Sổ tay Cài đặt Debian GNU/Linux

August 15, 2020
Sổ tay Cài đặt Debian GNU/Linux

Bản quyền © 2004 – 2020 nhóm trình cài đặt Debian

Sổ tay này là phần mềm tự do; bạn có thể phát hành lại nó và/hay sửa đổi nó với điều kiện của Giấy Phép Công Cộng GNU (GPL). Xem giấy phép trong Phụ lục F.

Build version of this manual: 20200715.
Contents

1 Chào mừng bạn dùng Debian 1
 1.1 Debian là gì vậy? .. 1
 1.2 GNU/Linux là gì vậy? 2
 1.3 Debian GNU/Linux là gì vậy? 3
 1.4 What is the Debian Installer? 3
 1.5 Lấy Debian .. 3
 1.6 Lấy phiên bản mới nhất của tài liệu này 3
 1.7 Cấu trúc của tài liệu này 3
 1.8 Về tác quyền và giấy phép phần mềm 4

2 Hệ thống Yêu cầu .. 5
 2.1 Phần cứng được hỗ trợ 5
 2.1.1 Kiến trúc được hỗ trợ 5
 2.1.2 Three different ARM ports 6
 2.1.3 Variations in ARM CPU designs and support complexity 6
 2.1.4 Platforms supported by Debian/arm64 6
 2.1.4.1 Other platforms 7
 2.1.5 Đa bộ xử lý ... 7
 2.1.6 Graphics Hardware Support 7
 2.1.7 Phần cứng khả năng kết nối mạng 7
 2.1.8 Ngoài vi và phần cứng khác 7
 2.2 Thiết bị cần thiết phần vững 7
 2.3 Mua phần cứng đặc biệt cho GNU/Linux 8
 2.3.1 Tránh phần mềm sở hữu hay bị đóng 8
 2.4 Vật chứa trình cài đặt 8
 2.4.1 Đĩa CD-ROM/DVD-ROM/BD-ROM 8
 2.4.2 Thanh bộ nhớ USB 9
 2.4.3 Mạng .. 9
 2.4.4 Đĩa cứng .. 9
 2.4.5 Hệ thống Un*x hay GNU 9
 2.4.6 Hệ thống cất giữ được hỗ trợ 9
 2.5 Bộ nhớ và sức chứa trên đĩa cần thiết 9

3 Trước khi cài đặt Debian GNU/Linux 10
 3.1 Toàn cảnh tiến trình cài đặt 10
 3.2 Sao lưu mọi dữ liệu đã có đi 11
 3.3 Thông tin cần thiết 11
 3.3.1 Tài liệu hướng dẫn 11
 3.3.1.1 Sổ tay cài đặt 11
 3.3.1.2 Tài liệu hướng dẫn về phần cứng 11
 3.3.2 Tìm nguồn thông tin về phần cứng 12
 3.3.2.1 Testing hardware compatibility with a Live-System 13
 3.3.3 Khả năng tương thích của phần cứng 13
 3.3.3.1 Testing hardware compatibility with a Live-System 13
 3.3.4 Thiết lập mạng 13
 3.4 Thoát tiêu chuẩn phần cứng tối thiểu 13
 3.5 Phân vùng sẵn cho hệ thống da khởi động 14
 3.6 Phân cứng cài đặt sẵn và thiết lập hệ điều hành 14
 3.6.1 Chọn thiết bị khởi động 15
 3.6.2 ARM firmware 15
 3.6.3 Setting the ethernet MAC address in U-Boot 15
 3.6.4 Kernel/Initrd/Device-Tree relocation issues in U-Boot 15
CONTENTS

4 Lấy vật chứa cài đặt hệ thống .. 16
 4.1 Official Debian GNU/Linux installation images 16
 4.2 Tài liệu tin xương máy nhân bản Debian 16
 4.2.1 Tìm ảnh cài đặt ở đâu .. 16
 4.3 Chuẩn bị tập tin để khởi động thành bộ nhớ USB 16
 4.3.1Preparing a USB stick using a hybrid CD/DVD image 17
 4.4 Chuẩn bị tập tin để khởi động qua mạng TFTP 18
 4.4.1 Thiết lập trình phục vụ RARP 18
 4.4.2 Thiết lập trình phục vụ DHCP 18
 4.4.3 Thiết lập trình phục vụ BOOTP 19
 4.4.4 Bắt chạy trình phục vụ TFTP 20
 4.4.5 Xác định vị trí từ cửa ứng TFTP 20
 4.5 Cài đặt tự động .. 20
 4.5.1 Tự động cài đặt dùng trình cài đặt Debian 20

5 Khởi động Hệ thống Cài đặt .. 21
 5.1 Khởi động tr în cài đặt trên 64-bit ARM 21
 5.1.1 Console configuration .. 21
 5.1.2 Juno Installation .. 21
 5.1.3 Applied Micro Mustang Installation 21
 5.1.4 Khởi động từ TFTP .. 22
 5.1.4.1 TFTP-booting in U-Boot 22
 5.1.5 Booting from USB Memory Stick with UEFI 23
 5.2 Khả năng truy cập ... 23
 5.2.1 Installer front-end .. 23
 5.2.2 Thiết bị bảng .. 23
 5.2.3 Sắc thái cao tương phản 23
 5.2.4 Zoom ... 23
 5.2.5 Expert install, rescue mode, automated install 23
 5.2.6 Accessibility of the installed system 24
 5.3 Thám số khởi động .. 24
 5.3.1 Boot console .. 24
 5.3.2 Thám số tr in cài đặt Debian 24
 5.3.3 Đúng thám số khởi động để trả lời câu hỏi 26
 5.3.4 Gửi thám số cho mô-đun hạt nhân 27
 5.3.5 Cấm mô-đun hạt nhân 27
 5.4 Giải đáp thắc mắc trong tiến trình cài đặt 27
 5.4.1 Reliability of optical media 27
 5.4.1.1 Vấn đề thường gặp .. 27
 5.4.1.2 Cách xem xét và có thể quyết định vấn đề 28
 5.4.2 Cấu hình khởi động .. 29
 5.4.3 Giải thích thông điệp khởi chạy hạt nhân 29
 5.4.4 Thông báo vấn đề cài đặt 29
 5.4.5 Đề trình báo cáo cài đặt 29

6 Sử dụng trình cài đặt Debian .. 31
 6.1 Trình cài đặt hoạt động như thế nào 31
 6.1.1 Using the graphical installer 32
 6.2 Giới thiệu về thành phần .. 32
 6.3 Sử dụng mỗi thành phần ... 33
 6.3.1 Thiết lập trình cài đặt Debian và cấu hình phần cứng 33
 6.3.1.1 Kiểm tra bộ nhớ có sẵn / chế độ thiếu bộ nhớ 34
 6.3.1.2 Đặt tùy chọn chạy hoạt hoá 34
 6.3.1.3 Chọn bản phân phích 35
 6.3.1.4 Tìm ảnh ISO cài đặt Debian 35
 6.3.1.5 Cấu hình mạng .. 35
 6.3.1.5.1 Automatic network configuration 35
 6.3.1.5.2 Manual network configuration 36
 6.3.1.5.3 IPv4 and IPv6 36
<table>
<thead>
<tr>
<th>6.3.2</th>
<th>Thiết lập Người dùng và Mật khẩu</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.2.1</td>
<td>Lập mật khẩu chủ</td>
<td>36</td>
</tr>
<tr>
<td>6.3.2.2</td>
<td>Tạo người dùng chuẩn</td>
<td>36</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Cấu hình Đồng hồ và Múi giờ</td>
<td>37</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Phân vùng và chọn điểm lắp</td>
<td>37</td>
</tr>
<tr>
<td>6.3.4.1</td>
<td>Tùy chọn phân vùng được hỗ trợ</td>
<td>37</td>
</tr>
<tr>
<td>6.3.4.2</td>
<td>Phân vùng hướng dẫn</td>
<td>38</td>
</tr>
<tr>
<td>6.3.4.3</td>
<td>Phân vùng bằng tay</td>
<td>39</td>
</tr>
<tr>
<td>6.3.4.4</td>
<td>Cấu hình thiết bị đa đĩa (RAID phần mềm)</td>
<td>40</td>
</tr>
<tr>
<td>6.3.4.5</td>
<td>Cấu hình Bộ Quản lý Khối Tin Hợp Lý (LVM)</td>
<td>42</td>
</tr>
<tr>
<td>6.3.4.6</td>
<td>Cấu hình khối tin được mật mã</td>
<td>43</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Cài đặt Hệ thống Cơ bản</td>
<td>45</td>
</tr>
<tr>
<td>6.3.6</td>
<td>Cài đặt phần mềm thêm</td>
<td>45</td>
</tr>
<tr>
<td>6.3.6.1</td>
<td>Cấu hình apt</td>
<td>45</td>
</tr>
<tr>
<td>6.3.6.1.1</td>
<td>Installing from more than one CD or DVD image</td>
<td>45</td>
</tr>
<tr>
<td>6.3.6.1.2</td>
<td>Sử dụng máy nhân bản mạng</td>
<td>46</td>
</tr>
<tr>
<td>6.3.6.1.3</td>
<td>Choosing a network mirror</td>
<td>46</td>
</tr>
<tr>
<td>6.3.6.2</td>
<td>Lựa chọn và Cài đặt Phần mềm</td>
<td>47</td>
</tr>
<tr>
<td>6.3.7</td>
<td>Cho hệ thống khả năng khởi động</td>
<td>48</td>
</tr>
<tr>
<td>6.3.7.1</td>
<td>Phát hiện hệ điều hành khác</td>
<td>48</td>
</tr>
<tr>
<td>6.3.7.2</td>
<td>Making the system bootable with flash-kernel</td>
<td>48</td>
</tr>
<tr>
<td>6.3.7.3</td>
<td>Tiếp tục không có bộ nạp khởi động</td>
<td>48</td>
</tr>
<tr>
<td>6.3.8</td>
<td>Cài đặt xong</td>
<td>48</td>
</tr>
<tr>
<td>6.3.8.1</td>
<td>Đặt đồng hồ hệ thống</td>
<td>49</td>
</tr>
<tr>
<td>6.3.8.2</td>
<td>Khởi động lại hệ thống</td>
<td>49</td>
</tr>
<tr>
<td>6.3.9</td>
<td>Khắc phục sự cố</td>
<td>49</td>
</tr>
<tr>
<td>6.3.9.1</td>
<td>Lưu bản ghi cài đặt</td>
<td>49</td>
</tr>
<tr>
<td>6.3.9.2</td>
<td>Sử dụng trình bao và xem bản ghi</td>
<td>49</td>
</tr>
<tr>
<td>6.3.10</td>
<td>Cài đặt qua mạng</td>
<td>49</td>
</tr>
<tr>
<td>6.4</td>
<td>Nạp phần vững bị thiếu</td>
<td>51</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Chuẩn bị vật chứa</td>
<td>51</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Phần vững và Hệ thống đã Cài đặt</td>
<td>52</td>
</tr>
</tbody>
</table>

7 Khởi động vào hệ thống Debian mới

7.1	Giới thiệu thử thách	53
7.2	Gắn kết khối tin đã mật mã	53
7.2.1	Giải đáp thắc mắc	54
7.3	Đăng nhập	54

8 Bước kế tiếp và đi đâu vậy

8.1	Tắt hệ thống	55
8.2	Giới thiệu về Debian	55
8.2.1	Hệ thống quản lý gọi Debian	55
8.2.2	Phần mềm Thêm Hiện có cho Debian	56
8.2.3	Quản lý phiên bản ứng dụng	56
8.2.4	Quản lý công việc định kỳ	56
8.3	Thông tin thêm	56
8.4	Biên dịch hạt nhân mới	57
8.5	Phục hồi hệ thống bị hỏng	58

iv
CONTENTS

A Cài đặt Thế nào

<table>
<thead>
<tr>
<th>A.1</th>
<th>Chuẩn bị</th>
<th>59</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.2</td>
<td>Khởi động trình cài đặt</td>
<td>59</td>
</tr>
<tr>
<td>A.2.1</td>
<td>Optical disc</td>
<td>59</td>
</tr>
<tr>
<td>A.2.2</td>
<td>Thanh hỗ trợ USB</td>
<td>59</td>
</tr>
<tr>
<td>A.2.3</td>
<td>Khởi động từ mạng</td>
<td>59</td>
</tr>
<tr>
<td>A.2.4</td>
<td>Khởi động từ đĩa cứng</td>
<td>60</td>
</tr>
<tr>
<td>A.3</td>
<td>Cài đặt</td>
<td>60</td>
</tr>
<tr>
<td>A.4</td>
<td>Giới báo cáo cài đặt cho chúng tôi</td>
<td>60</td>
</tr>
<tr>
<td>A.5</td>
<td>Vây cuối cùng</td>
<td>61</td>
</tr>
</tbody>
</table>

B Tự động hoá việc cài đặt bằng chèn sẵn

<table>
<thead>
<tr>
<th>B.1</th>
<th>Giới thiệu</th>
<th>62</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1.1</td>
<td>Phương pháp chèn sẵn</td>
<td>62</td>
</tr>
<tr>
<td>B.1.2</td>
<td>Hạn chế</td>
<td>63</td>
</tr>
<tr>
<td>B.2</td>
<td>Dùng khả năng chèn sẵn</td>
<td>63</td>
</tr>
<tr>
<td>B.2.1</td>
<td>Tải tập tin định cấu hình sẵn</td>
<td>63</td>
</tr>
<tr>
<td>B.2.2</td>
<td>Dùng tham số khởi động để chèn sẵn cấu hình default</td>
<td>64</td>
</tr>
<tr>
<td>B.2.3</td>
<td>Chế độ tự động</td>
<td>65</td>
</tr>
<tr>
<td>B.2.4</td>
<td>Biết hiệu có ích khi chèn sẵn</td>
<td>66</td>
</tr>
<tr>
<td>B.2.5</td>
<td>Examples of boot prompt preseeding</td>
<td>66</td>
</tr>
<tr>
<td>B.2.6</td>
<td>Dùng máy phục vụ DHCP để xác định tập tin định cấu hình sẵn</td>
<td>66</td>
</tr>
<tr>
<td>B.3</td>
<td>Tạo tập tin định cấu hình sẵn</td>
<td>67</td>
</tr>
<tr>
<td>B.4</td>
<td>Nơi dùng của tập tin định cấu hình sẵn (cho bullseye)</td>
<td>68</td>
</tr>
<tr>
<td>B.4.1</td>
<td>Địa phương hoá</td>
<td>68</td>
</tr>
<tr>
<td>B.4.2</td>
<td>Cấu hình mạng</td>
<td>69</td>
</tr>
<tr>
<td>B.4.3</td>
<td>Bàn giao tiếp mạng</td>
<td>70</td>
</tr>
<tr>
<td>B.4.4</td>
<td>Thiết lập máy nhân bản</td>
<td>70</td>
</tr>
<tr>
<td>B.4.5</td>
<td>Thiết lập tài khoản</td>
<td>71</td>
</tr>
<tr>
<td>B.4.6</td>
<td>Thiết lập động ho và mui giờ</td>
<td>71</td>
</tr>
<tr>
<td>B.4.7</td>
<td>Phân vùng</td>
<td>72</td>
</tr>
<tr>
<td>B.4.7.1</td>
<td>Mẫu phân vùng</td>
<td>72</td>
</tr>
<tr>
<td>B.4.7.2</td>
<td>Phân vùng bằng RAID</td>
<td>73</td>
</tr>
<tr>
<td>B.4.7.3</td>
<td>Điều khiển cách gắn kết phân vùng</td>
<td>74</td>
</tr>
<tr>
<td>B.4.8</td>
<td>Cài đặt hệ thống cơ bản</td>
<td>75</td>
</tr>
<tr>
<td>B.4.9</td>
<td>Thiết lập apt</td>
<td>75</td>
</tr>
<tr>
<td>B.4.10</td>
<td>Chọn gói phần mềm</td>
<td>76</td>
</tr>
<tr>
<td>B.4.11</td>
<td>Làm xong tiến trình cài đặt</td>
<td>77</td>
</tr>
<tr>
<td>B.4.12</td>
<td>Chèn trước gói khác</td>
<td>77</td>
</tr>
<tr>
<td>B.5</td>
<td>Tùy chọn cấp cao</td>
<td>77</td>
</tr>
<tr>
<td>B.5.1</td>
<td>Chay lệnh riêng trong khi cài đặt</td>
<td>77</td>
</tr>
<tr>
<td>B.5.2</td>
<td>Dùng khả năng chèn sẵn để thay đổi giá trị mặc định</td>
<td>78</td>
</tr>
<tr>
<td>B.5.3</td>
<td>Tài dầy chuyển tập tin định cấu hình sẵn</td>
<td>78</td>
</tr>
</tbody>
</table>

C Phân vùng cho Debian

<table>
<thead>
<tr>
<th>C.1</th>
<th>Chọn phân vùng Debian, lập kích cỡ phân vùng</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.2</td>
<td>Cài thư mục</td>
<td>80</td>
</tr>
<tr>
<td>C.3</td>
<td>Bổ trí phân vùng khuyễn khích</td>
<td>81</td>
</tr>
<tr>
<td>C.4</td>
<td>Tên thiết bị dưới Linux</td>
<td>82</td>
</tr>
<tr>
<td>C.5</td>
<td>Chương trình tạo phân vùng Debian</td>
<td>82</td>
</tr>
</tbody>
</table>

D Thông Tin Linh Tinh

<table>
<thead>
<tr>
<th>D.1</th>
<th>Thiết bị Linux</th>
<th>83</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1.1</td>
<td>Thiết lập con chuột</td>
<td>83</td>
</tr>
<tr>
<td>D.2</td>
<td>Sức chứa trên đĩa cần thiết cho công việc</td>
<td>84</td>
</tr>
<tr>
<td>D.3</td>
<td>Cài đặt Debian GNU/Linux từ hệ thống UNIX/Linux</td>
<td>85</td>
</tr>
<tr>
<td>D.3.1</td>
<td>Bắt đầu</td>
<td>85</td>
</tr>
<tr>
<td>D.3.2</td>
<td>Cài đặt debootstrap</td>
<td>85</td>
</tr>
<tr>
<td>D.3.3</td>
<td>Chay debootstrap</td>
<td>86</td>
</tr>
</tbody>
</table>
CONTENTS

D.3.4	Cấu hình hệ thống cơ bản ...	86
D.3.4.1	Tạo tập tin thiết bị ...	86
D.3.4.2	Gắn kết phân vùng ...	87
D.3.4.3	Đặt múi giờ ...	87
D.3.4.4	Cấu hình khả năng chạy mạng ...	88
D.3.4.5	Cấu hình Apt ...	89
D.3.4.6	Cấu hình miền địa phương và bàn phím ...	89
D.3.5	Cài đặt hạt nhân ...	89
D.3.6	Thiết lập bộ nạp khởi động ...	89
D.3.7	Remote access:Installing SSH and setting up access ...	89
D.3.8	Đòn kết liễu ...	90
D.4	Cài đặt Debian GNU/Linux dùng PPP qua Ethernet (PPPoE) ...	90

E Linh tinh quản trị ... 91

E.1	Về tài liệu này ...	91
E.2	Cách đóng góp cho tài liệu này ...	91
E.3	Đóng góp chính ...	91
E.4	Lời báo nhận thương hiệu ...	92

F Giấy phép Công cộng GNU ... 93

F.1	Lời mở đầu ...	93
F.2	GIẤY PHÉP CÔNG CỘNG GNU ...	94
F.3	Cách áp dụng điều kiện này cho các chương trình mới của bạn ...	96
List of Tables

3 Trước khi cài đặt Debian GNU/Linux

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Hardware Information Helpful for an Install</td>
<td>12</td>
</tr>
<tr>
<td>3.2</td>
<td>Điều kiện hệ thống tối thiểu khuyến khích</td>
<td>13</td>
</tr>
</tbody>
</table>
Abstract

Tài liệu này chứa hướng dẫn cài đặt cho hệ thống Debian GNU/Linux 11 (tên mã “bullseye”), cho kiến trúc 64-bit ARM (“arm64”). Nó cũng chứa liên kết đến thông tin bổ sung và thông tin về tận dụng hệ thống Debian mới.

Cảnh báo

This translation of the installation guide is not up-to-date and currently there is no one actively working on updating it. Keep this in mind when reading it; it may contain outdated or wrong information. Read or double-check the English variant, if in doubt. If you can help us with updating the translation, please contact debian-boot@lists.debian.org or the debian-l10n-xxx mailinglist for this language. Many thanks.

Trạng thái của bản dịch: hoàn tất (mà có thể là không đẹp ;)). Mọi bạn gửi thông báo lỗi hoặc góp ý cho người dịch clytie@riverland.net.au và/hoặc hộp thư chung hanoilug@lists.hanoilug.org.
Cài đặt 11 Debian GNU/Linux trên arm64

Chúng tôi rất vui thích thấy biết rằng bạn chọn thử sử dụng Debian; chúng tôi cũng chắc chắn là bạn sẽ tìm thấy bản phát hành GNU/Linux của Debian là duy nhất. Debian GNU/Linux tập hợp phần mềm có chất lượng cao từ trên khắp thế giới, hợp nhất nó vào một toàn bộ mạch lạc. Chúng tôi cho rằng bạn sẽ tìm biết là kết quả này thực sự lớn hơn tổng số các phần.

Có thể là bạn muốn cài đặt Debian mà không đọc sổ tay này: trình cài đặt Debian được thiết kế để cho bạn có khả năng này. Nếu bạn lúc này không có đủ rảnh đọc toàn bộ Sổ Tay Cài Đặt ngay bây giờ, khuyên bạn đọc ít nhất tài liệu Cài Đặt Thế Nào, mà hướng dẫn bạn qua tiến trình cài đặt cơ bản, cung cấp nhiều liên kết đến sổ tay về chủ đề cập cao hoặc về thông tin giải đáp thắc mắc. Tài liệu Cài Đặt Thế Nào nằm trong Phụ lục A.

Vậy bạn mất thời gian đọc phần lớn Sổ Tay này nhé: nó hướng dẫn đến kinh nghiệm cài đặt thành công hơn.
Chapter 1
Chào mừng bạn dùng Debian

Chương này cung cấp tổng quan của Dự Án Debian và Debian GNU/Linux. Nếu bạn quen với lịch sử của Dự Án Debian và bản phát hành Debian GNU/Linux, bạn cũng nhảy được tới chương kế tiếp.

1.1 Debian là gì vậy?

Nhà Phát Triển Debian tham gia nhiều hoạt động khác nhau, gồm quản trị cho Mạng HTTP và FTP, thiết kế đồ họa, phân tích pháp luật các giấy phép phần mềm, tạo tài liệu hướng dẫn và, tất nhiên, bảo trì gói phần mềm.

Để truyền triết lý của chúng tôi, và hấp dẫn nhà phát triển theo những nguyên tắc do Debian hỗ trợ, Dự Án Debian đã xuất bản một số tài liệu phác họa các giá trị của chúng tôi, cũng chỉ dẫn người nào muốn trở thành nhà phát triển Debian.

- Chỉ Dẫn Phần Mềm Mở Tự Do Debian (DFSG) là lời tuyên bố rõ ràng và ngắn gọn về tiêu chuẩn phần mềm tự do của Debian. DFSG là tài liệu có ảnh hưởng rất lớn trong Phong Trào Phần Mềm Mở Tự Do, cũng đã đặt nền móng cho Lời Định NghĩaILLS Hoạt denen Mở.

- Sổ Tay Chính Sách Debian là đặc tả rộng rãi về những tiêu chuẩn chất lượng của Dự Án Debian.

Nhà phát triển Debian cũng tham gia một số dự án khác, đặc trưng cho Debian hay góp một phần công cộng trong Linux. Chẳng hạn:

- Tiêu Chuẩn Phần Cáp Hệ Thống Tập Tin (FHS) là sự cố gắng tiêu chuẩn hóa bộ trợ của hệ thống tập tin Linux. FHS sẽ cho nhà phát triển phần mềm có khả năng tập trung sự cố gắng để thiết kế chương trình, không cần lo lắng về phương pháp cài đặt gói đối với mỗi bản phát hành GNU/Linux riêng.

- Debian Còn Trẻ là một dự án bên trong, nhằm mục đích là bảo đảm Debian hấp dẫn được người dùng trẻ nhất.

Để tìm thông tin chung thêm về Debian, xem Hỏi Đáp Debian.

1.2 GNU/Linux là gì vậy?
Linux là hệ điều hành: một dạng chương trình cho bạn khả năng tương tác với máy tính, cũng chạy chương trình khác.

Một hệ điều hành gồm có nhiều chương trình cơ bản khác nhau do máy tính cần thiết để liên lạc với và nhận lệnh từ người dùng; đọc từ và ghi vào đĩa cứng, băng và máy in; điều khiển cách sử dụng bộ nhớ; chạy phần mềm khác. Trong hệ điều hành, phần quan trọng nhất là hệ thống. Trong hệ thống kênh GNU/Linux, Linux là thành phần hạt nhân. Phần còn lại của hệ thống chứa chương trình khác nhau, gồm nhiều phần mềm do dự án GNU phát triển hay hỗ trợ.
Vì hạt nhân Linux đơn độc không làm toàn bộ hệ điều hành, chúng tôi chọn sử dụng tên “GNU/Linux” để diễn tả hệ thống cũng có tên cảu cả “Linux”.

Tiến trình phát triển code trên hệ thống GNU/Linux đã bắt đầu trong năm 1984, khi Tổ Chức Phần Mềm Tự Do bắt đầu phát triển một hệ điều hành miễn phí kiểu UNIX được gọi là GNU.

Dự Án GNU đã phát triển một bộ gán hệ các công cụ phần mềm tự do để sử dụng với UNIX và hệ điều hành kiểu UNIX như Linux. Không công cụ nào cho người dùng có khả năng thực hiện công việc trong phạm vi từ việc thư mục (như sao chép hay gỡ bỏ tập tin khỏi hệ thống) đến việc phức tạp (như ghi hay biên dịch chương trình hoặc hiệu chỉnh cấp cao nhiều định dạng tài liệu khác nhau).

Màu để nhiều nhóm và người đã đóng góp cho Linux, Tổ Chức Phần Mềm Tự Do vẫn còn đã đóng góp nhiều nhất: nó đã tạo phần lớn công cụ được dùng trong Linux, ngày càng hiện thực và công động hỗ trợ nó.

Hạt nhân Linux mới xuất hiện trong năm 1991, khi một học sinh vi tính tên Linus Torvalds loan báo cho nhóm Usenet comp.os.minix một phiên bản sớm của hạt nhân thay thế điều của Minix. Xem trang lịch sử Linux History Page của Linux Quốc Tế.

Linus Torvalds vẫn tiếp tục giải quyết hệ điều hành khác, không quen với ý kiến có khả năng thay đổi dòng lệnh hay môi trường đồ họa.

Hơn nữa, Linux sup do ít hơn, chạy dễ dàng hơn nhiều hệ điều hành khác. Do những lợi ích này, Linux là hệ điều hành lớn lên nhanh nhất trong thị trường trình phục vụ. Gần đây hơn, Linux cùng một ưa chuộng bởi người dùng kinh doanh và ở nhà.

1.3 Debian GNU/Linux là gì vậy?

Kết hợp triết lý và phương pháp luận của Debian với những công cụ GNU, hạt nhân Linux, và phần mềm tự do quan trọng khác, các điều này thành lập một bối cảnh phát hành phần mềm đầy nhức nhaign được gọi là Debian GNU/Linux. Bán phát hành này gồm có rất nhiều gói phần mềm. Trong bán phát hành này, mỗi gói chứa chương trình chạy được, tập lệnh, tài liệu hướng dẫn và thông tin cấu hình, cùng có một nhà bảo trì trách nhiệm cập nhật gói đó, theo dõi thông báo lỗi, và liên lạc với tác giả gốc của phần mềm đã đóng gói. Cơ bản người dùng rất lớn của chúng tôi, cũng với hệ thống theo dõi lỗi, bảo đảm các sự cốkhó khăn được tìm và sửa nhanh.

Tập trung Debian với chi tiết nhất kết quả là một bán phát hành có chất lượng cao, ổn định, và có khả năng co gián. Cơ thể cấu hình dễ dàng bao gồm cả hệ thống mà chưa được hiểu hết hiện nguyên vụ, từ trước lệnh đoạn lệnh, đến cài đặt hệ thống mà không cần biết thông tin cài đặt.

Debian tiếp tục dẫn dắt tiến trình Linux. Tiến trình phát triển của nó là thông thường,(valuable) của mẫu phát triển nguồn mở — ngay cả cho công việc rất phức tạp như xây dựng và bảo trì một hệ điều hành hoàn toàn.

Tình năng khác biệt Debian dành cho những người muốn một bán phát hành Linux khác là hệ thống quản lý gói. Những công cụ này cho quá trình hệ thống Debian khá nặng nhưng điều hoạt hoàn toàn mọi gói được cài đặt vào hệ thống đó, gồm khả năng cài đặt gói một cách riêng hoặc cập nhật từ một dòng solo hoặc bộ phần mềm một cách dễ dàng. Nói cụ thể là bán phát hành Linux thứ nhất có khả năng nâng cấp mà không cần cài đặt lại.

Debian tiếp tục dẫn dắt tiến trình Linux. Tiến trình phát triển của nó là thông thường,(valuable) của mẫu phát triển nguồn mở — ngay cả cho công việc rất phức tạp như xây dựng và bảo trì một hệ điều hành hoàn toàn.

Tình năng khác biệt Debian dành cho những người muốn một bán phát hành Linux khác là hệ thống quản lý gói. Những công cụ này cho quá trình hệ thống Debian khá nặng nhưng điều hoạt hoàn toàn mọi gói được cài đặt vào hệ thống đó, gồm khả năng cài đặt gói một cách riêng hoặc cập nhật từ một dòng solo hoặc bộ phần mềm một cách dễ dàng. Nói cụ thể là bán phát hành Linux thứ nhất có khả năng nâng cấp mà không cần cài đặt lại.

Debian tiếp tục dẫn dắt tiến trình Linux. Tiến trình phát triển của nó là thông thường,(valuable) của mẫu phát triển nguồn mở — ngay cả cho công việc rất phức tạp như xây dựng và bảo trì một hệ điều hành hoàn toàn.

Tình năng khác biệt Debian dành cho những người muốn một bán phát hành Linux khác là hệ thống quản lý gói. Những công cụ này cho quá trình hệ thống Debian khá nặng nhưng điều hoạt hoàn toàn mọi gói được cài đặt vào hệ thống đó, gồm khả năng cài đặt gói một cách riêng hoặc cập nhật từ một dòng solo hoặc bộ phần mềm một cách dễ dàng. Nói cụ thể là bán phát hành Linux thứ nhất có khả năng nâng cấp mà không cần cài đặt lại.

Debian tiếp tục dẫn dắt tiến trình Linux. Tiến trình phát triển của nó là thông thường,(valuable) của mẫu phát triển nguồn mở — ngay cả cho công việc rất phức tạp như xây dựng và bảo trì một hệ điều hánh hoàn toàn.

Tình năng khác biệt Debian dành cho những người muốn một bán phát hành Linux khác là hệ thống quản lý gói. Những công cụ này cho quá trình hệ thống Debian khá nặng nhưng điều hoạt hoàn toàn mọi gói được cài đặt vào hệ thống đó, gồm khả năng cài đặt gói một cách riêng hoặc cập nhật từ một dòng solo hoặc bộ phần mềm một cách dễ dàng. Nói cụ thể là bán phát hành Linux thứ nhất có khả năng nâng cấp mà không cần cài đặt lại.

Debian tiếp tục dẫn dắt tiến trình Linux. Tiến trình phát triển của nó là thông thường,(valuable) của mẫu phát triển nguồn mở — ngay cả cho công việc rất phức tạp như xây dựng và bảo trì một hệ điều hành hoàn toàn.

Tình năng khác biệt Debian dành cho những người muốn một bán phát hành Linux khác là hệ thống quản lý gói. Những công cụ này cho quá trình hệ thống Debian khá nặng nhưng điều hoạt hoàn toàn mọi gói được cài đặt vào hệ thống đó, gồm khả năng cài đặt gói một cách riêng hoặc cập nhật từ một dòng solo hoặc bộ phần mềm một cách dễ dàng. Nói cụ thể là bán phát hành Linux thứ nhất có khả năng nâng cấp mà không cần cài đặt lại.
1.4 What is the Debian Installer?

Debian Installer, also known as “d-i”, is the software system to install a basic working Debian system. A wide range of hardware such as embedded devices, laptops, desktops and server machines is supported and a large set of free software for many purposes is offered.

The installation is conducted by answering a basic set of questions. Also available are an expert mode that allows to control every aspect of the installation and an advanced feature to perform automated installations. The installed system can be used as is or further customized. The installation can be performed from a multitude of sources: USB, CD/DVD/Blu-Ray or the network. The installer supports localized installations in more than 80 languages.

The installer has its origin in the boot-floppies project, and it was first mentioned by Joey Hess in 2000. Since then the installation system has been continuously developed by volunteers improving and adding more features.

More information can be found on the Debian Installer page, on the Wiki and on the debian-boot mailing list.

1.5 Lấy Debian

For information on how to download Debian GNU/Linux from the Internet or from whom official Debian installation media can be purchased, see the distribution web page. The list of Debian mirrors contains a full set of official Debian mirrors, so you can easily find the nearest one.

Rất dễ dàng nâng cấp Debian sau khi cài đặt. Thủ tục cài đặt sẽ giúp dễ dàng thốngطرق cho bạn nâng cấp được một khi cài đặt hoàn toàn, nếu cần thiết.

1.6 Lấy phiên bản mới nhất của tài liệu này

1.7 Cấu trúc của tài liệu này

Tài liệu này được thiết kế nhằm sổ tay cho người dùng bắt đầu chạy Debian. Nó cố gắng giả sử càng ít càng có thể về lớp kỹ năng của bạn. Tuy nhiên, chúng tôi có phải giả sử là bạn có kiến thức chung về hoạt động của các phần cứng của máy tính của mình.

Trong tài liệu này, người dùng cần thiết cốt lõi là chỉnh sửa các tập tin cấu hình, thiết lập phần cứng, cấu hình phần mềm, cấu hình mạng, và các phần khác để phù hợp với yêu cầu của bạn.

Nói chung, số tay này được sắp xếp bằng thứ tự túy tiếp theo, dẫn bạn qua tiến trình cài đặt từ đầu đến cuối. Đây là những bước cài đặt Debian GNU/Linux, và tiếp doạn tài liệu tương ứng với mỗi bước:

1. Quyết định nếu phần cứng của bạn thỏa tiêu chuẩn sử dụng hệ thống cài đặt chưa, trong Chương 2.
3. Trong Chương 4, bạn sẽ giải quyết các vấn đề phát sinh từ quá trình cài đặt và điều chỉnh phần mềm cài đặt cho Debian đúng.
4. The next Chương 5 describes booting into the installation system. This chapter also discusses troubleshooting procedures in case you have problems with this step.
5. Perform the actual installation according to Chương 6. This involves choosing your language, configuring peripheral driver modules, configuring your network connection, so that remaining installation files can be obtained directly from a Debian server (if you are not installing from a set of CD/DVD installation images), partitioning your hard drives and installation of a base system, then selection and installation of tasks. (Some background about setting up the partitions for your Debian system is explained in Phụ lục C.)

Một khi cài đặt xong hệ thống, bạn đọc Chương 8. Chương này giải thích nơi bạn tìm thông tin thêm về UNIX và Debian, và cách thay thế hạt nhân.

Cuối cùng, thông tin về tài liệu này và cách đóng góp cho nó, nằm trong Phụ lục E.
1.8 Về tác quyền và giấy phép phần mềm

Calling software free doesn't mean that the software isn’t copyrighted, and it doesn’t mean that installation media containing that software must be distributed at no charge. Free software, in part, means that the licenses of individual programs do not require you to pay for the privilege of distributing or using those programs. Free software also means that not only may anyone extend, adapt, and modify the software, but that they may distribute the results of their work as well.

GHI CHÚ

Dự án Debian, để giúp đỡ người dùng, có phải làm cho công bố một số gói không thỏa tiêu chuẩn tự do của chúng tôi. Tuy nhiên, những gói này không phải thuộc về bản phát hành chính thức, cùng chi sản số tự phân phối đóng góp (contrib) hay khác tự do (non-free) của máy nhân bản Debian hay trên đĩa CD/DVD-ROM nhóm ba; xem Hỏi Đáp Debian (Debian FAQ), dưới Kho FTP Debian (“The Debian FTP archives”), để tìm thêm thông tin về bộ trie và nội dung của kho đó.

Những chương trình của hệ thống được phát hành với điều kiện của Giấy Phép Công Cộng GNU, thường được gọi đơn giản là “GPL”. Giấy phép GPL cẩn thiết bạn lựa chọn cho mã nguồn của chương trình sẵn sàng khi nào bạn phát hành một bản sao của phần của chương trình đó; điều khoản này trong giấy phép thì bảo đảm bất cứ người dùng nào có thể sửa đổi phần mềm đó. Do điều khoản này, mã nguồn¹ cho mọi chương trình như vậy có sẵn trong hệ thống Debian.

Có vài kiểu khác nhau của lời tuyên bố tác quyền và giấy phép phân mềm được áp dụng cho chương trình của Debian. Bạn có thể tìm tác quyền và giấy phép dành cho mỗi gói được cài đặt vào hệ thống, bằng cách xem tập tin/usr/share/doc/tên_gói/copyright một khi cài đặt gói đó vào hệ thống.

Để tìm thông tin thêm về giấy phép và cách Debian quyết định nếu phần mềm là đủ tự do để được bao gồm trong bản phát hành chính, xem Chỉ Dẫn Phần Mềm Tự Do Debian (Debian Free Software Guidelines).

¹Để tìm thông tin về phương pháp định vị, giải nén và xây dựng bộ nhị phân từ gói mã nguồn Debian, xem Hỏi Đáp Debian Debian FAQ, dưới Những điều cơ bản của Hệ Thống Quản Lý Gói Debain (“Basics of the Debian Package Management System”).
Chapter 2

Hệ thống Yêu cầu

Tiết đoạn này chứa thông tin về phần cứng yêu cầu để bắt đầu sử dụng Debian. Cũng có liên kết đến thông tin bổ sung về phần cứng do GNU/Linux hỗ trợ.

2.1 Phần cứng được hỗ trợ

Debian không yêu cầu phần cứng đặc biệt khác với yêu cầu của hạt nhân Linux hay kFreeBSD và các bộ công cụ GNU. Vì vậy, bất kỳ kiến trúc hay nền tảng nào sang đó hạt nhân Linux hay kFreeBSD, thư viện C libc, Bộ biên dịch gcc v.v. đã được chuyển, cũng cho đó có một bản chuyển Debian, có khả năng chạy được hệ thống Debian. Xem những trang Bản Chuyển (Ports) tại https://www.debian.org/ports/arm/ để tìm thêm thông tin về hệ thống kiến trúc 64-bit ARM đã được thử ra với Debian GNU/Linux.

Hơn là cố gắng diễn tả tất cả các cấu hình phần cứng được hỗ trợ cho kiến trúc 64-bit ARM, tiết đoạn này chứa thông tin chung và liên kết đến thông tin thêm.

2.1.1 Kiến trúc được hỗ trợ

Debian GNU/Linux 11 supports ten major architectures and several variations of each architecture known as “flavors”.

<table>
<thead>
<tr>
<th>Kiến trúc</th>
<th>Tên Debian</th>
<th>Kiến trúc phụ</th>
<th>Miù vị</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD64 & Intel 64</td>
<td>amd64</td>
<td>default x86 machines default</td>
<td></td>
</tr>
<tr>
<td>i386</td>
<td>i386</td>
<td>Xen PV domains only xen</td>
<td></td>
</tr>
<tr>
<td>ARM</td>
<td>armel</td>
<td>Marvell Kirkwood and Orion marvell</td>
<td></td>
</tr>
<tr>
<td>ARM with hardware FPU</td>
<td>armhf</td>
<td>multiplatform armmp</td>
<td></td>
</tr>
<tr>
<td>64bit ARM</td>
<td>arm64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32bit MIPS (big-endian)</td>
<td>mips</td>
<td>MIPS Malta 4kc-malta</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon octeon</td>
<td></td>
</tr>
<tr>
<td>64bit MIPS (little-endian)</td>
<td>mips64el</td>
<td>MIPS Malta 5kc-malta</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon octeon</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loongson 3 loongson-3</td>
<td></td>
</tr>
<tr>
<td>32bit MIPS</td>
<td>mipsel</td>
<td>MIPS Malta 4kc-malta</td>
<td></td>
</tr>
<tr>
<td>(little-endian)</td>
<td></td>
<td>Cavium Octeon octeon</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loongson 3 loongson-3</td>
<td></td>
</tr>
<tr>
<td>Power Systems</td>
<td>ppc64el</td>
<td>IBM POWER8 or newer machines</td>
<td></td>
</tr>
<tr>
<td>64bit IBM S/390</td>
<td>s390x</td>
<td>IPL từ bộ đọc VM-reader và DASD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>giống loài</td>
<td></td>
</tr>
</tbody>
</table>

Tài liệu này bao quát sự cài đặt cho kiến trúc 64-bit ARM dùng hạt nhân Linux. Nếu bạn tìm thông tin về bất cứ kiến trúc khác nào được Debian hỗ trợ, xem trang Bản Chuyển Debian.

Đây là bản phát hành Debian GNU/Linux chính thức thứ nhất cho kiến trúc 64-bit ARM. Chúng tôi xem là nó đủ hiểu được để được phát hành. Tuy nhiên, vì nó chưa được thử ra bởi một số người dùng với các kiến trúc
2.1.2 Three different ARM ports

The ARM architecture has evolved over time and modern ARM processors provide features which are not available in older models. Debian therefore provides three ARM ports to give the best support for a very wide range of different machines:

- Debian/armel targets older 32-bit ARM processors without support for a hardware floating point unit (FPU).
- Debian/armhf works only on newer 32-bit ARM processors which implement at least the ARMv7 architecture with version 3 of the ARM vector floating point specification (VFPv3). It makes use of the extended features and performance enhancements available on these models.
- Debian/arm64 works on 64-bit ARM processors which implement at least the ARMv8 architecture.

Technically, all currently available ARM CPUs can be run in either endian mode (big or little), but in practice the vast majority use little-endian mode. All of Debian/arm64, Debian/armhf and Debian/armel support only little-endian systems.

2.1.3 Variations in ARM CPU designs and support complexity

ARM systems are much more heterogeneous than those based on the i386/amd64-based PC architecture, so the support situation can be much more complicated.

The ARM architecture is used mainly in so-called “system-on-chip” (SoC) designs. These SoCs are designed by many different companies, often with vastly varying hardware components even for the very basic functionality required to bring the system up. Older versions of the ARM architecture have seen massive differences from one SoC to the next, but ARMv8 (arm64) is much more standardised and so is easier for the Linux kernel and other software to support.

Server versions of ARMv8 hardware are typically configured using the Unified Extensible Firmware Interface (UEFI) and Advanced Configuration and Power Interface (ACPI) standards. These two provide common, device-independent ways to boot and configure computer hardware. They are also common in the x86 PC world.

2.1.4 Platforms supported by Debian/arm64

Arm64/AArch64/ARMv8 hardware became available quite late in the Debian Bullseye release cycle so not many platforms had support merged in the mainline kernel version by the time of this release; this is the main requirement to have debian-installer working on them. The following platforms are known to be supported by Debian/arm64 in this release. There is only one kernel image, which supports all the listed platforms.

Applied Micro (APM) Mustang/X-Gene The APM Mustang was the first Linux-capable ARMv8 system available. It uses the X-gene SoC, which has since also been used in other machines. It is an 8-core CPU, with ethernet, USB and serial. A common form-factor looks just like a desktop PC box, but many other versions are expected in the future. Most of the hardware is supported in the mainline kernel, but at this point USB support is lacking in the Bullseye kernel.

ARM Juno Development Platform Juno is a capable development board with a 6-core (2xA57, 4xA53) ARMv8-A 800Mhz CPU, Mali (T624) graphics, 8GB DDR3 RAM, Ethernet, USB, Serial. It was designed for system bring-up and power testing so is neither small nor cheap, but was one of the first boards available. All the on-board hardware is supported in the mainline kernel and in Bullseye.

When using debian-installer on non-UEFI systems, you may have to manually make the system bootable at the end of the installation, e.g. by running the required commands in a shell started from within debian-installer. flash-kernel knows how to set up an X-Gene system booting with U-Boot.
2.1.4.1 Other platforms

The multiplatform support in the arm64 Linux kernel may also allow running debian-installer on arm64 systems not explicitly listed above. So long as the kernel used by debian-installer has support for the target system’s components, and a device-tree file for that target is available, a new target system may work just fine. In these cases, the installer can usually provide a working installation, and so long as UEFI is in use, it should be able to make the system bootable as well. If UEFI is not used you may also need to perform some manual configuration steps to make the system bootable.

2.1.5 Da bô xử lý

Multiprocessor support — also called “symmetric multiprocessing” or SMP — is available for this architecture. Having multiple processors in a computer was originally only an issue for high-end server systems but has become common in recent years nearly everywhere with the introduction of so-called “multi-core” processors. These contain two or more processor units, called “cores”, in one physical chip.

The standard Debian 11 kernel image has been compiled with SMP support. It is also usable on non-SMP systems without problems.

2.1.6 Graphics Hardware Support

Debian’s support for graphical interfaces is determined by the underlying support found in X.Org’s X11 system, and the kernel. Basic framebuffer graphics is provided by the kernel, whilst desktop environments use X11. Whether advanced graphics card features such as 3D-hardware acceleration or hardware-accelerated video are available, depends on the actual graphics hardware used in the system and in some cases on the installation of additional “firmware” images (see Phần 2.2).

Nearly all ARM machines have the graphics hardware built-in, rather than being on a plug-in card. Some machines do have expansion slots which will take graphics cards, but that is a rarity. Hardware designed to be headless with no graphics at all is quite common. Whilst basic framebuffer video provided by the kernel should work on all devices that have graphics, fast 3D graphics invariably needs binary drivers to work. The situation is changing quickly but at the time of the bullseye release free drivers for nouveau (Nvidia Tegra K1 SoC) and freedreno (Qualcomm Snapdragon SoCs) are available in the release. Other hardware needs non-free drivers from 3rd parties.

Details on supported graphics hardware and pointing devices can be found at https://wiki.freedesktop.org/xorg/. Debian 11 ships with X.Org version 7.7.

2.1.7 Phần cứng khả năng kết nối mạng

Almost any network interface card (NIC) supported by the Linux kernel should also be supported by the installation system; drivers should normally be loaded automatically.

Trên 64-bit ARM, hầu hết các thiết bị mạng Ethernet gắn liền với mạch đều được hỗ trợ và các mô-đun cho các thiết bị PCI và USB gắn thêm đều được cung cấp.

2.1.8 Ngoại vi và phần cứng khác

Linux supports a large variety of hardware devices such as mice, printers, scanners, PCMCIA/CardBus/ExpressCard and USB devices. However, most of these devices are not required while installing the system.

2.2 Thiết bị cần thiết phần vụng

Besides the availability of a device driver, some hardware also requires so-called firmware or microcode to be loaded into the device before it can become operational. This is most common for network interface cards (especially wireless NICs), but for example some USB devices and even some hard disk controllers also require firmware. With many graphics cards, basic functionality is available without additional firmware, but the use of advanced features requires an appropriate firmware file to be installed in the system.

On many older devices which require firmware to work, the firmware file was permanently placed in an EEPROM/Flash chip on the device itself by the manufacturer. Nowadays most new devices do not have the firmware embedded this way anymore, so the firmware file must be uploaded into the device by the host operating system every time the system boots.

Trong hầu hết các trường hợp, phần cứng khác từ do tùy theo những tiêu chuẩn được Dự án Debian GNU/Linux đúng thì không thể được bao gồm trong bản phát hành chính hoặc trong hệ thống cài đặt. Nếu trình điều khiển thiết
2.3 Mua phần cứng đặc biệt cho GNU/Linux

Có vài nhà bán máy tính cài đặt sẵn hệ thống Debian hoặc một bản phát hành GNU/Linux khác. Có thể là bạn trả thêm tiền mà mua sự yên tĩnh trong tâm hồn, vì bạn chắc chắn biết rằng phần cứng đó được GNU/Linux hỗ trợ đầy đủ.

2.3.1 Tránh phần mềm sở hữu hay bị đóng

Some hardware manufacturers simply won’t tell us how to write drivers for their hardware. Others won’t allow us access to the documentation without a non-disclosure agreement that would prevent us from releasing the driver’s source code, which is one of the central elements of free software. Since we haven’t been granted access to usable documentation on these devices, they simply won’t work under Linux.

In many cases there are standards (or at least some de-facto standards) describing how an operating system and its device drivers communicate with a certain class of devices. All devices which comply to such a (de-facto-)standard can be used with a single generic device driver and no device-specific drivers are required. With some kinds of hardware (e.g. USB “Human Interface Devices”, i.e. keyboards, mice, etc., and USB mass storage devices like USB flash disks and memory card readers) this works very well and practically every device sold in the market is standards-compliant.

In other fields, among them e.g. printers, this is unfortunately not the case. While there are many printers which can be addressed via a small set of (de-facto-)standard control languages and therefore can be made to work without problems in any operating system, there are quite a few models which only understand proprietary control commands for which no usable documentation is available and therefore either cannot be used at all on free operating systems or can only be used with a vendor-supplied closed-source driver.

Even if there is a vendor-provided closed-source driver for such hardware when purchasing the device, the practical lifespan of the device is limited by driver availability. Nowadays product cycles have become short and it is not uncommon that a short time after a consumer device has ceased production, no driver updates get made available any more by the manufacturer. If the old closed-source driver does not work anymore after a system update, an otherwise perfectly working device becomes unusable due to lacking driver support and there is nothing that can be done in this case. You should therefore avoid buying closed hardware in the first place, regardless of the operating system you want to use it with.

You can help improve this situation by encouraging manufacturers of closed hardware to release the documentation and other resources necessary for us to provide free drivers for their hardware.

2.4 Vật chứa trình cài đặt

Tiết đoạn này sẽ giúp đỡ bạn quyết định những kiểu vật chứa nào bạn có thể sử dụng để cài đặt hệ thống Debian. Có một chương hoàn toàn dành riêng cho phương tiện chứa, Chương 4, trong đó liệt kê những lợi ích và bất lợi của mỗi kiểu phương tiện chứa. Một khi tới tiết đoạn đó, bạn có thể muốn tham chiếu về lại trang này.

2.4.1 Đĩa CD-ROM/DVD-ROM/BD-ROM

Installation from optical disc is supported for most architectures.
2.4.2 Thanh bộ nhớ USB
USB flash disks a.k.a. USB memory sticks have become a commonly used and cheap storage device. Most modern
computer systems also allow booting the debian-installer from such a stick. Many modern computer systems,
in particular netbooks and thin laptops, do not have an optical drive anymore at all and booting from USB media is
the standard way of installing a new operating system on them.

2.4.3 Mạng
Mạng có thể được sử dụng trong khi cài đặt, để lấy các tập tin cần thiết cho tiến trình cài đặt. Cách sử dụng mạng
phù thuộc vào phương pháp cơ sở dữ liệu đã chọn và các trả lời một số câu sẽ được hỏi trong khi cài đặt. Bộ cài đặt
hỗ trợ phần lớn kiểu kết nối mạng (gồm PPPoE, nhưng không phải ISDN hay PPP), thông qua hoặc HTTP hoặc
FTP. Sau khi cài đặt xong, bạn cũng có khả năng cấu hình hệ thống để sử dụng ISDN và PPP.
You can also boot the installation system over the network without needing any local media like CDs/DVDs or
USB sticks. If you already have a netboot-infrastructure available (i.e. you are already running DHCP and TFTP
services in your network), this allows an easy and fast deployment of a large number of machines. Setting up the
necessary infrastructure requires a certain level of technical experience, so this is not recommended for novice users.

Một tùy chọn khác là tiến trình cài đặt không có đĩa, dùng khả năng khởi đầu qua mạng từ mạng cục bộ và khả
năng gắn kết bằng NFS các hệ thống tập tin cục bộ.

2.4.4 Đĩa cứng
Booting the installation system directly from a hard disk is another option for many architectures. This will require
some other operating system to load the installer onto the hard disk. This method is only recommended for special
cases when no other installation method is available.

2.4.5 Hệ thống Un*x hay GNU
If you are running another Unix-like system, you could use it to install Debian GNU/Linux without using the debian-installer
described in the rest of this manual. This kind of install may be useful for users with otherwise unsupported hardware
or on hosts which can’t afford downtime. If you are interested in this technique, skip to the Phần D.3. This installation
method is only recommended for advanced users when no other installation method is available.

2.4.6 Hệ thống cất giữ được hỗ trợ
The Debian installer contains a kernel which is built to maximize the number of systems it runs on.

2.5 Bộ nhớ và sức chứa trên đĩa cần thiết
Cần thiết ít nhất 80MB bộ nhớ và 850MB sức chứa còn rảnh trên đĩa để thực hiện một tiến trình cài đặt thông thường.
Ghi chú rằng hai số này tùy thuộc vào thời gian. Để xem số lượng hệ thống thích hợp, xem Phần 3.4.
Installation on systems with less memory or disk space available may be possible but is only advised for experienced
users.
Chapter 3

Trước khi cài đặt Debian GNU/Linux

Chương này diễn tả cách chuẩn bị để cài đặt hệ thống Debian, trước khi bạn ngay cả khởi động trình cài đặt. Gồm có tiến trình sao lưu dữ liệu, tập hợp thông tin về phần cứng, và tóm thông tin khác nào cần thiết.

3.1 Toàn cảnh tiến trình cài đặt

Trước tiên có chú thích về việc cài đặt lại. Đối với hệ thống Debian, có rất ít trường hợp yêu cầu cài đặt lại toàn bộ hệ thống (v.đ. cơ chế đĩa cứng thất bại).

Hiệu quả của hệ điều hành thường dùng có thể cần thiết người dùng cài đặt lại toàn bộ hệ thống khi sự hỏng nghiêm trọng xảy ra, hoặc để nâng cấp lên phiên bản HDH mới. Thậm chí nếu không cần thiết cài đặt lại hoàn toàn, thường bạn phải cài đặt lại các chương trình để hoạt động cho đúng trên phiên bản mới.

Gặp vấn đề dưới Debian GNU/Linux, thì rất có thể là hệ điều hành có thể được sửa chữa, thay vào bất kỳ thứ gì. Tiến trình nâng cấp không bao giờ yêu cầu bạn cài đặt lại hoàn toàn: lúc nào bạn cũng có thể nâng cấp « tại chỗ ». Hơn nữa, hầu hết chương trình vẫn còn tương thích với bản phát hành HDH mới. Nếu một phiên bản chương trình mới nào đó cũng yêu cầu phần mềm hỗ trợ mới, hệ thống quản lý gói Debian đảm bảo là tất cả phần mềm cần thiết được tự động nhận diện và cài đặt. Điểm quan trọng là rất nhiều sự cố có thể được xem xét để tránh yêu cầu cài đặt lại trên một hệ thống đã có.

Đây là các bước chính bạn nên theo trong tiến trình cài đặt.

1. Sao lưu mọi dữ liệu hay tài liệu hiện thời nằm trên đĩa cứng nơi bạn định cài đặt Debian.
2. Tập hợp thông tin về máy tính đích, và tài liệu hướng dẫn nào cần thiết, trước khi khởi chạy tiến trình cài đặt.
3. Trên đĩa cứng, tạo sức chứa có thể phân vùng được dành cho Debian.
4. Locate and/or download the installer software and any specialized driver or firmware files your machine requires.
5. Set up boot media such as CDs/DVDs/USB sticks or provide a network boot infrastructure from which the installer can be booted.
7. Chọn ngôn ngữ cài đặt.
8. Kích hoạt sự kết nối mạng Ethernet, nếu có.
9. Tạo và gắn kết những phân vùng nơi Debian sẽ được cài đặt.
10. Theo dõi tiến trình tải về/cài đặt/thiết lập tự động hệ thống cơ bản.
11. Select and install additional software.
12. Cài đặt một bộ nap khởi động có khả năng khởi chạy Debian GNU/Linux và/hay hệ thống đã có.
13. Tài fấn đầu tiên hệ thống mới được cài đặt.
Nếu bạn gặp khó khăn trong tiến trình cài đặt, có ích khi biết bước nào sử dụng gói nào. Để giải quyết những khó khăn bạn có thể sử dụng các gói phần mềm sau:

- **debian-installer**: Đây là chủ đề chính của sổ tay này. Nó phát hiện phần cứng nên tải các trình điều khiển thích hợp, sử dụng ứng dụng khách dhcp-client để thiết lập sự kết nối mạng, chạy debootstrap để cài đặt các gói hệ thống cơ bản, và chạy tasksel để chọn các gói cần cài đặt phần mềm thêm. Có nhiều gói khác cũng làm việc trong tiến trình cài đặt này, nhưng trình debian-installer đã làm xong công việc khi bạn nạp lần đầu tiên hệ thống mới.

- **tasksel**: Để điều chỉnh hệ thống để phù hợp với sự cần của bạn, tasksel cho bạn khả năng cài đặt một số phần mềm bổ trợ, v.d. trình phục vụ Mạng hay môi trường làm việc. One important option during the installation is whether or not to install a graphical desktop environment, consisting of the X Window System and one of the available graphical desktop environments. If you choose not to select the “Desktop environment” task, you will only have a relatively basic, command line driven system. Installing the Desktop environment task is optional because in relation to a text-mode-only system it requires a comparatively large amount of disk space and because many Debian GNU/Linux systems are servers which don’t really have any need for a graphical user interface to do their job.

Just be aware that the X Window System is completely separate from debian-installer, and in fact is much more complicated. Troubleshooting of the X Window System is not within the scope of this manual.

3.2 Sao lưu mọi dữ liệu đã có đi!

Before you start, make sure to back up every file that is now on your system. If this is the first time a non-native operating system is going to be installed on your computer, it is quite likely you will need to re-partition your disk to make room for Debian GNU/Linux. Anytime you partition your disk, you run a risk of losing everything on the disk, no matter what program you use to do it. The programs used in the installation of Debian GNU/Linux are quite reliable and most have seen years of use; but they are also quite powerful and a false move can cost you. Even after backing up, be careful and think about your answers and actions. Two minutes of thinking can save hours of unnecessary work.

If you are creating a multi-boot system, make sure that you have the distribution media of any other present operating systems on hand. Even though this is normally not necessary, there might be situations in which you could be required to reinstall your operating system’s boot loader to make the system boot or in a worst case even have to reinstall the complete operating system and restore your previously made backup.

3.3 Thông tin cần thiết

3.3.1 Tài liệu hướng dẫn

3.3.1.1 Sổ tay cài đặt

Tài liệu này, phiên bản chính thức của Sổ Tay Cài Đặt bản phát hành bullseye của Debian, được công bố bằng nhiều dạng thức và bản dịch khác nhau.

3.3.1.2 Tài liệu hướng dẫn về phần cứng

Thương chưa có sách hỗ trợ cho việc cấu hình hay sử dụng phần cứng.

3.3.2 Tìm nguồn thông tin về phần cứng

Trong nhiều trường hợp, trình cài đặt sẽ chỉ hỗ trợ phương pháp tự động phần cứng riêng của bạn. Để chuẩn bị trước khi cài đặt:

- Sổ tay có sẵn với mỗi phần cứng.
- The BIOS setup screens of your computer. You can view these screens when you start your computer by pressing a combination of keys. Check your manual for the combination. Often, it is the Delete or the F2 key, but some manufacturers use other keys or key combinations. Usually upon starting the computer there will be a message stating which key to press to enter the setup screen.
- Hỗ trợ của mỗi phần cứng.
3.3. THÔNG TIN CẦN THIẾT

• Lệnh hay công cụ hệ thống trong hệ điều hành khác, gồm bộ quản lý tập tin. Người này có ích đặc biệt để tìm thông tin về bộ nhớ RAM và bộ nhớ của phần cứng.

• Quản trị hệ thống hay nhà cung cấp dịch vụ Mạng (ISP). Những nguồn này có thông tin báo bạn biết cách thiết lập khả năng chạy mạng và gửi/nhận thư điện tử.

<table>
<thead>
<tr>
<th>Phần cứng</th>
<th>Thông tin có thể cần</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phần cứng có mấy cái.</td>
<td>Thử tự trên hệ thống.</td>
</tr>
<tr>
<td>Thứ tự trên hệ thống.</td>
<td>Kiểu IDE (cùng biết là PATA), SATA hay SCSI.</td>
</tr>
<tr>
<td>Sức chứa còn rảnh sẵn sàng.</td>
<td>Phần vùng.</td>
</tr>
</tbody>
</table>
| Phân vùng nơi hệ điều hành khác đã được cài đặt. | Phân vùng.

<table>
<thead>
<tr>
<th>Network interfaces</th>
<th>Type/model of available network interfaces.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Máy in</td>
<td>Mẫu và hãng chế tạo.</td>
</tr>
<tr>
<td>Thẻ ảnh động</td>
<td>Type/model and manufacturer.</td>
</tr>
</tbody>
</table>

3.3.3 Khả năng tương thích của phần cứng

Many products work without trouble on Linux. Moreover, hardware support in Linux is improving daily. However, Linux still does not run as many different types of hardware as some operating systems.

Drivers in Linux in most cases are not written for a certain “product” or “brand” from a specific manufacturer, but for a certain hardware/chipset. Many seemingly different products/brands are based on the same hardware design; it is not uncommon that chip manufacturers provide so-called “reference designs” for products based on their chips which are then used by several different device manufacturers and sold under lots of different product or brand names.

This has advantages and disadvantages. An advantage is that a driver for one chipset works with lots of different products from different manufacturers, as long as their product is based on the same chipset. The disadvantage is that it is not always easy to see which actual chipset is used in a certain product/brand. Unfortunately sometimes device manufacturers change the hardware base of their product without changing the product name or at least the product version number, so that when having two items of the same brand/product name bought at different times, they can sometimes be based on two different chipsets and therefore use two different drivers or there might be no driver at all for one of them.

For USB and PCI/PCI-Express/ExpressCard devices, a good way to find out on which chipset they are based is to look at their device IDs. All USB/PCI/PCI-Express/ExpressCard devices have so called “vendor” and “product” IDs, and the combination of these two is usually the same for any product based on the same chipset.

On Linux systems, these IDs can be read with the `lsusb` command for USB devices and with the `lspci -nn` command for PCI/PCI-Express/ExpressCard devices. The vendor and product IDs are usually given in the form of two hexadecimal numbers, separated by a colon, such as “1d6b:0001”.

An example for the output of `lsusb`: “Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub”, whereby 1d6b is the vendor ID and 0002 is the product ID.

An example for the output of `lspci -nn` for an Ethernet card: “03:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller [10ec:8168] (rev 06)”. The IDs are given inside the rightmost square brackets, i.e. here 10ec is the vendor- and 8168 is the product ID.

As another example, a graphics card could give the following output: “04:00.0 VGA compatible controller [0300]: Advanced Micro Devices [AMD] nee ATI RV710 [Radeon HD 4350] [1002:954f]”.

On Windows systems, the IDs for a device can be found in the Windows device manager on the tab “details”, where the vendor ID is prefixed with VEN_ and the product ID is prefixed with DEV_. On Windows 7 systems, you have to select the property “Hardware IDs” in the device manager’s details tab to actually see the IDs, as they are not displayed by default.

Searching on the internet with the vendor/product ID, “Linux” and “driver” as the search terms often results in information regarding the driver support status for a certain chipset. If a search for the vendor/product ID does not yield usable results, a search for the chip code names, which are also often provided by lsusb and lspci (“RTL8111”/“RTL8168B” in the network card example and “RV710” in the graphics card example), can help.
3.3.3.1 Testing hardware compatibility with a Live-System

Debian GNU/Linux is also available as a so-called “live system” for certain architectures. A live system is a preconfigured ready-to-use system in a compressed format that can be booted and used from a read-only medium like a CD or DVD. Using it by default does not create any permanent changes on your computer. You can change user settings and install additional programs from within the live system, but all this only happens in the computer’s RAM, i.e. if you turn off the computer and boot the live system again, everything is reset to its defaults. If you want to see whether your hardware is supported by Debian GNU/Linux, the easiest way is to run a Debian live system on it and try it out.

There are a few limitations in using a live system. The first is that as all changes you do within the live system must be held in your computer’s RAM, this only works on systems with enough RAM to do that, so installing additional large software packages may fail due to memory constraints. Another limitation with regards to hardware compatibility testing is that the official Debian GNU/Linux live system contains only free components, i.e. there are no non-free firmware files included in it. Such non-free packages can of course be installed manually within the system, but there is no automatic detection of required firmware files like in the debian-installer, so installation of non-free components must be done manually if needed.

Information about the available variants of the Debian live images can be found at the Debian Live Images website.

3.3.4 Thiết lập mạng

If your computer is connected to a fixed network (i.e. an Ethernet or equivalent connection — not a dialup/PPP connection) which is administered by somebody else, you should ask your network’s system administrator for this information:

- Tên máy [host name] (có lẽ bạn tự quyết định được).
- Tên miền [domain name].
- Địa chỉ IP [IP address] của máy tính.
- Mặt nạ mạng [netmask] cần dùng với mạng cục bộ.
- Trên mạng, hệ thống cần dùng như là trình phục vụ dịch vụ tên miền (DNS).

If the network you are connected to uses DHCP (Dynamic Host Configuration Protocol) for configuring network settings, you don’t need this information because the DHCP server will provide it directly to your computer during the installation process.

If you have internet access via DSL or cable modem (i.e. over a cable tv network) and have a router (often provided preconfigured by your phone or catv provider) which handles your network connectivity, DHCP is usually available by default.

If you use a WLAN/WiFi network, you should find out:

- The ESSID (“network name”) of your wireless network.
- The WEP or WPA/WPA2 security key to access the network (if applicable).

3.4 Thoả tiêu chuẩn phần cứng tối thiểu

Một khi bạn đã tập hợp thông tin về các phần cứng của máy tính, hãy kiểm tra xem phần cứng này sẽ cho phép bạn cài đặt bằng cách đã múi.

Phù thuộc vào sự cần của bạn, có lẽ bạn cần đặt được bằng ít phần cứng hơn những điều được liệt kê trong bảng bên dưới. Tuy nhiên, hậu hết người dùng sẽ gặp khó khăn nếu họ bỏ qua danh sách phần cứng khuyến khích.

<table>
<thead>
<tr>
<th>Kiểu cài đặt</th>
<th>RAM (tối thiểu)</th>
<th>RAM (khuyến khích)</th>
<th>Đĩa cứng</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vô GUI</td>
<td>256 MB</td>
<td>512 MB</td>
<td>2 GB</td>
</tr>
<tr>
<td>Có GUI</td>
<td>1 gigabytes</td>
<td>2 GB</td>
<td>10 GB</td>
</tr>
</tbody>
</table>

The minimum values assumes that swap will be enabled. The “No desktop” value assumes that the non-graphical installer is used.
3.5 PHÂN VỰNG SẴN CHO HỆ THỐNG ĐA KHỞI ĐỘNG

The actual minimum memory requirements are a lot less than the numbers listed in this table. With swap enabled, it is possible to install Debian with as little as 32MB. The same goes for the disk space requirements, especially if you pick and choose which applications to install; see Phần D.2 for additional information on disk space requirements.

It is possible to run a graphical desktop environment on older or low-end systems, but in that case it is recommended to install a window manager that is less resource-hungry than those of the GNOME or KDE Plasma desktop environments; alternatives include xfce4, icewm and wmaker, but there are others to choose from.

Không thể khuyến nghị bộ nhớ hay sức chứa trên đĩa cần thiết cho việc cài đặt vào máy phục vụ, vì số lượng phụ thuộc nhiều vào mục đích của máy phục vụ.

Ghi nhớ rằng những ước lượng này không gồm các dữ liệu thường dùng, như thư điện tử và tập tin người dùng kiểu khác nhau. Bạn nên tính rộng lượng sức chứa cho các tập tin và dữ liệu của mình.

Disk space required for the smooth operation of the Debian GNU/Linux system itself is taken into account in these recommended system requirements. Notably, the /var partition contains a lot of state information specific to Debian in addition to its regular contents, like logfiles. The dpkg files (with information on all installed packages) can easily consume 40MB. Also, apt puts downloaded packages here before they are installed. You should usually allocate at least 200MB for /var, and a lot more if you install a graphical desktop environment.

3.5 Phân vùng sẵn cho hệ thống đa khởi động

Tiến trình phân vùng đa đơn giản là việc chia đĩa ra nhiều phần riêng, không phụ thuộc vào nhau. Nó giống như việc xây dựng tường ở trong nhà: khi bạn thêm đồ đạc vào phòng này, không có tác động trong phòng khác.

If you already have an operating system on your system which uses the whole disk and you want to stick Debian on the same disk, you will need to repartition it. Debian requires its own hard disk partitions. It cannot be installed on Windows or Mac OS X partitions. It may be able to share some partitions with other Unix systems, but that’s not covered here. At the very least you will need a dedicated partition for the Debian root filesystem.

There is information about your current partition setup by using a partitioning tool for your current operating system. Partitioning tools always provide a way to show existing partitions without making changes.

Thông thường, việc thay đổi phân vùng chứa hệ thống tập tin sẽ hủy mọi thông tin trên nó. Vì vậy bạn phải sao lưu hết trước khi phân vùng lại. Giống như trong nhà, rất có thể là bạn muốn di chuyển các đồ đạc ra trước khi chuyển tường, nếu không thì rủi ro hủy nó.

Several modern operating systems offer the ability to move and resize certain existing partitions without destroying their contents. This allows making space for additional partitions without losing existing data. Even though this works quite well in most cases, making changes to the partitioning of a disk is an inherently dangerous action and should only be done after having made a full backup of all data.

Creating and deleting partitions can be done from within debian-installer as well as from an existing operating system. As a rule of thumb, partitions should be created by the system for which they are to be used, i.e. partitions to be used by Debian GNU/Linux should be created from within debian-installer and partitions to be used from another operating system should be created from there. debian-installer is capable of creating non-Linux partitions, and partitions created this way usually work without problems when used in other operating systems, but there are a few rare corner cases in which this could cause problems, so if you want to be sure, use the native partitioning tools to create partitions for use by other operating systems.

Đự định cài đặt nhiều hệ điều hành vào cùng một máy thì bạn nên cài đặt HDH khác nào trước khi cài đặt Debian. Thứ tự cài đặt này ngăn cản HDH khác hủy khả năng chạy Debian, cũng tránh xem hướng dẫn bạn định đăng lại phân vùng không sở hữu.

Cũng có thể tránh những hành động này hoặc phục hơi máy tính về sau, nhưng mà theo thứ tự cài đặt này (cài đặt hệ thống sở hữu về trước) khỏi phiền đến bạn.

3.6 PHÂN CỪNG CẢI ĐẶT SẴN VÀ THIẾT LẬP HỆ ĐIỀU HÀNH

This section will walk you through pre-installation hardware setup, if any, that you will need to do prior to installing Debian. Generally, this involves checking and possibly changing BIOS/system firmware settings for your system. The “BIOS” or “system firmware” is the core software used by the hardware; it is most critically invoked during the bootstrap process (after power-up).
3.6.1 Chọn thiết bị khởi động

3.6.2 ARM firmware

As already mentioned before, there is unfortunately no standard for system firmware on ARM systems. Even the
behaviour of different systems which use nominally the same firmware can be quite different. This results from the fact
that a large part of the devices using the ARM architecture are embedded systems, for which the manufacturers usually
build heavily customized firmware versions and include device-specific patches. Unfortunately the manufacturers
often do not submit their changes and extensions back to the mainline firmware developers, so their changes are not
integrated into newer versions of the original firmware.

As a result even newly sold systems often use a firmware that is based on a years-old manufacturer-modified version
of a firmware whose mainline codebase has evolved a lot further in the meantime and offers additional features or
shows different behaviour in certain aspects. In addition to that, the naming of onboard devices is not consistent
between different manufacturer-modified versions of the same firmware, therefore it is nearly impossible to provide
usable product-independent instructions for ARM-based systems.

3.6.3 Setting the ethernet MAC address in U-Boot

The MAC address of every ethernet interface should normally be globally unique, and it technically has to be unique
within its ethernet broadcast domain. To achieve this, the manufacturer usually allocates a block of MAC addresses
from a centrally-administered pool (for which a fee has to be paid) and preconfigures one of these addresses on each
item sold.

In the case of development boards, sometimes the manufacturer wants to avoid paying these fees and therefore
provides no globally unique addresses. In these cases the users themselves have to define MAC addresses for their
systems. When no MAC address is defined for an ethernet interface, some network drivers generate a random MAC
address that can change on every boot, and if this happens, network access would be possible even when the user has
not manually set an address, but e.g. assigning semi-static IP addresses by DHCP based on the MAC address of the
requesting client would obviously not work reliably.

To avoid conflicts with existing officially-assigned MAC addresses, there is an address pool which is reserved for
so-called “locally administered” addresses. It is defined by the value of two specific bits in the first byte of the address
(the article “MAC address” in the English language Wikipedia gives a good explanation). In practice this means that
example any address starting with hexadecimal ca (such as ca:ff:ee:12:34:56) can be used as a locally administered address.

On systems using U-Boot as system firmware, the ethernet MAC address is placed in the “ethaddr” environment
variable. It can be checked at the U-Boot command prompt with the command “printenv ethaddr” and can be set
with the command “setenv ethaddr ca:ff:ee:12:34:56”. After setting the value, the command “saveenv” makes the
assignment permanent.

3.6.4 Kernel/Initrd/Device-Tree relocation issues in U-Boot

On some systems with older U-Boot versions there can be problems with properly relocating the Linux kernel, the
initial ramdisk and the device-tree blob in memory during the boot process. In this case, U-Boot shows the message
“Starting kernel ...”, but the system freezes afterwards without further output. These issues have been solved with
newer U-Boot versions from v2014.07 onwards.

If the system has originally used a U-Boot version older than v2014.07 and has been upgraded to a newer version
later, the problem might still occur even after upgrading U-Boot. Upgrading U-Boot usually does not modify the
existing U-Boot environment variables and the fix requires an additional environment variable (bootm_size) to be
set, which U-Boot does automatically only on fresh installations without existing environment data. It is possible
to manually set bootm_size to the new U-Boot’s default value by running the command “env default bootm_size;
saveenv” at the U-Boot prompt.

Another possibility to circumvent relocation-related problems is to run the command “setenv fdt_high ffffffff;
setenv initrd_high 0xffffffff; saveenv” at the U-Boot prompt to completely disable the relocation of the initial ramdisk
and the device-tree blob.
Chapter 4

Lấy vật chứa cài đặt hệ thống

4.1 Official Debian GNU/Linux installation images

By far the easiest way to install Debian GNU/Linux is from a set of official Debian installation images. You can buy a set of CDs/DVDs from a vendor (see the CD vendors page). You may also download the installation images from a Debian mirror and make your own set, if you have a fast network connection and a CD/DVD burner (see the Debian CD/DVD page and Debian CD FAQ for detailed instructions). If you have such optical installation media, and they are bootable on your machine, you can skip right to Chương 5. Much effort has been expended to ensure the most-used files are on the first CD and DVD image, so that a basic desktop installation can be done with only the first DVD or - to a limited extent - even with only the first CD image.

As CDs have a rather limited capacity by today’s standards, not all graphical desktop environments are installable with only the first CD; for some desktop environments a CD installation requires either network connectivity during the installation to download the remaining files or additional CDs.

Also, keep in mind: if the installation media you are using don’t contain some packages you need, you can always install those packages afterwards from your running new Debian system (after the installation has finished). If you need to know on which installation image to find a specific package, visit https://cdimage-search.debian.org/.

If your machine doesn’t support booting from optical media, but you do have a set of CD/DVD, you can use an alternative strategy such as usb stick, net boot, or manually loading the kernel from the disc to initially boot the system installer. The files you need for booting by another means are also on the disc; the Debian network archive and folder organization on the disc are identical. So when archive file paths are given below for particular files you need for booting, look for those files in the same directories and subdirectories on your installation media.

Once the installer is booted, it will be able to obtain all the other files it needs from the disc.

If you don’t have an installation media set, then you will need to download the installer system files and place them on the usb stick or a connected computer so they can be used to boot the installer.

4.2 Tải tập tin xuống máy nhân bản Debian

Để tìm máy nhân bản gần nhất (cũng nên là nhanh nhất), xem danh sách máy nhân bản Debian.

4.2.1 Tìm ảnh cài đặt ở đâu

4.3 Chuẩn bị tập tin để khởi động thanh bộ nhớ USB

To prepare the USB stick, we recommend to use a system where GNU/Linux is already running and where USB is supported. With current GNU/Linux systems the USB stick should be automatically recognized when you insert it. If it is not you should check that the usb-storage kernel module is loaded. When the USB stick is inserted, it will be mapped to a device named /dev/sdx, where the “X” is a letter in the range a-z. You should be able to see to which device the USB stick was mapped by running the command dmesg after inserting it. To write to your stick, you may have to turn off its write protection switch.
4.3.1 Preparing a USB stick using a hybrid CD/DVD image

Debian installation images can now be written directly to a USB stick, which is a very easy way to make a bootable USB stick. Simply choose an image (such as the netinst, CD, DVD-1, or netboot) that will fit on your USB stick. See Chapter 4.1 to get an installation image.

A different, for smaller USB sticks (only a few megabytes), you can choose to use the mini.iso image from the netboot directory (as mentioned in Section 4.2.1).

The installation image you choose should be written directly to the USB stick, overwriting its current contents. For example, when using an existing GNU/Linux system, the image file can be written to a USB stick as follows, after having made sure that the stick is unmounted:

```
# cp debian.iso /dev/sdX
# sync
```

Information about how to do this on other operating systems can be found in the Debian CD FAQ.

QUAN TRỌNG

The image must be written to the whole-disk device and not a partition, e.g. `/dev/sdb` and not `/dev/sdb1`. Do not use tools like `unetbootin` which alter the image.

QUAN TRỌNG

Simply writing the installation image to USB like this should work fine for most users. The other options below are more complex, mainly for people with specialized needs.

The hybrid image on the stick does not occupy all the storage space, so it may be worth considering using the free space to hold firmware files or packages or any other files of your choice. This could be useful if you have only one stick or just want to keep everything you need on one device.

Create a second, FAT partition on the stick, mount the partition and copy or unpack the firmware onto it. For example:

```
# mount /dev/sdX2 /mnt
# cd /mnt
# tar xzvf /ubuntu/dán/dén/firmware.tar.gz
# cd /
# umount /mnt
```

You might have written the mini.iso to the USB stick. In this case the second partition doesn’t have to be created as, very nicely, it will already be present. Unplugging and replugging the USB stick should make the two partitions visible.
4.4 Chuẩn bị tập tin để khởi động qua mạng TFTP

Nếu máy tính của bạn có kết nối đến mạng cục bộ, bạn có thể có khả năng khởi động qua mạng bằng TFTP. Nếu bạn định khởi động từ máy khác, bạn phải có các tập tin khởi động vào vị trí đặt trước máy đó, cũng cấu hình máy đó để hỗ trợ khả năng khởi động máy tính riêng của bạn.

Bạn cần phải thiết lập một trình phục vụ TFTP, và cho nhiều máy cũng cần một trình phục vụ DHCP, hay trình phục vụ RARP, hay trình phục vụ BOOTP.

Giao thức quyết định địa chỉ ngược lại (RARP) là một cách báo ứng dụng khách biết địa chỉ IP nào cần dùng để nhận diện chính nó. Một cách khác là dùng giao thức BOOTP. BOOTP là một giao thức IP báo máy tính biết địa chỉ IP của chính nó và nói trên mạng có thể lấy ảnh khởi động.

Giao thức truyền tập tin không đáng kể (TFTP) được dùng để phục vụ ảnh khởi động cho ứng dụng khách. Về lý thuyết có thể sử dụng bất kỳ trình phục vụ nào trên bất kỳ nền tảng nào mà thực hiện những giao thức này. Những lời thuyết trong tiết đoạn này sẽ cung cấp lệnh riêng cho hệ điều hành SunOS 4.x, SunOS 5.x (cũng tên Solaris), và GNU/Linux.

4.4.1 Thiết lập trình phục vụ RARP

To set up RARP, you need to know the Ethernet address (a.k.a. the MAC address) of the client computers to be installed. If you don’t know this information, you can boot into “Rescue” mode and use the command `ip addr show dev eth0`.

Trên hệ thống phục vụ RARP sử dụng hạt nhân Linux hoặc hệ thống Solaris/SunOS, bạn sử dụng chương trình `rarpd`. Bạn cần phải kiểm tra xem địa chỉ Ethernet của máy khách được liệt kê trong cơ sở dữ liệu “ethers” (hoặc trong tập tin `/etc/ethers`, hoặc thông qua NIS/NIS+) và trong cơ sở dữ liệu “hosts”. Sau đó, bạn cần khởi chạy trình nền RARP. Chạy lệnh (như là người chủ):

- /usr/sbin/rarpd -a trên phần lớn hệ thống kiểu Linux và SunOS 5 (Solaris 2), /usr/sbin/in.rarpd -a trên một số hệ thống Linux khác, hoặc /usr/etc/rarpd -a trên hệ thống SunOS 4 (Solaris 1).

4.4.2 Thiết lập trình phục vụ DHCP

Một trình phục vụ DHCP phân miễn tự do là `dhcpcd` ISC. Đối với Debian GNU/Linux, gói `isc-dhcp-server` khuyến khích. Dày là một tập tin cấu hình mẫu cho nó (xem `/etc/dhcp/dhcpd.conf`):

```plaintext
option domain-name "mầu.com";
option domain-name-servers ns1.mầu.com;
option subnet-mask 255.255.255.0;
default-lease-time 600;
max-lease-time 7200;
server-name "tên_máy_phục_vụ";

subnet 192.168.1.0 netmask 255.255.255.0 {
  range 192.168.1.200 192.168.1.253;
  option routers 192.168.1.1;
}

host tên_máy_khách {
  filename "/tftpboot.img";
  server-name "tên_máy_phục_vụ";
  next-server tên_máy_phục_vụ;
  hardware ethernet 01:23:45:67:89:AB;
  fixed-address 192.168.1.90;
}

[option tùy chọn
  domain-name tên miền
  domain name servers các máy phục vụ tên miền
  subnet-mask mặt nạ mạng phụ
  default-lease-time thời gian thuê mặc định
  max-lease-time thời gian thuê tối đa
  server-name tên máy phục vụ
  subnet mạng phụ
  netmask mặt nạ mạng
  range phạm vi]
```
4.4.3 Thiết lập trình phục vụ BOOTP

Có hai trình phục vụ BOOTP sẵn sàng cho GNU/Linux. Trình thứ nhất là bootpd CMU. Trình thứ hai là một trình phục vụ DHCP: dhcpd ISC. Trong Debian GNU/Linux hai trình này nằm trong gói bootp và isc-dhcp-server riêng từng cái.

Để sử dụng bootpd CMU, trước tiên bạn cần phải ghi chú (hay thêm) dòng tương ứng trong tập tin cấu hình /etc/inetd.conf. Dưới hệ điều hành Debian GNU/Linux, bạn có khả năng chạy lệnh update-inetd --enable bootps, rồi /etc/init.d/inetd reload để làm như thế. Trong trường hợp trình phục vụ BOOTP của bạn không chạy Debian được, dòng đó nên như:

```bash
bootps dgram udp wait root /usr/sbin/bootpd bootpd -i -t 120
```

Sau đó, bạn cần tạo một tập tin /etc/boottab. Nó có cùng một dạng thực thũng và khóa hiểu với những tập tin printcap, termcap và disktab của BSD. Xem trang hướng dẫn (man) bootptab để tìm thêm. Đối với tiến trình bootpd, bạn cần phải biết địa chỉ phần cứng (địa chỉ MAC) của máy khách. Dày là một tập tin /etc/boottab thí dụ:

```plaintext
client:\
  hd=/tftpboot:\
  bf=tftpboot.img:\
  ip=192.168.1.90:\
  sm=255.255.255.0:\
  sa=192.168.1.1:\
  ha=0123456789AB:
```

Bạn cần phải thay đổi ít nhất tùy chọn “ha”, mà xác định địa chỉ phần cứng của máy khách. Tuy chọn “bf” xác định tập tin máy khách cần lấy bằng TFTP; xem Phần 4.4.5 để tìm chi tiết.

Một khác, tiến trình thiết lập BOOTP bằng dhcpd ISC vẫn rất dễ dàng, vì nó thấy các ứng dụng khách BOOTP là ứng dụng khách DHCP kiểu hơi đặc biệt. Một số kiến trúc trục náo yêu cầu một cấu hình phức tạp để khởi động ứng dụng khách thông qua BOOTP. Nếu máy của bạn có kiến trúc như thế, hãy đọc tiết đoạn Phần 4.4.2. Khác thì rất có thể là bạn đơn giản cần thêm chỉ thị allow bootp (cho phép BOOTP) vào cấu hình cho mạng phức tạp máy chạy ứng dụng khách đó trong tập tin /etc/dhcp/dhcpd.conf, sau đó khởi chạy lại trình nền dhcpd bằng câu lệnh /etc/init.d/isc-dhcp-server restart.

4.4.4 Bật chạy trình phục vụ TFTP

Để chuẩn bị trình phục vụ TFTP, trước tiên bạn nên đảm bảo rằng tftpd được hiệu lực.

Trong trường hợp của tftpd-hpa, có hai phương pháp chạy dịch vụ. Nó có thể được khởi chạy theo yêu cầu bởi trình nền inetd của hệ thống, hoặc nó có thể được thiết lập để chạy như là một trình nền độc lập. Phương pháp này được chọn khi giới độ được cải đặt, và lúc nào cũng có thể được thay đổi bằng cách cấu hình lại gói đề.
4.5. Cài đặt tự động

Để cài đặt vào nhiều máy tính, có thể chạy việc cài đặt đầy đủ tự động. Những gói Debian dự định nhằm mục đích này bao gồm fai (mà có thể dùng một trình phục vụ cài đặt), và trình cài đặt Debian chính nó. Xem trang chủ FAI để tìm thông tin chi tiết.

4.5.1 Tự động cài đặt dùng trình cài đặt Debian

Trình cài đặt Debian hỗ trợ tự động hoá việc cài đặt thông qua tập tin cấu hình sẵn. Tập tin cấu hình sẵn có thể được nạp từ mạng hoặc từ vật chứa rời, cùng cung cấp trả lời cho câu hỏi khi cài đặt.

Tài liệu hướng dẫn đầy đủ về phương pháp cài đặt, gồm một lối thứ tự hữu ích mà bạn có thể hiểu chính, nằm trong Phụ lục B.
Chapter 5

Khởi động Hệ thống Cài đặt

5.1 Khởi động trình cài đặt trên 64-bit ARM

5.1.1 Console configuration

The graphical installer is not enabled on the arm64 debian-installer images for stretch so the serial console is used. The console device should be detected automatically from the firmware, but if it is not then after you boot linux from the GRUB menu you will see a “Booting Linux” message, then nothing more.

If you hit this issue you will need to set a specific console config on the kernel command line. Hit e for “Edit Kernel command-line” at the GRUB menu, and change

```
--- quiet
to

console=<device>,<speed>
```

e.g.

```
console=ttyAMA0,115200n8
```

. When finished hit Control-x to continue booting with new setting.

5.1.2 Juno Installation

Juno has UEFI so the install is straightforward. The most practical method is installing from USB stick. You need up to date firmware for USB-booting to work. Builds from http://releases.linaro.org/members/arm/platforms/latest/ after March 2015 tested OK. Consult Juno documentation on firmware updating.

Prepare a standard arm64 CD/DVD image on a USB stick. Insert it in one of the USB ports on the back. Plug a serial cable into the upper 9-pin serial port on the back. If you need networking (netboot image) plug the ethernet cable into the socket on the front of the machine.

Run a serial console at 115200, 8bit no parity, and boot the Juno. It should boot from the USB stick to a GRUB menu. The console config is not correctly detected on Juno so just hitting Enter will show no kernel output. Set the console to

```
console=ttyAMA0,115200n8
```

(as described in Phần 5.1.1). Control-x to boot should show you the debian-installer screens, and allow you to proceed with a standard installation.

5.1.3 Applied Micro Mustang Installation

UEFI is available for this machine but it is normally shipped with U-Boot so you will need to either install UEFI firmware first then use standard boot/install methods, or use U-Boot boot methods. You must use a serial console to control the installation because the graphical installer is not enabled on the arm64 architecture.

The recommended install method is to copy the debian-installer kernel and initrd onto the hard drive, using the openembedded system supplied with the machine, then boot from that to run the installer. Alternatively use
TFTP to get the kernel/dtb/initrd copied over and booted (Phần 5.1.4.1). After installation, manual changes to boot from the installed image are needed.

Run a serial console at 115200, 8bit no parity, and boot the machine. Reboot the machine and when you see “Hit any key to stop autoboot;” hit a key to get a Mustang# prompt. Then use U-Boot commands to load and boot the kernel, dtb and initrd.

5.1.4 Khởi động từ TFTP

Booting from the network requires that you have a network connection and a TFTP network boot server (and probably also a DHCP, RARP, or BOOTP server for automatic network configuration).

The server-side setup to support network booting is described in Phần 4.4.

5.1.4.1 TFTP-booting in U-Boot

Network booting on systems using the U-Boot firmware consists of three steps: a) configuring the network, b) loading the images (kernel/initial ramdisk/dtb) into memory and c) actually executing the previously loaded code.

First you have to configure the network, either automatically via DHCP by running

```bash
setenv autoload no
dhcp
```

or manually by setting several environment variables

```bash
setenv ipaddr <ip address of the client>
setenv netmask <netmask>
setenv serverip <ip address of the tftp server>
setenv dnsip <ip address of the nameserver>
setenv gatewayip <ip address of the default gateway>
```

If you prefer, you can make these settings permanent by running

```bash
saveenv
```

Afterwards you need to load the images (kernel/initial ramdisk/dtb) into memory. This is done with the tftpboot command, which has to be provided with the address at which the image shall be stored in memory. Unfortunately the memory map can vary from system to system, so there is no general rule which addresses can be used for this.

On some systems, U-Boot predefines a set of environment variables with suitable load addresses: `kernel_addr_r`, `ramdisk_addr_r` and `fdt_addr_r`. You can check whether they are defined by running

```bash
printenv kernel_addr_r ramdisk_addr_r fdt_addr_r
```

If they are not defined, you have to check your system’s documentation for appropriate values and set them manually. For systems based on Allwinner SunXi SOCs (e.g. the Allwinner A10, architecture name “sun4i” or the Allwinner A20, architecture name “sun7i”), you can e.g. use the following values:

```bash
setenv kernel_addr_r 0x46000000
setenv fdt_addr_r 0x47000000
setenv ramdisk_addr_r 0x48000000
```

When the load addresses are defined, you can load the images into memory from the previously defined tftp server with

```bash
tftpboot ${kernel_addr_r} <filename of the kernel image>
tftpboot ${fdt_addr_r} <filename of the dtb>
tftpboot ${ramdisk_addr_r} <filename of the initial ramdisk image>
```

The third part is setting the kernel commandline and actually executing the loaded code. U-Boot passes the content of the “bootargs” environment variable as commandline to the kernel, so any parameters for the kernel and the installer - such as the console device (see Phần 5.3.1) or preseeding options (see Phần 5.3.2 and Phụ lục B) - can be set with a command like

```bash
setenv bootargs console=ttyS0,115200 rootwait panic=10
```

The exact command to execute the previously loaded code depends on the image format used. With uImage/uInitrd, the command is
CHAPTER 5. KHỞI ĐỘNG HỆ THỐNG CÀI ĐẶT

5.2 KHẢ NĂNG TRUY CẬP

bootm ${kernel_addr_r} {ramdisk_addr_r} ${fdt_addr_r}

and with native Linux images it is

bootz ${kernel_addr_r} {ramdisk_addr_r}:{filesize} ${fdt_addr_r}

Note: When booting standard Linux images, it is important to load the initial ramdisk image after the kernel and the dtb as U-Boot sets the filesize variable to the size of the last file loaded and the bootz command requires the size of the ramdisk image to work correctly. In case of booting a platform-specific kernel, i.e. a kernel without device-tree, simply omit the ${fdt_addr_r} parameter.

5.1.5 Booting from USB Memory Stick with UEFI

If your computer will boot from USB, this will probably be the easiest route for installation. Assuming you have prepared everything from Phần 3.6.1 and Phần 4.3, just plug your USB stick into some free USB connector and reboot the computer. The system should boot up, and unless you have used the flexible way to build the stick and not enabled it, you should be presented with a graphical boot menu (on hardware that supports it). Here you can select various installer options, or just hit Enter.

5.2 KHẢ NĂNG TRUY CẬP

Some users may need specific support because of e.g. some visual impairment. Most accessibility features have to be enabled manually. Some boot parameters can be appended to enable accessibility features. Note that on most architectures the boot loader interprets your keyboard as a QWERTY keyboard.

5.2.1 Installer front-end

The Debian installer supports several front-ends for asking questions, with varying convenience for accessibility: notably, text uses plain text while newt uses text-based dialog boxes. The choice can be made at the boot prompt, see the documentation for DEBIAN_FRONTEND in Phần 5.3.2.

5.2.2 Thiết bị bảng

Một số thiết bị khả năng truy cập nào đó là bảng thật được cắm vào bên trong máy tính, mà đọc văn bản một cách trực tiếp từ vùng nhớ ảnh động. Để hiệu lực thiết bị kiểu này, bạn cần phải tắt hỗ trợ cho vùng đệm khung bằng cách sử dụng tham số khởi động fb=false. Tuy nhiên, việc này cũng giảm số các ngôn ngữ sẵn sàng.

5.2.3 Sắc thái cao tương phản

For users with low vision, the installer can use a high-contrast color theme that makes it more readable. To enable it, you can use the “Accessible high contrast” entry from the boot screen with the d shortcut, or append the theme=dark boot parameter.

5.2.4 Zoom

For users with low vision, the graphical installer has a very basic zoom support: the Control-+ and Control– shortcuts increase and decrease the font size.

5.2.5 Expert install, rescue mode, automated install

Expert, Rescue, and Automated installation choices are also available with accessibility support. To access them, one has to first enter the “Advanced options” submenu from the boot menu by typing a. When using a BIOS system (the boot menu will have beeped only once), this has to be followed by Enter; for UEFI systems (the boot menu will have beeped twice) that must not be done. Then, to enable speech synthesis, s can optionally be pressed (followed again by Enter on BIOS systems but not on UEFI systems). From there, various shortcuts can be used: x for expert installation, r for rescue mode, or a for automated installation. Again these need to be followed by Enter when using a BIOS system.

The automated install choice allows to install Debian completely automatically by using preseeding, whose source can be entered after accessibility features get started. Preseeding itself is documented in Phụ lục B.
5.2.6 Accessibility of the installed system

Documentation on accessibility of the installed system is available on the Debian Accessibility wiki page.

5.3 Tham số khởi động

Tham số khởi động là tham số hạt nhân Linux thường được dùng để đảm bảo thiết bị ngoại vi được xử lý cho đúng. Bình thường, hạt nhân có khả năng phát hiện tự động thông tin về các ngoại của máy tính. Tuy nhiên, trong một số trường hợp, bạn cần phải giúp đỡ hạt nhân một ít.

Nếu đây là lần đầu tiên khởi động hệ thống này, hãy thử nhập các tham số khởi động mặc định (tức là không thử đặt tham số thêm) và theo dõi hoạt động. Rất có thể là máy sẽ hoạt động được và bạn không cần thêm gì. Nếu không, bạn có thể khởi động lại sau, cùng tinh tham số đặc biệt có thể báo hệ thống biết về phần cứng đó.

5.3.1 Boot console

If you are booting with a serial console, generally the kernel will autodetect this. If you have a videocard (framebuffer) and a keyboard also attached to the computer which you wish to boot via serial console, you may have to pass the `console=` argument to the kernel, where `device` is your serial device, which is usually something like `ttyS0`.

You may need to specify parameters for the serial port, such as speed and parity, for instance `console=ttyS0,9600n8;` other typical speeds may be 57600 or 115200. Be sure to specify this option after "---", so that it is copied into the bootloader configuration for the installed system (if supported by the installer for the bootloader).

In order to ensure the terminal type used by the installer matches your terminal emulator, the parameter `TERM` can be added. Note that the installer only supports the following terminal types: `linux`, `bterm`, `ansi`, `vt102` and `dumb`. The default for serial console in `debian-installer` is `vt102`. If you are using an IPMI console, or a virtualization tool which does not provide conversion into such terminals types itself, e.g. QEMU/KVM, you can start it inside a `screen` session. That will indeed perform translation into the `screen` terminal type, which is very close to `vt102`.

5.3.2 Tham số trình cài đặt Debian

The installation system recognizes a few additional boot parameters¹ which may be useful.

Một số tham số có “dạng ngắn” giúp đỡ tránh sự hạn chế của các tùy chọn dòng lệnh hạt nhân và làm cho dễ hơn nhập tham số. Tham số có dạng ngắn thì được hiển thị trong dấu ngoặc bruch chuẩn. Các mẫu thí dụ trong sổ tay cũng thường dùng dạng ngắn.

debconf/priority (priority) Tham số này đặt ưu tiên thấp nhất cho những thông điệp cần hiển thị.

Bản cài đặt mặc định tùy theo ưu tiên cao `debconf/priority=high`. Có nghĩa là hiển thị những thông điệp có ưu tiên cao lần tới nhất, còn bỏ qua những thông điệp ưu tiên vừa và thấp. Nếu gặp lỗi, trình cài đặt điều chỉnh ưu tiên như cần thiết.

Nếu bạn thêm ưu tiên vừa `debconf/priority=medium` là tham số khởi động, bạn sẽ thấy trình đơn cài đặt, giải thích khả năng điều khiển tiến trình cài đặt. Còn khi ưu tiên thấp `debconf/priority=low`, mọi thông điệp được hiển thị (nó tương đương với phương pháp khởi động `nhà chuyên môn`). Với ưu tiên tốt nhất `debconf/priority=critical`, hệ thống sẽ chỉ hiển thị chỉ những thông điệp nghiêm trọng, sẽ cố gắng làm việc đúng, không tương tác nhiều.

DEBIAN_FRONTEND Tham số khởi động này điều khiển giao diện người dùng được dùng cho bộ cài đặt.

Các giá trị tham số hiển thị có thể:

- `DEBIAN_FRONTEND=noninteractive` (không tương tác)
- `DEBIAN_FRONTEND=text` (văn bản)
- `DEBIAN_FRONTEND=newt` (trình newt)
- `DEBIAN_FRONTEND=gtk` (trình gtk)

¹With current kernels (2.6.9 or newer) you can use 32 command line options and 32 environment options. If these numbers are exceeded, the kernel will panic. Also there is a limit of 255 characters for the whole kernel command line, everything above this limit may be silently truncated.
Giao diện mặc định là `DEBIAN_FRONTEND=newt`. `DEBIAN_FRONTEND=text` có lẽ thích hợp hơn cho tiến trình cài đặt bằng bàn điều khiển tiếp theo. Một số bộ cài đặt chỉ cung cấp hạn chế đặc biệt trong một số giao diện, nhưng hầu như `newt` và `text` có sẵn trên tất cả các cài đặt mặc định. Trên các kiến trúc có hỗ trợ, bộ cài đặt khởi động sẽ hỗ trợ giao diện `gtk`.

BOOT_DEBUG Viet đặt tham số khởi động này (gỡ lỗi khởi động) thành 2 sẽ gây ra tiến trình khởi động trên các tham số cụ thể để ghi lưu một cách chi tiết. Còn việc đặt nó thành 3 làm cho trình bao gỡ lỗi sẵn sàng tại một số điểm thời gian có thể trong tiến trình khởi động. (Hãy thoát khỏi trình bao để tiếp tục lại tiến trình khởi động.)

- **BOOT_DEBUG=0** Đã là giá trị mặc định.
- **BOOT_DEBUG=1** Chi tiết hơn cấp thường.
- **BOOT_DEBUG=2** Xuat rất nhiều thống tin gỡ lỗi.
- **BOOT_DEBUG=3** Chạy trình bao tại một số điểm thời khác nhau trong tiến trình khởi động, để cho khả năng gỡ lỗi chi tiết. Hãy thoát khỏi trình bao để tiếp tục lại khởi động.

log_host, log_port Làm cho trình cài đặt gỡ thông dịch theo dõi mới của nó có khả năng gỡ thông dịch về xa bằng tên và cổng được chỉ định cùng lúc với lưu vào tập tin cục bộ. Nếu không chỉ ra, cổng sẽ mặc định là cổng syslog chuẩn 514.

lowmem Có thể dùng để ép buộc tiến trình cài đặt lên mức lowmem (tốc độ máy) cao hơn mức được đặt theo mặc định của tiến trình cài đặt, dựa vào bộ nhớ còn rảnh. Giá trị có thể là 1 và 2. Xem thêm Phần 6.3.1.1.

noshell Ngăn cản trình cài đặt cung cấp trình bao tương tác trên tty2 và tty3. Có ích đối với tiến trình cài đặt không có người theo dõi mà cũng có thể bị xâm nhập.

debian-installer/framebuffer (fb) Một số kiến trúc riêng sử dụng bộ đệm khung (framebuffer) của hạt nhân để cung cấp khả năng cài đặt bằng nhiều ngôn ngữ khác nhau. Nếu bộ đệm khung gây ra lỗi trên hệ thống, bạn vẫn có thể tắt tính năng này bằng tham số `fb=false`. Trong trường hợp ngược lại, thông dịch là thông dịch lỗi giữa `bterm` hay `bogl`, màn hình trống hay hệ thống đông đặc trong vòng vài phút sau khi khởi chạy tiến trình cài đặt.

debian-installer/theme (theme) A theme determines how the user interface of the installer looks (colors, icons, etc.). Which themes are available may differ per frontend. Currently both the newt and gtk frontend have (apart from the default look) only one additional theme named “dark” theme, which was designed for visually impaired users. Set this theme by booting with `theme=dark` (there is also the keyboard shortcut `d` for this in the boot menu).

netcfg/disable_autoconfig By default, the `debian-installer` automatically probes for network configuration via IPv6 autoconfiguration and DHCP. If the probe succeeds, you won’t have a chance to review and change the obtained settings. You can get to the manual network setup only if the automatic configuration fails. If you have an IPv6 router or a DHCP server on your local network, but want to avoid them because e.g. they give wrong answers, you can use the parameter `netcfg/disable_autoconfig=true` to prevent any automatic configuration of the network (neither v4 nor v6) and to enter the information manually.

hw-detect/start_pcmcia Đặt thành `false` (khi chạy PCMCIA là sai) để ngăn cản chạy dịch vụ PCMCIA, nếu nó gây ra lỗi. Một số máy tính xách tay là lỗi do trường hợp lỗi này.

disk-detect/dmraid/enable (dmraid) Lập thành `true` (đúng) để hiện<h2>lLuc hỗ trợ dmraid kiểu RAID ATA nối tiếp (Serial ATA RAID, cũng được gọi là ATA RAID, BIOS RAID hay RAID giả) trong tiến trình cài đặt. Ghi chú rằng hỗ trợ này hiện tại vẫn còn được kích hoạt trong dòng lệnh start_pcmcia khi khởi chạy tiến trình cài đặt.

preseed/url (url) Hãy xác định địa chỉ Mạng của tập tin cấu hình sẵn cần tải về và sử dụng để tự động hoá tiến trình cài đặt. Xem Phần 4.5.

preseed/file (file) Hãy xác định đường dẫn đến tập tin cấu hình sẵn cần nap để tự động hoá tiến trình cài đặt. Xem Phần 4.5.

preseed/interactive Đặt thành `true` (đúng) để hiện thi câu hỏi thêm chỉ nếu nó đã được chọn sẵn. Có thể hiệu ích để thử hay bỏ giới độ tìm cài đặt. Ghi chú rằng nó sẽ không có tác động những tham số được ghi qua dưới dạng tham số khởi động, nhưng cho chương còn có thể được cập nhật khác biệt. Xem thêm Phần B.5.2.

auto-install/enable (auto) Hoàn các câu bình thường được hỏi trước khi có khả năng chọn sẵn, đến sau khi mạng được cấu hình. Xem Phần B.2.3 để tìm chi tiết về cách sử dụng tùy chọn này để tự động hoá tiến trình cài đặt.
CHAPTER 5. KHỞI ĐỘNG HỆ THỐNG CÀI ĐẶT

5.3. THAM SỐ KHỞI ĐỘNG

finish-install/keep-consoles Trong khi cài đặt từ bàn giao tiếp kiểu nối tiếp hay quản lý, những bàn giao tiếp ảo bình thường (VT1 đến VT6) thường bị tắt trong /etc/inittab. Đặt thành true (dùng) để ngăn cản trường hợp này.

cdrom-detect/eject By default, before rebooting, debian-installer automatically ejects the optical media used during the installation. This can be unnecessary if the system does not automatically boot off such media. In some cases it may even be undesirable, for example if the optical drive cannot reinsert the media itself and the user is not there to do it manually. Many slot loading, slim-line, and caddy style drives cannot reload media automatically. Đặt thành false (sai) để tắt khả năng đẩy ra tự động; cũng ghi nhớ rằng bạn có thể phải đảm bảo hệ thống không khởi động tự động từ ổ đĩa quang sau khi việc cài đặt ban đầu.

base-installer/install-recommends (khuyến khích) Bằng cách lập tùy chọn này thành false (sai), hệ thống quản lý gói phần mềm sẽ được cấu hình để không phải tự động cài đặt các gói có nhãn “Khuyến”, cả hai trong tiến trình cài đặt và cho hệ thống được cài đặt. Xem thêm Phần 6.3.5. Ghi chú rằng tùy chọn này chỉ nên được sử dụng bởi người dùng có cấp cao.

debian-installer/allow_unauthenticated Mặc định là tiến trình cài đặt cần thiết xác thực với kho lưu, dùng một khóa GPG đã biết. Đặt thành true (dùng) để tắt chức năng xác thực này. Cảnh báo: không bảo mật thì không khuyến khích.

rescue/enable (Cứu/bật) Đặt thành true (dùng) để vào chế độ cứu, hơn là chạy tiến trình cài đặt chuẩn. Xem Phần 8.6.

5.3.3 Đùng tham số khởi động để trả lời câu hỏi
Trừ vài thứ, ở dấu nhắc khởi động vẫn có khả năng đặt giá trị cho bất cứ câu hỏi trong tiến trình cài đặt, dù khả năng này thật chỉ có ích trong một số trường hợp riêng.

anna/choose_modules (modules) Có thể được dùng để tự động nap các thành phần cần đặt không được nap theo mặc định. Các thành phần phụ tùy chọn có thể hữu ích là (v.d.) openssh-client-udeb (để sử dụng scp trong khi cài đặt) và ppp-udeb (xem Phần D.4).

netcfg/disable_autoconfig Set to true if you want to disable IPv6 autoconfiguration and DHCP and instead force static network configuration.

tasksel:tasksel/first (tasks) Có thể được dùng để chọn các công việc không sẵn sàng trong danh sách công việc tương tác; v.d. công việc kde-desktop. Xem Phần 6.3.6.2 để tìm thông tin thêm.
5.3.4 Gửi tham số cho mô-đun hạt nhân

Nếu trình điều khiển nào được biên dịch vào hạt nhân, bạn có khả năng gửi tham số cho chúng, như được đề cập trong tài liệu hướng dẫn về cách sử dụng hạt nhân. Tuy nhiên, nếu trình điều khiển được biên dịch dạng mô-đun, vì mô-đun hạt nhân được nap khác trong tiến trình cải đặt so sánh với tiến trình khởi động hệ thống đã cải đặt, không thể gửi tham số cho mô-đun như bình thường. Thay vào đó, bạn cần phải sử dụng cú pháp đặc biệt được bộ cải đặt chấp nhận để đảm bảo các tham số được lưu vào tập tin cấu hình đúng. Đây được dùng khi mô-đun hạt nhân được nap. Các tham số này cũng sẽ tự động được gom trong cấu hình cho hệ thống đã cải đặt.

Ghi chú rằng lúc bây giờ hơi ít khi cần phải gửi tham số cho mô-đun. Trong phần lớn trường hợp, hạt nhân có thể tham số phải cấp từ hệ thống thì tất cả các giá trị mặc định có ích. Tuy nhiên, trong một số trường hợp riêng, vẫn cần phải tự đặt tham số.

Để đặt tham số cho mô-đun, hãy sử dụng cú pháp:

tên_mô-đun.tên_tham_số=giá_trị

Nếu bạn cần phải gửi nhiều tham số cho cùng một mô-đun hay nhiều mô-đun khác nhau, đơn giản hãy lập lại câu lệnh này. Chẳng hạn, để đặt một thẻ giao diện mạng 3Com cũ sử dụng bộ kết nối BNC (co-ax) và IRQ10, bạn cần gửi:

3c509.xcvr=3 3c509.irq=10

5.3.5 Cấm mô-đun hạt nhân

Đôi khi cần phải cấm một mô-đun để ngăn cản nó tự động được nap bởi hạt nhân và trình udev. Một lý do có thể là mô-đun đó gây ra vấn đề với phần cứng. Hạt nhân cũng đối với khi liệt kê hai trình điều khiển khác nhau cho cùng một thiết bị. Trương hợp này có thể gây ra thiệt hại do không hoạt động được nếu những trình điều khiển khác xung đột, hoặc nếu trình điều khiển không đúng được nap trước.

Bạn có khả năng cấm mô-đun bằng cú pháp này: **tên_mô-đun.blacklist=yes** (danh sách màu đen = có). Câu lệnh này sẽ gỡ ra mô-đun đó bị cấm trong tập tin /etc/modprobe.d/blacklist.local, cả hai trong tiến trình cải đặt, và trên hệ thống được cải đặt.

Ghi chú rằng mô-đun đó vẫn còn có thể được nap bởi hệ thống cải đặt chính nó. Bạn vẫn có thể ngăn cản việc này xảy ra, bằng cách chay tiến trình cải đặt trong chế độ chuyên môn và bỏ chọn mô-đun đó trong danh sách các mô-đun được hiển thị trong những giải đoạn phát hiện phần cứng.

5.4 Giải đáp thắc mắc trong tiến trình cải đặt

5.4.1 Reliability of optical media

Sometimes, especially with older drives, the installer may fail to boot from an optical disc. The installer may also — even after booting successfully from such disc — fail to recognize the disc or return errors while reading from it during the installation.

Có nhiều nguyên nhân có thể khác nhau của những vấn đề này. Chúng tôi chỉ có thể liệt kê một số vấn đề thường và cung cấp lời đề nghị chung về cách quyết định chúng. Theo bạn sửa.

Khuyên bạn trước tiên thử hai việc rất đơn giản.

• **If the disc does not boot, check that it was inserted correctly and that it is not dirty.**

• **If the installer fails to recognize the disc, try just running the option Detect and mount installation media a second time. Some DMA related issues with very old CD-ROM drives are known to be resolved in this way.**

If this does not work, then try the suggestions in the subsections below. Most, but not all, suggestions discussed there are valid for CD-ROM and DVD.

If you cannot get the installation working from optical disc, try one of the other installation methods that are available.

5.4.1.1 Vấn đề thường gặp

• Một số ổ đĩa CD-ROM của không hỗ trợ khả năng đọc từ đĩa đã được chép ra ở tốc độ cao bằng bộ ghi CD hiện đại.

• Some very old CD-ROM drives do not work correctly if “direct memory access” (DMA) is enabled for them.
5.4.1.2 Cách xem xét và có thể quyết định vấn đề

If the optical disc fails to boot, try the suggestions listed below.

- Check that your BIOS actually supports booting from optical disc (only an issue for very old systems) and that booting from such media is enabled in the BIOS.

- If you downloaded an iso image, check that the md5sum of that image matches the one listed for the image in the MD5SUMS file that should be present in the same location as where you downloaded the image from.

```
$ md5sum debian-testing-i386-netinst.iso
a20391b12f7ff22ef705cee4059c6b92
debian-testing-i386-netinst.iso
```

Next, check that the md5sum of the burned disc matches as well. The following command should work. It uses the size of the image to read the correct number of bytes from the disc.

```
$ dd if=/dev/cdrom | \\
> head -c 'stat --format=%s debian-testing-i386-netinst.iso' | \\
> md5sum
a20391b12f7ff22ef705cee4059c6b92 262668+0 records in
262668+0 records out
134486016 bytes (134 MB) copied, 97.474 seconds, 1.4 MB/s
[records in số bản ghi dữ liệu
records out số bản ghi dữ liệu
copied đã sao chép
seconds giây]
```

If, after the installer has been booted successfully, the disc is not detected, sometimes simply trying again may solve the problem. If you have more than one optical drive, try changing the disc to the other drive. If that does not work or if the disc is recognized but there are errors when reading from it, try the suggestions listed below. Some basic knowledge of Linux is required for this. To execute any of the commands, you should first switch to the second virtual console (VT2) and activate the shell there.

- Chuyển đổi sang VT2 hoặc xem nội dung của /var/log/syslog (dùng nano như là trình soạn thảo) để kiểm tra có thông điệp lỗi dứt khoát không. Sau đó, kiểm tra kết xuất của lệnh dmesg.

- Check in the output of dmesg if your optical drive was recognized. You should see something like (the lines do not necessarily have to be consecutive):

```
ata1.00: ATAPI: MATSHITADVD-RA M UJ-822S, 1.61, max UDMA/33
ata1.00: configured for UDMA/33
scsi 0:0:0:0: CD-ROM MATSHITA DVD-RA M UJ-822S 1.61 P: 0 ANSI: 5
sr0: scsi3-mmc drive: 24x/24x writer dvd-ram cd/rw xa/form2 cdda tray
cdrom: Uniform CD-ROM driver Revision: 3.20
```

If you don’t see something like that, chances are the controller your drive is connected to was not recognized or may be not supported at all. If you know what driver is needed for the controller, you can try loading it manually using modprobe.

- Check that there is a device node for your optical drive under /dev/. In the example above, this would be /dev/sr0. There should also be a /dev/cdrom.

- Use the mount command to check if the optical disc is already mounted; if not, try mounting it manually:

```
$ mount /dev/hdc /cdrom
```

Check if there are any error messages after that command.

- Check if DMA is currently enabled:

```
$ cd /proc/ide/hdc
$ grep using_dma settings
using_dma 1 0 1 rw
```
A “1” in the first column after using_dma means it is enabled. If it is, try disabling it:

```
$ echo -n "using_dma:0" >settings
```

Make sure that you are in the directory for the device that corresponds to your optical drive.

- If there are any problems during the installation, try checking the integrity of the installation media using the option near the bottom of the installer’s main menu. This option can also be used as a general test if the disc can be read reliably.

5.4.2 Cấu hình khởi động

Nếu bạn gặp khó khăn, hạt nhân treo cứng trong tiến trình khởi động, không nhận di chuyển ngoại vi thất thường, hay không nhận diện được ổ đĩa, trước tiên bạn cần phải xem lại các tham số khởi động, như được thảo luận trong Phân 5.3.

In some cases, malfunctions can be caused by missing device firmware (see Phân 2.2 and Phân 6.4).

5.4.3 Giải thích thông điệp khởi chạy hạt nhân

5.4.4 Thông báo vấn đề cài đặt

If you get through the initial boot phase but cannot complete the install, the menu option Save debug logs may be helpful. It lets you store system error logs and configuration information from the installer on a storage medium, or download them using a web browser. This information may provide clues as to what went wrong and how to fix it. If you are submitting a bug report, you may want to attach this information to the bug report.

Thông điệp cài đặt thích hợp khác nằm trong thư mục `/var/log/` trong khi cài đặt, rồi trong thư mục `/var/log/installer/` sau khi máy tính đã khởi động vào hệ thống mới được cài đặt.

5.4.5 Đề trình báo cáo cài đặt

Nếu bạn vẫn còn gặp khó khăn, xin hãy đề trình báo cáo cài đặt. Chúng tôi khuyên bạn gởi một báo cáo cài đặt, thậm chí nếu tiến trình cài đặt là thành công, để tập hợp càng nhiều thông tin càng tốt về các cấu hình phần cứng của bạn. [Địch giả: nếu bạn gặp khó khăn viết tiếng Anh, bạn viết bằng tiếng Việt và gửi báo cáo cho Nhóm Việt Hóa Dự Do vi-VN@googlegroups.com nhé. Chúng tôi sẽ dịch cho bạn.]

Ghi chú rằng báo cáo cài đặt của bạn sẽ được xuất bản trong Hệ Thống Theo Dõi Lỗi Debian (BTS) và được chuyển tiếp cho hộp thư chung công cộng. Hãy đảm bảo bạn sử dụng một địa chỉ thư điện tử công cộng.

If you have a working Debian system, the easiest way to send an installation report is to install the installation-report and reportbug packages (apt install installation-report reportbug), configure reportbug as explained in Phân 8.4.2, and run the command reportbug installation-reports.

Alternatively you can use this template when filling out installation reports, and file the report as a bug report against the installation-reports pseudo package, by sending it to submit@bugs.debian.org.

Package: installation-reports

Image version: <Full URL to image you downloaded is best>
Date: <Date and time of the install>
Machine: <Description of machine (eg, IBM Thinkpad R32)>
Processor:
Memory:
Partitions: <df -T1 will do; the raw partition table is preferred>
Output of `lspci -knn` (or `lspci -nn`):

Base System Installation Checklist:
[O] = OK, [E] = Error (please elaborate below), [] = didn’t try it

Initial boot: []
Detect network card: []
Configure network: []
Detect media: []
Load installer modules: []
Detect hard drives: []
Partition hard drives: []
Install base system: []
Clock/timezone setup: []
User/password setup: []
Install tasks: []
Install boot loader: []
Overall install: []

Comments/Problems:

<Description of the install, in prose, and any thoughts, comments and ideas you had during the initial install.>

In the bug report, describe what the problem is, including the last visible kernel messages in the event of a kernel hang. Describe the steps that you did which brought the system into the problem state.
Chapter 6

Sử dụng trình cài đặt Debian

6.1 Trình cài đặt hoạt động như thế nào

Trình cài đặt Debian là bao gồm một số thành phần nhằm mục đích đặc biệt, để thực hiện mọi công việc cài đặt. Mỗi thành phần thì hành tác vụ riêng của nó, hỏi người dùng những câu cần thiết. Mỗi câu hỏi được gán ưu tiên, con ưu tiên các câu cần hỏi có được đặt vào lúc khởi chạy trình cài đặt.

Khi chạy tiến trình cài đặt mặc định, chỉ hỏi những câu chủ yếu (ưu tiên cao). Kết quả là tiến trình cài đặt rất tự động, tương tác ít với người dùng. Các thành phần được chạy tự động theo thứ tự; thành phần nào cần chạy phụ thuộc chính vào phương pháp cài đặt được dùng, cũng vào phần cứng riêng của bạn. Trình cài đặt sẽ dùng giá trị mặc định cho mỗi câu chủ hỏi.

Nếu tiến trình cài đặt gặp lỗi, trình cài đặt hiển thị màn hình lỗi, có thể sẽ là tiến trình do người dùng, trong đó người dùng điều khiển mỗi bước thông qua trình cài đặt, hỏi sẽ được giữ lại câu hỏi về lỗi thành phần lân lượt. Thông báo lỗi nghiêm trọng có ưu tiên “tới hạn” thì người dùng sẽ luôn luôn xem.

Some of the defaults that the installer uses can be influenced by passing boot arguments when `debian-installer` is started. If, for example, you wish to force static network configuration (IPv6 autoconfiguration and DHCP are used by default if available), you could add the boot parameter `netcfg/disable_autoconfig=true`. See Phần 5.3.2 for available options.

Người dùng thành thạo có thể thấy thoải mái hơn khi dùng giao diện do trình đơn điều khiển, trong đó người dùng điều khiển mỗi bước thông qua trình cài đặt, hỏi sẽ được giữ lại câu hỏi về mỗi thành phần lân lượt. Thông báo lỗi nghiêm trọng có ưu tiên “tới hạn” thì người dùng sẽ luôn luôn xem.

Đối với kiến trúc này, tiến trình cài đặt sử dụng một giao diện thúc vào kỹ tự. Hiển thị không có sẵn những giao diện khác đó.

Trong môi trường cấu trúc kỹ tự, không hỗ trợ chức năng sử dụng thiết bị con chuột. Dưới đây có những phím điều khiển cho bạn di chuyển qua các hộp chọn khác nhau:

- **Tab** hay **mã tab** để “tiếp tới” giữa các cái nút và lựa chọn được hiển thị
- **Shift-Tab** hay **mã tab** để “lùi lại” giữa các cái nút và lựa chọn được hiển thị
- **mã tab** trên và **mã tab** dưới để chọn mỗi mục riêng trong danh sách có thể cuộn lại, cũng làm danh sách cuộn tiếp và lùi
- Trong danh sách dài, bạn cũng có thể gõ một chữ riêng để cuộn trực tiếp tới phần có mục bắt đầu với chữ đó: dùng **Pg-Up** và **Pg-Down** để cuộn danh sách theo phần
- **phím dài** chọn mỗi mục như hộp chọn: **Enter** sẽ kích hoạt lựa chọn đó

Nếu một hộp chọn có sẵn trợ giúp thêm thì nó hiển thị một cái nút Trợ giúp. Cúi truy cập đến thông tin trợ giúp này hoặc bằng cách bật mục nút đó, hoặc bằng cách bật phím chức năng **F1**.

Các thông điệp lỗi và bản ghi lỗi được chuyển hướng tới bản giao tiếp stderr. Bạn có thể truy cập đến bản giao tiếp này bằng cách bật phím tắt **Alt**-F4 (ăn giá trị **Alt** bên trái trong khi bật phím chức năng **F4**); còn có thể trở về tiến trình cài đặt chính bằng bấm tắt **Alt**-F1.
6.1.1 Using the graphical installer

The graphical installer basically works the same as the text-based installer and thus the rest of this manual can be used to guide you through the installation process.

If you prefer using the keyboard over the mouse, there are two things you need to know. To expand a collapsed list (used for example for the selection of countries within continents), you can use the + and - keys. For questions where more than one item can be selected (e.g. task selection), you first need to tab to the Continue button after making your selections; hitting enter will toggle a selection, not activate Continue.

If a dialog offers additional help information, a Help button will be displayed. The help information can be accessed either by activating the button or by pressing the F1 key.

To switch to another console, you will also need to use the Ctrl key, just as with the X Window System. For example, to switch to VT2 (the first debug shell) you would use: Ctrl-Left Alt-F2. The graphical installer itself runs on VT5, so you can use Left Alt-F5 to switch back.

6.2 Giới thiệu về thành phần

Đây là danh sách các thành phần cài đặt, cùng với mô tả ngắn về mục đích của mỗi điều. Chi tiết về cách sử dụng thành phần riêng nào nằm ở phần 6.3.

main-menu Thành phần này hiển thị danh sách các thành phần cho người dùng xem trong khi chạy trình cài đặt, rồi knockout chọn một thành phần đã được chọn. Các câu hỏi của thành phần « main-menu » được đặt là ưu tiên vừa, vậy nếu bạn đã đặt ưu tiên cao hay tới hạn (cao là giá trị mặc định), bạn sẽ không xem bernOWN. Một khác, nếu tiến trình gặp lỗi cần thiết bạn cần thiết, ưu tiên của câu hỏi có thể được hạ cấp tạm thời để cho bạn khả năng giải quyết vấn đề: trong trường hợp đó, trình đơn có thể xuất hiện.

Bạn có khả năng tới trình đơn chính bằng cách bấm cái nút Go Back nhiều lần để lùi lại hoàn toàn khỏi thành phần đang chạy.

localechooser Thành phần này cho bạn khả năng chọn tùy chọn địa phương hoá cho tiến trình cài đặt, cũng cho hệ thống sẽ cài đặt: ngôn ngữ, quốc gia và miền địa phương (locale). Trình cài đặt sẽ hiển thị thông tin trong ngôn ngữ đã chọn, trừ có bản dịch chưa hoàn toàn sang ngôn ngữ đó, trong trường hợp đó một số thông tin sẽ được hiển thị bằng tiếng Anh.

console-setup Shows a list of keyboard (layouts), from which the user chooses the one which matches his own model.

hw-detect Thành phần này phát hiện tự động hậu hết phần cứng của máy tính, gồm thẻ mạng, ổ đĩa và PCMCIA.

cdrom-detect Looks for and mounts a Debian installation media.

netcfg Thành phần này cấu hình các sự kết nối mạng của máy tính để cho nó có khả năng liên lạc qua Mạng.

iso-scan Tìm kiếm ảnh ISO (tập tin có đuôi.iso) trên đĩa cứng.

choose-mirror Thành phần này hiển thị danh sách các máy nhân bản Debian. Vì vậy người dùng có thể chọn nguồn của các gói cài đặt.

cdrom-checker Checks integrity of installation media. This way, the user may assure him/herself that the installation image was not corrupted.

lowmem Thành phần này thử phát hiện hệ thống không có đủ bộ nhớ, rồi thực hiện một số việc đặc biệt để gỡ bỏ phần debian-installer không cần thiết ra bộ nhớ đó (cũng mất vài tính năng).

anna Anna’s Not Nearly APT. Installs packages which have been retrieved from the chosen mirror or installation media.

user-setup Thành phần này thiết lập mật khẩu chủ (root), cũng thêm một người dùng khác người chủ.

clock-setup Cập nhật đồng hồ hệ thống và xác định nếu đồng hồ được đặt theo UTC (thời gian thế giới) hay không.
CHAPTER 6. SỬ DỤNG TRÌNH CÀI ĐẶT DEBIAN

6.3. SỬ DỤNG MỖI THÀNH PHẦN

tzsetup Thành phần này chọn múi giờ, dựa vào địa điểm đã chọn trước.

partman Thành phần này cho phép người dùng phân vùng đĩa được gán kết vào hệ thống, tạo hệ thống tập tin trên những phân vùng đã chọn, và gán kết mỗi điều vào điểm lắp thích hợp. Cũng gồm có một số tính năng có ích như chế độ tự động hoàn toàn và khả năng hỗ trợ LVM (bộ quản lý tin hợp lý). Thành phần partman là công cụ phân vùng ưa thích trong Debian.

partitioner Thành phần này cho người dùng khả năng phân vùng đĩa được gắn kết vào hệ thống. Nó chọn chương trình thích hợp với kiến trúc của mỗi máy tính.

partconf Thành phần này hiển thị danh sách các phân vùng, cũng tạo hệ thống tập tin trên những phân vùng đã chọn, tùy theo những hướng dẫn của người dùng.

partman-lvm Thành phần này giúp đỡ người dùng cấu hình LVM (bộ quản lý tin hợp lý).

partman-md Thành phần này cho người dùng khả năng thiết lập RAID kiểu phân mềm. RAID phân mềm này thường là tốt hơn cả bộ điều khiển RAID IDE (phần cứng giả) rộng rãi trên bo mạch chủ mới hơn.

base-installer Thành phần này cài đặt bộ gộp cơ bản nhất cho máy tính khi đang hoạt động được dưới Debian GNU/Linux khi được khởi động lại.

apt-setup Thành phần này cấu hình chương trình « apt », một cách phân mềm tự động, dựa vào vật chứa nơi trình cài đặt chạy.

pkgsel Thành phần này sử dụng chương trình tasksel để chọn và cài đặt phần mềm thêm.

os-prober Thành phần này phát hiện hệ thống đã được cài đặt trên máy tính và gửi thông tin này cho trình cài đặt bộ gộp khởi động, mà có thể cung cấp cho bạn khả năng thêm hệ thống đã có vào trình đơn bật đầu của bộ gộp khởi động. Bằng cách này, vào lúc khởi động người dùng có thể chọn để hệ điều hành nào cần khởi chạy.

bootloader-installer The various bootloader installers each install a boot loader program on the hard disk, which is necessary for the computer to start up using Linux without using a USB stick or CD-ROM. Many boot loaders allow the user to choose an alternate operating system each time the computer boots.

shell Thành phần này cài đặt bộ gộp khởi động bao từ trình đơn, hoặc trong màn giao tiếp thứ hai.

save-logs Provides a way for the user to record information on a USB stick, network, hard disk, or other media when trouble is encountered, in order to accurately report installer software problems to Debian developers later.

6.3 Sử dụng mỗi thành phần

Trong phần này có diễn tả mỗi thành phần cài đặt một cách chi tiết. Các thành phần đã được nhóm lại theo giai đoạn riêng để hiểu, được trình diễn theo thứ tự xuất hiện trong tiến trình cài đặt. Ghi chú rằng không phải tất cả các mô-dun sẽ được dùng trong mọi việc cài đặt; những mô-dun thật sự được dùng phụ thuộc vào phương pháp cài đặt và phần cứng riêng.

6.3.1 Thiết lập trình cài đặt Debian và cấu hình phân cứng

Bạn sẽ thấy biết rằng debian-installer thực hiện việc phát hiện phân cứng vài lần trong giai đoạn này. Lần đầu tiên nhằm mục đích tìm phân cứng cần thiết để tài các thành phần cài đặt (v.đ. Ở dia CD-ROM hay thẻ mạng). Vi không phải tất cả các trình điều khiển luôn luôn sẵn sàng trong việc chạy đầu tiên này, việc phát hiện phân cứng cần phải được lập lại vào điểm sau trong tiến trình.

Trong khi phát hiện phân cứng, debian-installer cùng kiểm tra nếu trình điều khiển nào cho thiết bị phân cứng trong hệ thống đó cần thiết phải phân cứng đó. Ngoài ra, cài đặt phần mềm không cần thiết hiện thì một khóa cho phép phân cứng của thiết bị từ một vật chứa rỗng. Xem Phần 6.4 để tìm chi tiết.
6.3.1.1 Kiểm tra bộ nhớ có sẵn / chế độ thiếu bộ nhớ

Một trong những hành động đầu tiên của debian-installer là việc kiểm tra số lượng bộ nhớ có sẵn. Nếu không có đủ bộ nhớ có sẵn, thành phần này sẽ sửa đổi tiến trình cài đặt để (mong muốn) cho bạn khả năng cài đặt Debian GNU/Linux trên máy tính của mình.

Để giảm bộ nhớ được chiếm, bộ cài đặt trước tiên sẽ tắt các bản dịch nên chỉ có khả năng cài đặt bằng tiếng Anh. Tất nhiên, bạn vẫn còn có khả năng chạy hệ thống đã bán địa hóa sau khi cài đặt xong.

Để giảm bộ nhớ thêm, bộ cài đặt sẽ tập trung vào những thành phần chủ yếu để chạy xong tiến trình cài đặt cơ bản. Việc này cũng giảm khả năng của hệ thống cài đặt. Bạn sẽ có dịp tự nạp các thành phần thêm, nhưng chỉ rất nhóm thành phần bạn chọn sẽ chiếm bộ nhớ thêm thi có thể gây ra tiến trình cài đặt bị lỗi do hết bộ nhớ.

Bất chấp những biện pháp này, vẫn có thể gặp hệ thống đọng dúc, lỗi bất thường hay tiến trình bị giữ bất hạt nhân do hệ thống hết bộ nhớ (kết quả là thông điệp “Hết bộ nhớ” trên VT4 và trong bản ghi hệ thống).

Chân dung, người dùng đã thống báo rằng việc tạo một hệ thống tập tin dạng ext3 lớn lên lại trong chế độ thiếu bộ nhớ khi không có đủ sức chứa trao đổi. Nếu vùng trao đổi lớn hơn không quyết định vấn đề này, hãy thử tạo hệ thống tập tin dạng ext2 (thành phần chủ yếu của bộ cài đặt) thay thế. Và có thể thay đổi phần vùng trao ext2 sang ext3 sa khi cài đặt.

Có thể ép buộc trình cài đặt đúng mức bộ nhớ lowmem cao hơn mức dựa vào bộ nhớ còn rảnh, bằng cách dùng tham số khởi động “lowmem” như được điển tả trong Phân 5.3.2.

6.3.1.2 Đặt tùy chọn địa phương hoá

Trong phần lớn trường hợp, trước tiên bạn sẽ được nhắc chọn các tùy chọn địa phương hoá cần dùng trong cả hai tiến trình cài đặt và hệ thống được cài đặt. Những tùy chọn địa phương hoá là ngôn ngữ, nơi ở và miền địa phương.

Ví trị địa lý (trong phần này các tùy chọn địa phương hoá được dùng là một tổ hợp tất cả ngôn ngữ và quốc gia) thì hệ thống sẽ được đặt ở vị trí địa lý đúng và một máy nhân bản Debian thích hợp với quốc gia đó. Tố hô ngôn ngữ và quốc gia thì giúp quyết định miền địa phương mặc định cho hệ thống của bạn, cũng chọn bộ trí bàn phím đúng.

Trước tiên, bạn sẽ được nhắc chọn ngôn ngữ ưu tiên. Các ngôn ngữ được liệt kê bằng cả tiếng Anh (bên trái) lẫn tiếng gốc (bên phải); các tên bằng gốc cũng được in ra bằng chữ viết thường của ngôn ngữ đó. Bạn có thể chọn nhiều ngôn ngữ được liệt kê bằng cả tiếng Anh (bên trái) lẫn tiếng gốc (bên phải); các tên bằng gốc cũng được in ra bằng chữ viết thường của ngôn ngữ đó. Bạn có thể chọn nhiều ngôn ngữ được liệt kê bằng cả tiếng Anh (bên trái) lẫn tiếng gốc (bên phải); các tên bằng gốc cũng được in ra bằng chữ viết thường của ngôn ngữ đó.

Trước tiên, bạn sẽ được nhắc chọn ngôn ngữ ưu tiên. Các ngôn ngữ được liệt kê bằng cả tiếng Anh (bên trái) lẫn tiếng gốc (bên phải); các tên bằng gốc cũng được in ra bằng chữ viết thường của ngôn ngữ đó. Bạn có thể chọn nhiều ngôn ngữ được liệt kê bằng cả tiếng Anh (bên trái) lẫn tiếng gốc (bên phải); các tên bằng gốc cũng được in ra bằng chữ viết thường của ngôn ngữ đó.

Việc chọn miền địa phương “C” sẽ gây ra tiến trình cài đặt tiếp tục tìm cách nào đó để tìm ra một địa phương hoá không có khả năng hỗ trợ địa phương hoá (không có ngôn ngữ khác v.v.) với google locales sê không được cài đặt.

Bước kế tiếp là chọn vị trí địa lý. Nếu bạn đã chọn một ngôn ngữ nhiều quốc gia thì trình cài đặt hiện thị một danh sách chứa những quốc gia đó. Để chọn một quốc gia văn bản có không nằm trong danh sách, hãy chọn mục Mục địa phương (không có ngôn ngữ khác v.v.) trong loại locales sẽ không được cài đặt.

Bước kế tiếp là chọn vị trí địa lý. Nếu bạn đã chọn một ngôn ngữ đa quốc gia thì trình cài đặt hiện thị một danh sách chứa những quốc gia đó. Để chọn một quốc gia văn bản có không nằm trong danh sách, hãy chọn mục Mục địa phương (không có ngôn ngữ khác v.v.) trong loại locales sẽ không được cài đặt.

Nếu bạn đã chọn một tổ hợp ngôn ngữ và quốc gia cho đó không có sẵn một miền địa phương, và có nhiều miền địa phương cho ngôn ngữ đó, thì trình cài đặt cho phép bạn chọn miền địa phương nào bạn thích làm miền địa phương mặc định cho hệ thống được cài đặt. Trong các trường hợp khác, một miền địa phương mặc định sẽ được lập dựa

GHI CHÚ

Quan trọng là bạn chọn quốc gia ở, vì nó quyết định mức độ lọc nhân cho hệ thống được cài đặt.

Nếu bạn đã chọn một tổ hợp ngôn ngữ và quốc gia cho đó không có sẵn một miền địa phương, và có nhiều miền địa phương cho ngôn ngữ đó, thì trình cài đặt cho phép bạn chọn miền địa phương nào bạn thích làm miền địa phương mặc định cho hệ thống được cài đặt. Trong các trường hợp khác, một miền địa phương mặc định sẽ được lập dựa

1Nói kỹ thuật, khi một ngôn ngữ thuộc về nhiều miền địa phương có các mã quốc gia khác nhau.

2O mức ưu tiên Vừa và Thấp, bạn lucr áo cũng có đip chọn miền địa phương đã muốn trong những điều sẵn sàng cho ngôn ngữ được chọn (nếu có nhiều điều).
vào ngôn ngữ và quốc gia được người dùng chọn.

Bất cứ miền địa phương mặc định nào được chọn như diễn tả trong đoạn văn trước sẽ cũng sử dụng UTF-8 (Unicode) làm bảng mã ký tự. (Ghi chú: tiếng Việt yêu cầu Unicode.)
Nếu bạn đang cài đặt ở mức ưu tiên Thấp thì bạn có dịp chọn thêm miền địa phương, gồm có cái gọi là miền địa phương “thừa tự”³, cần tạo ra cho hệ thống được cài đặt. Chọn thêm miền địa phương ở bước này thì bạn được hỏi miền địa phương nào nên làm mặc định cho hệ thống được cài đặt.

6.3.1.3 Chọn bàn phím

Bàn phím thường được thiết kế để nhập các ký tự đại diện ngôn ngữ riêng. Hãy chọn một bố trí bàn phím thích hợp với bàn phím hàng ngày của bạn, hoặc chọn điều tương tự nếu không có bố trí trùng. Một khi cài đặt xong hệ thống, bạn có khả năng chọn bố trí bàn phím trong phạm vi sử chon rộng hơn (chay tiện ích dpkg-reconfigure keyboard-configuration với tư cách người chủ, một khi cài đặt xong).

Hãy di chuyển vùng tô sáng tới bố trí phím đã muốn, rồi bấm phím Enter. Dùng các phím mũi tên để di chuyển vùng tô sáng — chúng nằm tại cùng một vị trí trên mọi bố trí bàn phím ngôn ngữ quốc gia, vậy chúng không phụ thuộc vào cấu hình bàn phím.

6.3.1.4 Tìm ảnh ISO cài đặt Debian

Trong tiến trình cài đặt bằng phương pháp hd-media, có một thời điểm khi bạn cần phải tìm và gắn kết ảnh ISO của trình cài đặt Debian, để lấy các tập tin cài đặt còn lại. Thành phần iso-scan thực hiện công việc dứt khoát này.

At first, iso-scan automatically mounts all block devices (e.g. partitions and logical volumes) which have some known filesystem on them and sequentially searches for filenames ending with .iso (or .ISO for that matter). Beware that the first attempt scans only files in the root directory and in the first level of subdirectories (i.e. it finds /whatever.iso, /data/whatever.iso, but not /data/tmp/whatever.iso). After an iso image has been found, iso-scan checks its content to determine if the image is a valid Debian iso image or not. In the former case we are done, in the latter iso-scan seeks for another image.

Trong trường hợp việc tìm ảnh ISO cài đặt không phải là thành công, thành phần iso-scan sẽ hỏi nếu bạn muốn thực hiện việc tìm kiếm tương tự hơn. Việc tìm kiếm đó không phải chỉ tìm trong những thư mục trên: nó thấm sâu đi qua toàn bộ hệ thống tập tin.

Nếu thành phần iso-scan không tìm được ảnh ISO cài đặt của bạn, hãy khởi động lại hệ máy và thực hiện việc tìm kiếm tương tự hơn. Việc tìm kiếm đó không phải chỉ tìm trong những thư mục trên:

Note that the partition (or disk) hosting the ISO image can’t be reused during the installation process as it will be in use by the installer. To work-around this, and provided that you have enough system memory, the installer can copy the ISO image into RAM before mounting it. This is controlled by the low priority iso-scan/copy_iso_to_ram debconf question (it is only asked if the memory requirement is met).

6.3.1.5 Cấu hình mạng

Khi bạn vào bước này, nếu trình cài đặt phát hiện nhiều thiết bị mạng trong máy tính, nó sẽ nhắc bạn chọn thiết bị nào là giao diện mạng chính, tức là điều bạn muốn sử dụng để cài đặt. Các giao diện khác sẽ không được cấu hình vào lúc đó. Bạn có khả năng cấu hình giao diện thêm một khi cài đặt xong; xem trang hướng dẫn « man » interfaces(5).

6.3.1.5.1 Automatic network configuration

By default, debian-installer tries to configure your computer’s network automatically as far as possible. If the automatic configuration fails, that may be caused by many factors ranging from an unplugged network cable to missing infrastructure for automatic configuration. For further explanation in case of errors, check the error messages on the fourth console. In any case, you will be asked if you want to retry, or if you want to perform a manual setup. Sometimes the network services used for autoconfiguration can be slow in their responses, so if you are sure everything is in place, simply start the autoconfiguration attempt again. If autoconfiguration fails repeatedly, you can instead choose the manual network setup.

³Miền địa phương thừa tự là miền địa phương cũ, sử dụng một bảng mã ký tự cử như ISO 8859-1 (dùng bởi các ngôn ngữ vùng Tây Âu) hay EUC-JP (dùng bởi tiếng Nhật) thay cho UTF-8.
6.3.1.5.2 Manual network configuration

The manual network setup in turn asks you a number of questions about your network, notably IP address, Netmask, Gateway, Name server addresses, and a Hostname. Moreover, if you have a wireless network interface, you will be asked to provide your Wireless ESSID (“wireless network name”) and a WEP key or WPA/WPA2 passphrase. Fill in the answers from Phần 3.3.

GHI CHÚ

6.3.1.5.3 IPv4 and IPv6

From Debian GNU/Linux 7.0 (“Wheezy”) onwards, debian-installer supports IPv6 as well as the “classic” IPv4. All combinations of IPv4 and IPv6 (IPv4-only, IPv6-only and dual-stack configurations) are supported.

Autoconfiguration for IPv4 is done via DHCP (Dynamic Host Configuration Protocol). Autoconfiguration for IPv6 supports stateless autoconfiguration using NDP (Neighbor Discovery Protocol, including recursive DNS server (RDNSS) assignment), stateful autoconfiguration via DHCPv6 and mixed stateless/stateful autoconfiguration (address configuration via NDP, additional parameters via DHCPv6).

6.3.2 Thiết lập Người dùng và Mật khẩu

Đúng trước khi cấu hình đồng hồ, trình cài đặt sẽ cho phép bạn thiết lập tài khoản “root” và/hay một tài khoản cho người dùng đầu tiên. Một khi hoàn tất cài đặt thì cũng có thể tạo tài khoản người dùng bổ sung.

6.3.2.1 Lập mật khẩu chủ

Tài khoản chủ (root) cũng được gọi là siêu người dùng; nó là cách đăng nhập mà đi qua toàn bộ bảo vệ bảo mật trên máy tính. Tài khoản chủ nên được dùng chỉ để quản trị hệ thống, và trong thời lượng càng ngắn càng có thể.

Mỗi mật khẩu bạn tạo phải chứa ít nhất 6 ký tự (nhiều hơn là mạnh hơn), gồm chữ cả hoa lẫn thường, cùng với ký tự chấm câu. Hãy rất cẩn thận khi đặt mật khẩu chủ (root) vì tài khoản đó có nhiều quyền quan trọng. Bạn nên tránh chọn từ nằm trong bất kỳ từ điển hay thông tin cá nhân có thể được đoán.

Nếu người nào xin mật khẩu chủ của bạn, hãy rất cẩn thận. Bình thường, đừng cho ai biết mật khẩu chủ, trừ bạn quản lý máy có nhiều quyền truy cập hệ thống.

In case you do not specify a password for the “root” user here, this account will be disabled but the sudo package will be installed later to enable administrative tasks to be carried out on the new system. By default, the first user created on the system will be allowed to use the sudo command to become root.

6.3.2.2 Tạo người dùng chuẩn

Hệ thống sẽ hỏi nếu bạn muốn tạo một tài khoản người dùng chuẩn tại điểm thời này. Tài khoản này nên là sự đăng nhập cá nhân chính của bạn. Bạn không nên dùng tài khoản người dùng chủ để làm việc hàng ngày hay như sự đăng nhập cá nhân.

Trước tiên, bạn sẽ được nhắc nhập họ tên của người dùng. Sau đó, bạn cần nhập tên của tài khoản người dùng, như tên của bạn hay tên riêng khác nào (tên của bạn là giả trị mặc định). Cuối cùng, bạn nên nhập mật khẩu dành cho tài khoản này.

Nếu tài bạn biết kỹ điểm thời sau khi cài đặt, bạn muốn tạo tài khoản thêm, hãy sử dụng lệnh adduser (thêm người dùng).
6.3.3 Cấu hình Đồng hồ và Múi giờ

Trước tiên, trình cài đặt sẽ thử kết nối tới một máy phục vụ thời gian trên Internet (dùng giao thức thời gian NTP) để đặt đúng thời gian của hệ thống. Không thành công thì trình cài đặt giả sử ngày tháng và thời gian được lấy từ đồng hồ hệ thống khi khởi động hệ thống cài đặt là đúng. Bạn không thể tự đặt thời gian hệ thống thông qua cài đặt.

Phù thuộc vào vị trí được chọn về trước trong tiến trình cài đặt, bạn có thể xem danh sách các múi giờ thích hợp với vị trí đó. Nếu chọn bạn chỉ có một múi giờ và bạn đang làm một việc cài đặt mặc định thì trình cài đặt không hỏi gì và hệ thống giả sử múi giờ đó.

Trong chế độ cấp cao, hoặc khi cài đặt ở mức ưu tiên Vừa, bạn có tùy chọn bổ sung để chọn “Thời gian Thế giới” (UTC) làm múi giờ.

Nếu (vì lý do nào) bạn muốn đặt cho hệ thống đã cài đặt một múi giờ mà không tương ứng với địa điểm đã chọn, có hai tùy chọn:

1. Tùy chọn đơn giản nhất là chỉ chọn một múi giờ khác sau khi cài đặt xong và bạn đã khởi động hệ thống mới. Câu lệnh để làm như thế là:
   ```
   # dpkg-reconfigure tzdata
   ```

2. Hoặc có thể đặt múi giờ ở đâu thật của tiến trình cài đặt, bằng cách chỉ tham số `time/zone=giá trị` khi bạn khởi chạy tiến trình cài đặt. Giá trị nên là múi giờ hợp lệ (xem `/usr/share/zoneinfo`) v.d. Asia/Saigon hay UTC.

Đối với tiến trình tự động cài đặt, cũng có thể đặt múi giờ đúng chức năng chẳng cần手续.

6.3.4 Phân vùng và chọn điểm lắp

Ở thời điểm này, sau khi việc phát hiện phần cứng đã được thực hiện lần cuối cùng, `debian-installer` nên có khả năng đầy đủ, được tùy chỉnh thích hợp với sự cần của người dùng riêng và sẵn sàng làm việc thật. Như tên phần này ngụ ý, công việc chính của vài thành phần kế tiếp là phân vùng đĩa, tạo hệ thống tập tin, gán điểm lắp và (tùy chọn) cấu hình các tùy chọn rất liên quan đến nhau như LVM, thiết bị RAID và thiết bị đã mật mã.

Nếu bạn chưa quen với công việc phân vùng, hoặc chỉ muốn biết thêm, xem Phụ lục C.

Trước tiên, bạn sẽ nhận dịp phân vùng tự động hoặc toàn bộ đĩa, hoặc sức chứa còn rảnh trên đĩa. Tiến trình này cũng được gọi như là phân vùng “đã hướng dẫn”.

6.3.4.1 Tùy chọn phân vùng được hỗ trợ

Công cụ phân vùng được dùng trong `debian-installer` có nhiều chức năng. Nó cho phép bạn tạo nhiều loại lý tưởng khác nhau, dùng các bảng phân vùng, hệ thống tập tin và thiết bị khối cấp cao khác nhau.

Trình cài đặt hỗ trợ nhiều phương pháp khác nhau đối với phân vùng cấp cao và sử dụng thiết bị lưu trữ, mà trong nhiều trường hợp cũng có thể được sử dụng với nhau.

- **Quản lý Khối Tin Hợp Lý (LVM)**
- **RAID phần mềm**
 - Hỗ trợ các lớp RAID 0, 1, 4, 5, 6, 10.
- **Mật mã**
- **Đa đường dẫn** (vẫn thực nghiệm)
 - Xem Wiki của chúng ta để tìm thông tin. Hiển thị chỉ hỗ trợ chức năng đa đường dẫn nếu khả năng hỗ trợ đó được hiệu lực khi trình cài đặt được khởi động.

Hỗ trợ nhiều hệ thống tập tin theo đây.

- **ext2r0, ext2, ext3, ext4**
 - Hệ thống tập tin mặc định được chọn trong phần chọn các trình hợp là ext4; đối với phân vùng `/boot` (khối động) thì ext2 được chọn theo mặc định khi sử dụng chức năng phân vùng đa đường dẫn.
• jfs (không phải sẵn sàng trên mọi kiến trúc)
• xfs (không phải sẵn sàng trên mọi kiến trúc)
• reiserfs (vận tự chọn; không sẵn sàng trên mọi kiến trúc)

• jffs2
Dùng trên một số hệ thống nào đó để đọc vùng nhớ nhanh. Không thể tạo được phân vùng jffs2 mới.

• FAT16, FAT32

6.3.4.2 Phân vùng hướng dẫn

Nếu bạn chọn tiến trình phân vùng đã hướng dẫn, có lẽ bạn có ba tùy chọn nữa: tạo phân vùng một cách trực tiếp trên đĩa cứng (phương pháp truyền thống), hoặc tạo phân vùng bằng khả năng quản lý khối tin hợp lý (LVM), hoặc tạo phân vùng bằng LVM đã mật mã⁴.

GHI CHÚ

Tùy chọn sử dụng LVM (đã mật mã) có thể không sẵn sàng trên mọi kiến trúc.

Khi sử dụng LVM hoặc LVM đã mật mã để tạo, bộ cài đặt sẽ tạo phân vùng trên đĩa trong cùng một phân vùng lớn; lợi ích của phương pháp này là các phân vùng bên trong phân vùng lớn này có thể được thay đổi kích thước dễ dàng về sau. Trong trường hợp LVM đã mật mã, phân vùng lớn sẽ không có khả năng đọc nếu người dùng không có quyền đọc/Kích thước đặc biệt, chỉ cung cấp bao mật thêm cho dữ liệu (tiếng) của bạn.

Khi sử dụng LVM để tạo, bộ cài đặt sẽ cung cấp rộng rãi bằng cách disable liệu bằng phần của nó. Việc này cài tiến thêm bảo mật (ví như tạo đường hợp không thể tinh biết phân đĩa nào hoạt động và đảm bảo môi vệ của bạn cần đặt trước hoặc hoạt động), nhưng có thể kéo dài một chút phụ thuộc vào kích cỡ của đĩa.

GHI CHÚ

Nếu bạn chọn tiến trình phân vùng đã hướng dẫn bằng LVM hoặc LVM đã mật mã, một số thay đổi trong bảng phân vùng sẽ cần phải được ghi vào đĩa và chọn trong khi LVM được thiết lập. Các thay đổi này có thể quét qua xử lý nhất trên phân đĩa của bạn, và bạn không thể hủy bước này. Tuy nhiên, bộ cài đặt sẽ nhắc bạn xác nhận các thay đổi này trước khi ghi vào đĩa.

Nếu bạn chọn tiến trình phân vùng theo hướng dẫn (hoặc kiểu truyền thông hoặc bằng LVM (đã mật mã)) cho toàn bộ đĩa, trước tiến trình bạn sẽ được nhắc chọn đĩa bạn muốn dùng. Hãy kiểm tra xem tất cả các đĩa được liệt kê và, nếu bạn có nhiều đĩa, hãy chắc rằng bạn đã chọn đúng đĩa. Thứ tự Liu ké sẵn có thể khác với thứ tự bạn đã quen. Kích cỡ của đĩa có thể giúp đỡ bạn nhận diện chúng.

Mỗi đầu liễu nằm trên đĩa bạn chọn sẽ bị mất hoàn toàn, nhưng bạn sẽ lưu hơn liệu xác nhận thay đổi trước khi ghi vào đĩa. Nếu bạn đã chọn phương pháp phân vùng truyền thông, bạn sẽ không thể hủy các thay đổi đến ngày khi kết thúc; còn nếu sử dụng LVM (đã mật mã), không thể thực hiện việc này.

Sau đó, bạn có khả năng chọn trong những gian đoạn được liệt kê trong bảng bên dưới. Mỗi gian đoạn có thể và chúng, một số điều này được thảo luận trong Phụ lục C. Nếu bạn chưa chắc, hãy chọn gian đoạn thứ nhất. Ghi nhớ rằng tiến trình phân vùng đã hướng dẫn cần thiết một số chứa có ranh giới thứ tư để thao tác. Nếu bạn không gian cho nó ít nhất khoảng 1 GB sản chứa (phu thuộc vào gian đó đã chọn), tiến trình phân vùng đã hướng dẫn sẽ không thành công.

<table>
<thead>
<tr>
<th>Bộ trí phân vùng</th>
<th>Chỗ tối thiểu</th>
<th>Phân vùng đã tạo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mới tập tin trên một phân vùng</td>
<td>600MB</td>
<td>/., trao đổi</td>
</tr>
</tbody>
</table>

⁴Bộ cài đặt sẽ mật mã hóa nhóm khối LVM bằng một khóa AES 256 bit, và sử dụng khả năng hỗ trợ “dm-crypt” của hạt nhân.
6.3. Sử dụng mỗi thành phần

Bố trí phân vùng

<table>
<thead>
<tr>
<th>Chỗ tối thiểu</th>
<th>Phân vùng đã tạo</th>
</tr>
</thead>
<tbody>
<tr>
<td>500MB</td>
<td>/., /home, trao đổi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Các phân vùng</th>
<th>/home, /var, và /tmp riêng</th>
</tr>
</thead>
<tbody>
<tr>
<td>1GB</td>
<td>/., /home, /var, /tmp, trao đổi</td>
</tr>
</tbody>
</table>

Nếu bạn chọn tiến trình phân vùng đã hướng dẫn bằng LVM (đã mật mã), trình cài đặt sẽ cũng tạo một phân vùng /boot riêng. Các phân vùng khác, bao gồm phân vùng trao đổi, sẽ được tạo bên trong phân vùng LVM.

If you have booted in EFI mode then within the guided partitioning setup there will be an additional partition, formatted as a FAT32 bootable filesystem, for the EFI boot loader. This partition is known as an EFI System Partition (ESP). There is also an additional menu item in the formatting menu to manually set up a partition as an ESP.

Sau khi bạn chọn bố trí, màn hình kế tiếp sẽ hiển thị bảng phân vùng mới, gồm có thông tin về trạng thái kiểu định dạng và gắn kết của mỗi phân vùng.

Danh sách các phân vùng có thể hiển thị như:

<table>
<thead>
<tr>
<th>#</th>
<th>Số hiệu phân vùng</th>
<th>Kiểu</th>
<th>Kích thước</th>
<th>Đặt cờ tùy chọn</th>
<th>Hệ thống tập tin</th>
<th>Điểm lắp (nếu có)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>primary</td>
<td>16.4 MB</td>
<td>B</td>
<td>C</td>
<td>ext2</td>
<td>/boot</td>
</tr>
<tr>
<td>2</td>
<td>primary</td>
<td>551.0 MB</td>
<td>swap</td>
<td></td>
<td></td>
<td>swap</td>
</tr>
<tr>
<td>3</td>
<td>primary</td>
<td>5.8 GB</td>
<td>ntfs</td>
<td></td>
<td></td>
<td>/</td>
</tr>
<tr>
<td>4</td>
<td>primary</td>
<td>8.2 MB</td>
<td></td>
<td></td>
<td>FREE SPACE</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>logical</td>
<td>6.0 GB</td>
<td>f</td>
<td></td>
<td>ext4</td>
<td>/</td>
</tr>
<tr>
<td>6</td>
<td>logical</td>
<td>1.0 GB</td>
<td>f</td>
<td></td>
<td>ext3</td>
<td>/</td>
</tr>
<tr>
<td>7</td>
<td>logical</td>
<td>498.8 MB</td>
<td></td>
<td></td>
<td>ext3</td>
<td></td>
</tr>
</tbody>
</table>

[primary=chính; swap=trao đổi; FREE SPACE=sức chứa còn rảnh; logical=hợp lý (không phải vật lý)] Mẫu này hiển thị hai dòng chưa chia ra với phân vùng; dây thứ nhất có sức chứa còn rảnh. Mỗi dòng phân vùng có dạng: số hiệu phân vùng, kiểu nó, kích cỡ nó, có tùy chọn nào, hệ thống tập tin, điểm lắp (nếu có). Chú thích: thiết lập riêng này không thể được tạo khi dùng khả năng phân vùng đã hướng dẫn, nhưng nó có phải hình tổ chức hợp khác có thể được đặt khi tự phân vùng.

Ở đây kết thúc tiến trình phân vùng đã hướng dẫn. Nếu bạn thấy bảng phân vùng đã tạo ra là ổn định, sau đó bạn có khả năng chọn mục Phân vùng xong và ghi các thay đổi vào đĩa trong trình đơn, để thực hiện bảng phân vùng mới (nếu được điện tại lại có thể phần này). Còn nếu bạn chưa thỏa chí, bạn có thể chọn mục Hủy các bước thay đổi phân vùng để chạy lại tiến trình phân vùng đã hướng dẫn, hoặc sửa đổi các thay đổi đã để nghĩ (nếu được điện tại bên dưới) cho việc tự phân vùng.

6.3.4.3 Phân vùng bằng tay

Một màn hình tương tự với hình được hiển thị đúng trên đây sẽ được trình bày nếu bạn chọn phân vùng bằng tay, trừ là bảng phân vùng đã có sẽ hiển thị mà không có điểm lắp. Phần còn lại của tiến trình này sẽ đi đến cách thiết lập bảng tay phân vùng và cách sử dụng phân vùng cho hệ thống Debian mới.

Nếu bạn chọn một đĩa rỗng không có phân vùng, cùng không có sức chứa rảnh, bạn sẽ được nhắc tạo một bảng phân vùng mới (cần thiết để tạo phần mới). Sau đó, một dòng mới tên “CHỖ TRỐNG” nên xuất hiện trong bảng, bên dưới tên đĩa đã chọn.

Muốn sửa đổi phân vùng này thì đơn giản hãy chọn phần vùng, việc đó hiển thị trình đơn cấu hình phân vùng. Đây là cùng một màn hình với điều cho khả năng tạo phân vùng mới, vì thế bạn có thể sửa đổi cũng như tùy chọn. Bạn cũng có khả năng tạo thêm bởi cách của phần vùng bằng cách chọn mục hiện thị kích cỡ phần vùng. Những hệ
 thong tap tin machen bi et la hoat dong duoc trong truong hop nay la it nhat fat16, fat32, ext2, ext3 va vung trao di.

Trinh don nay cung cho ban co khai nang xoai phan vung.

Hai khia tram ban da ta 0 it nhai phan vung: mot dieu cho hoi thong tap tin go (ma phai duoc gan ket nhu la /) va dieu khac cho bo ho tro trao di. Neu ban quan gan ket hoi thong tap tin go, chuong trinh partman se khong cho phép ban tiep tuc, cho den khi ban sua trang hoi nay.

If you boot in EFI mode but forget to select and format an EFI System Partition, partman will detect this and will not let you continue until you allocate one.

Cac khai nang cua chuong trinh partman co that duoc keo dai bang mo-dun ca di, phu thuoc vao kienc truc cua he thong ban. Vi vay nhu ban khong the xem moi tinh nang da dan tay, hai khia tram xem nhu ban da tai mo-dun can thiet chu (v.d. partman-ext3, partman-xfS, hay partman-lvm).

Sau khi ban thay trang hoi phan vung la on thoa, hay chon Phan vung vung va ghi cac thay doi va dia trong trinh don phan vung. Ban se xem ban toan tat cac thay doi tren dia, va duoc nhac xac nan cac he thong tap tin nen duoc ta o nhu duoc yeu cau.

6.3.4.4 Cau hinh theo bi da dia (RAID phan mem)

Co nhieu dia cung⁵ trong may tinh thi ban co the duoc cong cu partman-md de thiet lap cac 0 dia bang mot cach tuong sieu vat va tay tinh danh tinh cay cua du lieu. Ket qua duoc go la Thiet bi Da Dia (hoac theo bien the noi tieng nhat RAID phan mem).

Thiet bi da dia la co ban bo phan vung nam tren nhieu dia khac nhau, duoc ket hop voi nhau de tao mot theo hinh bi hop ly. Vi vay theo hinh bi nay co the thiet lap cac phan vung danh (tuc la trong chuong trinh partman ban co the thiet danh, gan diem lap v.v.).

Loi i chung co the phu thuc vao theo hinh bi MD duoc tao. Hein tho hoi tro nhung MO:

RAID0 Muc dich chinh la tung hiieu suat. RAID0 chia tach tat ca cac du lieu giet ra cac lat trong mảng. Bo tru vai ma co the thiet lieu toc do cua thao tac doc/gi, trong khi ma neu chi mot dia that bai thi ban mat tất cả (mot phan thong tin vaon con nam tren cac dia danh hoang, phan khac da nham tren dia chet).

Binh thuong RAID0 duoc lam mot phan vung de chinh sua anh dong (mot thao tac can nham nhieu tay Nguyen).

RAID1 RAID1 thich hop voi thiet lap quan tam chinh vao vung dam cay. Nho bao gia vi (thuong la hai) phan vung kich co da ma mo phien ban chua chinh xac cung mot tap hop du lieu. Va co ban co ba ket qua. Duay, nen mot dia that bai, ban van con co du lieu trung tren dia con lai. Thu hai, ban chat co the su dung mot phan cua khai nang that (xichac hon, phan nay la kich co cua phien ban nhv mot trong RAID0). Thu ba, cac thao tac tap tap tin duoc can bang theo trong tay qua cac dia, ma co the thiet lieu suat tren mot may phuc vu (v.d. may phuc vu tap tin) ma thuong thuc thuc nhieu thao tac dia hon gi.

Tuy chon ban cung co the gian mot dia bo sung trong mảng, de thay thay dia chet trong truong hop d.

RAID5 RAID5 thoat hiieu hu ich to chu, du dung tin cay va su that du lieu. Mang khieu nay chia tach tat ca cac du lieu giet ra cac lat, va phan phoi chung mot cach du lieu tren tat ca mot dia ra (tuong tu voi RAID0). Khac voi RAID0, RAID5 cung tinh thong tin tinh chen la, ma duoc ghi vao dia con lai. Dia chen la khong phan tinh (co thi duoc go la RAID4), trong khi phan tinh chen la duoc phan phoi du lieu tren tat ca mot dia. Nen mot dia that bai, phan tinh tin chen la van co the thiet lieu dinh tinh tu du lieu con lai va tinh chen le cua n. Mang RAID5 phai bao gio im nhai va phan vung hoat dong. Tuy chon ban co the gian mot dia bo sung trong mảng, de thay thay dia chet trong truong hop d.

Nhung ban thay o dia, mang RAID5 co the chon tin cay tu mot o dia trong RAID1, con lam it su that du hon. Mat khac, so voi RAID0 noi co the chay cham hon mot ki ghi du lieu, do tinh thong tin chen le.

RAID6 Mang RAID6 tuong tu voi RAID5 tu nho su dung hai theo bi chen le thay cho mot.

Mot mang RAID6 co khai nang phuc hoi sau khi hai dia that bai.

RAID10 Mang RAID10 ket hop chung nang chia du lieu ra cac lat (nhu RAID0) va bo toan dia lieu trung (nhu RAID1). Noi tao n ban so cua du lieu giet ra cac lat, va phan phoi chung qua cac phan vung khac nhau de moi theo bi chua nhieu nhai mot ban sao. Gia tri mac dinh cua n la 2, nhung no co the thiet lieu dinh tinh mot so khac trong chen chen cao. So cac phien ban duoc thiet lieu la it nhai n. Mang RAID10 co vai bo tru khac nhau de phan phoi cac ban so du lieu. Mac dinh la cac ban so o gon. Bo tru cac ban so o gian thi phan phoi tat cac cac ban so theo khoang cuc mot hieu so tren moi dia. Bo tru cac ban so o xa thi phan phoi tat cac cac ban so theo hieu so khac nhau tren moi dia. Ban so o hieu so chi sao chet du lieu, khong phai ban so sang.

Mang RAID10 co the thiet lieu dinh de gai ra sung du lieu tren dia va su that du ma khong con tinh chen le.

⁵That la ban co the chon tat ca mot theo hinh bi MD ngay cuc tri cac phan vung nam tren mot o dia vat ly, nhung bo tru do khong co loai ich.
Để tóm tắt:

<table>
<thead>
<tr>
<th>Kiểu</th>
<th>Thiết bị tối thiểu</th>
<th>Thiết bị phụ tùng</th>
<th>Văn còn hoạt động sau khi đĩa thất bại</th>
<th>Chỗ sẵn sàng</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID0</td>
<td>2</td>
<td>không</td>
<td>không</td>
<td>Kích cỡ của phân vùng nhỏ nhất được nhận số thiết bị trong RAID</td>
</tr>
<tr>
<td>RAID1</td>
<td>2</td>
<td>tùy chọn</td>
<td>có</td>
<td>Kích cỡ của phân vùng nhỏ nhất trong RAID</td>
</tr>
<tr>
<td>RAID5</td>
<td>3</td>
<td>tùy chọn</td>
<td>có</td>
<td>Kích cỡ của phân vùng nhỏ nhất nhận lên (số thiết bị trong RAID trừ một)</td>
</tr>
<tr>
<td>RAID6</td>
<td>4</td>
<td>tùy chọn</td>
<td>có</td>
<td>Kích cỡ của phân vùng nhỏ nhất nhận lên (số thiết bị trong RAID trừ hai)</td>
</tr>
<tr>
<td>RAID10</td>
<td>2</td>
<td>tùy chọn</td>
<td>có</td>
<td>Tổng số các phần bản chia cho số các bản sao đoạn (mặc định là hai)</td>
</tr>
</tbody>
</table>

Muốn biết thêm về RAID kiểu phần mềm, hãy xem tài liệu RAID phần mềm Thế Nào Software RAID HOWTO.

Để tạo một thiết bị đa đĩa, bạn cần phải chuẩn bị bằng cách đánh dấu các phân vùng đã muốn. (Làm như thế trong trình partman, trong trình đơn Thiết lập phân vùng nơi bạn nên chọn mục Dùng làm: → khối vật lý cho RAID.)

MAKE SURE THAT THE SYSTEM CAN BE BOOTED WITH THE PARTITIONING SCHEME YOU ARE PLANNING. IN GENERAL IT WILL BE NECESSARY TO CREATE A SEPARATE FILE SYSTEM FOR /BOOT WHEN USING RAID FOR THE ROOT (/) FILE SYSTEM. MOST BOOT LOADERS DO SUPPORT MIRRORED (NOT STRIPED!) RAID1, SO USING FOR EXAMPLE RAID5 FOR / AND RAID1 FOR /BOOT CAN BE AN OPTION.

Sau đó, bạn nên chọn mục Cấu hình RAID phần mềm trong trình đơn partman chính. (Trình đơn này sẽ xuất hiện chỉ sau khi bạn đánh dấu ít nhất một phân vùng sẽ được dùng là khối vật lý cho RAID.) Trên màn hình thứ nhất của tiện ích partman-md, đơn giản hãy chọn mục Tạo thiết bị đa đĩa (MD). Bạn sẽ xem danh sách các thiết bị đa đĩa được hỗ trợ, trong đó bạn nên chọn một thiết bị (v.d. RAID1). Kết quả phụ thuộc vào kiểu thiết bị đa đĩa bạn đã chọn.

- RAID0 là đơn giản — bạn sẽ xem danh sách các phân vùng RAID sẵn sàng, và công việc duy nhất của bạn là việc chọn những phân vùng sẽ tạo thành thiết bị đa đĩa.
- RAID1 phức tạp hơn một chút. Trước tiên, bạn sẽ được nhắc nhập số các thiết bị hoạt động và số các thiết bị bổ sung sẽ đóng lại để làm thiết bị đa đĩa (MD). Sau đó, trong danh sách các phân vùng RAID sẵn sàng, bạn cần phải chọn những phân vùng nhỏ hoạt động, và những phân vùng là phụ tùng. Số đếm phân vùng đã chọn phải bằng với số được cung cấp về trước vài giây. Đừng lo lắng: nếu bạn làm lỡ, chọn số phần vùng khác, debian-installer không cho phép bạn tiếp tục cho đến khi bạn sửa vấn đề.
- RAID5 có thủ tục thiết lập tương tự với RAID1, trừ bạn cần phải sử dụng ít nhất ba phân vùng hoạt động.
- RAID6 có thủ tục thiết lập tương tự với RAID1, trừ bạn cần thiết ít nhất bốn phân vùng hoạt động.

Rất có thể sử dụng đồng thời vài kiến thiết bị đa đĩa (MD). Chẳng hạn, nếu bạn có ba đĩa cứng 200 GB cả dành cho thiết bị đa đĩa, mỗi đĩa chứa hai phần vung 100 GB, trong trường hợp này bạn có khả năng kết hợp phân vung thứ nhất trên cả ba đĩa cùng để tạo RAID0 (phân vung số liệu anh động 300 GB nhanh) và sử dụng ba phân vung khác (2 hoạt động và 1 phụ tùng) như là RAID1 (phân vung 100 GB hoạt động tin cậy cho /home).

Sau khi bạn thiết lập được các thiết bị đa đĩa, bạn có thể Kết thúc tiến trình partman-md để lui lại về trình partman, để tạo hệ thống tập tin trên các thiết bị đa đĩa, và gắn cho chúng những thuộc tính thường như diện lập.

6.3.4.5 Cấu hình Bộ Quản Lý Khối Tin Hợp Lý (LVM)

Nếu bạn làm việc với máy tính tại lớp quản trị hệ thống hay người dùng “cấp cao”, chắc là bạn đã xem trường hợp mà phân vùng nào (thường điều quan trọng nhất) không có đủ sức chứa còn rảnh, còn phân vùng khác nào được dùng rất ít, nên bạn phải quan lý trung tâm hóa bằng cách di chuyển các thứ, tạo khe kết trung trung v.v.

Để tránh trường hợp như vậy, bạn có thể sử dụng Bộ Quản Lý Khối Tin Hợp Lý (LVM). Nơi đơn giản, bằng LVM bạn có thể kết hợp các phân vùng (khối tin vật lý trong thuật ngữ LVM) để tạo một đĩa ảo (được gọi như là nhóm khối tin), mà đó có thể được chia cho nhiều phân vùng ảo (khối tin hợp lý). Điểm có ích là khối tin hợp lý (và các nhóm khối tin cơ sở) có thể chịu đài qua vài đĩa vật lý.

Nếu thế thì khi bạn thay biệt cần thiết sức chứa thêm cho phân vùng /home 160GB cũ, bạn có thể thêm đĩa mới 300GB mới vào máy tính, nó lại nó với nhôm khối tin tồn tại, rồi thay đổi kích cỡ của khối tin hợp lý chứa he thống tập tin /home và thay — các người dùng lại có chỗ còn rảnh trên phân vùng 460GB đã giả hạn. (Mẫu này là đơn giản.) Có thông tin chi tiết trong tài liệu LVM Thế Nào LVM HOWTO.

Tiến trình thiết lập LVM trong debian-installer là hơi đơn giản, hoàn toàn được hỗ trợ trong partman. Đầu tiên, bạn cần phải đánh dấu (một) nhóm tin hợp lý (những) phân vung cần dùng như là khối tin ảo trong LVM. (Làm như thế trong trình đơn Thiết lập phân vung nominate những hạt mục Đùng làm: → khối tin ảo trong LVM.)

Cảnh báo

Be aware: the new LVM setup will destroy all data on all partitions marked with an LVM type code. So, if you already have an LVM on some of your disks, and want to install Debian additionally to that machine, the old (already existing) LVM will be wiped out! The same counts for partitions, which are (for any reason) misleadingly marked with an LVM type code, but contain something different (like an encrypted volume). You need to remove such disks from the system, before performing a new LVM setup!

Khi bạn trở về màn hình partman chính, bạn sẽ xem một tùy chọn mới Cấu hình Bộ Quản Lý Khối Tin Hợp Lý. Khi bạn chọn mục đó, tiến trình sẽ nhắc bạn xác nhận thay đổi nào sắp làm trong bảng phân vung, sau đó sẽ hiển thị trình đơn cấu hình LVM. Bên trên trình đơn có hiển thị một bảng tóm tắt cấu hình LVM. Trình đơn chính nó tùy thuộc ngữ cảnh, chỉ hiển thị những hành động hợp lý. Những hành động có thể là:

- Hiển thị chi tiết cấu hình: hiển thị cấu trúc thiết bị LVM, các tên và kích cỡ của khối tin hợp lý, v.v.
- Tạo nhóm khối tin
- Tạo khối tin hợp lý
- Xóa nhóm khối tin
- Xóa khối tin hợp lý
- Kéo dài nhóm khối tin
- Giảm nhóm khối tin
- Kết thúc: trở về màn hình partman chính
Hãy sử dụng những tùy chọn trong trình đơn đó để tạo một nhóm khối tin, rồi tạo các khối tin hợp lý bên trong nó.

Sau khi bạn lùi lại về màn hình `partman` chính, khối tin hợp lý đã tạo nào sẽ được hiển thị đúng như phân vùng chuẩn (bạn cũng nên thao tác nó như vậy).

6.3.4.6 Cấu hình khối tin được mật mã

`debian-installer` cho bạn khả năng thiết lập khối tin được mật mã. Mỗi tập tin bạn ghi vào phân vùng như vậy được lưu mật mã ngay vào thiết bị đó. Chỉ người dùng nhập cụm từ mật khẩu được nhập để tạo phân vùng gốc có quyền truy cập dữ liệu đã mật mã trên nó. Tình năng này bảo vệ dữ liệu nhạy cảm, trong trường hợp máy tính zach tay hay đê cửa bị mất cắp. Kẽ trộm có thể truy cập đê cửa một cách vắt lĩnh, nhưng mà nếu ta không biết cụm từ mật khẩu đúng, dữ liệu nằm trong đê cửa sẽ hình như ký tự ngẫu nhiên thôi.

The two most important partitions to encrypt are: the home partition, where your private data resides, and the swap partition, where sensitive data might be stored temporarily during operation. Of course, nothing prevents you from encrypting any other partitions that might be of interest. For example `/var` where database servers, mail servers or print servers store their data, or `/tmp` which is used by various programs to store potentially interesting temporary files. Some people may even want to encrypt their whole system. Generally the only exception here is the `/boot` partition which must remain unencrypted, because historically there was no way to load the kernel from an encrypted partition. (GRUB is now able to do that, but `debian-installer` currently lacks native support for encrypted `/boot`. The setup is therefore covered in a separate document.)

Ghi chú

Ghi chú rằng phân vùng được mật mã có hiệu suất ít hơn phân vùng không mật mã, vì dữ liệu cần phải được giải mật mã hay mật mã trong mỗi việc đọc hay ghi. Tắc động hiệu suất phụ thuộc vào tốc độ của CPU, kiểu mật mã và độ dài của khóa.

Để sử dụng khả năng mật mã, bạn cần phải tạo một phân vùng mới bằng cách chọn một phần sức chứa còn rảnh trong trình đơn phân vùng chính. Hoặc có thể chọn một phân vùng từ trên (v.đ. một phân vùng chuẩn, một khối tin hợp lý LVM hay một khối tin RAID). Trong trình đơn Thiết lập phân vùng, bạn cần chọn mục khối tin vật lý cho sự mật mã tại tùy chọn Dùng làm:. Trình đơn lúc đó thay đổi để hiển thị vài tùy chọn mật mã cho phân vùng đó.

The encryption method supported by `debian-installer` is `dm-crypt` (included in newer Linux kernels, able to host LVM physical volumes).

Let's have a look at the options available when you select encryption via `Device-mapper (dm-crypt)`. As always: when in doubt, use the defaults, because they have been carefully chosen with security in mind.

Mật mã: `aes`

Tùy chọn này cho bạn khả năng chọn thuật toán mật mã (`cipher`) sẽ được dùng để mật mã dữ liệu trên phân vùng đó. `debian-installer` hiện thời hỗ trợ những thuật toán mật mã khối này: `aes`, `blowfish`, `serpent`, `twofish`. Khả năng của mỗi thuật toán ở ngoài phạm vi của tài liệu này, nhưng mà thông tin có thể giúp đỡ bạn quyết định là trong năm 2000, AES được chọn bởi Viện Tiêu Chuẩn và Kỹ Thuật Quốc Gia Mỹ (American National Institute of Standards and Technology) là thuật toán mật mã tiêu chuẩn để bảo vệ thông tin nhạy cảm trong thế kỷ thứ hai mở rộng nhất.

Đài khóa: 256

Thử thuật toán IV: `xts–plain64`

Thử thuật toán `Vec-tơ số khởi` hay IV được dùng khi mật mã để đảm bảo việc áp dụng thuật toán cho cùng một `doạn thô` với cùng một khóa sẽ luôn tạo ra `doạn mã` duy nhất. Mục đích là chẩn người tận công suy luận thông tin nào ra mẫu xảy ra nhiều lần trong dữ liệu đã mật mã.

Trong những xen kẽ được cung cấp, `xts–plain64` hiện thời khóa nhật bị tấn công bằng cách được biết. Hãy dùng xen kẽ khác khi bạn cần phải chắc là tương thích với hệ thống được cài đặt trước mà không có khả năng dùng thuật toán mới hơn.

Khoá mật mã: Cụm từ mật khẩu

Đây bạn có thể chọn kiểu khóa mật mã cho phân vùng này.

Cụm từ mật khẩu

Khoá mật mã sẽ được tính dựa vào cụm từ mật khẩu bạn có thể nhập vào lúc sau trong tiến trình.

Đường cụm từ mật khẩu là khóa hiện thời có nghĩa là phân vùng sẽ được thiết lập bằng LUKS.
Khoá ngẫu nhiên
Một khoá mật mã mới sẽ được tạo ra từ dữ liệu ngẫu nhiên khi nào bạn thử lập phân vùng được mất mã. Tức là khi nào tắt máy tính, nội dung của phân vùng này sẽ bị mất khi khoá bị xoá bởi ra bộ nhớ. (Tất nhiên, bạn có thể thử đặt khoá do, dùng chương trình được lập, sử tận công sức mạnh về phù, nhưng mà nếu thuật toán toán mật mã không có só doan chưa được biết, sử tận công kiến này không thể thành công trong đội sòng của bạn.)

Khoá ngẫu nhiên có ích đối với phân vùng trao đổi, vì bạn không cần nhớ cụm từ mật khẩu hoặc nhớ xóa sạch thông tin này cảm ra phân vùng trao đổi trước khi tắt máy tính. Tuy nhiên, bạn sẽ cũng không có khả năng dùng chúc năng “ngưng đến đĩa” (suspend-to-disk) do hạt nhân Linux mới hơn cung cấp, vì không thể phục họi dữ liệu được ngưng trước được giao vào phân vùng trao đổi, khi khởi động lại.

Xoá bỏ dữ liệu: có
Quyết định nếu nội dung của phân vùng này nên được ghi để bằng dữ liệu ngẫu nhiên trước khi thiết lập mật mã. Khi bạn đúng tính năng này, nếu không thao tác thì cảm có thể tìm biết phân nào của phân vùng đang được dùng hay không. Hơn nữa, tính năng này làm cho khóa hơn việc phục họi dữ liệu còn lại của bản cài đặt trước.

Sau khi bạn chọn những tham số thích hợp với những phân vùng đã mất mã, hãy trở về trình đơn phân vùng chính. Lúc đó, nên có một mục trình đơn mới: Cấu hình khối tin đã mật mã. Sau khi chọn nó, bạn sẽ được nhắc xác nhận việc xoá bỏ dữ liệu nằm trên phân vùng nào được đánh dấu để bị xoá sạch, cũng có thể một số hàng động khác, như việc cho một bảng phân vùng mới. Đối với phân vùng lớn, có thể kéo dài một chút.

Sau đó, bạn sẽ được nhắc nhập một cụm từ mật khẩu cho phân vùng nào được cấu hình để sử dụng nó. Cüm từ mật khẩu tốt:
• có độ dài hơn 8 ký tự (đài hơn là mạnh hơn)
• phối hợp với nhau cả chữ hoa/thường, chữ số và ký tự khác
• không chứa từ nào nằm trong từ điển, hay từ nào liên quan đến bạn (v.d. ngày sinh, sở thích, tên của gia đình hay bạn bè): không chứa từ nào chương trình có thể tìm kiếm hoặc người khác có thể đoán.

Trước khi nhập cụm từ mật khẩu nào, bạn nên chắc là bàn phím được cấu hình đúng, để tạo ra những ký tự thích hợp. Nếu chưa chắc, bạn có thể chuyển đổi sang bàn giao tiếp ảo thứ hai, rồi gõ một số chữ tại dấu nhắc. Sự thử ra này đảm bảo bạn sẽ không bị những ký tự khác, chẳng hạn bằng cách thử nhập cụm từ mật khẩu bằng bộ trí bàn phím tiếng Việt, khi bạn đã sử dụng bộ trí tiếng Anh (hay bộ trí tiếng Việt khác) để nhập cụm từ mật khẩu gốc trong khi cài đặt. Có lẽ bạn đã chuyển đổi sang bộ trí khác vào lúc nào trong tiến trình cài đặt, hoặc bộ trí thứ hai đang được thiết lập khi bạn nhập cụm từ mật khẩu cho hệ thống tập tin gốc. Khi bạn chuyển luân luân kiểm tra xem bộ trí bàn phím nào được dùng, trước khi nhập mật khẩu gốc nào.

After returning to the main partitioning menu, you will see all encrypted volumes as additional partitions which can be configured in the same way as ordinary partitions. The following example shows a volume encrypted via dm-crypt.

Now is the time to assign mount points to the volumes and optionally change the file system types if the defaults do not suit you.

Pay attention to the identifiers in parentheses (sda2_crypt in this case) and the mount points you assigned to each encrypted volume. You will need this information later when booting the new system. The differences between the ordinary boot process and the boot process with encryption involved will be covered later in Phần 7.2.

Một khi bạn thấy số do phân vùng là on thông, hãy tiếp tục cài đặt.

Sau khi bạn chọn những tham số thích hợp với những phân vùng đã mất mã, hãy trở về trình đơn phân vùng chính. Lúc đó, nên có một mục trình đơn mới: Cấu hình khối tin đã mật mã. Sau khi chọn nó, bạn sẽ được nhắc xác nhận việc xoá bỏ dữ liệu nằm trên phân vùng nào được đánh dấu để bị xoá sạch, cũng có thể một số hàng động khác, như việc cho một bảng phân vùng mới. Đối với phân vùng lớn, có thể kéo dài một chút.

Sau đó, bạn sẽ được nhắc nhập một cụm từ mật khẩu cho phân vùng nào được cấu hình để sử dụng nó. Cüm từ mật khẩu tốt:
• có độ dài hơn 8 ký tự (đài hơn là mạnh hơn)
• phối hợp với nhau cả chữ hoa/thường, chữ số và ký tự khác
• không chứa từ nào nằm trong từ điển, hay từ nào liên quan đến bạn (v.d. ngày sinh, sở thích, tên của gia đình hay bạn bè): không chứa từ nào chương trình có thể tìm kiếm hoặc người khác có thể đoán.

Trước khi nhập cụm từ mật khẩu nào, bạn nên chắc là bàn phím được cấu hình đúng, để tạo ra những ký tự thích hợp. Nếu chưa chắc, bạn có thể chuyển đổi sang bàn giao tiếp ảo thứ hai, rồi gõ một số chữ tại dấu nhắc. Sự thử ra này đảm bảo bạn sẽ không bị những ký tự khác, chẳng hạn bằng cách thử nhập cụm từ mật khẩu bằng bộ trí bàn phím tiếng Việt, khi bạn đã sử dụng bộ trí tiếng Anh (hay bộ trí tiếng Việt khác) để nhập cụm từ mật khẩu gốc trong khi cài đặt. Có lẽ bạn đã chuyển đổi sang bộ trí khác vào lúc nào trong tiến trình cài đặt, hoặc bộ trí thứ hai đang được thiết lập khi bạn nhập cụm từ mật khẩu cho hệ thống tập tin gốc. Khi bạn chuyển luân luân kiểm tra xem bộ trí bàn phím nào được dùng, trước khi nhập mật khẩu gốc nào.

After returning to the main partitioning menu, you will see all encrypted volumes as additional partitions which can be configured in the same way as ordinary partitions. The following example shows a volume encrypted via dm-crypt.

Encrypted volume (sda2_crypt) - 115.1 GB Linux device-mapper
#1 115.1 GB F3

Now is the time to assign mount points to the volumes and optionally change the file system types if the defaults do not suit you.

Pay attention to the identifiers in parentheses (sda2_crypt in this case) and the mount points you assigned to each encrypted volume. You will need this information later when booting the new system. The differences between the ordinary boot process and the boot process with encryption involved will be covered later in Phần 7.2.
6.3.5 Cài đặt Hệ thống Cơ bản

Mặc dù giai đoạn này là đơn giản nhất, nó chiếm một phần đáng kể của tiến trình cài đặt vì nó tai về, thẩm tra và giải nén toàn bộ hệ thống cơ bản. Nếu máy tính hay sự kết nối mạng của bạn có chạy chậm, giai đoạn này có thể kéo dài một lát.

Trong khi cài đặt hệ thống cơ bản, các thông điệp về cách giải nén gói và thiết lập được chuyển tiếp tới thiết bị cuối tty4. Có thể thay cáp nối bằng cách bấm tổ hợp phím Alt trái-F4, và lùi lại về tiến trình cài đặt chỉnh bằng Alt trái-F1.

Các thông điệp kiểu giải nén/thiết lập được tạo ra trong giai đoạn này cũng được lưu vào bản ghi hệ thống /var/log/syslog. Bạn vẫn có khả năng kiểm tra những thông điệp ở đó nếu tiến trình cài đặt được chạy qua bản giao tiếp nối tiếp.

Trong khi cài đặt cơ bản, một hạt nhân Linux sẽ được cài đặt. Tại ưu tiên mặc định, trình cài đặt sẽ chọn cho bạn hạt nhân khớp tốt nhất phần cứng của bạn. Trong chế độ ưu tiên thấp hơn, bạn có khả năng chọn trong danh sách các hạt nhân có sẵn.

Khi gói phần mềm được cài đặt dùng hệ thống quản lý gói thì mặc định là nó cũng cài đặt những gói do gói đó khuyến khích. Các gói khuyến khích không phải cần thiết cho chức năng lõi của phần mềm được chọn, nhưng mà chúng có phải tăng cường phần mềm đó thì (theo ý kiến của nhà duy trì gói) bình thường nên được cài đặt cùng với phần mềm đó.

Vì lý do kỹ thuật, gói nào được cài đặt trong khi cài đặt hệ thống cơ bản thì được cài đặt mà không có các gói “Khuyến khích” tương ứng. Quy tắc trên chỉ có hiệu lực sau thời điểm này trong quá trình cài đặt.

GHI CHÚ

Vi lý do kỹ thuật, gói nào được cài đặt trong khi cài đặt hệ thống cơ bản thì được cài đặt mà không có các gói “Khuyến khích” tương ứng. Quy tắc trên chỉ có hiệu lực sau thời điểm này trong quá trình cài đặt.

6.3.6 Cài đặt phần mềm thêm

Ở điểm thời này, bạn có một hệ thống có ích nhưng còn bị hạn chế. Phần lớn người dùng sẽ muốn cài đặt thêm phần mềm vào hệ thống, để điều hướng tính nó để tương thích với những nhu cầu của họ, và trình cài đặt cung cấp khả năng đó. Bước này có thể mất ngay cả lâu hơn tiến trình cài đặt hệ thống cơ bản nếu máy tính hay mạng của bạn có chạy chậm.

6.3.6.1 Cấu hình apt

One of the tools used to install packages on a Debian GNU/Linux system is the program apt, from the apt package. Other front-ends for package management, like aptitude and synaptic, are also in use. These front-ends are recommended for new users, since they integrate some additional features (package searching and status checks) in a nice user interface.

Chương trình apt phải được cấu hình để biết cần lấy gói từ đâu. Kết quả của việc cấu hình này được ghi vào tập tin /etc/apt/sources.list, và bạn có thể xem lại nó và sửa đổi nó sau khi cài đặt xong.

Nếu bạn đang cài đặt ở mức ưu tiên mặc định, trình cài đặt sẽ tự động quản lý phần lớn tiến trình cấu hình, dựa vào phương pháp cài đặt bạn dùng và có thể dùng các sự chọn bạn đã làm trước. Trong phần lớn trường hợp, trình cài đặt sẽ tự động thêm một máy nhân bản bảo mật và, nếu bạn đang cài đặt bản phát hành ổn định, một máy nhân bản cho dịch vụ cập nhật “stable-updates”.

Nếu bạn đang cài đặt ở mức ưu tiên thấp hơn (v.d. ở chế độ cấp cao), bạn sẽ có khả năng tự quyết định thêm. Bạn có thể chọn có nên dùng dịch vụ cập nhật kiểu bảo mật và/hay stable-updates, hay không, và bạn có thể chọn thêm gói từ phần kho lưu “contrib” (đã cung cấp) và “non-free” (khác tự do).

6.3.6.1.1 Installing from more than one CD or DVD image

If you are installing from a CD or DVD image that is part of a larger set, the installer will ask if you want to scan additional installation media. If you have such additional media available, you probably want to do this so the installer can use the packages included on them.

Note that the program which actually installs the packages is called dpkg. However, this program is more of a low-level tool. apt is a higher-level tool, which will invoke dpkg as appropriate. It knows how to retrieve packages from your installation media, the network, or wherever. It is also able to automatically install other packages which are required to make the package you’re trying to install work correctly.
If you do not have any additional media, that is no problem: using them is not required. If you also do not use a network mirror (as explained in the next section), it can mean that not all packages belonging to the tasks you select in the next step of the installation can be installed.

If you do scan multiple installation media, the installer will prompt you to exchange them when it needs packages from one that isn't currently in the drive. Note that only discs that belong to the same set should be scanned. The order in which they are scanned does not really matter, but scanning them in ascending order will reduce the chance of mistakes.

6.3.6.1.2 Sử dụng máy nhân bản mạng
Một câu sẽ được hỏi trong phần lớn tiến trình cài đặt là có nên dùng máy nhân bản mạng làm nguồn gói, hay không. Trong phần lớn trường hợp, trả lời mặc định là tốt, nhưng vẫn có một số ngoại lệ.

If you are not installing from a full CD/DVD image, you really should use a network mirror as otherwise you will end up with only a very minimal system. However, if you have a limited Internet connection it is best not to select the desktop task in the next step of the installation.

If you are installing from a single full CD image, using a network mirror is not required, but is still strongly recommended because a single CD image contains only a fairly limited number of packages. If you have a limited Internet connection it may still be best to not select a network mirror here, but to finish the installation using only what's available on the CD image and selectively install additional packages after the installation (i.e. after you have rebooted into the new system).

If you are installing from DVD, any packages needed during the installation should be present on the first DVD image. Use of a network mirror is optional.

One advantage of adding a network mirror is that updates, that have occurred since the CD/DVD images were created and have been included in a point release, will become available for installation, thus extending the life of your CD/DVD set without compromising the security or stability of the installed system.

In summary: selecting a network mirror is generally a good idea, except if you do not have a good Internet connection. If the current version of a package is available from installation media, the installer will always use that. The amount of data that will be downloaded if you do select a mirror thus depends on

1. những tác vụ bạn chọn trong bước tiếp theo của tiến trình cài đặt,
2. những gói nào cần thiết cho các tác vụ đó,
3. which of those packages are present on the installation media you have scanned, and
4. whether any updated versions of packages included on the installation media are available from a mirror (either a regular package mirror, or a mirror for security or stable-updates).

Note that the last point means that, even if you choose not to use a network mirror, some packages may still be downloaded from the Internet if there is a security or stable-updates update available for them and those services have been configured.

6.3.6.1.3 Choosing a network mirror
Unless you chose not to use a network mirror, you will be presented with a list of network mirrors based upon your country selection earlier in the installation process. Choosing the offered default is usually fine.
The offered default is deb.debian.org, which is not a mirror itself but will redirect to a mirror that should be up-to-date and fast. These mirrors support TLS (https protocol) and IPv6. This service is maintained by the Debian System Administration (DSA) team.

A mirror can also be specified by hand by choosing “enter information manually”. You can then specify a mirror host name and an optional port number. This actually has to be a URL base, i.e. when specifying an IPv6 address, one has to add square brackets around it, for instance “[2001:db8::1]”.

If your computer is on an IPv6-only network (which is probably not the case for the vast majority of users), using the default mirror for your country might not work. All the mirrors in the list are reachable via IPv4, but only some of them can be used via IPv6. As connectivity of individual mirrors can change over time, this information is not available in the installer. If there is no IPv6 connectivity for the default mirror for your country, you can either try some of the other mirrors offered to you or choose the “enter information manually” option. You can then specify “ftp.ipv6.debian.org” as the mirror name, which is an alias for a mirror available via IPv6, although it will probably not be the fastest possible one.

6.3.6.2 Lựa chọn và Cài đặt Phần mềm

Trong tiến trình cài đặt, bạn có dịp chọn phần mềm thêm cần cài đặt. Hơn là chọn mỗi gói phần mềm riêng trong 83841 gói sẵn sàng, giai đoạn này của tiến trình cài đặt tập trung vào công việc chọn và cài đặt tập hợp phần mềm định sẵn để thiết lập nhanh máy tính của bạn dễ thực hiện nhiều tác vụ khác nhau.

Mỗi công việc đại diện việc đặc biệt bạn muốn làm bằng máy tính, như “môi trường làm việc”, “trình phục vụ Mạng”, hay “trình phục vụ in”⁹. Phần D.2 xác định sức chứa cần thiết cho các công việc có sẵn.

Một số tác vụ nào đó có thể được chọn sẵn, dựa vào các đặc tính của máy tính vào đó bạn đang cài đặt hệ thống. Không đồng ý với các sự chọn này thì bạn vẫn có khả năng bỏ chọn điều đó. Tại điểm thời này, bạn ngay cả có thể chọn không cài đặt gì cả.

Mẹo

Trong giao diện người dùng chuẩn của trình cài đặt, bạn có thể sử dụng phím dài để (bỏ) chọn công việc nào.

Ghi chú

The “Desktop environment” task will install a graphical desktop environment.

By default, debian-installer installs the desktop environment. It is possible to interactively select a different desktop environment during the installation. It is also possible to install multiple desktops, but some combinations of desktop may not be co-installable.

Note that this will only work if the packages needed for the desired desktop environment are actually available. If you are installing using a single full CD image, they will possibly need to be downloaded from a network mirror as they might not be available on the CD image due to its limited amount of space. Installing any of the available desktop environments this way should work fine if you are using a DVD image or any other installation method.

The various server tasks will install software roughly as follows. Web server: apache2; Print server: cups; SSH server: openssh.

Công việc “Hệ thống chuẩn” thì cài đặt bất cứ gói nào có mức ưu tiên “chuẩn”. Các gói nào bao gồm rất nhiều tiện ích thường dùng mà bình thường sẵn sàng trên bất cứ hệ thống Linux/UNIX nào. Không tắt công việc này nếu bạn không biết cách sử dụng.

Trong khi chọn ngôn ngữ, nếu một miền địa phương khác với “C” được chọn (v.d. “vi.UTF-8”) thì tasksel kiểm tra có công việc địa phương hoá nào được xác định cho miền địa phương đó (v.d. “Tiếng Việt”) và

⁹Để hiển thị danh sách các công việc này, trình cài đặt đơn giản gọi chương trình tasksel. Bạn có thể chạy nó vào bất cứ điểm thời nào sau khi cài đặt hệ thống, để cài đặt (hay bỏ) gói thêm, hoặc bạn có thể sử dụng một công cụ xử lý môi gói như aptitude. Nếu bạn tìm một gói riêng, sau khi cài đặt hệ thống, đơn giản hãy chạy lệnh aptitude install gói, mà gói là tên của gói bạn tìm.

Một khi chọn các tác vụ, hãy bấm Continue. Tại thời điểm này, chương trình apt sẽ cài đặt các gói thuộc về những tác vụ đã chọn. Nếu một chương trình nào đó cần thêm thông tin từ người dùng, nó sẽ nhắc bạn trong quá trình này.

Ngay cả khi các gói nằm trên đĩa CD-ROM, trình cài đặt vẫn còn có thể lấy từ máy nhân bản nếu máy nhân bản có gói phiên bản mới hơn gói trên đĩa CD-ROM. Nếu bạn đang cài đặt phiên bản ổn định (stable), trường hợp này có thể xảy ra sau khi phân phối bản « điểm » (bản cập nhật bản phân phối ổn định chính). Còn nếu bạn đang cài đặt bản phân phối thử ra (testing), nó có thể xảy ra nếu bạn sử dụng ảnh cũ.

6.3.7 Cho hệ thống khả năng khởi động

Cài đặt máy trạm không có đĩa thì rõ ràng không có ích khi khởi động từ đĩa cục bộ nên bước này sẽ bị bỏ qua.

6.3.7.1 Phát hiện hệ điều hành khác

Trước khi cài đặt bộ nap khởi động, trình cài đặt sẽ thử đó tìm hệ điều hành khác được cài đặt trên cùng một máy. Tìm được một hệ điều hành được hỗ trợ thì nó thông báo cho bạn trong bước cài đặt bộ nap khởi động, và máy tính cung cấp cấu hình để khởi động hệ điều hành khác đó, thêm vào Debian.

Ghi chú rằng nhiều hệ điều hành khác có thể được cấu hình trên cùng một máy chưa được hiểu hoàn toàn. Cách hỗ trợ tự động khả năng phát hiện và thiết lập bộ nap khởi động để khởi động hệ điều hành khác có thay đổi theo kiến trúc và ngay cả hệ thống thực. Nếu nó không hoạt động được, bạn nên xem tài liệu hướng dẫn sử dụng bộ nap khởi động riêng để tìm thông tin thêm.

6.3.7.2 Making the system bootable with flash-kernel

As there is no common firmware interface on all ARM platforms, the steps required to make the system bootable on ARM devices are highly device-dependent. Debian uses a tool called flash-kernel to take care of this. Flash-kernel contains a database which describes the particular operations that are required to make the system bootable on various devices. It detects whether the current device is supported, and if yes, performs the necessary operations.

On devices which boot from internal NOR- or NAND-flash memory, flash-kernel writes the kernel and the initial ramdisk to this internal memory. This method is particularly common on older armel devices. Please note that most of these devices do not allow having multiple kernels and ramdisks in their internal flash memory, i.e. running flash-kernel on them usually overwrites the previous contents of the flash memory!

For ARM systems that use U-Boot as their system firmware and boot the kernel and the initial ramdisk from external storage media (such as MMC/SD-cards, USB mass storage devices or IDE/SATA harddisks), flash-kernel generates an appropriate boot script to allow autobooting without user interaction.

6.3.7.3 Tiếp tục không có bộ nap khởi động

Tùy chọn này có thể được dùng để làm xong tiến trình cài đặt ngay cả khi không có bộ nap khởi động cần cài đặt, hoặc vì kiến trúc/kiến trúc phụ không cung cấp, hoặc vì không muốn nó (v.d. bạn sẽ dùng bộ nap khởi động đã có).

Nếu bạn định tự cấu hình bộ nap khởi động, bạn nên kiểm tra xem tên của hạt nhân đã được cài đặt vào /target/
boot. Bạn cũng nên kiểm tra xem nếu thư mục do chưa内建/ không; nếu có, bạn rất có thể phải bảo bộ nap khởi động sử dụng nó. Thông tin khác cần thiết là tên đĩa và phân vùng đã chọn cho hệ thống tập tin /, và nếu bạn đã chọn cài đặt /boot vào phân vùng riêng, tên hệ thống tập tin /boot.

6.3.8 Cài đặt xong

Đây là bước cuối cùng trong tiến trình cài đặt Debian, trong đó trình cài đặt sẽ làm bất cứ công việc nào còn lại. Phân lớn là làm sạch sau debian-installer.
6.3.8.1 Đặt đồng hồ hệ thống

Có lẽ trình cài đặt sẽ hỏi bạn nếu đồng hồ của máy tính được đặt thành thời gian thế giới (UTC) không. Bình thường trình đó tránh hỏi câu này, nếu có thể, và thử tính biết nếu đồng hồ được đặt thành thời gian thế giới (UTC) dựa vào thứ như hệ điều hành khác đã được cài đặt.

Ở chế độ chuyên môn, bạn lúc nào cũng có khả năng chọn nếu đồng hồ của máy tính được đặt thành thời gian thế giới (UTC) không.

Ở điểm thời này, debian-installer sẽ cũng thử lưu thời gian hiện diện thời vào đồng hồ phần cứng của hệ thống. Việc này sẽ được làm theo hoặc UTC hoặc giờ cách bộ, phù thuộc vào sự chọn mới làm.

6.3.8.2 Khởi động lại hệ thống

You will be prompted to remove the boot media (CD, USB stick, etc) that you used to boot the installer. After that the system will be rebooted into your new Debian system.

6.3.9 Khắc phục sự cố

Những thành phần được liệt kê trong phần này thường không được dùng trong tiến trình cài đặt, vì chúng đối phó sau để giúp đỡ người dùng nếu họ gặp khó khăn.

6.3.9.1 Lưu bản ghi cài đặt

Cài đặt thành công thì các tập tin theo dõi được tạo trong tiến trình cài đặt sẽ được tự động lưu vào thư mục /var/log/installer/ trong hệ thống Debian mới.

Choosing Save debug logs from the main menu allows you to save the log files to a USB stick, network, hard disk, or other media. This can be useful if you encounter fatal problems during the installation and wish to study the logs on another system or attach them to an installation report.

6.3.9.2 Sử dụng trình bao và xem bản ghi

Có vài phương pháp khác nhau cho bạn sử dụng để tùy cập trình bao trong khi chạy tiến trình cài đặt. Trên phần lớn hệ thống, nếu bạn cài đặt qua màn hình giao tiếp di động, phương pháp dễ nhất là chuyển đổi sang màn hình giao tiếp di động bằng cách tiếp tục phím Alt-trái-F2⁴⁹ (trên bàn phím Mac, tổ hợp phím option-F2: các máy Mac mới hơn cũng có từ « alt » trên phím option). Rồi bấm tiếp tục phím Alt-trái-F1 để trở về bộ cài đặt chính nó.

Nếu bạn không thể chuyển đổi màn hình giao tiếp, trình đơn chính cũng có mục Chạy trình bao có thể dùng để khởi chạy một trình bao. Bạn có thể tới trình đơn chính từ phần lệnh hỗ trợ, bằng cách bấm phải nút Go Back một hay nhiều lần. Gõ lệnh exit (thoát) để đóng trình bao, và trở về trình cài đặt.

Vào lúc này, bạn được khởi động từ đĩa RAM nên có sẵn một bộ tiện ích UNIX biểu hiện để sử dụng. Có thể xem các chương trình sẵn sàng bằng cách chạy lệnh ls /bin /sbin /usr/bin /usr/sbin (ls = liệt kê) hay help (trợ giúp). Trình bao này là bộ nhái trình bao Bourne tên ash có một số tính năng tốt đẹp như khả năng tự động gõ và lước sự.

Để soạn thảo và xem tập tin, hãy dùng trình soạn thảo văn bản nano. Các tập tin ghi lưu cho hệ thống cài đặt nằm trong thư mục /var/log.

Ghi chú

Mặc dù bạn có thể sử dụng bất cứ lệnh nào bạn muốn trong trình bao, tùy chọn dùng trình bao chỉ sẵn sàng để giúp đỡ trong trường hợp bị lỗi hay gặp lỗi.

Việc tự chạy lệnh từ trình bao có thể gây ra nguy hại cho tiến trình cài đặt nếu gây ra lỗi hay việc cài đặt chưa hoàn thành. Đặc biệt bạn phải cho phép trình cài đặt kích hoạt vùng trao đổi, không bao giờ tự làm như thể từ trình bao.

6.3.10 Cài đặt qua mạng

Một của những thành phần hay ho là network-console. Nó cho bạn khả năng làm phần lớn tiến trình cài đặt qua mạng thông qua SSH. Việc sử dụng mạng nguy hiểm nếu bạn phải thực hiện những bước cài đặt đầu tiên từ bán điều khiển, ít nhất đến khi thiết lập lại không chia mạng (đủ bạn có thể tự động hoá phần đó bằng phần Phân 4.5.)

⁴⁹Tức là: bằng đồng thời phím số accelerating Alt bên trái phím dài và phím chức năng F2.
CHAPTER 6. SỬ DỤNG TRÌNH CÀI ĐẶT DEBIAN 6.3. SỬ DỤNG MỖI THÀNH PHẦN

This component is not loaded into the main installation menu by default, so you have to explicitly ask for it. If you are installing from optical media, you need to boot with medium priority or otherwise invoke the main installation menu and choose Load installer components from installation media and from the list of additional components select network-console: Continue installation remotely using SSH. Successful load is indicated by a new menu entry called Continue installation remotely using SSH.

Sau khi chọn mục nhập mới này, bạn sẽ được nhắc nhập một mật khẩu mới để đăng nhập hệ thống cài đặt và để xác nhận nó. Đó là tất cả thôi. Lúc này bạn nên xem màn hình hướng dẫn bạn đăng nhập từ xa với từ cách là người dùng installer với mật khẩu mới cung cấp. Một chi tiết quan trọng trong khả năng tham gia kết nối trên mạng này là việc tạo ra hệ thống này. Bạn phải tiến đến máy tính của người được tiếp tục cài đặt từ xa.

Nếu bạn chọn tiếp tục cài đặt cục bộ, vào lúc nào bạn có thể bấm phím Enter, mà sẽ mang bạn về trình đơn chính nơi bạn có thể chọn thành phần khác.

Tại đầu khác, bạn cần phải cấu hình thiết bị cuối để sử dụng bảng mã UTF-8, vì hệ thống cài đặt sử dụng đó. Nếu bạn không làm như thế, vẫn còn có thể cài đặt từ xa, nhưng mà bạn có thể gặp một số sở tạo tác lây như việc hợp thoại bị hủy hay ký tự khác ASCII không thể đọc. Cách kết nối đến hệ thống cài đặt là để như ở:

```
§ ssh -l installer máy_cài_dặt
```

mà máy_cài_dặt là hoặc tên hoặc địa chỉ IP của máy tính đang được cài đặt. Trừ khi thật đúng nhất, bạn tay của hệ thống ở xa sẽ được hiện thị, và bạn sẽ phải xác nhận nếu nó là đúng không.

GHI CHÚ

Có lẽ bạn có thể tránh kết nối kết nối bằng cách thêm tùy chọn `-o ServerAliveInterval=giá trị' khi khởi chạy kết nối ssh, hoặc bằng cách thêm tùy chọn đó vào tập tin cấu hình ssh. Tuy nhiên, khi chạy trên máy tính hỗ trợ lưu giữ trạng thái, việc kích hoạt sẽ có thể gây ra kết nối bị mất (v.đ. nếu các gói tin bảo tồn kết nối được gửi trong khi kết nối bị đóng ngang, không thì ssh phục hồi kết nối) vậy chỉ đúng nó khi cần thiết.

GHI CHÚ

Nếu bạn cài đặt vào vài máy tính lần lượt, và chúng có cùng một địa chỉ IP hay tên máy, phần mềm ssh sẽ từ chối kết nối đến máy như vậy. Lý do là nó sẽ có vấn đề khác, mà thường ngu y sự tận công lưu ghi. Nếu bạn có chắc là nó không phải ngu y sự tận công, bạn sẽ cần phải xóa dòng từng lệnh trong trang lập lịch để cài máy được biết ~/.ssh/known_hosts a rồi thử lại.

--Lệnh này sẽ gỡ bỏ mục nhập đã tồn tại đối với một máy: ssh-keygen -R tên_máy_dìa_chi_IP.

Sau khi đăng nhập, bạn sẽ xem màn hình đầu tiên chứa hai khả năng: Khởi chạy trình đơn và Khởi chạy hệ vỏ. Điều thứ nhất mang bạn tới trình đơn cài đặt chính, nơi bạn có thể tiếp tục cài đặt như thường. Còn điều thứ hai khởi chạy một trình bảo nơi bạn có thể thể theo dõi và có thể sửa hệ thống ở xa. Bạn nên sở khởi chỉ một phiên chạy SSH cho trình đơn cài đặt, nhưng có thể chạy nhiều phiên chạy cho các trình bảo.
6.4 Nạp phần cứng bị thiếu

Như đã diễn tả trong Phần 2.2, một số thiết bị nào đó cũng yêu cầu nạp phần cứng. Trong hầu hết trường hợp, thiết bị sẽ không hoạt động bằng cách nào cả nếu phần cứng không sẵn sàng; đôi khi nó chỉ có chức năng cơ bản và yêu cầu phần cứng để hiệu lực thêm tính năng.

Nếu một trình điều khiển thiết bị yêu cầu phần cứng chưa sẵn sàng, Debian-installer sẽ hiển thị một hộp thoại đề xuất nạp phần cứng bị thiếu. Bật tùy chọn này thì Debian-installer sẽ quét tất cả thiết bị sẵn sàng tìm hoặc tập tin phần cứng riêng hoặc gói chứa phần cứng. Tìm được thì phần cứng được sao chép vào vị trí đúng (/lib/firmware) và mô-đun trình điều khiển được nạp lại.

Ghi chú

Which devices are scanned and which file systems are supported depends on the architecture, the installation method and the stage of the installation. Especially during the early stages of the installation, loading the firmware is most likely to succeed from a FAT-formatted USB stick.

Ghi chú rằng cũng có thể bỏ qua bước nạp phần cứng nếu thiết bị vẫn còn chức năng, hoặc nếu thiết bị không cần trong khi cài đặt.

Debian-installer only prompts for firmware needed by kernel modules loaded during the installation. Not all drivers are included in Debian-installer, in particular Radeon is not, so this implies that the capabilities of some devices may be no different at the end of the installation from what they were at the beginning. Consequently, some of your hardware may not be being used to its full potential. If you suspect this is the case, or are just curious, it is not a bad idea to check the output of the dmesg command on the newly booted system and search for “firmware”.

6.4.1 Chuẩn bị vật chứa

Official installation images do not include non-free firmware. The most common method to load such firmware is from some removable medium such as a USB stick. Alternatively, unofficial installation images containing non-free firmware can be found at https://cdimage.debian.org/cdimage/unofficial/non-free/ cd-including-firmware/. To prepare a USB stick (or other medium like a hard drive partition), the firmware files or packages must be placed in either the root directory or a directory named /firmware of the file system on the medium. The recommended file system to use is FAT as that is most certain to be supported during the early stages of the installation.

Kho nén chứa các gói hiện thời cho phần cứng thường dùng nhất cũng sẵn sàng từ:

• https://cdimage.debian.org/cdimage/unofficial/non-free/firmware/

Chỉ nên tải về kho nén cho bản phát hành hiện thời, và giải nén nó vào hệ thống tập tin vật chứa.

Nếu kho nén không chứa phần cứng yêu cầu, bạn cũng có thể tải gói phần cứng riêng Xuong (phần khác từ đó của) kho gói. Toàn cảnh theo dõi nên liên kết phần lơn các gói phần cứng sẵn sàng, nhưng không đảm bảo nó hoàn toàn, và nó cũng có thể chứa gói khác phần cứng:

• https://packages.debian.org/search?keywords=firmware

Cũng có thể sao chép vào vật chứa mỗi tập tin phần cứng riêng. Tập tin riêng như vậy có thể sẵn sàng từ một hệ thống đã cài đặt trước, hay nhà sản xuất phần cứng.
6.4.2 Phần ứng và Hệ thống đã Cài đặt

Bất cứ phần ứng nào được nạp trong khi cài đặt thì được tự động sao chép vào hệ thống đã cài đặt. Trong phần lớn các trường hợp, thao tác sao chép này sẽ đảm bảo rằng thiết bị yêu cầu phần ứng sẽ cũng hoạt động đúng sau khi khởi động lại máy vào hệ thống đã cài đặt. Tuy nhiên, nếu hệ thống đã cài đặt có chạy một phiên bản hạt nhân khác với trình cài đặt, cũng có thể là phần ứng không được đó được do phiên bản bị đối xứng lệch.

Nếu phần ứng đã được nạp từ một gói phần ứng, debian-installer sẽ cũng cài đặt gói đó cho hệ thống đã cài đặt, và tự động thêm phần khác từ đó của gói vào tập tin danh sách nguồn `sources.list` của chương trình APT. Hữu ích vì phần ứng nên được tự động cập nhật khi một phiên bản mới được phát hành.

Nếu bước nạp phần ứng bị bỏ qua trong khi cài đặt, thiết bị liên quan rất có thể không hoạt động với hệ thống đã cài đặt đến khi (gói) phần ứng được cài đặt một cách thủ công.

<table>
<thead>
<tr>
<th>GHI CHÚ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nếu phần ứng đã được nạp từ các tập tin phần ứng riêng, phần ứng được sao chép vào hệ thống đã cài đặt sẽ không phải được tự động cập nhật nếu gói phần ứng tương ứng (nếu sẵn sàng) không được cài đặt một khi cài đặt xong.</td>
</tr>
</tbody>
</table>
Chapter 7

Khởi động vào hệ thống Debian mới

7.1 Giờ phút thử thách

Việc khởi động một mình ban đầu của hệ thống là trường hợp do kỹ sư điện tử gọi "thử thách khói".

Nếu hệ thống không khởi động được, hãy bình tĩnh. Đa chạy thành công tiến trình cài đặt thì rất có thể là chỉ gặp một lỗi tương đối nhỏ mà ngăn cản hệ thống khởi động Debian. Trong phần lớn các trường hợp, vấn đề này có thể được sửa chữa mà không cần chạy lại tiến trình cài đặt. Một lựa chọn sẵn sàng để sửa chữa vấn đề khởi động là sử dụng chế độ cứu có sẵn của trình cài đặt (xem Phần 8.6).

Nếu bạn bắt đầu sử dụng Debian và Linux, thì có thể yêu cầu sự giúp đỡ của những người dùng có kinh nghiệm nhiều hơn. Đối với kiến trúc ít thường gặp hơn như 64-bit ARM, khuyên bạn hỏi câu trong hộp thư chung debian-arm. Bạn cũng có thể gửi một thông báo cáo lỗi đến đề trong Phần 5.4.5. Xin hãy kiểm tra lại bạn đã điện thoại ra gì và bao gồm thông báo nào được hiện thị, để giúp đỡ người khác chẩn đoán vấn đề. (Viết thông báo bảo hành tiếng Việt thì cũng bao gồm tiêu đề tiếng Anh: "THIS REPORT IS WRITTEN IN VIETNAMESE" [thông báo này được viết bằng Tiếng Việt]).

7.2 Gắn kết khối tin đã mật mã

Nếu bạn đã tạo khối tin đã mật mã trong tiến trình cài đặt, cũng đã gán chúng cho điểm lắp, bạn sẽ được nhắc nhập cụm từ mật khẩu dành cho mỗi khối trong khi khởi động.

Đối với phân vùng được mật mã thông qua dm-crypt, tiến trình khởi động sẽ hiển thị dấu nhắc này:

```
Starting early crypto disks... phân_crypt(starting)
Enter LUKS passphrase:
```

(dạng khởi động các đĩa mật mã sớm... mật mã [phần]) (dạng khởi động) Nhập cụm từ mật khẩu LUKS:) Trên dòng đầu tiên của đoạn này, phần là tên phân vùng có số, v.d. « sda2 » hoặc « md0 »). Rất có thể là bạn tự chọn phân vùng /home của bạn? Hoặc để phân vùng /var? Tất nhiên, nếu bạn có chỉ một khối tin được mật mã, đơn giản hãy nhập cụm từ mật khấu đã dùng khi thiết lập khối tin đó. Còn nếu bạn đã thiết lập nhiều khối tin đã mật mã trong khi cài đặt, bạn cũng đã ghi nhớ thông tin trong bước cuối cùng của Phần 6.3.4.6 sẽ có ích. Nếu bạn chưa thử sự ảnh hưởng với phần_crypt và những điểm lắp, bạn vẫn có thể tìm nó trong tập tin /etc/crypttab và /etc/fstab của hệ thống mới.

Đầu khác có thể có hình khác khi hệ thống tập tin gốc đã mất mà được gắn kết. Hình này phụ thuộc vào bộ tạo ra initramfs nào được dùng để tạo ra initrd được dùng lần lượt để khởi động hệ thống đó. Mẫu bên dưới thuộc về initrd được tạo ra bằng initramfs-tools:

```
Begin: Mounting root file system... ...
Begin: Running /scripts/local-top ...
Enter LUKS passphrase:
[Bắt đầu : Đang gắn kết hệ thống tập tin gốc ... ...]
[Bắt đầu : Đang chạy /tap_lênh/local-top ...
Nhập cụm từ mật khấu LUKS:]
```

Không có ký tự nào (ngay cả dấu sao) sẽ được hiển thị trong khi nhập cụm từ mật khấu. Nếu bạn nhập sai, bạn có hai lần thử lại để sửa nó. Sau lần thử thứ ba, tiến trình khởi động sẽ bỏ qua khối tin này, tiếp tục lại gắn kết hệ thống tập tin tới. Xem Phần 7.2.1 để tìm thông tin thêm.

Sau khi nhập tất cả các cụm từ mật khấu, tiến trình khởi động nên tiếp tục như bình thường.
7.2.1 Giải đáp thắc mắc

Nếu tiến trình khởi động không thể gắn kết khối tin đã mật mã này, vì cụm từ mật khẩu bị nhập sai, bạn sẽ cần phải tự gắn kết mỗi khối tin như vậy sau khi khởi động. Có vài trường hợp có thể:

- Trường hợp thứ nhất liên quan đến phân vùng gốc. Khi nó không được gắn kết đúng, tiến trình khởi động sẽ tạm dừng lại nên bạn cần phải khởi động lại máy tính để thử lại.

- The easiest case is for encrypted volumes holding data like /home or /srv. You can simply mount them manually after the boot.

Đối với dm-crypt, trường hợp là phức tạp hơn một ít. Trước tiên, bạn cần phải đăng ký những khối tin với ứng dụng device mapper bằng cách chạy:

```
# /etc/init.d/cryptdisks start
```

(dường dẫn; bắt đầu) Tiến trình này sẽ quét mọi khối tin được liệt kê trong tập tin /etc/crypttab, và sẽ tạo những thiết bị thích hợp dưới thư mục /dev sau khi nhập những cụm từ mật khẩu đúng. (Khối tin đã được đăng ký sẽ bị bỏ qua, vì vậy bạn có thể chạy lệnh này vài lần, không có sao.) Sau khi đăng ký được, bạn có khả năng đơn giản gắn kết những khối tin bằng cách bình thường.

```
# mount /dev_mập
```

- If any volume holding noncritical system files could not be mounted (/usr or /var), the system should still boot and you should be able to mount the volumes manually like in the previous case. However, you will also need to (re)start any services usually running in your default runlevel because it is very likely that they were not started. The easiest way is to just reboot the computer.

7.3 Đăng nhập

Một khi hệ thống khởi động được, bạn sẽ thấy dấu nhắc đăng nhập. Hãy đăng nhập, dùng tên đăng nhập cá nhân và mật khẩu bạn đã chọn trong tiến trình cài đặt. Hệ thống của bạn lúc bây giờ sẵn sàng sử dụng.

Nếu bạn là người mới dùng Debian, khuyên bạn đọc tài liệu hướng dẫn có sẵn liên quan đến mỗi bước mới. Hiện thời có vài hệ thống tài liệu, cũng có tiến trình cố gắng hợp nhất những kiểu tài liệu khác nhau. Đây là một số điểm bắt đầu đọc.

Tài liệu hướng dẫn có sẵn với chương trình được cài đặt thì nằm trong /usr/share/doc/, dưới một thư mục đặt tên theo gói Debian chứa chương trình đó. Tuy nhiên, tài liệu hướng dẫn rộng rãi thường được đóng gói một cách riêng trong gói tài liệu đặc biệt bình thường không phải được cài đặt theo mặc định. Chẳng hạn, tài liệu hướng dẫn về công cụ quản lý gói apt nằm trong hai gói apt-doc và apt-howto.

Có thể xem dễ dàng các tài liệu này bằng trình duyệt đa văn bản, bằng cách nhập những lệnh này:

```bash
$ cd /usr/share/doc/
$ w3m .
```

Đầu tiên là sau lệnh w3m thì báo nó hiển thị nội dung của thư mục hiện có.

Nếu máy tính có môi trường đồ họa được cài đặt, bạn cũng có khả năng sử dụng trình duyệt Web để xem tài liệu. Hãy khởi chạy trình duyệt Web từ trình đơn ứng dụng, rồi gõ địa chỉ /usr/share/doc/ vào thanh địa chỉ.

Bạn cũng có thể gõ info lệnh hay man lệnh để xem tài liệu hướng dẫn về phần lớn lệnh sẵn sàng ở đầu nhắc lệnh. Việc gõ lệnh help (trợ giúp) sẽ hiển thị trợ giúp về các lệnh trình bao. Hơn nữa, việc gõ lệnh nào với --help theo sau sẽ sử dụng hiển thị bản tóm tắt ngắn về cách sử dụng lệnh đó. Nếu kết quả của lệnh cuốn qua cần trên của màn hình, hãy gõ 1 more sau lệnh đó để đong chương trình more để gây ra kết quả tạm dừng trước khi cuốn qua cần trên của màn hình. Để xem danh sách các lệnh sẵn sàng bắt đầu với một chữ nào đó, hãy gõ chủ do rồi hai dấu cách kiểu Tab.
Chapter 8

Bước kế tiếp và đi đâu vậy

8.1 Tắt hệ thống

Để tắt hệ thống Debian GNU/Linux đang chạy, bạn không nên khởi động lại bằng nút đặt lại trên mặt hoặc vè sau máy tính, hoặc đón giản tắt điện. Hệ thống Debian GNU/Linux nên được tắt bằng cách được điều khiển, không thì tập tin có thể bị mất và/hoặc đa bị hỏng. Nếu bạn chạy môi trường ở trên (v.đ. GNOME, KDE, Xfce), thường có tùy chọn “Đăng xuất” nằm trong trình đơn ứng dụng mà cho bạn có khả năng tắt (hoặc khởi động lại) hệ thống.

Alternatively you can press the key combination Ctrl-Alt-Del. If the key combinations do not work, a last option is to log in as root and type the necessary commands. Use reboot to reboot the system. Use halt to halt the system without powering it off¹. To power off the machine, use poweroff or shutdown -h now. The systemd init system provides additional commands that perform the same functions; for example systemctl reboot or systemctl poweroff.

8.2 Giới thiệu về Debian

Debian hơi khác với các bản phát hành khác. Thậm chí nếu bạn quen với Linux trong bản phát hành khác, có vài thông tin cần biết về Debian để giúp bảo quản một hệ thống tốt đẹp. Chương này chứa thông tin để giúp đỡ bạn bắt đầu dùng Debian; nó không phải là trợ lý hướng dẫn về cách sử dụng Debian, chỉ là một bản tóm tắt rất vắn cho người quá bận thôi.

8.2.1 Hệ thống quản lý gói Debian

Khái niệm quan trọng trong nhất cần hiểu được là hệ thống gói Debian. Về cơ bản thì nhiều phần lớn của hệ thống được điều khiển bởi hệ thống này. Những phần này bao gồm:

• /usr (trừ /usr/local)
• /var (bạn có thể tạo thư mục /var/local và hoạt động trong đó một cách an toàn)
• /bin
• /sbin
• /lib

Lấy thí dụ, nếu bạn thay thế thư mục /usr/bin/perl, lần kế tiếp nâng cấp gói perl sẽ ghi đè lên thư mục đó. Nhà chuyên môn có thể khắc phục trường hợp này bằng cách lập một số gói thành “giữ lại” trong chương trình aptitude.

One of the best installation methods is apt. You can use the command line version of apt as well as tools like aptitude or synaptic (which are just graphical frontends for apt). Note that apt will also let you merge main, contrib, and non-free so you can have restricted packages (strictly speaking not belonging to Debian) as well as packages from Debian GNU/Linux at the same time.

¹Under the SysV init system halt had the same effect as poweroff, but with systemd as init system (the default since jessie) their effects are different.
8.2.2 Phần mềm Thêm Hiện có cho Debian

Bản cài đặt Debian mặc định chưa cho phép những kho lưu phần mềm chính thức và không chính thức. Nhiều người tìm thấy trong những kho lưu này phần mềm quan trọng và họ muốn có. Có thể tìm thông tin về các kho lưu thêm này tại trang Wiki Debian tựa đề Phần mềm Hiện có cho Bản phát hành Ön định của Debian.

8.2.3 Quản lý phiên bản ứng dụng

Phiên bản ứng dụng khác nhau được quản lý bởi « update-alternatives ». Nếu bạn có bảo tồn đồng thời nhiều phiên bản khác nhau của cùng một ứng dụng, xem trang hướng dẫn cho chương trình này, bằng lệnh: « man update-alternatives ».

8.2.4 Quản lý công việc định kỳ

Công việc nào nằm trong phạm vi hoạt động của quản trị hệ thống nên được ghi vào thư mục /etc, vì chúng là tập tin cấu hình. Nếu bạn tạo công việc định kỳ (cron) với quyền người chủ (root) cần chạy hàng ngày (daily), hàng tuần (weekly) hay hàng tháng (monthly), hãy chèn chúng vào /etc/cron.*. Những công việc này được gõ từ /etc/crontab: chúng sẽ chạy theo thứ tự abc, mà sắp xếp chúng.

Một khác, nếu bạn tạo một công việc định kỳ (cron job):

• cần chạy với tư cách người dùng đặc biệt, hay
• cần chạy vào lúc đặc biệt hoặc với tần số đặc biệt,

bạn vẫn có khả năng sử dụng hoặc /etc/crontab, hoặc còn tốt hơn, /etc/cron.d/cái_nào. Những tập tin riêng này cũng có một trích trích thể cho phép bạn định tài khoản người dùng dưới đó cung cấp việc định kỳ sẽ chạy.

Trong một trường hợp, bạn chỉ hiểu biết về việc cập nhật tin đồ, rồi chương trình cron sẽ nhận biết chúng một cách tự động. Không cần chạy lệnh đặc biệt nào. Để tìm thông tin thêm, xem hai trang hướng dẫn cron(8) và crontab(5), và tập tin Đọc Đi /usr/share/doc/cron/README.Debian.

8.3 Thông tin thêm

Để tìm thông tin về chương trình riêng nào, trước tiên bạn hãy thử nhập lệnh man tên_chương_trình, hoặc info tên_chương_trình.

Học Linux là một trong các tài liệu Thế Nào và liên kết chỉ đến thông tin rất giá trị khác về nhiều phần của hệ thống GNU/Linux.

Linux is an implementation of Unix. The Linux Documentation Project (LDP) collects a number of HOWTOs and online books relating to Linux.

If you are new to Unix, you probably should go out and buy some books and do some reading. This list of Unix FAQs contains a number of UseNet documents which provide a nice historical reference.

8.4 Thiết lập thư điện tử trên hệ thống

Thư điện tử đã trở thành chủ yếu trong đời sống hiện đại. Có nhiều tùy chọn thiết lập nó, và một số tiện ích Debian yêu cầu một thiết lập riêng, thì tiên đoán này chắc chắn thông tin có bạn yêu cầu.

Có ba chức năng chính cấu tạo một hệ thống thư điện tử. Điều thứ nhất là Tác nhân người dùng thư tín (MUA), chương trình người dùng thực sự dùng để viết và đọc các bài thư. Điều thứ hai là Tác nhân truyền thư tín (MTA) mà truyền các bài thư từ máy này sang máy khác. Điều thứ ba là Tác nhân phát thư tín (MDA) mà truyền các bài thư gửi đến vào Họp Đón của người dùng.
8.4. THIẾT LẬP THƯ ĐIỆN TỬ TRÊN HỆ THỐNG

Ba chức năng này có thể được thực hiện bằng chương trình khác nhau, nhưng cũng có thể được kết hợp trong một hay hai chương trình. Cùng có thể thiết lập chương trình khác nhau quản lý những chức năng này cho các kiểu thư khác nhau.

Trên hệ thống kiểu Linux và Unix, rất nhiều người đã dùng *mutt* như là MUA. Giống như phần lớn chương trình Linux truyền thống, nó dựa vào văn bản. Nó thường được dùng cùng với *exim* hay *sendmail* như là MTA và *procmail* như là MDA.

With the increasing popularity of graphical desktop systems, the use of graphical e-mail programs like GNOME’s *evolution*, KDE's *kmail* or Mozilla’s *thunderbird* has become more popular. These programs combine the function of a MUA, MTA and MDA, but can — and often are — also be used in combination with the traditional Linux tools.

8.4.1 Cấu hình thư điện tử mặc định

Even if you are planning to use a graphical mail program, it would be useful, to have a traditional MTA/MDA installed and correctly set up on your Debian GNU/Linux system. Reason is that various utilities running on the system² can send important notices by e-mail to inform the system administrator of (potential) problems or changes.

For this you can install *exim4* and *mutt* with `apt install exim4 mutt`. *exim4* is a combination MTA/MDA that is relatively small but very flexible. By default it will be configured to only handle e-mail local to the system itself and e-mails addressed to the system administrator (root account) will be delivered to the regular user account created during the installation³.

Khi các thư hệ thống được phát, chúng được thêm vào một tập tin trong `/var/mail/tên_tài_khoản`. Có thể đọc các thư này bằng *mutt*.

8.4.2 Gửi thư ra hệ thống

Nuur nói trên, hệ thống Debian đã cài đặt chỉ chi được thiết lập để thao tác các thư cục bộ với hệ thống, không phải để gửi thư cho người khác, cũng không phải để nhận thư từ người khác.

Nếu bạn muốn chương trình *exim4* quản lý các thư đến người, xem phần phụ tiếp tìm những tùy chọn cấu hình có bên cạnh. Hãy thử ra vai cách gửi và nhận thư chay đúng không.

Nếu bạn định sử dụng chương trình thư điện tử kiểu đa điều khiển máy phục vụ thư tín của nhà cung cấp dịch vụ Mang (ISP) hay chổ khác, không cần cấu hình *exim4* để quản lý các thư đến người. Chỉ cần cấu hình chương trình thư đến người để sử dụng những máy phục vụ đúng để gửi và nhận thư điện tử (các hướng dẫn này nằm ở ngoài phạm vi của sách này).

Tuy nhiên, trong trường hợp đó, bạn có thể cần phải cấu hình một số tổ chức để gửi đúng thư điện tử. Một tiền richt ưa yêu là *reportbug*, một chương trình làm cho dễ dàng thông báo lỗi trong gói Debian. Mặc định là nó chỉ gửi lỗi cho tài khoản của bạn.

Để thiết lập đúng *reportbug* để sử dụng máy phục vụ thư tín bên ngoài, hãy chở lệnh cấu hình *reportbug -- configure* và trả lời “không” khi hỏi nếu có sẵn MTA không. Sau đó, bạn sẽ được nhắc nhập máy phục vụ SMTP (gửi thư) cần dùng để trình báo cáo lỗi.

8.4.3 Cấu hình tác nhân truyền thư tín Exim4

Muốn hệ thống cũng thao tác các thư điện tử bên ngoài thì cần phải cấu hình lại gói *exim4*⁴:

```bash
# dpkg-reconfigure exim4-config
```

Sau khi nhập lệnh này (dưới người chủ), tiến trình sẽ hỏi nếu bạn muốn chia cấu hình ra nhiều tập tin nhỏ. Chưa chắc thì bặt tùy chọn mặc định.

Tiếp theo hiển thị vài trường hợp thư tín thường gặp. Hãy chọn điều thích hợp với những nhu cầu của bạn.

nơi Internet Hệ thống của bạn có kết nối đến mạng, và thư tín được gửi và nhận trực tiếp bằng SMTP. Trên những mần hình theo sau, bạn sẽ được hỏi về cấu trúc cơ bản, như tên thư tín của máy tính này, hay danh sách miền cho chúng bạn chấp nhận hay chuyển tiếp lại thư tín.

thư được gửi bởi máy thông minh Trong trường hợp này, các thư gửi đi được chuyển tiếp tới máy khác, tên “máy kéo”, mà gửi thư đó cho đích. Máy kéo cũng thường cấu cấu các thư gửi đến máy tính của bạn, vậy bạn không cần lên mạng suốt. Cũng cần tài các thư xuống máy kéo bằng cách truyền như *fetchmail*.

²Examples are: *cron, quota, logcheck, aide, ...*

³The forwarding of mail for root to the regular user account is configured in `/etc/aliases`. If no regular user account was created, the mail will of course be delivered to the root account itself.

⁴Cũng có thể gỡ bỏ gói *exim4* và thay thế bằng MTA/MDA khác.
Trong nhiều trường hợp, máy khéo là máy phục vụ thư tín của nhà cung cấp dịch vụ Mạng (ISP) thì tùy chọn này rất thích hợp với người dùng quay số. Máy khéo cũng có thể là máy phục vụ thư tín ở chỗ làm, hoặc ngày càng trở thành công cụ trên cùng mạng.

thủ gửi boil máy khác; không có thủ cụ thể Ở trường hợp này có sẵn bằng điều trước, trừ hệ thống sẽ không được thiết lập để thao tác thư cho miền thư điện tử từcząc bộ. Các thư trên hệ thống chính nó (v.d. cho quản trị hệ thống) vẫn còn sẽ được xử lý.

chi phát cụ thể Ở đây là tùy chọn mặc định trong cấu hình hệ thống.

chưa cấu hình Hãy chọn điều này chỉ nếu bạn biết chính xác bạn làm gì. Nó sẽ để lại hệ thống thư chưa cấu hình: trước khi bạn cấu hình nó, bạn không có khả năng gửi hay nhận thư nào, thì có thể mất một số thông điệp quan trọng từ tiện ích hệ thống.

Nếu không có trường hợp trong những trường hợp này là thích hợp với những nhu cầu của bạn, hoặc nếu bạn cần một thiết lập chi tiết hơn, cần phải chỉnh sửa tập tin cấu hình nằm dưới thư mục /etc/exim4 sau khi cài đặt xong. Thông tin thêm về exim4 nằm dưới thư mục /usr/share/doc/exim4; tập tin Đọc Đi README.Debian.gz chứa chi tiết thêm về cách thiết lập exim4, và giải thích tìm tài liệu thêm như thế nào.

Ghi chú rằng việc gửi thư trực tiếp cho Mạng khi bạn không có tên miền chính thức có thể gây ra thư bị từ chối do biện pháp chống thư rác trên máy phục vụ nhận thư. Tốt hơn khi dùng máy phục vụ thư tín của nhà cung cấp dịch vụ Mạng (ISP). Nếu bạn vẫn gửi thư một cách trực tiếp, có thể bạn muốn sử dụng một địa chỉ thư điện tử khác với điều được tạo ra theo mặc định. Dùng exim4 như là MTA, thì có thể làm như thế bằng cách thêm một mục nhập vào tập tin /etc/email-addresses.

8.5 Biên dịch hạt nhân mới

Why would someone want to compile a new kernel? It is most probably not necessary since the default kernel shipped with Debian handles almost all configurations.

If you want to compile your own kernel nevertheless, this is of course possible and we recommend the use of the “make deb-pkg” target. For more information read the Debian Linux Kernel Handbook.

8.6 Phục hồi hệ thống bị hỏng

Thỉnh thoảng gặp lỗi nên hệ thống được cài đặt cẩn thận không còn khởi động lại. Có lẽ cấu hình bộ nap khối hỏng lực trong khi thử ra sự cố do, hoặc có lệ một hạt nhân mới cài đặt sẽ không khởi động được, hoặc gi do rà ra đây xảy ra, bạn chưa biết sao. Trong mọi trường hợp đều, bạn cần có hệ thống hoạt động trong khi sửa điều bị hỏng thì chế độ cứu có ích.

To access rescue mode, select rescue from the boot menu, type rescue at the boot: prompt, or boot with the rescue/enable=true boot parameter. You’ll be shown the first few screens of the installer, with a note in the corner of the display to indicate that this is rescue mode, not a full installation. Don’t worry, your system is not about to be overwritten! Rescue mode simply takes advantage of the hardware detection facilities available in the installer to ensure that your disks, network devices, and so on are available to you while repairing your system.

Thay cho công cụ phân vùng, màn hình khởi động nêu hiện thị danh sách các phân vùng nằm trong hệ thống, yêu cầu bạn chọn một điều. Binh thường, bạn nên chọn phân vùng chứa hệ thống tập tin gốc mà bạn cần phải sửa chữa. Bạn có khả năng chọn phân vùng nằm trên thiết bị kiểu RAID và LVM cũng như điều được tạo trực tiếp trên disk.

Nếu có thể, trình cài đặt lúc bây giờ hiện thị một danh sách các trình bảo trong hệ thống tập tin đã chọn, cho bạn thực hiện việc sửa chữa nay yêu cầu.

Nếu trình cài đặt không thể chạy trình bảo có ích trong hệ thống tập tin gốc đã chọn, có lẽ vì hệ thống tập tin bị hỏng, nó sẽ hiện thị cảnh báo và đưa ra trình bảo trong môi trường cài đặt thay thế. Môi trường này có thể cung cấp số công cụ ít hơn, mà thường vẫn còn là đủ để sửa chữa hệ thống. Hệ thống tập tin gốc mới chọn sẽ được gắn kết vào thư mục /target.

Trong mọi trường hợp, sau khi bạn thoát khỏi trình bảo, hệ thống sẽ khởi động lại.

Cuối cùng, ghi chú rằng trình tin sửa chữa hệ thống bị hỏng có thể là khó : tài liệu hướng dẫn này không phải nhằm đến mọi lối có thể hay cách sửa nó. Nếu bạn gặp lối, hãy hỏi nhà chuyên môn.
Appendix A

Cài đặt Thế nào

Tài liệu này diễn tả cách cài đặt Debian GNU/Linux bullseye dành cho 64-bit ARM (kiến trúc “arm64”) bằng debian-installer mới. Nó là sự giải thích nhanh của tiến trình cài đặt mà nên chưa từng cài đặt trong phần lớn trường hợp. Khí thông tin thêm có thể là hữu ích, chúng tôi sẽ liên kết đến sự giải thích chi tiết hơn trong phần tài liệu khác.

A.1 Chuẩn bị

Nếu bạn gặp lỗi trong khi cài đặt, xem Phần 5.4.5 để tìm thông tin về cách thông báo lỗi. Nếu bạn cần biết gì không nằm trong phạm vi của tài liệu này, xin hãy hỏi câu hoặc trong hộp thư chung « debian-boot » (debian-boot@lists.debian.org) hoặc trên IRC (kênh #debian-boot trên mạng OFTC).

A.2 Khởi động trình cài đặt

The debian-cd team provides builds of installation images using debian-installer on the Debian CD/DVD page. For more information on where to get installation images, see Phần 4.1.

Some installation methods require other images than those for optical media. Phần 4.2.1 explains how to find images on Debian mirrors.

Những tiết đoạn phụ dưới đây cung cấp chi tiết về ảnh nào bạn nên lấy để thực hiện mỗi phương pháp cài đặt.

A.2.1 Optical disc

The netinst CD image is a popular image which can be used to install bullseye with the debian-installer. This installation method is intended to boot from the image and install additional packages over a network; hence the name “netinst”. The image has the software components needed to run the installer and the base packages to provide a minimal bullseye system. If you’d rather, you can get a full size CD/DVD image which will not need the network to install. You only need the first image of such set.

Download whichever type you prefer and burn it to an optical disc.

A.2.2 Thanh bộ nhớ USB

Cũng có thể cài đặt từ thiết bị lưu trữ USB rồi. Chẳng hạn, một dây khoá USB có thể làm vật chứa cài đặt Debian hữu ích mà bạn có thể mang đến khắp chốn.

The easiest way to prepare your USB memory stick is to download any Debian CD or DVD image that will fit on it, and write the image directly to the memory stick. Of course this will destroy anything already on the stick. This works because Debian CD/DVD images are “isohybrid” images that can boot both from optical and USB drives.

Có một số phương pháp khác, dễ hơn, để thiết lập thanh bộ nhớ đó dùng debian-installer, cũng có thể làm cho nó hoạt động được với thanh bộ nhớ nhỏ hơn. Đèm tìm chi tiết, xem Phần 4.3.

A.2.3 Khởi động từ mạng

A.24 Khởi động từ đĩa cứng

It's possible to boot the installer using no removable media, but just an existing hard disk, which can have a different OS on it. Download `hd-media/initrd.gz`, `hd-media/vmlinuz`, and a Debian CD/DVD image to the top-level directory of the hard disk. Make sure that the image has a filename ending in `.iso`. Now it's just a matter of booting Linux with the initrd.

A.3 Cài đặt

Một khi trình cài đặt khởi chạy, bạn sẽ xem màn hình đầu tiên. Hãy bấm Enter để khởi động, hoặc đọc các chỉ dẫn về những phương pháp khởi động và tham số khác (xem Phần 5.3).

Sau một thời gian, bạn sẽ được nhắc chọn ngôn ngữ của mình. Hãy sử dụng phím mũi tên để chọn ngôn ngữ, rồi bấm Enter để tiếp tục. Sau đó, bạn sẽ được nhắc chọn quốc gia, trong danh sách gồm quốc gia nói ngôn ngữ bạn. Nếu chọn không nằm trong danh sách, có sẵn một danh sách mọi quốc gia trên thế giới để chọn.

Có lẽ bạn sẽ được nhắc xác nhận bố trí bàn phím của mình. Hãy chọn bố trí bàn phím thích hợp, hoặc chọn mặc định nếu bạn chưa chắc.

Now sit back while Debian-installer detects some of your hardware, and loads the rest of the installation image.

Tiếp theo, trình cài đặt sẽ thử phát hiện phần cứng mạng của bạn, để thiết lập thao tác chạy mạng bằng DHCP. Nếu bạn không muốn sử dụng DHCP, bạn sẽ có đáp án cấu hình mạng.

Setting up the network is followed by the creation of user accounts. By default you are asked to provide a password for the “root” (administrator) account and information necessary to create one regular user account. If you do not specify a password for the “root” user, this account will be disabled but the `sudo` package will be installed later to enable administrative tasks to be carried out on the new system. By default, the first user created on the system will be allowed to use the `sudo` command to become root.

Bước tiếp theo là đặt đồng hồ và múi giờ. Tiến trình cài đặt sẽ thử liên lạc với một máy phức vụ thời gian trên Internet để đảm bảo đồng hồ được đặt đúng. Múi giờ dựa vào quốc gia được chọn ở bước trước thì tiến trình cài đặt sẽ chỉ nhắc bạn chọn thêm nếu quốc gia có nhiều múi giờ khác.

Đây là giai đoạn phân vùng đĩa. Trước tiên, bạn sẽ có cơ hội tự động phân vùng hoặc một đĩa hoàn toàn, hoặc sử dụng các công cụ phân vùng có sẵn trên một đĩa (xem Phần 6.3.4.2). Tùy chọn này được khuyên khích cho người dùng mới hoặc người có kiến thức hạn chế.

Trên màn hình kế tiếp, bạn sẽ xem bảng phân vùng, định dạng phân vùng dự định, và nơi sẽ gắn kết chúng. Hãy chọn một phân vùng để sửa đổi hoặc xoá. Người dùng đã tự động phân vùng thì nên chọn một phân vùng xong và ghi các thay đổi vào đĩa trong trình đơn. Ghi nhớ: cần phải chọn ít nhất một phân vùng dành cho chỗ trao đổi (swap space), cũng như một phân vùng để `/`. Để tìm thêm thông tin về sử dụng công cụ phân vùng như thế này, xem Phần 6.3.4: phụ lục Phụ lục C chứa thông tin cung hỗ trợ thao tác phân vùng.

Lúc này, debian-installer định dạng các phân vùng của bạn, rồi bắt đầu cài đặt hệ thống cơ bản, mà có thể hơi lâu. Sau đó, hệ thống cài đặt sẽ báo bạn biết hệ thống đã cài đặt xong, và bạn có thể khởi động lại máy tính.

Hệ thống cài đặt Debian đã tự động phân vùng, định dạng phân vùng dự định, và nôi sẽ gắn kết chúng. Hãy chọn phân vùng để sửa đổi hoặc xoá. Người dùng đã tự động phân vùng thì nên chọn một phân vùng xong và ghi các thay đổi vào đĩa trong trình đơn. Ghi nhớ: cần phải chọn ít nhất một phân vùng dành cho chỗ trao đổi (swap space), cũng như một phân vùng để `/`. Để tìm thêm thông tin về sử dụng công cụ phân vùng như thế này, xem Phần 6.3.4: phụ lục Phụ lục C chứa thông tin cung hỗ trợ thao tác phân vùng.

A.4 Gởi báo cáo cài đặt cho chúng tôi

If you successfully managed an installation with debian-installer, please take time to provide us with a report. The simplest way to do so is to install the reportbug package (`apt install reportbug`), configure reportbug as explained in Phần 8.4.2, and run `reportbug installation-reports`.

If you have encountered problems during your installation, and want to report them, you can use the `reportbug` package to report errors or bugs. You can also install the `debbug` package, which provides an interactive tool for debugging.

The last step is to install a boot loader. If the installer detects other operating systems on your computer, it will add them to the boot menu and let you know.

debian-installer giờ sẽ báo bạn biết tiến trình cài đặt đã chạy xong. Hãy gỡ bỏ đĩa CD-ROM hay vật chứa khởi động khác, rồi bấm Enter để khởi động lại máy tính. Nó nên khởi động vào hệ thống mới cài đặt, và cho phép bạn đăng nhập. (Xem thêm phần Chương 7.)

Nếu bạn muốn tìm thêm thông tin về tiến trình cài đặt, xem Chương 6.
A.5 Vậy cuối cùng...

Chúng tôi hy vọng tiến trình cài đặt Debian chạy được cho bạn, cũng là bạn tìm thấy Debian là hữu hiệu. Đề nghị bạn đọc Chương 8.
Appendix B

Tự động hoá việc cài đặt bằng chèn sẵn

Phụ lục này giải thích phương pháp chèn sẵn thông tin trả lời các câu hỏi trong debian-installer để tự động hoá tiến trình cài đặt.

Những đoạn cấu hình được dùng trong phụ lục này cũng sẵn sàng dạng tập tin định cấu hình sẵn ví dụ tại https://www.debian.org/releases/bullseye/example-preseed.txt.

B.1 Giới thiệu

Khả năng chèn sẵn cung cấp phương pháp đặt trả lời những câu hỏi trong tiến trình cài đặt, không cần tự nhập mỗi trả lời trong khi cài đặt. Như thế thì có khả năng tự động hoá hoàn toàn phần lớn kiểu việc cài đặt, ngay cả cung cấp một số tính năng không sẵn sàng trong tiến trình cài đặt chuẩn.

Không cần chèn sẵn. Nếu bạn dùng một tập tin chèn sẵn còn rỗng, trình cài đặt sẽ ứng xử đúng như trong một tiến trình cài đặt thông thường bằng tay. Mỗi câu hỏi bạn chèn sẵn sẽ (nếu bạn đã đặt dữ liệu đúng) sửa đổi bản cài đặt bằng cách nào so với đường cơ sở đó.

B.1.1 Phương pháp chèn sẵn

Có ba phương pháp có thể dùng để chèn sẵn: initrd, tập tin và mạng. Tiến trình chèn sẵn initrd sẽ hoạt động được với bất cứ phương pháp cài đặt nào, cũng hỗ trợ khả năng chèn sẵn số thứ thêm, còn cần thiết bạn chuẩn bị nhiều nhất.

Tiến trình chèn sẵn kiểu tập tin và mạng có thể được dùng với phương pháp cài đặt khác nhau.

Theo đây có bảng hiển thị phương pháp chèn sẵn nào nào được dùng với phương pháp cài đặt nào.

<table>
<thead>
<tr>
<th>Phương pháp cài đặt</th>
<th>initrd</th>
<th>tập tin</th>
<th>mạng</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD/DVD/USB</td>
<td>có</td>
<td>có</td>
<td>có¹</td>
</tr>
<tr>
<td>khởi động qua mạng</td>
<td>có</td>
<td>không</td>
<td>có</td>
</tr>
<tr>
<td>kiểu đĩa cứng (gồm thanh USB)</td>
<td>có</td>
<td>có</td>
<td>có¹</td>
</tr>
</tbody>
</table>

¹nhưng chỉ nếu bạn có khả năng truy cập mạng, và đặt giá trị preseed/url thích hợp

An important difference between the preseeding methods is the point at which the preconfiguration file is loaded and processed. For initrd preseeding this is right at the start of the installation, before the first question is even asked. Preseeding from the kernel command line happens just after. It is thus possible to override configuration set in the initrd by editing the kernel command line (either in the bootloader configuration or manually at boot time for bootloaders that allow it). For file preseeding this is after the installation image has been loaded. For network preseeding it is only after the network has been configured.
B.2. Dùng khả năng chèn sẵn

You will first need to create a preconfiguration file and place it in the location from where you want to use it. Creating the preconfiguration file is covered later in this appendix. Putting it in the correct location is fairly straightforward for network preseeding or if you want to read the file off a USB stick. If you want to include the file in an installation ISO image, you will have to remaster the image. How to get the preconfiguration file included in the initrd is outside the scope of this document; please consult the developers’ documentation for debian-installer.

B.1.2 Hạn chế

Mặc dù phương pháp này có khả năng chèn sẵn phần lớn câu hỏi được debian-installer dùng, có một số ngoại lệ quan trọng. Bạn cần phải phân vùng (lại) toàn bộ đĩa hoặc sử dụng sức chứa còn cánh trên đĩa; không thể sử dụng phân vùng đã có.

Boot parameters to specify:
- if you're netbooting:
 preseed/url=http://host/path/to/preseed.cfg
 preseed/url=ftp://host/path/to/preseed.cfg
 preseed/url=tftp://host/path/to/preseed.cfg
 preseed/url=ftp://host/path/to/preseed.cfg
- if you're booting a remastered installation image:
 preseed/file=/cdrom/preseed.cfg

In order to easily avoid the questions that would normally appear before the preseeding occurs, you can start the installer in “auto” mode. This delays questions that would normally be asked too early for preseeding (i.e. language, country and keyboard selection) until after the network comes up, thus allowing them to be preseeded. It also runs the installation at critical priority, which avoids many unimportant questions. See Phần B.2.3 for details.

B.2 Dùng khả năng chèn sẵn

You will first need to create a preconfiguration file and place it in the location from where you want to use it. Creating the preconfiguration file is covered later in this appendix. Putting it in the correct location is fairly straightforward for network preseeding or if you want to read the file off a USB stick. If you want to include the file in an installation ISO image, you will have to remaster the image. How to get the preconfiguration file included in the initrd is outside the scope of this document; please consult the developers’ documentation for debian-installer.

B.2. Dùng khả năng chèn sẵn

B.2.1 Dùng tham số khởi động để chèn sẵn câu hỏi

Nếu tập tin cấu hình sẵn không thể được dùng để chèn sẵn một số bước riêng, tiến trình cài đặt vẫn còn có thể được tự động hoá hoàn toàn, vì bạn còn có khả năng gửi các giá trị chèn sẵn cho hạt nhân trên dòng lệnh khi khởi động trình cài đặt.

Các tham số khởi động cũng có thể được dùng nếu bạn không muốn sử dụng khả năng chèn sẵn, nhưng chỉ muốn cung cấp trả lời cho một câu hỏi riêng. Một số mẫu có thể về từ trường hợp này nằm trong phần khác của tài liệu này.

Để đặt một giá trị cần sử dụng bên trong debian-installer, chỉ cần gửi `preseed/url` cho bất cứ biến chèn sẵn nào đó tạo ra liên kết với config dựa trên cấu hình hạt nhân.

B.2.2 Dùng tham số khởi động để chèn sẵn câu hỏi

Nếu tập tin cấu hình sẵn không thể được dùng để chèn sẵn một số bước riêng, tiến trình cài đặt vẫn còn có thể được tự động hoá hoàn toàn, vì bạn còn có khả năng gửi các giá trị chèn sẵn cho hạt nhân trên dòng lệnh khi khởi động trình cài đặt.

Các tham số khởi động cũng có thể được dùng nếu bạn không muốn sử dụng khả năng chèn sẵn, nhưng chỉ muốn cung cấp trả lời cho một câu hỏi riêng. Một số mẫu có thể về từ trường hợp này nằm trong phần khác của tài liệu này.

Để đặt một giá trị cần sử dụng bên trong debian-installer, chỉ cần gửi `preseed/url` cho bất cứ biến chèn sẵn nào đó tạo ra liên kết với config dựa trên cấu hình hạt nhân.

GHI CHÚ

Các hạt nhân Linux hiện thời (2.6.9 và sau) chấp nhận số tối đa là 32 tùy chọn dòng lệnh và 32 biến môi trường, gồm bất cứ tùy chọn nào được thêm theo mặc định cho bộ cài đặt. Vượt quá số này thì hạt nhân không thể phục hồi (sụp đổ). (Đối với hạt nhân median thì số tới là 16.)

Đối với phần lớn tiến trình cài đặt, một số tùy chọn mặc định nằm trong tập tin cấu hình của bộ nap khởi động, v.d. `vga=normal`, có thể được gọi an toàn, mà có thể cho bạn có khả năng thêm tùy chọn nữa để chèn sẵn.

GHI CHÚ

Có khi không phải luôn luôn có khả năng xác định giá trị chèn sẵn từ cách thuần chèn sẵn, thậm chí nếu bạn định cài đặt một số khía cạnh cụ thể, mà cần phải sử dụng cấu hình hạt nhân để thiết lập.

2 Cái sở hữu giá trị (hay mẫu) kiểu debconf bình thường là tên của gói chứa mẫu debconf tương ứng. Đối với những biến được dùng trong tiến trình cài đặt chính nó, cái sở hữu là “d-i”. Mỗi mẫu và biến vẫn còn có khả năng thuộc về nhiều cái sở hữu, mà giúp để quyết định nếu nó có thể được gọi bởi các sự điều debconf nữa rồi do bởi máy.
B.2.3 Chế độ tự động

There are several features of Debian Installer that combine to allow fairly simple command lines at the boot prompt to result in arbitrarily complex customized automatic installs.

This is enabled by using the Automated install boot choice, also called auto for some architectures or boot methods. In this section, auto is thus not a parameter, it means selecting that boot choice, and appending the following boot parameters on the boot prompt.

Để làm rõ ý, ở đây có một số mẫu thứ tự đó có thể được dùng ở đâu khác khởi động:

```plaintext
auto url=autoserver
```


Nếu không có hạ tầng cơ sở cục bộ kiểu DHCP hay DNS, hoặc nếu ban không muốn sử dụng đường dẫn mặc định d-i/bullseye/./preseed.cfg, bạn vẫn có khả năng sử dụng một địa chỉ mà ban không từng được dùng cho chèn sẵn vì mình có thể được điều khiển sang vị trí khác. Các bản mẫu ở đây có thể dùng như:

```plaintext
auto url=http://192.168.1.2/
```

Nó hoạt động như thế:

- địa chỉ Mạng thiếu giao thức thì http được giả sử,
- phần tên máy không chứa dấu chấm thì miền bắt nguồn từ DHCP được phụ thêm, và
- không có dấu xuyệt / nằm sau tên miền thì đường dẫn mặc định được thêm.

Thêm vào việc xác định địa chỉ mà ban, bạn cũng có khả năng xác định thiết lập không có tác động trực tiếp ứng xử của debian-installer chính nó, nhưng vẫn có thể được gửi cho bạn nền nào được ghi rõ bằng preseed/run trong tập tin chèn sẵn dà nap. Hiện tại, mẫu duy nhất của trường hợp này là auto-install/classes, mà có biệt hiệu là classes. Dùng được như thế:

```plaintext
auto url=mẫu.com classes=hang_A;hang_B
```

Những hạng này có thể, chẳng hạn, ngụ ý kiến hiệu thống cài đặt hay bán bản hóa cài đặt.

Tất nhiên có thể kế đại khái niềm này, có thể bằng cách dùng miền tên auto-install nên dùng mẫu như auto-install/style để dùng trong văn len. Nếu ban muốn làm việc như thế, hãy gợi ý thư cho nhóm thư chung khởi động Debian debian-boot@lists.debian.org, để chúng ta tránh sự xung đột giữa các tên miền, và có thể thêm biệt hiệu cho tham số đó để giúp đỡ bạn.

The auto boot choice is not yet defined on all arches. The same effect may be achieved by simply adding the two parameters auto=true priority=critical to the kernel command line. The auto kernel parameter is an alias for auto-install/enable and setting it to true delays the locale and keyboard questions until after there has been a chance to preseed them, while priority is an alias for debconf/priority and setting it to critical stops any questions with a lower priority from being asked.

Tuy chọn thêm có thể có ích khi có恭敬 tự động hoá việc chèn đặt chạy với dịch vụ DHCP là: interface=auto netcfg/dhcp_timeout=60 (giao diện tự động, thời hạn netcfg/dhcp là 60) mà làm cho máy chọnNIC thứ nhất sẵn sàng và đợi nhiều thời gian hơn để nhận trả lời cho truy vấn DHCP của nó.
Mẹn

Có một mẫu thi dự rất chi tiết về cách sử dụng khuôn khổ này, bao gồm các văn lệnh mẫu, ở địa chỉ Web của nhà phát triển. Các mẫu ở đó cũng minh họa nhiều hiệu ứng đẹp có thể được làm khi dùng chức năng chèn sẵn một cách sáng tạo.

B.2.4 Biệt hiệu có ích khi chèn sẵn

Những biệt danh theo đây cũng có thể hữu ích khi chèn sẵn (trong chế độ tự động). Ghi chú rằng đây chỉ là biệt danh ngắn mà đại diện tên câu hỏi, và bạn lúc nào cũng cần ghi rõ một giá trị: v.d. auto=true or interface=eth0.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>priority</td>
<td>debconf/priority</td>
</tr>
<tr>
<td>fb</td>
<td>debian-installer/framebuffer</td>
</tr>
<tr>
<td>language</td>
<td>debian-installer/language</td>
</tr>
<tr>
<td>country</td>
<td>debian-installer/country</td>
</tr>
<tr>
<td>locale</td>
<td>debian-installer/locale</td>
</tr>
<tr>
<td>theme</td>
<td>debian-installer/theme</td>
</tr>
<tr>
<td>auto</td>
<td>auto-install/enable</td>
</tr>
<tr>
<td>classes</td>
<td>auto-install/classes</td>
</tr>
<tr>
<td>tập tin</td>
<td>preseed/file</td>
</tr>
<tr>
<td>url</td>
<td>preseed/url</td>
</tr>
<tr>
<td>domain</td>
<td>netcfg/get_domain</td>
</tr>
<tr>
<td>hostname</td>
<td>netcfg/get_hostname</td>
</tr>
<tr>
<td>interface</td>
<td>netcfg/choose_interface</td>
</tr>
<tr>
<td>protocol</td>
<td>mirror/protocol</td>
</tr>
<tr>
<td>suite</td>
<td>mirror/suite</td>
</tr>
<tr>
<td>modules</td>
<td>anna/choose_modules</td>
</tr>
<tr>
<td>recommends</td>
<td>base-installer/install-recommends</td>
</tr>
<tr>
<td>tasks</td>
<td>tasksel/tasksel/first</td>
</tr>
<tr>
<td>môi trường làm việc</td>
<td>tasksel/tasksel/desktop</td>
</tr>
<tr>
<td>dmraid</td>
<td>disk-detect/dmraid/enable</td>
</tr>
<tr>
<td>keymap</td>
<td>keyboard-configuration/xkb-keymap</td>
</tr>
<tr>
<td>preseed-md5</td>
<td>preseed/file/checksum</td>
</tr>
</tbody>
</table>

B.2.5 Examples of boot prompt preseeding

Here are some examples of how the boot prompt might look like (you will need to adapt this to your needs).

To set French as language and France as country:
/install.amd/vmlinuz vga=788 initrd=/install.amd/gtk/initrd.gz language=fr ←
country=FR --- quiet

To set English as language and Germany as country, and use a German keyboard ←
layout:
/install.amd/vmlinuz vga=788 initrd=/install.amd/gtk/initrd.gz language=en ←
country=DE locale=en_US.UTF-8 keymap=de --- quiet

To install the MATE desktop:
/install.amd/vmlinuz vga=788 initrd=/install.amd/gtk/initrd.gz desktop=mate- ←
desktop --- quiet

To install the web-server task:
/install.amd/vmlinuz initrd=/install.amd/initrd.gz tasksel:tasksel/first=web= ←
server ---

B.2.6 Dùng máy phục vụ DHCP để xác định tập tin định cấu hình sẵn

Cũng có thể sử dụng dịch vụ DHCP để xác định tập tin cấu hình sẵn cần tải xuống mạng. Giao thức DHCP cho phép xác định tên tập tin. Bình thường, nó là một tập tin cần khởi động qua mạng, nhưng nếu nó có vẻ là một địa chỉ URL
APPENDIX B. TỰ ĐỘNG HOÁ VIỆC CÀI ĐẶT…

B.3 TẠO TẬP TIN ĐỊNH CẤU HÌNH SẴN

Tập tin cấu hình sẵn có dạng thức được dùng bởi lệnh `debconf-set-selections`. Dạng thức chung của dòng nào nằm trong tập tin cấu hình sẵn là:

```
<sở hữu> <tên câu hỏi> <kiểu câu hỏi> <giá trị>
```

The file should start with `#_preseed_V1`

Ghi nhớ vài quy tắc khi tạo tập tin cấu hình sẵn:

- Chèn chỉ một dấu cách riêng lẻ giữa « kiểu » và « giá trị »; dấu cách thêm nào sẽ được xử lý là phần của giá trị đó.

- Đối với biến cấu hình debconf (mẫu) nào chỉ được dùng trong trình cài đặt chính nó, nên đặt chủ sở hữu thành “d-i”; để chèn sẵn các biến được dùng trong hệ thống được cài đặt, nên dùng tên của gói chứa mẫu debconf tương ứng. Chỉ những biến có chủ sở hữu khác với “d-i” sẽ được chèn đến cơ sở dữ liệu debconf cho hệ thống được cài đặt.

- Phần lớn câu hỏi cần phải được chèn sẵn bằng giá trị tiếng Anh, không phải giá trị đã dịch. Tuy nhiên, có một số câu hỏi riêng (v.d. trong `partman`) trong đó cần phải dùng giá trị đã dịch.

- Một số câu hỏi riêng chấp nhận mã là giá trị, thay cho đoạn tiếng Anh được hiển thị trong khi cài đặt.

- Start with `#_preseed_V1`

Phương pháp dễ nhất để tạo tập tin cấu hình sẵn là dùng tập tin mẫu được liên kết trong Phần B.4 như là cơ bản, rồi thêm từ từ vào nó.

Một phương pháp xen kẽ là từ chạy trình cài đặt, rồi, sau khi khởi động lại, dùng chức năng `debconf-get-selections` của gói các tiện ích `debconf-utils` để do các cơ sở dữ liệu debconf lẫn cơ sở dữ liệu cdebconf của trình cài đặt đều vào cùng một tập tin:

```bash
$ echo "#_preseed_V1" > file
$ debconf-get-selections --installer >> file
$ debconf-get-selections >> file
```

Tuy nhiên, tập tin được tạo ra bằng cách này sẽ chứa một số mục riêng không nên được chèn sẵn; tập tin mẫu cũng là nơi bắt đầu thích hợp hơn với trường hợp của phần lớn người dùng.
GHI CHÚ

Phương pháp này nhờ trường hợp rằng, tại kết thúc của tiến trình cài đặt, cơ sở dữ liệu cdebconf của trình cài đặt được lưu vào hệ thống mới cài đặt trong thư mục /var/log/installer/cdebconf. Tuy nhiên, vì cơ sở dữ liệu đó có thể chứa thông tin nhạy cảm, theo mặc định các tập tin đó chỉ cho phép người chủ đọc thôi.

Thư mục /var/log/installer, cũng là mọi tập tin nằm trong nó sẽ bị xoá bỏ ra hệ thống của bạn nếu bạn tẩy gói thông báo cài đặt installation-report.

Để kiểm tra giá trị có thể cho câu hỏi, bạn có khả năng sử dụng trình hiệu chỉnh văn bản nano để xem lại các tập tin nằm trong thư mục /var/lib/cdebconf trong khi cài đặt. Xem tập tin templates.dat để tìm biểu mẫu, còn tập tin questions.dat để tìm những giá trị hiện thời và các giá trị được gán cho biến.

Trước khi cài đặt, để kiểm tra nếu tập tin cấu hình sẵn có dạng thức hợp lệ chưa, bạn có thể chạy lệnh debconf-set-selections -c preseed.cfg.

B.4 Nội dung của tập tin định cấu hình sẵn (cho bullseye)

Những đoạn cấu hình được dùng trong phụ lục này cũng sẵn sàng dạng tập tin định cấu hình sẵn với điều kiện tại https://www.debian.org/releases/bullseye/example-preseed.txt.

Ghi chú rằng mẫu này dựa vào tiến trình cài đặt vào kiến trúc kiểu x86 Intel. Nếu bạn đang cài đặt vào kiến trúc khác, một số phần mẫu (v.d. phần chọn bố trí bàn phím và phần cài đặt bộ nạp khởi động) có lẽ không phải là thích hợp, cũng sẽ cần phải được thay thế bằng lập debconf thích hợp với kiến trúc đó.

Có thể tìm thêm chi tiết về cách làm việc thực sự của các thành phần khác nhau của Trình Cài đặt Debian tại Phần 6.3.

B.4.1 Địa phương hoá

During a normal install the questions about localization are asked first, so these values can only be preseeded via the ini-trd or kernel boot parameter methods. Auto mode (Phần B.2.3) includes the setting of auto-install/enable=true (normally via the auto preseed alias). This delays the asking of the localisation questions, so that they can be preseeded by any method.

Miền địa phương (locale) có thể được dùng để xác định cả hai ngôn ngữ và quốc gia, và có thể là bất cứ tổ hợp nào một ngôn ngữ được debian-installer hỗ trợ và một quốc gia nhận ra. Nếu tổ hợp này không làm một miền địa phương hợp lệ thì trình cài đặt tự động chọn một miền địa phương vùng hợp lệ cho ngôn ngữ đã chọn. Để chỉ định miền địa phương được dùng một tham số khởi động, hãy dùng locale=vi.

Miền địa phương phải nằm rất dễ sử dụng, nó không cho phép chọn sẵn tất cả các tổ hợp các ngôn ngữ, quốc gia và miền địa phương³. Cũng có thể ghi rõ từng giá trị. Hoặc có thể ghi rõ ngôn ngữ và quốc gia dưới dạng tham số khởi động.

```bash
# Chì chèn sẵn miền địa phương, ngôn ngữ và quốc gia.
d-i debian-installer/locale string vi

# Chì chèn sẵn từng giá trị riêng, để uyên chuyển hơn.
#d-i debian-installer/language string vi
#d-i debian-installer/country string AU
#d-i debian-installer/locale string vi.UTF-8
# Tự chọn có thể ghi rõ thêm miền địa phương.
#d-i localechooser/supported-locales multiselect vi.UTF-8, en_US.UTF-8
```

Keyboard configuration consists of selecting a keymap and (for non-latin keymaps) a toggle key to switch between the non-latín keymap and the US keymap. Only basic keymap variants are available during installation. Advanced variants are available only in the installed system, through dpkg-reconfigure keyboard-configuration.

³Chèn sẵn locale thành en_NL, chẳng hạn, có kết quả là en_US.UTF-8 làm miền địa phương mặc định cho hệ thống được cài đặt. Nếu (v.d.) người dùng thực sự muốn sử dụng en_GB.UTF-8 thì phải chèn sẵn từng giá trị.
APPENDIX B. TỰ ĐỘNG HOÁ VIỆC CẢI ĐẶT… B.4. NỘI D Kumar CÁI ĐỊNH CÀI HÌNH…

Để bỏ qua bước cấu hình bàn phím, hãy chèn sẵn keymap bằng skip-config (bỏ qua cấu hình). Kết quả là bộ trí bàn phím của hạt nhân còn lại hoạt động.

B.4.2 Cấu hình mạng

Of course, preseeding the network configuration won’t work if you’re loading your preconfiguration file from the network. But it’s great when you’re booting from optical disc or USB stick. If you are loading preconfiguration files from the network, you can pass network config parameters by using kernel boot parameters.

Nếu bạn cần phải chọn một giao diện riêng khi khởi động qua mạng, trước khi tải tập tin cấu hình sẵn qua mạng, hãy nhập tham số khởi động như:

interface=eth1.

Mặc dù thường không thể chèn sẵn cấu hình mạng khi dùng khả năng chèn trước qua mạng (dùng địa chỉ Mạng “preseed/url”), bạn vẫn có thể cố gắng chọn một của việc khởi động qua mạng (dùng địa chỉ Mạng “preseed/url”), bạn vẫn có thể cố gắng chọn một giao diện mạng khác nhau trong quá trình khởi động. Đây là một trong những cách để cấu hình mạng chạy lại sau khi nap tập tin chèn sẵn, bằng cách tạo văn lệnh “preseed/run” chứa những câu lệnh này:

kill -all-dhcp; netcfg

Theo đây có những biến debconf thích hợp với cấu hình mạng.

Chọn bàn phím.
d-i keyboard-configuration/xkb-keymap select vn
d-i keyboard-configuration/toggle select No toggling

Disable network configuration entirely. This is useful for cdrom
installations on non-networked devices where the network questions,
warning and long timeouts are a nuisance.
#d-i netcfg/enable boolean false

netcfg will choose an interface that has link if possible. This makes it
skip displaying a list if there is more than one interface.
d-i netcfg/choose_interface select auto

To pick a particular interface instead:
#d-i netcfg/choose_interface select eth1

To set a different link detection timeout (default is 3 seconds).
Values are interpreted as seconds.
#d-i netcfg/link_wait_timeout string 10

If you have a slow dhcp server and the installer times out waiting for
it, this might be useful.
#d-i netcfg/dhcp_timeout string 60
#d-i netcfg/dhcpcv6_timeout string 60

If you prefer to configure the network manually, uncomment this line and
the static network configuration below.
#d-i netcfg/disable_autoconfig boolean true

If you want the preconfiguration file to work on systems both with and
without a dhcp server, uncomment these lines and the static network
configuration below.
#d-i netcfg/dhcp_failed note
#d-i netcfg/dhcp_options select Configure network manually

Static network configuration.
IPv4 example
#d-i netcfg/get_ipaddress string 192.168.1.42
#d-i netcfg/get_netmask string 255.255.255.0
#d-i netcfg/get_gateway string 192.168.1.1
#d-i netcfg/get_nameservers string 192.168.1.1
#d-i netcfg/confirm_static boolean true

69
IPv6 example
d-i netcfg/get_ipaddress string fc00::2
d-i netcfg/get_netmask string ffff:ffff:ffff:ffff::
d-i netcfg/get_gateway string fc00::1
d-i netcfg/get_nameservers string fc00::1
d-i netcfg/confirm_static boolean true

Any hostname and domain names assigned from dhcp take precedence over
values set here. However, setting the values still prevents the questions
from being shown, even if values come from dhcp.
d-i netcfg/get_hostname string unassigned-hostname
d-i netcfg/get_domain_string unassigned-domain

If you want to force a hostname, regardless of what either the DHCP
server returns or what the reverse DNS entry for the IP is, uncomment
and adjust the following line.
d-i netcfg/hostname string somehost

Disable that annoying WEP key dialog.
d-i netcfg/wireless_wep string
The wacky dhcp hostname that some ISPs use as a password of sorts.
d-i netcfg/dhcp_hostname string radish

If non-free firmware is needed for the network or other hardware, you can
configure the installer to always try to load it, without prompting. Or
change to false to disable asking.
d-i hw-detect/load_firmware boolean true

Ghi chú rằng netcfg sẽ tự động quyết định mặt nạ mạng nếu netcfg/get_netmask không phải được chọn sẵn. Trong trường hợp này, biển phù được dành cho là seen (được thấy) cho quá trình tự động cài đặt. Trường tự, netcfg sẽ chọn một địa chỉ thích hợp nếu không đặt netcfg/get_gateway. Như một trường hợp đặc biệt, bạn cũng có thể đặt netcfg/get_gateway thành “none” (không có) để chỉ định không nên dùng cổng ra nào.

B.4.3 Bàn giao tiếp mạng

Đừng thiết lập theo đây nếu bạn muốn sử dụng thành phần
bàn giao tiếp mạng (network-console) để cài đặt từ xa
thông qua SSH (trình bao bao mặt). Trương hợp này chỉ hữu ích
nếu bạn định tự thực hiện phần còn lại của quá trình cài đặt.
d-i anna/choose_modules string network-console
d-i network-console/authorized_keys_url string http://10.0.0.1/openssh-key
d-i network-console/password password r00tme
d-i network-console/password/again password r00tme

B.4.4 Thiết lập máy nhân bản

Phụ thuộc vào phương pháp cài đặt bạn dùng, máy nhân bản có thể được dùng để tái về thành phần cài đặt thêm, để cài đặt hệ thống cơ bản, và để thiết lập danh sách các nguồn /etc/apt/sources.list cho hệ thống đã cài đặt.

Tham số mirror/suite xác định bộ phần mềm đối với hệ thống đã cài đặt.

Chọn FTP thì không cần đặt chuỗi mirror/country.
d-i mirror/protocol string ftp
d-i mirror/country string manual
d-i mirror/http/hostname string http.us.debian.org
d-i mirror/http/directory string /debian
d-i mirror/http/proxy string
Bổ phần mềm cần cài đặt.
#d-i mirror/suite string testing
Bổ phần mềm cần dùng để nap các thành phần cài đặt (tùy chọn).
#d-i mirror/udeb/suite string testing

B.4.5 Thiết lập tài khoản

The password for the root account and name and password for a first regular user’s account can be preseed. For the passwords you can use either clear text values or crypt(3) hashes.

Cảnh báo

Be aware that preseeding passwords is not completely secure as everyone with access to the preconfiguration file will have the knowledge of these passwords. Storing hashed passwords is considered secure unless a weak hashing algorithm like DES or MD5 is used which allow for brute force attacks. Recommended password hashing algorithms are SHA-256 and SHA512.

Skip creation of a root account (normal user account will be able to # use sudo).
#d-i passwd/root-login boolean false
Alternatively, to skip creation of a normal user account.
#d-i passwd/make-user boolean false

Root password, either in clear text
#d-i passwd/root-password password r00tme
#d-i passwd/root-password-again password r00tme
or encrypted using a crypt(3) hash.
#d-i passwd/root-password-crypted password [crypt(3) hash]

To create a normal user account.
#d-i passwd/user-fullname string Debian User
#d-i passwd/username string debian
Normal user’s password, either in clear text
#d-i passwd/user-password password insecure
#d-i passwd/user-password-again password insecure
or encrypted using a crypt(3) hash.
#d-i passwd/user-password-crypted password [crypt(3) hash]
Create the first user with the specified UID instead of the default.
#d-i passwd/user-uid string 1010

The user account will be added to some standard initial groups. To # override that, use this.
#d-i passwd/user-default-groups string audio cdrom video

Biến passwd/root-password-crypted và passwd/user-password-crypted cũng có thể được chèn trước bằng “!” là giá trị. Trong trường hợp đó, tài khoản tương ứng bị tắt. Trường hợp này có thể là tiện với tài khoản người chủ, miễn là phương pháp xen kẽ được thiết lập để cho phép hoạt động quản lý hay đăng nhập người chủ (thì dự bằng cách dùng khả năng xác thực khóa SSH hay sudo).

The following command (available from the whois package) can be used to generate a SHA-512 based crypt(3) hash for a password:

mkpasswd -m sha-512

B.4.6 Thiết lập đồng hồ và múi giờ

71
APPENDIX B. TỰ ĐỘNG HOÀI VIỆC CÀI ĐẶT… B.4. NỘI DUNG CỦA TẬP TIN DỊNH CẤU HÌNH…

Biểu khiển nếu đồng hồ phân cũng được đặt thành UTC không.
d-i clock-setup/utc boolean true
Bạn có thể đặt điều này thành bất cứ giá trị nào hợp lê cho $TZ (mứ giờ),
xem nội dung của « /usr/share/zoneinfo/ » để tìm giá trị hợp lê.
d-i time/zone string Asia/Saigon
Biểu kiến có nên dùng giao thức thời gian NTP
để đặt đồng hồ trong khi cài đặt hay không.
d-i clock-setup/ntp boolean true
Máy phục vụ NTP cần dùng. Giá trị mặc định gần lục nào cũng đứng.
#d-i clock-setup/ntp-server string ntp.example.com

B.4.7 Phân vùng

Khả năng chèn sẵn thiết lập phân vùng cấp cao dùng RAID, LVM và mật mã cũng được hỗ trợ, còn không phải với tinh linh hoạt đây đủ có thể làm khi phân vùng trong một tiến trình cài đặt không chèn sẵn.

Cảnh báo
Việc nhận diện đĩa phụ thuộc vào thứ tự tải trình điều khiển chúng. Nếu có nhiều đĩa trong hệ thống, hãy chắc chắn đĩa đúng sẽ được chọn, trước khi dùng khả năng chèn sẵn.

B.4.7.1 Mẫu phân vùng

If the system has free space you can choose to only partition that space.
This is only honoured if partman-auto/method (below) is not set.
#d-i partman-auto/init_automatically_partition select biggest_free

Alternatively, you may specify a disk to partition. If the system has only
one disk the installer will default to using that, but otherwise the device
name must be given in traditional, non-devfs format (so e.g. /dev/sda
and not e.g. /dev/discs/disc0/disc).
For example, to use the first SCSI/SATA hard disk:
#d-i partman-auto/disk string /dev/sda
In addition, you’ll need to specify the method to use.
The presently available methods are:
- regular: use the usual partition types for your architecture
- lvm: use LVM to partition the disk
- crypto: use LVM within an encrypted partition
#d-i partman-auto/method string lvm

You can define the amount of space that will be used for the LVM volume
group. It can either be a size with its unit (eg. 20 GB), a percentage of
free space or the 'max' keyword.
#d-i partman-auto-lvm/guided_size string max

If one of the disks that are going to be automatically partitioned
contains an old LVM configuration, the user will normally receive a
APPENDIX B. TỰ ĐỘNG HOÀI VIỆC CÀI ĐẶT... B.4. NỘI DUNG CỦA TẬP TIN ĐỊNH CẤU HÌNH...

```bash
# warning. This can be preseeded away...
d-i partman-lvm/device_remove_lvm boolean true
# The same applies to pre-existing software RAID array:
d-i partman-md/device_remove_md boolean true
# And the same goes for the confirmation to write the lvm partitions.
d-i partman-lvm/confirm boolean true
d-i partman-lvm/confirm_nooverwrite boolean true

# You can choose one of the three predefined partitioning recipes:
# - atomic: all files in one partition
# - home: separate /home partition
# - multi: separate /home, /var, and /tmp partitions
#-i partman-auto/choose_recipe select atomic

# Or provide a recipe of your own...
# If you have a way to get a recipe file into the d-i environment, you can
# just point at it.
#d-i partman-auto/expert_recipe_file string /hd-media/recipe

# If not, you can put an entire recipe into the preconfiguration file in one
# (logical) line. This example creates a small /boot partition, suitable
# swap, and uses the rest of the space for the root partition:
#d-i partman-auto/expert_recipe_string
#
# boot-root :  
#  40 50 100 ext3
#  $primary{ } $bootable{ }
#  method{ format } format{ }
#  use_filesystem{ } filesystem{ ext3 }
#  mountpoint{ /boot }
#  .
#  500 10000 1000000000 ext3
#  method{ format } format{ }
#  use_filesystem{ } filesystem{ ext3 }
#  mountpoint{ / }
#  .
#  64 512 300% linux-swap
#  method{ swap } format{ }
#  .
# The full recipe format is documented in the file partman-auto-recipe.txt
# included in the 'debian-installer' package or available from D-I source
# repository. This also documents how to specify settings such as file
# system labels, volume group names and which physical devices to include
# in a volume group.

## Partitioning for EFI
# If your system needs an EFI partition you could add something like
# this to the recipe above, as the first element in the recipe:
#  538 538 1075 free
#  $iflabel{ gpt }
#  $reusemethod{ }
#  method{ efi }
#  format{ }
#  .
# The fragment above is for the amd64 architecture; the details may be
# different on other architectures. The 'partman-auto' package in the
# D-I source repository may have an example you can follow.

# This makes partman automatically partition without confirmation, provided
# that you told it what to do using one of the methods above.
d-i partman-partitioning/confirm_write_new_label boolean true
d-i partman/choose_partition select finish
d-i partman/confirm boolean true
```
B.4.7.2 Phân vùng bằng RAID

Bạn cũng có thể sử dụng chức năng chèn sẵn để thiết lập phân vùng trên mảng RAID kiểu phần mềm. Có hỗ trợ RAID lớp 0, 1, 5, 6 và 10, thì tạo mảng bị suy biến và xác định thiết bị bổ sung.

Cảnh báo

Phương pháp nên được đặt thành « raid ».
#d-i partman-auto/method string raid
Chỉ định những đĩa cần phân vùng.
Mỗi đĩa đều sẽ có một bols trĩ, do đó phương pháp này
chỉ có kết quả nếu mỗi đĩa đều có cùng một kích cỡ.
#d-i partman-auto/disk string /dev/sda /dev/sdb

Sau đó thì bạn cần phải chỉ định những phân vùng vật lý cần dùng.
#d-i partman-auto/expert_recipe string
multiraid ::
1000 5000 4000 raid
$primary{ } method{ raid }
.
64 512 300% raid
method{ raid }
.
500 10000 1000000000 raid
method{ raid }
.

Cuối cùng bạn cần phải chỉ định những phân vùng đã xác định trước
sẽ được dùng trong thiết lập RAID như thế nào.
Nhớ để sử dụng những số thứ tự phân vùng đúng cho phân vùng hợp lý.
Hỗ trợ các lớp RAID 0, 1, 5, 6 và 10; các thiết bị định giới bằng dấu bấm "#".
Các tham số :
<raidtype> <devcount> <sparecount> <fstype> <mountpoint>
<devices> <sparedevices>

#d-i partman-auto-raid/recipe string
1 2 0 ext3 /
1 2 0 swap /dev/sda5# /dev/sdb5
0 2 0 ext3 /home
0 2 0 ext3 /dev/sda6# /dev/sdb6

d-i partman/confirm_nooverwrite boolean true

Force UEFI booting (‘BIOS compatibility’ will be lost). Default: false.
#d-i partman-efi/non_efi_system boolean true
Ensure the partition table is GPT - this is required for EFI
#d-i partman-partitioning/choose_label string gpt
#d-i partman-partitioning/default_label string gpt

When disk encryption is enabled, skip wiping the partitions beforehand.
#d-i partman-auto-crypto/erase_disks boolean false
APPENDIX B. TỰ ĐỘNG HOÀ VIỆC CÀI ĐẶT...

B.4. NỘI DUNG CỦA TẬP TIN ĐỊNH CẢU HÌNH...

Để tìm thêm thông tin, xem tập tin «partman-auto-raid-recipe.txt» được bao gồm trong gói «debian-installer» hoặc sẵn sàng từ kho lưu mà nguồn trình cài đặt Debian (D-I).

Bạn này làm cho partman tự động phân vùng mà không yêu cầu xác nhận.
d-i partman-md/confirm boolean true
d-i partman-partitioning/confirm_write_new_label boolean true
d-i partman/choose_partition select finish
d-i partman/confirm boolean true
d-i partman/confirm_nooverwrite boolean true

B.4.7.3 Điều khiển cách gắn kết phân vùng

Bình thường, hệ thống tập tin được gắn kết dùng một mã nhận diện duy nhất (UUID) làm khoá; nó cho phép gắn kết hệ thống tập tin một cách dùng ngay cả khi tên thiết bị thay đổi. Mã UUID vẫn dài và khó đọc thì theo ý kiến của bạn, trình cài đặt cũng có thể gắn kết hệ thống tập tin dựa vào tên thiết bị truyền thống, hoặc dựa vào một nhãn được bạn gán. Nếu bạn yêu cầu trình cài đặt gắn kết theo nhãn thì hệ thống tập tin nào không có nhãn sẽ được gắn kết dùng một mã UUID.

Thiết bị nào có tên ổn định, v.d. khối tin hợp lý LVM, thì cứ sử dụng tên truyền thống thay cho mã UUID.

Cảnh báo

Mặc định là gắn kết theo mã UUID, nhưng mà bạn cũng có thể chọn mục
"traditional" để sử dụng tên thiết bị truyền thông, hoặc "label"
để chỉ sử dụng nhãn hệ thống tập tin trước khi phục hồi mã UUID.
#d-i partman/mount_style select uuid

B.4.8 Cài đặt hệ thống cơ bản

Thất sự không thể thêm nhiều vào giai đoạn cài đặt này. Chỉ hỏi câu về cách cài đặt hạt nhân.

Cấu hình APT để không cài đặt các gói khuyến khích theo mặc định.
Sử dụng tùy chọn này cũng có thể gây ra một hệ thống không hoàn chỉnh
và chỉ người dùng có rất nhiều kinh nghiệm mới nên sử dụng nó.
#d-i base-installer/install-recommends boolean false

(Siêu) gói ảnh hệ nhằm cần cài đặt; có thể dùng « none »
nếu không cần cài đặt hạt nhân.
#d-i base-installer/kernel/image string linux-image-686

B.4.9 Thiết lập apt

Tiền trình thiết lập danh sách các nguồn của apt /etc/apt/sources.list và các tùy chọn cấu hình cơ bản được tự động hoá hoàn toàn, dựa vào phương pháp cài đặt và trả lời câu hỏi trước. Tùy chọn bạn có khả năng thêm kho phần mềm (cục bộ) khác.
B.4.10 Chọn gói phần mềm

Bạn có khả năng chọn cái đặt bất cứ sự phối hợp công việc nào sẵn sàng. Vào lúc viết câu này, các công việc sẵn sàng gồm:

• **standard** (standard tools)
• **desktop** (graphical desktop)
• **gnome-desktop** (Gnome desktop)
• **xfce-desktop** (XFCE desktop)
• **kde-desktop** (KDE Plasma desktop)
• **cinnamon-desktop** (Cinnamon desktop)
• **mate-desktop** (MATE desktop)
• **lxde-desktop** (LXDE desktop)
• **web-server** (web server)
• **ssh-server** (SSH server)

Bạn cũng có khả năng chọn không cái đặt công việc nào, ép buộc cái đặt một bộ gói bằng cách khác. Khuyến bạn luôn luôn gồm ít nhất công việc chuẩn.

Nếu bạn muốn cái đặt một số gói riêng, thêm vào những gói được cái đặt trong các công việc, bạn có khả năng sử dụng tham số `pkgsel/include`. Giả trị của tham số này có thể là danh sách các gói được định giới bằng hoặc dấu phẩy hoặc dấu cách, cùng dễ dàng đúng trên dòng lệnh.
APPENDIX B. TỰ ĐỘNG HOA VIỆC CÀI ĐẶT…

B.5. TÙY CHỌN CẤP CAO

tasksel tasksel/first multiselect standard, web-server, kde-desktop
Individual additional packages to install
#d-i pkgsel/include string openssh-server build-essential
Whether to upgrade packages after debootstrap.
Allowed values: none, safe-upgrade, full-upgrade
#d-i pkgsel/upgrade select none
Some versions of the installer can report back on what software you have
installed, and what software you use. The default is not to report back,
but sending reports helps the project determine what software is most
popular and should be included on the first CD/DVD.
popularity-contest popularity-contest/participate boolean false

B.4.11 Làm xong tiến trình cài đặt

Trong khi cài đặt từ bàn giao tiếp nói tiếp,
những bàn giao tiếp año bình thường (VT1 đến VT6)
thông thường bị tắt trong « /etc/inittab ».
Hãy hủy ghi chú dòng kết tiếp để ngăn cản trường hợp này.
#d-i finish-install/keep-consoles boolean true
Tránh thông điệp cuối cùng về tiến trình cài đặt hoành tát.
#d-i finish-install/reboot_in_progress note
Đóng nay sẽ ngăn cản tiến trình cài đặt đầy ra đĩa CD
trong khi khởi động lại, mà có ích trong
một số trường hợp riêng.
#d-i cdrom-detect/eject boolean false
Đây là cách làm cho trình cài đặt tắt khi hoàn tất,
nhưng không khởi động lại vào hệ thống đã cài đặt.
#d-i debian-installer/exit/halt boolean true
Cài nay sẽ tắt máy thay vào chỉ dùng chạy nò.
#d-i debian-installer/exit/poweroff boolean true

B.4.12 Chèn trước gói khác

Phụ thuộc vào phần mềm nào bạn chọn cài đặt, hoặc nếu tiến trình
cài đặt bị lỡ, câu tham có thể được hồi. Bạn cũng có khả năng
chèn sẵn chúng. Để xem danh sách mọi câu có thể được hồi
trong tiến trình cài đặt, hãy cài đặt xong, rồi chạy hai lệnh này:
debconf-get-selections --installer > file
debconf-get-selections >> file

B.5 Tùy chọn cấp cao

B.5.1 Chạy lệnh riêng trong khi cài đặt

Những công cụ chèn sẵn cũng cung cấp một tùy chọn rất mạnh và đẹp: khả năng chạy lệnh và gắn lệnh tại một số điểm thời riêng trong tiến trình cài đặt.

When the filesystem of the target system is mounted, it is available in /target. If an installation CD is used, when it is mounted it is available in /cdrom.

Tiến trình chèn sẵn trình cài đặt Debian không đảm bảo là an toàn.
Không có gì trong trình cài đặt mà kiểm tra bất sự có gì đang trên bộ để
hoặc cách khác làm dưng giá trị name trong tập tin cấu hình sẵn
B.5. TỰ ĐỘNG HOÀI VIỆC CẢI ĐẶT

B.5.2 Dừng khả năng chèn sản để thay đổi giá trị mặc định

Có thể dùng khả năng chèn sản để thay đổi lại lời mặc định đối với câu hỏi, còn vẫn được người dùng với câu hỏi đó.

```bash
d-i foo/bar string value
d-i foo/bar seen false
```

Có thể làm cùng kết quả cho tất cả các câu hỏi bằng cách đặt tham số `preseed/interactive=true` tại đầu nhắc khởi động. Cũng có thể như ích để thử hay gỡ lỗi tập tin cấu hình sẵn.

```bash
ghi chú khởi động. Cũng có thể hữu ích để thử hay gỡ lỗi tập tin cấu hình sẵn.
```

B.5.3 Tải dây chuyền tập tin định cấu hình sẵn

Có thể gọi một số tập tin cấu hình sẵn khác từ một tập tin định cấu hình sẵn có liên kết chúng. Thiet lập nãơn nãm trong các tập tin cấu hình sẵn đó sẽ dễ dàng để tập tin tốt nhất từ tập tin được tải trước. Tình năng này cho khả năng, lấy lại đủ, để thiết lập mạng chung cho chổ ban trong tập tin này, còn để thiết lập chỉ tiết độ cho một số câu lệnh riêng trong các tập tin khác.

```bash
# Có thể liệt kê nhiều tập tin, định giới bằng dấu cách: tất cả các tập tin trong danh sách này sẽ được nạp. Những tập tin được bao gồm
# cũng có thể dùng chỉ tên chèn sản/bao gồm riêng.
# Ghi chú rằng nếu tên tập tin là tương đối, nó được lấy từ
# cùng một thư mục với tập tin cấu hình sẵn mà chứa tập tin đó.
d-i preseed/include string x.cfg
```

```bash
# Trình cài đặt có khả năng (tụy chọn) thêm tra thông kiếm (checksum)
# của tập tin cấu hình sẵn, trước khi dùng nó. Hiển thị chỉ số tương
t# kèm kiểu miền mđ5sum; hãy liệt kê các từng mđ5sum
# theo cùng một thứ tự với danh sách các tập tin cần gồm.
d-i preseed/include/checksum string 5da499872beccfeda2c4872f9171c3d
```

```bash
# Đéo hơn, đồng běn đủi chay lệnh trình bao : xuất tên của...
```
APPENDIX B. TỰ ĐỘNG HOÁ VIỆC CÀI ĐẶT …

B.5. TỨCH CHỌN CẤP CAO

tập tin cấu hình sẵn thì bao gồm các tập tin đó.
#d-i presseed/include_command
string if ["'hostname'" = bob]; then echo bob.cfg; fi

Đeo nhắt, dòng này tải về chương trình rồi chạy nó. Chương trình
có khả năng dùng lệnh như « debconf-set » (debconf đặt) để thao tác
cọ số dữ liệu cấu hình « debconf ». Có thể liệt kê danh sách các
văn lệnh, định giới bằng dấu cách.
Ghi chú rằng tên tập tin là tương đối, nó được lấy từ
cùng một thư mục với tập tin cấu hình sẵn mà chứa tập tin đó.
#d-i presseed/run string foo.sh

Cùng có thể nạp dây chuyển từ giải đoạn chèn kiểu initrd hay tập tin, đến việc chèn sẵn qua mạng, bằng cách đặt presseed/url trong những tập tin sớm hơn. Sự chọn này sẽ gây ra việc chèn sẵn qua mạng được thực hiện khi mạng trở thành hoạt động. Hãy làm cẩn thận, vì có hai tiến trình chèn sẵn riêng: chẳng hạn, bạn có hai điểm chạy lệnh presseed/url, điều thứ hai được tạo một khi mạng trở thành hoạt động.
Appendix C

Phân vùng cho Debian

C.1 Chọn phân vùng Debian, lập kích cỡ phân vùng

Hệ thống GNU/Linux cần thiết ít nhất một phân vùng riêng. Phân vùng đó có thể chứa toàn bộ hệ điều hành, tất cả các ứng dụng và tập tin cá nhân. Phần lớn người xem là cũng cần thiết một phân vùng trao đổi. Chỗ “trao đổi” (swap) là sức chứa hỗ trợ cho hệ điều hành, cho phép hệ thống sử dụng sức chứa trên đĩa là “bổ thưởng”. Bằng cách để chọc trao đổi trên phân vùng riêng, bạn cho Linux khả năng rất tận dụng bộ nhớ đó hơn. Có thể ép buộc Linux sử dụng tập tin chuẩn là chỗ trao đổi, nhưng mà phương pháp đó không khuyến khích.

Lý do thứ hai là Linux thường là quản trong hơn trong trường hợp kinh doanh, nhưng nó thưởng thức việc tạo các sự dụng mới. Chẳng hạn máy phục vụ thư tín trên mạng phổ biến thường rất cần có thể hành động lại dễ dàng toàn bộ phân vùng. Nếu bạn đã cấu hình ví dụ thư tín/var/mail là phân vùng riêng trên máy phục vụ thư tín, phần lớn hệ thống sẽ hoạt động được thậm chí nếu nó bị rác tràn.

Một không thuận lợi thật duy nhất khi sử dụng phân vùng thêm là thường khó biết trước các nhu cầu của mình. Nếu bạn cấu hình phân vùng quá nhỏ, bạn sẽ phải hoặc cài đặt lại hệ thống, hoặc cài đặt fusion các thư ra để tạo chỗ rành trong phân vùng thêm nhỏ đó. Một khác, nếu bạn cấu hình phân vùng quá lớn, bạn sẽ phải hấp sức chứa có thể được tận dụng trên vùng khác. Hiện thời sức chứa trên đĩa là rất, nhưng tại sao xài phí tiền?

C.2 Cây thư mục

Debian GNU/Linux tùy theo Tiêu Chuẩn Phân Cấp Hệ Thống Tập Tin khi đặt tên của tập tin và thư mục. Tiêu chuẩn này cho người dùng và chương trình phân mềm có khả năng dự đoán vị trí của tập tin và thư mục. Thư mục cấp gốc được đặt di chung bằng dấu /. Trên cấp gốc, mỗi hệ thống Debian chứa những thư mục này:

<table>
<thead>
<tr>
<th>Thư mục</th>
<th>Nội dung</th>
</tr>
</thead>
<tbody>
<tr>
<td>bin</td>
<td>Tập tin nhị phân lệnh chủ yếu</td>
</tr>
<tr>
<td>boot</td>
<td>Tập tin tĩnh của bộ nạp khởi động</td>
</tr>
<tr>
<td>dev</td>
<td>Tập tin thiết bị</td>
</tr>
<tr>
<td>etc</td>
<td>Cấu hình hệ thống đặc trưng cho máy</td>
</tr>
<tr>
<td>home</td>
<td>Thư mục chính của người dùng</td>
</tr>
<tr>
<td>lib</td>
<td>Thư viện dùng chung và mô-đun hạt nhân chủ yếu</td>
</tr>
<tr>
<td>media</td>
<td>Chữ đệm lập cho vật chứa cơ thể thật thể</td>
</tr>
<tr>
<td>mnt</td>
<td>Điểm lắp để gắn kết tạm thời hệ thống tập tin</td>
</tr>
<tr>
<td>proc</td>
<td>Thư mục ảo cho thông tin hệ thống</td>
</tr>
<tr>
<td>root</td>
<td>Thư mục chính của người dùng chủ</td>
</tr>
<tr>
<td>run</td>
<td>Run-time variable data</td>
</tr>
<tr>
<td>sbin</td>
<td>Tập tin nhị phân hệ thống chủ yếu</td>
</tr>
<tr>
<td>sys</td>
<td>Thư mục ảo cho thông tin hệ thống</td>
</tr>
</tbody>
</table>
APPENDIX C. PHÂN VÙNG CHO DEBIAN

C.3. BỘ TRÍ PHÂN VÙNG KHUYẾN KHÍCH

Sau đây có danh sách các sự cần nhàn quan trọng về thư mục và phân vùng. Ghi chú rằng sự chia sẻ trên đĩa được chia sẻ cho thấy do nhiều hơn khi điều chỉnh hệ thống hệ thống và cấu trúc dữ liệu. Những sự giới thiệu này là hướng dẫn chung và cung cấp một điểm bắt đầu khi tạo phân vùng.

- Thư mục gốc / luôn luôn phải chứa vật lý những thư mục /etc, /bin, /sbin, /lib và /dev, nếu không thì bạn không thể khởi động được. Thường cần thiết vùng 250–350 MB dành cho phân vùng gốc.

- Thư mục /usr: chứa mọi chương trình người dùng (/usr/bin), thư viện (/usr/lib), tài liệu hướng dẫn (/usr/share/doc). Đây là phần của hệ thống tập tin mà thường chiếm chỗ nhiều nhất. Bạn nên cung cấp cho nó ít nhất 500 MB sức chứa nhất đầu tiên và sau đó hàng ngày mạnh mẽ với sự từng tăng lên đến 4-6 GB.

- Ý kiến hiện nay đề nghị có /usr trên phân vùng gốc /, hoặc nó có thể có một số khó khăn tại chỗ trong khởi động. Đây là phần của hệ thống tập tin mà thường chiếm chỗ nhiều nhất. Bạn nên cung cấp cho nó ít nhất 500 MB sức chứa nhất đầu tiên và sau đó hàng ngày mạnh mẽ với sự từng tăng lên đến 4-6 GB.

- Thư mục /var: dữ liệu có thể thay đổi, như bài tin, thư điện tử, nơi Mạng, cơ sở dữ liệu, bộ nhớ tạm của hệ thống quản lý gói phần mềm, nằm dưới thư mục này. Kích cỡ của thư mục này phụ thuộc vào cách sử dụng hệ thống, nhưng thường được điều chỉnh bởi những tài nguyên cần thiết cho công cụ quản lý gói. Nếu bạn định chạy tiến trình cài đặt đầy đủ, gồm gần mọi thứ do Debian cung cấp, trong cùng một phiên chạy, cấp phát 2-3 GB sức chứa riêng cho thư mục /var nên là đủ. Còn nếu bạn định chạy tiến trình cài đặt từ từ (tức là cài đặt các dịch vụ và tiến ích, rồi các điều nhập thô, rồi X v.v.), bạn có thể làm cho chạy bằng cách cài 300–500 MB riêng. Nếu bạn không cố nhiều sức chứa còn rất nhiều trong thư mục/var, cũng không định chạy tiến trình cài đặt hết thông qua trung, 30 hay 40 MB có thể là đủ.

- Thư mục /home: mỗi người dùng sẽ dễ dàng tiếp cận với thư mục của thư mục này. Kích cỡ của nó phụ thuộc vào số người dùng sẽ sử dụng hệ thống, và hình ảnh mà nó sẽ được cất giữ trong thư mục của họ. Phù hợp với cách sử dụng đã định, bạn nên dành riêng khoảng 100 MB cho mỗi người dùng, nhưng thích nghi dễ dàng tùy vào nhu cầu của bạn. Hãy dành riêng một số sức chứa lớn nếu bạn định lưu nhiều tập tin đa phương tiện (ảnh, âm nhạc, phim) vào thư mục chính này.

C.3 Bộ trí phân vùng khuyến khích

For new users, personal Debian boxes, home systems, and other single-user setups, a single / partition (plus swap) is probably the easiest, simplest way to go. The recommended partition type is ext4.

Còn đối với hệ thống đa người dùng, hay hệ thống có rất nhiều sức chứa trên đĩa, tốt nhất là dễ đổi thư mục /var, /tmp, và /home trên một phân vùng riêng, khác với phân vùng / (5 phân vùng).

You might need a separate /usr/local partition if you plan to install many programs that are not part of the Debian distribution. If your machine will be a mail server, you might need to make /var/mail a separate partition. If you are setting up a server with lots of user accounts, it's generally good to have a separate, large /home partition.

In general, the partitioning situation varies from computer to computer depending on its uses.

Đối với hệ thống rất phức tạp, bạn nên xem tài liệu Multi Disk HOWTO. Nó chứa thông tin chi tiết, phân loại có ích cho nhà cung cấp dịch vụ mạng và người thiết lập máy chủ phức tạp.

With respect to the issue of swap partition size, there are many views. One rule of thumb which works well is to use as much swap as you have system memory. It also shouldn’t be smaller than 512MB, in most cases. Of course, there are exceptions to these rules.

As an example, an older home machine might have 512MB of RAM and a 20GB SATA drive on /dev/sda. There might be a 8GB partition for another operating system on /dev/sda1, a 512MB swap partition on /dev/sda3 and about 11.4GB on /dev/sda2 as the Linux partition.
Để tìm biết sức chứa được chiếm bởi công việc bạn có thể muốn thêm sau khi cài đặt xong hệ thống, xem Phần D.2.

C.4 Tên thiết bị dưới Linux

Tên của đĩa và phân vùng Linux có thể là khác với hệ điều hành khác. Bạn cần phải biết những tên Linux dùng khi bạn tạo và gắn kết phần vùng. Dưới là lược đồ để đặt tên cơ bản:

- The first hard disk detected is named /dev/sda.
- The second hard disk detected is named /dev/sdb, and so on.
- Đĩa CD-ROM SCSI thứ nhất có tên /dev/scd0, cũng được biết như là /dev/sr0.

Những phân vùng nằm trên mỗi đĩa được đại diện bằng cách phụ thêm một số thập phân vào tên đĩa: sda1 và sda2 đại diện phần vùng thứ nhất và thứ hai của đĩa SCSI thứ nhất trên hệ thống.

Dưới là thị dụ cuộc sống thực. Giả sử bạn có hệ thống với 2 đĩa SCSI, một đĩa tại địa chỉ SCSI 2 và đĩa khác tại địa chỉ SCSI 4. Địa thử nhất (tao địa chỉ 2) thì có tên sda1, và địa thử hai có tên sdb. Nếu địa sda chứa 3 phân vùng, chúng có tên sda1, sda2 và sda3. Cũng vậy với địa sdb và các phân vùng nằm trên nó.

Ghi chú rằng nếu bạn có hai bộ tiếp hợp mạch nối máy SCSI (tức là bộ điều khiển), thứ tự các ổ đĩa có thể trở thành khó hiểu. Trong trường hợp này, phương pháp tốt nhất là theo dõi các thông điệp khởi động, giả sử bạn biết mô hình và/hay khả năng của các ổ đĩa.

C.5 Chương trình tạo phân vùng Debian

Vài kiểu chương trình tạo phân vùng đã được làm thích nghi bởi nhà phát triển Debian để hoạt động được trên nhiều kiểu đĩa cứng và kiến trúc máy tính khác nhau. Sau đây có danh sách các chương trình thích hợp với kiến trúc của máy tính này.

- **partman** Công cụ tạo phân vùng khuyến khích trong Debian. Chương trình này có nhiều khả năng có ích: nó cũng có thể thay đổi kích thước của phân vùng, tạo hệ thống tập tin và gắn nó vào điểm láp.

- **fdisk** Bộ tạo phân vùng Linux gốc, thích hợp với người dùng rất kinh nghiệm.

 Hãy cẩn thận nếu bạn có phân vùng kiểu FreeBSD tồn tại trên máy tính. Những hạt nhân cài đặt chứa khả năng hỗ trợ những phân vùng này, nhưng cách đại diện (hay không) của fdisk có thể làm cho tên thiết bị khác biệt. Xem tài liệu Linux và FreeBSD Thế Nào Linux+FreeBSD HOWTO.

- **cfdisk** Bộ tạo phân vùng đĩa toàn màn hình dễ dàng, thích hợp với phần lớn người.

 Ghi chú rằng chương trình cfdisk không hiểu phân vùng kiểu FreeBSD bằng cách nào cả. Lại có kết quả là tên thiết bị có thể khác biệt.

Một của những chương trình này sẽ được chạy theo mặc định khi bạn chọn mục trình đơn Phần vùng đĩa (hay tương tự). Có thể sử dụng công cụ tạo phân vùng khác từ dòng lệnh trên VT2, nhưng không khuyến bạn làm như thế.
 Appendix D

Thông Tin Linh Tinh

D.1 Thiết bị Linux

<table>
<thead>
<tr>
<th>sda</th>
<th>First hard disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>sdb</td>
<td>Second hard disk</td>
</tr>
<tr>
<td>sda1</td>
<td>Phần vùng thứ nhất nằm trên đĩa cứng thứ nhất</td>
</tr>
<tr>
<td>sdb7</td>
<td>Seventh partition of the second hard disk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sr0</th>
<th>First CD-ROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>sr1</td>
<td>Second CD-ROM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ttyS0</th>
<th>Cộng nối tiếp tự, COM1 dưới MS-DOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ttyS1</td>
<td>Cộng nối tiếp 1, COM2 dưới MS-DOS</td>
</tr>
<tr>
<td>psaux</td>
<td>Thiết bị con chuột PS/2</td>
</tr>
<tr>
<td>gpmdata</td>
<td>Thiết bị giả, dữ liệu lặp lại từ trình nền GPM (con chuột)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cdrom</th>
<th>Liên kết tượng trưng đến ổ đĩa CD-ROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>mouse</td>
<td>Liên kết tượng trưng đến tập tin thiết bị con chuột</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>null</th>
<th>Mọi gì được ghi vào thiết bị này sẽ biến mất</th>
</tr>
</thead>
<tbody>
<tr>
<td>zero</td>
<td>Có thể đọc vocabulary không qua thiết bị này</td>
</tr>
</tbody>
</table>

D.1.1 Thiết lập con chuột

Có khả năng sử dụng con chuột trong cả hai giao tiếp Linux (dùng `gpm`) và môi trường cửa sổ X. Bình thường, chỉ cần cài đặt `gpm` và trình phục vụ X chính nó. Cả hai nên có cấu hình để sử dụng `/dev/input/mice` làm thiết bị con chuột. Giao thức con chuột có tên `exps2` trong `gpm`, và tên `ExplorerPS/2` trong X. Tập tin cấu hình riêng của mỗi thiết bị con chuột là `/etc/gpm.conf` và `/etc/X11/xorg.conf`.

Một số mô-đun hạt nhân cần phải được ghi để làm cho con chuột hoạt động. Trong phần lớn trường hợp, các mô-đun thích hợp được tự động phát hiện, nhưng đôi khi không phải đối với con chuột nối tiếp cũ và con chuột mạch nối1, mà phải ghi tentrée, trừ trên máy tính rất cũ. Bản tóm tắt các mô-đun hạt nhân Linux cần thiết cho các kiểu con chuột

¹Con chuột nối tiếp thường có đầu kết 9 rỗ hình D; con chuột mạch nối có đầu kết 8 đầu hình tròn, khác với đầu kết 6 đầu hình tròn của con chuột PS/2 hay đầu kết 4 đầu hình tròn của con chuột ADB.
APPENDIX D. THÔNG TIN LYNAMT TỊNH

D.2. SỨC CHỨA TRÊN ĐĨA CẤN THIẾT CHO CÔNG VIỆC

Bản cài đặt chuẩn trên máy kiểu amd64, gồm các gói chuẩn và dùng hạt nhân phiên bản mặc định, chiếm 933 MB sức chứa trên đĩa. Còn một bản cài đặt tối thiểu, không có công việc “Hệ thống chuẩn” được chọn, chiếm 701 MB.

QUAN TRỌNG

Trong cả hai trường hợp, số lượng này là sức chứa thật được dùng trên đĩa sau khi cài đặt xong và tập tin tạm thời nào được xoá. Số này cũng không tính tài nguyên thêm được chiếm bởi hệ thống tập tin, chẳng hạn cho các tập tin nhật ký. Có nghĩa là cần thiết sức chứa nhiều hơn, cả trong khi cài đặt lẫn khi sử dụng hệ thống hàng ngày.

Theo đây có bảng hiển thị các kích cỡ do trình aptitude thông báo cho những công việc được liệt kê trong trình “tasksel”. Ghi chú rằng một số công việc riêng có nội dung chung, vì vậy tổng số kích cỡ đã cài đặt của hai công việc với nhau có thể là nhỏ hơn tổng hai số đó.

By default the installer will install the GNOME desktop environment, but alternative desktop environments can be selected either by using one of the special installation images, or by specifying the desired desktop environment during installation (see Phần 6.3.6.2).

Ghi chú rằng bạn cần phải cài các kích cỡ được liệt kê trong bảng này với kích cỡ của bản cài đặt chuẩn, khi tính kích cỡ của phần ứng. Phân lớn sức chứa được hiển thị trong cột “Kích cỡ đã cài đặt” sẽ nằm trong thư mục /usr và /lib; sức chứa trong cột “Kích cỡ tải về” cần thiết (tạm thời) trong thư mục /var.

<table>
<thead>
<tr>
<th>Công việc</th>
<th>Kích cỡ đã cài đặt (MB)</th>
<th>Kích cỡ tải về (MB)</th>
<th>Sức chứa cần thiết để cài đặt (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Môi trường làm việc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• GNOME (mặc định)</td>
<td>2724</td>
<td>785</td>
<td>3509</td>
</tr>
<tr>
<td>• KDE Plasma</td>
<td>4244</td>
<td>1280</td>
<td>5524</td>
</tr>
<tr>
<td>• Xfce</td>
<td>2342</td>
<td>657</td>
<td>2999</td>
</tr>
<tr>
<td>• LXDE</td>
<td>2486</td>
<td>707</td>
<td>3193</td>
</tr>
<tr>
<td>• MATE</td>
<td>2857</td>
<td>757</td>
<td>3614</td>
</tr>
<tr>
<td>• Cinnamon</td>
<td>3824</td>
<td>1102</td>
<td>4926</td>
</tr>
<tr>
<td>Trình phục vụ Web</td>
<td>44</td>
<td>11</td>
<td>55</td>
</tr>
<tr>
<td>Trình phục vụ SSH</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Nếu bạn cài đặt bằng ngôn ngữ khác tiếng Anh, tasksel có thể tự động cài đặt một công việc địa phương hoá, nếu có, cho ngôn ngữ của bạn (có một công việc dành cho tiếng Việt). Sức chứa cần thiết khác biệt giữa những ngôn ngữ khác nhau; bạn nên tính đến tổng là 350 MB để tải về và cài đặt công việc này.
APPENDIX D. THÔNG TIN LINH TINH

D.3 Cài đặt Debian GNU/Linux từ hệ thống UNIX/Linux

Phần này diễn tả phương pháp cài đặt Debian GNU/Linux từ một hệ thống UNIX hay Linux đã có, không cần dùng trình cài đặt dựa vào trình đơn như được diễn tả trong phần số tay còn lại. Tài liệu “cài đặt chéo” Thế Nào này đã được yêu cầu bởi người dùng chuyển đổi sang Debian GNU/Linux từ hệ thống Red Hat, Mandriva, và SUSE. Trong phần này giả sử là bạn quen với cách nhập lệnh *nix và cách duyệt qua hệ thống tệp tin. Trong phần này, dấu đồng $ đại diện lệnh cần nhập vào hệ thống hiện thời của người dùng, còn dấu bấm # đại diện lệnh được nhập vào chroot của Debian.

Một khi cấu hình hệ thống Debian mới một cách thích hợp, bạn có thể nâng cấp lên nó để liên hệ của người dùng tồn tại nếu, sau đó tiếp tục làm việc như bình thường. Vì vậy, trình cài đặt Debian GNU/Linux này “không có thời gian chết”. Nó cũng là một phương pháp thông minh để quản lý phần cứng không hợp tác với vật chứa khác nhau kiểu khởi động hay cài đặt.

GHI CHÚ

Việc phần lớn là một thủ tục làm bằng tay, ghi nhớ rằng bạn sẽ cần phải tự làm nhiều cấu hình cơ bản, mà yêu cầu bạn quen nhiều với Debian và Linux hơn khi cài đặt bình thường. Thủ tục này sẽ không làm kết quả là hệ thống trùng với kết quả của tiến trình cài đặt bình thường. Thủ tục này chỉ được sử dụng bởi những bước cơ bản khi thiết lập hệ thống. Cố thể là cần thiết thêm bước cài đặt hay/var/cấu hình.

D.3.1 Bắt đầu

With your current *nix partitioning tools, repartition the hard drive as needed, creating at least one filesystem plus swap. You need around 701MB of space available for a console only install, or about 2486MB if you plan to install X (more if you intend to install desktop environments like GNOME or KDE Plasma).

Sau đó, hãy tạo hệ thống tệp tin trên những phân vùng. Chẳng hạn, để tạo một hệ thống tệp tin kiểu ext3 trên phân vùng /dev/sda6 (phản ứng gốc mẫu):

```bash
# mke2fs -j /dev/sda6
```

Còn để tạo hệ thống tệp tin kiểu ext2, chỉ cần bỏ đoạn -j đi.

Sơ khởi và kích hoạt vùng trao đổi (thay thế số thứ tự phân vùng của phân vùng trao đổi Debian dự định):

```bash
# mkswap /dev/sda5
# sync
# swapon /dev/sda5
```


```bash
# mkdir /mnt/debin
# mount /dev/sda6 /mnt/debin
```

GHI CHÚ

Nếu bạn muốn đặt phân nào của hệ thống tệp tin (v.d. /usr) được gắn kết vào phân vùng riêng, bạn cần phải tự tạo và gắn kết những thư mục này trước khi tiếp tục giao đoạn kế tiếp.

D.3.2 Cài đặt debootstrap

Tiện ích được dùng bởi trình cài đặt Debian, cũng được thấy là phương pháp chính thức để cài đặt hệ thống cơ bản Debian, là debootstrap. Nó dùng hai chương trình wget và ar, nhưng về mặt khác thì phụ thuộc chỉ vào /bin/sh
APPENDIX D. THÔNG TIN LINH TINH

D.3. CÀI ĐẶT DEBIAN GNU/LINUX TỪ HỆ...

và các công cụ UNIX/Linux cơ bản². Chưa có thì cài đặt hai gói **wget** và **ar**, sau đó tải về và cài đặt gói **debootstrap**.

Hoặc bạn có thể tự cài đặt nó bằng thủ tục theo đây. Tạo một thư mục `work` vào đó cần giải nén `.deb`:

```
# mkdir work
# cd work
```

Tập tin nhị phân **debootstrap** nằm trong kho Debian (hãy chắc là bạn chọn tập tin thích hợp với kiến trúc của mình). Tải tập tin dạng `.deb` **debootstrap** xuống vùng gộp, sao chép gói đó vào thư mục `work`, sau đó giải nén các tập tin nhị phân ra nó. Bạn cần phải có quyền người chủ để cài đặt các tập tin nhị phân này:

```
# ar -x debootstrap_0.X.X_all.deb
# cd /
# zcat /đường_dẫn_dẫndata.tar.gz | tar xv
```

D.3.3 Chạy debootstrap

If you have a bullseye Debian GNU/Linux installation image mounted at `/cdrom`, you could substitute a file URL instead of the HTTP URL:

```
# file:/cdrom/debian/
```

Substitute one of the following for `ARCH` in the **debootstrap** command:

- amd64
- arm64
- armel
- armhf
- i386
- mips
- mips64el
- mipsel
- powerpc
- ppc64el
- s390x

```
# /usr/sbin/debootstrap --arch ARCH bullseye \
    /mnt/debinst http://ftp.us.debian.org/debian
```

If the target architecture is different from the host, you should add the **--foreign** option.

D.3.4 Cài hình hệ thống cơ bản

Đặt hệ thống Debian vào disk. **chroot** into it:

```
# LANG=C.UTF-8 chroot /mnt/debinst /bin/bash
```

If the target architecture is different from the host, you will need to first copy qemu-user-static to the new host:

```
# cp /usr/bin/qemu-ARCH-static /mnt/debinst/usr/bin
# LANG=C.UTF-8 chroot /mnt/debinst qemu-ARCH-static /bin/bash
```

After chrooting you may need to set the terminal definition to be compatible with the Debian base system, for example:

```
# export TERM=xterm-color
```

Depending on the value of `TERM`, you may have to install the **ncurses-term** package to get support for it.

If the target architecture is different from the host, you need to finish the multi-stage boot strap:

```
/debootstrap/debootstrap --second-stage
```

D.3.4.1 Tạo tập tin thiết bị

Ở điểm thời này, thư mục `/dev/` chỉ chứa các tập tin thiết bị rất cơ bản. Đối với những bước tiếp theo của tiến trình cài đặt, có thể cần thiết thêm tập tin thiết bị. Có một số phương pháp khác nhau: phương pháp thiết kế với trường hợp của bạn thì phù hợp với hệ thống hỗ trợ tiến trình cài đặt, vào kort nhất (kiểu mô-dun hay không) và vào bạn định dùng tập tin thiết bị kiểu độ (v.d. dùng udev) hay retire.

Vài tùy chọn sẵn sàng:

- cài đặt gói makedev, và tạo một tập hợp tập tin thiết bị định danh bằng cách dùng (sau khi đã đổi root)

```
# apt install makedev
# mount none /proc -t proc
# cd /dev
# MAKEDEV generic
```

²Những công cụ này gồm có các tiện ích lõi của GNU và lệnh như **sed**, **grep**, **tar** và **gzip**.
• tạo bằng tay chỉ một số tập tin thiết bị dứt khoát dùng MAKEDEV
• bind mount /dev từ hệ thống hỗ trợ ở trên /dev trong hệ thống đích; ghi chú rằng những văn lệnh sau khi cài đặt của một số gói có thể thử tạo tập tin thiết bị, vì vậy bạn nên dùng tùy chọn này chỉ một cách cẩn thận.

D.3.4.2 Gắn kết phân vùng

You need to create `/etc/fstab`

```
# editor /etc/fstab
```

Here is a sample you can modify to suit:

```
# /etc/fstab:
# static file system information.
#
# file system  mount point  type  options       dump pass
/dev/XXX     /          ext3  defaults       0   1
/dev/XXX     /boot      ext3  ro,nsuid,nodev  0   2
proc         /proc      proc  defaults      0   0
/dev/cdrom   /media/cdrom  iso9660  noauto,ro,user,exec  0   0
/dev/XXX     /tmp       ext3  rw,nsuid,nodev  0   2
/dev/XXX     /var       ext3  rw,nsuid,nodev  0   2
/dev/XXX     /usr       ext3  rw,nodev        0   2
/dev/XXX     /home      ext3  rw,nsuid,nodev  0   2
```

Use `mount -a` to mount all the file systems you have specified in your `/etc/fstab`, or, to mount file systems individually, use:

```
# mount /path  # e.g.: mount /usr
```

Current Debian systems have mountpoints for removable media under `/media`, but keep compatibility symlinks in `/`. Create these as as needed, for example:

```
# cd /media
# mkdir cdrom0
# ln -s cdrom0 cdrom
# cd /
# ln -s media/cdrom
```

You can mount the proc file system multiple times and to arbitrary locations, though `/proc` is customary. If you didn’t use `mount -a`, be sure to mount proc before continuing:

```
# mount -t proc proc /proc
```

Sau đó, lệnh liệt kê `ls /proc` nên hiện thị thư mục khác rỗng. Nếu nó bị lỗi, có lẽ bạn có khả năng gắn kết `proc` từ bên ngoài chroot đó.

```
# mount -t proc proc /mnt/debinst/proc
```

D.3.4.3 Đặt múi giờ

Setting the third line of the file `/etc/adjtime` to “UTC” or “LOCAL” determines whether the system will interpret the hardware clock as being set to UTC respective local time. The following command allows you to set that.

```
# editor /etc/adjtime
```

Here is a sample:

```
0.0 0 0.0

UTC
```

The following command allows you to choose your timezone.

```
# dpkg-reconfigure tzdata
```
D.3.4.4 Cài đặt khả năng chạy mạng

To configure networking, edit /etc/network/interfaces, /etc/resolv.conf, /etc/hostname and /etc/hosts.

```bash
# editor /etc/network/interfaces
```

Here are some simple examples from /usr/share/doc/ifupdown/examples:

```bash
# /etc/network/interfaces -- configuration file for ifup(8), ifdown(8)
# See the interfaces(5) manpage for information on what options are available.
#
# The loopback interface isn’t really required any longer, but can be used if needed.
# auto lo
# iface lo inet loopback

# To use dhcp:
# auto eth0
# iface eth0 inet dhcp

# An example static IP setup: (network, broadcast and gateway are optional)
# auto eth0
# iface eth0 inet static
# address 192.168.0.42
# network 192.168.0.0
# netmask 255.255.255.0
# broadcast 192.168.0.255
# gateway 192.168.0.1
```

Enter your nameserver(s) and search directives in /etc/resolv.conf:

```bash
# editor /etc/resolv.conf
```

A simple example /etc/resolv.conf:

```bash
search example.com
nameserver 10.1.1.36
nameserver 192.168.9.100
```

Enter your system’s host name (2 to 63 characters):

```bash
# echo DebianHostName > /etc/hostname
```

And a basic /etc/hosts with IPv6 support:

```bash
127.0.0.1 localhost
127.0.1.1 DebianHostName

# The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts
```

If you have multiple network cards, you should arrange the names of driver modules in the /etc/modules file into the desired order. Then during boot, each card will be associated with the interface name (eth0, eth1, etc.) that you expect.
D.3.4.5 Cấu hình Apt

Debootstrap will have created a very basic /etc/apt/sources.list that will allow installing additional packages. However, you may want to add some additional sources, for example for source packages and security updates:

```
deb-src http://ftp.us.debian.org/debian bullseye main
deb http://security.debian.org/ bullseye-security main
deb-src http://security.debian.org/ bullseye-security main
```

Make sure to run `apt update` after you have made changes to the sources list.

D.3.4.6 Cấu hình miền địa phương và bàn phím

To configure your locale settings to use a language other than English, install the locales support package and configure it. Currently the use of UTF-8 locales is recommended.

```
# apt install locales
# dpkg-reconfigure locales
```

To configure your keyboard (if needed):

```
# apt install console-setup
# dpkg-reconfigure keyboard-configuration
```

Ghi chú rằng bàn phím không thể được đặt trong khi nằm trong chroot, nhưng sẽ được cấu hình cho lần khởi động lại kế tiếp.

D.3.5 Cài đặt hạt nhân

Nếu bạn dự định khởi động hệ thống này, bạn rất có thể muốn có một hạt nhân (kernel) Linux và một bộ nạp khởi động (boot loader). Có thể nhận diện các hạt nhân đóng gói sẵn bằng lệnh:

```
# apt search linux-image
```

Sau đó cài đặt gói hạt nhân đã chọn, dùng tên gói của nó.

```
# apt install linux-image-arch-etc
```

D.3.6 Thiết lập bộ nạp khởi động

To make your Debian GNU/Linux system bootable, set up your boot loader to load the installed kernel with your new root partition. Note that `debootstrap` does not install a boot loader, but you can use `apt` inside your Debian chroot to do so.

Ghi chú rằng ở đây giả sử tệp tin thiết bị /dev/sda đã được tạo. Có những phương pháp khác để cài đặt grub2, nhưng chúng không nằm trong phạm vi của phụ lục này.

D.3.7 Remote access: Installing SSH and setting up access

In case you can login to the system via console, you can skip this section. If the system should be accessible via the network later on, you need to install SSH and set up access.

```
# apt install ssh
```

Root login with password is disabled by default, so setting up access can be done by setting a password and re-enable root login with password:

```
# passwd
# editor /etc/ssh/sshd_config
```

This is the option to be enabled:

```
PermitRootLogin yes
```

Access can also be set up by adding an ssh key to the root account:
mkdir /root/.ssh
cat << EOF > /root/.ssh/authorized_keys
ssh-rsa
EOF

Lastly, access can be set up by adding a non-root user and setting a password:

adduser joe
passwd joe

D.3.8 Đòn kết liễu

As mentioned earlier, the installed system will be very basic. If you would like to make the system a bit more mature, there is an easy method to install all packages with “standard” priority:

taskel install standard

Of course, you can also just use apt to install packages individually.

Sau khi cài đặt xong, có rất nhiều gói đã tải về nằm trong thư mục kho lưu trữ /var/cache/apt/archives/. Vậy bạn có dịp giải phóng thêm chỗ trống trên đĩa bằng cách chạy lệnh « làm sạch »:

apt clean

D.4 Cài đặt Debian GNU/Linux dùng PPP qua Ethernet (PPPoE)

Trong một số quốc gia, PPP qua Ethernet (PPPoE) là một giao thức thường dùng cho kết nối dài dòng rộng (ADSL hay cáp) tới nhà cung cấp dịch vụ Internet (ISP). Chức năng thiết lập kết nối mạng dùng PPPoE không phải được hỗ trợ theo mặc định trong trình cài đặt, nhưng dễ làm cho hoạt động. Phần này diễn tả phương pháp.

Sử kết nối PPPoE được thiết lập trong khi cài đặt sẽ cùng sắn sáng sau khi khởi động lại vào hệ thống đã cài đặt (xem Chương 7).

To have the option of setting up and using PPPoE during the installation, you will need to install using one of the CD-ROM/DVD images that are available. It is not supported for other installation methods (e.g. netboot).

Cài đặt qua PPPoE phần lớn là tương tự với các tiến trình cài đặt khác. Những bước sau diễn tả các sự khác.

• Khởi chạy trình cài đặt, dùng tham số khởi động modules=ppp-udeb. Tham số này sẽ đảm bảo tự động nạp và chạy thành phần cần thiết để thiết lập PPPoE (ppp-udeb).

• Hãy theo những bước đầu tiên bình thường của tiến trình cài đặt (chọn ngôn ngữ, quốc gia và bàn phím; nạp thêm thành phần cần thiết).*

• Buộc tiếp theo là phát hiện phần cứng chạy mạng, để nhận diện bo mạch Ethernet có trong hệ thống.

• Sau đó, tiến trình thiết lập PPPoE thật được khởi chạy. Trình cài đặt sẽ thăm dò tất cả các giao diện Ethernet đã phát hiện để thử tìm bộ tập trung PPPoE (một kiểu trình phục vụ mà quản lý các kết nối PPPoE). Có thể không tìm thấy bộ tập trung lần thứ đầu tiên. Trường hợp này có thể xảy ra do khi trên mạng chạy chậm hay mạng rất bận, hay do lỗi trong phần phục vụ hệ thống. Trong phần lớn trường hợp, lần thứ hai để phát hiện bộ tập trung sẽ chạy thành công; đề thứ hai, chọn mục Cấu hình và khởi chạy một kết nối PPPoE trong trình đơn chính của trình cài đặt.

• Một khi tìm bộ tập trung, người dùng sẽ được nhắc gõ thông tin đăng nhập (tên người dùng và mật khẩu PPPoE).

• Ở điểm thời này, tiến trình cài đặt sẽ sử dụng thông tin đã cung cấp để thiết lập kết nối PPPoE. Cung cấp thông tin đúng sẽ giúp trình cài đặt kết nối PPPoE đến được cấu hình và truyền dữ liệu kết nối Internet và lấy các gói (nếu cần). Thông tin đăng nhập sai hay gặp lỗi thì tiến trình cài đặt sẽ bị dừng chạy, nhưng có thể thử lại tiến trình cấu hình bằng cách chọn mục trên trình đơn Cấu hình và khởi chạy một kết nối PPPoE.

*Thành phần ppp-udeb được nạp như một trong những thành phần thêm trong bước này. Muốn cài đặt ở mức ưu tiên vừa hoặc thấp (chế độ cấp cao) thì bạn cũng có thể tự chọn ppp-udeb thay vào nhập tham số “modules” tại đâu như khởi động.

90
Appendix E

Linh tinh quản trị

E.1 Về tài liệu này

Sổ tay này được tạo từ đánh cho trình cài đặt của bản phát hành Debian tên Sarge, dựa vào sổ tay cài đặt Woody bằng đĩa mềm khởi động, mà lần lượt dựa vào những sổ tay cài đặt Debian trước, cũng với sổ tay phần phối Progeny mà được phát hành với điều kiện của Giấy Phép Công Cộng GNU (GPL) trong năm 2003.

Để tăng lên khả năng bảo trì của tài liệu này, chúng tôi dùng một số tính năng XML, như thực thể và thuộc tính tạo hồ sơ riêng. Những điều này đáp ứng một mục đích giống như mục đích của biến và bộ điều kiện trong ngôn ngữ lập trình. Mà nguồn XML của tài liệu này chứa thông tin đánh cho mỗi kiến trúc riêng — những thuộc tính tạo hồ sơ riêng được dùng để đặt một số đoạn nào đó là đặc trưng cho kiến trúc.

Bản dịch: Nhóm Việt hoá phần mềm tự do vi-VN@googlegroups.com.

E.2 Cách đóng góp cho tài liệu này

Better yet, get a copy of the DocBook source for this document, and produce patches against it. The DocBook source can be found at the installation-guide project on salsa. If you're not familiar with DocBook, don't worry: there is a simple cheatsheet in the manuals directory that will get you started. It's like html, but oriented towards the meaning of the text rather than the presentation. Patches submitted to the debian-boot mailing list (see below) are welcomed. For instructions on how to check out the sources via git, see README from the source root directory.

E.3 Đóng góp chính

Miroslav Kurfı đã diễn ra trong tài liệu phân loại các chức năng trong bán cài đặt Debian phiên bản Sarge. Frans Pop là biên tập viên chính và quản trị phát hành trong khi phát hành phiên bản Etch, Lenny và Squeeze.

Rất nhiều người dùng và nhà phát triển Debian đã đóng góp cho tài liệu này. Chúng tôi cảm ơn đặc biệt Michael Schmitz (hỗ trợ m68k), Frank Neumann (tác giả gốc của sổ tay cài đặt vào Amiga), Arto Astala, Eric Delaunay/Ben Collins (thông tin về SPARC), Tapio Lehtonen, và Stéphane Bortzmeyer (rất nhiều lời sửa đổi), và Pascal Le Bail (thông tin hướng dẫn về cách khởi động từ thanh bộ nhớ USB).

Chúng tôi đã tìm thấy đoạn và thông tin rất hữu dụng trong tài liệu khởi động qua mạng Thế Nào (HOWTO) của Jim Mintha (không có địa chỉ Mang), Hồ Đáp Debian, Hồ Đáp Linux/m68k, Hồ Đáp Linux cho bộ xử lý SPARC,
Hỏi Đáp Linux/Alpha, trong nhiều điều khác nhau. Mọi người nhờ những nhà bảo trì các nguồn thông tin phong phú này là sẵn sàng tự do.

Tiết đoạn của sổ tay này về cách cài đặt kiểu chroot (Phần D.3) bắt nguồn một phần từ tài liệu Tác quyền © Karsten M. Self.

E.4 Lời báo nhận thương hiệu

Mọi thương hiệu do nhà chủ thương hiệu riêng từng sở hữu.
Appendix F

Giấy phép Công cộng GNU

GHI CHÚ

This is an unofficial translation of the GNU General Public License into Vietnamese. It was not published by the Free Software Foundation, and does not legally state the distribution terms for software that uses the GNU GPL — only the original English text of the GNU GPL does that. However, we hope that this translation will help Vietnamese speakers to better understand the GNU GPL.

Đây là một bản dịch tiếng Việt không chính thức của Giấy Phép Công Cộng GNU (GPL). Nó không được xuất bản bởi Tổ chức Phần Mềm Tự Do, và không tuyên bố hợp pháp điều kiện phát hành phần mềm sử dụng GPL — chỉ có đoạn tiếng Anh gốc của GPL là hợp pháp. Tuy nhiên, chúng tôi mong muốn bản dịch này sẽ giúp đỡ người nói tiếng Việt hiểu khá hơn GPL của GNU.

Phiên bản 2, Tháng 06/1991

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA (Mỹ)

Mọi người đều được quyền sao chép và phân phối nguyên văn tài liệu giấy phép này, nhưng không được phép thay đổi nó.

F.1 Lời mở đầu

Giấy phép sử dụng của hầu hết các phần mềm được thiết kế để bạn không được tự do chia sẻ và thay đổi phần mềm đó. Trái lại, Giấy phép Công cộng GNU được định nghĩa cho bạn được tự do chia sẻ và thay đổi phần mềm một cách tự do, và đảm bảo phần mềm tự do cho mọi người sử dụng. Giấy phép Công cộng GNU này áp dụng cho hầu hết những phần mềm của Tổ chức Phần mềm Tự Do, và cho bất kỳ chương trình máy tính nào khác mà tác giả của nó cam kết sử dụng nó. (Một số phần mềm khác của Tổ chức Phần mềm Tự Do dùng Giấy phép Thư viện Công cộng GNU thay thế.) Bạn cũng có thể áp dụng giấy phép này cho các chương trình do bạn làm ra.

Khi chúng tôi nói về phần mềm tự do, chúng tôi đề cập đến sự tự do sử dụng, chứ không phải là giá cả. Giấy phép Công cộng GNU của chúng tôi được thiết kế để đảm bảo bạn có quyền tự do phát hành bản sao của phần mềm tự do (và thu tiền dịch vụ này nếu muốn), nhận mã nguồn hoặc có khả năng lấy nó nếu bạn muốn, bạn có thể thay đổi phần mềm hay sử dụng bất kỳ đoạn nào của nó trong chương trình tự do mới; và để giúp bạn biết rõ là bạn có thể làm những điều này.

Để bảo vệ quyền lợi của bạn, chúng tôi cần đưa ra những hạn chế để cảm nhận ai phù nhận bạn có những quyền này hay hối hận bạn từ bỏ nó. Những sự hạn chế này được hiểu là một số trách nhiệm nhất thiết của bạn nếu bạn phát hành bản sao của phần mềm hoặc sửa đổi nó.

Chúng hạn, nếu bạn phát hành bản sao của chương trình như vậy, dù là cho không hay thu tiền, bạn phải trao cho người nhận tất cả những quyền bạn có. Bạn phải chắc chắn là họ cũng nhận được hay có thể lấy mã nguồn. Và bạn cũng phải cho họ biết những điều kiện này, để họ biết những quyền của họ.
Chúng tôi bảo vệ các quyền của bạn qua hai bước: (1) bản quyền tác giả của phần mềm và (2) trao cho bạn giấy phép này để bạn có quyền hợp pháp sao chép, phát hành và/hoặc sửa đổi phần mềm.

Hơn nữa, để bảo vệ tác giả và chúng tôi, chúng tôi muốn chắc chắn là mọi người hiểu rằng phần mềm tự do này không có bảo hành. Nếu phần mềm bị sửa đổi bởi người khác và được phân phát tiếp, chúng tôi muốn người nhận biết rằng cần phải có thông báo là bạn có thể không phải là bản gốc, vì vậy, bất kỳ lỗi nào do người khác gây ra sẽ không làm mất tính đến tác giả gốc.

Cuối cùng, chúng tôi vẫn giữ quyền nếu có việc một người phát hành lại chương trình tự do để bảo vệ bản gốc, số hiệu chương trình đó. Để ngăn người dùng này, chúng tôi đã làm rõ rằng việc sao chép không phải cấp cho mọi người sử dụng tự do, hoặc không cấp cho bất kỳ ai hết.

Sau đây là những điều kiện và điều khoản chính xác đối với việc sao chép, phát hành và sửa đổi.

F.2 GIẤY PHÉP CÔNG CỘNG GNU

DIỄN HIỆU SAO CHÉP, PHÁT HÀNH VÀ SỬA ĐỔI

0. Giấy phép này áp dụng cho bất kỳ chương trình nào hay sản phẩm nào khác có thông báo được chèn vào bởi người giữ tác quyền nói rằng nó có thể được phân phát hằng theo các điều khoản của GPL này. Cụm từ "Chương trình" dưới đây có nghĩa là bất kỳ chương trình mã nguồn hay sản phẩm như vậy, và "sản phẩm dựa trên Chương trình" có nghĩa là Chương trình hay bất kỳ sản phẩm nào bắt nguồn từ nó dưới luật bản quyền: tức là, sản phẩm chứa Chương trình đó hay một phần của nó, hoặc dùng nguyên văn hoặc với sự sửa đổi hoặc dịch sang một ngôn ngữ khác.

(Kể từ câu này, việc dịch ngôn ngữ được bao gồm vào hạn trong thuật ngữ "sự sửa đổi"). Người được cấp Giấy phép được gọi là "bạn".

Những hoạt động khác ngoài sự sao chép, phát hành và sửa đổi không được kiểm soát bởi Giấy phép này; nó ở ngoài phạm vi của giấy phép này. Hành động chạy Chương trình không bị hạn chế, và dữ liệu xuất từ Chương trình chỉ bị khi những người dùng của nó tạo thành một sản phẩm dựa vào Chương trình (không phụ thuộc vào việc vận hành Chương trình). Điều đó dùng hay không phụ thuộc vào điều mà Chương trình tạo ra.

1. Bạn có quyền sao chép và phát hành bản sao đúng nguyên văn của mã nguồn của Chương trình như bạn đã nhận nó, miễn là bạn không có nghĩa là một phần của Chương trình như bạn đã nhận nó, bằng bất kỳ cách nào, miễn là bạn cùng với bản sao một thông báo tác quyền thích hợp và miêu tả bản quyền; giữ nguyên văn một thông báo liên quan đến Giấy phép này và miêu tả bản quyền; và dựa cho những người nhận Chương trình khác một bản sao của Giấy phép cùng với Chương trình.

Bản có thể thay đổi cho việc sao chép bản sao, và bạn có thể tự ý để nghi cung cấp dịch vụ bảo hành có thu phí.

2. Bạn có quyền sửa đổi bản sao của mình hay của Chương trình hoặc đoạn nào của nó để tạo một sản phẩm dựa vào Chương trình, và sao chép và phát hành sự sửa đổi hay sản phẩm như vậy theo điều khoản của phần 1 nếu trên, miễn là bạn cùng tuân theo tất cả các điều kiện sau:

a. Bạn phải làm cho mỗi tập tin dựa sửa đổi chứa thông báo để thấy nó có sẵn bản đã thay đổi tập tin đó và hiện thị ngày tháng của sự thay đổi này.

b. Bạn phải làm cho sản phẩm mà bạn phát hành hay xuất bản, toàn bộ hay một phần có chứa hay bắt nguồn từ Chương trình hay các phần của nó, được cấp toàn bộ miễn phí cho người khác với điều kiện của Giấy phép này.

c. Nếu chương trình bị sửa đổi có đoạn tương tác tác nên khi chạy, bạn phải làm nó, khi được khởi chạy bằng cách thông thường nhất qua tương tác như vậy, in ra hay hiển thị một lời quản bảo gồm có thông báo tác quyền thích hợp và thông báo không có bản quyền (nếu không, nói rằng bạn cung cấp việc bảo hành) và rằng người dùng có quyền phát hành lại chương trình đó với những điều kiện này, và thông tin cho người dùng biết cách xem một bản sao của Giấy phép này. (Ngoại lệ: nếu Chương trình chính nó là tương tác như vậy không in ra lời quản bảo như vậy, sản phẩm của bạn dựa vào Chương trình không bắt buộc phải in ra lời quản bảo như vậy).

Những điều kiện này áp dụng cho toàn bộ sản phẩm bị sửa đổi. Nếu có thể nhân ra phần riêng của sản phẩm đó không bắt nguồn từ Chương trình, và các phần này có thể được xem một cách hợp lý là sản phẩm riêng và không phụ thuộc, thì Giấy phép này, và các điều kiện của nó, không áp dụng cho những phần riêng đó khi bạn phát hành chúng là sản phẩm riêng. Tuy nhiên, khi bạn phát hành những phần đó cùng với toàn bộ sản phẩm dựa vào Chương trình, sự phát hành toàn bộ này phải tuân theo điều kiện của Giấy phép này, cung cấp cho mọi người có quyền bỏ trùm toàn bộ sản phẩm, báo quát tất cả mọi phần của nó, bất kể ai đã tạo nó.

Nur thsi thli phan ngày không đường dữ liệu câu quyền hay không thừa nhận quyền của bạn về sản phẩm mà toàn bộ lại do bạn tạo ra; mà phần này định nói về quyền hạn trong điều kiện sự phát hành sản phẩm bản nguồn từ hay sản phẩm hợp tác thử được dựa vào Chương trình.
Hơn nữa, việc chứa các sản phẩm khác không được vào Chương trình cùng với Chương trình (hay với sản phẩm đã vào Chương trình) trên thiết bị lưu trữ hay vật phát hành không nằm trong phạm vi của Giấy phép này.

3. Bạn có quyền sao chép và phát hành Chương trình (hoặc sản phẩm đã vào nó, dưới Phần 2) trong dạng thứ mà đổi tương hay tập tin chạy được với điều kiện của Phần 1 và 2 bên trên, miễn là bạn cũng làm một số những việc sau đây:

a. Kèm theo toàn bộ mã nguồn tương ứng mà máy có thể đọc được, được phát hành với điều kiện của Phần 1 và 2 bên trên, trên thiết bị lưu trữ thường dùng để trao đổi phần mềm; hay

b. Kèm theo lời mời ghi trên giấy, hợp lệ trong ít nhất ba năm sau, cùng cấp cho bất cứ người khác nào, với giá không lớn hơn giá bán thiết để phân phát các mã nguồn đó, một bản sao, mà máy có thể đọc được, của toàn bộ mã nguồn tương ứng, để phát hành với điều kiện của Phần 1 và 2 bên trên, trên thiết bị lưu trữ thường dùng để trao đổi phần mềm; hay

c. Kèm theo các thông tin bạn đã nhận về lời mời phát hành mã nguồn tương ứng. (Tuy chọn này chỉ được phép khi phát hành không thường mai, và chỉ khi bạn đã nhận chương trình trong dạng thứ mà đối tương hay tập tin chạy được với các lời mời như vậy, tùy theo Phần phụ (b) trên).

Mã nguồn của sản phẩm có nghĩa là dạng thực sản phẩm được u tri thực khi sử đồ. Đối với sản phẩm là tập tin chạy được, toàn bộ mã nguồn có nghĩa là tất cả các mã nguồn cho mọi mô-đun đã chứa, cùng với bất cứ tập tin xác định giao diện tương ứng, cùng với các tập lệnh được dùng để điều khiển tiến trình biên dịch và cả tập tin chạy được. Tuy nhiên, ngoài lệ đặc biệt là mã nguồn được phát hành không cần phải bao gồm những gì được phát hành bình thường (trong dạng thực hoặc nguồn hoặc biên dịch) với các thành phần chính (bộ biên dịch, hạt nhân v.v.) của hệ điều hành nố tập tin chạy được hoạt động, trừ khi thành phần kèm theo cần thiết để chạy tập tin.

Nếu phát hành mà chay được hay mà đối tương được làm bằng cách trao truy cập sao chép từ một nơi đã xác định, thì việc trao các truy cấp sao chép tương ứng đến mã nguồn đó từ người đó được tính là sự phát hành mã nguồn mà nguồn, mặc dù người khác không bắt buộc phải sao chép mã nguồn cũng với mã đối tương.

7. Nếu, do kết quả của quyết định của tòa án hay các cáo buộc vi phạm bằng sáng chế hay vi bất cố lý do nào (không bị giới hạn trong vấn đề sau là không đã), bạn bị ép buộc chấp nhận điều kiện (hoặc vi quyết định của tòa án, sự thỏa thuận hoặc cách khác nào) mà bạn phải tuân theo điều kiện của Giấy phép này, trường hợp này không miễn cho bạn không phải thỏa mãn điều kiện của Giấy phép này. Nếu bạn không thể phát hành bằng cách thỏa mãn được, bạn phải để giấy phép xảy ra bên dưới giấy phép của bạn dưới Giấy phép này và bất kỳ giao ước thích hợp khác, thì kết quả là không cho phép bạn phát hành Chương trình bằng cách nào cả. Lấy thí dụ, nếu một bằng sáng chế nào đó không cho phép sự phát hành lại Chương trình một cách miễn phí công cộng cho mọi người nhận bản sao từ bản của cách tiếp được giấy phép này, thì cách duy nhất bạn có thể làm là giấy phép này đã hoàn toàn không phát hành Chương trình.

Nếu doan nào trong phần này được quyết định là không hợp lệ hay không thể được ép buộc trong bất kỳ trường hợp riêng nào, đơn còn lại dự định áp dụng được, và toàn bộ phần dự định áp dụng trong các trường hợp khác.

Không phải là mục đích của phần này để xúi giục bạn vi phạm bằng sáng chế nào hay vi bất cố lý do nào (không bị giới hạn trong vấn đề sau là không đã). Phán này có mục đích dũng nhất là bảo vệ tính trang nguyên vẻ của hệ thống phát hành phần mềm tự do, mà được thực thi bởi các dụng cụ giấy phép công cộng. Nhiều người đã đồng ý rằng lý do cho một phạm vi rộng lớn của các phần mềm được phát hành qua hệ thống là thiếu động, nhờ sự thực thì nên bị hệ thống do: tuy tác giả / người đăng quyền về nút ho wón phát hành phần mềm qua hệ thống khác nào, và người được cấp Giấy phép không thể điều khiển cách quyết định đó.

Phần này dự định diễn ra rộng lớn toàn thế giới dưới quyền của phần còn lại của Giấy phép này.

8. Nếu sự phát hành và/hoặc cách sử dụng Chương trình bị hạn chế trong một số quốc gia nào do, hoặc bởi bất sáng chế hoặc bởi giao diện có bản quyền tác giả, người giữ quyền gốc đã đặt Chương trình dưới Giấy phép này
APPENDIX F. GIẤY PHÉP CÔNG CỘNG GNU

F.3. CÁCH ÁP DỤNG ĐIỀU KIỆN NÀY CHO CÁC TRƯỜNG HỢP

Có khả năng thêm sự hạn chế pháp hành dựa trên các điều kiện khác nhau, do đó, để phê phán pháp hành chỉ trong hay giữa các quốc gia không bị loại trừ như thế. Trong trường hợp như vậy, Giấy phép này hợp nhất sự hạn chế đó như là nội dung ghi trong phần của Giấy phép này.

10. Nếu bạn muốn hợp nhất phần nào của Chương trình vào chương trình tự do khác có điều kiện phân phát khác GPL, hãy xin phép tai giả. Đối với phần mềm có bản quyền tác giả của Tổ chức Phần mềm Tự do, hãy viết thư cho Tổ chức Phần mềm Tự do : thành thạo chương trình cho phép ngoại lệ lê trong trường hợp này. Quyết định của chủ trì sẽ dựa hướng dẫn bởi hai mục đích là sự bảo tồn trạng thái tự do của máy điều bất ngần từ phần mềm tự do của chúng tôi, và sự đẩy mạnh sự chia sẻ và sự sử dụng lại phần mềm một cách chung.

KHÔNG BẢO HÀNH

11. VI CHƯƠNG TRÌNH ĐÃ DƯỢC CẤP PHÉP MIỄN PHÍ, KHÔNG CÓ BẢO HÀNH ĐỐI VỚI VI CHƯƠNG TRÌNH NÀY, VỚI ĐIỀU KIỆN PHÁP LUẬT CHƯƠNG TRÌNH NÀY. ĐÔI KIỆN ĐƯỢC CẤP PHÉP LUẬT CHƯƠNG TRÌNH NÀY “NHƯ THẾ”, KHÔNG CÓ BẢO HÀNH GÌ CÁ, KHÔNG PHÁT BIẾU NÔ, CỨNG KHÔNG NGỮ Y NI, GÔM, KHÔNG KHÔNG ĐỊNH HỌC BỘ BIỂU SỨ BẢO ĐẢM ĐA NGỮ Y TIỀN TÔNG CẢM THEO BỘ BIỂU VÀ SỨ THỊCH HỘI VỚI MỘT MỨC ĐỊCH ĐỨC KHOÁT. MOI RƯI RO VỀ CHẤT LƯỢNG, ĐỘ CHÍNH XẮC VÀ HIỆU SUẤT CỦA CHƯƠNG TRÌNH NÀY BẢN SẼ TỰ CHỊU. Nếu CHƯƠNG TRÌNH NÀY GẤY RA HƯ HỒNG, BẢN GẢNH VẤC HOAN TOÀN TRÁCH NGHIỆM TRA ĐIỆN ĐỊCH VU GIUPER ĐƠ HAY SƯA CHỮA.

12. KHÔNG CÓ TRƯỞNG HỘP NÀO (TRỪ KHI PHÁP LUẬT YÊU CẦU HAY KHI ĐƯỢC THÔNG BÀN TẠI LIÊU GIẤY TÔ, CÁC NGƯỜI GIẤY BẢN QUYỀN TÁC GIẢ VÀ/HAY NGƯỜI KHÁC CUNG CẤP CHƯƠNG TRÌNH NÀY “NHƯ THẾ”, KHÔNG CÓ BẢO HÀNH GÌ CÁ, KHÔNG PHÁT BIẾU NÔ, CỨNG KHÔNG NGỮ Y NI, GÔM, KHÔNG KHÔNG ĐỊNH HỌC BỘ BIỂU SỨ BẢO ĐẢM ĐA NGclide Y TIỀN TÔNG CẢM THEO BỘ BIỂU VÀ SỨ THỊCH HỘI VỚI MỘT MỨC ĐỊCH ĐỨC KHOÁT. MOI RƯI RO VỀ CHẤT LƯỢNG, ĐỘ CHÍNH XẮC VÀ HIỆU SUẤT CỦA CHƯƠNG TRÌNH NÀY BẢN SẼ TỰ CHỊU. Nếu CHƯƠNG TRÌNH NÀY GẤY RA HƯ HỒNG, BẢN GẢNH VẤC HOAN TOÀN TRÁCH NGHIỆM TRA ĐIỆN ĐỊCH VU GIUPER ĐƠ HAY SƯA CHỮA.

KẾT THÚC CỦA ĐIỀU KIỆN

F.3. CÁCH ÁP DỤNG ĐIỀU KIỆN NÀY CHO CÁC TRƯỜNG HỢP

Nếu bạn phát triển chương trình mới, và muốn làm cho nó có thể nhận được điều kiện này, bạn có thể áp dụng điều kiện này cho nó, và bất kỳ phiên bản sau nào, hoặc phiên bản mới của tổ chức phần mềm Tự do, hoặc của bất kỳ phiên bản sau nào của tổ chức phần mềm Tự do. Nếu bạn phát triển chương trình mới, và muốn làm cho nó có thể nhận được điều kiện này cho nó, bạn có thể áp dụng điều kiện này cho nó, và bất kỳ phiên bản sau nào của tổ chức phần mềm Tự do.

một đoạn ghi tên chương trình và mở tả ngắn.
Tác quyền © năm tên của tác giả

Chương trình này là phần mềm tự do; bạn có thể phát hành lại nó và/hoặc sửa đổi nó với điều kiện của giấy phép Công cộng GNU như được xuất bản bởi tổ chức phần mềm tự do; hoặc phiên bản 2 của giấy phép này, hoặc (tự chọn) bất kỳ phiên bản sau nào.

Chương trình này được phát hành với mục muốn nó có ích, nhưng không có bảo hành gì cả, thậm chí không có bảo đảm được ngoại của chương trình này. Xem giấy phép công cộng GNU để biết thêm chi tiết.

Bạn đã nhận một bản sao của giấy phép công cộng GNU cũng với chương trình này; nếu không, hãy viết thư cho
APPENDIX F. GIẤY PHÉP CÔNG CỘNG GNU

F.3. CÁCH ÁP DỤNG ĐIỀU KIỆN NÀY CHO CÁC...

Bạn cũng nên thêm thông tin về cách liên lạc với bạn bằng cả thư bưu điện lẫn thư điện tử.

Nếu chương trình có khả năng tương tác, hãy làm cho nó xuất thông báo ngắn như sau khi nó khởi chạy ở chế độ tương tác (hãy thay thế mỗi đoạn nằm trong {dấu ngoặc móc}):

Tên chương trình phiên bản Số, Tác quyền © năm tên của tác giả
Tên chương trình không có bảo hành gì cả;
để xem chi tiết, hãy gõ lệnh show w. Đây là phần mềm tự do,
và bạn có quyền phát hành lại nó với một số điều kiện; hãy gõ
show c để xem chi tiết.

Hai lệnh “show w” và “show c” nén hiển thị các phần thích hợp của Giấy phép Công cộng GNU. Tắt nhiên, bạn có thể chọn lệnh khác thích hợp với chương trình của mình, ví dụ lệnh trong bàn điều khiển, cú nhấp con chuột hay mục trình đơn.

Bạn cũng nên yêu cầu người chủ của bạn (nếu bạn làm việc lập trình viên trong một công ty) hay trường học của bạn, nếu có, ký tên vào “đơn từ chối trách nhiệm tác quyền” về chương trình này, nếu cần. Đây là một mẫu ví dụ:

{hãy thay thế đoạn nằm trong dấu ngoặc móc}
Yoyodyne, Inc., hereby disclaims all copyright interest in the
program *Gnomovision* (which makes passes at compilers) written
by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

Giấy phép Công cộng GNU này không cho phép ai hợp nhất chương trình của bạn vào chương trình đã sở hữu. Nếu chương trình của bạn là thư viện trình con, có thể bạn muốn cho phép ứng dụng sở hữu liên kết với thư viện này. Nếu có, bạn hãy sử dụng Giấy phép Công cộng GNU Phụ (LGPL) thay vào Giấy phép này.