

C.3 Scheme de partitioare recomandate

Pentru utilizatorii noi, laptop-urile cu Debian, sistemele utilizate în domiciliu personal și alte configurații pentru un singur utilizator, o singură partição / (plus swap) este probabil cea mai ușoară și simplă cale de a începe. Tipul de partição recomandat este „ext4”.

Pentru sistemele cu mai mulți utilizatori sau sisteme cu mult spațiu pe disc, cel mai bine este să puneți directoarele /var, /tmp și /home fiecare pe propriile partii separate de partição /.

Este posibil să aveți nevoie de o partição separată /usr/local dacă intenționați să instalați multe programe care nu fac parte din distribuția Debian. Dacă mașina dvs. va fi un server de poștă electronică, poate ni este necesar să faceți din directorul /var/mail o partição separată. Dacă configurați un server cu multe conturi de utilizator, în general este bine să aveți o partição separată, mare /home. În general, situația de partitioare variază de la calculator la calculator în funcție de utilizarea ce îi se va da acestuia.

Pentru sistemele foarte complexe, este posibil să aveți nevoie de multe discuri (Multi Disk HOWTO). Acestea conține informații aprofundate, de interes pentru furnizorii de servicii de internet (ISP) și pentru persoanele care instalează servere.

În ceea ce privește problema dimensiunii partii spațiului de intercâmpă (swap), există multe puncte de vedere. O regulă generală care funcționează bine este să utilizați atât de mult spațiu de intercâmpă (swap) câtă memoria RAM aveți în sistem. De asemenea, nu ar trebui să fie mai mic de 512 Mo, în majoritatea cazurilor. Desigur, există și excepții de la aceste reguli.
De exemplu, o mașină mai veche poate avea 512 Mo de RAM și o unitate SATA de 20 Go pe /dev/sda. Poate exista o partição de 8 Go pentru un alt sistem de operare pe /dev/sda1, o partição de spațiu de interschimb de 512 Mo pe /dev/sda3 și aproximativ 11,4 Go pe /dev/ sda2 ca partição Linux.

Pentru a avea o idee despre spațiul ocupat de sarcinile pe care ați putea fi interesat să-le adăugați după finalizarea instalării sistemului, consultați Secțiune D.2.

C.4 Numele dispozitivelor în Linux

Discurile Linux și numele partțiilor pot fi diferite de alte sisteme de operare. Trebuie să știți numele pe care Linux le folosește atunci când creați și montați partți. Iată schema de bază de denumire:

- Primul disc dur/solid detectat se numește /dev/sda.
- Al doilea disc dur/solid detectat se numește /dev/sdb și așa mai departe.
- Primul CD-ROM SCSI se numește /dev/scd0, cunoscut și ca /dev/sr0.

Partițiile de pe fiecare disc sunt reprezentate prin adăugarea unui număr zecimal la numele discului: sda1 și sda2 reprezintă prima și a doua partição a primei unități de disc SCSI din sistemul dumneavoastră.

Iată un exemplu de un caz real. Să presupunem că aveți un sistem cu 2 discuri SCSI, unul la adresa SCSI 2 și celălalt la adresa SCSI 4. Primul disc (la adresa 2) este numit atunci sda, iar al doilea sdb. Dacă unitatea sda are 3 partți pe ea, acestea vor fi denumite sda1, sda2 și sda3. Același lucru se aplică discului sdb și partțiilor sale.

Rețineți că, dacă aveți două adaptoare de magistrală gazdă SCSI (adică, interfețe de control SCSI sau plăci (adaptore) SCSI), ordinea unităților poate deveni confuză. Cea mai bună soluție în acest caz este să urmăriți mesajele de pornire, presupunând că modelele de unități și/sau capacitățile lor le cunoașteți.

C.5 Programe de partiționare în Debian

Mai multe varietăți de programe de partiționare au fost adaptate de dezvoltatorii Debian pentru a lucra pe diferite tipuri de discuri dure/solide și arhitecturi de calculator. Mai jos este o listă a programelor aplicabile pentru arhitectura dvs.

- **partman** Instrumentul de partiționare recomandat în Debian. Acest „cuțit elvețian (briceag)” poate, de asemenea, să redimensioneze partțiile, să creeze sisteme de fișiere și să le atribuie punctelor de montare. NT.: în jargonul englez, «swiss army knife» = „ustensilă bună la toate”, ceea ce este în definitiv un briceag.

- **fdisk** Instrumentul original (inițial) din Linux de partiționare a discurilor, bun pentru un guru.

Fiți atenți dacă aveți partți FreeBSD existente pe mașina dvs. Nucleele de instalare includ suport pentru aceste partți, dar modul în care **fdisk** le reprezintă (sau nu) poate face ca numele dispozitivelor să difere. Consultați Rețetarul Linux+FreeBSD (Linux+FreeBSD HOWTO).

- **cfdisk** Un instrument de partiționare a discurilor simplu de utilizat, pe ecran complet pentru noi, ceilalți.

Rețineți că **cfdisk** nu înțelege deloc partțiile FreeBSD și, din nou, numele dispozitivelor pot diferi ca urmare.

Unul dintre aceste programe va fi rulat implicit atunci când selectați Partiționează discuri (sau similar). Este posibil să folosiți un alt instrument de partiționare din linia de comandă pe VT2, dar acest lucru nu este recomandat.
Anexa D

Informații diverse

D.1 Dispozitive Linux

În Linux pot fi găsite diferite fișiere speciale în directorul /dev. Aceste fișiere se numesc fișiere de dispozitiv și se comportă spre diferit față de fișierele obișnuite. Cele mai comune tipuri de fișiere de dispozitiv sunt pentru dispozitivele de blocuri și dispozitivele de caractere. Aceste fișiere sunt o interfață a controlorului real (parte a nucleului Linux) care la rândul său accesează dispozitivele și perifericele calculatorului. Un alt tip, mai puțin obișnuit, de fișier de dispozitiv este numitul pipe (cunoscut sub numele de „conductă” sau „linie de legătură”). Cele mai importante fișiere de dispozitiv sunt enumerate în tabelele de mai jos.

<table>
<thead>
<tr>
<th>Fișier</th>
<th>Număr</th>
</tr>
</thead>
<tbody>
<tr>
<td>sda</td>
<td>Primul disc dur/solid</td>
</tr>
<tr>
<td>sdb</td>
<td>Al doilea disc dur/solid</td>
</tr>
<tr>
<td>sda1</td>
<td>Prima partiție a primului disc dur/solid</td>
</tr>
<tr>
<td>sdb7</td>
<td>A șaptea partiție a celui de-al doilea disc dur/solid</td>
</tr>
<tr>
<td>sr0</td>
<td>Primul CD-ROM</td>
</tr>
<tr>
<td>sr1</td>
<td>Al doilea CD-ROM</td>
</tr>
<tr>
<td>ttyS0</td>
<td>Port serial 0, COM1 sub MS-DOS</td>
</tr>
<tr>
<td>ttyS1</td>
<td>Port serial 1, COM2 sub MS-DOS</td>
</tr>
<tr>
<td>psaux</td>
<td>Dispozitiv de mouse PS/2</td>
</tr>
<tr>
<td>gpmdata</td>
<td>Pseudo dispozitiv, repetă datele generate de demonul GPM (mouse).</td>
</tr>
<tr>
<td>cdrom</td>
<td>Legătură simbolică către unitatea CD-ROM</td>
</tr>
<tr>
<td>mouse</td>
<td>Legătură simbolică către fișierul dispozitivului de mouse</td>
</tr>
<tr>
<td>null</td>
<td>Tot ceea ce este scris pe acest dispozitiv va dispărea</td>
</tr>
<tr>
<td>zero</td>
<td>Se pot citi la nesfârșit zerourii din acest dispozitiv</td>
</tr>
</tbody>
</table>

D.1.1 Configurarea mouse-ului

Mouse-ul poate fi folosit atât în consola Linux (cu gpm), cât și în mediul X window. În mod normal, aceasta este o simplă chestiune de instalare a gpm și a serverului X însuși. Ambele ar trebui să fie configureate pentru a utiliza /dev/input/mice ca dispozitiv de mouse. Protocolul corect al mouse-ului se numește exps2 în gpm și ExplorerPS/2 în X. Fișierele de configurare respective sunt /etc/gpm.conf și /etc/X11/xorg.conf.

Anumite module ale nucleului trebuie să fie încărcate pentru ca mouse-ul să funcționeze. În cele mai multe cazuri, modulele corecte sunt detectate automat, dar nu întotdeauna pentru mouse-urile seriale și de magistrală(bus)
de stil vechi\(^1\), care sunt destul de rare, cu excepția calculatoarelor foarte vechi. Rezumatul modulelor nucleului Linux necesare pentru diferite tipuri de mouse:

<table>
<thead>
<tr>
<th>Modul</th>
<th>Descriere</th>
</tr>
</thead>
<tbody>
<tr>
<td>psmouse</td>
<td>Mouse PS/2 (ar trebui să fie detectat automat)</td>
</tr>
<tr>
<td>usbhid</td>
<td>Mouse USB (ar trebui să fie detectat automat)</td>
</tr>
<tr>
<td>sermouse</td>
<td>Majoritatea mouse-urilor seriali</td>
</tr>
<tr>
<td>logibm</td>
<td>Mouse bus conectat la placa adaptoare Logitech</td>
</tr>
<tr>
<td>inport</td>
<td>Mouse bus conectat la placă ATI sau Microsoft InPort</td>
</tr>
</tbody>
</table>

Pentru a încărca un modul controlor de mouse, puteți folosi comanda `modconf` (din pachetul cu același nume) și să căutați în categoria `kernel/drivers/input/mouse`.

D.2 Spațiu pe disc necesar pentru sarcini

O instalare standard pentru arhitectura amd64, inclusiv toate pachetele standard și folosind nucleul implicit, ocupă 1242 Mo de spațiu pe disc. O instalare de bază minimă, fără sarcina „Sistem standard” selectată, va ocupa 1012 Mo.

IMPORTANT

În ambele cazuri, acesta este spațiul real pe disc folosit după ce instalarea este terminată și toate fișierele temporare sunt șterse. De asemenea, nu ia în considerare cantitatea de spațiu utilizată de sistemul de fișiere, de exemplu pentru fișierele jurnal. Aceasta înseamnă că este nevoie de mult mai mult spațiu pe disc atât în timpul instalării, cât și pentru utilizarea normală a sistemului.

Următorul tabel listează dimensiunile raporatate de «aptitude» pentru sarcinile enumerate în «tasksel». Rețineți că unele sarcini au componente care se suprapun, astfel încât dimensiunea totală instalată pentru două sarcini împreună poate fi mai mică decât totalul obținut prin adunarea numerelor.

În mod implicit, programul de instalare va instala mediul grafic de birou GNOME, dar alte mediile grafice de birou pot fi selectate fie utilizând una dintre imaginile speciale de instalare, fie specificând mediul grafic de birou dorit în timpul instalării (consultați Secțiune 6.3.6.2).

Rețineți că va trebui să adaugați dimensiunile enumerate în tabel la dimensiunea instalării standard atunci când determinați dimensiunea partitiorilor. Majoritatea dimensiunilor listate ca „Dimensiune instalată” vor ajunge în directoarele `/usr` și `/lib`; dimensiunea listată ca „Dimensiune descărcării” este necesară (temporar) în `/var`.

<table>
<thead>
<tr>
<th>Sarcina</th>
<th>Dimensiune instalată (Mo)</th>
<th>Dimensiune descărcării (Mo)</th>
<th>Spațiu necesar pentru instalare (Mo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mediul grafic de birou</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• GNOME (implicit)</td>
<td>3216</td>
<td>859</td>
<td>4075</td>
</tr>
<tr>
<td>• KDE Plasma</td>
<td>4584</td>
<td>1316</td>
<td>5900</td>
</tr>
<tr>
<td>• Xfce</td>
<td>2509</td>
<td>683</td>
<td>3192</td>
</tr>
<tr>
<td>• LXDE</td>
<td>2539</td>
<td>693</td>
<td>3232</td>
</tr>
<tr>
<td>• MATE</td>
<td>2851</td>
<td>762</td>
<td>3613</td>
</tr>
<tr>
<td>• Cinnamon</td>
<td>4676</td>
<td>1324</td>
<td>6000</td>
</tr>
<tr>
<td>Server Web</td>
<td>85</td>
<td>19</td>
<td>104</td>
</tr>
<tr>
<td>Server SSH</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Dacă instalați într-o altă limbă decât engleza, `tasksel` poate instala automat o sarcină de localizare, dacă una este disponibilă pentru limba dvs. Cerințele de spațiu diferă în funcție de limbă; ar trebui să permiteți până la 350 Mo în total pentru descărcare și instalare.

\(^1\)Mouse-urile bus au un conector rotund cu 8 pini, care nu trebuie confundat cu conectorul rotund cu 6 pini al unui mouse PS/2 sau cu conectorul rotund cu 4 pini al unui mouse ADB.
D.3 Instalarea Debian GNU/Linux dintr-un sistem Unix/Linux

Această secțiune explică cum se instalează Debian GNU/Linux dintr-un sistem Unix sau Linux existent, fără a utiliza programul de instalare bazat pe meniu, așa cum este explicat în restul manualului. Acest Rețetar de „instalare-specială” a fost solicitat de utilizatorii care vor să treacă la Debian GNU/Linux de la Red Hat, Mandriva și SUSE. În această secțiune se presupune o anumită familiaritate cu introducerea comenzilor *nix și navigarea în sistemul de fișiere. În această secțiune, $ simbolizează o comandă care trebuie introdusă în sistemul curent al utilizatorului, în timp ce # se referă la o comandă introdusă în mediu chroot Debian.

Odată ce ați configurat noul sistem Debian după preferințele dvs., puteți să migrați datele de utilizator(i) existente (dacă există) la acesta și să continuați să rulați. Aceasta este, prin urmare, o instalare „fără timp de nefuncționare” Debian GNU/Linux. Este, de asemenea, o modalitate inteligentă de a trata cu mașini care altfel nu se comportă ambiabil cu diferite medii de pornire sau de instalare.

Nota

Deoarece aceasta este o procedură în mare parte manuală, ar trebui să țineți cont de faptul că va trebui să faceți singuri multe configurații de bază ale sistemului, ceea ce va necesita, de asemenea, mai multe cunoștințe despre Debian și de Linux în general decât efectuarea unei instalări obișnuite. Nu vă puteți aştepta ca această procedură să rezulte într-un sistem care să fie identic cu un sistem dintr-o instalare obișnuită. De asemenea, trebuie să rețineți că această procedură oferă doar pașii de bază pentru configurarea unui sistem. Pot fi necesari pași suplimentari de instalare și/sau configurare.

D.3.1 Să începem

Cu instrumentele actuale de partiçãoare *nix, repartiționați discul dur/solid după cum este necesar, creând cel puțin o partitie cu un sistem de fișiere plus altă partitie cu spațiu de interschimb (swap). Aveți nevoie de aproximativ 1012Mo de spațiu disponibil doar pentru instalarea unui sistem dirijat de la o consolă sau de 2539Mo dacă intenționați să instalați X (mai mult dacă intenționați să instalați medi grafice de birou precum GNOME sau KDE Plasma).

Apoi, creați sisteme de fișiere pe partitii. De exemplu, pentru a crea un sistem de fișiere ext3 pe partitia /dev/sda6 (aceasta este exemplul nostru de partitie rădăcină):

```
# mke2fs -j /dev/sda6
```

Pentru a crea un sistem de fișiere ext2, omiteți opțiunea -j.

 Inițializați și activați spațiul de interschimb, „swap” (înlocuiți numărul partitiei cu partitia de swap Debian dorită):

```
# mkswap /dev/sda5
# sync
# swapon /dev/sda5
```

Montați o partitie ca /mnt/debinst (punctul de instalare, care va fi sistemul de fișiere rădăcină (/) în noul dumneavoastră sistem). Numele punctului de montare este strict arbitrar, se face referire la el mai jos.

```
# mkdir /mnt/debinst
# mount /dev/sda6 /mnt/debinst
```

Nota

Dacă doriți să aveți părți ale sistemului de fișiere (de exemplu, /usr) montate pe partitii separate, va trebui să creați și să montați manual aceste directoare înainte de a continua cu etapa următoare.
D.3.2 Instalați debootstrap

Instrumentul folosit de programul de instalare Debian și recunoscut ca modalitate oficială de a instala un sistem de bază Debian este debootstrap. Folosește `wget` și `ar`, dar în rest depinde numai de `/bin/sh` și de instrumentele de bază Unix/Linux². Instalați `wget` și `ar` dacă acestea nu sunt deja instalate pe sistemul dvs. actual, apoi descărcați și instalați debootstrap.

Sau puteți utiliza următoarea procedură pentru a-l instala manual. Creați un director de lucru pentru extragerea fișierului .deb în:

```bash
# mkdir work
# cd work
```

Binarul debootstrap este localizat în arhiva Debian (asigurați-vă că selectați fișierul potrivit pentru arhitectura dumneavoastră). Descărcați debootstrap .deb din arhiva fondului comun (pool) de pachete, copiați pachetul în directorul de lucru și extrageți fișierele din acesta. Va trebui să aveți privilegiile de root pentru a instala fișierele.

```bash
# ar -x debootstrap_0.X.X_all.deb
# cd /
# zcat /ruta-completb''ab''-cb''ab''tre-directorul-work/work/data.tar.gz | tar xv
```

D.3.3 Rulați debootstrap

Comanda debootstrap poate descărca fișierele necesare direct din arhivă atunci când o rulați. Puteți înlocui orice oglinză de arhivă Debian cu http://us.debian.org/debian în exemplul de comandă de mai jos, de preferință o oglinză apropiată de dumneavoastră. Descărcați debootstrap .deb din arhiva fondului comun (pool) de pachete, copiați pachetul în directorul de lucru și extrageți fișierele din acesta. Va trebui să aveți privilegiile de root pentru a instala fișierele.

Dacă aveți o imagine de instalare Debian GNU/Linux bookworm montată la `/cdrom`, puteți înlocui o adresă URL de fișier în loc de adresa URL http://file:/cdrom/debian/. Înlocuiți `ARCH` cu una dintre următoarele arhitecturi în comanda debootstrap: amd64, arm64, armel, armhf, i386, mips64el, mipsel, ppc64el, s390x.

```bash
# /usr/sbin/debootstrap --arch ARCH bookworm
```

Dacă arhitectura țintă este diferită de cea a gazdei, ar trebui să adăugați opțiunea `--foreign`.

D.3.4 Configurați sistemul de bază

Acum aveți un sistem real Debian, deși destul de slab, pe disc. Executați programul `chroot` în el:

```bash
# LANG=C.UTF-8 chroot /mnt/debininst /bin/bash
```

Dacă arhitectura țintă este diferită de cea a gazdei, va trebui să copiați mai întâi „qemu-user-static” pe noua gazdă:

```bash
# cp /usr/bin/gemu-ARCH-static /mnt/debininst/usr/bin
# LANG=C.UTF-8 chroot /mnt/debininst qemu-ARCH-static /bin/bash
```

După executarea programului `chroot`, poate fi necesar să stabiliți definiția terminalului pentru a fi compatibilă cu sistemul de bază Debian, de exemplu:

```bash
# export TERM=xterm-color
```

În funcție de valoarea lui TERM, este posibil să trebuia să instalați pachetul `ncurses-term` pentru a obține suport pentru acesta.

Dacă arhitectura țintă este diferită de cea a gazdei, trebuie să finalizați instalarea prin efectuarea următorului pas:

```bash
/debootstrap/debootstrap --second-stage
```

²Acestea includ utilitățile și comenzi de bază GNU precum `sed`, `grep` și `gzip`.

D.3.4.1 Creați fișierele de dispozitiv

În acest moment, directorul `/dev/` conține doar fișiere de dispozitiv foarte simple. Pentru următorii pași ai instalării, pot fi necesare fișiere de dispozitiv suplimentare. Există diferite moduri de a proceda în acest sens și metoda pe care ar trebui să o utilizați depinde de sistemul gazdă pe care îl utilizați pentru instalare, dacă intenționați să utilizați un nucleu modular sau nu și de dacă intenționați să utilizați fișiere de dispozitiv dinamic (de exemplu, folosind `udev`) sau fișiere de dispozitiv statici pentru noul sistem.

Unele dintre opțiunile disponibile sunt:

- **instalați pachetul „makedev” și creați un set implicit de fișiere de dispozitiv statice folosind (după intrarea în mediul „chroot”) comenzile:**
  ```
  # apt install makedev
  # mount none /proc -t proc
  # cd /dev
  # MAKEDEV generic
  ```

- **creați manual numai anumite fișiere de dispozitiv utilizând `MAKEDEV`**

- **montați (cu opțiunea `--bind`) directorul „/dev” din sistemul dumneavoastră gazdă asupra directorului „/dev” din sistemul țintă; rețineți că scripturile „postinst” ale unor pachete pot încerca să creeze fișiere de dispozitiv, așa că această opțiune ar trebui folosită numai cu grijă. De exemplu: `mount -v --bind /dev /ruta-completă-la-sistemul-țintă/dev`

D.3.4.2 Montați partițiile

Trebuie să creați fișierul `/etc/fstab`.

```
# editorul_favorit /etc/fstab
```

Iată un şablon pe care îl puteți modifica pentru a se potriwi necesităților dumneavoastră:

```
# /etc/fstab: informație statice ale sistemului de fișier la sistemul-țintă
#
# file system  mount point  type  options  dump  pass
# sist. de fișier  punct montare  tip  opțiuni  ← dump  pass
/dev/XXX  /  ext3  defaults  0  1
/dev/XXX  /boot  ext3  ro,nosuid,nodev  0  2
/dev/XXX  none  swap  sw  0  0
proc  /proc  proc  defaults  0  0
/dev/cdrom  /media/cdrom  iso9660  noauto,ro,user,exec  0  0
/dev/XXX  /tmp  ext3  rw,nosuid,nodev  0  2
/dev/XXX  /var  ext3  rw,nosuid,nodev  0  2
/dev/XXX  /usr  ext3  rw,inode  0  2
/dev/XXX  /home  ext3  rw,nosuid,nodev  0  2
```

Utilizați `mount -a` pentru a monta toate sistemele de fișiere pe care le-ați specificat în `/etc/fstab` sau, pentru a monta sistemele de fișiere individual, utilizați:

```
# mount punctul_de_montare  # de ex.: mount /usr
```

Sistemele Debian actuale au punctele de montare pentru mediile amovibile sub `/media`, dar păstrează legăturile simbolice de compatibilitate în `/`. Creați-le după cum este necesar, de exemplu:

```
# cd /media
# mkdir cdrom0
# ln -s cdrom0 cdrom
# cd /
# ln -s media/cdrom
```
Puteți monta sistemul de fișiere proc de mai multe ori și în locații arbitrare, deși /proc este cel obișnuit. Dacă nu ați folosit `mount -a`, asigurați-vă că ați montat „proc” înainte de a continua:

```
# mount -t proc proc /proc
```

Comanda `ls /proc` ar trebui să afișeze acum un director care nu este gol. În cazul în care aceasta eșuează, este posibil să puteți monta „proc” din afara mediului „chroot”:

```
# mount -t proc proc /mnt/debinst/proc
```

D.3.4.3 Configurarea fusului orar

Definirea celei de-a treia linii a fișierului `/etc/adjtime` la „UTC” sau la „LOCAL” determină dacă sistemul va interpreta ceasul mașinii ca fiind fixat la ora UTC sau la ora locală. Următoarea comandă vă permite să vă alegeți acest lucru.

```
# editorul_favorit /etc/adjtime
```

Iată un exemplu:

```
0.0 0 0.0
0
UTC
```

Următoarea comandă vă permite să vă alegeți fusul orar.

```
# dpkg-reconfigure tzdata
```

D.3.4.4 Configurarea rețelei

Pentru a configura rețeaua, editați fișierele `/etc/network/interfaces`, `/etc/resolv.conf`, `/etc/hostname` și `/etc/hosts`.

```
# editor /etc/network/interfaces
```

Iată câteva exemple simple preluate din `/usr/share/doc/ifupdown/examples`:

```
## Interfață loopback nu mai este necesară, dar poate fi folosită dacă este necesar.
# auto lo
# iface lo inet loopback

# Pentru a utiliza «dhcp»:
# auto eth0
# iface eth0 inet dhcp

# Un exemplu de configurare conexiune IP statică: (rețea Ethernet, difuzare (broadcast) și poartă de acces/pasarela)
# address 192.168.0.42
# network 192.168.0.0
```
Introducă serverul(ele) de nume și directivele de căutare în fișierul `/etc/resolv.conf:

```bash
# editor /etc/resolv.conf
```

Un exemplu simplu de `/etc/resolv.conf`:

```bash
search exemplu.com
nameserver 10.1.1.36
nameserver 192.168.9.100
# sau, utilizând serverele de nume de la b''„b''Google b’’b’’:
nameserver 8.8.8.8
nameserver 8.8.4.4
```

Introduceți numele de gazdă al sistemului dumneavoastră (2 până la 63 de caractere):

```bash
# echo DebianHostName > /etc/hostname
```

Și un fișier `/etc/hosts` bazic cu suport IPv6:

```bash
127.0.0.1 localhost
127.0.1.1 DebianHostName
```

Următoarele linii sunt de dorit pentru gazde capabile să utilizeze protocolul IPv6:

```bash
::1 ip6-localhost ip6-loopback
fe00::0 ip6-locallnet
ff00::0 ip6-multicastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts
```

Dacă aveți mai multe plăci de rețea, ar trebui să aranjați numele modulelor de control din fișierul `/etc/modules` în ordinea dorită. Apoi, în timpul pornirii, fiecare placă va fi asociată cu numele interfeței (eth0, eth1 etc.) la care vă așteptați.

D.3.4.5 Configurarea APT

Debootstrap va fi creat un fișier `/etc/apt/sources.list` de bază, care va permite instalarea de pachete suplimentare. Cu toate acestea, poate doar să adăugați câteva surse suplimentare, de exemplu pentru pachetele sursă și actualizările de securitate:

```bash
debsrc http://ftp.us.debian.org/debian bookworm main
debsrc http://security.debian.org/ bookworm-security main
debsrc http://security.debian.org/ bookworm-security main
```

Asigurați-vă că rulați `apt update` după ce ați făcut modificări în lista de surse (fișierul „sources.list”).

D.3.4.6 Configurarea parametrii regionali și tastatura

Pentru a configura parametrii regionali pentru a utiliza o altă limbă decât engleza, instalați pachetul `locales` pentru a asigura suportul pentru localizare și configurați-l. În prezent, se recomandă utilizarea localizărilor UTF-8.

```bash
# apt install locales
# dpkg-reconfigure locales
```

Pentru a configura tastatura (dacă este nevoie):

```bash
# apt install console-setup
# dpkg-reconfigure keyboard-configuration
```

Rețineți că tastatura nu poate fi configurată în timp ce sunteți în „chroot”, dar va fi configurată pentru următoarea repornire.
D.3.5 Instalați un nucleu

Dacă intenționați să porniți acest sistem, probabil că doriți un nucleu Linux și un încărcător de pornire. Identificați nucleele pre-împachetate disponibile cu:

```
# apt search linux-image
```

Apoi instalați pachetul nucleului ales, folosind numele acestui pachet.

```
# apt install linux-image-arch-etc
```

D.3.6 Configurați încărcătorul de pornire

Pentru a face sistemul dvs. Debian GNU/Linux să fie capabil să pornească, configurați încărcătorul de pornire pentru a încărca nucleul instalat cu noua partitie rădăcină. Rețineți că debootstrap nu instalează un încărcător de pornire, dar puteți utiliza `apt` în interiorul mediului chroot Debian pentru a face acest lucru.

Rețineți că aceasta presupune că a fost creat un fișier de dispozitiv `/dev/sda`. Există metode alternative de a instala `grub2`, dar acestea sunt în afara domeniului de aplicare al acestui apendice.

D.3.7 Acces de la distanță: Instalarea SSH și configurarea accesului

În cazul în care vă puteți autentifica la sistem prin consolă, puteți să dețineți această secțiune. Dacă mai târziu sistemul ar trebui să fie accesibil prin rețea, trebuie să instalați SSH și să configurați accesul.

```
# apt install ssh
```

Autentificarea utilizatorului „root” cu o parolă este dezactivată în mod implicit, deci configurarea accesului se poate face stabilind o parolă și reactivând autentificarea utilizatorului „root” cu parolă:

```
# passwd
# editorul_favorit /etc/ssh/sshd_config
```

Aceasta este opțiunea care trebuie activată:

```
PermitRootLogin yes
```

Accesul poate fi configurat și prin adăugarea unei chei ssh la contul „root”:

```
# mkdir /root/.ssh
# cat << EOF > /root/.ssh/authorized_keys
ssh-rsa ....
EOF
```

În cele din urmă, accesul poate fi configurat prin adăugarea unui utilizator non-root și stabilirea unei parole:

```
# adduser andrei
# passwd andrei
```

D.3.8 Ultimele retușuri

După cum am menționat mai devreme, sistemul instalat va fi foarte simplu. Dacă doriti să faceți sistemul un pic mai matur, există o metodă ușoară de a instala toate pachetele cu prioritatea „standard”:

```
# tasksel install standard
```

Desigur, puteți, de asemenea, să utilizați doar `apt` pentru a instala pachetele individual.

După instalare, vor fi multe pachete descărcate în `/var/cache/apt/archives/`. Puteți elibera spațiu pe disc rulând:

```
# apt clean
```
D.4 Instalarea Debian GNU/Linux folosind PPP peste Ethernet (PPPoE)

În unele țări, PPP peste Ethernet („PPP over Ethernet”: PPPoE) este un protocol comun pentru conexiunile în bandă largă (ADSL sau prin cablu) la un furnizor de servicii de Internet. Configurarea unei conexiuni la rețea folosind PPPoE nu este acceptată implicit în programul de instalare, dar poate fi făcută să funcționeze foarte simplu. Această secțiune explică cum.

Conexiunea PPPoE configurată în timpul instalării va fi disponibilă și după repornirea în sistemul instalat (consultați Cap. 7).

Pentru a avea opțiunea de a configura și utiliza PPPoE în timpul instalării, va trebui să instalați folosind una dintre imaginile CD-ROM/DVD disponibile. Nu este posibil să fie utilizată pentru alte metode de instalare (de exemplu, netboot).

Instalarea prin PPPoE este în mare parte aceeași ca orice altă instalare. Următorii pași explică diferențele.

- Porniți programul de instalare cu parametrul de pornire `modules=ppp-udeb`. Acest lucru va asigura că acea componentă responsabilă pentru configurarea PPPoE (`ppp-udeb`) va fi încărcată și rulată automat.

- Urmăți pașii inițiali obișnuiți ai instalării (selectarea limbii, țării și a tastaturii; încărcarea componentelor suplimentare de instalare3).

- Următorul pas este detectarea dispozitivelor de rețea, pentru a identifica eventualele plăci Ethernet prezente în sistem.

- După aceasta, se pornește configurarea efectivă a PPPoE. Programul de instalare va sonda toate interfețele Ethernet detectate în încercarea de a găsi un concentrator PPPoE (un tip de server care se ocupă de conexiunile PPPoE).

Este posibil ca detectarea concentratorului să nu aibă succes la prima încercare. Acest lucru se poate întâmpla ocasional pe rețele lente sau încarcate sau cu servere defecte. În cele mai multe cazuri, o a doua încercare de a detecta concentratorul va avea succes; pentru a reîncerca, selectați Configurați și porniți o conexiune PPPoE din meniul principal al programului de instalare.

- După ce este găsit un concentrator, utilizatorului i se va solicita să introducă informațiile de conectare (numele de utilizator și parola PPPoE).

- În acest moment, programul de instalare va folosi informațiile furnizate pentru a stabili conexiunea PPPoE. Dacă au fost furnizate informațiile corecte, conexiunea PPPoE ar trebui să fie configurată și programului de instalare ar trebui să o poată utiliza pentru a se conecta la Internet și a prelua pachete prin această (dacă este necesar). Dacă informațiile de conectare nu sunt corecte sau apare o eroare, programul de instalare se va opri, dar configurarea poate fi încercată din nou selectând intrarea din meniu Configurați și porniți o conexiune PPPoE.

3Componenta `ppp-udeb` este încărcată ca una dintre componentele suplimentare din acest pas. Dacă doriți să instalați cu prioritate medie sau scăzută (mod expert), puteți, de asemenea, să selectați manual `ppp-udeb` în loc să introduceți parametrul „module” în promptul de pornire...
Anexa E

Informații administrative

E.1 Despre acest document

Acest manual a fost creat pentru programul de instalare Debian al lui Sarge, pe baza manualului de instalare al lui Woody pentru dischetele de pornire (boot-floppies), care se baza pe manualele de instalare Debian anterioare, și pe manualul distribuției Frogeny care a fost lansat sub licența GPL în 2003.

Acest document este scris în DocBook XML. Formatele de ieșire sunt generate de diferite programe folosind informațiile din pachetele docbook-xml și docbook-xsl.

Pentru a crește capacitatea de întreținere a acestui document, folosim o serie de caracteristici XML, cum ar fi entitățile și atributele de profilare. Acestea joacă un rol asemănător cu variabilele și condiționalele din limbajele de programare. Sursa XML a acestui document conține informații pentru fiecare arhitectură diferită — atributele de profilare sunt folosite pentru a izola anumite fragmente de text ca fiind specifice arhitecturii.

E.2 Cum să contribui la acest document

Dacă aveți probleme sau sugestii cu privire la acest document, ar trebui să le trimiteti ca raport de eroare al pachetului installation-guide. Consultați pachetul reportbug sau citiți documentația online a Sistemul Debian de urmărire a erorilor. Ar fi bine dacă ați putea verifica erorile deschise față de installation-guide pentru a vedea dacă problema dvs. a fost deja raportată. Dacă da, puteți furniza coroborări suplimentare sau informații utile la xxxx@bugs.debian.org, unde xxxx este numărul pentru eroarea deja-raportată.

Vă rugăm să nu contactați direct autorii acestui document. Există, de asemenea, o listă de discuții pentru debian-installer, care include discuții despre acest manual. Lista de corespondență este debian-boot@lists.debian.org. Instrucțiunile pentru abonarea la această listă pot fi găsite pe pagina Abonament la lista de corespondență Debian; sau puteți răsfoi online Arhivele listei de corespondență Debian.

E.3 Contribuții importante

Acest document a fost scris inițial de Bruce Perens, Sven Rudolph, Igor Grobman, James Treacy și Adam Di Carlo. Sebastian Ley a scris Rețetarul de instalare.
Miroslav Kuře a documentat multe dintre noile funcționalități din programul de instalare Debian al Sarge. Frans Pop a fost editorul principal și responsabilul de lansări ale acestui document în timpul lansărilor Etch, Lenny și Squeeze.

Mulți, mulți utilizatori și dezvoltatori Debian au contribuit la acest document. O notă specială trebuie făcută lui Michael Schmitz (suport m68k), Frank Neumann (autorul original al Manualului de instalare Amiga), Arto Astala, Eric Delaunay/Ben Collins (informații SPARC), Tapio Lehtonen și Stéphane Bortzmeyer pentru numeroase editări și text. Trebuie să-i mulțumim lui Pascal Le Bail pentru informațiile utile despre pornirea de pe suporturi de memorie USB.

Text și informații extrem de utile au fost găsite în HOWTO-ul lui Jim Mintha pentru pornirea în rețea (nu există nicio adresă URL disponibilă), Răspunsuri la întrebările frecvente despre Debian, Răspunsuri la întrebările frecvente despre Linux/m68k, Răspunsuri la întrebările frecvente despre procesoarele SPARC pentru Linux, Răspunsuri la întrebările frecvente despre Linux/Alpha, printre altele. Autorii acestor surse de informații bogate și disponibile liber trebuie recunoscuți.

Secțiunea despre instalările în mediul „chroot” din acest manual (Secțiune D.3) a fost derivată parțial din documentele care sunt proprietatea autorului lor, Karsten M. Self.

E.4 Recunoaștere a mărcilor înregistrate

Toate mările înregistrate sunt proprietatea deținătorilor respectivelor mărci înregistrate.
Anexa F

Licența publică generală GNU

Noră

This is an unofficial translation of the GNU General Public License into romanian. It was not published by the Free Software Foundation, and does not legally state the distribution terms for software that uses the GNU GPL — only the original English text of the GNU GPL does that. However, we hope that this translation will help romanian speakers to better understand the GNU GPL.

Aceasta este o traducere neoficială a Licenței publice generale GNU în română. Nu a fost publicată de Free Software Foundation și nu stabilește în mod legal termenii de distribuție pentru software-ul care utilizează GNU GPL — doar textul în engleză original al GNU GPL face asta. Cu toate acestea, sperăm că această traducere îi va ajuta pe vorbitorii de limbă română să înțeleagă mai bine GNU GPL.

Versiunea 2, iunie 1991

51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.

Toate ''ab'' lumea are permisiunea sb''ab'' copieze b''ab''i sb''ab'' distribue ← copii verbatim ale acestui document de licenb''tb''b''ab'', dar modificarea acestuia nu este permisb ← ''ab''.

F.1 Preambul

Licențele pentru majoritatea software-urilor sunt concepute pentru a vă răpi libertatea de a le partaja și modifica. În schimb, Licența Publică Generală-gnu este menită să vă garanteze libertatea de a partaja și de a modifica software-ul liber — pentru a se asigura că software-ul este liber pentru toți utilizatorii săi. Această Licență Publică Generală se aplică majorități software-ului Fundației pentru Software Liber și oricărui alt program ai cărui autorii se angajează să o folosească. (Unele dintre celelalte software ale Free Software Foundation sunt acoperite de Licența Publică Generală a Bibliotecii gnu.). Puteți să o alegeți și programelor dumneavoastră.

Când vorbim de software liber, ne referim la libertate, nu la preț. Licențele noastre publice generale sunt concepute pentru a vă asigura că aveți libertatea de a distribui copii ale software-ului liber (și de a percepe taxe pentru acest serviciu, dacă doriti), că primiți codul sursă sau că îl puteți obține dacă doriti, că puteți modifica software-ul sau că puteți utiliza părți din el în noi programe libere; și că știi că puteți face aceste lucruri.

Pentru a vă proteja drepturile, trebuie să impunem restricții care să interzică cuiva să vă refuze aceste drepturi sau să vă ceardă să renunțați la ele. Aceste restricții se traduc prin anumite responsabilități pentru dumneavoastră dacă distribuiți copii ale software-ului sau dacă il modificaiți.

De exemplu, dacă distribuiți copii ale unui astfel de program, fie gratuit, fie contra cost, trebuie să acordați destinațorilor toate drepturile pe care le aveți dumneavoastră. Trebuie să vă asigurați că și aceștia primesc sau pot obține
F.2 LICENȚĂ PUBLICĂ GENERALĂ GNU

TERMENI ȘI CONDIȚII PENTRU COPIERE, DISTRIBUIRE ȘI MODIFICARE

0. Această licență se aplică oricărui program sau altă lucrare care conține o notificare plasată de deținătorul drepturilor de autor care spune că poate fi distribuită în conformitate cu termenii acesteia Licențe Publice Generale. „Programul”, de mai jos, se referă la orice astfel de program sau lucrare, iar o „lucrare bazată pe Program” înseamnă fie Programul, fie orice lucrare derivată în conformitate cu legea drepturilor de autor: adică o lucrare care conține Programul sau o parte din el, fie verbatim, fie cu modificări și/sau tradus într-o altă limbă. (În continuare, traducerea este inclusă, fără limitare, în termenul „modificare”). Fiecare titular de licență este adresat ca „dumneavoastra”.

Activitățile altele decât copierea, distribuirea și modificarea nu sunt acoperite de această Licență; sunt în afara domeniului său de aplicare. Actul de a rula Programul nu este restricționat, iar rezultatul Programului este acoperit numai dacă conținutul acestuia constituie o lucrare bazată pe Program (independent de faptul că a fost realizat prin rularea Programului). Dacă acest lucru este adevarat, depinde de ceea ce face Programul. Actul de a rula Programul nu este restricționat, iar rezultatul Programului este acoperit numai dacă conținutul acestuia constituie o lucrare bazată pe Program (independent de faptul că a fost realizat prin rularea Programului). Dacă acest lucru este adevarat, depinde de ceea ce face Programul. Actul de a rula Programul nu este restricționat, iar rezultatul Programului este acoperit numai dacă conținutul acestuia constituie o lucrare bazată pe Program (independent de faptul că a fost realizat prin rularea Programului). Dacă acest lucru este adevarat, depinde de ceea ce face Programul. Actul de a rula Programul nu este restricționat, iar rezultatul Programului este acoperit numai dacă conținutul acestuia constituie o lucrare bazată pe Program (independent de faptul că a fost realizat prin rularea Programului). Dacă acest lucru este adevarat, depinde de ceea ce face Programul. Actul de a rula Programul nu este restricționat, iar rezultatul Programului este acoperit numai dacă conținutul acestuia constituie o lucrare bazată pe Program (independent de faptul că a fost realizat prin rularea Programului). Dacă acest lucru este adevarat, depinde de ceea ce face Programul. Actul de a rula Programul nu este restricționat, iar rezultatul Programului este acoperit numai dacă conținutul acestuia constituie o lucrare bazată pe Program (independent de faptul că a fost realizat prin rularea Programului). Dacă acest lucru este adevarat, depinde de ceea ce face Programul. Actul de a rula Programul nu este restricționat, iar rezultatul Programului este acoperit numai dacă conținutul acestuia constituie o lucrare bazată pe Program (independent de faptul că a fost realizat prin rularea Programului). Dacă acest lucru este adevarat, depinde de ceea ce face Programul. Actul de a rula Programul nu este restricționat, iar rezultatul Programului este acoperit numai dacă conținutul acestuia constituie o lucrare bazată pe Program (independent de faptul că a fost realizat prin rularea Programului). Dacă acest lucru este adevarat, depinde de ceea ce face Programul. Actul de a rula Programul nu este restricționat, iar rezultatul Programului este acoperit numai dacă conținutul acestuia constituie o lucrare bazată pe Program (independent de faptul că a fost realizat prin rularea Programului). Dacă acest lucru este adevarat, depinde de ceea ce face Programul. Actul de a rula Programul nu este restricționat, iar rezultatul Programului este acoperit numai dacă conținutul acestuia constituie o lucrare bazată pe Program (independent de faptul că a fost realizat prin rularea Programului). Dacă acest lucru este adevarat, depinde de ceea ce face Programul. Actul de a rula Programul nu este restricționat, iar rezultatul Programului este acoperit numai dacă conținutul acestuia constituie o lucrare bazată pe Program (independent de faptul că a fost realizat prin rularea Programului). Dacă acest lucru este adevarat, depinde de ceea ce face Programul. Actul de a rula Programul nu este restricționat, iar rezultatul Programului este acoperit numai dacă conținutul acestuia constituie o lucrare bazată pe Program (independent de faptul că a fost realizat prin rularea Programului). Dacă acest lucru este adevarat, depinde de ceea ce face Programul. Actul de a rula Programul nu este restricționat, iar rezultatul Programului este acoperit numai dacă conținutul acestuia constituie o lucrare bazată pe Program (independent de faptul că a fost realizat prin rularea Programului). Dacă acest lucru este adevarat, depinde de ceea ce face Programul. Actul de a rula Programul nu este restricționat, iar rezultatul Programului este acoperit numai dacă conținutul acestuia constituie o lucrare bazată pe Program (independent de faptul că a fost realizat prin rularea Programului). Dacă acest lucru este adevarat, depinde de ceea ce face Programul. Actul de a rula Programul nu este restricționat, iar rezultatul Programului este acoperit numai dacă conținutul acestuia constituie o lucrare bazată pe Program (independent de faptul că a fost realizat prin rularea Programului). Dacă acest lucru este adevarat, depinde de ceea ce face Programul. Actul de a rula Programul nu este restricționat, iar rezultatul Programului este acoperit numai dacă conținutul acestuia constituie o lucrare bazată pe Program (independent de faptul că a fost realizat prin rularea Programului). Dacă acest lucru este adevarat, depinde de ceea ce face Programul. Actul de a rula Programul nu este restricționat, iar rezultatul Programului este acoperit numai dacă conținutul acestuia constit...
ANEXA F. LICENȚĂ PUBLICĂ GENERALĂ GNU

F.2. LICENȚĂ PUBLICĂ GENERALĂ GNU

Astfel, nu este intenția acestei secțiuni să revendice drepturi sau să conteste drepturile dumneavoastră asupra unei lucrări scrise în întregime de dumneavoastră; mai degrabă, intenția este de a exercita dreptul de a controla distribuția de lucrări derivate sau colective bazate pe Program.

În plus, simpla agregare a unei alte lucrări care nu se bazează pe Program cu Programul (sau cu o lucrare bazată pe Program) pe un volum al unui suport de stocare sau de distribuție nu face ca acelădată lucrare să intre sub incidența prezentei licențe.

3. Puteți copia și distribui Programul (sau o lucrare bazată pe acesta, conform Secțiunii 2) în cod obiect sau în formă executabilă în conformitate cu termenii secțiunilor 1 și 2 de mai sus, cu condiția să faceți, de asemenea, una dintre următoarele:

a. Însoțiti-l cu codul sursă complet corespunzător, care poate fi citit de mașină, care trebuie distribuit în condițiile secțiunilor 1 și 2 de mai sus pe un mediu utilizat în mod obișnuit pentru schimbul de software; sau,

b. Însoțiti-l cu o ofertă scrisă, valabilă cel puțin trei ani, de a oferi oricărei terțe părți, pentru o taxă nu mai mare decât costul dvs. de efectuare fizică a distribuției sursei, o copie completă, citibilă de mașină, a codului sursă corespunzător, care să fie distribuită sub termenii secțiunilor 1 și 2 de mai sus pe un mediu utilizat în mod obișnuit pentru schimbul de software; sau,

c. Însoțiti-l cu informațiile primite cu privire la oferta a distribuirii codul sursă corespunzător. (Această alternativă este permisă numai pentru distribuția ne comercială și numai dacă ați primit programul în cod obiect sau în formă executabilă cu o astfel de ofertă, în conformitate cu Subsecțiunea b de mai sus).

Codul sursă al unei lucrări reprezintă forma preferată de lucru pentru a face modificări la aceasta. Pentru o lucrare executabilă, codul sursă complet înseamnă tot codul sursă pentru toate modulele pe care le conține, plus orice fișiere de definitie a interfețelor asociate, plus scripturile utilizate pentru a controla compilația și instalarea executabilului. Cu toate acestea, ca o excepție specială, codul sursă distribuit nu trebuie să includă nimic din ceea ce este distribuit în mod normal (fie în formă sursă, fie în formă binară) împreună cu componențele principale (compiler, nucleu etc.) ale sistemului de operare pe care rulează executabilul, cu excepția cazului în care componenta respectivă însoțește ea însăși executabilul.

Dacă distribuirea codului executabil sau a codului obiect se face prin oferirea accesului la copiere dintr-un loc desemnat, atunci oferirea unui acces echivalent pentru a copia codul sursă din același loc se consideră distribuție a codului sursă, chiar dacă terții nu sunt obligați să copieze codul sursă împreună cu codul obiect.

5. Nu sunteți obligat să acceptați această Licență, deoarece nu ați semnat-o. Cu toate acestea, nicipotrivă nu vă oferă permisiunea de a modifica sau distribui Programul sau lucrările derivate ale acestuia. Aceste acțiuni sunt interzise de lege dacă nu acceptați această Licență. Prin urmare, prin modificarea sau distribuirii Programului (sau a oricărei lucrări bazate pe Program), indicați această licență pentru a face acest lucru și a tuturor termenilor și condițiilor pentru copierea, distribuirii sau modificarea Programului sau a lucrărilor bazate pe acesta.

6. De fiecare dată când redistribuiți Programul (sau orice lucrare bazată pe Program), destinatarul primește automat o licență de la licențiatorul original pentru a copia, distribui sau modifica Programul în conformitate cu acești termeni și condiții. Nu puteți impune nicio altă restricție asupra exercitării de către destinatari a drepturilor acordate prin prezenta. Nu sunteți responsabil pentru impunerea respectării de către terții acestei Licențe.

7. În cazul în care, ca urmare a unei hotărâri judecătorești sau a unei acuzații de încălcare a unui brevet sau din orice alt motiv (fără a se limita la probleme legate de brevete), vi se impun condiții (fie prin hotărâre judecătorească, acord sau în alt mod) care contrazic condițiile prezentei licențe, acestea nu vă exoneră de respectarea condițiilor prezentei licențe. Dacă nu puteți distribui astfel încât să vă îndeplinești simultan obligațiile care decurg din prezenta Licență și orice alte obligații pertinente, atunci, ca o consecință, nu puteți distribui deloc Programul. De exemplu, în cazul în care o licență de brevet nu ar permite redistribuirea fără redeviere a programului de către toți cei care primesc copii direct sau indirect prin intermediul dumneavoastră, atunci singura modalitate prin care ați putea satisface atât această licență, cât și prezenta licență ar fi să vă abțineți în totalitate de la distribuirea programului.

Dacă orice porțiune a acestei secțiuni este considerată invalidă sau inaplicabilă în orice circumstanță particulară, restul secțiunii este destinat să se aplice, iar secțiunea în ansamblu este destinată să se aplice în alte circumstanțe.

Scopul acestei secțiuni nu este acela de a vă determina să încălcați vreun brevet sau alte drepturi de proprietate sau de a contesta validitatea unor astfel de revendicări; această secțiune are ca unic scop protejarea integrității sistemului de distribuție de software liber, care este implementat prin practici de licență publică. Multe persoane au contribuit cu generozitate la gama largă de software distribuit prin intermediul acestui sistem, bazându-se pe aplicarea consecventă
a acestui sistem; este la latitudinea autorului/donatorului să decidă dacă este dispus să distribuie software prin orice alt sistem, iar un licențiat nu poate impune această alegere.

Această secțiune este menită să clarifice complet ceea ce se crede a fi o consecință a restului acestei Licențe. 8. În cazul în care distribuția și/sau utilizarea Programului este restricționată în anumite țări, fie prin brevete, fie prin interfețe protejate prin drepturi de autor, deținătorul original al drepturilor de autor care plasează Programul sub această Licență poate adăuga o limitare explicită a distribuției geografice care să excludă acele țări, astfel încât distribuția să fie permisă numai în sau între țările care nu sunt astfel excluse. În acest caz, prezenta Licență încorporează limitarea ca și cum ar fi scrisă în corpul acestei Licențe.

În cazul în care programul nu specifică un număr de versiune a acestei licențe, puteți alege orice versiune publicată vreodată de Free Software Foundation.

10. Dacă doriți să încorporați părți din program în alte programe libere ale căror condiții de distribuție sunt diferite, scrieți autorului pentru a cunoaște permisiunea. În cazul programelor care sunt protejate prin drepturi de autor de către Free Software Foundation, scrieți către Free Software Foundation; uneori facem excepții în acest sens. Decizia noastră va fi ghidată de cele două obiective de a păstra statutul liber al tuturor derivatelor din programele noastre libere și de a promova partajarea și reutilizarea programelor în general.

NICIO GARANȚIE

11. DEOARECE PROGRAMUL ESTE LICENȚIAT FĂRĂ COSTURI, NU EXISTĂ NICIO GARANȚIE PENTRU PROGRAM, ÎN MĂSURA PERMISĂ DE LEGEA APLICABILĂ. CU EXCETIA CAZURILOR ÎN CARE SE PREVEDE ALTfel ÎN SCRIS, DEȚINÂTORII DREPTURILOR DE AUTOR ȘI/SAU ALTE PARȚI FURNIZEAZĂ PROGRAMUL „CUM ESTE” FĂRĂ GARANȚII DE NICI UN FEL, EXPLEMENTARI SAU IMPLICITE, INCLUSIV, DAR FĂRĂ A SE LIMITA LA ACESTEA, GARANȚIILE IMPLICITE DE COMERCIALIZARE ȘI ADECVARE LA UN SCOP SPECIFIC. ÎNTREGUL RISC ÎN CEEA CE PRIVEȘTE CALITATEA ȘI PERFORMANȚA PROGRAMULUI VA APĂRȚINE. ÎN CAZUL ÎN CARE PROGRAMUL SE DOVEDEȘTE A FI DEFECTuos, VĂ ASUMĂT COSTUL TUTUROR LUCRĂRIILOR DE ÎNȚREȚINERE, REPARARE SAU CORECȚIE NECESARE.

12. ÎN NICIUN CAZ, CU EXCETIA CAZULUI ÎN CARE ACEST LUCRU ESTE IMPUS DE LEGEA APLICABILĂ SAU CONVENIT ÎN SCRIS, DEȚINÂTORUL DREPTURILOR DE AUTOR SAU ORICE ALTĂ PARTE CARE POTĂ MODIFICA ȘI/SAU REDISTRIBUI PROGRAMUL CONFORM CELOR PERMISE MAI SUS, NU VA FI RĂSPUNZĂTOR FAȚĂ DE DVS. PENTRU DAUNE, INCLUSIV PENTRU ORICE DAUNE GENERALE, SPECIALE, ACCIDENTALE SAU INDIRECTE CARE DECURG DIN UTILIZAREA SAU INCAPACITATEA DE A UTILIZA PROGRAMUL (INCLUSIV, DAR FĂRĂ A SE LIMITA LA PIERDEREA DE DATE SAU LA FAPTUL CĂ DATELE AU DEVENIT INEXACTE SAU LA PIERDERELE SUFERITE DE DVS. SAU DE TERȚE PARȚI SAU LA IMPOSSIBILITATEA PROGRAMULUI DE A FuncțIONA CU ORICE ALT PROGRAM), CHIAR DĂCĂ DEȚINÂTORUL SAU CEALALĂT PARTE A FOST INFORMAT DE POSIBILITATEA UNOR ASTFEL DE DAUNE.

SFĂRȘITUL TERMENILOR ȘI CONDIȚIILOR

F.3 Cum să aplicați acești termeni noilor dumneavoastră programe

Dacă dezvoltăți un nou program și doriți ca acesta să fie de cea mai mare utilizare posibilă pentru public, cea mai bună modalitate de a realiza acest lucru este de a-l face software liber, pe care oricine îl poate redistribui și modifica în acești termeni.

Pentru a face acest lucru, atașați următoarele notificări la program. Cel mai sigur este să le atașați la începutul fiecărui fișier sursă pentru a evita probleme cu permisiunea; și fiecare fișier ar trebui să aibă câte o linie „copyright” și un indicator către locul în care se găsește notificarea completă.

```<i>un rând pentru a da numele programului b”şb”’i o scurtb”’ab’” idee despre  ceea ce face acesta.</i>
Drepturi de autor © <i>anul numele autorului</i></i>

Acest program este software liber; il puteb”’t’’i redistribui b”’şb’’i/sau  monicita   ini conformatie cu termenii Licenb”’t’’ei Publice Generale GNU, ab”’şb’”a cum a  fost```
publicată de Free Software Foundation; fie versiunea 2 a licenței GNU General Public License, (la alegerea dumneavoastră) orice versiune ulterioră din această serie de licențe, fie versiunea 2 a licenței GNU General Public License, (la alegerea dumneavoastră) orice versiune ulterioră din această serie de licențe, fie versiunea 2 a licenței GNU General Public License, (la alegerea dumneavoastră) orice versiune ulterioră din această serie de licențe.

Acest program este distribuit în speranța că va fi util, dar Fără NICI O GARANȚIE DE QUALITATE, NÎMĂNUI. Nici unii de creatori nu își asumă nicio responsabilitate pentru orice formă de văzută sau utilizare a acestui program. Pentru mai multe detalii, consultați Licența Publică Generală GNU.

Împreună cu acest program, dacă nu, scrieți la Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Adăugați, de asemenea, informații cu privire la modul în care puteți fi contactat prin poșta electronică și clasică. Dacă programul este interactiv, faceți să scoată o scurtă notificare care acesta când pornește într-un mod interactiv:

Comenzile ipotetice „show w” și „show c” ar trebui să arate părțile corespunzătoare ale Licenței Publice Generale. Desigur, comenzile pe care le utilizați pot fi numite altcumva decât „show w” și „show c”; pot fi chiar clicuri de mouse sau elemente de meniu — orice se potrivește programului dumneavoastră.

De asemenea, ar trebui să obțineți de la angajatorul dvs. (dacă lucrați ca programator) sau de la școală, dacă este cazul, să semneze o „renunțare la drepturile de autor” pentru program, dacă este necesar. Iată un exemplu; modificați numele:

Această Licență Publică Generală nu permite încorporarea programului dumneavoastră în programe proprietare. În cazul în care programul dumneavoastră este o bibliotecă de subrutine, puteți considera mai util să permiteți conectarea aplicațiilor proprietare cu biblioteca. Dacă doriti să faceți acest lucru, folosiți Licența publică generală redusă GNU în locul acestei licențe.