Debian GNU/Linux – Installationsanleitung

19. Mai 2024
Inhaltsverzeichnis

1 Willkommen bei Debian 1
 1.1 Was ist Debian? 1
 1.2 Was ist GNU/Linux? 2
 1.3 Was ist Debian GNU/Linux? 2
 1.4 Was ist der Debian-Installer? 3
 1.5 Woher bekomme ich Debian? 3
 1.6 Die neueste Version dieses Dokuments erhalten 3
 1.7 Aufbau dieses Dokuments 4
 1.8 Über Copyrights und Software-Lizenzen 4

2 Systemanforderungen 6
 2.1 Unterstützte Hardware 6
 2.1.1 Unterstützte Architekturen 6
 2.1.2 Drei verschiedene ARM-Portierungen 7
 2.1.3 Variationen beim ARM-CPU-Design und die komplexe Situation bei der CPU-Unterstützung .. 7
 2.1.4 Plattformen, die von Debian/armhf unterstützt werden 7
 2.1.5 Mehrprozessor-Systeme 9
 2.1.6 Unterstützung für Grafik-Hardware 9
 2.1.7 Hardware für Netzwerkverbindungen 9
 2.1.8 Peripherie und andere Hardware ... 9
 2.2 Hardware, die Firmware erfordert 10
 2.3 Hardware speziell für GNU/Linux kaufen 10
 2.3.1 Vermeiden Sie proprietäre oder „Closed“ Hardware .. 10
 2.4 Installationsmedien 11
 2.4.1 CD-ROM/DVD-ROM/BD-ROM 11
 2.4.2 Netzwerk .. 11
 2.4.3 Festplatten .. 11
 2.4.4 Un*x- oder GNU-System 11
 2.4.5 Unterstützte Speichersysteme 12
 2.5 Anforderungen an Arbeitsspeicher und Festplattenplatz .. 12

3 Bevor Sie Debian GNU/Linux installieren 13
 3.1 Übersicht über den Installationsverlauf 13
 3.2 Sichern Sie Ihre Daten! 14
 3.3 Benötigte Informationen 14
 3.3.1 Dokumentation 14
 3.3.1.1 Installationshandbuch 14
 3.3.1.2 Hardware-Dokumentation 14
 3.3.2 Quellen für Hardware-Informationen finden 14
 3.3.3 Hardware-Kompatibilität 15
 3.3.3.1 Testen der Hardware-Kompatibilität mittels eines Live-Systems . 16
 3.3.4 Netzwerkeinstellungen 16
 3.4 Minimale Hardware-Anforderungen 17
 3.5 Im Voraus partitionieren für eine Multiboot-Installation . 17
 3.6 Hardware- und Betriebssystem-Setup vor der Installation 18
 3.6.1 ARM-Firmware 18
 3.6.2 Durch Debian bereitgestellte U-Boot-Images (System-Firmware) 18
 3.6.3 Setzen der Ethernet-MAC-Adresse in U-Boot 18
 3.6.4 Probleme bei der Speicherzuweisung für Kernel/Initrd/Gerätebaum in U-Boot 19
Inhaltsverzeichnis

4 Systeminstallations-Medien beschaffen
- 4.1 Offizielle Debian GNU/Linux-Installations-Images ... 20
- 4.2 Dateien von einem Debian-Spiegel-Server herunterladen 20
 - 4.2.1 Wo Sie die Installationsdateien finden ... 20
 - 4.2.1.1 Installationsdateien für Armhf-Multiplattform .. 20
- 4.3 Dateien vorbereiten für TFTP-Netzwerk-Boot .. 21
 - 4.3.1 Einen RARP-Server einrichten ... 21
 - 4.3.2 Einen DHCP-Server einrichten ... 21
 - 4.3.3 Einen BOOTP-Server einrichten .. 22
 - 4.3.4 Den TFTP-Server aktivieren .. 22
 - 4.3.5 Die TFTP-Images an ihren Platz befördern ... 23
- 4.4 Automatische Installation .. 23
 - 4.4.1 Automatische Installation mit dem Debian-Installer ... 23
- 4.5 Verifizieren der Authentizität von Installationsdateien ... 23

5 Das Installationssystem booten
- 5.1 Starten des Installers auf 32-Bit Hard-float-ARMv7-Systemen 24
 - 5.1.1 Boot-Image-Formate .. 24
 - 5.1.2 Konfiguration der Konsole .. 24
 - 5.1.3 Booten per TFTP .. 24
 - 5.1.3.1 TFTP-Boot in U-Boot .. 24
 - 5.1.3.2 Vorkonfiguriertes netboot-Tarball-Archiv .. 25
 - 5.1.4 Booten von USB-Stick in U-Boot .. 26
 - 5.1.5 Verwenden von vorbereiteten (pre-built) SD-Karten-Images mit dem Installer 26
- 5.2 Barrierefreiheit .. 27
 - 5.2.1 Installer-Oberfläche (Frontend) .. 27
 - 5.2.2 Interne Boards/Karten .. 27
 - 5.2.3 Theme mit hohem Kontrast ... 27
 - 5.2.4 Zoom ... 28
 - 5.2.5 Experten-Installation, Rettungsmodus, automatisierte Installation 28
 - 5.2.6 Barrierefreiheit auf dem neu installierten System ... 28
- 5.3 Boot-Parameter .. 28
 - 5.3.1 Boot-Konsole ... 28
 - 5.3.2 Debian-Installer-Parameter ... 29
 - 5.3.3 Boot-Parameter benutzen, um Fragen automatisiert zu beantworten 31
 - 5.3.4 Parameter für Kernelmodule angeben ... 31
 - 5.3.5 Kernel-Module als gesperrt markieren .. 32
- 5.4 Beseitigen von Problemen während der Installation .. 32
 - 5.4.1 Unzuverlässigkeit von optischen Datenträgern ... 32
 - 5.4.1.1 Allgemeine Probleme ... 32
 - 5.4.1.2 Wie Sie Probleme untersuchen und vielleicht auch lösen 32
 - 5.4.2 Boot-Konfiguration ... 34
 - 5.4.3 Die Startmeldungen des Kernels deuten ... 34
 - 5.4.4 Installationsprobleme berichten .. 34
 - 5.4.5 Installationsberichte einschicken ... 34

6 Den Debian-Installer verwenden
- 6.1 Wie der Installer funktioniert .. 36
- 6.2 Einführung in die Komponenten .. 37
- 6.3 Die einzelnen Komponenten ... 38
 - 6.3.1 Den Debian-Installer einrichten und Konfiguration der Hardware 38
 - 6.3.1.1 Verfügbaren Arbeitsspeicher prüfen / Low-Memory-Modus 38
 - 6.3.1.2 Lokalisierungsoptionen auswählen ... 39
 - 6.3.1.3 Auswahl der Tastaturbelegung .. 40
 - 6.3.1.4 Das ISO-Image des Debian-Installers suchen ... 40
 - 6.3.1.5 Netzwerkconfiguration ... 40
 - 6.3.1.5.1 Automatische Konfiguration .. 40
 - 6.3.1.5.2 Manuelle Konfiguration .. 41
 - 6.3.1.5.3 IPv4 und IPv6 ... 41
INHALTSVERZEICHNIS

6.3.2 Benutzerzugänge und Passwörter einrichten ... 41
 6.3.2.1 Das root-Passwort setzen ... 41
 6.3.2.2 Einen normalen Benutzer anlegen .. 42

6.3.3 Konfiguration der Uhr und Zeitzone ... 42

6.3.4 Partitionierung und Auswahl der Einbindungspunkte im Dateisystem 42
 6.3.4.1 Unterstützte Partitionierungsvarianten .. 42
 6.3.4.2 Manuelle Partitionierung ... 45
 6.3.4.3 „Multidisk Devices“ (Software-RAID) konfigurieren 45
 6.3.4.4 Den „Logical Volume Manager“ (LVM) konfigurieren 48
 6.3.4.6 Verschlüsselte Dateisysteme konfigurieren 49

6.3.5 Installation des Basissystems .. 51

6.3.6 Installation zusätzlicher Software .. 52
 6.3.6.1 apt konfigurieren ... 52
 6.3.6.1.1 Von mehr als einem CD/DVD-Image installieren 52
 6.3.6.1.2 Einen Internet-Spiegel-Server verwenden 53
 6.3.6.1.3 Auswahl eines Netzwerk-Spiegel-Servers 54
 6.3.6.2 Software auswählen und installieren .. 54

6.3.7 Ihr System boot-fähig machen ... 55
 6.3.7.1 Andere Betriebssysteme erkennen ... 55
 6.3.7.2 Das System mit flash-kernel boot-fähig machen 56
 6.3.7.3 Ohne Bootloader fortfahren ... 56

6.3.8 Die Installation beenden ... 56
 6.3.8.1 Die Systemuhr stellen .. 56
 6.3.8.2 Den Rechner neu starten ... 56

6.3.9 Fehlersuche/-behebung .. 56
 6.3.9.1 Die Protokolldatei der Installation sichern ... 56
 6.3.9.2 Verwenden der Shell und Auswerten der Protokolldateien 57

6.3.10 Installation über die Netzwerk-Konsole .. 57

6.4 Fehlende Firmware nachladen ... 59
 6.4.1 Einen Datenträger vorbereiten .. 59
 6.4.2 Firmware und das zu installierende System .. 59
 6.4.3 Das installierte System vervollständigen .. 60

6.5 Anpassungen .. 60
 6.5.1 Installation eines alternativen Init-Systems .. 60

7 Das neue Debian-System starten .. 61
 7.1 Der Moment der Wahrheit ... 61
 7.2 Verschlüsselte Dateisysteme einbinden ... 61
 7.2.1 Fehlersuche und -behebung ... 62
 7.3 Anmelden ... 62

8 Die nächsten Schritte und welche Seiten Sie noch besuchen sollten 64
 8.1 Das System herunterfahren .. 64
 8.2 Sich in Debian orientieren .. 64
 8.2.1 Das Debian-Paketsystem ... 64
 8.2.2 Zusätzliche Software, die für Debian verfügbar ist 65
 8.2.3 Programmversions-Verwaltung .. 65
 8.2.4 Cron-Job-Management (zeitgesteuerte Aufgaben) 65
 8.3 Wo Sie weiter lesen sollten – zusätzliche Informationen 65
 8.4 Das System zur E-Mail-Nutzung einrichten ... 65
 8.4.1 Standard-E-Mail-Konfiguration .. 66
 8.4.2 E-Mails nach außerhalb verschicken .. 66
 8.4.3 Den Mail-Transport-Agent Exim4 konfigurieren 66
 8.5 Einen neuen Kernel kompilieren ... 67
 8.6 Ein beschädigtes System reparieren ... 67
INHALTSVERZEICHNIS

A Installations-HowTo 69
 A.1 Einleitung .. 69
 A.2 Den Installer booten 69
 A.2.1 Optische Disks (CD/DVD) 69
 A.2.2 Über das Netzwerk booten 69
 A.2.3 Von Festplatte starten 69
 A.3 Installation .. 70
 A.4 Schicken Sie uns einen Installationsbericht 71
 A.5 Zu guter Letzt .. 71

B Automatisieren der Installation mittels Voreinstellung 72
 B.1 Einführung .. 72
 B.1.1 Verschiedene Methoden der Voreinstellung 72
 B.1.2 Einschränkungen 73
 B.2 Voreinstellung nutzen 73
 B.2.1 Die Voreinstellungsdatei laden 73
 B.2.2 Boot-Parameter nutzen, um Fragen automatisiert zu beantworten 74
 B.2.3 Auto-Modus ... 75
 B.2.4 Für Voreinstellung nützliche Aliase 76
 B.2.5 Beispiele für Voreinstellung via Boot-Prompt-Zeile ... 76
 B.2.6 Voreinstellungsdateien mittels eines DHCP-Servers festlegen .. 77
 B.3 Eine Voreinstellungsdatei erstellen 77
 B.4 Inhalt der Voreinstellungsdatei (für Bookworm) 78
 B.4.1 Lokalisierung 78
 B.4.2 Netzwerkconfiguration 79
 B.4.3 Netzwerk-Konsole 81
 B.4.4 Einstellungen für den Spiegel-Server 81
 B.4.5 Einrichtung von Benutzerzugängen 81
 B.4.6 Einrichtung von Uhr und Zeitzone 82
 B.4.7 Partitionierung 83
 B.4.7.1 Partitionierungsbispiel 83
 B.4.7.2 Partitionierung mit RAID 85
 B.4.7.3 Festlegen, wie Partitionen eingebunden werden ... 86
 B.4.8 Installation des Basisystems 86
 B.4.9 Konfiguration von Apt 87
 B.4.10 Paketauswahl 88
 B.4.11 Die Installation beenden 88
 B.4.12 Voreinstellung anderer Pakete 89
 B.5 Erweiterte Optionen 89
 B.5.1 Während der Installation eigene Kommandos ausführen 89
 B.5.2 Voreinstellung nutzen, um Standardantworten auf Fragen zu ändern 89
 B.5.3 Mehrere Voreinstellungsdateien nacheinander laden 90

C Partitionieren für eine Debian-Installation 91
 C.1 Anzahl und Größe der Debian-Partitionen 91
 C.2 Der Verzeichnisbaum 91
 C.3 Empfohlene Partitionsschemata 92
 C.4 Gerätebezeichnungen unter Linux 93
 C.5 Debian-Partitionierungsprogramme 93

D Verschiedenes 94
 D.1 Linux-Geräte .. 94
 D.1.1 Einrichten der Maus 94
 D.2 Festplattenplatz, der für die Programmgruppen benötigt wird 95
 D.3 Debian GNU/Linux von einem anderen Unix/Linux-System aus installieren 96
 D.3.1 Es geht los! 96
 D.3.2 debootstrap installieren 97
 D.3.3 Starten Sie debootstrap 97
 D.3.4 Das Basisystem konfigurieren 97
INHALTSVERZEICHNIS

D.3.4.1 Gerätedateien erzeugen .. 98
D.3.4.2 Partitionen einbinden ... 98
D.3.4.3 Die Zeitzone setzen ... 99
D.3.4.4 Das Netzwerk konfigurieren ... 99
D.3.4.5 Apt konfigurieren .. 100
D.3.4.6 Das Gebietsschema (Locales) konfigurieren 100
D.3.5 Einen Kernel installieren .. 101
D.3.6 Den Bootloader einrichten .. 101
D.3.7 Fernzugriff: Installation von SSH und Einrichten eines Zugangs 101
D.3.8 Zum Schluss ... 101
D.4 Debian GNU/Linux unter Verwendung von PPP over Ethernet (PPPoE) installieren ... 102

E Administratives .. 103
E.1 Über dieses Dokument .. 103
E.2 An diesem Dokument mithelfen .. 103
E.3 Wesentliche Beiträge zu diesem Handbuch 103
E.4 Anerkennung der Warenzeichen .. 104

F GNU General Public License (Allgemeine Öffentliche GNU-Lizenz, GNU GPL) 105
F.1 Vorwort ... 105
F.2 Deutsche Übersetzung der GNU GENERAL PUBLIC LICENSE 106
F.3 Wie Sie diese Bedingungen auf Ihre eigenen, neuen Programme anwenden können .. 109
3 Bevor Sie Debian GNU/Linux installieren
 3.1 Zur Installation hilfreiche Hardware-Informationen 15
 3.2 Empfohlene minimale Systemanforderungen 17
Zusammenfassung

Dieses Dokument enthält Anweisungen zur Installation von Debian GNU/Linux 12 (Codename BOOKWORM) für die 32-Bit Hard-float-ARMv7-Architektur („armhf“). Es enthält auch Verweise auf andere Informationsquellen sowie Tipps, wie Sie das Beste aus Ihrem neuen Debian-System machen.

Deutsche Übersetzung von Holger Wansing und anderen. Senden Sie Vorschläge oder Hinweise auf Fehler in dieser Übersetzung an debian-l10n-german@lists.debian.org.
Debian GNU/Linux 12 installieren auf armhf-Systemen

Wir freuen uns, dass Sie sich entschieden haben, Debian auszuprobieren; Sie werden feststellen, dass Debians GNU/Linux-Distribution einzigartig ist. Debian GNU/Linux vereint hochqualitative, freie Software aus aller Welt in einem schlüs sigen Gesamtkonzept. Wie wir glauben, werden Sie feststellen, dass das Ergebnis durchaus mehr ist als die Summe der einzelnen Teile.

Wir können verstehen, dass viele von Ihnen Debian installieren möchten, ohne dieses Handbuch zu lesen, und der Debian-Installer ist dafür ausgelegt, dies zu ermöglichen. Falls Sie jetzt nicht die Zeit haben, das ganze Handbuch zu studieren, empfehlen wir, dass Sie das Installations-HowTo lesen; es wird Sie durch den grundlegenden Installationsprozess begleiten und enthält Querverweise ins Handbuch für ausführlichere Themen und für den Fall, dass etwas schief läuft. Sie finden es im Anhang A.

Nachdem dies gesagt wurde, hoffen wir, dass Sie trotzdem die Zeit finden, dieses Handbuch (zumindest größtenteils) zu lesen; dies könnte zu einem sachkundigen und hoffentlich erfolgreichen Installationsverlauf verhelfen.
Kapitel 1

Willkommen bei Debian

Dieses Kapitel bietet eine Übersicht über das Debian-Projekt und Debian GNU/Linux. Wenn Sie die Geschichte des Debian-Projekts und der Debian GNU/Linux-Distribution bereits kennen, können Sie dies ruhig überspringen und beim nächsten Kapitel weiterlesen.

1.1 Was ist Debian?

Im Interesse, unsere Philosophie zu erklären und Entwickler zu gewinnen, die an die Prinzipien glauben, für die Debian steht, hat das Debian-Projekt einige Dokumente publiziert, die einen Überblick über unsere Werte geben und als Richtliniendafürgelten,wesheißt,ein Debian-Entwickler zu sein:

- Die Debian-Richtlinien für Freie Software (Debian Free Software Guidelines; DFSG) sind eine klare und präzise Auflistung von Debians Kriterien für Freie Software. Die DFSG ist ein sehr einflussreiches Dokument in der Freie-Software-Bewegung und war die Grundlage der Open-Source-Definition.

- Das Debian Policy Handbuch ist eine ausführliche Beschreibung der Qualitätsstandards des Debian-Projekts.

Debian-Entwickler sind auch in einigen anderen Projekten eingebunden; einige davon sind spezifisch für Debian, andere betreffen teilweise oder gänzlich die Linux-Community. Einige Beispiele:

- Der Filesystem Hierarchy Standard (FHS) ist ein Versuch, den Aufbau des Linux-Dateisystems zu standardisieren. Der FHS erlaubt Software-Entwicklern, sich auf ihre Aufgabe - dem Design von Programmen - zu konzentrieren, ohne sich darum sorgen zu müssen, wie das Paket auf verschiedenen GNU/Linux-Distributionen installiert wird.

- Debian Jr. ist ein internes Projekt, das gewährleisten soll, dass Debian selbst unseren jüngsten Nutzern etwas zu bieten hat.

Für allgemeinere Informationen über Debian lesen Sie die Debian FAQ.
1.2 Was ist GNU/Linux?

GNU/Linux ist ein Betriebssystem - eine Reihe von Programmen, die es Ihnen ermöglichen, mit Ihrem Computer zu interagieren und andere Programme laufen zu lassen.

Die Entwicklung dessen, was später GNU/Linux wurde, begann 1984, als die Free Software Foundation die Entwicklungeinesfreien,Unix-ähnlichenBetriebssystemennamens GNU startete. Das GNU-Projekt hat eine umfassende Sammlung von freien Software-Werkzeugen zur Verwendung mit Unix™ und Unix-ähnlichen Betriebssystemen wie GNU/Linux entwickelt. Diese Werkzeuge ermöglichen Benutzern, sowohl profane Aufgaben (wie das Kopieren oder Löschen von Dateien aus dem System) als auch höhere Aufgaben (wie das Schreiben und Kompilieren von Programmen oder das anspruchsvolle Bearbeiten einer Reihe von Dokumentenformaten) zu bewältigen.

Während viele Gruppen und Einzelpersonen etwas zu GNU/Linux beigetragen haben, ist der größte einzelne Mitwirkende nachwiev der Free Software Foundation, die nicht nur die meisten der unter GNU/Linux verwendeten Werkzeuge geschaffen hat, sondern auch die Philosophie und die Gemeinschaft, die GNU/Linux ermöglicht haben.

Debian GNU/Linux-Benutzer haben eine enorme Freiheit bei der Auswahl ihrer Software. Zum Beispiel können sie aus einem Dutzend verschiedener Kommandozeilen-Interpreter und einigen grafischen Desktop-Oberflächen auswählen. Diese Auswahl ist oftmals verwirrend für Benutzer anderer Betriebssysteme, die es nicht gewohnt sind, dass die Kommandozeile oder der Desktop austauschbar sind.

GNU/Linux ist auch weniger absturzgefährdet, besser dazu geeignet, mehr als ein Programm gleichzeitig auszuführen, und sicherer als viele andere Betriebssysteme. Mit diesen Vorteilen ist Linux das am schnellsten wachsende Betriebssystem am Servermarkt. In letzter Zeit wird Linux auch bei Heim- und Businessanwendern immer beliebter.

1.3 Was ist Debian GNU/Linux?

Zum Beispiel war Debian die erste Linux-Distribution, die ein Paketverwaltungsprogramm zur einfachen Installation und Deinstallation von Software beinhaltete. Es war auch die erste Linux-Distribution, die für ein System-Upgrade
KAPITEL 1. WILLKOMMEN BEI DEBIAN

1.4. WAS IST DER DEBIAN-INSTALLER?

(Betriebssystemhochrüstung) keine Neuinstallation erforderte.

Die primäre und beste Methode, Unterstützung für Ihr Debian GNU/Linux-System zu erhalten und mit Debian-Entwicklern zu kommunizieren, sind die vom Debian-Projekt verwalteten Mailinglisten (während dieses Dokument geschrieben wurde, gab es mehr als 327 davon). Der einfachste Weg, sich bei einer oder mehreren davon einzutragen, besteht im Besuch von Debi ans Mailinglisten-Abo-Abonnement-Website und dem Ausfüllen des dort bereitgestellten Formulars.

1.4 Was ist der Debian-Installer?

Weitere Informationen finden Sie auf der Webseite des Installers, im Debian Wiki sowie auf der debian-boot Mailingliste.

1.5 Woher bekomme ich Debian?

Wie Sie Debian GNU/Linux aus dem Internet herunterladen oder wo Sie offizielle Debian Installationsmedien kaufen können, lesen Sie auf der Webseite "Debian besorgen". Anhand der vollständigen Liste von Debian-Spiegel-Servern können Sie leicht den Server finden, der Ihrem Standort am nächsten ist.

Debian kann nach der Installation sehr einfach auf den aktuellsten Stand gebracht werden. Der Installer hilft beim Einrichten des Paket systems, so dass Aktualisierungen bei Bedarf nach Abschluß der Installation durchgeführt werden können.

1.6 Die neueste Version dieses Dokuments erhalten

1.7 Aufbau dieses Dokuments

Dieses Dokument ist als Handbuch für neue Debian-Benutzer gedacht. Es versucht, so wenig Annahmen wie möglich über die Menge Ihrer Erfahrungen zu machen. Es wird jedoch angenommen, dass Sie eine allgemeine Ahnung davon haben, wie die Hardware in Ihrem Computer funktioniert.

Erfahrene Benutzer können auch interessante Referenzinformationen in diesem Dokument finden, darunter die minimalen Installationsanforderungen, Details über die vom Debian-Installationssystem unterstützte Hardware usw. Wir ermuntern erfahrene Benutzer, in diesem Dokument Passagen nach Belieben zu überspringen.

Im Allgemeinen ist dieses Handbuch linear aufgebaut und führt Sie von Anfang bis Ende durch den Installationsprozess. Hier die Schritte zur Installation von Debian GNU/Linux und die Abschnitte dieses Dokuments, die den jeweiligen Schritten entsprechen:

1. Feststellen, ob Ihre Hardware den Anforderungen zur Verwendung des Installationssystems entspricht, in Kapitel 2 beschrieben.

2. Sichern Sie Ihr System, führen Sie alle notwendigen Planungen und Hardware-Konfigurationen durch, bevor Sie Debian installieren, wie in Kapitel 3 näher erläutert. Wenn Sie ein Multi-Boot-System vorbereiten, müssen Sie möglicherweise freien Speicherplatz auf Ihrer Festplatte für Debian bereitstellen, der dann neu partitioniert werden kann.

3. In Kapitel 4 wird beschrieben, wie Sie sich für Ihre Installationsmethode notwendigen Dateien beschaffen.

4. Im nächsten Kapitel 5 ist das Booten des Installationssystems beschrieben. Dort werden auch Problemlösungen behandelt, falls Sie mit diesem Schritt Probleme haben.

5. Durchführen der eigentlichen Installation gemäß Kapitel 6. Das beinhaltet die Auswahl Ihrer Sprache, die Konfiguration von Treibermodulen für die Peripherie, die Konfiguration der Netzwerkverbindung (so dass noch benötigte Installationsdateien von einem Debian-Server heruntergeladen werden können, sofern Sie nicht von CD/DVD-Images installieren), die Partitionierung der Festplatten und die Installation eines Basissystems. (Einige Hintergrundinformationen über das Einrichten der Partitionen für Ihr Debian-System werden in Anhang C gegeben.) Danach die Auswahl und Installation von Programmgruppen.

6. Starten Sie Ihr neu installiertes Betriebssystem, wie in Kapitel 7 beschrieben.

Haben Sie das System installiert, können Sie Kapitel 8 lesen. Dieses Kapitel erklärt, wo Sie nach mehr Informationen über Unix und Debian suchen und Ihren Kernel durch eine neuere Version ersetzen können.

Informationen über dieses Dokument und wie Sie daran mitwirken können finden Sie schließlich im Anhang E.

1.8 Über Copyrights und Software-Lizenzen

Software frei zu nennen heißt nicht, dass die Software nicht urheberrechtlich geschützt ist, und es heißt auch nicht, dass die Installationsmedien, die diese Software enthalten, gratis verbreitet werden müssen. Freie Software heißt einmal, dass für die Verbreitung oder Verwendung dieser Programme der Lizenz nach nichts bezahlt werden muss. Freie Software bedeutet ebenfalls, dass jeder die Software erweitern, adaptieren und verändern sowie auch die Ergebnisse seiner Arbeit verbreiten darf.
ANMERKUNG

Das Debian-Projekt stellt als pragmatisches Zugeständnis an seine Benutzer auch einige Pakete zur Verfügung, die nicht unseren Kriterien für freie Software entsprechen. Diese Pakete sind jedoch nicht Teil der offiziellen Distribution, und sie sind nur in den **contrib**- oder **non-free**-Bereichen der Debian-Spiegel-Server oder auf Third-Party CD/DVD-ROMs (CDs/DVDs aus „dritter Hand“, keine offiziellen Debian-CDs/DVDs) verfügbar; der Abschnitt „Die Debian FTP-Archive“ der Debian GNU/Linux-FAQ enthält zusätzliche Informationen über den Aufbau und den Inhalt dieser Archive.

Viele der Programme im System stehen unter der **GNU General Public License**, oftmals auch einfach „die GPL“ genannt. Die GPL erfordert, den Quellcode der Programme verfügbar zu machen, wann immer eine binäre Kopie des Programms verbreitet wird; diese Bestimmung der Lizenz stellt sicher, dass jeder Benutzer die Möglichkeit hat, die Software zu modifizieren. Auf Grund dieser Bestimmung ist der Quellcode¹ für all solche Programme im Debian-System verfügbar.

Es gibt einige andere Formen von Copyright-Bestimmungen und Software-Lizenzen, die für Programme in Debian verwendet werden. Sie können die Copyrights und Lizenzen für jedes auf Ihrem System installierte Paket in der Datei `/usr/share/doc/paketname/copyright` finden, wenn das Paket installiert ist.

Für weitere Informationen über Lizenzen und die Entscheidungsfindung von Debian, ob Software frei genug ist, um in die Hauptdistribution aufgenommen zu werden, lesen Sie die Debian-Richtlinien für Freie Software (DFSG).

Der wichtigste rechtliche Hinweis ist, dass es für diese Software **keine Garantie** gibt. Die Programmierer, die diese Programme entwickelt haben, haben das zum Nutzen der Gemeinschaft (der „Community“) getan. Es wird keine Garantie gegeben, was die Eignung der Software für irgendeinen Zweck betrifft. Da die Software jedoch frei ist, wird Ihnen gestattet, sie Ihren Bedürfnissen anzupassen – und die Vorteile der Änderungen auszunutzen, welche andere durchgeführt haben, die die Software auf dieselbe Art verändert haben.

¹Für Informationen zum Finden, Entpacken und Bauen von Binärdateien aus Debian-Quellpaketen lesen Sie den Abschnitt „Grundlagen des Debian-Paketverwaltungssystems“ der Debian GNU/Linux-FAQ.
Kapitel 2

Systemanforderungen

Dieser Abschnitt informiert über die benötigte Hardware, um Debian zum Laufen zu bringen. Sie finden ebenso Verweise zu weiteren Informationen über Hardware, die von GNU und Linux unterstützt wird.

2.1 Unterstützte Hardware

Dieser Abschnitt versucht nicht, all die verschiedenen Hardware-Konfigurationen zu erläutern, die auf der 32-Bit Hard-float-ARMv7-Architektur unterstützt werden, sondern bietet vielmehr allgemeine Informationen und Verweise, wo zusätzliche Informationen zu finden sind.

2.1.1 Unterstützte Architekturen

Debian GNU/Linux 12 unterstützt 9 Haupt-Architekturen und einige Variationen dieser Architekturen, auch als „Flavours“ bekannt:

<table>
<thead>
<tr>
<th>Architektur</th>
<th>Debian-Bezeichnung</th>
<th>Unterarchitektur</th>
<th>Flavour</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD64 & Intel 64</td>
<td>amd64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel x86-basiert</td>
<td>i386</td>
<td>Standard-x86-Maschinen</td>
<td>default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nur für Xen PV-Domains</td>
<td>xen</td>
</tr>
<tr>
<td>ARM</td>
<td>armel</td>
<td>Marvell Kirkwood und Orion</td>
<td>marvell</td>
</tr>
<tr>
<td>ARM mit Hardware-Fließkommaeinheit</td>
<td>armhf</td>
<td>Multiplattform</td>
<td>armmmp</td>
</tr>
<tr>
<td>64-Bit ARM</td>
<td>arm64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64-Bit MIPS (Little-Endian)</td>
<td>mips64el</td>
<td>MIPS Malta</td>
<td>5kc-malta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loongson 3</td>
<td>loongson-3</td>
</tr>
<tr>
<td>32-Bit MIPS (Little-Endian)</td>
<td>mipsel</td>
<td>MIPS Malta</td>
<td>4kc-malta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loongson 3</td>
<td>loongson-3</td>
</tr>
<tr>
<td>Power Systems</td>
<td>ppc64el</td>
<td>IBM POWER8 oder neuer</td>
<td></td>
</tr>
<tr>
<td>64-Bit IBM S/390</td>
<td>s390x</td>
<td>IPL von VM-Reader und DASD</td>
<td>generic</td>
</tr>
</tbody>
</table>

Dieses Dokument umfasst die Installation für die 32-Bit Hard-float-ARMv7-Architektur bei Verwendung des Linux-Kernels. Wenn Sie Informationen über eine der anderen von Debian unterstützten Architekturen suchen, besuchen
2.1.2 Drei verschiedene ARM-Portierungen

Die ARM-Architektur hat sich über die Zeit weiterentwickelt und moderne ARM-Prozessoren bieten Funktionalitäten, die in älteren Modellen nicht verfügbar waren. Debian bietet daher drei ARM-Portierungen an, um aus einem breiten Spektrum verschiedener Maschinen das beste herauszuziehen:

- Debian/armel zielt auf ältere 32-Bit ARM-Prozessoren ohne eigene Hardware-Fließkommamaineinheit (FPU) ab;
- Debian/armhf läuft nur auf neueren 32-Bit ARM-Prozessoren, die mindestens die ARMv7-Architektur mit Version 3 der ARM-Vektor-Fließkomma-Spezifikation (VFPv3) implementieren. Debian/armhf nutzt die erweiterten Funktionalitäten und Performance-Steigerungen, die bei diesen Modellen möglich sind.
- Debian/arm64 läuft auf 64-Bit ARM-Prozessoren, die mindestens die ARMv8-Architektur implementieren.

Technisch gesehen können alle derzeit verfügbaren ARM-CPU's in einem der beiden Endian-Modi (Big-Endian oder Little-Endian) betrieben werden, in der Praxis verwendet aber die große Mehrheit der derzeit verfügbaren System den Little-Endian-Modus. Alle drei ARM-Portierungen (Debian/arm64, Debian/armhf und Debian/armel) unterstützen nur Little-Endian-Systeme.

2.1.3 Variationen beim ARM-CPU-Design und die komplexe Situation bei der CPU-Unterstützung

ARM-Systeme sind erheblich verschiedenartiger als die i386-/amd64-basierte PC-Architektur, daher kann die Situation bei der Unterstützung der CPUs deutlich komplizierter sein.

Die ARM-Architektur wird hauptsächlich in sogenannten „Systems-on-Chip“ (SoC - ein komplettes System auf einem einzigen Chip) verwendet. Diese SoCs werden von vielen verschiedenen Herstellern mit sich erheblich unterscheidenden Hardware-Komponenten (und dies sogar z.B. bei grundlegenden Funktionalitäten, die benötigt werden, um das System zu starten) entwickelt. Es wurde in der Vergangenheit viel daran gearbeitet, die Schnittstellen zur System-Firmware zu standardisieren, aber speziell auf älterer Hardware variieren die Firmware- und Boot-Schnittstellen teilweise erheblich, daher muss sich der Linux-Kernel bei ARM-Systemen um viele spezifische Themen auf der niedrigsten Hardware-Ebene kümmern, die in der PC-Welt vom BIOS/UEFI des Mainboards abgewickelt werden.

2.1.4 Plattformen, die von Debian/armhf unterstützt werden

Folgende Systeme funktionieren bekanntermaßen mit Debian/armhf unter Verwendung des Multiplattform-Kernels (armmp):

- Freescale MX53 Quickstart-Board (MX53-LOCO-Board) Das IMX53QSB ist ein Entwickler-Board, das auf dem i.MX53 System-on-Chip beruht.
- Versatile Express Das Versatile Express ist eine Entwickler-Board-Serie von ARM und besteht aus einer Basisplatine, die mit verschiedenen CPU-Schwester-Platinen ausgerüstet werden können.
- Certain Allwinner sunXi-basierte Entwickler-Boards und eingebettete (embedded) Systeme Der armmp-Kernel unterstützt mehrere Entwicklung-Boards und eingebettete Systeme, die auf den SoCs Allwinner A10 (Architektur-Codename „sun4i“), A10s/A13 (Architektur-Codename „sun5i“), A20 (Architektur-Codename „sun7i“), A31/A31s (Architektur-Codename „sun6i“) und A23/A33 (Teil der „sun8i“-Familie) basieren. Volle Installer-Funktionalität (inklusive der Beistellung von gebrauchsfertigen SD-Karten-Images mit dem Installer) ist derzeit für folgende sunXi-basierte Systeme verfügbar:
 - Cubietech Cubieboard 1 + 2 / Cubietruck
 - LeMaker Banana Pi und Banana Pro
LinkSprite pcDuino und pcDuino3
Olimex A10-Olinuxino-LIME / A20-Olinuxino-LIME / A20-Olinuxino-LIME2 / A20-Olinuxino Micro / A20-SOM-EVB
Xunlong Orange Pi Plus

Fest eingebauter Flash-Speicher, der als Massenspeicher genutzt werden kann, existiert auf sunXi-basierten Systemen grundsätzlich in zwei verschiedenen Basisvarianten: als reiner NAND-Flash- oder als eMMC-Flash-Speicher. Die meisten älteren sunXi-basierten Boards mit fest eingebauten Flash-Speicher nutzen reinen NAND-Flash, für den im Mainline-Kernel - und daher auch in Debian - grundsätzlich keine Unterstützung vorhanden ist. Ein Reihe neuerer Systeme nutzt stattdessen eMMC-Flash-Speicher. Solch ein Speicher erscheint im Prinzip als schnelle, fest eingebaute SD-Karte und wird genauso wie reguläre SD-Karten unterstützt.

Der Installer enthält prinzipiell auch Unterstützung für einige sunXi-basierte Systeme, die oben nicht aufgeführt sind, allerdings ist dies überwiegend ungetestet, da das Debian-Projekt keinen Zugriff auf die entsprechende Hardware hat. Für solche Systeme stellen wir daher keine gebrauchsfertigen SD-Karten-Images bereit. Dazu gehören folgende Development-Boards:

- Olimex A10s-Olinuxino Micro / A13-Olinuxino / A13-Olinuxino Micro
- Sinovoip BPI-M2 (A31s-based)
- Xunlong Orange Pi (A20-based) / Orange Pi Mini (A20-based)

Zusätzlich zu den oben genannten SoCs und Systemen enthält der Installer sehr reduzierte Unterstützung für das Allwinner H3-SoC und darauf basierende Systeme. Unterstützung im Mainline-Kernel für H3-Systeme ist zu der Zeit des Freezes für Debian 9 noch überwiegend in den Anfängen, so dass der Installer hier derzeit nur die serielle Konsole, MMC-/SD-Karten und den USB-Host-Controller unterstützt. Es gibt noch keinen Treiber für den Onboard-Ethernet-Port auf H3-Systemen, daher ist eine Netzwerkkommunikation nur über einen USB-Ethernet-Adapter oder einen USB-Wifi-Stick möglich. Zu H3-Systemen mit solch reduzierter Installer-Unterstützung gehören:

- FriendlyARM NanoPi NEO
- Xunlong Orange Pi Lite / Orange Pi One / Orange Pi PC / Orange Pi PC Plus / Orange Pi Plus / Orange Pi Plus 2E / Orange Pi 2

NVIDIA Jetson TK1
Das NVIDIA Jetson TK1 ist ein Developer-Board, das auf dem Tegra K1-Chip (auch bekannt als Tegra 124) basiert. Der Tegra K1 enthält eine Quad-core 32-Bit ARM Cortex-A15 CPU und eine Kepler GPU (GK20A) mit 192 CUDA-Kernen. Andere Systeme, die auf dem Tegra 124 basieren, könnten auch von Debian unterstützt sein.

Seagate Personal Cloud und Seagate NAS
Seagate Personal Cloud und Seagate NAS sind NAS-Geräte basierend auf Marvells Armada 370-Plattform. Debian unterstützt Personal Cloud (SRN21C), Personal Cloud 2-Bay (SRN22C), Seagate NAS 2-Bay (SRPD20) und Seagate NAS 4-Bay (SRPD40).

SolidRun Cubox-i2eX / Cubox-i4Pro

Grundsätzlich erlaubt die ARM-Multiplattform-Unterstützung im Linux-Kernel, den debian-installer auch auf Systemen laufen zu lassen, die hier nicht explizit aufgeführt sind, solange der vom debian-installer genutzte Kernel Unterstützung für die Systemkomponenten des Zielsystems hat und eine Gerätebaum-Datei dafür vorhanden ist. In diesen Fällen kann der Installer normalerweise eine ordnungsgemäße Installation durchführen, aber möglicherweise kann das System nicht automatisch boot-fähig gemacht werden, da dies in vielen Fällen gerätespezifische Informationen erfordert.

Wenn Sie den debian-installer auf solchen Systemen einsetzen, müssen Sie das System am Ende der Installation von Hand boot-fähig machen, z.B. indem Sie die erforderlichen Befehle in einer innerhalb des debian-installer gestarteten Shell ausführen.

2.1.5 Mehrprozessor-Systeme

2.1.6 Unterstützung für Grafik-Hardware

Nahezu alle ARM-Maschinen haben die Grafik-Hardware fest eingebaut, und nicht als Erweiterungskarte. Es gibt Systeme mit Erweiterungssteckplätzen, die auch Grafikkarten aufnehmen können, aber diese sind eher Raritäten. Hardware, die entwickelt wurde, um komplett ohne eine lokale Grafikanzeige zu arbeiten, ist hier eher die Regel. Während eine Basis-Grafikfunktionalität über Framebuffer (durch den Kernel bereitgestellt) auf allen Geräten, die Grafik-Hardware haben, funktionieren sollte, benötigt 3D-Grafik ausnahmslos Binärtreiber. Die Situation ändert sich hier sehr schnell, aber zur Zeit der Freigabe von Bookworm sind freie Treiber für nouveau (Nvidia Tegra-K1-SoC) und freedreno (Qualcomm Snapdragon-SoCs) in der Veröffentlichung enthalten. Andere Hardware benötigt nicht-freie Treiber von Drittanbietern.

2.1.7 Hardware für Netzwerkverbindungen

Nahezu alle Netzwerkarten (NIC), die vom Linux-Kernel unterstützt werden, sollten auch vom Installationssystem unterstützt werden; Treiber werden normalerweise automatisch geladen.

Auf 32-Bit Hard-float-ARMv7-Systemen werden die meisten integrierten (Onboard-) Ethernet-Schnittstellen unterstützt und für zusätzliche PCI- und USB-Geräte werden Module angeboten.

2.1.8 Peripherie und andere Hardware

2.2 Hardware, die Firmware erfordert

Neben der Verfügbarkeit eines Gerätetreibers erfordern einige Geräte zusätzlich sogenannte Firmware (oder Microcode), die in das Gerät geladen werden muss, damit es funktioniert. Dies ist überwiegend bei Netzwerk­karten (speziell für Drahtlos-Netzwerke/Wireless-LAN) üblich, aber es gibt zum Beispiel auch USB-Geräte und sogar einige Festplatten-Controller, die Firmware erfordern.

Bei vielen Grafikkarten sind die Grundfunktionen auch ohne zusätzliche Firmware verfügbar, aber erweiterte Funktionalitäten erfordern es, dass passende Firmware in das System geladen wird.

Auf vielen älteren Geräten, die Firmware zum Betrieb erforderten, war die Firmware durch den Hersteller fest in einem EEPROM-/Flash-Chip auf der Karteselbst abgelegt. Heutzutage haben neue Geräte die Firmware nicht mehr auf diese Weise integriert, so dass die Firmware-Datei von dem Betriebssystem des Rechners bei jedem Systemstart in das Gerät geladen werden muss.

In den meisten Fällen ist Firmware im Sinne der Kriterien des Debian GNU/Linux-Projekts nicht frei und kann deshalb nicht in die Hauptdistribution integriert werden. Wenn der Gerätetreiber selbst in der Distribution enthalten ist und falls Debian GNU/Linux die Firmware legal weiterverteilen darf, ist sie trotzdem oft nur als separates Paket im non-free-firmware-Bereich des Archivs (vor Debian GNU/Linux 12.0: in non-free) verfügbar.

Allerdings bedeutet das nicht, dass solche Hardware nicht während der Installation genutzt werden kann. Beginnend mit Debian GNU/Linux 12.0 und gemäß dem Allgemeinen Beschluss in 2022 über nicht-freie Firmware können offizielle Installations-Images nicht-freie Firmware-Pakete enthalten. In der Standardeinstellung wird der debian-installer erforderliche Firmware (basierend auf Kernel-Protokollen und modalias-Informationen) de­tektieren und die entsprechenden Pakete installieren, wenn Sie auf dem Installationsmedium gefunden werden (z.B. auf einem netinst-Image). Der Paketmanager wird automatisch mit den passenden Archiv-Bereichen konfiguriert, so dass solche Firmware-Pakete auch Sicherheits-Updates erhalten. Im allgemeinen bedeutet das, dass in der Konfigu­ration zusätzlich zu main auch der Bereich non-free-firmware aktiviert wird.

Benutzer, die die Suche nach Firmware vollständig deaktivieren möchten, können dies erreichen, indem Sie den Boot-Parameter firmware=never angeben. Dies ist ein Alias für die längere Form hw-detect/firmware-lookup=never.

Solange die Suche nach Firmware nicht deaktiviert wird, unterstützt der debian-installer auch noch die Möglichkeit, Firmware-Dateien oder -Pakete von einem Wechseldatenträger (wie einem USB-Stick) nachzuladen. Abschnitt 6.4 enthält detaillierte Informationen, wie Sie die Firmware während der Installation laden können. Beachten Sie aber, dass es jetzt, wo die Installations-Images nicht-freie Firmware-Pakete enthalten können, weniger wahrscheinlich ist (vergleichen mit früher), dass der debian-installer nach Firmware-Dateien fragt.

Wenn der debian-installer eine Firmware-Datei anfordert und Sie diese Datei nicht haben oder keine nicht-freie Firmware auf Ihrem System installieren möchten, können Sie versuchen, ohne das Laden der Firmware fortzufahren. Es gibt mehrere Fälle, wo der Treiber zusätzliche Firmware anfordert, da diese unter bestimmten Um­ständen nötig sein könnte, das Gerät aber auf vielen Systemen auch ohne diese Firmware funktioniert (dies ist z.B. bei bestimmten Netzwerk­karten der Fall, die den tg3-Treiber verwenden).

2.3 Hardware speziell für GNU/Linux kaufen

Es gibt einige Anbieter, die Systeme mit Debian oder anderen GNU/Linux-Distributionen vorinstalliert anbieten. Informationen hierzu finden Sie unter Computerhersteller, die vorinstallierte Debian-­Systeme anbieten. Sie bezahlen möglicherweise mehr für dieses Privileg, aber Sie erkaufen sich auch ein Stück Seelenfrieden, denn Sie können dadurch sicher gehen, dass Ihre Hardware von GNU/Linux gut unterstützt wird.

Ob Sie nun ein System mit mitgeliefertem Linux kaufen oder ohne, oder gar gebrauchte Hardware, es ist immer wichtig, zu kontrollieren, ob Ihre Hardware vom Linux-Kernel unterstützt wird. Überprüfen Sie, ob Ihre Hardware in den oben angegebenen Referenzen aufgelistet ist. Lassen Sie Ihren Verkäufer wissen, dass Sie für ein Linux-System einkaufen. Unterstützen Sie Linux-freundliche Hardware­Verkäufer!

2.3.1 Vermeiden Sie proprietäre oder „Closed“ Hardware

Einige Hardware-Hersteller werden uns einfach nicht mitteilen, wie Treiber für ihre Hardware zu schreiben sind. Andere gewähren keinen Zugriff auf die Dokumentation ohne einen Geheimhaltungsvertrag, was uns davon abhalten würde, den Quellcode des Treibers zu veröffentlichen. Treiber sind eines der zentralen Elemente freier Software. Wenn uns kein Zugang zu verwerterbaren Dokumentation für diese Geräte gewährt wird, werden diese unter Linux einfach nicht funktionieren.

In vielen Fällen gibt es Standards (oder zumindest De-Facto-Standards), die beschreiben, wie ein Betriebssystem und dessen Gerätetreiber mit einer bestimmten Gerätekasse kommunizieren. Alle Geräte, die sich an solch einen (De-Facto-)Standard halten, können mit einem einzigen generischen Gerätetreiber verwendet werden und es sind keine
KAPITEL 2. SYSTEMANFORDERUNGEN

2.4 INSTALLATIONSMEDIEN

In anderen Bereichen, wie z.B. bei Druckern, ist dies unglücklicherweise nicht der Fall. Während es viele Drucker gibt, die mit einer kleinen Menge von (De-Facto-)Standard-Steuersprachen bedient werden können und daher ohne Probleme in jedem Betriebssystem zum Laufen gebracht werden können, gibt es auch ziemlich viele Modelle, die nur proprietäre Steuerbefehle verstehen, für die keine verwertbare Dokumentation existiert. Diese können so auf einem freien Betriebssystem entweder gar nicht genutzt werden, oder nur mit einem vom Hersteller beigestellten Treiber, für den der Quellcode nicht zugänglich ist.

Auch wenn zum Zeitpunkt des Kaufs ein Treiber mit nicht zugänglichem Quellcode vom Hersteller für solche Hardware angeboten wird, ist die praktische Lebensdauer abhängig von der Verfügbarkeit des Treibers. Heutzutage sind die Produktzyklen kurz geworden und es ist nicht unüblich, dass kurze Zeit, nachdem der Hersteller die Produktion eines Gerätes einstellt, auch keine Aktualisierungen für den Treiber vom Hersteller mehr bereitgestellt werden. Wenn der Treiber, für den der Quellcode nicht zugänglich ist, nach einem System-Update nicht mehr funktioniert, wird das ansonsten perfekt funktionierende Gerät nutzlos, da die Treiberunterstützung fehlt, und es gibt nichts, was in diesem Fall dagegen getan werden könnte. Sie sollten daher von vornherein vermeiden, Hardware zu kaufen, die nicht quellcodebasiert ist, unabhängig davon, auf welchem Betriebssystem Sie sie verwenden möchten.

Sie können helfen, diese Situation zu verbessern, indem Sie die Hersteller ermuntern, die Dokumentation und andere für die Programmierung von Treibern für ihre Hardware notwendigen Ressourcen zu veröffentlichen.

2.4 Installationsmedien

Dieses Kapitel wird Ihnen helfen festzustellen, welche unterschiedlichen Medientypen Sie nutzen können, um Debian zu installieren. Den Installationsmedien ist ein eigenes Kapitel gewidmet (Kapitel 4), das die Vor- und Nachteile jedes Medientyps auflistet. Sie können noch einmal hierher zurückblättern, wenn Sie das Kapitel gelesen haben.

2.4.1 CD-ROM/DVD-ROM/BD-ROM

Eine Installation von optischen Datenträgern wird für die meisten Architekturen unterstützt.

2.4.2 Netzwerk

Das Netzwerk kann während der Installation verwendet werden, um für die Installation benötigte Dateien zu beziehen. Ob das Netzwerk genutzt wird oder nicht, hängt von der gewählten Installationsmethode ab sowie Ihren Antworten auf gewisse Fragen, die während der Installation gestellt werden. Das Installationssystem unterstützt die meisten Arten von Netzwerkverbindungen (inklusive PPPoE, allerdings nicht ISDN oder PPP), entweder über HTTP oder FTP. Nachdem die Installation abgeschlossen ist, kann das System auch für ISDN oder PPP konfiguriert werden.

Sie können das Installationssystem auch über das Netzwerk booten, ohne dass Sie ein lokales Medium wie CD/DVD oder USB-Stick benötigen. Wenn Sie bereits die nötige Infrastruktur zum Booten über Netzwerk haben (d.h. in Ihrem Netzwerk laufen bereits DHCP- und TFTP-Dienste), gestattet Ihnen dies eine einfache und schnelle Ausstattung einer großen Anzahl von Rechnern. Die Einrichtung der nötigen Infrastruktur erfordert ein gewisses Maß an technischem Verständnis, daher wird dies unerfahrenen Nutzern nicht empfohlen.

Die Installation ohne lokale Laufwerke per Netzwerk-Boot von einem LAN-Netzwerk (Local Area Network) inkl. der Einbindung aller lokalen Dateisysteme per NFS ist eine weitere Möglichkeit.

2.4.3 Festplatten

Das Starten des Installationssystems von einer Festplatte ist eine weitere Option für viele Architekturen. Dies erfordert, dass ein anderes Betriebssystem den Installer auf die Festplatte lädt. Diese Methode wird nur in speziellen Fällen empfohlen, wenn keine andere Installationsmethode verfügbar ist.

2.4.4 Un*x- oder GNU-System

2.4.5 Unterstützte Speichersysteme

Die Debian-Boot-Medien beinhalten einen Kernel, der kompiliert ist, um die Anzahl der Systeme, auf denen er läuft, zu maximieren.

IDE-Systeme werden ebenfalls unterstützt.

2.5 Anforderungen an Arbeitsspeicher und Festplattenplatz

Sie benötigen mindestens 190MB Arbeitsspeicher und 1160MB freien Festplattenspeicher, um eine normale Installation durchzuführen. Beachten Sie, dass dies die absoluten Mindestanforderungen sind. Praxisnähere Werte finden Sie im Abschnitt 3.4.

Der Installer führt normalerweise automatisch einige Funktionen aus, um den Verbrauch von Arbeitsspeicher zu reduzieren, um auf Systemen mit wenig Arbeitsspeicher eine Installation zu ermöglichen. Auf Architekturen, die diesbezüglich nicht vollumfänglich getestet wurden, könnte dies jedoch fehlschlagen. Sie können den Installer jedoch manuell anweisen, diese Funktionen zu nutzen. Geben Sie dazu lowmem=1 oder sogar lowmem=2 als Boot-Parameter an (näheres dazu in Abschnitt 6.3.1.1 und Abschnitt 5.3.2).

Installationen auf Systemen mit weniger Arbeitsspeicher oder verfügbarem Festplattenplatz sind unter Umständen auch möglich, werden jedoch nur erfahrenen Benutzern empfohlen.
Kapitel 3

Bevor Sie Debian GNU/Linux installieren

Dieses Kapitel behandelt die Vorbereitung des Systems für die Installation von Debian (bevor Sie den Installer starten). Dies beinhaltet das Sichern Ihrer vorhandenen Daten, das Sammeln von Informationen über Ihre Hardware sowie aller anderen benötigten Infos.

3.1 Übersicht über den Installationsverlauf

Zu allererst ein kurzes Wort über Neuinstallationen. Unter Debian sind Umstände, die eine komplette Neuinstallation notwendig machen, äußerst selten; ein mechanisches Versagen der Festplatte wäre vielleicht der häufigste Grund.

Viele gängige Betriebssysteme benötigen eventuell eine komplette Neuinstallation, wenn kritische Fehler vor- kommen oder für Upgrades auf neuere Versionen des Betriebssystems. Selbst wenn keine komplette Neuinstallation notwendig ist, müssen oftmals die verwendeten Programme neu installiert werden, um unter der neuen Version des Betriebssystems korrekt zu funktionieren.

Hier ist eine Übersicht der Schritte, die Sie während der Installation durchführen werden:

1. Sichern von bestehenden Daten oder Dokumenten auf der Festplatte, auf die Sie installieren wollen.
7. Auswählen der Sprache, in der die Installation durchgeführt wird.
8. Aktivieren der Netzwerkverbindung, falls verfügbar.
11. Auswählen und Installieren von zusätzlicher Software.
12. Einen Bootloader installieren, der Debian GNU/Linux und/oder Ihr bereits vorhandenes Betriebssystem starten kann.

Wenn Sie während der Installation Probleme haben, hilft es, wenn Sie wissen, welche Pakete an welchen Schritten beteiligt sind. Hier die wichtigsten Akteure in diesem Installations-Schauspiel:

Die Installer-Software (debian-installer) ist die wichtigste Angelegenheit dieses Handbuchs. Sie erkennt die Hardware und lädt dafür benötigte Treiber, benutzt den DHCP-Client, um die Netzwerkverbindung einzurichten, installiert die Basissytempakete mittels debootstrap und startet tasksel, um Ihnen die Möglichkeit zu geben, zusätzliche Software zu installieren. Etliche andere Akteure spielen noch kleinere Rollen in diesem Prozess, aber der debian-installer hat seine Aufgabe erfüllt, wenn Sie das neue System zum ersten Mal starten.

Um das System an Ihre Bedürfnisse anzupassen, erlaubt Ihnen tasksel, verschiedene vordefinierte Software-Zusammenstellungen (Tasks) zu installieren, wie z.B. „Web-Server“ oder „Arbeitsplatz-Umgebung“.

Seien Sie sich dessen bewusst, dass das X-Window-System (die grafische Oberfläche) vom debian-installer komplett getrennt und auch erheblich komplizierter ist. Die Problembeseitigung der X-Window-Installation wird in diesem Handbuch nicht behandelt.

3.2 Sichern Sie Ihre Daten!

Falls Sie ein Multiboot-System erstellen, vergewissern Sie sich, dass Sie die Installationsmedien aller anderen installierten Betriebssysteme zur Hand haben. Auch wenn dies normalerweise nicht nötig ist, könnten Situationen auftreten, in denen Sie den Bootloader Ihres Betriebssystems oder im schlimmsten Fall sogar das ganze Betriebssystem neu installieren und anschließend die von Ihnen gesicherten Daten wieder einspielen müssen.

3.3 Benötigte Informationen

3.3.1 Dokumentation

3.3.1.1 Installationshandbuch

Das Dokument, das Sie gerade lesen; es ist die offizielle Version des Installationshandbuchs für die Bookworm-Veröffentlichung von Debian; es ist in verschiedenen Formaten und Übersetzungen verfügbar.

3.3.1.2 Hardware-Dokumentation

Enthält oft nützliche Informationen zum Konfigurieren oder Verwenden Ihrer Hardware.

3.3.2 Quellen für Hardware-Informationen finden

In vielen Fällen ist der Installer in der Lage, Ihre Hardware automatisch zu erkennen. Um jedoch vorbereitet zu sein, empfehlen wir, sich vor der Installation mit der Hardware vertraut zu machen.

Hardware-Informationen können von folgenden Quellen bezogen werden:

• Die Handbücher, die mit jedem Hardware-Teil mitgeliefert werden.
KAPITEL 3. BEVOR SIE DEBIAN GNU/LINUX ...

3.3. BEVOR SIE DEBIAN GNU/LINUX ...

3.3. BENÖTIGTE INFORMATIONEN

- Die Verpackung Ihrer Hardware.

- Systembefehele oder Werkzeuge in einem anderen Betriebssystem, inklusive in Dateimanagern angezeigte Informationen. Diese Quelle ist im Speziellen nützlich, um Informationen über RAM- oder Festplattenspeicher zu erhalten.

- Ihr Systemadministrator oder Internetprovider. Sie können Ihnen die zur Einrichtung notwendigen Einstellungen für Netzwerk und E-Mail verraten.

Tabelle 3.1 Zur Installation hilfreiche Hardware-Informationen

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Informationen, die Sie benötigen könnten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Festplatten</td>
<td>Wie viele Sie haben.</td>
</tr>
<tr>
<td></td>
<td>Deren Reihenfolge im System.</td>
</tr>
<tr>
<td></td>
<td>Ob IDE (auch bekannt als PATA), SATA oder SCSI.</td>
</tr>
<tr>
<td></td>
<td>Verfügbare freier Plattenplatz.</td>
</tr>
<tr>
<td></td>
<td>Partitionen.</td>
</tr>
<tr>
<td></td>
<td>Partitionen, auf denen andere Betriebssysteme installiert sind.</td>
</tr>
<tr>
<td>Netzwerk-Schnittstellen</td>
<td>Typ/Modell von verfügbaren Netzwerkkarten.</td>
</tr>
<tr>
<td>Drucker</td>
<td>Modell und Hersteller.</td>
</tr>
<tr>
<td>Grafikkarte</td>
<td>Typ/Modell und Hersteller.</td>
</tr>
</tbody>
</table>

3.3.3 Hardware-Kompatibilität

Viele Produkte funktionieren problemlos unter Linux. Zudem verbessert sich die Hardware-Unterstützung für Linux täglich. Linux unterstützt jedoch nicht so viele verschiedene Typen von Hardware wie manches andere Betriebssystem.

In den meisten Fällen sind Treiber unter Linux nicht für ein bestimmtes Produkt oder eine bestimmte Marke eines bestimmten Herstellers geschrieben, sondern für einen bestimmten Hardware-Stand/Chipsatz, unabhängig von der Marke, in der er genutzt wird. Augenscheinlich basieren viele unterschiedliche Produkte/Marken auf dem gleichen Hardware-Design; es ist nicht unüblich, dass Chip-Hersteller sogenannte „Referenz-Designs“ anbieten für Produkte, die auf ihren Chipsätzen aufbauen, die dann von mehreren verschiedenen Geräteherstellern genutzt und unter vielen verschiedenen Produkt- oder Markennamen verkauft werden.

Dies hat Vor- und Nachteile. Ein Vorteil ist, dass ein Treiber für einen Chipsatz mit vielen verschiedenen Produkten von unterschiedlichen Herstellern funktioniert, solange diese auf dem gleichen Chipsatz basieren. Der Nachteil ist, dass es nicht immer einfach ist herauszufinden, welcher Chipsatz letztendig in einem bestimmten Produkt verwendet ist. Unglücklicherweise ändern die Gerätehersteller manchmal die Hardware-Basis ihrer Produkte, ohne den Produktnamen zu ändern oder zumindest die Versionsnummer des Produktes, so dass zwei Teile mit dem gleichen Marken-/Produktnamen, die zu unterschiedlichen Zeiten gekauft wurden, auf unterschiedlichen Chipsätzen basieren können und daher unterschiedliche Treiber verwenden müssen, oder es gibt eventuell gar keinen Treiber für eins der beiden Geräte.

Bei USB- und PCI-/PCI-Express-/ExpressCard-Geräten ist die Überprüfung der Geräte-ID ein guter Weg, um herauszufinden, auf welchem Chipsatz sie basieren. Alle USB-/PCI-/PCI-Express-/ExpressCard-Geräte haben eine ID für „vendor“ (Hersteller) und für „product“ (Produktbezeichnung), und die Kombination dieser beiden ist für gewöhnlich bei allen Geräten, die auf dem gleichen Chipsatz aufbauen, identisch.

Ein Beispiel für die Ausgabe des Befehls lsusb: „Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub“, wobei 1d6b die Hersteller-ID und 0002 die Produkt-ID ist.

Ein Beispiel für die Ausgabe von lspci -nn für eine Ethernet-Karte: „03:00.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller [10ec:8168] (rev 06)“. Die IDs
werden innerhalb der eckigen Klammern ganz rechts angezeigt, hier ist z.B. 10ec die Hersteller-ID und 8168 die Produkt-ID.

Als weiteres Beispiel könnte eine Grafikkarte folgende Ausgabe erzeugen: „04:00.0 VGA compatible controller [0300]: Advanced Micro Devices [AMD] nee ATi RV710 [Radeon HD 4350] [1002:954f]“.

3.3.3.1 Testen der Hardware-Kompatibilität mittels eines Live-Systems

Informationen über die verfügbaren Varianten der Debian Live-Images finden Sie auf der Debian Live-Website.

3.3.4 Netzwerkeinstellungen

Wenn Ihr Computer fest an ein Netzwerk angeschlossen ist, das von jemand anderem verwalten wird (z.B. Ethernet oder eine gleichwertige Verbindung – keine PPP-(Wähl-)Verbindung), sollten Sie beim Systemadministrator des Netzwerks die folgenden Informationen erfragen:

- Ihren Hostnamen (den Name Ihres Rechners im Netzwerk; möglicherweise können Sie selbst einen auswählen).
- Ihren Domainnamen.
- Die IP-Adresse Ihres Computers.
- Die Netzmaske zur Verwendung in Ihrem Netzwerk.
- Die IP-Adresse eines Standard-Gateway-Systems, zu dem Sie routen sollen, falls Ihr Netzwerk einen Gateway hat.
- Den Rechner in Ihrem Netzwerk, den Sie als DNS-(Domain Name Service-)Server verwenden sollen.

Wenn in dem Netzwerk, mit dem Sie verbunden sind, DHCP (Dynamic Host Configuration Protocol) für die Konfiguration der Netzwerkeinstellungen verwendet wird, benötigen Sie all diese Informationen nicht, da der DHCP-Server diese während des Installationsprozesses direkt an Ihren Computer weitergibt.

Falls Sie über DSL oder ein Kabelmodem (z.B. über das Netz eines Fernseh-Kabelanbieters) mit dem Internet verbunden sind und einen Router haben (häufig von Ihrem Telefon- oder Kabelanbieter vorkonfiguriert angeboten), der die Netzwerkverbindung bereitstellt, ist DHCP für gewöhnlich standardmäßig aktiviert.

Wenn Sie ein kabelloses Funk-Netzwerk (WLAN, WiFi) verwenden, sollten Sie auch folgendes erfragen:

- Die ESSID (den „Netzwerknamen“) Ihres kabellosen Netzwerks.
- Den WEP- oder WPA/WPA2-Schlüssel, um Zugriff auf das Netz zu bekommen (falls notwendig).
3.4 Minimale Hardware-Anforderungen

Sobald Sie Informationen über die Hardware Ihres Computers gefunden haben, überprüfen Sie, ob diese Hardware die Art der Installation zulässt, die Sie durchführen wollen.

Abhängig von Ihren Bedürfnissen können Sie auch mit weniger als der unten aufgelisteten Hardware auskommen. Die meisten Benutzer riskieren jedoch, im Nachhinein frustrated zu sein, wenn Sie diese Empfehlungen ignorieren.

| Tabelle 3.2 Empfohlene minimale Systemanforderungen |
|---------------------------------|-----------------|-----------------|-----------------|
| Art der Installation | Arbeitsspeicher (minimal) | Arbeitsspeicher (empfohlen) | Festplatte |
| Ohne Desktop | 256 Megabyte | 512 Megabyte | 4 Gigabyte |
| Mit Desktop | 1 Gigabyte | 2 Gigabyte | 10 Gigabyte |

Die absoluten Minimalanforderungen an den Arbeitsspeicher sind um einiges geringer als in der Tabelle angegeben. Bei aktiviertem Swap (Auslagerungsspeicher) ist es möglich, Debian auf Systemen mit extrem wenig Arbeitspeicher zu installieren, es sind minimum 140MB erforderlich. Dasselbe gilt für die Anforderungen an den freien Platz auf der Festplatte, speziell wenn Sie die Anwendungen, die Sie installieren, einzeln auswählen; siehe Abschnitt D.2 für zusätzliche Informationen über benötigten Festplattenplatz.

Es ist möglich, eine grafische Desktop-Umgebung auch auf älteren oder Low-End-Systemen laufen zu lassen, aber in diesem Fall wird empfohlen, einen Window-Manager zu installieren, der weniger ressource-hungrig ist als die GNOME- oder KDE-Plasma-Desktop-Umgebung; Sie könnten zum Beispiel xfce4, icewm oder wmaker verwenden, aber es gibt auch noch weitere.

Es ist praktisch unmöglich, für Server-Installationen generelle Speicher- oder Festplattenplatzanforderungen anzugeben, da dies sehr davon abhängt, wozu der Server verwendet wird.

Bedenken Sie, dass diese Angaben nicht die anderen Daten enthalten, die normalerweise auf solchen Systemen vorhanden sind, wie die Dateien der Benutzer, E-Mails und Daten. Es ist immer ratsam, bei der Erwägung des für Ihre eigenen Dateien benötigten Platzes großzügig zu sein.

3.5 Im Voraus partitionieren für eine Multiboot-Installation

Wenn Sie bereits ein Betriebssystem auf Ihrem Rechner haben, das die ganze Platte einnimmt und Debian auf die gleiche Festplatte installieren möchten, müssen Sie sie neu partitionieren. Debian benötigt eigene Festplatten-Partitionen. Es kann nicht auf Windows- oder MacOS X-Partitionen installiert werden. Es kann sich möglichwerke Partitionen mit anderen Unix-Systemen teilen, was hier jedoch nicht behandelt wird. Sie benötigen mindestens eine eigene Partition für Debi ans root-Dateisystem.

Verschiedene moderne Betriebssysteme bieten die Möglichkeit, bestimmte vorhandene Partitionen zu verschieben und in der Größe zu verändern, ohne deren Inhalt zu beschädigen. Dies erlaubt es, Platz für zusätzliche Partitionen
zu schaffen, ohne vorhandene Daten zu verlieren. Obwohl dies in den meisten Fällen sehr gut funktioniert, sind Änderungen an der Partitionierung einer Festplatte von Natur aus eine gefährliche Aktion und sollten nur durchgeführt werden, nachdem eine vollständige Sicherung aller Daten durchgeführt wurde.

3.6 Hardware- und Betriebssystem-Setup vor der Installation

3.6.1 ARM-Firmware

Wie bereits vorher erwähnt, gibt es unglücklicherweise keinen Standard für System-Firmware auf ARM-Systemen. Sogar das Verhalten verschiedener Systeme, die nominal die gleiche Firmware verwenden, kann ziemlich unterschiedlich sein. Dies liegt an der Tatsache, dass ein großer Teil der Geräte, die die ARM-Architektur nutzen, eingebettete (embedded) Systeme sind, für die die Hersteller üblicherweise stark angepasste Firmware-Versionen erstellen und gerätespezifische Patches integrieren. Unglücklicherweise melden die Hersteller oft ihre Änderungen nicht zurück an die ursprünglichen Firmware-Entwickler, so dass die Änderungen nicht in neuere Versionen der Original-Firmware einfließen.

3.6.2 Durch Debian bereitgestellte U-Boot-Images (System-Firmware)


```
zcat <systemtyp>.sdcard.img.gz > /dev/SD_Karten_Geraet
```

Wie immer beim Schreiben von Images sollten Sie auch hier bedenken, dass dadurch alle vorherigen Inhalte auf der Karte gelöscht werden!

Wenn Debian ein U-Boot-Image für Ihr System anbietet, wird empfohlen, dass Sie dieses Image verwenden statt einem vom Gerätehersteller angebotenen U-Boot, da die Version in Debian für gewöhnlich neuer ist und daher mehr Funktionen bietet.

3.6.3 Setzen der Ethernet-MAC-Adresse in U-Boot

Die MAC-Adresse jeder Ethernet-Schnittstelle sollte eigentlich global eindeutig sein, und technisch muss sie innerhalb ihrer Ethernet-Broadcast-Domain eindeutig sein. Um dies zu erreichen, reserviert der Hersteller normalerweise einen Block von MAC-Adressen aus einem zentral administrierten Pool (für den eine Gebühr gezahlt werden muss) und vergibt dann eine dieser Adressen an jedes verkaufte Gerät.

Im Falle von Development-Boards wollen Hersteller manchmal die Zahlung der Gebühr vermeiden und stellen daher keine global eindeutigen Adressen bereit. In diesen Fällen muss der Benutzer selbst MAC-Adressen für seine Systeme vergeben. Wenn für eine Ethernet-Schnittstelle keine MAC-Adresse festgelegt ist, generieren einige Netzwerktreiber eine zufällige MAC-Adresse, die sich dann bei jedem Neustart ändern kann, und dabei wäre ein Netzwerkzugriff möglich, ohne dass der Benutzer händisch eine Adresse festgelegt hat; wenn jedoch z.B. die IP-Adressen über DHCP aus der MAC-Adresse des anfordernden Clients abgeleitet werden, würde dies natürlich nicht zuverlässig funktionieren.

Um Konflikte mit vorhandenen offiziell vergebenen MAC-Adressen zu vermeiden, gibt es einen Adress-Pool, der für sogenannte „lokal administrierte“ Adressen reserviert ist. Er wird über den Wert von zwei speziellen Bits im ersten
KAPITEL 3. BEVOR SIE DEBIAN GNU/LINUX ...

3.6. HARDWARE- UND BETRIEBSSYSTEM-SETUP

3.6.4 Probleme bei der Speicherzuweisung fürKernel/Initrd/Gerätebaum in U-Boot

Falls das System im Originalzustand eine U-Boot-Version älter als v2014.07 genutzt hat und dann auf eine neuere Version aktualisiert wurde, könnte das Problem auch nach dem Upgrade von U-Boot noch auftreten. Das Aktualisieren von U-Boot modifiziert üblicherweise nicht die vorhandenen Umgebungsvariablen und der Fix zur Fehlerbehebung erfordert das Setzen einer zusätzlichen Umgebungsvariable (bootm_size), was jedoch nur bei frischen Neuinstallationen ohne vorhandene Umgebungsdaten von U-Boot automatisch erledigt wird. Es ist möglich, bootm_size händisch auf den neuen U-Boot-Standardwert zu setzen, indem „env default bootm_size; saveenv“ am U-Boot-Prompt ausgeführt wird.

Eine andere Möglichkeit, solche Probleme bei Speicherzuweisungen zu verhindern, wäre die Ausführung von „setenv fdt_high ffff...; setenv initrd_high 0x...; saveenv“ am U-Boot-Prompt; damit wird die dynamische Speicherzuweisung für Initial-Ramdisk und Gerätebaum-Abbild vollständig deaktiviert.
Kapitel 4
Systeminstallations-Medien beschaffen

4.1 Offizielle Debian GNU/Linux-Installations-Images

Da CDs verglichen mit den heutigen Standards eine eher eingeschränkte Kapazität haben, können nicht alle grafischen Arbeitsplatz-Umgebungen unter ausschließlicher Verwendung der ersten CD installiert werden; bei einigen Arbeitsplatz-Umgebungen erfordert eine CD-Installation zum Laden weiterer Daten entweder eine Netzwerkverbindung oder Sie benötigen zusätzliche CDs.

Bedenken Sie auch: wenn die Installationsmedien, die Sie verwenden, einige besondere Pakete nicht enthalten, die Sie benötigen, können Sie diese auch nach Abschluß der Installation aus dem laufenden neuen Debian-System heraus nachinstallieren. Falls Sie wissen möchten, in welchem Installations-Image sich ein spezielles Paket befindet, besuchen Sie https://cdimage-search.debian.org/.

Wenn Ihr Rechner nicht von optischen Medien booten kann, Sie aber trotzdem einen Satz Debian-CDs/DVDs haben, können Sie eine alternative Strategie verfolgen, wie zum Beispiel Netzwerk-Boot, oder Sie laden den Kernel manuell von der Disk, um den Installer zu starten. Die Dateien, die Sie benötigen, um auf alternative Art zu booten, sind ebenfalls auf der Disk. Das Debian-Archiv im Netz und die Verzeichnisstruktur auf den optischen Installationsmedien sind identisch. Wenn also hier Pfade zu Dateien im Archiv angegeben werden, können Sie diese Dateien auch im gleichen Verzeichnis/Unterverzeichnis auf der Disk finden.

Sobald der Installer gestartet ist, kann er alle anderen Dateien, die er benötigt, vom Installationsmedium laden. Wenn Sie kein Installationsmedium haben, müssen Sie die Installer-Systemdateien herunterladen und speichern, z.B. auf einem per Netzwerk angebundenen Computer, so dass der Installer sie nutzen kann.

4.2 Dateien von einem Debian-Spiegel-Server herunterladen

Um den nächstliegenden (und damit vermutlich auch schnellsten) Debian-Spiegel-Server zu finden, konsultieren Sie die Liste der Debian-Spiegel.

4.2.1 Wo Sie die Installationsdateien finden

4.2.1.1 Installationsdateien für Armhf-Multiplattform

Die Installationsdateien für Systeme, welche vom armhf-Multiplattform-Kernel unterstützt werden (Näheres in Abschnitt 2.1.4), bestehen aus einem standardmäßigen Linux-Kernel-Image, einem standardmäßigen Linux-Initial-Ramdisk-
4.3 Dateien vorbereiten für TFTP-Netzwerk-Boot

Wenn Ihr Rechner mit einem Netzwerk (Local Area Network, LAN) verbunden ist, sind Sie vielleicht in der Lage, über das Netzwerk per TFTP von einem anderen Rechner aus zu booten. Wenn Sie dies vorhaben, müssen die Boot-Dateien in speziellen Verzeichnissen auf diesem entfernten Rechner abgelegt werden und der Rechner muss für das Booten speziell Ihrer Maschine konfiguriert werden.

Sie müssen einen TFTP-Server einrichten und in vielen Fällen auch einen DHCP-Server oder einen RARP-Server oder einen BOOTP-Server.

Das Trivial-File-Transfer-Protocol (TFTP) wird benutzt, um dem Client das Boot-Image zur Verfügung zu stellen. Theoretisch könnte jeder Server auf jeder Plattform benutzt werden, der diese Protokolle implementiert. In den Beispielen in diesem Abschnitt geben wir Kommandos für SunOS 4.x, SunOS 5.x (a.k.a. Solaris) und GNU/Linux an.

4.3.1 Einen RARP-Server einrichten

Um RARP einzurichten, benötigen Sie die Ethernet-Adresse (a.k.a. die MAC-Adresse) des Clients, der gestartet werden soll. Wenn Ihnen diese Informationen nicht bekannt sind, können Sie in den „Rescue“-Modus booten und dort das Komando `ip addr show dev eth0` verwenden.

4.3.2 Einen DHCP-Server einrichten

Ein Free-Software-DHCP-Server ist der ISC-dhcpd. Für Debian GNU/Linux wird das `isc-dhcp-server-Paket` empfohlen. Hier eine beispielhafte Konfigurationsdatei (siehe `/etc/dhcp/dhcpd.conf`):

```plaintext
option domain-name "example.com";
option domain-name-servers nsi.example.com;
option subnet-mask 255.255.255.0;
default-lease-time 600;
max-lease-time 7200;
server-name "servername";

subnet 192.168.1.0 netmask 255.255.255.0 {
    range 192.168.1.200 192.168.1.253;
    option routers 192.168.1.1;
}

host clientname {
    filename "/tftpboot.img";
    server-name "servername";
    next-server servername;
    hardware ethernet 01:23:45:67:89:AB;
    fixed-address 192.168.1.90;
}
```
In diesem Beispiel gibt es einen Server `servername`, der alle Aufgaben von DHCP-Server, TFTP-Server und Netzwerk-Gateway übernimmt. Sie müssen natürlich die Domain-Namen-Einträge ändern wie auch den Servernamen und die Hardware-Adresse der Clients. Der Eintrag `filename` sollte der Name der Datei sein, die per TFTP abgerufen wird.

Nachdem Sie die Konfigurationsdatei des `dhcpd` verändert haben, starten Sie ihn mit `/etc/init.d/isc-dhcp-server restart` neu.

4.3.3 Einen BOOTP-Server einrichten

Es gibt für GNU/Linux zwei BOOTP-Server: erstens den `bootpd` (CMU) und der zweite ist eigentlich ein DHCP-Server, der `dhcpd` (ISC). Sie sind in den Debian GNU/Linux-Paketen `bootp` bzw. `isc-dhcp-server` enthalten.

Um den `bootpd` (CMU) zu nutzen, müssen Sie als erstes für die entsprechende Zeile in `/etc/inetd.conf` das Kommentarzeichen entfernen (bzw. die Zeile hinzufügen, falls noch nicht vorhanden). Unter Debian GNU/Linux erledigen Sie das mit `update-inetd --enable bootps` und anschließendem `/etc/init.d/inetd reload`. Für den Fall, dass Ihr Bootp-Server nicht unter Debian läuft, sollte die fragliche Zeile so aussehen:

```bash
bootps dgram udp wait root /usr/sbin/bootpd bootpd -i -t 120
```

Jetzt müssen Sie die Datei `/etc/bootptab` erstellen. Sie hat das gewohnte kryptische Format wie die guten alten BSD-Dateien `printcap`, `termcap` und `disktab`. Mehr Informationen bekommen Sie in der Handbuchsseite von `bootptab`. Beim CMU-`bootpd` müssen Sie die Hardware-(MAC-)Adresse des Clients kennen. Hier ein Beispiel für `/etc/bootptab`:

```plaintext
client:\n  hd=/tftpboot:\n  bf=tftpboot.img:\n  ip=192.168.1.90:\n  sm=255.255.255.0:\n  sa=192.168.1.1:\n  ha=0123456789AB:
```

Sie müssen zumindest den Eintrag „ha“ anpassen, der die Hardware-Adresse des Clients angibt. Der Eintrag „bf“ legt fest, welche Datei der Client per TFTP bezieht; Abschnitt 4.3.5 enthält mehr Details.

Im Unterschied dazu ist es wirklich einfach, den ISC-`dhcpd` einzurichten, da dieser BOOTP-Clients gewissermaßen als Spezialfall von DHCP-Clients behandelt. Einige Architekturen erfordern eine komplexe Konfiguration, um Clients per BOOTP zu starten. Wenn Sie solch einen Fall haben, lesen Sie Abschnitt 4.3.2. Andernfalls könnte es vielleicht ausreichen, in der Datei `/etc/dhcp/dhcpd.conf` den Eintrag `allow bootp` zu dem Abschnitt hinzuzufügen, der das Subnetz konfiguriert, zu dem Ihr Client gehört. Danach muss der `dhcpd` mit `/etc/init.d/isc-dhcp-server restart` neu gestartet werden.

4.3.4 Den TFTP-Server aktivieren

Um den TFTP-Server einzurichten, sollten Sie als Erstes sicherstellen, dass `tftpd` aktiv ist.

Im Falle von `tftpd-hpa` gibt es zwei Wege, wie der Dienst zum Laufen gebracht werden kann. Er kann bei Bedarf vom `inetd`-Daemon des Systems gestartet werden oder er kann eingerichtet werden, als eigenständiger Daemon zu laufen. Welche der beiden Methoden verwendet wird, wird bei der Installation des Pakets ausgewählt und kann auch später geändert werden, indem das Paket rekonfiguriert wird.

ANMERKUNG

Alle in Debian verfügbaren `in.tftpd`-Alternativen sollten standardmäßig Protokolleinträge aller TFTP-Anfragen in das System-Log schreiben. Einige unterstützen das Argument `-v`, um die Ausführlichkeit der Einträge zu erhöhen.
Es wird empfohlen, im Falle von Boot-Problemen diese Logeinträge zu kontrollieren; sie sind ein guter Anfang, um der Fehlerursache auf die Spur zu kommen.

4.3.5 Die TFTP-Images an ihren Platz befördern

Als nächstes legen Sie die TFTP-Boot-Images, die Sie benötigen und die Sie wie in Abschnitt 4.2.1 beschrieben bekommen können, im `tftp`-Bootimage-Verzeichnis ab. Sie müssen unter Umständen einen Link von diesem Image auf die Datei anlegen, die `tftp` benutzt, um einen speziellen Client zu booten. Bedauerlicherweise hängt der Name dieser Datei von dem TFTP-Client ab und es gibt dabei keine festen Standards.

4.4 Automatische Installation

Um Debian auf einer größeren Anzahl von Rechnern zu installieren, kann man vollautomatische Installationen durchführen. Neben dem Debian-Installer selbst ist dafür auch das Paket `fai-quickstart` vorgesehen (FAI kann einen Installationsserver nutzen). Schauen Sie auf die [FAI-Homepage](#) bezüglich detaillierter Informationen.

4.4.1 Automatische Installation mit dem Debian-Installer

Eine vollständige Dokumentation über das Voreinstellen inklusive einer funktionsfähigen Beispieldatei, die Sie sich anpassen können, finden Sie im Anhang B.

4.5 Verifizieren der Authentizität von Installationsdateien

Sie können die heruntergeladenen Dateien auf Korrektheit und Unversehrtheit prüfen, indem Sie deren Prüfsummen gegenüber denen in der Datei `SHA256SUMS` oder `SHA512SUMS` verifizieren. Sie finden diese `SHA256SUMS`- und `SHA512SUMS`-Dateien auf jedem Debian-Spiegel, z.B. unter diesen Adressen:

- Prüfsummen-Dateien für CD-Images,
- Prüfsummen-Dateien für DVD-Images,
- Prüfsummen-Dateien für weitere Installationsdateien.

Um die Prüfsumme einer heruntergeladenen Installationsdatei zu berechnen, verwenden Sie

```bash
sha256sum filename.iso
```

bzw.

```bash
sha512sum filename.iso
```

und vergleichen Sie die angezeigte Prüfsumme mit der entsprechenden in `SHA256SUMS` bzw. `SHA512SUMS`.

Die [Debian-auf-CD FAQ](#) enthält [weitere nützliche Informationen](#) zu diesem Thema (wie z.B. das Skript `check_debian_iso` um obiges Prozedere teilweise zu automatisieren), sowie Instruktionen, wie Sie die Integrität der erwähnten Prüfsummen-Dateien verifizieren können.
Kapitel 5

Das Installationssystem booten

5.1 Starten des Installers auf 32-Bit Hard-float-ARMv7-Systemen

5.1.1 Boot-Image-Formate

5.1.2 Konfiguration der Konsole

Das netboot-Tarball-Archiv (Abschnitt 5.1.3.2) und die SD-Karten-Images des Installers (Abschnitt 5.1.5) nutzen die (plattform-spezifische) Standardkonsole, die von U-Boot in der Variable „console“ definiert wird. In den meisten Fällen ist das eine serielle Konsole, daher benötigen Sie auf diesen Plattformen standardmäßig ein serielles Konsolenkabel, um den Installer nutzen zu können.

Auf Plattformen, die auch eine Video-Konsole unterstützen, können Sie die „console“-Variable von U-Boot entsprechend anpassen, wenn Sie möchten, dass der Installer auf der Video-Konsole startet.

5.1.3 Booten per TFTP

Um per Netzwerk booten zu können, benötigen sie eine Netzwerkverbindung sowie einen TFTP-Netzwerk-Boot-Server (und unter Umständen auch einen DHCP-, RARP- oder BOOTP-Server zur automatischen Netzwerkkonfiguration).

Die server-seitige Einrichtung zur Unterstützung vom Booten über Netzwerk ist im Abschnitt 4.3 beschrieben.

5.1.3.1 TFTP-Boot in U-Boot

Das Booten von Systemen über das Netzwerk mittels der U-Boot-Firmware erfordert drei Schritte: a) Konfigurieren des Netzwerks, b) Laden der Images (Kernel/Initial-Ramdisk/dtb) in den Speicher und c) das eigentliche Ausführen des vorher geladenen Codes.

Als erstes müssen Sie das Netzwerk konfigurieren, entweder automatisch über DHCP, indem Sie dies ausführen:

```
setenv autoload no
dhcp
```

oder manuell, indem Sie verschiedene Umgebungsvariablen setzen:
KAPITEL 5. DAS INSTALLATIONSSYSTEM BOOTEN

5.1. STARTEN DES INSTALLERS AUF 32-BIT

setenv ipaddr <ip-adresse des clients>
setenv netmask <netmask>
setenv serverip <ip-adresse des tftp-servers>
setenv dnsip <ip-adresse des nameservers>
setenv gatewayip <ip-adresse des standard-gateways>

Falls Sie möchten, können Sie diese Einstellungen auch fest einrichten mit:

saveenv

Auf einigen Systemen legt U-Boot einige Umgebungsvariablen mit passenden Ladeadressen an: kernel_addr_r, ramdisk_addr_r und fdt_addr_r. Sie können überprüfen, ob diese definiert sind, indem Sie dies ausführen:

printenv kernel_addr_r
printenv ramdisk_addr_r
printenv fdt_addr_r

Falls sie nicht definiert sind, müssen Sie die Dokumentation des Systems konsultieren bezüglich näherer Angaben zu passenden Werten und diese händisch setzen. Für Systeme, die auf Allwinner SunXi-SoCs (z.B. dem Allwinner A10, Architekturname „sun4i“ oder dem Allwinner A20, Architekturname „sun7i“) basieren, können Sie z.B. folgende Werte nutzen:

setenv kernel_addr_r 0x46000000
setenv fdt_addr_r 0x47000000
setenv ramdisk_addr_r 0x48000000

Sind die Ladeadressen bereits definiert, können Sie die Images von dem vorher definierten TFTP-Server in den Speicher laden mit:

tftpboot ${kernel_addr_r} <dateiname des kernel-images>
tftpboot ${fdt_addr_r} <dateiname des dtb>
tftpboot ${ramdisk_addr_r} <dateiname des initial-ramdisk-images>

Der dritte Schritt ist das Setzen der Kernel-Befehlszeile und das eigentliche Ausführen des geladenen Codes. U-Boot übergibt den Inhalt der Umgebungsvariable „bootargs“ als Befehlszeile an den Kernel; also können alle Parameter für den Kernel und den Installer - wie z.B. die Konsolen-Gerätedatei (lesen Sie dazu Abschnitt 5.3.1) oder eventuelle Voreinstellungsoptionen (Näheres in Abschnitt 5.3.2 und Anhang B) - mit einem Befehl wie dem folgenden gesetzt werden:

setenv bootargs console=ttyS0,115200 rootwait panic=10

Der exakte Befehl zur Ausführung des vorher geladenen Codes hängt vom verwendeten Image-Format ab. Bei uImage/ultinit lautet der Befehl:

bootm ${kernel_addr_r} ${ramdisk_addr_r} ${fdt_addr_r}

Bei nativen Linux-Image ist es:

bootz ${kernel_addr_r} ${ramdisk_addr_r}:${filesize} ${fdt_addr_r}

5.1.3.2 Vorkonfiguriertes netboot-Tarball-Archiv

Debian stellt ein vorkonfiguriertes Tarball-Archiv (../images/netboot/netboot.tar.gz) bereit, das Sie einfach auf Ihren TFTP-Server entpacken können; es enthält alle für das Netbooting benötigten Dateien. Außerdem ist ein Boot-Skript enthalten, das alle zum Laden des Installers erforderlichen Schritte automatisiert. Moderne U-Boot-Versionen haben eine TFTP-Autoboot-Funktion, die aktiv wird, wenn kein lokales boot-fähiges Speichermedium (MMC/SD-Karte,

Möchten Sie die TFTP-Autoboot-Funktion von der U-Boot-Befehlszeile aus anstoßen, können Sie folgenden Befehl nutzen:

```
run bootcmd_dhcp
```

Um alternativ das Boot-Skript aus dem Tarball-Archiv händisch zu laden, können Sie auch diese Befehle am U-Boot-Prompt ausführen:

```
setenv autoload no
dhcp
tftpboot ${scriptaddr} /debian-installer/armhf/tftpboot.scr
source ${scriptaddr}
```

5.1.4 Booten von USB-Stick in U-Boot

Das autoboot-Rahmenwerk in modernen U-Boot-Versionen funktioniert ähnlich wie die Optionen für die Bootreihenfolge in einem PC-Bios/UEFI, d.h. auf verschiedenen möglichen Boot-Geräten wird der Reihe nach nach einem gültigen Boot-Image gesucht und das erste gefunden wird gestartet. Wenn kein Betriebssystem installiert ist, sollte das Starten des Systems mit eingestecktem USB-Stick den Installer booten. Sie können den USB-Boot-Prozess auch zu jeder Zeit vom U-Boot-Prompt aus anstoßen, indem Sie den „run bootcmd_usb0“-Befehl ausführen.

5.1.5 Verwenden von vorbereiteten (pre-built) SD-Karten-Images mit dem Installer

Um auf einem Linux-System aus diesen beiden Teilen ein vollständiges Image zu erzeugen, können Sie zcat wie folgt verwenden:

```
zcat firmware.<system-typ>.img.gz partition.img.gz > complete_image.img
```
Auf Windows-Systemen müssen Sie die beiden Teile zunächst separat dekomprimieren, was zum Beispiel mit 7-Zip erledigt werden kann, und dann durch Eingabe des folgenden Befehls in einem cmd.exe-Fenster:

```
copy /b firmware.<system-typ>.img + partition.img complete_image.img
```

wieder zusammenfügen.

Schreiben Sie das erzeugte Image auf eine SD-Karte, indem Sie z.B. auf einem Linux-System folgenden Befehl nutzen:

```
cat complete_image.img > /dev/SD_KARTEN_GERÄT
```

Nachdem Sie die SD-Karte in das Zielsystem eingelegt und dieses eingeschaltet haben, wird der Installer von der SD-Karte geladen. Falls Sie die hd-media-Variante für eine Installation ohne Internet-Verbindung verwenden, müssen Sie dem Installer über ein separates Medium Zugriff auf die erste Debian-CD/DVD ermöglichen; dies kann z.B. über ein CD/DVD-ISO-Image auf einem USB-Stick geschehen.

Wenn Sie im Installer den Schritt für die Partitionierung erreichen (lesen Sie dazu Abschnitt 6.3.4), können Sie jegliche Partitionen auf der SD-Karte löschen oder ersetzen. Sobald der Installer einmal gestartet ist, läuft er komplett im Arbeitsspeicher des Systems und benötigt keinen Zugriff auf die SD-Karte mehr. Daher können Sie die vollständige SD-Karte zur Installation von Debian benutzen. Der einfachste Weg, ein passendes Partitions-Layout auf der SD-Karte zu erstellen, ist die Nutzung der Geführten Partitionierung (Näheres hierzu in Abschnitt 6.3.4.2).

5.2 Barrierefreiheit

5.2.1 Installer-Oberfläche (Frontend)

Der Debian Installer unterstützt verschiedene Oberflächen für die Interaktion mit dem Benutzer, und diese haben bezüglich Barrierefreiheit unterschiedliche Schwerpunkte. Erwähnenswert ist hier das **text**-Frontend, welches ausschließlich reinen Text verwendet, sowie das **newt**-Frontend, das textbasierte Dialogboxen nutzt. Sie können am Boot-Prompt festlegen, welche Oberfläche genutzt wird; lesen Sie dazu die Dokumentation zum Boot-Parameter `DEBIAN_FRONTEND` in Abschnitt 5.3.2.

Bei Nutzung der **newt**-Oberfläche (überwiegend relevant für eine Braille-Zeile) wird normalerweise eine Antwort über die Pfeiltasten ausgewählt und über **Enter** bestätigt. Das Drücken von **Tab** oder **Shift + Tab** erlaubt das Umschalten zwischen verschiedenen Elementen des Dialogs (erwähnenswert ist hier vor allem der **Zurück**-Button, der Sie zurück bringt zu vorherigen Fragen). Einige Dialoge enthalten Auswahl-Checkboxen, die über die **Leertaste** ein- oder ausgeschaltet werden können.

Bei der **text**-Oberfläche (überwiegend verwendet für den Sprachausgabe-Modus des Installers) wird meist eine Antwort ausgewählt, indem entweder deren Nummer eingegeben oder die Antwort über die Pfeiltasten markiert wird, jeweils gefolgt von **Enter** zur Bestätigung. Sie können hier auch nichts eingeben und einfach **Enter** drücken, um den Standardwert zu übernehmen. Die Eingabe von `<` und **Enter** bringt Sie zurück zu vorherigen Fragen. In Fällen, wo die Auswahl mehrerer Optionen möglich ist (z.B. bei der Wahl der Programmgruppen), können Sie auch `!` eingeben, um nichts auszuwählen.

5.2.2 Interne Boards/Karten

Einige Geräte für Barrierefreiheit sind letztendig Steckkarten, die innerhalb des Rechners eingesteckt werden und die den Text direkt aus dem Videospeicher auslesen. Damit sie funktionieren, muss die Framebuffer-Unterstützung deaktiviert werden (verwenden Sie dazu den Boot-Parameter `fb=false`). Dies reduziert allerdings die Anzahl der zur Verfügung stehenden Sprachen.

5.2.3 Theme mit hohem Kontrast

Für Nutzer mit verminderter Sehkraft kann der Installer ein spezielles farbiges Theme mit extra hohem Kontrast verwenden. Um es zu aktivieren, verwenden Sie den Menüeintrag „Accessible high contrast“ aus dem Boot-Menü (Tastaturkürzel **d**) oder geben Sie händisch den Boot-Parameter `theme=dark` an.
5.2.4 **Zoom**

Für Benutzer mit vermindertem Sehkraft enthält der grafische Installer auch eine einfache Unterstützung zur Vergrößerung der Anzeige (Zoom): über die Tastenkombinationen Strg-+ und Strg-- lässt sich die Schriftgröße vergrößern bzw. verkleinern.

5.2.5 **Experten-Installation, Rettungsmodus, automatisierte Installation**

Die Auswahlmöglichkeiten Expert, Rescue und Automated Install sind auch barrierefrei (mit Sprachausgabe) verfügbar. Um sie zu nutzen, müssen Sie zunächst das Untermenü „Advanced options“ öffnen, indem Sie a drücken. Wenn Sie ein BIOS-System verwenden (d.h. beim Start des Boot-Menüs hat der Computer nur einmal gepeipt), müssen Sie jetzt noch Enter drücken. Auf UEFI-Systemen hingegen (d.h. beim Starten hat der Computer zweimal gepeipt) ist dies nicht erforderlich. Um die Sprachausgabe zu aktivieren, können Sie jetzt s drücken (gefolgt von Enter auf BIOS-Systemen). Nun stehen verschiedene Tastaturkürzel zur Verfügung: x für eine Experten-Installation, r für das Starten des Rescue-Modes und a für eine automatisierte Installation. Auch hier müssen Sie auf BIOS-Systemen nochmals Enter drücken.

Durch eine automatisierte Installation kann Debian über die Verwendung der Voreinstellung vollständig automatisiert installiert werden. Die Quelle dieser Voreinstellungen (die Voreinstellungsdatei) kann angegeben werden, nachdem die Funktionen zur Barrierefreiheit gestartet wurden. Voreinstellung selbst ist in Anhang B dokumentiert.

5.2.6 **Barrierefreiheit auf dem neu installierten System**

Dokumentation zum Thema Barrierefreiheit auf dem neu installierten System finden Sie auf der **Debian Accessibility Wiki-Seite**.

5.3 **Boot-Parameter**

Wenn Sie das Debian-System zum ersten Mal booten, versuchen Sie es mit den Standardparametern (was bedeutet: geben Sie einfach keine Parameter an) und schauen Sie, ob es korrekt funktioniert. Vielleicht tut es das. Falls nicht, können Sie später erneut starten und spezielle Parameter ausprobieren, die den Kernel über Ihre Hardware informieren.

Informationen über viele Boot-Parameter finden Sie im **Linux BootPrompt-HowTo**, inklusive Tipps für problematische Hardware. Dieses Kapitel enthält nur einen Abriss der wichtigsten Parameter. Einige häufig vorkommende Problemfälle sind in Abschnitt 5.4 beschrieben.

5.3.1 **Boot-Konsole**

Wenn Sie mit einer seriellen Konsole booten, wird der Kernel dies normalerweise automatisch erkennen. Falls der Rechner, den Sie per serieller Konsole installieren wollen, auch eine Grafikkarte (für Framebuffer) und eine Tastatur hat, müssen Sie dem Kernel das Boot-Argument console= device angeben, wobei device der seriellen Schnittstelle auf dem Zielrechner entspricht, also normalerweise etwas wie ttyS0.

Sie müssen unter Umständen Parameter für den seriellen Port wie Geschwindigkeit und Parität angeben, z.B. console= ttyS0, 9600n8; andere typische Werte für die Geschwindigkeit sind 57600 oder 115200. Achten Sie darauf, dass Sie diese Option nach dem „---“ angeben, so dass diese Option auch in der Bootloader-Konfiguration des installierten Systems kopiert wird (falls vom Bootloader-Installer unterstützt).

5.3.2 Debian-Installer-Parameter

Das Installationssystem kennt ein paar zusätzliche Boot-Parameter, die vielleicht nützlich sein könnten.

Einige Parameter haben eine „Kurzform“, die dabei hilft, die Einschränkungen für die Kernel-Kommandozeilenoptionen zu umgehen und außerdem wird die Eingabe des Parameters vereinfacht. Wenn eine Kurzform für einen Parameter existiert, wird sie in Klammern hinter der normalen (langen) Form angegeben. Beispiele in diesem Kapitel benutzen normalerweise auch die Kurzform.

debconf/priority (priority) Dieser Parameter legt die niedrigste Prioritätsstufe von Meldungen fest, die angezeigt werden (alle Meldungen mit niedrigerer Priorität als hier angegeben werden unterdrückt).

Wenn Sie priority=medium als Boot-Parameter angeben, wird das Installationsmenü angezeigt und gibt Ihnen mehr Kontrolle über die Installation. Wird priority=low benutzt, werden alle Meldungen angezeigt (dies entspricht dem Experten-Modus). Bei priority=critical zeigt das Installationssystem nur kritische Meldungen an und versucht, ohne viel Klammam das Richtige zu tun.

DEBIAN_FRONTEND Dieser Boot-Parameter kontrolliert die Art der Bedienoberfläche, die für den Installer benutzt wird. Mögliche Einstellungen sind:

- DEBIAN_FRONTEND=noninteractive
- DEBIAN_FRONTEND=text
- DEBIAN_FRONTEND=newt
- DEBIAN_FRONTEND=gtk

DEBIAN_FRONTEND=newt ist die Standardoberfläche. DEBIAN_FRONTEND=text könnte man bevorzugt für Installationen per serieller Konsole nutzen. Einige spezialisierte Arten von Installationsmedien bieten möglicherweise nur eine eingeschränkte Auswahl von Oberflächen an, aber die newt- und text-Frontends sind auf den gängigsten Installationsmedien verfügbar. Auf Architekturen, auf denen der grafische Installer unterstützt wird, benutzt er die gtk-Oberfläche.

BOOT_DEBUG Ist dieser Parameter auf 2 gesetzt, wird der Boot-Prozess des Installers ausführlich protokolliert. Auf 3 gesetzt bewirkt er, dass an strategischen Punkten des Boot-Prozesses eine Shell zur Fehlersuche gestartet wird (schließen Sie die Shell, um den Boot-Prozess fortzusetzen).

- BOOT_DEBUG=0 Dies ist die Standardeinstellung.
- BOOT_DEBUG=1 Wortreicher als der Standard.
- BOOT_DEBUG=2 Viele Informationen (z.B. zur Fehlersuche).
- BOOT_DEBUG=3 An verschiedenen Stellen des Boot-Prozesses wird eine Shell gestartet, um detaillierte Fehlersuche zu ermöglichen. Schließen Sie die Shell, um den Boot-Vorgang fortzusetzen.

log_host, log_port Veranlasst den Installer, Logmeldungen an einernes Syslog auf dem angegebenen Rechner und Port zu senden, zusätzlich zur Speicherung in einer lokalen Datei. Falls kein Wert für den Port angegeben ist, wird der Standard-Syslog-Port 514 verwendet.

lowmem Kann verwendet werden, um den Installer zu zwingen, eine höhere lowmem-Stufe zu verwenden als die, die standardmäßig basierend auf dem verfügbaren physikalischen Speicher gewählt wird. Mögliche Werte sind „1“ und „2“. Siehe auch Abschnitt 6.3.1.1.

noshell Vermeidet, dass der Installer interaktive Shell-Eingabeaufforderungen auf tty2 und tty3 zur Verfügung stellt. Nützlich für unbeaufsichtigte Installationen, bei denen die physikalische Sicherheit eingeschränkt ist.

¹Mit aktuellen Kernel (2.6.9 und neuer) können Sie 32 Kommandozeilenoptionen und 32 Umgebungsoptionen benutzen. Werden diese Grenzen überschritten, meldet der Kernel eine Panic (stürzt ab). Außerdem gibt es eine Begrenzung auf 255 Zeichen für die Länge der gesamten Kernel-Befehlszeile, alles was länger ist, könnte einfach abgeschnitten werden.
KAPITEL 5. DAS INSTALLATIONSSYSTEM BOOTEN

5.3. BOOT-PARAMETER

netcfg/disable_autoconfig Standardmäßig versucht der debian-installer, die Netzwerkkonfiguration per automatischer IPv6-Konfiguration und DHCP zu beziehen. Wenn dies erfolgreich ist, haben Sie keine Chance mehr, sich anders zu entscheiden und die Einstellungen manuell zu ändern. Das manuelle Netzwerk-Setup kann man nur erreichen, wenn die automatische Konfiguration fehlschlägt.

Wenn Sie einen IPv6-Router oder einen DHCP-Server in Ihrem lokalen Netzwerk haben, diese aber umgehen wollen, z.B. weil sie falsche Antworten geben, können Sie den Parameter `netcfg/disable_autoconfig=true` benutzen, um jegliche automatische Netzwerkkonfiguration (IPv6 und IPv4) zu unterdrücken und die Daten manuell einzugeben.

preseed/url (url) Geben Sie die URL einer Voreinstellungs-Datei an, die heruntergeladen und benutzt wird, um die Installation zu automatisieren. Siehe auch Abschnitt 4.4.

preseed/file (file) Geben Sie den Pfad zu einer Voreinstellungs-Datei an, die geladen werden kann, um die Installation zu automatisieren. Siehe auch Abschnitt 4.4.

preseed/interactive Setzen Sie diesen Parameter auf true, um Fragen auch anzuzeigen, obwohl Sie voreingestellt sind. Dies kann zum Testen oder zur Fehlersuche an der Voreinstellungsdatei nützlich sein. Beachten Sie, dass dies bei solchen Parametern, die als Boot-Parameter angegeben werden, keinen Effekt haben wird; für solche kann aber eine spezielle Syntax genutzt werden. Siehe Abschnitt B.5.2.

auto-install/enable (auto) Fragen, die eigentlich gestellt werden, bevor Voreinstellung greift, können aufgeschoben werden, bis das Netzwerk konfiguriert ist. Siehe Abschnitt B.2.3, wie Sie dies für automatisierte Installationen nutzen können.

finish-install/keep-consoles Bei Installationen über die serielle oder die Management-Konsole werden die regulären virtuellen Konsolen (VT1 bis VT6) normalerweise in `/etc/inittab` deaktiviert. Um dies zu vermeiden, setzen Sie diesen Parameter auf true.

Setzen Sie diesen Parameter auf false, um das automatische Auswerfen des Mediums zu deaktivieren und stellen Sie sicher, dass das System nach der Basisinstalltion nicht mehr vom optischen Laufwerk bootet.

base-installer/install-recommends (recommends) Durch das Setzen dieser Option auf false wird das Paketmanagementsystem so konfiguriert, dass empfohlene Pakete (Recommends) nicht automatisch mit installiert werden. Dies gilt sowohl für die Installation als auch später für das installierte System. Siehe auch Abschnitt 6.3.5. Beachten Sie, dass diese Option es Ihnen erlaubt, ein schlankeres System zu erstellen, sie könnte aber auch dazu führen, dass Sie Funktionen vermissen, von denen Sie normalerweise erwartet hätten, dass sie verfügbar sind. Sie müssen eventuell einige der empfohlenen Pakete manuell nachinstallieren, um die volle, von Ihnen gewünschte Funktionalität zu erhalten. Diese Option sollte daher nur von sehr erfahrenen Benutzern verwendet werden.

debian-installer/allow_unauthenticated Standardmäßig verlangt der Installer, dass Paketquellen (Repositories) mit tels bekannter GPG-Schlüssel authentifiziert werden. Setzen Sie dies auf true, um die Authentifizierung zu deaktivieren. Warnung: unsicher, nicht empfohlen.

rescue/enable Setzen Sie dies auf true, um statt einer normalen Installation den Rettungsmodus zu starten. Siehe Abschnitt 8.6.
5.3.3 Boot-Parameter benutzen, um Fragen automatisiert zu beantworten

Mit einigen Ausnahmen kann für jede während der Installation gestellte Frage am Boot-Prompt eine Antwort vorgegeben werden, obwohl dies nur in speziellen Fällen sinnvoll ist. Generelle Anweisungen, wie Sie dies erledigen, finden Sie im Abschnitt B.2.2. Einige spezielle Beispiele sind weiter unten aufgelistet.

debian-installer/language (Sprache), debian-installer/country (Land), debian-installer/locale (Gebietsschema)

Es gibt zwei Wege festzulegen, welche(s) Sprache, Land und Gebietsschema (Locale) für die Installation und das installierte System verwendet wird.

Die zweite und weitaus flexiblere Möglichkeit ist, language (Sprache) und country (Land) separat anzugeben. In diesem Fall kann locale noch optional zusätzlich angegeben werden, um ein bestimmtes Standard-Gebietsschema für das installierte System zu setzen. Beispiel: language=en country=DE locale=en_GB.UTF-8 (Sprache: Englisch; Land: Deutschland; Gebietsschema: en_GB.UTF-8).

netcfg/disable_autoconfig Setzen Sie dies auf true, wenn Sie automatische IPv6-Konfiguration und DHCP deaktivieren und stattdessen statische Netzwerkkonfiguration erzwingen möchten.

5.3.4 Parameter für Kernelmodule angeben

Wenn Treiber im Kern einkompiliert sind, können Sie Parameter für sie angeben wie in der Kerneldokumentation beschrieben. Wenn allerdings die Treiber als Module kompiliert sind und weil Kernelmodule während einer Installation ein wenig anders geladen werden als beim Booten eines installierten Systems, ist es nicht möglich, Parameter für die Module auf die gleiche Art anzugeben wie gewöhnlich. Stattdessen müssen Sie eine spezielle Syntax einhalten, die vom Installer erkannt wird und sicherstellt, dass die Parameter in den passenden Konfigurationsdateien gespeichert werden und beim eigentlichen Laden der Module genutzt werden. Außerdem werden die Parameter automatisch zur Konfiguration des installierten System hinzugefügt.

Die zu verwendende Syntax, um Parameter für Module zu setzen:

```
Modulname.Parametername=Wert
```

Müssen Sie mehrere Parameter für das gleiche oder andere Module angeben, wiederholen Sie es einfach. Um zum Beispiel eine alte 3Com-Netzwerkkarte so einzustellen, dass der BNC-(Koax-)-Anschluss und der Interrupt IRQ 10 verwendet wird, nutzen Sie dies:

```
3c509.xcvr=3 3c509.irq=10
```
5.3.5 Kernel-Module als gesperrt markieren

Sie können mit der folgenden Syntax ein Modul als gesperrt markieren: `Modulname.blacklist=yes`. Das führt dazu, dass das Modul in `/etc/modprobe.d/blacklist.local` eingetragen wird; es wird sowohl für die Installation als auch später für das installierte System gesperrt.

Beachten Sie, dass das Modul trotzdem noch vom Installationssystem selbst geladen werden könnte. Sie können dies verhindern, indem Sie die Installation im Experten-Modus durchführen und das Modul in den Listen der zu ladenenden Module (während der Hardware-Erkennung) deaktivieren.

5.4 Beseitigen von Problemen während der Installation

5.4.1 Unzuverlässigkeit von optischen Datenträgern

Es gibt viele verschiedene Gründe, die dies verursachen könnten. Wir können hier nur einige allgemeine Probleme aufstellen und generelle Empfehlungen geben, wie Sie damit umgehen sollten. Der Rest liegt bei Ihnen.

Es gibt zwei einfache Dinge, die Sie zunächst ausprobieren sollten.

- Wenn die Disk nicht bootet, überprüfen Sie, ob Sie korrekt eingelegt wurde und nicht verschmutzt ist.
- Erkennen der Instalter die Disk nicht mehr, versuchen Sie, ein zweites Mal den Eintrag Installationsmedium erkennen und einbinden aus dem Menü. Es ist uns bekannt, dass einige Probleme bezüglich DMA bei sehr alten CD-ROM-Laufwerken auf diese Weise behoben werden können.

Falls dies nicht funktioniert, probieren Sie die Empfehlungen weiter unten aus. Die meisten dieser Empfehlungen gelten sowohl für CD-ROM- als auch für DVD-Laufwerke.

Sollten Sie die Installation überhaupt nicht mit einem optischen Datenträger zum Laufen bekommen, versuchen Sie eine der anderen verfügbaren Installationsmethoden.

5.4.1.1 Allgemeine Probleme

- Einige sehr alte CD-ROM-Laufwerke arbeiten nicht korrekt, wenn „Direct Memory Access“ (DMA) für diese aktiviert ist.

5.4.1.2 Wie Sie Probleme untersuchen und vielleicht auch lösen

Falls die Disk nicht bootet, versuchen Sie dies:

- Stellen Sie sicher, dass das BIOS/UEFI Ihres Rechners das Booten von optischen Datenträgern unterstützt (dies ist nur bei sehr alten Systemen ein Problem) und dass dies im BIOS/UEFI aktiviert ist.
- Falls Sie ein iso-Image heruntergeladen haben, überprüfen Sie, ob die md5sum-Prüfsumme des Images mit der übereinstimmt, die in der Datei `MD5SUMS` für dieses Image aufgelistet ist. Sie sollten diese Datei dort finden, wo Sie auch das Image heruntergeladen haben.

```
$ md5sum debian-testing-i386-netinst.iso
a20391b12f7ff22ef705cee4059c6b92 debian-testing-i386-netinst.iso
```

Überprüfen Sie auch, ob die md5sum-Prüfsumme der gebrannten Disk korrekt ist. Dies sollten Sie mit dem folgenden Kommando erledigen können. Es nutzt die Größe des Images, um die korrekte Zahl an Bytes von der Disk zu lesen.
Wenn die Disk nicht mehr erkannt wird, nachdem der Installer erfolgreich davon gestartet hat, kann es funktionieren, es einfach noch einmal zu probieren. Haben Sie mehr als ein optisches Laufwerk, versuchen Sie, die Disk in das andere Laufwerk einzulegen. Funktioniert dies auch nicht oder die Disk wird zwar erkannt, aber es gibt trotzdem Fehler beim Lesen, versuchen Sie die folgenden Empfehlungen. Dazu sind einige grundlegende Linux-Kenntnisse nötig. Um die aufgelisteten Kommandos auszuführen, sollten Sie zunächst auf die zweite virtuelle Konsole (VT2) wechseln und dort die Shell aktivieren.

- Wechseln Sie auf VT4 oder lesen Sie den Inhalt der Datei `/var/log/syslog` (nutzen Sie `nano` als Editor), um zu überprüfen, ob eventuell spezielle Fehlermeldungen vorhanden sind. Überprüfen Sie danach auch die Ausgabevon `dmesg`.

- Kontrollieren Sie in der Ausgabevon `dmesg`, ob Ihr optisches Laufwerk erkannt wurde. Es sollte etwas ähnliches angezeigt werden wie dies (die Zeilen müssen allerdings nicht zwingend direkt aufeinander folgend angezeigt werden):

\[
\begin{align*}
\text{ata1.00: ATAPI: MATSHITADVD-\text{RAM} UJ-822S, 1.61, max UDMA/33} \\
\text{ata1.00: configured for UDMA/33} \\
\text{scsi 0:0:0:0: CD-ROM MATSHITA DVD-\text{RAM} UJ-822S 1.61 PQ: 0 ANSI: 5} \\
\text{sr0: scsi3-mmc drive: 24x/24x writer dvd-ram cd/rw xa/form2 cdda tray} \\
\text{cdrom: Uniform CD-ROM driver Revision: 3.20}
\end{align*}
\]

Sollten Sie solche Zeilen nicht finden, besteht die Möglichkeit, dass der Controller, an den Ihr Laufwerk angeschlossen ist, nicht erkannt wurde oder von Linux nicht unterstützt wird. Falls Sie wissen, welcher Treiber dafür benötigt wird, können Sie versuchen, ihn mit `modprobe` zu laden.

- Überprüfen Sie, ob eine Gerätedatei (device node) für Ihr optisches Laufwerk in `/dev/` existiert. In dem obigen Beispiel wäre dies `/dev/sr0`. Auch `/dev/cdrom` sollte vorhanden sein.

- Kontrollieren Sie mittels `mount`, ob die Disk bereits ins Dateisystem eingebunden ist; falls nicht, erledigen Sie dies manuell:

 \[
 \$ \text{mount} /dev/hdc /cdrom
 \]

 Achten Sie darauf, ob nach diesem Befehl irgendwelche Fehlermeldungen angezeigt werden.

- Überprüfen Sie, ob DMA im Moment aktiviert ist:

 \[
 \$ \text{cd} /proc/ide/hdc \\
 \$ \text{grep using_dma settings} \\
 \text{using_dma 1 0 1 rw}
 \]

 Eine „1“ an der ersten Stelle hinter „using_dma“ bedeutet, dass DMA aktiviert ist. Sollte dies so sein, versuchen Sie, es zu deaktivieren:

 \[
 \$ \text{echo -n "using_dma:0" >settings}
 \]

 Stellen Sie sicher, dass Sie sich in dem Verzeichnis befinden, das zu Ihrem optischen Laufwerk gehört.

- Falls während der Installation irgendwelche Probleme auftreten, überprüfen Sie die Integrität des Installationsmediums mittels der entsprechenden Option im Hauptmenü des Installers (ziemlich weit unten). Sie können dies auch nutzen, um zu testen, ob die Disk zuverlässig gelesen werden kann.
5.4.2 Boot-Konfiguration
Wenn Sie Probleme haben und der Kernel bleibt während des Boot-Prozesses hängen oder Ihre Peripherie bzw. Laufwerke werden nicht korrekt erkannt, sollten Sie als erstes die Boot-Parameter überprüfen, die in Abschnitt 5.3 erläutert werden.

In einigen Fällen können Fehler durch fehlende Geräte-Firmware verursacht werden (siehe Abschnitt 2.2 und Abschnitt 6.4).

5.4.3 Die Startmeldungen des Kernels deuten
Während des Boot-Prozesses können Sie viele Meldungen der Form `can't find something (kann irgendetwas nicht finden)` oder `something not present (irgendetwas nicht vorhanden)`, `can't initialize something (kann irgendetwas nicht initialisieren)` oder sogar `this driver release depends on something (diese Treiberversion ist abhängig von irgendetwas)` sehen. Die meisten dieser Meldungen sind harmlos. Sie erscheinen, weil der Kernel des Installationssystems gebaut wurde, um auf vielen Maschinen mit viel verschiedener Hardware zu funktionieren. Wahrscheinlich wird kein Rechner alle möglichen Peripheriegeräte beinhalten, deswegen wird das Betriebssystem wohl immer etwas zu beklagen haben, wenn es Peripherie sucht, die Sie nicht besitzen. Sie werden vielleicht auch feststellen, dass das System für eine Weile pausiert. Dies kommt vor, wenn es auf die Antwort eines Gerätes wartet, das in Ihrem System nicht vorhanden ist. Wenn Sie meinen, dass die Zeit zum Booten des Systems unakzeptabel lang ist, können Sie später einen eigenen, maßgeschneiderten Kernel erstellen (siehe auch Abschnitt 8.5).

5.4.4 Installationsprobleme berichten
Wenn Sie zu den anfänglichen Boot-Phase hinuntergebracht werden, aber die Installation nicht abschließen können, kann die Auswahl des Menüpunkts „Installationsprotokolle speichern“ hilfreich sein. Dabei können System-Fehlernachrichten und Konfigurationsdaten des Installers auf ein Speichermedium geschrieben oder mittels eines Web-browsers heruntergeladen werden. Diese Informationen können Hinweise darauf geben, was schief gelaufen ist und wie man dies beheben kann. Wenn Sie einen Fehlerbericht einsenden, sollten Sie diese Informationen dem Bericht beilegen.

Andere sinnvollen Installationsmeldungen findet man während der Installation in `/var/log/` und nachdem das neu installierte System gebootet wurde in `/var/log/installer/`.

5.4.5 Installationsberichte einschicken
Wenn Sie immer noch Probleme haben, senden Sie uns einen Installationsbericht (auf Englisch bitte). Wir bitten Sie auch darum, uns Berichte von erfolgreichen Installations zu senden, damit wir so viel Informationen wie möglich über die riesige Zahl von Hardware-Konfigurationen bekommen.

Bedenken Sie, dass Ihr Installationsbericht in der Debian-Fehlerdatenbank (Debian Bug Tracking System, BTS) veröffentlicht und an eine öffentliche Mailingliste weitergeleitet wird. Verwenden Sie also eine E-Mail-Adresse, bei der Sie nicht dagegen haben, dass sie öffentlich gemacht wird.

Falls Sie bereits ein funktionierendes Debian-System haben, ist dies der einfachste Weg, um uns einen Installationsbericht zu schicken: installieren Sie die Pakete `installation-report` und `reportbug` (mit `apt install installation-report reportbug`), konfigurieren Sie `reportbug` wie in Abschnitt 8.4.2 beschrieben und führen Sie dann den Befehl `reportbug installation-reports` aus.

Sie können alternativ diese Vorlage benutzen, um Installationsberichte zu verfassen, und schicken Sie ihn dann als Fehlerbericht gegen das Pseudo-Paket `installation-reports` an `submit@bugs.debian.org`.

Package: `installation-reports`

Boot method: `<How did you boot the installer? CD/DVD? USB stick? Network?>`

Image version: `<Full URL to image you downloaded is best>`

Date: `<Date and time of the install>`

Machine: `<Description of machine (eg, IBM Thinkpad R32)>`

Processor:

Memory:

Partitions: `<df -Tl will do; the raw partition table is preferred>`

Output of lspci -knn (or lspci -nn):

Base System Installation Checklist:

[] = OK, [E] = Error (please elaborate below), [] = didn’t try it
Initial boot: []
Detect network card: []
Configure network: []
Detect media: []
Load installer modules: []
Detect hard drives: []
Partition hard drives: []
Install base system: []
Clock/timezone setup: []
User/password setup: []
Install tasks: []
Install boot loader: []
Overall install: []

Comments/Problems:

<Description of the install, in prose, and any thoughts, comments and ideas you had during the initial install.>

Fügen Sie diesem Bericht bitte Logdateien der Installation bei, wenn Sie denken, dass diese nützlich sein könnten. (Sie finden diese im Installer-System unter /var/log/ oder später im installierten System unter /var/log/installer.) Komprimieren Sie große Dateien mittels gzip.

Beschreiben Sie in dem Bericht, was das Problem ist (inklusive der letzten sichtbaren Kernel-Meldungen, falls der Kernel sich aufgehängt hat). Beschreiben Sie die Schritte, die Sie durchgeführt haben und die das System in den problematischen Zustand gebracht haben.
Kapitel 6

Den Debian-Installer verwenden

6.1 Wie der Installer funktioniert

Für diese Architektur verwendet der Installer eine textbasierte Benutzeroberfläche. Die grafische Oberfläche ist derzeit nicht verfügbar.

Der Debian-Installer besteht aus einer Reihe von Komponenten für spezielle Zwecke, die die einzelnen Installationsaufgaben übernehmen. Jede Komponente führt seine Aufgabe aus und fragt vom Benutzer die dazu nötigen Informationen ab. Den Fragen selbst sind Prioritäten zugeteilt und die Prioritätstufe der Fragen, die gestellt werden, kann beim Start des Installers festgelegt werden.

Wenn eine Standardinstallation durchgeführt wird, werden nur wichtige Fragen (mit hoher Priorität) gestellt. Dies führt zu einem stark automatisierten Installationsprozess, der wenig Eingriffe seitens des Benutzers erfordert. Die Komponenten werden automatisch der Reihe nach abgearbeitet; welche Komponenten gestartet werden, hängt hauptsächlich von der Installationsmethode, die Sie gewählt haben, und von Ihrer Hardware ab. Der Installer wird für Fragen, die nicht gestellt werden, Standardwerte eintragen.

Tritt ein Problem auf, wird ein Fehler-Bildschirm angezeigt und unter Umständen auch das Installer-Menü, über das eine alternative Aktion gestartet werden kann. Treten keine Probleme auf, wird der Benutzer das Installer-Menü nicht zu sehen bekommen, sondern einfach die Fragen für die einzelnen Komponenten der Reihe nach beantworten. Gravierende Fehleranzeigen haben die Priorität „kritisch“, so dass der Benutzer hierüber immer informiert wird.

Einige der Standardwerte, welche der Installer für Fragen benutzt, die unterdrückt werden, können beeinflusst werden, indem dem debian-installer beim Start Boot-Parameter übergeben werden. Wenn Sie zum Beispiel eine statische Netzwerkkonfiguration erzwingen möchten (standardmäßig und falls verfügbar werden automatische IPv6-Konfiguration und/oder DHCP verwendet), können Sie den Boot-Parameter netcfg/disable_autoconfig=true benutzen, Abschnitt 5.3.2 informiert über die verfügbaren Optionen.

Fortgeschrittene Benutzer werden vielleicht mit einer menü-basierten Oberfläche besser zurecht kommen, wo sie jeden Schritt besser kontrollieren können, statt dass der Installer diese Schritte der Reihe nach automatisch ausführt. Um den Installer auf manuelle, menü-basierte Art zu verwenden, fügen Sie den Boot-Parameter priority=medium hinzu.

Einige Dialoge bieten zusätzliche Hilfeinformationen an. Falls solch eine Hilfe verfügbar ist, erkennen Sie dies daran, dass in der Fußzeile unten am Bildschirmrand zusätzlich „F1 Hilfe“ angezeigt wird.

Fehlermeldungen und Logdaten werden auf die vierte Konsole umgeleitet. Sie können durch Drücken von Alt-F4 auf diese Konsole wechseln (halten Sie die linke Alt-Taste gedrückt und drücken Sie die Funktionstaste F4); zurück zum Installer-Hauptprogramm gelangen Sie mit Alt-F1.

6.2 Einführung in die Komponenten

Hier ist eine Liste der Installer-Komponenten mit einer kurzen Beschreibung ihrer Aufgabe. Details über die Verwendung einer speziellen Komponente finden Sie im Abschnitt 6.3.

localechooser Erlaubt dem Benutzer, Lokalisierungsoptionen für die Installation und das zu installierende System auszuwählen: Sprache, Land und Gebietsschema. Der Installer wird Meldungen in der gewählten Sprache anzeigen (außer die Übersetzung für diese Sprache ist nicht vollständig; in diesem Fall könnten einige Meldungen in Englisch angezeigt werden).

console-setup Zeigt eine Liste von Tastaturen (oder -modellen) an, aus der der Benutzer das passende auswählt.

hw-detect Erkennt automatisch den überwiegenden Teil der System-Hardware inklusive Netzwerkkarten, Laufwerken und PCMCIA-Karten.

cdrom-detect Sucht ein Debian Installationsmedium und bindet es ein.

netcfg Konfiguriert die Netzwerkverbindungen des Computers, damit er über das Netzwerk kommunizieren kann.

iso-scan Sucht auf Festplatten nach ISO-Dateisystem-Abbildern (.iso-Dateien).

choose-mirror Zeigt eine Liste von Debian-Archivspiegel-Servern an. Der Benutzer kann hier die Quelle für seine Installationspakete auswählen.

cdrom-checker Überprüft die Integrität (Unversehrtheit) eines Installationsmediums. Hiermit kann man sich davon überzeugen, dass das Medium nicht defekt ist oder korrumpiert wurde.

lowmem Lowmem versucht, Systeme mit zu wenig Arbeitsspeicher zu erkennen und vollführt einige Kunststücke, um unnötige Teile des debian-installer aus dem Speicher zu entfernen (allerdings auf Kosten einiger Funktionen).

user-setup Legt das root-Passwort fest und fügt dem System einen normalen Benutzer hinzu.

clock-setup Aktualisiert die Systemuhr und legt fest, ob die Uhr auf UTC (Universal Coordinated Time, koordinierte Weltzeit) eingestellt ist oder nicht.

tzsetup Wählt die Zeitzone, basierend auf dem vorher angegebenen Standort.

partman Ermöglicht dem Benutzer, die am System angeschlossenen Festplatten zu partitionieren, Dateisysteme darauf zu erstellen und sie an den Einbindungspunkten einzuklinken. Es sind interessante Features enthalten, wie ein komplett automatischer Modus oder LVM-Unterstützung. Dies ist das bevorzugte Partitionierungsprogramm in Debian.

partman-lvm Unterstützt den Benutzer bei der Konfiguration des LVM (Logical Volume Manager).

partman-md Erlaubt dem Benutzer, ein Software-RAID (Redundant Array of Inexpensive Disks) einzurichten. Dieses Software-RAID ist den billigen IDE-(Pseudo-Hardware) RAID-Controllern, die man auf neuen Motherboards findet, für gewöhnlich überlegen.
KAPITEL 6. DEN DEBIAN-INSTALLER VERWENDEN

6.3. DIE EINZELNEN KOMPONENTEN

base-installer Installiert die grundlegendsten Pakete, die dem Computer nach dem Neustart den Betrieb unter Debian GNU/Linux ermöglichen.

apt-setup Konfiguriert apt überwiegend automatisch, basierend darauf, von welchem Medium der Installer gestartet wurde.

pkgsel Benutzt `tasksel`, um Auswahl und Installation zusätzlicher Software zu ermöglichen.

shell Erlaubt dem Benutzer das Ausführen einer Shell aus dem Menü oder auf der zweiten Konsole.

save-logs Bietet dem Benutzer die Möglichkeit, bei Problemen Informationen auf einem USB-Stick, über Netzwerk auf einem entfernten Laufwerk, auf Festplatte oder auf einem anderen Medium abzuspeichern, um den Debian-Entwicklern später präzise von Problemen mit der Installer-Software berichten zu können.

6.3 Die einzelnen Komponenten

6.3.1 Den Debian-Installer einrichten und Konfiguration der Hardware

Nehmen wir an, dass der `debian-installer` gebootet ist und Sie sein erstes Bild sehen. In diesem Moment sind die Fähigkeiten des Debian-Installers noch sehr begrenzt. Er weiß noch nicht viel über Ihre Hardware, Ihre bevorzugte Sprache oder die Aufgabe, die er erledigen soll. Machen Sie sich darüber keine Sorgen. Da der `debian-installer` sehr clever ist, kann er automatisch Ihre Hardware erkennen, seine restlichen noch nicht geladenen Komponenten finden und sich selbst zu einem leistungsfähigen Installationssystem machen. Allerdings benötigt er immer noch Ihre Hilfe, um einige Informationen zu bekommen, die er nicht automatisch erkennen kann (wie die bevorzugte Sprache, die Tastaturbelegung oder den gewünschten Internet-Spiegel-Server).

Sie werden feststellen, dass der `debian-installer` mehrmals während dieses Schrittes eine Hardware-Erkennung durchführt. Das erste Mal geht es hauptsächlich um die Hardware, die benötigt wird, um die Installer-Komponenten zu laden (z.B. Ihr CD-ROM-Laufwerk oder Ihre Netzwerkkarte). Weil allerdings im ersten Durchlauf möglicherweise noch nicht alle Treiber zur Verfügung stehen, muss die Hardware-Erkennung später eventuell noch einmal wiederholt werden.

Während der Hardware-Erkennung prüft der `debian-installer`, ob einer der für Ihre Hardware benötigten Treiber das Nachladen von Firmware in das Gerät erfordert. Falls dies der Fall ist, jedoch keine Firmware verfügbar ist, wird ein Dialog angezeigt, der das Laden der fehlenden Firmware von einem transportablen Medium ermöglicht. Details finden Sie in Abschnitt 6.4.

6.3.1.1 Verfügbaren Arbeitsspeicher prüfen / Low-Memory-Modus

Einer der ersten Tests, die der `debian-installer` durchführt, ist zu überprüfen, wieviel Arbeitsspeicher zur Verfügung steht. Ist der verfügbare Speicher knapp, führt dieses Modul einige Änderungen am Installationsprozess durch, die Ihnen hoffentlich ermöglichen, Debian GNU/Linux trotzdem auf Ihrem System zu installieren.

Die erste Maßnahme, die getroffen wird, um den Speicherbedarf des Installers zu reduzieren, ist die Deaktivierung aller Übersetzungen, was bedeutet, dass die Installation nur in Englisch durchgeführt werden kann. Das installierte System kann natürlich trotzdem an Ihre Sprache angepasst werden, nachdem die Installation abgeschlossen ist.

Falls dies noch nicht ausreichend ist, kann der Speicherbedarf weiter reduziert werden, indem nur diejenigen Komponenten geladen werden, die unbedingt erforderlich sind, um eine Basisinstallation abzuschließen. Dies schränkt
die Fähigkeiten des Installers ein. Sie haben die Gelegenheit, zusätzliche Komponenten manuell zu laden, aber Sie sollten bedenken, dass jede solche Komponente auch zusätzlichen Speicher benötigt und so dazu führen könnte, dass die Installation fehlschlägt.

Trotz all dieser Maßnahmen ist es immer noch möglich, dass Ihr System einfriert oder sich aufhängt, dass unerwartete Fehler auftreten oder dass Prozesse vom Kernel beendet werden, weil kein freier Speicher mehr verfügbar ist (erkenntbar an Meldungen mit „Out of memory“ auf VT4 und im Syslog).

Es wurde zum Beispiel berichtet, dass die Erzeugung eines großen ext3-Dateisystems im Low-Memory-Modus fehlgeschlagen ist, wenn die Swap-Partition zu klein gewählt war. Wenn die Vergrößerung des Swap-Speichers nicht hilft, sollten Sie das Dateisystem stattdessen als ext2 erzeugen (dies ist eine Standardkomponente des Installers, während ext3 eine der Komponenten ist, die im Low-Memory-Modus nicht standardmäßig geladen wird). Nach Abschluss der Installation ist es möglich, die ext2-Partition in ext3 umzumünzen.

Es ist möglich, eine höhere lowmem-Stufe zu verwenden als die, die auf dem verfügbaren physikalischen Speicher beruht. Nutzen Sie dazu den Boot-Parameter „lowmem“ wie in Abschnitt 5.3.2 beschrieben.

6.3.1.2 Lokalisierungsoptionen auswählen

In den meisten Fällen betreffen die ersten Fragen, die Ihnen gestellt werden, die Auswahl von Lokalisierungsoptionen, die sowohl für die Installation als auch für das installierte System genutzt werden. Diese Lokalisierungsoptionen bestehen aus der Sprache, dem Standort und dem Gebietschema (Locale).

Die Sprache, die Sie wählen, wird für den Rest des Installationsprozesses genutzt, vorausgesetzt, eine Übersetzung der verschiedenen Dialoge in diese Sprache ist vorhanden. Falls keine passende Übersetzung für die gewählte Sprache verfügbar ist, nutzt der Installer die Standardeinstellung Englisch.

Der ausgewählte geographische Standort (in den meisten Fällen ein Land) wird später im Installationsprozess verwendet, um die korrekte Zeitzone und einen für Ihr Land passenden Debian-Spiegel-Server auszuwählen. Sprache und Land zusammen werden dabei hilfreich sein, das Standardgebietsschema für Ihr System festzulegen und die korrekten Tastaturbelegung auszuwählen.

Die nächste Frage betrifft Ihren geographischen Standort. Falls sie eine Sprache gewählt haben, die offizielle Sprache in mehr als einem Land ist¹, wird Ihnen eine Liste mit diesen Ländern angezeigt. Falls Sie ein Land wählen möchten, das in dieser Liste nicht enthalten ist, wählen Sie „weitere“ (der letzte Eintrag). Es wird dann eine Liste der Kontinente angezeigt; bei Auswahl eines Kontinents erscheint eine Liste mit diesem Kontinent zugehörigen Ländern.

Falls es für die von Ihnen gewählte Sprache nur ein zugehöriges Land gibt, wird eine Liste mit Ländern für den Kontinent oder das Gebiet angezeigt, zu dem dieses Land gehört; dabei ist dieses Land in der Liste bereits standardmäßig vorgewählt. Verwenden Sie den Zurück-Button, um ein Land auf einem anderen Kontinent auszuwählen.

ANMERKUNG

Es ist wichtig, das Land auszuwählen, in dem Sie leben oder in dem Sie sich befinden, da daraus die Zeitzone ermittelt wird, die auf dem installierten System eingestellt wird.

Wenn Sie eine Kombination aus Sprache und Land auswählen, für die kein Gebietschema definiert ist oder wenn mehrere Gebietschemata für die Sprache existieren, gibt der Installer Ihnen die Möglichkeit festzulegen, welches der Gebietschema Sie als Standardgebietsschema auf dem installierten System bevorzugen ². In allen anderen Fällen wird ein Standardgebietsschema basierend auf der Auswahl für Sprache und Land festgelegt.

¹Technisch gesehen: wenn verschiedene Gebietschemata für diese Sprache mit unterschiedlichen Landeskennungen existieren.
²Bei mittlerer und niedriger Priorität haben Sie immer die Möglichkeit, das von Ihnen bevorzugte Gebietschema aus den für Ihr Land zur Verfügung stehenden auszuwählen (falls es mehr als eines gibt).
Jedes Standardgebietsschema, das wie im vorherigen Abschnitt beschrieben festgelegt wird, nutzt UTF-8 als Zeichenkodierung.

Wenn Sie mit niedriger Priorität installieren, haben Sie die Möglichkeit, zusätzliche Gebietsschemata für das installierte System generieren zu lassen, inklusive der sogenannten „Legacy“-Gebietsschemata⁴; falls Sie davon Gebrauch machen, werden Sie gefragt, welches der ausgewählten Gebietsschemata das Standardgebietsschema für das installierte System sein soll.

6.3.1.3 Auswahl der Tastaturbelegung

Tastaturen sind oft auf die Zeichen zugeschnitten, die in einer bestimmten Sprache benutzt werden. Wählen Sie eine Belegung, die der Tastatur, die Sie verwenden entspricht, oder wählen Sie eine ähnliche aus, falls die gewünschte Belegung nicht vorhanden ist. Wenn die Systeminstallation abgeschlossen ist, können Sie aus einer größeren Auswahl an Tastaturen wählen (führen Sie dazu den Befehl dpkg-reconfigure keyboard-configuration als root aus, wenn die Installation abgeschlossen ist).

Setzen Sie die Markierung auf die gewünschte Auswahl und drücken Sie Enter. Benutzen Sie die Pfeiltasten, um die Markierung zu bewegen – sie befinden sich bei allen Tastatur-Layouts an der gleichen Stelle, daher sind sie von der Tastaturkonfiguration unabhängig.

6.3.1.4 Das ISO-Image des Debian-Installers suchen

Wenn Sie mittels der hd-media-Methode installieren, werden Sie an einen Punkt kommen, wo Sie das ISO-Image des Debian-Installers suchen und ins Dateisystem einbinden müssen, um die restlichen Installationsdateien zu bekommen. Die Komponente iso-scan erledigt genau dies für Sie.

Falls der erste Anlauf, ein Installer-Image zu finden, fehlschlägt, fragt iso-scan, ob Sie eine vollständige Durchsuchung durchführen möchten. Hierbei werden nicht nur die oberen Verzeichnisebenen durchsucht, sondern das ganze Dateisystem.

Wenn iso-scan Ihr ISO-Image nicht finden kann, starten Sie wieder Ihr Original-Betriebssystem und überprüfen, ob das Image richtig bezeichnet ist (ob es auf .iso endet), ob es auf einem Dateisystem liegt, das vom debian-installer erkannt wird und ob es nicht beschädigt ist (überprüfen Sie die Prüfsumme). Erfahrene Unix-Nutzer können dies auch auf der zweiten Konsole erledigen, ohne den Rechner neu zu booten.

Beachten Sie, dass die Partition (oder die Platte), die das ISO-Image beherbergt, während der Installation nicht ohne weiteres genutzt werden kann, da sie bereits durch den Installer verwendet wird. Um dies zu umgehen, kann der Installer - vorausgesetzt, Sie haben genügend Arbeitsspeicher - das ISO-Image in den Arbeitsspeicher kopieren, bevor er es einbindet. Dies kann über die iso-scan/copy_iso_to_ram-debconf-Frage (nur in einer Experten-Installation unter niedriger Priorität verfügbar und auch nur, wenn die Anforderungen an die Größe des Arbeitsspeichers erfüllt sind) eingestellt werden.

6.3.1.5 Netzwerkkonfiguration

Wenn Sie in diesem Schritt einsteigen und das System erkennt, dass Sie mehr als eine Netzwerkkarte haben, werden Sie gefragt, welche Ihre primäre Netzwerkschnittstelle ist; diese wird zum Beispiel auch für die Installation verwendet. Weitere Netzwerkarten werden zu diesem Zeitpunkt nicht konfiguriert. Sie können zusätzliche Schnittstellen konfigurieren, nachdem die Installation beendet ist; lesen Sie dazu die interfaces(5)-Handbuchseite.

6.3.1.5.1 Automatische Konfiguration

Standardmäßig versucht der debian-installer, das Netzwerk Ihres Computers soweit möglich automatisch zu konfigurieren. Wenn die automatische Konfiguration fehlschlägt, kann dies durch verschiedene Faktoren von einem nicht korrekt eingestellten Netzwerkbild bis hin zu fehlender Infrastruktur für solch eine automatische Konfiguration ausgelöst werden. Zur weiteren Diagnose kontrollieren Sie, ob Fehlermeldungen auf der vierten Konsole aufgelaufen

sind. Sie werden auf jeden Fall gefragt, ob Sie es erneut versuchen möchten, oder ob Sie die Einstellungen manuell vornehmen möchten. Manchmal haben die Netzwerkdiene für die automatische Konfiguration lange Antwortzeiten; wenn Sie also sicher sind, dass alles korrekt ist, starten Sie die automatische Konfiguration einfach nochmal. Falls die automatische Konfiguration wiederholt fehlschlägt, können Sie stattdessen die manuelle Einrichtung wählen.

6.3.1.5.2 Manuelle Konfiguration

Beim manuellen Netzwerk-Setup werden einige Angaben über Ihr Netzwerk erfragt, hauptsächlich IP-Adresse, Subnetzmaske, Gateway (Adresse für die Verbindung ins Internet), Nameserver-Adressen (DNS) und Hostname (Rechnername). Wenn Sie ein drahtloses Netzwerk haben, werden Sie außerdem noch nach der Wireless ESSID (dem „Namen“ des drahtlosen Netzwerks) und dem WEP-Schlüssel bzw. der WPA/WPA2-Passphrase gefragt. Geben Sie hier die Angaben aus Abschnitt 3.3 an.

ANMERKUNG

6.3.1.5.3 IPv4 und IPv6

6.3.2 Benutzerzugänge und Passwörter einrichten

Bevor die Uhr eingerichtet wird, gibt der Installer Ihnen die Möglichkeit, den „root“-Zugang (Super-User) und/oder einen Zugang für den ersten Benutzer einzurichten. Weitere Benutzerzugänge können nach Abschluß der Installation hinzugefügt werden.

6.3.2.1 Das root-Passwort setzen

Der root-Zugang wird auch Super-User genannt; es ist ein Benutzerzugang, der alle Sicherheitsvorkehrungen auf Ihrem System umgeht. Der root-Zugang sollte nur zur Systemadministration genutzt werden und dabei nicht länger als unbedingt nötig.

Falls irgend jemand Ihnen sagt, er bräuchte Ihr root-Passwort, seien Sie besonders auf der Hut. Sie sollten normalerweise niemals Ihr root-Passwort herausgeben, es sei denn, Sie verwalten einen Rechner mit mehreren Systemadministratoren.

Wenn Sie hier kein Passwort für den „root“-Benutzer festlegen, führt das zur Deaktivierung dieses Kontos, aber später wird das `sudo`-Paket installiert, damit administrative Aufgaben auf dem neuen System durchgeführt werden können. Standardmäßig wird in diesem Fall der erste auf dem System eingerichtete Benutzer die Berechtigung erhalten, den `sudo`-Befehl zu verwenden, um root zu werden.
6.3.2.2 Einen normalen Benutzer anlegen

Das System fragt Sie an diesem Punkt, ob Sie einen normalen Benutzerzugang anlegen möchten. Dies sollte Ihr hauptsächlicher persönlicher Login sein. Sie sollten nicht den root-Zugang für die tägliche Arbeit oder als persönlichen Login benutzen.

Sie werden nach dem vollen Namen des Benutzers gefragt. Danach wird ein Name für den Benutzerzugang verlangt. Grundsätzlich ist Ihr Vorname oder etwas ähnliches hier gut geeignet; deshalb ist dies auch die Standardvorgabe. Dann müssen Sie noch ein Passwort für diesen Zugang angeben.

Wenn Sie zu irgendeinem Zeitpunkt nach der Installation einen weiteren Benutzer anlegen möchten, benutzen Sie das **adduser**-Kommando.

6.3.3 Konfiguration der Uhr und Zeitzone

Der Installer wird zunächst versuchen, einen Zeit-Server im Internet zu kontaktieren (mittels dem **NTP**-Protokoll), um die Systemzeit korrekt einzustellen. Falls dies nicht gelingt, geht der Installer davon aus, dass Datum und Zeit so, wie sie beim Start des Installationssystems von der CMOS-Uhr empfangen wurden, korrekt sind. Es ist während des Installationsprozesses nicht möglich, die Systemzeit manuell einzustellen.

Abhängig vom Standort, der vorher während des Installationsprozesses ausgewählt wurde, könnte Ihnen eine Liste mit für diesen Ort relevanten Zeitzonen präsentiert werden. Wenn Ihr Land nur eine Zeitzone hat und Sie eine Standardinstallation durchführen, werden Sie nicht gefragt, das System wählt einfach diese Zeitzone aus.

Im Experten-Modus oder bei Installation mit Priorität medium haben Sie die zusätzliche Option, „Coordinated Universal Time“ (UTC, Koordinierte Weltzeit) als Zeitzone auszuwählen.

Falls Sie aus irgendeinem Grund eine Zeitzone für das zu installierende System einstellen möchten, die nicht zu dem ausgewählten Standort gehört, gibt es zwei Möglichkeiten:

1. Das Einfachste ist, eine andere Zeitzone zu wählen, nachdem die Installation abgeschlossen ist und Sie das neue System gebootet haben. Der Befehl dazu ist:

   ```
   # dpkg-reconfigure tzdata
   ```

2. Alternativ kann die Zeitzone direkt beim Start der Installation gesetzt werden, indem Sie den Parameter `time/zone=Wert` anhängen, wenn Sie den Installer booten. Der Wert sollte natürlich eine gültige Zeitzone sein, z.B. **Europe/Berlin** oder **UTC**.

Bei automatisierten Installationen kann die Zeitzone mittels Voreinstellung auf jeden gewünschten Wert gesetzt werden.

6.3.4 Partitionierung und Auswahl der Einbindungspunkte im Dateisystem

Jetzt, nachdem die Hardware-Erkennung ein letztes Mal durchgeführt wurde, sollte der **debian-installer** seine volle Funktionalität erreicht haben, optimal abgestimmt auf die Bedürfnisse des Benutzers und bereit, mit der richtigen Arbeit zu beginnen. Wie der Titel dieses Abschnitts erkennen lässt, liegt die Hauptaufgabe der jetzt folgenden Komponenten im Partitionieren Ihrer Laufwerke, Erstellen von Dateisystemen, Festlegen der Einbindungspunkte sowie damit eng verwandten Optionen wie der Einrichtung von RAID, LVM oder verschlüsselten Laufwerken.

Wenn Sie sich mit Partitionierung nicht auskennen oder einfach mehr Details benötigen lesen Sie Anhang C.

Zuerst wird Ihnen die Auswahl geboten, automatisch entweder eine gesamte Platte zu partitionieren oder nur den freien Speicherplatz auf einer Platte, falls solcher vorhanden ist. Dies wird auch als „Geführte Partitionierung“ bezeichnet. Wenn Sie keine automatische Partitionierung wollen, wählen Sie Manuell.

6.3.4.1 Unterstützte Partitionierungsitionen

Der im **debian-installer** verwendete Partitioner ist ziemlich vielseitig. Er erlaubt die Erstellung vieler verschiedener Partitionierungsschemata sowie die Verwendung von verschiedenen Partitionstabellen, Dateisystemen und erweiterten blockorientierten Geräten.

Der Installer unterstützt verschiedene Formen der fortgeschrittenen Partitionierung sowie der Verwendung von Speichergeräten, die in vielen Fällen auch kombiniert genutzt werden können.

- **Logical Volume Management (LVM)**
- **Software-RAID**
- **Verschlüsselung**
- **Multipath** (experimentell)

Lesen Sie unser Wiki bezüglich weiterer Informationen. Unterstützung für Multipath ist derzeit nur verfügbar, wenn es bereits beim Booten des Installers aktiviert wird.

Die folgenden Dateisysteme werden unterstützt:

- **ext2r0, ext2, ext3, ext4**
 Das Standard-Dateisystem ist in den meisten Fällen ext4; für /boot-Partitionen wird bei geführter Partitionierung standardmäßig ext2 verwendet.

- **jfs** (nicht auf allen Architekturen verfügbar)
- **xfs** (nicht auf allen Architekturen verfügbar)
- **reiserfs** (optional; nicht auf allen Architekturen verfügbar)

- **jffs2**
 Wird auf einigen System verwendet, um Flash-Speicher zu lesen. Es ist nicht möglich, neue jffs2-Partitionen zu erstellen.

- **FAT16, FAT32**
 The partitioner accepts units as power-of-ten (1 MB = 1000 kB = 1000000 B), as well as power-of-two (1 MiB = 1024 kiB = 1048576 B). Unit prefixes are supported until EB/EiB (exabyte/exbibyte).

6.3.4.2 Geführte Partitionierung

Wenn Sie Geführte Partitionierung wählen, haben Sie drei Möglichkeiten: Partitionen direkt auf der Festplatte erzeugen (die klassische Methode), LVM (Logical Volume Management) benutzen oder verschlüsseltes LVM benutzen.

ANMERKUNG

Die Option zur Nutzung von LVM (Standard oder verschlüsselt) ist möglicherweise nicht auf allen Architekturen verfügbar.

Bei der Verwendung von LVM oder verschlüsseltem LVM erzeugt der Installer die meisten Partitionen innerhalb einer großen Partition; der Vorteil dabei ist, dass die Partitionen innerhalb der großen Partition sehr einfach nachträglich in der Größe verändert werden können. Im Fall von verschlüsseltem LVM ist die große Partition ohne Kenntnis einer speziellen Passphrase nicht lesbar und bietet deshalb zusätzliche Sicherheit Ihrer (persönlichen) Daten.

4Der Installer verschlüsselt die LVM-Volumengruppe mittels eines 256 Bit-AES-Schlüssels und nutzt dazu die „dm-crypt“-Unterstützung des Kernels.
Wenn Sie verschlüsseltes LVM verwenden, wird der Installer auch automatisch die Festplatte löschen, indem Zufallsdatendaraufgeschrieben werden. Dies verbessert zusätzlich die Sicherheit (da es so unmöglich ist zu erkennen, welche Teile der Platte genutzt werden und außerdem alle Spuren von früheren Installationen gelöscht werden), könnte aber einiges an Zeit benötigen, abhängig von der Größe der Festplatte.

ANMERKUNG

Wenn Sie Geführte Partitionierung (mittels LVM oder verschlüsseltem LVM) wählen, müssen einige Änderungen in der Partitionstabelle auf die ausgewählten Festplatten geschrieben werden, während LVM eingerichtet wird. Diese Änderungen löschen effektiv alle Daten, die zu dieser Zeit auf den entsprechenden Festplatten gespeichert sind und sind nicht rückgängig zu machen! Der Installer fordert Sie aber auf, diese Änderungen zu bestätigen, bevor sie auf die Platten geschrieben werden.

Nachdem Sie Geführte Partitionierung (entweder klassisch oder mittels (verschlüsseltem) LVM) für eine ganze Festplatte ausgewählt haben, müssen Sie die Platte angeben, die Sie nutzen möchten. Überprüfen Sie, ob alle Ihre Festplatten aufgelistet sind und, falls Sie mehrere haben, achten Sie darauf, dass Sie die richtige wählen. Die Reihenfolge, in der sie aufgelistet sind, könnte anders sein, als sie es gewohnt sind. Die Größe der Festplatten kann Ihnen helfen, sie zu identifizieren.

Alle Daten auf den ausgewählten Festplatten könnten verloren gehen, aber Sie werden immer aufgefordert, jegliche Änderungen zu bestätigen, bevor sie auf die Festplatten geschrieben werden. Wenn Sie die klassische Partitionierungsmethode gewählt haben, können Sie bis zuletzt alle Änderungen rückgängig machen; bei der Verwendung von LVM (Standard oder verschlüsselt) ist dies nicht möglich.

Als nächstes können Sie aus der Liste ein Partitionsschema auswählen. Alle Schemata haben ihre Vor- und Nachteile, von denen einige im Anhang C erörtert sind. Wenn Sie sich nicht sicher sind, wählen Sie die erste Möglichkeit. Beachten Sie, dass die automatische Partitionierung ein gewisses Minimum an freiem Speicher benötigt. Wenn Sie nicht mindestens 1GB Platz (abhängig vom gewählten Schema) zur Verfügung stellen, wird die automatische Partitionierung fehlschlagen.

<table>
<thead>
<tr>
<th>Partitionierungsschema</th>
<th>Mindestens erforderlicher Festplattenplatz</th>
<th>Erstelle Partitionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle Dateien in eine Partition</td>
<td>600MB</td>
<td>/. Swap</td>
</tr>
<tr>
<td>Separate /home-Partition</td>
<td>500MB</td>
<td>/. /home, Swap</td>
</tr>
<tr>
<td>Separate /home-, /var- und /tmp-Partitionen</td>
<td>1GB</td>
<td>/. /home, /var, /tmp, Swap</td>
</tr>
</tbody>
</table>

Wenn Sie Geführte Partitionierung mit LVM (Standard oder verschlüsselt) wählen, wird der Installer zusätzlich eine separate /boot-Partition erzeugen. Alle anderen Partitionen (inklusive Swap) werden innerhalb der LVM-Partition erstellt.

Nachdem Sie ein Schema ausgewählt haben, erscheint im nächsten Bild Ihre neue Partitionstabelle mit Informationen darüber, ob und wie die Partitionen formatiert werden und wo sie ins Dateisystem eingebunden werden.

Die Liste der Partitionen sieht in ihrer Struktur ähnlich aus wie diese:

SCSI1 (0,0,0) (sda) - 6.4 GB WDC AC36400L
#1 primär 16.4 MB B f ext2 /boot
#2 primär 551.0 MB swap swap
#3 primär 5.8 GB ntfs
pri/log 8.2 MB FREIER SPEICHER

SCSI2 (1,0,0) (sdb) - 80.0 GB ST380021A
#1 primär 15.9 MB ext3
#2 primär 996.0 MB ext3
#3 primär 3.9 GB xfs /home
#5 logisch 6.0 GB f ext4 /
#6 logisch 1.0 GB f ext3 /var
#7 logisch 498.8 MB ext3

Dieses Beispiel zeigt, wie zwei Festplatten in mehrere Partitionen aufgeteilt wurden; die erste Platte enthält noch etwas freien Platz. Jede dieser Zeilen mit jeweils einer Partition besteht aus der Partitionsnummer, dem Typ (primär,

Hiermit ist die Vorauswahl der automatischen Partitionierung beendet. Wenn Sie mit der erstellten Partitionstabelle zufrieden sind, wählen Sie Partitionierung beenden und Änderungen übernehmen, um die neue Partitionstabelle zu aktivieren (wie am Ende dieses Kapitels beschrieben). Sind Sie nicht zufrieden, können Sie Änderungen an den Partitionen rückgängig machen wählen, um die automatische Partitionierung erneut zu starten, oder Sie nehmen die Vorschläge als Basis und führen daran noch manuelle Änderungen durch, wie unten für das manuelle Partitionieren erläutert.

6.3.4.3 Manuelle Partitionierung

Ein ähnliches Bild wie oben wird Ihnen angezeigt, wenn Sie „Manuell“ wählen, mit dem Unterschied, dass Ihre derzeit existierende Partitionstabelle angezeigt wird, aber die Einbindungspunkte fehlen. Wie Sie die Partitionstabelle manuell einrichten (sowie einiges über die Nutzung der Partitionen durch Ihr neues Debian-System) wird im Rest dieses Kapitels beschrieben.

Wenn Sie eine neue, unberührte Platte auswählen, die weder Partitionen noch freien Speicher enthält, werden Sie gefragt, ob eine neue Partitionstabelle erstellt werden soll (dies ist nötig, um neue Partitionen anlegen zu können). Danach sollte eine neue Zeile „FREIER SPEICHER“ in der Tabelle unter den ausgewählten Festplatten erscheinen.

Wenn Sie mit der erstellten Partitionstabelle zufrieden sind, wählen Sie Partitionierung beenden und Änderungen übernehmen, um die neue Partitionstabelle zu aktivieren (wie am Ende dieses Kapitels beschrieben).

Wenn Sie mit der Partitionierung zufrieden sind, wählen Sie Partitionierung beenden und Änderungen übernehmen aus dem Partitionierungsmenü. Es wird eine Zusammenfassung aller Änderungen, die vorgenommen wurden, angezeigt und Sie werden aufgefordert, die Erstellung der Dateisysteme zu bestätigen.

6.3.4.4 „Multidisk Devices“ (Software-RAID) konfigurieren

Wenn Sie mehr als eine Festplatte in Ihrem Rechner haben, können Sie partman-md für die Einrichtung Ihrer Festplatten benutzen, um die Performance zu erhöhen und/oder eine höhere Datensicherheit zu erreichen. Das Ergebnis nennt sich Multidisk Device (oder nach der bekanntesten Variante auch Software-RAID).

MD ist im Prinzip ein Verbund von Partitionen auf unterschiedlichen Festplatten, die zu einer Art logischem Laufwerk zusammengefasst sind. Dieses Laufwerk kann wie eine gewöhnliche Partition genutzt werden (z.B. kann man es mit partman formatieren, einen Einbindungspunkt festlegen usw.).

Welchen Vorteil Ihnen das bringt, hängt vom Typ des MD-Laufwerks ab. Im Moment werden unterstützt:

⁵Wir wollen ehrlich sein: Sie können auch ein MD-Gerät aus Partitionen einer einzigen Festplatte erstellen, dies bringt Ihnen aber keinen sinnvollen Vorteil.
KAPITEL 6. DEN DEBIAN-INSTALLER VERWENDEN

6.3. DIE EINZELNEN KOMPONENTEN

RAID0 Dieser Typ zielt hauptsächlich auf die Performance ab. RAID0 splittet alle ankommenden Daten in *Stripes* (Streifen) und verteilt sie gleichmäßig auf alle Festplatten im Verbund. Dies kann die Geschwindigkeit von Schreib-/Leseoperationen erhöhen, wenn jedoch eins der Laufwerke ausfällt, verlieren Sie *alle* Daten (ein Teil der Informationen ist immer noch auf einem/mehreren funktionierenden Laufwerk(en), der andere Teil war auf der defekten Platte).

Ein typischer Anwendungsfall für RAID0 ist eine Partition zum Editieren von Videos.

RAID1 Dieser Typ eignet sich für Setups, wo die Datensicherheit das oberste Gebot ist. RAID1 besteht aus mehreren (gewöhnlich zwei) gleich großen Partitionen, wobei beide Partitionen exakt die gleichen Daten enthalten. Dies bedeutet dreierlei. Erstens: wenn eine Disk ausfällt, haben Sie immer noch die gespiegelten Daten auf den anderen Laufwerken. Zweitens: Sie können nur einen Teil der tatsächlichen Kapazität nutzen (genauer gesagt die Größe der kleinsten Partition im Verbund). Drittens: Bei Datei-Operationen wird die Last auf die Festplatten aufgeteilt; dies kann die Performance auf einem Server verbessern, z.B. auf einem Dateiserver, der mehr Lese- als Schreibvorgänge tätigt.

Zusätzlich können Sie eine Reserve-Disk im Verbund haben, die im Fehlerfall den Platz des defekten Laufwerks einnimmt.

RAID5 Dies ist ein guter Kompromiss zwischen Geschwindigkeit, Datensicherheit und Redundanz. RAID5 splittet alle ankommenden Daten in kleine Teile (Stripes) und verteilt Sie gleichmäßig auf alle Laufwerke außer einem (vergleichbar zu RAID0). Im Unterschied zu RAID0 erzeugt der RAID5-Typ zusätzlich *Paritäts*-Informationen, die auf die verbleibende Disk geschrieben werden. Die Paritäts-Disk ist nicht statisch festgelegt (dies wäre RAID4), sondern wechselt periodisch, so dass die Paritäts-Informationen gleichmäßig auf allen Platten vorhanden sind. Wenn eine Festplatte ausfällt, können die fehlenden Informationen aus den verbleibenden Daten und Ihrer Parität wiederhergestellt werden. Ein RAID5-Verbund muss aus mindestens drei aktiven Partitionen bestehen. Zusätzlich können Sie eine Reserve-Disk im Verbund haben, die im Fehlerfall den Platz der defekten Platte einnimmt.

Wie Sie sehen, erreicht RAID5 einen ähnlichen Grad an Betriebssicherheit wie RAID1, aber weniger Redundanz. Auf der anderen Seite könnte es bei Schreibvorgängen etwas langsamer sein, da zusätzlich die Paritätsinformationen errechnet werden müssen.

RAID6 Vergleichbar mit RAID5, allerdings verwendet RAID6 zwei Paritäts-Disks statt einer.

Ein RAID6-Array kann den Ausfall von bis zu zwei Festplatten überstehen.

RAID10 RAID10 vereint das Aufteilen der Daten in kleine Teile (Stripes, wie in RAID0) mit dem Spiegeln von Festplatten (wie in RAID1). Es erzeugt *n* Kopien der ankommenden Daten und verteilt Sie so über die Partitionen, dass mehrere Kopien der gleichen Daten nie auf ein und derselben Festplatte liegen. Der Standardwert für *n* ist 2, aber er kann im Experten-Modus auch auf einen anderen Wert gesetzt werden. Die Zahl der verwendeten Partitionen muss mindestens *n* sein. RAID10 enthält verschiedene Layouts für das Verteilen der Daten-Kopien: Der Standard ist „near copies“. Bei near copies liegen die Kopien an nahezu der gleichen Stelle auf allen Platten (ungefähr identischer Offset). Bei „far copies“ ist der Offset auf den Festplatten unterschiedlich. „Offset copies“ kopiert die Stripes (die aufgesplittenen Teile der Daten), nicht die individuellen Daten direkt.

RAID10 kann genutzt werden, um Betriebssicherheit und Redundanz zu erreichen ohne den Nachteil, Parityinformationen berechnen zu müssen.

Um es nochmal zusammenzufassen:

<table>
<thead>
<tr>
<th>Typ</th>
<th>Mindestanzahl benögitgter Laufwerke</th>
<th>Reserve-Laufwerk</th>
<th>Übersteht einen Laufwerkscrash?</th>
<th>Verfügbare Speicherplatz</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID0</td>
<td>2</td>
<td>nein</td>
<td>nein</td>
<td>Größe der kleinsten Partition multipliziert mit der Anzahl der Laufwerke</td>
</tr>
<tr>
<td>RAID1</td>
<td>2</td>
<td>optional</td>
<td>ja</td>
<td>Größe der kleinsten Partition im Verbund</td>
</tr>
</tbody>
</table>
KAPITEL 6. DEN DEBIAN-INSTALLER VERWENDEN

6.3. DIE EINZELNEN KOMPONENTEN

<table>
<thead>
<tr>
<th>Typ</th>
<th>Mindestanzahl benötigter Laufwerke</th>
<th>Reserve-Laufwerk</th>
<th>Übersteht einen Laufwerks crash?</th>
<th>Verfügbarer Speicherplatz</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID5</td>
<td>3</td>
<td>optional</td>
<td>ja</td>
<td>Größe der kleinsten Partition multipliziert mit (Anzahl der Laufwerke minus 1)</td>
</tr>
<tr>
<td>RAID6</td>
<td>4</td>
<td>optional</td>
<td>ja</td>
<td>Größe der kleinsten Partition multipliziert mit (Anzahl der Laufwerke minus 2)</td>
</tr>
<tr>
<td>RAID10</td>
<td>2</td>
<td>optional</td>
<td>ja</td>
<td>Summe aller Partitionen dividiert durch die Anzahl der Daten-Kopien (Standard ist 2)</td>
</tr>
</tbody>
</table>

Wenn Sie mehr über Software-RAID erfahren wollen, werfen Sie einen Blick in das Software-RAID-HowTo. Wenn Sie ein MD-Laufwerk erstellen möchten, müssen die beteiligten Partitionen für die Nutzung im RAID gekennzeichnet werden. (Dies erledigen Sie in `partman` in den Partitionseinstellungen, wo Sie unter Benutzen als: → Physikalisches Volume für RAID auswählen.)

ANMERKUNG

Stellen Sie sicher, dass das System tatsächlich von dem Partitionsschema, das Sie planen, booten kann. Grundsätzlich wird es notwendig sein, ein separates Dateisystem für `/boot` zu erstellen, wenn RAID für das root-Dateisystem (`/`) benutzt wird. Die meisten Bootloader unterstützen gespiegelte RAID1-Systeme, jedoch keine gesplitteten! Es wäre also z.B. möglich, RAID5 für `/` und RAID1 für `/boot` zu verwenden.

Als nächstes wählen Sie Software-RAID konfigurieren aus dem `partman`-Hauptmenü. (Das Menü erscheint nur, wenn Sie mindestens eine Partition für die Nutzung als Physikalisches Volume für RAID markiert haben.) Im ersten Bild von `partman-md` wählen Sie einfach MD-Gerät erstellen. Eine Liste unterstützt Typen von MD-Laufwerken wird angezeigt, von denen Sie einen auswählen (z.B. RAID1). Die folgenden Schritte unterscheiden sich abhängig davon, welchen Typ Sie gewählt haben:

- **RAID0** ist einfach – Sie bekommen eine Liste der verfügbaren RAID-Partitionen und Sie müssen lediglich auswählen, aus welchen Partitionen das MD bestehen soll.

- **Die Einrichtungsprozedur von RAID5** ist ähnlich der von RAID1 mit der Ausnahme, dass Sie mindestens drei aktive Partitionen benutzen müssen.

- **Die Einrichtungsprozedur von RAID6** ist ebenfalls ähnlich zu der von RAID1, allerdings werden mindestens vier aktive Partitionen benötigt.

- Auch RAID10 hat eine Einrichtungsprozedur, die der von RAID1 ähnlich ist, lediglich im Experten-Modus gibt es Unterschiede. Im Experten-Modus fragt der `debian-installer` nach dem gewünschten Layout.
Das Layout besteht aus zwei Teilen. Der erste Teil ist der Layout-Typ. Dies kann n (für near copies), f (für far copies) oder o (für offset copies) sein. Der zweite Teil ist die Anzahl der Kopien, die von den Daten erstellt werden sollen. Es müssen mindestens so viele aktive Festplatten vorhanden sein, dass alle Kopien der Daten auf verschiedene Platten verteilt werden können.

Es ist uneingeschränkt möglich, verschiedene Typen von MDs gleichzeitig zu benutzen. Wenn Sie zum Beispiel drei 200GB-Festplatten haben, die für MD genutzt werden sollen, und jede enthält zwei 100GB-Partitionen, können Sie die jeweils erste Partition auf allen drei Platten zu einem RAID0 kombinieren (eine schnelle 300GB-Videobearbeitungs-Partition) und die anderen drei Partitionen (zwei aktive und eine als Reserve) für ein RAID1 benutzen (eine hochverfügbare 100GB-Partition z.B. für /home).

Wenn Sie die MD-Laufwerke nach Ihren Wünschen eingerichtet haben, kehren Sie mit Beenden zu partman zurück, um dort Dateisysteme auf Ihren neuen MD-Laufwerken zu erstellen und die Attribute wie z.B. Einbindungspunkte festzulegen.

6.3.4.5 Den „Logical Volume Manager“ (LVM) konfigurieren

Wenn Sie als Systemadministrator oder „erfahrener“ Benutzer mit Computern zu tun haben, werden Sie bestimmt schon einmal die Situation erlebt haben, dass auf einigen Festplattenpartitionen (meistens auf den wichtigsten) der freie Platz knapp wurde, während einige andere Partitionen ziemlich ungenutzt waren, und Sie mussten diese Situation lösen, indem Sie einige Sachen umlagerten, symbolische Links verwendeten oder ähnliches.

Um die beschriebene Situation zu vermeiden, können Sie den „Logical Volume Manager“ (LVM) verwenden. Einfach ausgedrückt: mit LVM können Sie Ihre Partitionen (in der LVM-Sprache Physikalische Volumes genannt) zusammenfassen, um eine virtuelle Festplatte (eine so genannte Volume-Gruppe) zu erstellen, die dann wieder in virtuelle Partitionen (Logische Volumes) aufgeteilt wird. Der Trick dabei ist, dass sich die Logischen Volumes (und damit natürlich auch die darunter liegenden Volume-Gruppen) über mehrere physikalische Laufwerke verteilen können.

Wenn Sie sich jetzt vorstellen, dass Sie mehr Platz auf Ihrer alten 160GB-/home-Partition benötigen, können Sie einfach eine neue 300GB Festplatte in Ihren Rechner einbauen, zu Ihrer vorhandenen Volume-Gruppe hinzufügen und dann das Logische Volume, welches Ihr /home beherbergt, vergrößern und voilà – schon haben Ihre Nutzer wieder Platz auf Ihrer erneuerten 460GB-Partition. Dieses Beispiel ist natürlich etwas sehr stark vereinfacht. Falls noch nicht geschehen, sollten Sie auf jeden Fall das LVM-HowTo lesen.

LVM im debian-installer einzurichten ist sehr einfach und wird vollständig von partman unterstützt. Als erstes müssen Sie die Partitionen festlegen, die als Physikalische Volumes für LVM genutzt werden sollen (dies erledigen Sie im Menü Partitionseinstellungen, wo Sie unter Benutzen als: → physikalisches Volume für LVM auswählen).

Warnung

Bitte unbedingt beachten: durch eine neue LVM-Einrichtung werden alle Daten auf all denjenigen Partitionen gelöscht, die mit einem LVM-Typ-Code markiert sind. Wenn Sie also bereits ein LVM auf einigen Ihrer Festplatten haben, und Debian zusätzlich auf diesem Rechner installieren möchten, wird das alte (bereits vorhandene) LVM gelöscht! Das gleiche gilt für Partitionen, die (aus welchem Grund auch immer) fälschlicherweise mit einem LVM-Typ-Code markiert sind, aber irgendwelche anderen Daten enthalten (wie z.B. ein verschlüsseltes Volume). Sie müssen daher solche Festplatten aus dem System entfernen, bevor Sie eine neue LVM-Einrichtung starten!

Sobald Sie zum Hauptbildschirm von partman zurückkehren, finden Sie eine neue Option Logical Volume Manager konfigurieren. Wenn Sie sie auswählen, müssen Sie als Erstes anstehende Änderungen an der Partitionstabelle (falls es welche gibt) bestätigen; danach wird das LVM-Konfigurationsmenü angezeigt. Über dem Menü sehen Sie eine Zusammenfassung der LVM-Konfiguration. Das Menü selbst ist kontext-abhängig: es werden nur gültige Aktionen angezeigt. Die möglichen Aktionen sind:

- Konfigurationdetails anzeigen: zeigt die Struktur der LVM-Geräte, die Namen und Größen der Logischen Volumes usw.
- Volume-Gruppe erstellen
- Logisches Volume erstellen
6.3. DIE EINZELNEN KOMPONENTEN

- Volume-Gruppe löschen
- Logisches Volume löschen
- Volume-Gruppe erweitern
- Volume-Gruppe reduzieren
- Fertigstellen: zurück zum partman-Hauptbildschirm

Verwenden Sie diese Optionen, um zunächst eine Volume-Gruppe zu erzeugen und dann innerhalb dieser Ihre logischen Volumes anzulegen.

Wenn Sie zum partman-Hauptbildschirm zurückkehren, erscheinen dort die erstellten Logischen Volumes wie gewöhnliche Partitionen (und sie sollten auch als solche behandelt werden).

6.3.4.6 Verschlüsselte Dateisysteme konfigurieren

debian-installer erlaubt es, verschlüsselte Dateisysteme einzurichten. Jede Datei, die auf eine solche Partition geschrieben wird, wird direkt in verschlüsselter Form auf dem Gerät gespeichert. Zugriff auf die verschlüsselten Daten wird nur nach Eingabe der korrekten Passphrase gewährt, die bei der Erstellung der verschlüsselten Partition benutzt wurde. Diese Funktion ist z.B. sinnvoll, um sensible Daten zu schützen für den Fall, dass Ihr Laptop oder Ihre Festplatte gestohlen wird. Der Dieb kann zwar physikalischen Zugriff auf die Platte haben, aber ohne Kenntnis der richtigen Passphrase werden die Daten wie zufälliger erzeugte Zeichen erscheinen.

ANMERKUNG

Der debian-installer unterstützt die Verschlüsselungsmethode dm-crypt (in neueren Linux-Kernel enthalten; hat die Fähigkeit, physikalische Volumes für LVM beherbergen zu können).

Wir wollen jetzt die Optionen betrachten, die verfügbar sind, wenn Sie Verschlüsselung via Device-mapper (dm-crypt) wählen. Generell gilt: wenn Sie nicht sicher sind, verwenden Sie die Standardwerte, da sie unter Berücksichtigung von Sicherheitsempfehlungen sorgfältig ausgewählt wurden.

IV-Algorithmus: xts-plain64 Der Initialisierungsvektor oder auch IV-Algorithmus wird in der Kryptographie verwendet, um sicherzustellen, dass die mehrfache Anwendung einer Verschlüsselung auf den gleichen Klartext immer unterschiedliche, einzigartige geheime Zeichenfolgen ergibt. Dem liegt der Gedanke zugrunde, zu vermeiden, dass der Angreifer aufgrund von sich wiederholenden Mustern in den verschlüsselten Daten auf die zu schützenden Informationen schließen kann.

Der Standardwert xts-plain64 ist unter den auszuwählenden Möglichkeiten derzeit der gegen bekannte Angriffe am wenigsten verwundbare. Sie sollten die anderen Alternativen nur verwenden, wenn Sie Kompatibilität zu früheren Systemen gewährleisten müssen, die die neueren Algorithmen nicht nutzen können.

Schlüssel: Passphrase Hier können Sie den Typ des Schlüssels für diese Partition wählen.

Passphrase Der Schlüssel wird errechnet auf Basis einer Passphrase, die Sie später im Prozess eingeben müssen.

Zufällige Schlüssel sind nützlich für Swap-Partitionen, da man sich nicht damit beschäftigen muss, sich an die Passphrase zu erinnern oder sensible Informationen vor dem Herunterfahren des Systems von der Swap-Partition zu löschen. Allerdings bedeutet dies, dass Sie nicht die „Suspend-to-Disk“-Funktion nutzen können, die neure Linux-Kernel bieten, da es unmöglich sein wird, die Daten, die auf die Swap-Partition geschrieben wurden, nach dem nächsten Start wiederherzustellen.

Als nächstes müssen Sie für Partitionen, bei denen die Nutzung einer Passphrase festgelegt wurde, eine eben solche eingeben. Gute Passphrasen sollten länger als 8 Zeichen sein, aus einer Mischung von Buchstaben, Zahlen und anderen Zeichen bestehen und keine Wörter aus allgemeinen Wörterbüchern enthalten oder Informationen, die leicht mit Ihnen in Verbindung gebracht werden könnten (wie Geburtsdaten, Hobbies, Namen oder Kosenamen von Haustieren, Familienmitgliedern oder Angehörigen etc.).

6 Das Verwenden einer Passphrase als Schlüssel bedeutet derzeit, dass die Partition unter Benutzung von LUKS eingerichtet wird.
7 Man glaubt allerdings, dass die Jungs vom Geheimdienst Daten sogar noch nach mehrfachem Überschreiben des magneto-optischen Mediums wiederherstellen können.
WARNUNG

Wenn Sie andere Verschlüsselungsmethoden statt Passphrase gewählt haben, um die Schlüssel zu erzeugen, werden diese jetzt erzeugt. Da der Kernel in diesem frühen Stadium der Installation eventuell noch nicht genügend Zufallsinformationen (Entropy) gesammelt hat, kann dieser Prozess recht lange dauern. Sie können die Erzeugung von Zufallsdaten beschleunigen, indem Sie z.B. zufällige irgendwelche Tasten drücken oder indem Sie auf die Shell der zweiten virtuellen Konsole wechseln und ein bisschen Netzwerk- und Festplattenverkehr erzeugen (z.B. durch das Herunterladen von Dateien, indem Sie einige große Dateien nach /dev/null schicken etc.) Dies wird für jede zu verschlüsselnde Partition wiederholt.

Nachdem Sie zum Partitionierungsmenü zurückgekehrt sind, werden Ihnen alle verschlüsselten Dateisysteme als zusätzliche Partitionen angezeigt, die auf die gleiche Art konfiguriert werden können wie gewöhnliche Partitionen. Im folgenden Beispiel sehen Sie ein mit dm-crypt verschlüsseltes Dateisystem.

Verschlüsseltes Volume (sda2_crypt) - 115.1 GB Linux device-mapper
#1 115.1 GB F ext3

Jetzt ist es Zeit, den Dateisystemen Einbindungspunkte zuzuweisen und zusätzlich vielleicht die Dateisystemtypen zu ändern, falls die Standardwerte Ihnen nicht zusagen.

Achten Sie auf die Identifikationskennungen, die in Klammern stehen (in diesem Fall sda2_crypt) sowie auf die Einbindungspunkte, die Sie ihnen zugeordnet haben. Sie benötigen diese Informationen später, wenn Sie das neue System starten. Die Unterschiede zwischen einem normalen Boot-Prozess und einem Boot-Prozess mit beteiligten verschlüsselten Dateisystemen wird später im Abschnitt 7.2 behandelt.

Wenn Sie mit dem Partitionierungsschema zufrieden sind, können Sie mit der Installation fortfahren.

6.3.5 Installation des Basissystems

Obwohl dieser Schritt der am wenigsten problematische ist, benötigt er einen erheblichen Teil der Zeit, da hier das komplette Basissystem heruntergeladen, überprüft und entpackt wird. Wenn Sie einen langsamen Rechner oder eine langsamer Netzwerkverbindung haben, kann das schon einige Zeit dauern.

Die während dieser Phase erzeugten Meldungen über das Entpacken und das Setup werden auch in /var/log/syslog gespeichert. Sie können Sie auch dort beobachten, wenn die Installation über eine serielle Konsole erfolgt.

Wenn Pakete mittels dem Paketmanagementsystem installiert werden, wird dieses standardmäßig auch solche Pakete mit installieren, die von den ursprünglich zu installierenden vorgeschlagen werden ("Recommends"). Solche vorgeschlagenen Pakete werden für die Kernfunktionalitäten der ausgewählten Software nicht unbedingt benötigt, aber sie werten die Software auf und sollten – aus der Sicht des Paketbetreuers – normalerweise mit installiert werden.
KAPITEL 6. DEN DEBIAN-INSTALLER VERWENDEN

6.3. DIE EINZELNEN KOMPONENTEN

ANMERKUNG

Aus technischen Gründen werden für Pakete des Basissystems die vorgeschlagenen Pakete ("Recommends") nicht mit installiert. Die oben beschriebene Regel greift erst nach diesem Schritt des Installationsprozesses (nach der Installation des Basissystems).

6.3.6 Installation zusätzlicher Software

Sie haben nun ein nutzbares, aber noch sehr eingeschränktes System. Die meisten Benutzer werden zusätzliche Software auf dem System installieren wollen, um es an ihre Anforderungen anzupassen, und der Installer ermöglicht dies auch. Dieser Schritt kann sogar länger als die Installation des Basissystems dauern, wenn Sie einen langsamen Rechner oder eine langsame Netzwerkverbindung haben.

6.3.6.1 apt konfigurieren

Eines der Programme, die zur Paketinstallation auf einem Debian GNU/Linux-System verwendet werden können, ist apt aus dem Paket apt⁸. Es gibt auch andere Bedienoberflächen (Frontends) für die Paketverwaltung, die anders aussehen können, aber im Hintergrund die gleichen Prozesse nutzen; dies sind z.B. aptitude oder synaptic. Diese Frontends werden für neue Debian-Benutzer empfohlen, da sie einige zusätzliche Funktionen (wie Paketsuche und Statusüberprüfungen) in einer hübschen Oberfläche integriert haben.

apt muss konfiguriert werden, so dass es weiß, woher es benötigte Pakete bekommen kann. Das Ergebnis dieser Konfiguration wird in die Datei /etc/apt/sources.list geschrieben. Sie können sie anschauen und an Ihre Bedürfnisse anpassen, nachdem die Installation beendet ist.

6.3.6.1.1 Von mehr als einem CD/DVD-Image installieren

Wenn Sie von einem CD- oder DVD-Image installieren, das Teil eines Sets mehrerer Images ist, wird der Installer Sie fragen, ob Sie weitere Installationsmedien einlesen möchten. Wenn Sie solche Medien vorliegen haben, sollten Sie dies tun, so dass der Installer die dort enthaltenen Pakete verwenden kann.

Falls Sie jedoch keine weiteren Medien haben, ist dies kein Problem: es ist nicht zwingend nötig, solche zu verwenden. Falls Sie auch keinen Internet-Spiegel-Server verwenden (wie im nächsten Abschnitt beschrieben), kann dies bedeuten, dass nicht alle Pakete installiert werden können, die Sie im nächsten Schritt der Installation über die Programmgruppen auswählen.

⁸Beachten Sie, dass das Programm, das letztendlich die Pakete installiert, dpkg heißt. Allerdings ist dies mehr ein Low-Level-Programm (was unter anderem bedeutet, dass es nicht direkt vom Benutzer aufgerufen wird). apt spielt eine Stufe höher und wird dpkg nach Bedarf aufrufen. Es weiß, wie es die Pakete vom Installationsmedium, über Netzwerk oder sonst woher bekommen kann. Außerdem kann es automatisch andere Pakete mit installieren, die benötigt werden, damit die Pakete, die Sie installieren möchten, korrekt funktionieren.
ANMERKUNG

Pakete sind auf den Installationsmedien in der Reihenfolge Ihrer Popularität enthalten. Dies bedeutet, dass für die meisten Anwendungsfälle nur die ersten Images eines Sets benötigt werden; nur sehr wenige Leute benötigen wirklich Pakete von den letzten Images eines Sets.

Das heißt ebenfalls, dass es einfach Geldverschwendung ist, einen kompletten CD-Satz zu kaufen oder herunterzuladen und zu brennen, da Sie die meisten davon nie nutzen werden. In den meisten Fällen werden Sie besser fahren, wenn Sie sich lediglich die ersten 3 bis 8 CDs besorgen und alle weiteren, zusätzlichen Pakete, die Sie benötigen könnten, über das Internet von einem Spiegel-Server installieren. Das Gleiche gilt für DVD-Sets: die erste, oder vielleicht die ersten zwei DVDs werden für die meisten Bedürfnisse ausreichen.

Falls Sie mehrere Installationsmedien einlesen, wird der Installer Sie auffordern, das Medium auszutauschen, wenn Pakete von einem anderen Medium benötigt werden, als gerade eingelegt/eingesteckt ist. Beachten Sie, dass nur Medien eingelesen werden sollten, die zu dem gleichen Set gehören. Die Reihenfolge, in der sie eingelesen werden, ist nicht wirklich von Bedeutung, aber es reduziert die Wahrscheinlichkeit von Fehlern, wenn sie in aufsteigender Reihenfolge eingelesen werden werden.

6.3.6.1.2 Einen Internet-Spiegel-Server verwenden

Eine Frage, die Ihnen in den meisten Fällen gestellt wird ist, ob Sie einen Internet-Spiegel-Server als Paketquelle verwenden möchten oder nicht. Meistens können Sie die Standardeinstellungen übernehmen, aber es gibt einige Ausnahmen.

Falls Sie nicht von einem Komplett-CD/DVD-Image installieren, sollten Sie auf jeden Fall einen Internet-Spiegel-Server verwenden, da Sie ansonsten nur ein sehr minimalistisches System erhalten werden. Wenn Sie aber nur über eine relativ langsame Internet-Verbindung verfügen, empfiehlt es sich wiederum, im nächsten Schritt nicht die Arbeitsplatz-Programmgruppe zur Installation auszuwählen.

Wenn Sie von einem DVD-Image installieren, sollten alle Pakete, die während der Installation benötigt werden, im ersten DVD-Image enthalten sein. Die Nutzung eines Internet-Spiegel-Servers ist in diesen Fällen optional.

Ein Vorteil davon, einen Internet-Spiegel-Server zu verwenden, ist, dass Aktualisierungen, die seit der Erstellung der CD/DVD-Images veröffentlicht wurden und die Teil einer Zwischen-Veröffentlichung („point release“) waren, sofort während der Installation verfügbar sind, so dass die Lebensdauer der Installationsmedien verlängert wird, ohne die Sicherheit oder Stabilität des installierten Systems zu beeinträchtigen.

Alles in allem: einen Internet-Spiegel-Server auszuwählen ist grundsätzlich eine gute Idee, außer Sie haben eine langsamer Internet-Verbindung. Wenn die derzeit aktuellste Version eines Pakets auf dem Installationsmedium enthalten ist, wird der Installer sie auf jeden Fall verwenden. Die Summe der heruntergeladenen Daten (falls Sie einen Internet-Spiegel-Server auswählen) hängt also von folgenden Faktoren ab:

1. welche Programmgruppen Sie im nächsten Installationsschritt auswählen,
2. welche Pakete für diese Programmgruppen benötigt werden,
3. welche dieser Pakete auf den Installationsmedien, die Sie eingelesen haben, enthalten sind, und
4. ob eventuell aktualisierte Versionen von Paketen, die auf den Medien enthalten sind, auf einem Internet-Spiegel-Server bereitstehen (entweder auf einem regulären Paket-Spiegel-Server oder auf einem Spiegel-Server für Sicherheitsaktualisierungen bzw. für „stable-updates“).

Beachten Sie, dass eine Zwischen-Veröffentlichung („point release“) dazu führen kann, dass einige Pakete über das Internet heruntergeladen werden könnten, obwohl Sie keinen Internet-Spiegel-Server ausgewählt haben, nämlich wenn eine Sicherheitsaktualisierung oder eine Aktualisierung aus „stable-updates“ für diese Pakete verfügbar ist und wenn die entsprechenden Dienste konfiguriert wurden.
6.3.6.1.3 Auswahl eines Netzwerk-Spiegel-Servers

Ein Spiegel-Server kann über „Daten von Hand eingebenen“ auch händisch festgelegt werden. Sie können dann für den Spiegel einen Rechnernamen (host name) und optional eine Portnummer angeben. Dies muss URL-basiert geschehen, d.h. wenn eine IPv6-Adresse angegeben wird, muss diese in eckigen Klammern eingeschlossen werden, z.B. „[2001:db8::1]“.

6.3.6.2 Software auswählen und installieren

Während des Installationsprozesses wird Ihnen die Möglichkeit geboten, zusätzliche Software zur Installation auszuwählen. Stattdessen werden einzelne Programme aus den 93672 derzeit verfügbaren Paketen herauagesucht, zielte dieser Punkt der Installation mehr darauf ab, aus vorbereiteten Software-Zusammenstellungen die auszuwählen, die den künftigen Aufgaben des Rechners am nächsten kommen.

Einige der Programmgruppen sind unter Umständen vorgewählt, abhängig von der Charakteristik des Rechners, den Sie installieren. Falls Sie mit der Vorauswahl nicht zufrieden sind, können Sie sie ändern. Sie können sogar entscheiden, an dieser Stelle gar keine Programmgruppen zu installieren.

TIPP

In der Standard-Benutzeroberfläche des Installers können Sie die Leertaste benutzen, um den Auswahlzustand der Programmgruppen zu ändern.

⁹Sie sollten wissen, dass der Installer lediglich das Programm tasksel aufruft, in dem dann diese Liste angezeigt wird. tasksel kann auch nach der Installation jederzeit aufgerufen werden, um weitere Pakete zu installieren (oder sie zu entfernen), oder Sie benutzen ein feinkörnigeres Werkzeug wie aptitude. Wenn Sie nach Abschluss der Installation ein bestimmtes einzelnes Paket suchen, führen Sie einfach aptitude install package aus, wobei package der Name des Pakets ist, das Sie benötigen.
Durch die Installation der Programmgruppe „Arbeitsplatzrechner“ wird eine grafische Arbeitsplatz-Umgebung (Desktop-Umgebung) installiert.

Standardmäßig installiert der debian-installer die Arbeitsplatz-Umgebung. Es ist aber möglich, während der Installation interaktiv eine andere Arbeitsplatz-Umgebung auszuwählen. Auch können mehrere Desktop-Umgebungen gleichzeitig installiert werden, wobei es dabei allerdings Kombinationen geben könnte, die so nicht installierbar sind.

Wenn Sie bei der Sprachauswahl als Standard-Gebietschema nicht „C“ ausgewählt haben, wird tasksel überprüfen, ob für diese Locale irgendwelche Lokalisierungs-Programmgruppen definiert sind. Falls dies der Fall ist, wird automatisch versucht, die entsprechenden Lokalisierungspakete zu installieren. Dazu gehören zum Beispiel Pakete, die Wortlisten oder spezielle Schriftarten für Ihre Sprache enthalten. Falls eine Arbeitsplatz-Umgebung zur Installation ausgewählt wurde, werden auch die passenden Lokalisierungspakete dazu installiert (falls solche verfügbar sind).

Wenn Sie die gewünschten Programmgruppen ausgewählt haben, drücken Sie Weiter. apt wird jetzt alle Pakete, die zu den gewählten Programmgruppen gehören, installieren. Wenn ein Programm zusätzliche Informationen vom Benutzer benötigt, werden Sie während dieses Installationsschrittes danach gefragt.

6.3.7 Ihr System boot-fähig machen

Wenn Sie gerade ein Arbeitsplatzsystem ohne Festplatte installieren, ist das Booten von Festplatte natürlich keine sinnvolle Sache; deswegen wird der Schritt in diesem Fall übersprungen.

6.3.7.1 Andere Betriebssysteme erkennen

Bevor ein Bootloader installiert wird, versucht der Installer, andere Betriebssysteme, die eventuell auf dem Rechner installiert sind, zu erkennen. Wird ein unterstütztes Betriebssystem gefunden, werden Sie darüber während der Installation des Bootloaders informiert und der Computer wird so konfiguriert, dass dieses andere System zusätzlich zu Debian gestartet werden kann.

Bedenken Sie, dass es immer noch so etwas wie schwarze Magie ist, mehrere Betriebssysteme auf einem Rechner zu booten. Die automatische Unterstützung, andere Betriebssysteme zu erkennen und den Bootloader passend einzurichten, variiert abhängig von der Architektur oder sogar der Unterarchitektur. Falls es nicht funktioniert, konsultieren Sie die Dokumentation Ihres Bootloaders bezüglich detaillierter Informationen.
6.3.7.2 Das System mit flash-kernel boot-fähig machen

Da es für ARM keine plattform-übergreifende Firmware-Schnittstelle gibt, sind die Schritte, die erforderlich sind, um das System boot-fähig zu machen, sehr stark vom jeweiligen Gerät abhängig. Debian verwendet ein Werkzeug namens flash-kernel, um dies zu bewerkstelligen. Flash-kernel enthält eine Datenbank, die die verschiedenen Vorgänge beschreibt, welche auf den einzelnen Geräten ausgeführt werden müssen, um diese boot-fähig zu machen. Es erkennt, ob das betreffende Gerät unterstützt wird; falls ja, führt es die nötigen Schritte aus.

Auf Geräten, die vom internen NOR- oder NAND-Flash-Speicher booten, schreibt flash-kernel den Kernel und die Initial-Ramdisk in diesen internen Speicher. Diese Methode ist auf älteren armel-Geräten sehr verbreitet. Bitte beachten Sie, dass die meisten dieser Geräte es nicht erlauben, mehrere Kernel und Ramdisks in diesem internen Speicher abzulegen; das heißt, flash-kernel auf diesen Geräten auszuführen bedeutet, dass der vorherige Inhalt des Flash-Speichers überschrieben wird!

Bei ARM-Systemen, die U-Boot als System-Firmware nutzen und Kernel sowie Initial-Ramdisk von einem externen Speichermedium (wie MMC-/SD-Karte, USB-Speicher oder IDE-/SATA-Festplatte) booten, generiert flash-kernel ein passendes Boot-Skript, um das automatische Booten ohne manuelles Eingreifen durch den Benutzer zu ermöglichen.

6.3.7.3 Ohne Bootloader fortfahren

Diese Option kann benutzt werden, um die Installation zu beenden, obwohl kein Bootloader installiert wird, sei es, weil die Architektur/Unterarchitektur keinen unterstützt oder weil keiner gewünscht wird (z.B. weil ein vorhandener Bootloader benutzt werden soll).

Wenn Sie vorhaben, Ihren Bootloader manuell zu konfigurieren, sollten Sie den Namen des installierten Kernels in /target/boot überprüfen. Sie sollten in diesem Verzeichnis ebenfalls kontrollieren, ob eine initrd (Initial RAM-Disk) vorhanden ist; falls eine existiert, müssen Sie Ihren Bootloader unter Umständen anweisen, sie zu benutzen. Weitere Informationen, die Sie benötigen, sind die Festplatte und die Partition, die Sie für Ihr /-Dateisystem gewählt haben sowie für /boot (falls Sie /boot auf einer separaten Partition angelegt haben).

6.3.8 Die Installation beenden

Dies ist der letzte Schritt im Debian-Installationsprozess, es werden noch einige letzte Aufgaben erledigt. Hauptsächlich geht es darum, nach der Installation ein wenig aufzuräumen.

6.3.8.1 Die Systemuhr stellen

Der Installer fragt Sie vielleicht, ob die Uhr des Computers auf UTC (Universal Coordinated Time, koordinierte Weltzeit) eingestellt ist. Die Frage wird nach Möglichkeit unterdrückt und der Installer versucht selbst herauszufinden, ob die Uhr auf UTC eingestellt ist, basierend auf verschiedenen Dingen wie z.B. welche anderen Betriebssysteme installiert sind.

Im Experten-Modus haben Sie immer die Möglichkeit anzugeben, ob die Uhr auf UTC eingestellt ist oder nicht. An diesem Punkt wird der debian-installer auch versuchen, die aktuelle Zeit in die Hardware-Uhr des Systems zu schreiben. Dies geschieht entweder als UTC oder als lokale Zeit, abhängig von der Auswahl, die vorher getroffen wurde.

6.3.8.2 Den Rechner neu starten

Sie werden aufgefordert, das Boot-Medium (CD, USB-Stick, etc.), welches Sie zur Installation verwendet haben, aus dem Rechner zu entfernen. Danach wird der Rechner neu gebootet und das neue Debian-System startet.

6.3.9 Fehlersuche/-behebung

Die Komponenten, die wir hier auflisten, sind normalerweise nicht am Installationsprozess beteiligt, warten aber im Hintergrund, um den Benutzer zu unterstützen, falls etwas schief läuft.

6.3.9.1 Die Protokolldateien der Installation sichern

Wenn die Installation erfolgreich verläuft, werden die Logdateien, die das System während des Installationsprozesses erzeugt, automatisch in das Verzeichnis /var/log/installer/ Ihres neuen Debian-Systems kopiert.

Falls Sie Installationsprotokolle speichern aus dem Menü auswählen, haben Sie die Gelegenheit, die Logdateien auf einen USB-Stick, über Netzwerk auf ein fernes Laufwerk, auf Festplatte oder ein anderes Medium zu sichern.
Dies könnte nützlich sein, wenn Sie während der Installation gravierende Probleme feststellen und die Dateien auf einem anderen System genauer analysieren oder zu einem Installationsbericht hinzufügen möchten.

6.3.9.2 Verwenden der Shell und Auswerten der Protokolldateien

Es gibt mehrere Möglichkeiten, wie Sie während der Installation eine Shell (Eingabeaufforderung) bekommen können. Auf den meisten Systemen und wenn Sie nicht über serielle Konsole installieren ist es am einfachsten, mit Alt-F2 auf die zweite virtuelle Konsole zu wechseln (auf einer Mac-Tastatur Option-F2). Wieder zurück zum Installer kommen Sie mit Alt-F1.

Falls es nicht möglich ist, auf andere Konsole umzuschalten, gibt es auch die Möglichkeit, über den Eintrag Eine Shell ausführen im Hauptmenü eine Shell zu starten. Sie können von den meisten Dialogen aus zurück zum Hauptmenü gelangen, indem Sie einmal oder mehrmals den Zurück-Button betätigen. Um die Shell zu schließen und zurück zum Installer zu kommen, geben Sie `exit` ein.

Um Dateien zu bearbeiten und zu betrachten, nutzen Sie den Texteditor `nano`. Protokolldateien für das Installationsystem finden Sie im Verzeichnis `/var/log`.

ANMERKUNG

Obwohl Sie prinzipiell alles in einer Shell tun können, was die verfügbaren Kommandos Ihnen erlauben, ist die Option zur Nutzung einer Shell nur für den Fall gedacht, dass etwas schief läuft und zur Fehlersuche.

Irgendwelche Dinge manuell auf der Shell zu erledigen könnte den Installationsprozess stören und zu Fehlern oder einer unvollständigen Installation führen. Vor allem sollten Sie stets den Installer nutzen, um Ihre Swap-Partition zu aktivieren, statt dies manuell auf der Shell zu erledigen.

6.3.10 Installation über die Netzwerk-Konsole

Die Komponente `network-console` wird nicht standardmäßig in das Installer-Hauptmenü geladen, Sie müssen sie also explizit aufrufen. Wenn Sie von einem optischen Datenträger installieren, booten Sie mit Priorität medium oder rufen Sie das Installer-Hauptmenü auf und wählen Installer-Komponenten vom Installationsmedium laden; aus der angezeigten Liste zusätzlicher Komponenten wählen Sie network-console: Continue installation remotely using SSH aus. Wenn Sie einen neuen Menüeintrag namens Installation über Fernzugriff (SSH) fortsetzen im Hauptmenü sehen, wurde die Komponente erfolgreich geladen.

Nachdem Sie diesen neuen Eintrag gewählt haben, werden Sie nach einem neuen Passwort gefragt, das für die Verbindung zum Installationssystem verwendet wird. Anschließend müssen Sie das Passwort noch einmal bestätigen. Das war’s. Sie sollten jetzt einen Bildschirm sehen, der Sie anweist, sich per Fernzugriff als Nutzer `installer` anzumelden (mit dem Passwort, das Sie gerade festgelegt haben). Ein weiteres wichtiges Detail, das Sie hier beachten sollten, ist der „Fingerabdruck“ des Systems. Sie müssen den Fingerabdruck auf sicherem Wege zu der Person übertragen, die die Installation per Fernzugriff fortsetzt.

Sollten Sie sich entscheiden, die Installation lokal fortzuführen, können Sie `Enter` drücken; dies bringt Sie zurück zum Hauptmenü, wo Sie einen anderen Installationsschritt auswählen können.

Lassen Sie uns jetzt auf die andere Seite der Leitung wechseln. Als Grundvoraussetzung müssen Sie Ihr Terminal auf UTF8-Zeichenkodierung konfigurieren, weil das Installationssystem diese nutzt. Falls Sie dies nicht tun, ist eine Installation per Fernzugriff zwar trotzdem möglich, Sie werden aber möglicherweise befremdende Artefakte in der Anzeige feststellen, wie nicht vorhandene Ränder an Dialogfenstern oder unlesbare nicht-ASCII-Zeichen. Eine Verbindung zum Installationssystem aufzubauen ist einfach. Geben Sie ein:

10 Dies bedeutet: drücken Sie die Alt-Taste links neben der Leertaste und gleichzeitig die Funktionstaste F2.
§ `ssh -l installer install_host`

Dabei ist `install_host` entweder der Name oder die IP-Adresse des Rechners, auf dem Debian GNU/Linux installiert werden soll. Vor der eigentlichen Anmeldung wird der Fingerabdruck des fernen Systems angezeigt und Sie müssen ihn vergleichen und bestätigen, dass er korrekt ist.

Anmerkung

Sie können vielleicht vermeiden, dass die Verbindung abbricht, indem Sie die Option `-o ServerAliveInterval=Wert` hinzufügen, wenn Sie die `ssh`-Verbindung aufbauen, oder indem Sie diese Option zu Ihrer `ssh`-Konfigurationsdatei hinzufügen. Beachten Sie aber, dass gerade das Hinzufügen dieser Option einen Verbindungsabbruch verursachen kann (z.B. wenn „keep-alive“-Pakete während eines kurzen Netzwerkausfalls gesendet werden, von dem `ssh` sonst nichts mitbekommen hätte), deshalb sollte sie nur wenn nötig genutzt werden.

ANMERKUNG

Wenn Sie mehrere Computer hintereinander installieren und diese haben die gleiche IP-Adresse oder den gleichen Hostnamen, wird `ssh` sich weigern, sich mit einem solchen Host zu verbinden. Der Grund hierfür ist, dass diese Rechner unterschiedliche Fingerabdrücke haben, was üblicherweise ein Zeichen für eine Spoofing-Attacke ist. Wenn Sie sicher sind, dass dies nicht der Fall ist, müssen Sie die entsprechende Zeile aus `~/.ssh/known_hosts` entfernen und können es dann noch einmal probieren.

a Der folgende Befehl entfernt einen vorhandenen Eintrag für einen Rechner: `ssh-keygen -R <Rechnername|IP-Adresse>`.

Warnung

Sobald Sie die Installation per Fernzugriff über SSH gestartet haben, sollten Sie nicht zur Installation auf der lokalen Konsole zurück wechseln. Dies könnte die Datenbank beschädigen, die die Konfiguration des neuen Systems verwaltet. Und das wiederum kann zu einer fehlgeschlagenen Installation oder zu Problemen mit dem installierten System führen.
6.4 Fehlende Firmware nachladen

Wie in Abschnitt 2.2 erwähnt, existiert teilweise Hardware, die es erfordert, dass Firmware in das Gerät geladen wird. In den meisten Fällen wird das Gerät nicht funktionieren, wenn diese Firmware nicht vorhanden ist; manchmal sind Basisfunktionen hiervon nicht betroffen, so dass das Laden der Firmware nur zum Aktivieren von erweiterter Funktionalität erforderlich ist.

Wenn ein Gerätetreiber Firmware anfordert, die nicht verfügbar ist, wird der debian-installer einen Dialog anzeigen, der anbietet, die fehlende Firmware nachzuladen. Wenn Sie dies auswählen, durchsucht der debian-installer verfügbare Geräte entweder nach einzelnen Firmware-Dateien oder nach Paketen, die Firmware enthalten. Gefundene Firmware wird in das dafür passende Verzeichnis (/lib/firmware) kopiert und das Treibermodul wird erneut geladen.

ANMERKUNG

Beachten Sie, dass es auch möglich ist, das Laden der Firmware zu überspringen, wenn Sie wissen, dass das Gerät auch ohne funktioniert oder dass es während der Installation nicht benötigt wird.

6.4.1 Einen Datenträger vorbereiten

Die gängigste Methode, um solche Firmware zu laden, ist von einem Wechseldatenträger, wie einem USB-Stick. Um einen USB-Stick (oder ein anderes Medium wie eine Festplattenpartition) für diesen Zweck vorzubereiten, müssen Sie die Firmware-Dateien oder -Pakete entweder im Wurzelverzeichnis des Datenträgers oder in einem Verzeichnis namens /firmware ablegen. Das empfohlene Dateisystem ist FAT, da ziemlich sicher ist, dass dies während der frühen Installationsschritte bereits unterstützt wird.

Tar-Archive (tarballs) und Zip-Dateien, die aktuelle Pakete für die gängigste Firmware enthalten, sowie die zugehörigen Metadaten (dep11-Verzeichnis), die eine saubere Detektion durch den Installer sicherstellen, sind verfügbar unter:

• https://cdimage.debian.org/cdimage/firmware/bookworm/

Laden Sie einfach das Tar- oder Zip-Archiv für das passende Release herunter und entpacken Sie es in das Dateisystem auf Ihrem Datenträger.

Es ist auch möglich, einzelne Firmware-Dateien auf den Datenträger zu kopieren. Solche Dateien könnten Sie zum Beispiel von einem bereits installierten System bekommen oder von dem Hersteller Ihrer Hardware.

6.4.2 Firmware und das zu installierende System

Jede Firmware, die während der Installation geladen wird, wird auch automatisch auf das zu installierende System kopiert. In den meisten Fällen wird so sichergestellt, dass das Gerät, das die Firmware benötigt, auch nach dem Neustart in das neu installierte System korrekt funktioniert. Allerdings besteht die entfernte Möglichkeit, dass aufgrund von Versionsinkompatibilitäten die Firmware nicht geladen werden kann, wenn in dem installierten System ein anderer Kernel läuft als im Installer.

Wurde die Firmware aus einem Firmware-Paket geladen, wird der debian-installer dieses Paket ebenfalls auf das zu installierende System kopieren und auch automatisch den non-free-firmware-Bereich des Paketarchivs zu APTs Konfigurationsdatei sources.list hinzufügen. Das hat den Vorteil, dass die Firmware auf dem neu installierten System automatisch aktualisiert wird, wenn später einmal eine neue Version verfügbar ist.

Falls das Laden der Firmware während der Installation abgebrochen wurde, wird das entsprechende Gerät wahrscheinlich auch in dem neu installierten System nicht funktionieren, so lange Sie die Firmware (oder das Firmware-Paket) nicht von Hand nachinstalliert haben.
6.4.3 Das installierte System vervollständigen

Abhängig davon, wie die Installation durchgeführt wurde, ist die Notwendigkeit zur Installation von Firmware eventuell nicht erkannt worden, die entsprechende Firmware-Datei war vielleicht nicht verfügbar, oder Sie haben sich entschieden, die Firmware in dem Moment nicht zu installieren. In einigen Fällen kann es auch - trotz erfolgreich verlaufener Installation - beim nächsten Neustart trotzdem zu einem schwarzen Bildschirm oder einer verkrüppelten Anzeige kommen. Wenn das passiert, können Sie folgendes versuchen:

- Verwenden Sie die Tastenkombination Strg-Alt-F2, um auf die virtuelle Konsole VT2 umzuschalten; Sie könnten so einen funktionsfähigen Login-Prompt bekommen.

6.5 Anpassungen

Über Verwendung der Shell (siehe Abschnitt 6.3.9.2) kann der Installationsprozess in Grenzen angepasst werden, um besonderen Anforderungen gerecht zu werden:

6.5.1 Installation eines alternativen Init-Systems

Debian verwendet standardmäßig systemd als Init-System. Jedoch werden auch andere Init-Systeme (wie z.B. sysvinit und OpenRC) unterstützt, und der beste Zeitpunkt, um ein alternatives Init-System zu wählen, ist während der Installation. Detaillierte Anweisungen hierzu finden Sie auf der [Init-Seite im Debian Wiki](https://wiki.debian.org/Init).
Kapitel 7

Das neue Debian-System starten

7.1 Der Moment der Wahrheit

Der erste Systemstart aus eigener Kraft ist das, was Elektroingenieure den „smoke test“ nennen (testen ob’s qualmt).

Falls das System nicht korrekt startet - keine Panik. Wenn die Installation erfolgreich verlaufen ist, stehen die Chancen gut, dass nur ein relativ kleiner Fehler vorhanden ist, der das System daran hindert, Debian zu boote. In den meisten Fällen können solche Probleme behoben werden, ohne die Installation komplett wiederholen zu müssen. Eine mögliche Option, das Problem zu lösen, ist die Nutzung des eingebauten Rettungs-Modus des Installers (siehe Abschnitt 8.6).

Wenn Sie noch neu sind bei Debian und Linux, benötigen Sie vielleicht Hilfe von erfahreneren Benutzern. Für nicht ganz so gängige Architekturen wie 32-Bit Hard-float-ARMv7 ist es die beste Wahl, auf der debian-arm Mailingliste nachzufragen. Sie können auch einen Installationsbericht einschicken, wie im Abschnitt 5.4.5 beschrieben. Bitte achten Sie darauf, Ihr Problem klar und verständlich zu beschreiben und etwaige (Fehler-)Meldungen mit anzugeben, die anderen helfen könnten, das Problem zu diagnostizieren.

7.2 Verschlüsselte Dateisysteme einbinden

Wenn Sie während der Installation verschlüsselte Dateisysteme erstellt haben und diesen Einbindungspunkte zugewiesen haben, werden Sie während des Startvorgangs aufgefordert, für jedes der Dateisysteme die korrekte Passphrase einzugeben.

Für Partitionen, die mittels dm-crypt verschlüsselt sind, wird während des Bootens der folgende Prompt angezeigt:

```
Starting early crypto disks... part_crypt(starting)
Enter LUKS passphrase:
```

Dabei entspricht hier das `part` in der ersten Zeile dem Namen der darunter liegenden Partition, z.B. sda2 oder md0. Jetzt fragen Sie sich vielleicht, für welches Dateisystem Sie eigentlich die Passphrase eingeben sollen. Geht es hier jetzt um `/home`? Oder vielleicht um `/var`? Wenn Sie nur ein verschlüsseltes Dateisystem haben, ist dies natürlich simpel und Sie können einfach die Passphrase eingeben, die Sie bei der Erstellung des Dateisystems benutzt haben. Haben Sie aber mehrere erstellt, sind die Notizen praktisch, die Sie sich im letzten Schritt von Abschnitt 6.3.4.6 aufgeschrieben haben. Wenn Sie sich nicht notiert haben, wie die verschlüsselten Partitionen (`part_crypt`) auf die Einbindungspunkte abgebildet sind, finden Sie diese Infos auch in `/etc/crypttab` und `/etc/fstab` Ihres neuen Systems.

Der Prompt während des Bootens könnte ein wenig anders aussehen, während ein verschlüsseltes Root-Dateisystem eingebunden wird. Dies hängt davon ab, welcher initramfs-Generator verwendet wurde, um die zum Starten des Systems nötige initrd (Initial-Ram-Disk) zu erzeugen. Das folgende Beispiel gilt für eine initrd, die mittels `initramfs-tools` generiert wurde:

```
Begin: Mounting root file system... ...
Begin: Running /scripts/local-top ...
Enter LUKS passphrase:
```

Nachdem Sie alle Passphrasen eingegeben haben, sollte der Boot-Prozess wie üblich fortgesetzt werden.

7.2.1 Fehlersuche und -behebung

Falls eines der Dateisysteme nicht eingebunden werden konnte, weil eine falsche Passphrase eingegeben wurde, müssen Sie es nach dem Systemstart manuell einbinden. Es gibt unterschiedliche Situationen:

- Die erste betrifft die Root-Partition. Wenn diese nicht korrekt eingebunden werden konnte, stoppt der Boot-Prozess und Sie müssen für einen neuen Versuch den Rechner neu starten.

- Der einfachste Fall ist der, wenn verschlüsselte Dateisysteme /home oder /srv beherbergen. Diese können Sie nach dem Systemstart manuell einbinden.

Bei dm-crypt ist dies allerdings ein bisschen verzwickt. Sie müssen zunächst die Dateisysteme mit dem device mapper registrieren, indem Sie Folgendes ausführen:

```
# /etc/init.d/cryptdisks start
```

Dadurch werden alle Dateisysteme überprüft, die in /etc/crypttab aufgeführt sind, und es werden entsprechende Gerätedateien im /dev-Verzeichnis erzeugt, nachdem die korrekte Passphrase eingegeben wurde. (Bereits eingebundene Dateisysteme werden übersprungen, so dass Sie diesen Befehl ohne Sorge mehrfach hintereinander ausführen können.) Nach erfolgreicher Registrierung können Sie die Dateisysteme ganz normal einbinden:

```
# mount /einbindungspunkt
```

- Falls Dateisysteme, welche unkritische Systemdateien beinhalten, beim Start nicht eingebunden werden konnten (wie /usr oder /var), sollte das System trotzdem booten und Sie müssten die Dateisysteme wie oben beschrieben manuell einbinden können. Allerdings werden Sie wohl alle Dienste (neu) starten müssen, die normalerweise beim Wechsel in den Standard-Runlevel bei Ihnen aktiviert werden, da sie wahrscheinlich nicht erfolgreich gestartet werden konnten. Der einfachste Weg dies zu bewerkstelligen ist, den Rechner neu zu starten.

7.3 Anmelden

Sobald Ihr System gebootet ist, wird der Anmeldebildschirm angezeigt. Melden Sie sich mit Ihrem persönlichen Benutzernamen und Passwort an, das Sie während der Installation festgelegt haben. Das System ist jetzt bereit zur Benutzung.

Wenn Sie neu bei Debian sind, sollten Sie vielleicht die Dokumentation lesen, die bereits auf dem System installiert ist, um erste Tipps zur Benutzung zu bekommen. Es gibt derzeit mehrere Dokumentationssysteme; es wird daran gearbeitet, diese zu vereinheitlichen. Hier ein paar Ausgangspunkte:

Ein einfacher Weg, diese Dokumente mit einem textbasierten Browser zu betrachten ist, folgende Befehle einzugeben:

```
$ cd /usr/share/doc/
$ w3m .
```

Der Punkt hinter `w3m` weist das Programm an, den Inhalt des aktuellen Verzeichnisses anzuzeigen.

Sie können auch **info Kommando** oder **man Kommando** eingeben, um Dokumentation zu den meisten Befehlen zu bekommen, die auf der Kommandozeile verfügbar sind. Indem Sie **help** eingeben, bekommen Sie eine Hilfe zu Shell-Befehlen, und wenn Sie ein Kommando gefolgt von **--help** eintippen, wird für gewöhnlich eine kurze Zusammenfassung angezeigt, wie das Kommando zu nutzen ist. Wenn die Ausgabe eines Befehls länger als die Seite ist, tippen Sie hinter dem Befehl **more** ein; dadurch wird die Ausgabe seitenweise angezeigt. Um eine Liste aller verfügbaren Befehle zu bekommen, die mit einem bestimmten Buchstaben oder einer bestimmten Buchstabenkombination beginnen, tippen Sie den/die Anfangsbuchstaben ein und drücken zweimal TAB.
Kapitel 8

Die nächsten Schritte und welche Seiten Sie noch besuchen sollten

8.1 Das System herunterfahren

Um ein laufendes Debian GNU/Linux-System herunterzufahren, sollten Sie den Rechner nicht über die Reset-Taste auf der Vorder- oder Rückseite des Rechners neu starten oder einfach abschalten. Debian GNU/Linux sollte auf kontrollierte Art und Weise heruntergefahren werden, andernfalls können Dateien verloren gehen und/oder die Festplatten beschädigt werden. Wenn Sie eine grafische Arbeitsplatz-Umgebung nutzen, gibt es dort für gewöhnlich eine Menüoption „Abmelden“, die es Ihnen erlaubt, das System herunterzufahren (oder neu zu starten).

Alternativ dazu können Sie die Tastenkombination Strg-Alt-Entf benutzen. Falls diese Tastenkombinationen nicht funktionieren, ist die letzte Möglichkeit, sich als root anzumelden und die entsprechenden Befehle einzugeben. Verwenden Sie `reboot`, um das System neu zu starten. Verwenden Sie `halt`, um das System anzuhalten (zu stoppen), jedoch ohne die Spannung abzuschalten¹. Um die Maschine abzuschalten, verwenden Sie `poweroff` oder `shutdown -h now`. Das systemd-Init-System stellt Befehle bereit, die die gleichen Funktionen bieten, z.B. `systemctl reboot` oder `systemctl poweroff`.

8.2 Sich in Debian orientieren

Debian unterscheidet sich etwas von anderen Distributionen. Auch wenn Sie sich mit Linux in anderen Distributionen auskennen, gibt es einige Dinge, die Sie über Debian wissen sollten, um Ihr System in einem guten, sauberen Zustand zu halten. Dieses Kapitel enthält Material, das Ihnen helfen soll, sich zu orientieren; es soll keine Anleitung sein, wie man Debian benutzt, sondern nur einen kurzen Einblick geben für alle, die es eilig haben.

8.2.1 Das Debian-Paketsystem

Das wichtigste Konzept, das Sie verstehen sollten, ist das des Debian-Paketsystems. Im Wesentlichen sollten große Teile des Systems unter der Kontrolle des Paketsystems stehen, inklusive:

- `/usr (ausgenommen `/usr/local`)
- `/var` (Sie können `/var/local` erstellen, wo Sie auch unbehelligt vom Paketsystem sind)
- `/bin`
- `/sbin`
- `/lib`

Wenn Sie zum Beispiel die Datei `/usr/bin/perl` durch eine andere Version ersetzen, wird dies funktionieren, aber wenn das perl-Paket irgendwann einmal aktualisiert wird, wird Ihre Version überschrieben. Experten können dies aber vermeiden, indem Sie z.B. das Paket in aptitude auf „hold“ setzen.

APT ist eine der besten Installationsmethoden. Sie können die Kommandozeilenversion `apt` benutzen, die Vollbild-Textversion aptitude oder auch grafische Programme wie synaptic (was letztlich alles nur andere Bedienoberflächen

¹Unter dem SysV-Init-System rief `halt` die gleiche Reaktion hervor wie `poweroff`, wenn jedoch systemd als Init-System eingesetzt wird (dies ist die Standardeinstellung seit Debian Jessie), haben sie unterschiedliche Funktionen.
für apt sind). Beachten Sie, dass apt es Ihnen ermöglicht, main, contrib, non-free und non-free-firmware zu mischen, so dass Sie sowohl eingeschränkte Pakete (die streng gesehen nicht Teil von Debian sind) als auch Standardpakete gleichzeitig nutzen können.

8.2.2 Zusätzliche Software, die für Debian verfügbar ist

8.2.3 Programmversions-Verwaltung

8.2.4 Cron-Job-Management (zeitgesteuerte Aufgaben)

Wenn Sie andererseits einen Cron-Job benötigen, der (a) unter einem bestimmten Benutzernamen laufen muss oder (b) zu einer bestimmten Zeit oder in einem bestimmten Takt, können Sie entweder /etc/crontab verwenden oder besser /etc/cron.d/whatever. Diese besonderen Dateien haben ein zusätzliches Eingabefeld, das es erlaubt, den Benutzerzugang festzulegen, unter dem der Job ausgeführt wird.

Sie müssen nur die Dateien editieren und cron wird sie automatisch erkennen. Es muss kein besonderer Befehl o.ä. ausgeführt werden. Mehr Informationen finden Sie in cron(8), crontab(5) und /usr/share/doc/cron/README.Debian.

8.3 Wo Sie weiter lesen sollten – zusätzliche Informationen

Wenn Sie Informationen über ein bestimmtes Programm benötigen, sollten Sie als erstes man Programm oder info Programm ausprobieren.

Eine Quelle für allgemeine Dokumentation über GNU/Linux ist die Seite vom Linux Documentation Project. Dort finden Sie HowTos und Verweise auf weitere sehr nützliche Informationen über Teile des GNU/Linux-Systems.

Linux ist eine Implementation von Unix. Das Linux Documentation Project (LDP) vereint viele HowTos und Online-Bücher über Unix.

Wenn Sie neu sind bei Unix, sollten Sie sich vielleicht ein paar Bücher kaufen und lesen. Diese Liste von Unix-FAQs enthält eine Vielzahl von UseNet-Dokumenten und stellt somit eine hübsche historische Referenz dar.

8.4 Das System zur E-Mail-Nutzung einrichten

Heutzutage ist E-Mail für viele Leute ein sehr wichtiger Teil des Lebens. Da es viele Optionen bei der Einrichtung gibt und es für viele Debian-Werkzeuge wichtig ist, dass das E-Mail-System korrekt konfiguriert ist, werden wir versuchen, in diesem Kapitel die Grundlagen zu behandeln.

Das E-Mail-System besteht aus drei Hauptfunktionen. Als erstes gibt es den Mail User Agent (MUA), das Programm, das man als Benutzer verwendet, um Mails zu verfassen und zu lesen. Dann gibt es den Mail Transfer Agent
(MTA), der sich um den Versand der Nachrichten von einem Rechner auf einen anderen kümmert. Und zu guter Letzt gibt es den Mail Delivery Agent (MDA), der ankommende Mails in die Postfächer der Benutzer einsortiert.

Diese drei Funktionen können von separaten Programmen erledigt werden, aber sie können auch in ein oder zwei Programmen kombiniert sein. Es ist ebenfalls möglich, dass diese Funktionen bei verschiedenen Mail-Typen von unterschiedlichen Programmen ausgeführt werden.

Auf Linux- und Unix-Systemen war mutt immer ein sehr populärer MUA. Wie die meisten traditionellen Linux-Programme ist er textbasiert. Er wird oft in Kombination mit den MTAs exim oder sendmail und mit procmail als MDA verwendet.

Mit zunehmender Popularität der grafischen Benutzeroberflächen werden auch die grafischen E-Mail-Programme wie GNOMEs evolution, KDEs kmail oder Mozillas thunderbird immer beliebter. Diese Programme kombinieren alle Funktionen von MUA, MTA und MDA, können aber auch in Kombination mit den traditionellen Debian GNU/Linux-Werkzeugen verwendet werden – und dies ist auch durchaus üblich.

8.4.1 Standard-E-Mail-Konfiguration

Auch wenn Sie vorhaben, ein grafisches Mail-Programm zu verwenden, wäre es nützlich, dass auch ein traditioneller MTA/MDA installiert und korrekt auf Ihrem Debian GNU/Linux-System eingerichtet ist. Der Grund hierfür ist, dass verschiedene Systemwerkzeuge², die auf dem System laufen, Ihnen wichtige Informationen per E-Mail schicken könnten, um Ihnen von (potentiellen) Problemen oder Veränderungen zu berichten.

Sie können dazu die Pakete exim4 und mutt mittels apt install exim4 mutt installieren. exim4 ist eine Kombination aus MTA und MDA; er ist relativ klein und sehr flexibel. Standardmäßig wird er so konfiguriert, dass nur E-Mails lokal auf dem System selbst verarbeitet werden und Mails an den Systemadministrator (root) werden an den regulären Benutzer weitergeleitet, der während der Installation erstellt wurde³.

Mails, die innerhalb des Systems verschickt werden, werden zu einer Datei in /var/mail/Name hinzugefügt. Sie können mit mutt gelesen werden.

8.4.2 E-Mails nach außerhalb verschicken

Wie vorher erwähnt, ist das Debian-System so konfiguriert, dass E-Mails nur lokal auf dem System verarbeitet werden, nicht zum Verschicken nach außerhalb oder zum Empfangen von außerhalb.

Falls Sie möchten, dass exim4 externe E-Mails verarbeitet, finden Sie im nächsten Abschnitt Infos über die grundlegenden verfügbaren Optionen. Testen Sie, ob Mails korrekt versendet oder empfangen werden können.

Wenn Sie vorhaben, ein grafisches Mail-Programm zu benutzen und einen Mailserver Ihres Internet-Providers (ISP) oder Ihrer Firma verwenden, ist es nicht unbedingt nötig, exim4 für die Handhabung von externen E-Mails zu konfigurieren. Sie müssen dann lediglich das grafische Mail-Programm Ihrer Wahl so einrichten, dass der richtige Server für das Senden und Empfangen von Mails genutzt wird (wie das geht, ist nicht Thema dieses Handbuchs).

Um reportbug für die Verwendung mit einem externen Mail-Server einzurichten, führen Sie bitte reportbug --configure aus und antworten Sie mit „No“ auf die Frage, ob ein MTA verfügbar ist. Sie werden dann nach dem zu verwendenden SMTP-Server gefragt.

8.4.3 Den Mail-Transport-Agent Exim4 konfigurieren

Wenn Sie möchten, dass Ihr System auch externe E-Mails verarbeitet, müssen Sie das Paket exim4 neu konfigurieren⁴:

```bash
# dpkg-reconfigure exim4-config
```

Nach der Eingabe des Kommandos (als root) werden Sie gefragt, ob Sie die Konfiguration in mehrere kleine Dateien aufspalten möchten. Wenn Sie nicht sicher sind, wählen Sie die Standardeinstellung.

Als nächstes werden mehrere allgemeine Mail-Szenarien angezeigt. Wählen Sie eines, das Ihren Bedürfnissen am ehesten entspricht.

²Beispiele sind cron, quota, logcheck, aide, …

³Die Weiterleitung der Mails für root an den regulären Benutzer wird in /etc/aliases konfiguriert. Falls kein regulärer Benutzerzugang erstellt wurde, werden die Mails natürlich direkt an root geschickt.

⁴Sie können natürlich exim4 auch löschen und durch einen anderen MTA/MDA ersetzen.
KAPITEL 8. DIE NÄCHSTEN SCHRITTE UND …

8.5 EINEN NEUEN KERNEL KOMPILIEREN

Internet-Seite Ihr System ist mit einem Netzwerk verbunden und Ihre Mails werden direkt per SMTP verschickt und empfangen. Auf den folgenden Seiten werden Sie nach ein paar Basisinformationen gefragt, wie dem Mail-Namen Ihres Rechners oder einer Liste von Domains, für die Sie Mails akzeptieren oder weiterleiten möchten.

Mail-Versand über einen Smarthost In diesem Szenario wird Ihre ausgehende Mail an einen anderen Rechner, „Smarthost“ genannt, weitergeleitet, der sich darum kümmert, die Mails an ihr Ziel zu versenden. Der Smarthost speichert für gewöhnlich auch ankommende Mails, die für Ihren Rechner bestimmt sind, so dass Sie nicht ständig online sein müssen. Das bedeutet auch, dass Sie Ihre Mails mit Programmen wie fetchmail vom Smarthost abholen müssen.

In vielen Fällen wird der Smarthost der Mail-Server Ihres Internet-Providers (ISP) sein. Deswegen ist diese Option genau passend für Nutzer, die sich per Modem-Einwahl o.ä. mit dem Internet verbinden). Der Smarthost kann auch der Mail-Server Ihrer Firma sein oder ein anderer Rechner in Ihrem eigenen Netzwerk.

Nur lokale Mail-Zustellung Dies ist die Standard-Mail-Konfiguration für Ihr System.

Keine Konfiguration zu diesem Zeitpunkt Wählen Sie dies nur, wenn Sie sich absolut sicher sind, was Sie tun. Sie haben anschließend ein unkonfiguriertes Mail-System – bis Sie es konfigurieren, sind Sie nicht in der Lage, Mails zu senden oder zu empfangen und könnten so wichtige Meldungen von den Systemprogrammen Ihres Rechners verpassen.

Wenn keines dieser Szenarien für Sie passend ist oder wenn Sie eine feinere Einstellung benötigen, müssen Sie die Konfigurationdateien im Verzeichnis /etc/exim4 manuell anpassen, nachdem die Installation beendet ist. Mehr Informationen über exim4 finden Sie unter /usr/share/doc/exim4; die Datei README.Debian.gz enthält zusätzliche Details über die Konfiguration von exim4 und beschreibt, wo Sie weitere Dokumentation finden.

Bedenken Sie, dass Ihre Mails aufgrund von Anti-Spam-Maßnahmen auf empfangenden Servern verworfen (gelöscht) werden könnten, wenn Sie sie direkt über das Internet versenden und keinen offiziellen Domain-Namen haben.

In diesem Fall wird empfohlen, den Mail-Server Ihres Internet-Providers (ISP) zu benutzen. Möchten Sie trotzdem Mails direkt versenden, sollten Sie vielleicht eine andere E-Mail-Adresse verwenden als die, die als Standard generiert wird. Für exim4 als MTA ist dies möglich, indem Sie einen Eintrag in /etc/email-addresses hinzufügen.

8.5 Einen neuen Kernel kompilieren

8.6 Ein beschädigtes System reparieren

Manchmal gehen Dinge schief und das System, dass Sie so sorgfältig installiert haben, ist nicht mehr bootfähig. Vielleicht ist die Konfiguration des Bootloaders misslingen, als Sie eine Änderung ausprobiert haben, oder ein neuer Kernel, den Sie installiert haben, startet nicht oder kosmische Strahlen haben Ihre Festplatte getroffen und ein bisschen in /sbin/init gewütet. Unabhängig von der Ursache müssen Sie irgendwie das System zum Laufen bekommen, um das Problem zu lösen, und der Rettungsmodus könnte dazu nützlich sein.

Um in den Rettungsmodus zu gelangen, wählen Sie rescue aus dem Menü, geben rescue am boot: -Prompt ein oder starten mit dem Boot-Parameter rescue/enable=true. Sie sehen die ersten Bildschirmseiten des Installers mit einem Hinweis in der Ecke, dass dies der Rettungsmodus ist und keine komplette Neuinstallation. Keine Sorge, Ihr System wird nicht überschrieben werden! Der Rettungsmodus nutzt lediglich die Fähigkeiten des Installers zur Hardware-Erkennung, um sicherzustellen, dass Ihnen Ihre Festplatten, Netzwerkschnittstellen und so weiter zu Verfügung stehen, so dass Sie das System reparieren können.

Statt des Partitionierungswerkzeuges sollte Ihnen jetzt eine Liste der Partitionen auf Ihrem System präsentiert werden und Sie werden aufgefordert, eine davon auszuwählen. Normalerweise sollten Sie die Partition wählen, die das
Für die folgenden Schritte gibt es einige Hinweise und Tipps, die Ihnen helfen, das System zu reparieren.

8.6. Ein beschädigtes System reparieren

Wenn das root-Dateisystem betrachtet wird, das Sie reparieren müssen, können Sie Partitionen auf RAID- und LVM-Geräten sowie solche, die direkt auf den Platten angelegt wurden, auswählen.

Falls möglich präsentiert der Installer Ihnen jetzt eine Shell-Eingabeaufforderung in dem Dateisystem, das Sie ausgewählt haben, die Sie für nötige Reparaturen verwenden können.

Falls der Installer keine nutzbare Shell im von Ihnen gewählten root-Dateisystem starten kann, weil vielleicht das Dateisystem beschädigt ist, wird eine Warnung angezeigt und Ihnen wird angeboten, eine Shell in der Umgebung des Installers zu öffnen. Sie werden hier vielleicht nicht so viele Werkzeuge zur Verfügung haben, aber oft wird es trotzdem reichen, das System zu reparieren. Das root-Dateisystem, das Sie ausgewählt haben, wird in das /target-Verzeichnis eingebunden.

In jedem Fall wird der Rechner neu starten, sobald Sie die Shell schließen.

Zum Schluss noch ein Hinweis: ein defektes System zu reparieren kann schwierig sein und dieses Handbuch versucht auch nicht, alles was schief laufen kann zu behandeln, oder zu beschreiben, wie Sie die Fehler beheben. Wenn Sie Probleme haben, ziehen Sie einen Experten zu Rate.
Anhang A

Installations-HowTo

Dieses Dokument beschreibt, wie man Debian GNU/Linux Bookworm für 32-Bit Hard-float-ARmv7 („armhf“) mit dem neuen debian-installer installiert. Es ist ein Schnelldurchmarsch durch den Installationsprozess, der für die meisten Installationen alle notwendigen Informationen enthalten sollte. Dort, wo mehr Infos nützlich sein könnten, werden wir auf detaillierte Anleitungen in anderen Teilen dieses Dokuments verweisen.

A.1 Einleitung
Falls Sie während der Installation auf Fehler stoßen, erhalten Sie im Abschnitt 5.4.5 Instruktionen, wie Sie diese an uns melden. Falls Sie Fragen haben, die in diesem Dokument nicht beantwortet werden, richten Sie sie bitte an die Debian-Boot-Mailingliste (debian-boot@lists.debian.org) oder fragen Sie im IRC (#debian-boot im OFTC-Netzwerk) nach.

A.2 Den Installer booten

Einige Installationsmethoden erfordern andere Images als die für optische Medien. Abschnitt 4.2.1 gibt Infos, wo man Images auf den Debian-Spiegel-Servern findet.

Die folgenden Abschnitte enthalten Details, welche Images Sie für die verschiedenen Installationsmethoden benötigen.

A.2.1 Optische Disks (CD/DVD)

Laden Sie das Image herunter, das Sie bevorzugen, und brennen Sie es auf einen optischen Datenträger.

A.2.2 Über das Netzwerk booten

A.2.3 Von Festplatte starten
Es ist ebenfalls möglich, den Installer zu starten, indem Sie kein Wechselmedium nutzen, sondern einfach eine vorhandene Festplatte, die sogar ein anderes Betriebssystem enthalten kann. Laden Sie hd-media/initrd.gz,

A.3 Installation

Sobald der Installer startet, werden Sie mit einem Startbildschirm begrüßt. Drücken Sie Enter, um zu starten oder lesen Sie die Anleitung über andere Boot-Methoden und Parameter (siehe Abschnitt 5.3).

Unter Umständen wird der Installer aufgefordert, Ihr Tastaturlayout zu bestätigen. Wenn Sie nicht sicher sind, wählen Sie die Voreinstellung.

Lehnen Sie sich nun zurück, während der Installer die Hardware-Erkennung durchführt und den Rest des Installations-Images in den Speicher lädt.

Als nächstes versucht der Installer, Ihre Netzwerkkarte zu erkennen und die Netzwerkeinstellungen per DHCP einzurichten. Falls Ihr Rechner sich nicht in einem Netzwerk befindet oder Sie kein DHCP haben, haben Sie die Möglichkeit, das Netzwerk manuell zu konfigurieren.

Nach der Netzwerkkonfiguration folgt die Einrichtung der Benutzerzüge. Standardmäßig müssen Sie ein Passwort für den „root“-Zugang (Administrator) angeben sowie Informationen zur Erstellung eines regulären Benutzers. Wenn Sie kein Passwort für den „root“-Benutzer festlegen, führt das zur Deaktivierung dieses Kontos, aber später wird das sudo-Paket installiert, damit administrative Aufgaben auf dem neuen System durchgeführt werden können. Standardmäßig wird in diesem Fall der erste auf dem System eingerichtete Benutzer die Berechtigung erhalten, den sudo-Befehl zu verwenden, um root zu werden.

Denken Sie daran, zumindest eine Partition als Swap (um Arbeitsspeicher auszulagern) und eine als /einzurichten und einzubinden. Einzelheiten zu diesen Schritten finden Sie in Abschnitt 6.3.4.2; Anhang C enthält grundsätzliche Informationen über das Partitionierungsprogramm.

Now formatiert der debian-installer Ihre Partitionen und beginnt dann mit der Installation des Basissystems, was eine Weile dauern kann. Danach wird der Kernel installiert.

Der letzte Schritt ist die Installation des Bootloaders. Wenn der Installer ein anderes Betriebssystem auf Ihrem Rechner erkennt, wird es zum Boot-Menü hinzugefügt und Sie werden darüber informiert.

Benötigen Sie weitere Informationen über den Installationsprozess, lesen Sie Kapitel 6.
A.4 Schicken Sie uns einen Installationsbericht

Wenn Ihre Installation mit dem debian-installer erfolgreich war, nehmen Sie sich bitte die Zeit, uns einen Bericht zu schicken. Am Einfachsten ist es, das Paket reportbug zu installieren (mit `apt install reportbug`), es wie in Abschnitt 8.4.2 beschrieben zu konfigurieren und dann `reportbug installation-reports` auszuführen.

Falls Sie die Installation nicht abschließen konnten, haben Sie möglicherweise einen Fehler im Debian-Installer gefunden. Um den Installer zu verbessern, müssen wir davon erfahren; also nehmen Sie sich bitte die Zeit, uns Fehler mitzuteilen. Sie können die Vorlage des Installationsberichts dafür benutzen; wenn die Installation komplett fehlgeschlug, lesen Sie Abschnitt 5.4.4.

A.5 Zu guter Letzt …

Wir hoffen, dass Ihre Debian-Installation angenehm verlief und dass Sie Debian nützlich finden. Vielleicht möchten Sie noch Kapitel 8 lesen.
Anhang B

Automatisieren der Installation mittels Voreinstellung

Dieser Anhang beschreibt, wie Sie Antworten auf Fragen des debian-installer voreinstellen, um die Installation zu automatisieren.

Die Konfigurationsfragmente aus diesem Abschnitt sind auch als Beispiel in Form einer Voreinstellungendatei unter https://www.debian.org/releases/bookworm/example-preseed.txt verfügbar.

B.1 Einführung

Das Voreinstellen bietet einen Weg, Fragen zu beantworten, die während der Installation gestellt werden, ohne dass man die Antworten manuell eingeben muss, während die Installation läuft. Dies ermöglicht es, die meisten Installationsarten voll zu automatisieren und bietet sogar einige Funktionen, die während einer normalen Installation nicht verfügbar sind.

Das Verfahren der Voreinstellung ist nicht zwingend erforderlich. Wenn Sie eine leere Voreinstellungsdatei verwenden, wird sich der Installer wie bei einer ganz normalen manuellen Installation verhalten. Jede Frage, die Sie voreinstellen, wird (wenn Sie es richtig gemacht haben!) die Installation ab diesem Punkt auf irgendeine Art verändern.

B.1.1 Verschiedene Methoden der Voreinstellung

Es gibt drei Methoden, die zur Voreinstellung genutzt werden können: initrd, file (Datei) und network (Netzwerk). Voreinstellung per initrd funktioniert mit jeder Art von Installation und unterstützt vergleichsweise viele Dinge, benötigt jedoch mehr Vorbereitung. Das Voreinstellen mittels file und network kann jeweils mit verschiedenen Installationsmethoden genutzt werden.

Die folgende Tabelle zeigt, welche Voreinstellungsmethode Sie bei verschiedenen Installationsarten nutzen können.

<table>
<thead>
<tr>
<th>Installationsart</th>
<th>initrd</th>
<th>file</th>
<th>network</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD/DVD/USB</td>
<td>ja</td>
<td>ja</td>
<td>ja(^1)</td>
</tr>
<tr>
<td>netboot (Netzwerk)</td>
<td>ja</td>
<td>nein</td>
<td>ja(^1)</td>
</tr>
<tr>
<td>hd-media</td>
<td>ja</td>
<td>ja</td>
<td>ja(^1)</td>
</tr>
</tbody>
</table>

\(^1\) jedoch nur, falls Sie Netzwerkzugriff haben und preseed/url passend gesetzt haben
Wichtig

Natürlich können Voreinstellungswerte für Fragen, die verarbeitet werden, bevor die Voreinstellungsdatei geladen wird, nicht greifen (dies beinhaltet Fragen, die nur bei mittlerer oder niedriger Priorität gestellt werden, wie der erste Hardware-Erkennungslauf). Ein etwas unkomfortabler Weg, trotzdem zu vermeiden, dass diese Fragen gestellt werden ist, die Werte mittels Boot-Parametern anzugeben, wie in Abschnitt B.2.2 beschrieben.

Um auf einfache Art Fragen zu vermeiden, die normalerweise erscheinen, bevor die Voreinstellung greift, können Sie den Installer im „auto“-Modus starten. Dadurch werden Fragen, die eigentlich für Voreinstellung zu früh gestellt werden (wie Land, Sprache und Tastaturbelegung), aufgeschoben bis das Netzwerk aktiv ist und dann voreingestellt werden können. Außerdem wird die Installation mit Priorität kritisch durchgeführt, um unwichtige Fragen zu unterdrücken. Siehe Abschnitt B.2.3 für Details.

B.1.2 Einschränkungen

B.2 Voreinstellung nutzen

Eine Beispiel-Voreinstellungsdatei, die Sie als Basis für Ihre Datei verwenden können, ist unter https://www.debian.org/releases/bookworm/example-preseed.txt verfügbar. Sie basiert auf den Konfigurationsfragmenten, die in diesem Kapitel enthalten sind.

B.2.1 Die Voreinstellungsdatei laden

Falls Sie Voreinstellung per initrd benutzen, müssen Sie lediglich sicherstellen, dass die Datei als preseed.cfg im Root-Verzeichnis der initrd existiert. Der Installer wird automatisch überprüfen, ob solche eine Datei existiert und sie laden.

Wenn Sie die Voreinstellungsdatei in der Bootloader-Konfiguration festlegen, möchten Sie vielleicht diese Konfiguration so verändern, dass Sie nicht mehr die Enter-Taste drücken müssen, um den Installer zu booten. In syslinux.cfg müssen Sie dazu den Timeout auf 1 setzen.

Um sicherzustellen, dass der Installer die richtige Voreinstellungsdatei bekommt, können Sie optional eine Prüfsumme für die Datei angeben. Dies muss derzeit eine md5sum-Prüfsumme sein, und wenn sie angegeben ist, muss sie auch passen, ansonsten wird der Installer sich weigern, die Datei zu benutzen.

Boot-Parameter, die Sie angeben müssen
- wenn Sie per Netzwerk booten (netboot):
 preseed/url=http://host/path/to/preseed.cfg
 preseed/url/checksum=5da499872beccc6eda2c4872f9171c3d
- oder
 preseed/url=tftp://host/path/to/preseed.cfg
 preseed/url/checksum=5da499872beccc6eda2c4872f9171c3d

73
- wenn Sie von einem angepassten (remastered) Installations-Image booten:
 preseed/file=/cdrom/preseed.cfg
 preseed/file/checksum=5da499872becccfdc2c4872f9171c3d
- wenn Sie von einem USB-Medium installieren (legen Sie die Voreinstellungsdatei im Toplevel-(Haupt)-Verzeichnis des USB-Sticks ab):
 preseed/file=/hd-media/preseed.cfg
 preseed/file/checksum=5da499872becccfdc2c4872f9171c3d

Beachten Sie, dass preseed/url auch einfach mit url abgekürzt werden kann, preseed/file mit file und preseed/file/checksum mit preseed-md5, wenn diese Argumente als Boot-Parameter an den Kernel übergeben werden.

B.2.2 Boot-Parameter nutzen, um Fragen automatisiert zu beantworten

Falls eine Voreinstellungsdatei für einige Schritte nicht verwendet werden kann, kann die Installation trotzdem voll automatisiert werden, da Sie auch Voreinstellungswerte per Kommandozeile an den Kernel übergeben können.

Boot-Parameter können auch verwendet werden, wenn zwar Voreinstellung generell nicht verwendet, aber eine Antwort für eine spezielle Frage vorgegeben werden soll. Einige Beispiele, wofür das sinnvoll sein kann, sind an anderer Stelle in diesem Handbuch dokumentiert.

Eine Frage auf diese Art voreinzustellen führt normalerweise dazu, dass die Frage überhaupt nicht gestellt wird. Um lediglich eine andere Vorauswahl (Standardantwort) einzustellen, aber die Frage trotzdem stellen zu lassen, verwenden Sie als Operator „?=“ statt „=“. Siehe auch Abschnitt B.5.2.

ANMERKUNG

Aktuelle Linux-Kernel (2.6.9 oder später) akzeptieren ein Maximum von 32 Kommandozeichenoptionen und 32 Umgebungsvariablen, inklusive einiger Optionen, die standardmäßig für den Installer hinzugefügt werden. Wird diese Zahl überschritten, wird der Kernel eine Panic melden (abstürzen). (Bei älteren Kernels lagen diese Zahlen niedriger.)

Einige der Standardoptionen, wie vga=normal, können bei den meisten Installationen getrost entfernt werden, was es erlaubt, mehr Optionen für Voreinstellungen zu verwenden.

²Der Eigentümer (owner) einer debconf-Variable (oder eines Templates) ist normalerweise der Name des Pakets, das die entsprechende debconf-Vorlage enthält. Bei Variablen, die im Installer selbst verwendet werden, ist der Eigentümer „d-i“. Vorlagen und Variablen können auch mehr als einen Eigentümer haben, was dabei hilfreich sein kann, herauszufinden, ob sie aus der debconf-Datenbank entfernt werden können, wenn das Paket komplett vom System entfernt wird.
B.2.3 Auto-Modus

Es gibt etliche Features des Debian Installers, die es erlauben, mit ziemlich einfachen Kommandozeilen am Boot-Prompt zu komplexen angepassten automatisierten Installationen zu kommen.

Um dies zu demonstrieren, hier einige Beispiele, die Sie am Boot-Prompt verwenden können:

```
auto url=autoserver
```

Bedingung hierfür ist, dass ein DHCP-Server existiert, der den Rechner an den Punkt bringt, wo autoserver per DNS aufgelöst werden kann, eventuell indem die lokale Domäne hinzugefügt wird, falls sie per DHCP mitgeliefert wird. Wenn das auf einer Site passiert, auf der die Domäne example.com lautet und es existiert ein gesundes DHCP-Setup, führt das dazu, dass die Voreinstellungsdatei von http://autoserver.example.com/d-i/bookworm/./preseed.cfg empfangen wird.

Falls keine lokale DHCP- oder DNS-Infrastruktur existiert oder falls Sie nicht den Standardpfad zu der Datei preseed.cfg nutzen möchten, können Sie trotzdem eine explizite URL angeben, und wenn Sie dabei nicht das Element /./ im Pfad benutzen, wird sie passend am Anfang des Pfades verankert (z.B. das dritte / in der URL). Hier ein Beispiel, das nur minimale Unterstützung von der lokalen Netzwerkinfrastruktur erfordert:

```
auto url=http://192.168.1.2/path/to/mypreseed.file
```

Das funktioniert so:

- falls in der URL das Protokoll fehlt, wird http angenommen,
- falls der Teil des Rechnernamens keinen Punkt enthält, wird die Domäne, die vom DHCP abgeleitet wird, angehängt und
- falls nach dem Rechnernamen kein / folgt, wird der Standardpfad hinzugefügt.

Zusätzlich zur Angabe der URL können Sie auch Einstellungen angeben, die nicht direkt das Verhalten des debian-installer selbst beeinflussen, sondern an Skripte weitergeleitet werden, die mit preseed/run in der geladenen Voreinstellungsdatei festgelegt sind. Derzeit ist das einzige solche Beispiel auto-install/classes, was den Alias classes hat. Dies kann entsprechend so genutzt werden:

```
auto url-example.com classes=class_A;class_B
```

Die Klassen können zum Beispiel den Systemtyp, der installiert werden soll, festlegen oder die Lokalisierung, die Sie nutzen möchten.

Natürlich ist es möglich, dieses Konzept zu erweitern und dabei ist es sinnig, den auto-install-Namensraum dafür zu nutzen. Sie könnten z.B. etwas wie auto-install/style verwenden, was dann in Ihren Skripten genutzt wird.
Falls Sie meinen, dass so etwas benötigt wird, erwähnen Sie es doch auf der Mailingliste debian-boot@lists.debian.org, so dass wir Namenskonflikte vermeiden und vielleicht einen Alias dafür hinzufügen können.

Die Auswahl `auto` im Boot-Menü ist noch nicht auf allen Architekturen definiert. Der gleiche Effekt kann jedoch auch erreicht werden, indem die beiden Parameter `auto=true priority=critical` zur Kernel-Kommandozeile hinzugefügt werden. Der Kernel-Parameter `auto` ist ein Alias für `auto-install/enable` und wenn er auf `true` gesetzt ist, werden die Fragen über Gebietsschema und Tastatur so weit zurückgestellt, bis eine Chance besteht, sie per Voreinstellung zu setzen. `priority` ist ein Alias für `debconf/priority`, und wenn er auf `critical` gesetzt wird, unterdrückt das alle Fragen mit einer niedrigeren Priorität.

Zusätzliche Optionen, die eventuell interessant sein könnten für eine automatisierte Installation mittels DHCP:

```bash
interface=auto netcfg/dhcp_timeout=60
```

Dass sorgt dafür, dass die erste funktionsfähige Netzwerk-karte genutzt wird und dass etwas mehr Zeit für die Antwort auf eine DHCP-Anfrage gegeben wird.

Tipp

B.2.4 Für Voreinstellung nützliche Aliase

Die folgenden Aliase könnten nützlich sein, wenn Sie Voreinstellung (im Auto-Modus) benutzen. Beachten Sie, dass dies einfach nur kurze Aliase für Fragen-Namen sind und dass Sie immer auch einen Wert angeben müssen, zum Beispiel `auto=true` oder `interface=eth0`.

<table>
<thead>
<tr>
<th>priority</th>
<th>debconf/priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb</td>
<td>debian-installer/framebuffer</td>
</tr>
<tr>
<td>auto</td>
<td>auto-install/enable</td>
</tr>
<tr>
<td>classes</td>
<td>auto-install/classes</td>
</tr>
<tr>
<td>file</td>
<td>preseed/file</td>
</tr>
<tr>
<td>url</td>
<td>preseed/url</td>
</tr>
<tr>
<td>theme</td>
<td>debian-installer/theme</td>
</tr>
<tr>
<td>language</td>
<td>debian-installer/language</td>
</tr>
<tr>
<td>country</td>
<td>debian-installer/country</td>
</tr>
<tr>
<td>locale</td>
<td>debian-installer/locale</td>
</tr>
<tr>
<td>keymap</td>
<td>keyboard-configuration/xkb-keymap</td>
</tr>
<tr>
<td>modules</td>
<td>anna/choose_modules</td>
</tr>
<tr>
<td>firmware</td>
<td>hw-detect/firmware-lookup</td>
</tr>
<tr>
<td>interface</td>
<td>netcfg/choose_interface</td>
</tr>
<tr>
<td>domain</td>
<td>netcfg/get_domain</td>
</tr>
<tr>
<td>hostname</td>
<td>netcfg/get_hostname</td>
</tr>
<tr>
<td>protocol</td>
<td>mirror/protocol</td>
</tr>
<tr>
<td>suite</td>
<td>mirror/suite</td>
</tr>
<tr>
<td>recommends</td>
<td>base-installer/install-recommends</td>
</tr>
<tr>
<td>tasks</td>
<td>tasksel:tasksel/first</td>
</tr>
<tr>
<td>desktop</td>
<td>tasksel:tasksel/desktop</td>
</tr>
<tr>
<td>preseed-md5</td>
<td>preseed/file/checksum</td>
</tr>
</tbody>
</table>

B.2.5 Beispiele für Voreinstellung via Boot-Prompt-Zeile

Hier einige Beispiele, wie Zeilen am Boot-Prompt aussehen könnten (Sie müssen sie natürlich an Ihre Bedürfnisse anpassen).

```bash
# Um Französisch als Sprache zu setzen und Frankreich als Land:
/install.amd/vmlinux vga=788 initrd=/install.amd/gtk/initrd.gz language=fr ←
country=FR --- quiet
# Um Englisch als Sprache zu setzen und Deutschland als Land, sowie ein
deutsches Tastaturlayout zu verwenden:
```
B.2.6 Voreinstellungsdateien mittels eines DHCP-Servers festlegen

Es ist auch möglich, DHCP zu benutzen, um eine Voreinstellungsdatei anzugeben, die vom Netzwerk heruntergeladen werden soll. DHCP erlaubt es, einen Dateinamen anzugeben. Normalerweise ist dies eine Datei für das Booten per Netzwerk; wenn sie jedoch als URL angegeben wird, wird das Installationsmedium (dies muss Voreinstellung per Netzwerk unterstützen) die Datei von der URL herunterladen und als Voreinstellungsdatei benutzen. Hier ein Beispiel, wie Sie die dhcpd.conf für den ISC-DHCP-Server Version 3 (aus dem Debian-Paket isc-dhcp-server) einstellen müssen:

```bash
if substring (option vendor-class-identifier, 0, 3) = "d-i" {
    filename "http://host/preseed.cfg";
}
```

Beachten Sie, dass das obige Beispiel die Angabe des Dateinamens auf DHCP-Clients beschränkt, die sich selbst als „d-i“ identifizieren; es wird also keine regulären DHCP-Clients beeinflussen, sondern nur Rechner, auf denen der Installer läuft. Sie können den Text auch in einen Absatz der Datei einfügen, der nur für einen bestimmten Rechner gilt, um zu vermeiden, dass ALLE Installationen im Netzwerk voreingestellt werden.

B.3 Eine Voreinstellungsdatei erstellen

Die Voreinstellungsdatei hat das gleiche Format, wie es auch vom Befehl `debconf-set-selections` verwendet wird. Das grundsätzliche Format einer Zeile in einer Voreinstellungsdatei ist Folgendes:

```bash
<owner> <question name> <question type> <value>
{ <Eigentümer> <Name der Frage> <Typ der Frage> <Wert> }
```

Die Datei sollte mit `#_preseed_V1` beginnen.

Es gibt ein paar Regeln, die man im Hinterkopf behalten sollte, wenn man eine Voreinstellungsdatei schreibt:

• Fügen Sie zwischen Typ und Wert nur ein einzelnes Leerzeichen oder einen Tab ein; jedes zusätzliche Leerzeichen wird interpretiert, als ob es zum Wert gehört.

• Eine Zeile kann in mehrere aufgeteilt werden, indem ein Backslash (\") als Zeilenfortsetzungszeichen angefügt wird. Eine gute Stelle, um die Zeile aufzuteilen, ist hinter dem Namen der Frage; eine schlechte ist zwischen Typ und Wert. Solche geteilten Zeilen werden in eine einzige zusammengeführt, wobei alle führenden (vor dem Backslash) und folgenden Leerzeichen (hinter dem Backslash) in ein einziges Leerzeichen konvertiert werden.

• Für debconf-Variablen (Templates), die nur im Installer selbst benutzt werden, muss der Eigentümer (owner) auf „d-i“ gesetzt werden; um Variablen im neu installierten System voreinzustellen, muss der Name des Pakets, das die entsprechenden debconf-Templates enthält, verwendet werden. Nur Variablen, deren Eigentümer auf einen anderen Wert als „d-i“ gesetzt ist, werden der debconf-Datenbank des installierten Systems zugewiesen.

• Für die meisten Fragen müssen bei der Voreinstellung die gültigen Werte in englischer Sprache benutzt werden und nicht die übersetzten Werte. Allerdings gibt es auch einige (zum Beispiel in `partman`), wo die übersetzten Werte verwendet werden müssen.

• Einige Fragen verwenden einen Code als Wert statt des englischen Textes, der während der Installation angezeigt wird.
B.4 Inhalt der Voreinstellungsdatei (für Bookworm)

Die Konfigurationsfragmente aus diesem Abschnitt sind auch als Beispiel in Form einer Voreinstellungsdatei unter https://www.debian.org/releases/bookworm/example-preseed.txt verfügbar.

Beachten Sie, dass dieses Beispiel auf einer Installation für die Intel x86-Architektur basiert. Wenn Sie auf einer anderen Architektur installieren, könnten einige der Beispiele (wie die Tastaturauswahl und die Bootloader-Installation) nicht relevant sein und müssen durch Ihre Architektur passende debconf-Einstellungen ersetzt werden.

Details darüber, wie die verschiedenen Debian-Installer-Komponenten funktionieren, finden Sie in Abschnitt 6.3.

B.4.1 Lokalisierung

Bezüglich einer normalen Installation sind die Fragen, die als allererstes gestellt werden, die über die Lokalisierung, daher können diese Werte nur über initrd oder Kernel-Befehlszeile voreingestellt werden. Die Installation im Auto-Modus (Abschnitt B.2.3) enthält die Einstellung auto-install/enable=true (normalerweise über den Alias auto). Diese verzögert die Fragen zur Lokalisierung, so dass diese dann über jegliche Methode voreingestellt werden können.

Das Gebietsschema (Locale) kann verwendet werden, um sowohl Sprache als auch Land anzugeben. Es kann jede Kombination aus einer vom debian-installer unterstützten Sprache und einem anerkannten Land (jeweils als Kürzel) enthalten. Falls die angegebene Kombination kein gültiges Gebietsschema bildet, wählt der Installer automatisch ein Gebietsschema, das für die gewählte Sprache passend ist. Um das Gebietsschema als Boot-Parameter festzulegen, nutzen Sie locale=de_DE (Beispiel de_DE: deutsch - Deutschland).

```
# Das Voreinstellen des Gebietsschemas (Locale) setzt gleichzeitig Sprache,
# Land und Standard-Gebietsschema:
d-i debian-installer/locale string de_DE

# Die Werte können auch individuell voreingestellt werden, um flexibler
# zu sein:
#d-i debian-installer/language string en
#d-i debian-installer/country string NL
#d-i debian-installer/locale string en_GB.UTF-8

# Geben Sie optional zusätzliche Gebietsschemata an, die generiert werden
# sollen:
#d-i localechooser/supportd-locales multiselect en_US.UTF-8, nl_NL.UTF-8
```


```
# Auswahl der Tastatur:
d-i keyboard-configuration/xkb-keymap select de
# Keine Umschalttaste:
#d-i keyboard-configuration/toggle select No toggling
```

Um die Konfiguration der Tastatur zu überspringen, stellen Sie für `keymap` den Wert `skip-config` ein. Dies bewirkt, dass die Tastaturbelegung des Kernels weiter verwendet wird.

B.4.2 Netzwerkkonfiguration

Die Voreinstellung der Netzwerkkonfiguration funktioniert natürlich nicht, wenn Sie Ihre Voreinstellungdatei vom Netzwerk laden, aber es ist toll, wenn Sie von einem optischen Datenträger oder USB-Stick booten. Sie können jedoch auch Netzwerkkonfigurations-Parameter automatisieren, wenn Sie die Voreinstellungdatei per Netzwerk laden, und zwar per Kernel-Parameter.

Falls Sie beim Booten per Netzwerk eine bestimmte Netzwerkschnittstelle auswählen müssen, bevor eine Voreinstellungsdatei vom Netzwerk geladen wurde, benutzen Sie einen Boot-Parameter wie `interface=eth1`.

Obwohl das Voreinstellen der Netzwerkkonfiguration normalerweise nicht möglich ist, wenn Sie Voreinstellung über Netzwerk benutzen (mittels „preseed/url“), können Sie den folgenden Hack verwenden, um diese Einschränkung zu umgehen, wenn Sie zum Beispiel eine statische Adresse für die Netzwerk-Schnittstelle setzen möchten. Der Hack erzwingt, dass die Netzwerkkonfiguration erneut abläuft, nachdem die Voreinstellungsdatei geladen wurde. Dazu wird ein „preseed/run“-Script erzeugt mit den folgenden Befehlen:

```
kill-all-dhcp; netcfg
```

Die folgenden `debconf`-Variablen sind für die Netzwerkkonfiguration relevant:

```
# Die Netzwerkkonfiguration vollständig überspringen. Dies ist für CD-ROM-
# Installationen auf Rechnern ohne Netzwerk-Hardware nützlich, wo die Fragen
# über das Netzwerk, die Warnungen und das lange Warten auf die Zeitüber-
# schreitungen sehr lästig wären:
#d-i netcfg/enable boolean false

# netcfg versucht nach Möglichkeit, eine Netzwerkschnittstelle zu wählen,
# die bereits Verbindung hat (Netzwerkkabel gesteckt, aktive Gegenstelle).
# Diese Zeile vermeidet, dass eine Liste angezeigt wird, wenn mehr als
# eine Schnittstelle verfügbar ist:
#d-i netcfg/choose_interface select auto

# Um stattdessen eine bestimmte Schnittstelle vorzugeben:
#d-i netcfg/choose_interface select eth1
```

³Wenn zum Beispiel `locale` auf `en_NL` voreingestellt wird, würde dies zu dem Standard-Gebietschema `en_US.UTF-8` auf dem installierten System führen. Wenn aber stattdessen `en_GB.UTF-8` bevorzugt wird, müssen diese Werte individuell voreingestellt werden.
Um eine andere Timeout-Zeit für die Verbindungserkennung festzulegen
(Standard ist 3 Sekunden); Werte werden als Sekunden interpretiert:
#\texttt{d} - \texttt{i netcfg/link_wait_timeout string 10}

Wenn Sie einen langsamen DHCP-Server haben und der Installer läuft in eine
Zeitüberschreitung, während er auf ihn wartet, könnte dies nützlich sein:
#\texttt{d} - \texttt{i netcfg/dhcp_timeout string 60}
#\texttt{d} - \texttt{i netcfg/dhcpv6_timeout string 60}

Automatische Netzwerkkonfiguration ist die Standardvorgehensweise.
Wenn Sie es vorziehen, das Netzwerk manuell zu konfigurieren, entfernen
Sie hier das Kommentarzeichen und ebenso bei den Zeilen für die statische
Netzwerkkonfiguration unten:
#\texttt{d} - \texttt{i netcfg/disable_autoconfig boolean true}

Falls Sie möchten, dass die Voreinstellungdatei sowohl auf Systemen mit
DHCP-Server als auch ohne einen solchen funktioniert, entfernen Sie hier
die Kommentarzeichen sowie auch unten bei der statischen
Netzwerkkonfiguration:
#\texttt{d} - \texttt{i netcfg/dhcp_failed note}
#\texttt{d} - \texttt{i netcfg/dhcp_options select Configure network manually}

Statische Netzwerkkonfiguration.
IPv4-Beispiel:
#\texttt{d} - \texttt{i netcfg/get_ipaddress string 192.168.1.42}
#\texttt{d} - \texttt{i netcfg/get_netmask string 255.255.255.0}
#\texttt{d} - \texttt{i netcfg/get_gateway string 192.168.1.1}
#\texttt{d} - \texttt{i netcfg/get_nameservers string 192.168.1.1}
#\texttt{d} - \texttt{i netcfg/confirm_static boolean true}

IPv6-Beispiel:
#\texttt{d} - \texttt{i netcfg/get_ipaddress string fc00::2}
#\texttt{d} - \texttt{i netcfg/get_netmask string fff::ffff:ffff::}
#\texttt{d} - \texttt{i netcfg/get_gateway string fc00::1}
#\texttt{d} - \texttt{i netcfg/get_nameservers string fc00::1}
#\texttt{d} - \texttt{i netcfg/confirm_static boolean true}

Bedenken Sie, dass jeder Rechner- und Domänenname, der per DHCP
zugewiesen wird, Vorrang hat vor den hier angegebenen. Allerdings
bewirken diese Zeilen, dass keine Fragen angezeigt werden, auch wenn
Werte per DHCP empfangen werden:
#\texttt{d} - \texttt{i netcfg/get_hostname string unassigned-hostname}
#\texttt{d} - \texttt{i netcfg/get_domain string unassigned-domain}

Wenn Sie einen Rechnernamen erzwingen möchten, unabhängig davon, was der
DHCP-Server zurückgibt oder wie der Reverse-DNS-Eintrag für die IP-Adresse
lautet, entfernen Sie bei der folgenden Zeile das Kommentarzeichen und
passen Sie sie an:
#\texttt{d} - \texttt{i netcfg/hostname string somehost}

Den lästigen WEP-Schlüssel-Dialog unterdrücken:
#\texttt{d} - \texttt{i netcfg/wireless_wep string}
Der verrückte DHCP-Rechnernamen, den einige ISP als eine Art Passwort nutzen:
#\texttt{d} - \texttt{i netcfg/dhcp_hostname string radish}

Wenn Sie die Suche nach Firmware vollständig deaktivieren möchten, (um
also keine Firmware-Dateien oder -Pakete zu verwenden, die auf dem
Installations-Image vorhanden sein könnten):
#\texttt{d} - \texttt{i hw-detect/firmware-lookup string never}

Falls nicht-freie Firmware benötigt wird für Netzwerk- oder andere
Hardware, können Sie den Installer so konfigurieren, dass immer versucht
wird, die Firmware zu laden, ohne Nachfrage (true). Oder Sie ändern dies auf false, wenn überhaupt nicht danach gefragt werden soll:

```
#d-i hw-detect/load_firmware boolean true
```

Bitte beachten Sie, dass netcfg die Netzmaske automatisch ermittelt, falls netcfg/get_netmask nicht voreingestellt ist. In diesem Fall muss die Variable für automatische Installationen als seen markiert werden. Ähnlich dazu wird netcfg auch eine geeignete Gateway-Adresse wählen, falls netcfg/get_gateway nicht voreingestellt wird. Es gibt die spezielle Möglichkeit, netcfg/get_gateway auf „none“ zu setzen, um festzulegen, dass kein Gateway benutzt werden soll.

B.4.3 Netzwerk-Konsole

Nutzen Sie die folgenden Einstellungen, wenn Sie die Komponente "Netzwerk-Konsole" für eine entfernte Installation per SSH verwenden möchten. Dies macht nur Sinn, wenn Sie vorhaben, den verbleibenden Rest der Installation manuell durchzuführen:

```
#d-i anna/choose_modules string network-console
#d-i network-console/authorized_keys_url string http://10.0.0.1/openssh-key
#d-i network-console/password password rootme
#d-i network-console/password-again password rootme
```

Weitere Informationen zur Netzwerk-Konsole finden Sie in Abschnitt 6.3.10.

B.4.4 Einstellungen für den Spiegel-Server

Abhängig von der Installationsmethode, die Sie verwenden, kann ein Spiegel-Server sowohl dazu genutzt werden, zusätzliche Komponenten des Installers und das Basissystem herunterzuladen als auch um die /etc/apt/sources.list für das zu installierende System einzurichten.

Der Parameter mirror/suite beeinflusst die Paketquellen für das zu installierende System.

Der Parameter mirror/udeb/suite beeinflusst die Paketquellen für den Installer. Es ist nur nützlich, dies einzustellen, wenn aktuell Komponenten des Installers über das Netzwerk geladen werden; dieser Wert sollte mit dem übereinstimmen, der genutzt wurde, um die initrd, die Sie für Ihre Installationsmethode nutzen, zu bauen. Normalerweise wird der Installer automatisch den korrekten Wert verwenden und es sollte daher keinen Grund geben, dies manuell festzulegen.

```
# Spiegel-Server-Protokoll:
# Wenn Sie FTP wählen, muss mirror/country nicht gesetzt werden.
# Vorgabewert für das Protokoll des Spiegel-Servers: http.
#d-i mirror/protocol string ftp
#d-i mirror/country string manual
#d-i mirror/http/hostname string ftp2.de.debian.org
#d-i mirror/http/directory string /debian
#d-i mirror/http/proxy string

# Distributionszweig von Debian, den Sie installieren möchten:
#d-i mirror/suite string testing
# Distributionszweig, der genutzt wird, um Installer-Komponenten zu laden (optional):
#d-i mirror/udeb/suite string testing
```

B.4.5 Einrichtung von Benutzerzugängen

Das Passwort für den Superuser-Zugang (root) sowie Name und Passwort des ersten regulären Benutzers können voreingestellt werden. Für die Passwörter können Sie entweder Klartext-Werte oder crypt(3)-Hashes verwenden.
Warnung

Bedenken Sie, dass die Voreinstellung von Passwörtern nicht ganz sicher ist, da jeder, der Zugang zur Voreinstellungendatei hat, Kenntnis von den Passwörtern erlangen könnte. Hier verschlüsselte Hashe für die Passwörter zu verwenden, wird als sicher angesehen, solange keine schwachen Algorithmen wie DES oder MD5 zum Einsatz kommen, da diese die Gefahr von Brute-Force-Attacken bergen. Es wird empfohlen, SHA-256 oder SHA512 zu benutzen.

```bash
# Das Anlegen des Root-Zugangs abbrechen (der normale Benutzer
# bekommt dann die Möglichkeit, sudo zu benutzen):
#d-i passwd/root-login boolean false
# Alternativ dazu können Sie auch das Anlegen eines normalen
# Benutzers abbrechen:
#d-i passwd/make-user boolean false

# Root-Passwort, entweder als Klartext ...
#d-i passwd/root-password password r00tme
#d-i passwd/root-password-again password r00tme
# ... oder verschlüsselt als crypt(3)-Hash:
#d-i passwd/root-password-crypted password [crypt(3)-Hash]

# Um einen regulären Benutzerzugang zu erstellen:
#d-i passwd/user-fullname string Max Mustermann
#d-i passwd/username string maximus
# Passwort des regulären Benutzers, entweder als Klartext ...
#d-i passwd/user-password password insecure
#d-i passwd/user-password-again password insecure
# ... oder verschlüsselt als crypt(3)-Hash:
#d-i passwd/user-password-crypted password [crypt(3)-Hash]
# Den ersten Benutzer mit der angegebenen Benutzer-ID (UID) erstellen
# statt mit der Standard-UID:
#d-i passwd/user-uid string 1010

# Der Benutzerzugang wird zu einigen Standard-Benutzergruppen hinzugefügt.
# Um dies zu überschreiben, benutzen Sie:
#d-i passwd/user-default-groups string audio cdrom video


Der folgende Befehl (aus dem Paket whois) kann verwendet werden, um einen SHA-512 basierten crypt(3)-Hash für ein Passwort zu generieren:

mkpasswd -m sha-512

B.4.6 Einrichtung von Uhr und Zeitzone

# Legt fest, ob die Hardware-(CMOS-)Uhr auf UTC eingestellt ist oder nicht:
#d-i clock-setup/utc boolean true

# Sie können hier irgendeinen, für $TZ gültigen Wert eingeben; gültige
# Werte finden Sie in /usr/share/zoneinfo/:
#d-i time/zone string Europe/Berlin

# Hier wird eingestellt, ob NTP benutzt wird, um während der Installation
# die Uhr zu stellen:
#d-i clock-setup/ntp boolean true
# NTP-Server, der genutzt werden soll; der Standardwert sollte für die
B.4.7 Partitionierung

Die Möglichkeiten der Voreinstellung für die Partitionierung der Festplatte werden begrenzt durch das, was partman-auto unterstützt. Sie können wählen, entweder vorhandenen freien Platz auf der Platte zu partitionieren oder die komplette Platte. Das Layout der Disk kann durch ein vordefiniertes Rezept festgelegt werden, durch ein selbst erstelltes aus einer Rezeptdatei oder durch ein Rezept, das in der Vorkonfigurationsdatei enthalten ist.

Die Voreinstellung von fortgeschrittenen Partitionierungen unter Verwendung von RAID, LVM und Verschlüsselung ist möglich, jedoch nicht mit der vollständigen Flexibilität, die bei einer Installation ohne Voreinstellung möglich wäre.


**Warnung**

Die Erkennung der Festplatten hängt von der Reihenfolge ab, in der ihre Treiber geladen werden. Falls mehrere Platten im System existieren, achten Sie verstärkt darauf, dass Sie die richtige ausgewählt haben, bevor Sie die Voreinstellung nutzen.

B.4.7.1 Partitionierungsbeispiele

```bash
meistgenötigt: passend sein:
#d-i clock-setup/ntp-server string ntp.example.com

Wenn das System freien Platz auf der Platte hat, können Sie festlegen, nur
diesen Platz zu partitionieren. Folgendes zu setzen hat nur Auswirkungen,
wenn partman-auto/method (weiter unten) nicht gesetzt ist:
#d-i partman-auto/init Automatically_partition select biggest_free

Alternativ können Sie eine Festplatte angeben, die partitioniert werden
soll. Falls das System nur eine einzige Festplatte enthält, wird der
Installer diese standardmäßig verwenden, aber andernfalls muss der
Gerätenamen der Platte im traditionellen Format (nicht devfs) angegeben
werden (z.B. /dev/sda, nicht jedoch etwas wie /dev/discs/disc0/disc).
Um z.B. die erste SCSI/SATA-Festplatte zu nutzen, kann die folgende Zeile
verwendet werden:
#d-i partman-auto/disk string /dev/sda

Zusätzlich müssen Sie angeben, welche Partitionierungsmethode genutzt werden
soll. Derzeit verfügbare Methoden:
- regular: gewöhnliche Partitionstypen für die jeweilige Architektur verwenden
- lvm: LVM verwenden, um die Platte zu partitionieren
- crypto: LVM mit einer verschlüsselten Partition verwenden
#d-i partman-auto/method string lvm

Sie können den Anteil des Platzes angeben, der für die LVM-Volume-Gruppe
verwendet wird. Dies kann entweder eine Größenangabe mit Einheit sein
(z.B. 20 GB), eine Prozentangabe des verfügbaren freien Speicherplatzes,
oder das Schlüsselwort »max«.
#d-i partman-auto/lvm/guided_size string max

Falls eine der Festplatten, die automatisch partitioniert werden sollen,
eine alte LVM-Konfiguration enthält, wird dem Benutzer normalerweise eine
Warnung angezeigt. Diese kann aber durch Voreinstellung unterdrückt werden:
#d-i partman-lvm/device_remove_lvm boolean true
Das Gleiche gilt für bereits existierende Software-RAID-Arrays:
#d-i partman-md/device_remove_md boolean true
```
# Ebenfalls für die Bestätigung, die LVM-Partitionen zu schreiben:
d-i partman-lvm/confirm boolean true
d-i partman-lvm/confirm_nooverwrite boolean true

# Sie können eines der vordefinierten Partitionierungsrezepte wählen:
#  - atomic: alle Dateien in einer Partition
#  - home: separate /home-Partition
#  - multi: separate /home-, /var- und /tmp-Partitionen
d-i partman-auto/choose_recipe select atomic

# Oder erstellen Sie ein eigenes Rezept:
# Wenn Sie eine Möglichkeit haben, eine Rezeptdatei in die d-i-Umgebung zu
# bekommen, können Sie einfach darauf verweisen:
#d-i partman-auto/expert_recipe_file string /hd-media/recipe

# Falls nicht, können Sie auch ein ganzes Rezept in eine einzige (logische)
# Zeile packen. Dieses Beispiel erzeugt eine kleine /boot-Partition, eine
# Swap-Partition passender Größe und benutzt den Rest des Platzes für
# die root-Partition:
#d-i partman-auto/expert_recipe string
#  # boot-root :
#  #   40 50 100 ext3
#  #     $primary{ } $bootable{ }
#  #     method{ format } format{ }
#  #     use_filesystem{ } filesystem{ ext3 }
#  #     mountpoint{ /boot }
#  #
#  # 500 10000 1000000000 ext3
#  #     method{ format } format{ }
#  #     use_filesystem{ } filesystem{ ext3 }
#  #     mountpoint{ / }
#  #
#  #   64 512 300% linux-swap
#  #     method{ swap } format{ }
#  #
#
# Das vollständige Rezeptformat ist in der Datei partman-auto-recipe.txt
# dokumentiert, die im Paket `debian-installer` enthalten oder im D-I-
# Quellcode-Repository verfügbar ist. Dort ist auch dokumentiert, wie
# erweiterte Einstellungen festgelegt werden, z.B. Dateisystem-Bezeichnungen,
# Volumengruppen-Namen etc., oder welche physikalischen Geräte in einer
# Volumengruppe enthalten sein sollen.

## Partitionieren für EFI
## Wenn Ihr System eine EFI-Partition benötigt, können Sie Zeilen wie diese
## zu Ihrem Rezept hinzufügen (als erstes Element im Rezept):
#  538 538 1075 free
#  # $iflabel{ gpt }
#  # $reusemethod{ }
#  # method{ efi }
#  # format{ }
#  #
#  # Obiges Fragment ist passend für die amd64-Architektur; auf anderen
# Architekturen könnten die Details abweichen. Das Paket `partman-auto`
# im D-I Quell-Repository enthält eventuell ein Beispiel, nach dem Sie sich
# richten können.

## Dies veranlasst partman, automatisch ohne Nachfrage zu partitionieren,
## vorausgesetzt, Sie haben mit einer der obigen Methoden festgelegt, wie
## partitioniert werden soll:
d-i partman-partitioning/confirm_write_new_label boolean true
d-i partman/choose_partition select finish
d-i partman/confirm boolean true
d-i partman/confirm_nooverwrite boolean true

# UEFI-Boot-Vorgang erzwingen (‘BIOS-Kompatibilität’ wird verworfen).
# Standardeinstellung: false.
#d-i partman-efi/non_efi_system boolean true
# Sicherstellen, dass eine GPT-Partitionstabelle verwendet wird –
# erforderlich für EFI:
#d-i partman-partitioning/choose_label select gpt
#d-i partman-partitioning/default_label string gpt

# Bei gewählter Festplattenverschlüsselung: das vorab durchzuführende
# Löschen der Partitionen überspringen:
#d-i partman-auto-crypto/erase_disks boolean false

B.4.7.2 Partitionierung mit RAID

Sie können auch Voreinstellung verwenden, um Partitionen auf einem Software-RAID einzurichten. Es werden RAID-Level 0, 1, 5, 6 und 10 unterstützt sowie die Einrichtung von degradierten Arrays und die Festlegung von Reserveplatten.

** WARNUNG **


# Die Partitionierungsmethode sollte auf "raid" gesetzt werden:
#d-i partman-auto/method string raid
# Geben Sie die Festplatten an, die partitioniert werden sollen. Sie bekommen
# alle das gleiche Layout, dies wird also nur funktionieren, wenn alle
# Festplatten die gleiche Größe haben:
#d-i partman-auto/disk string /dev/sda /dev/sdb

# Als nächstes müssen Sie die zu nutzenden physikalischen Partitionen
# einrichten:
#d-i partman-auto/expert_recipe string \
#   multiraid :: \n#     1000 5000 4000 raid \n#     $primary{ } method{ raid } \n#     . \n#     64 512 300% raid \n#     method{ raid } \n#     . \n#     500 10000 1000000000 raid \n#     method{ raid } \n#     .
#   .

# Als letztes muss noch angegeben werden, wie die vorher definierten Partitionen
# im RAID-Setup verwendet werden sollen. Denken Sie daran, die korrekten
# Partitionsnummern für die logischen Partitionen zu benutzen. Es werden die
# RAID-Level 0, 1, 5, 6 und 10 unterstützt; Geräte werden mittels »#« voneinander
# getrennt.
# Parameter sind:
# <raidtype> <devcount> <sparecount> <fstype> <mountpoint> \
# <devices> <sparedevices>
#d-i partman-auto-raid/recipe string \
#   1 2 0 ext3 / \

85
### B.4.7.3 Festlegen, wie Partitionen eingebunden werden

Normalerweise werden Dateisysteme unter Verwendung einer eindeutigen Kennung, dem Universally Unique Identifier (UUID) als Schlüssel eingebunden; auf diesem Wege ist es möglich, sie korrekt einzubinden, selbst wenn sich ihr Gerätename ändert. UUIDs sind allerdings lang und schwierig zu lesen, daher kann der Installer die Dateisysteme, falls Sie dies bevorzugen, auch basierend auf den traditionellen Gerätenamen einbinden oder aber basierend auf einem Label, das sie festlegen. Wenn Sie den Installer anweisen, die Einbindung über ein Label vorzunehmen, wird für alle Dateisysteme, die kein Label haben, trotzdem der UUID verwendet.

Für Geräte mit feststehenden Namen, wie zum Beispiel logischen LVM-Volumes, werden weiterhin die traditionellen Namen statt der UUIDs verwendet.

#### Warnung

Die traditionellen Gerätenamen können sich basierend auf der Reihenfolge, in der der Kernel die Geräte beim Booten erkennt, ändern, was dazu führen kann, dass das falsche Dateisystem eingebunden wird. Ähnlich dazu können bei den Labels Überschneidungen auftreten, wenn Sie eine neue Festplatte oder ein USB-Laufwerk anschließen, und wenn dies passiert, ist das Verhalten Ihres Systems beim Starten rein willkürlich.

### B.4.8 Installation des Basissystems

Es gibt momentan nicht viel, was für diesen Teil der Installation voreingestellt werden kann. Die einzigen gestellten Fragen betreffen die Installation des Kernels.

#### Warnung

Die traditionellen Gerätenamen könnten sich basierend auf der Reihenfolge, in der der Kernel die Geräte beim Starten erkennt, ändern, was dazu führen kann, dass das falsche Dateisystem eingebunden wird. Ähnlich dazu könnten bei den Labels Überschneidungen auftreten, wenn Sie eine neue Festplatte oder ein USB-Laufwerk anschließen, und wenn dies passiert, ist das Verhalten Ihres Systems beim Starten rein willkürlich.

```bash
Weitere Informationen finden Sie in der Datei partman-auto-raid-recipe.txt, # die im Paket »debian-installer« enthalten oder im D-I-Quellcode-Repository # verfügbar ist.

Dies veranlasst partman, automatisch ohne Nachfrage zu partitionieren:
d-i partman-md/confirm boolean true
d-i partman-partitioning/confirm_write_new_label boolean true
d-i partman/choose_partition select finish
d-i partman/confirm boolean true
d-i partman/confirm_nooverwrite boolean true

B.4.4.8 Installation des Basissystems

Es gibt momentan nicht viel, was für diesen Teil der Installation voreingestellt werden kann. Die einzigen gestellten Fragen betreffen die Installation des Kernels.

```bash
# APT konfigurieren, dass empfohlene (recommended) Pakete nicht automatisch # installiert werden. Die Verwendung dieser Option kann zu einem
# unvollständigen System führen und sollte nur von sehr erfahrenen
# Anwendern genutzt werden:
d-i base-installer/install-recommends boolean false

# Das Kernel-Image-(Meta-)Paket, das installiert werden soll; "none" kann # genutzt werden, wenn kein Kernel installiert werden soll:
d-i base-installer/kernel/image string linux-image-686
```
B.4.9 Konfiguration von Apt

Die Konfiguration von /etc/apt/sources.list und grundlegenden Einstellungsoptionen ist voll automatisiert, basierend auf der Installationsmethode und Antworten auf frühere Fragen. Sie können optional weitere (lokale) Paketquellen (Repositories) hinzufügen.

```bash
# Wählen Sie, ob zusätzliche Installationsmedien scannen möchten.
# (Standardwert: false)
d-i apt-setup/cdrom/set-first boolean false
# Sie können wählen, ob Sie nicht-freie Firmware installieren möchten:
#d-i apt-setup/non-free-firmware boolean true
# Sie können wählen, ob Sie Software aus dem "non-free"- oder
# "contrib"-Zweig installieren möchten:
#d-i apt-setup/non-free boolean true
#d-i apt-setup/contrib boolean true
# Entfernen Sie bei der folgenden Zeile das Kommentarzeichen, wenn Sie in
# der sources.list des zu installierenden Systems keinen aktiven Eintrag
# für ein DVD-/BD-Installations-Image haben möchten.
# (Einträge für netinst- oder CD-Images werden grundsätzlich nicht
# aktiviert, unabhängig von dieser Einstellung.)
#d-i apt-setup/disable-cdrom-entries boolean true
# Entfernen Sie das folgende Kommentarzeichen, wenn Sie keinen Netzwerk-
# Spiegel-Server verwenden möchten:
#d-i apt-setup/use_mirror boolean false
# Wählen Sie, welche Update-Dienste genutzt werden sollen; legen Sie die
# zu verwendenden Spiegel-Server fest. Die hier angegebenen Werte sind die
# normalen Standardwerte:
#d-i apt-setup/services-select multiselect security, updates
#d-i apt-setup/security_host string security.debian.org

# Zusätzliche Paketquellen, "local[0-9]" verfügbar:
#d-i apt-setup/local0/repository string \
  http://local.server/debian stable main
#d-i apt-setup/local0/comment string local server
# deb-src-Zeilen aktivieren:
#d-i apt-setup/local0/source boolean true
# URL zum öffentlichen Schlüssel der lokalen Quelle; Sie müssen einen
# Schlüssel bereitstellen, oder apt wird sich über die nicht-autorisierte
# Quelle beschweren und die Zeile in der sources.list wird auskommentiert
# bleiben und nicht genutzt:
#d-i apt-setup/local0/key string http://local.server/key
# Oder Sie können den Schlüssel in-line bereitstellen, indem Sie die Inhalte
# der Schlüsseldatei base64-kodiert ablegen (mit "base64 -w0") und hier
# angeben:
#d-i apt-setup/local0/key string base64:// LS0tLS1tSWdJTiBQR1AgUFVCTE1DIEtFWSBCTE9DSy0tLS0tCj4uLg==
# Der Inhalt der Schlüsseldatei wird überprüft, um festzustellen, ob er
# ASCII-geschützt ist. Wenn dies der Fall ist, wird die Datei mit einer
# ".asc"-Endung abgespeichert, andernfalls bekommt sie eine ".gpg"-Endung.
# Das Format "keybox database" wird derzeit nicht unterstützt (schauen Sie
# dazu in apt-setup’s Quellcode).
# Standardmäßig verlangt der Installer, dass Paketquellen mittels
# bekannter GPG-Schlüssel autorisiert werden. Folgendes kann verwendet
# werden, um das zu deaktivieren. WARNUNG: unsicher, nicht empfohlen.
#d-i debian-installer/allow_unauthenticated boolean true

# Entfernen Sie hier das Kommentarzeichen, um multiarch-Konfiguration
# für i386 hinzuzufügen:
#d-i apt-setup/multiarch string i386
```

87
B.4.10 Paketauswahl

Sie können jede Kombination der verfügbaren Programmgruppen auswählen. Mögliche Werte zum Zeitpunkt, als dies
beschrieben wurde:

- *standard* (Standard-Programme)
- *desktop* (grafische Arbeitsplatz-Umgebung / Standardauswahl)
- *gnome-desktop* (Gnome-Arbeitsplatz-Umgebung)
- *xfce-desktop* (XFCE-Arbeitsplatz-Umgebung)
- *kde-desktop* (KDE-Plasma Arbeitsplatz-Umgebung)
- *cinnamon-desktop* (Cinnamon-Arbeitsplatz-Umgebung)
- *mate-desktop* (MATE-Arbeitsplatz-Umgebung)
- *lxde-desktop* (LXDE-Arbeitsplatz-Umgebung)
- *web-server* (Web-Server)
- *ssh-server* (SSH-Server)

Sie können hier auch wählen, gar nichts zu installieren und die Installation von bestimmten Paketen auf andere
Art erzwingen. Wir empfehlen aber, immer zumindest die Programmgruppe „standard“ auszuwählen.

Oder wenn Sie möchten, dass der tasksel-Dialog überhaupt nicht angezeigt wird, setzen Sie `pkgsel/run_tasksel`
(es werden dann über tasksel gar keine Pakete installiert).

Wenn Sie zusätzlich zu den Paketen, die durch die Programmgruppen installiert werden, weitere benötigen, kön-
nen Sie den Parameter `pkgsel/include` benutzen. Der Wert für diesen Parameter kann eine Liste von Paketen
sein, getrennt entweder durch Kommas oder durch Leerzeichen, so dass Sie ihn auch recht einfach auf der Kernel-
Kommandozeile verwenden können.

```bash
#tasksel tasksel/first multiselect standard, web-server, kde-desktop

# Oder wenn Sie möchten, dass der tasksel-Dialog überhaupt nicht angezeigt
# wird (und keine Pakete installiert werden):
#d-i pkgsel/run_tasksel boolean false

# Individuelle zusätzliche Pakete, die installiert werden sollen:
#d-i pkgsel/include string openssh-server build-essential
# Ob Pakete aktualisiert werden sollen, nachdem debootstrap beendet ist.
# Gültige Werte: none, safe-upgrade, full-upgrade
#d-i pkgsel/plugselect select none

# Sie können entscheiden, ob Sie Informationen darüber, welche Pakete Sie
# installiert haben, an das Debian-Projekt zurück senden möchten.
# Standerdeinstellung ist, nichts zu senden, aber Informationen zu senden
# hilft dem Projekt zu entscheiden, welche Software wie beliebt ist und ob
# sie auf die erste CD/DVD gepackt werden sollte:
#popularity-contest popularity-contest/participate boolean false
```

B.4.11 Die Installation beenden

```
# Bei Installationen über die serielle Konsole werden die regulären virtuellen
# Konsolen (VT1 - VT6) normalerweise in /etc/inittab deaktiviert. Um dies zu
# vermeiden, entfernen Sie vor der nächsten Zeile das Kommentarzeichen:
#d-i finish-install/keep-consoles boolean true

# Die letzte Meldung "Installation abgeschlossen" unterdrücken:
#d-i finish-install/reboot_in_progress note

# Dies verhindert, dass der Installer während des Neustarts die CD
```
B.5.1 Während der Installation eigene Kommandos ausführen

Eine sehr kraftvolle und flexible Funktion, die das Voreinstellungswerkzeug bietet, ist die Möglichkeit, Kommandos oder Skripte an bestimmten Stellen während der Installation auszuführen.

Wenn das Dateisystem des Zielsystems eingebunden ist, ist es unter /target verfügbar. Falls eine Installations-CD benutzt wird und diese eingebunden ist, finden Sie sie unter /cdrom.

```bash

# Dieser erste Befehl wird so früh wie möglich ausgeführt, direkt nachdem das Lesen der Voreinstellungsdatei abgeschlossen ist:
#d-i preseed/early_command string anna-install some-udeb
# Der folgende Befehl wird ausgeführt direkt bevor das Partitionierungsprogramm startet. Er kann nützlich sein, um dynamische Voreinstellungen für die Partitionierung festzulegen, die vom Zustand der Festplatten abhängig sind (die möglicherweise noch nicht sichtbar sind, wenn preseed/early_command ausgeführt wird):
#d-i partman/early_command \
# string debconf-set partman-auto/disk "$\{(list-devices disk | head -n1)\}"
# Dieses Kommando wird ausgeführt, kurz bevor die Installation beendet ist, wenn aber noch ein nutzbares /target-Verzeichnis verfügbar ist.
# Sie können nach /target wchroot-en und es direkt benutzen, oder benutzen Sie apt-install und in-target-Kommandos, um einfach Pakete zu installieren oder Kommandos im Zielsystem auszuführen:
#d-i preseed/late_command string apt-install zsh; in-target chsh -s /bin/zsh
```

B.5.2 Voreinstellung nutzen, um Standardantworten auf Fragen zu ändern

Es ist ebenfalls möglich, die Standardantwort für eine Frage zu ändern, die Frage aber trotzdem stellen zu lassen. Dabei muss das seen-Flag auf „false“ zurückgesetzt werden, nachdem die gewünschte Einstellung für den Wert gesetzt wurde:
Der gleiche Effekt kann erreicht werden, indem Sie am Boot-Prompt den Parameter `preseed/interactive=true` setzen. Dies kann auch zum Testen oder zur Fehlersuche in Ihrer Voreinstellungsdatei nützlich sein.

Beachten Sie, dass der Eigentümer „d-i“ nur für Variablen verwendet werden sollte, die im Installer selbst genutzt werden. Für Variablen, welche zu Paketen gehören, die auf dem Zielsystem installiert werden, sollten Sie stattdessen den Namen des Pakets als Eigentümer verwenden. Siehe auch die Fußnote zum Abschnitt B.2.2.

Benötigen Sie mehr Debugging-Informationen, z.B. zur Fehlersuche, so verwenden Sie den Boot-Parameter `DEBCONF_DEBUG=1`. Dies veranlasst `debconf`, erheblich mehr Details über die aktuelle Einstellung jeglicher Variablen auszugeben sowie über die Bearbeitung der Installationsskripte jedes einzelnen Pakets.

B.5.3 Mehrere Voreinstellungsdateien nacheinander laden


```bash
# Es kann mehr als eine Datei angegeben werden, getrennt durch Leerzeichen;
# alle werden geladen. Die integrierten Dateien können ebenfalls
# wieder "preseed/include"-Regeln enthalten.
# Bedenken: wenn Sie relative Dateipfade angeben, gehen diese von dem
# gleichen Verzeichnis aus, das auch die Voreinstellungsdatei enthält, in
# der sie integriert sind.
#d-i preseed/include string x.cfg

# Der Installer kann optional die Prüfsummen von Voreinstellungsdateien
# kontrollieren, bevor er diese benutzt. Derzeit werden nur
# md5sum-Prüfsummen unterstützt. Geben Sie die md5sum-Prüfsummen in der
# gleichen Reihenfolge an wie die Dateien, die integriert werden sollen:
#d-i preseed/include/checksum string 5da499872beccfcfeda2c4872f9171c3d

# Der flexiblere Weg: dies startet ein Shell-Kommando und wenn dies die
# Namen von Voreinstellungsdateien zurückgibt, werden diese integriert:
#d-i preseed/include_command 
#    string if [ ""hostanme"" = bob ]; then echo bob.cfg; fi

# Flexibler als alles andere: ein Programm wird heruntergeladen und
# gestartet. Das Programm kann Kommandos wie debconf-set nutzen, um die
# debconf-Datenbank zu manipulieren. Es können auch mehrere Skripte
# angegeben werden, getrennt durch Leerzeichen. Beachten Sie: falls die
# Dateinamen relativ sind, gehen sie vom gleichen Verzeichnis aus wie
# die Voreinstellungsdatei, von der sie gestartet werden.
#d-i preseed/run string foo.sh
```

Anhang C

Partitionieren für eine Debian-Installation

C.1 Anzahl und Größe der Debian-Partitionen

Der zweite Grund ist vor allem im professionellen Sektor wichtig, hängt aber auch wesentlich davon ab, wie Sie den Rechner nutzen. Wenn beispielsweise ein Mail-Server mit Spam-Mails geflutet wird, kann schnell eine Partition voll sein. Wenn Sie jetzt /var/mail auf einer eigenen Partition haben, wird das System überwiegend weiterarbeiten, auch wenn Sie unter Spambeschuss liegen.

Der einzige Grund dagegen, mehrere Partitionen zu nutzen, ist, dass es oft schwierig ist, vorher zu wissen, was man benötigt. Wenn Sie eine Partition zu klein anlegen, müssen Sie entweder das System irgendwann neu installieren oder ständig irgendwelche Sachen hin- und herschieben, um auf der zu klein geratenen Partition Platz zu schaffen. Wenn Sie auf der anderen Seite die Partition zu groß machen, verschwenden Sie Platz, den Sie woanders gut gebrauchen könnten. Festplattenspeicher ist heutzutage zwar billig, aber warum das Geld aus dem Fenster werfen?

C.2 Der Verzeichnisbaum

<table>
<thead>
<tr>
<th>Verzeichnis</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>bin</td>
<td>Grundlegende Binär-Befehls-Dateien</td>
</tr>
<tr>
<td>boot</td>
<td>Statische Dateien des Bootloaders</td>
</tr>
<tr>
<td>dev</td>
<td>Geräte-Dateien</td>
</tr>
<tr>
<td>etc</td>
<td>Systemkonfigurationen, die das eigene System betreffen</td>
</tr>
<tr>
<td>home</td>
<td>Home-Verzeichnisse der Benutzer</td>
</tr>
<tr>
<td>lib</td>
<td>Grundlegende, gemeinsam genutzte Bibliotheken und Kernelmodule</td>
</tr>
<tr>
<td>media</td>
<td>Enthält Einbindungspunkte für austauschbare Medien</td>
</tr>
</tbody>
</table>
Es folgt eine Liste mit wichtigen Festlegungen bezüglich Verzeichnissen und Partitionen. Bedenken Sie, dass die Festplattennutzung abhängig von der Systemkonfiguration und speziellen Einsatzbedingungen stark unterschiedlich sein kann. Die hier gegebenen Empfehlungen sind grundlegende Richtlinien und sollen eine Basis für die Partitionierung darstellen.

- **Die Root-Partition**
 / muss immer physikalisch die Verzeichnisse /etc, /bin, /sbin, /lib, /dev und /usr enthalten, sonst können Sie nicht booten. Das bedeutet, dass Sie mindestens 600–750 MB Platz für die root-Partition inklusive /usr vorsehen sollten, bzw. 5–6 GB für einen Arbeitsplatzrechner oder eine Server-Installation.

- **/var**: veränderliche Daten, wie News-Artikel, E-Mails, Webseiten, Datenbanken, der Zwischenspeicher des Paketmanagement-Systems usw. werden unterhalb dieses Verzeichnisses abgelegt. Die Größe hängt stark von der Nutzung des Systems ab, wird aber bei vielen Leuten überwiegend durch den Overhead des Paketmanagement-Systems bestimmt. Wenn Sie eine Komplettinstallation durchführen oder in einem Durchgang fast alles installieren, was Debian zu bieten hat, sind 2 oder 3 GB passend für /var. Wenn Sie in mehreren Schritten installieren (also sagen wir zuerst die Dienste und Werkzeuge, dann Textbearbeitungs-Werkzeuge, dann X, ...), könnten Sie mit 300–500MB auskommen. Falls Plattenplatz rar ist und Sie keine großen Systemupdates planen, können auch 30 oder 40MB reichen.

C.3 Empfohlene Partitionsschemata

Für Mehrbenutzersysteme oder Rechner mit viel Festplattenplatz ist es das Beste, /var, /tmp und /home jeweils auf eigene Partitionen separiert von / zu legen.

Sie könnten eine separate /usr/local-Partition benötigen, wenn Sie vorhaben, viele Programme zu installieren, die nicht Teil der Debian-Distribution sind. Wenn die Maschine als Mail-Server fungieren soll, sollten Sie vielleicht für /var/mail eine eigene Partition einrichten. Wenn Sie einen Server für viele Benutzer einrichten, ist es gut, eine separate, große /home-Partition zu haben. Generell variiert die Situation für die Partitionierung von einem Rechner zum anderen, abhängig von seiner Nutzung.

Tiefergehende Informationen für sehr komplexe Systeme gibt das Multi-Disk-HowTo, überwiegend interessant für ISP (Internet-Service-Provider) und Leute, die Server einrichten.

<table>
<thead>
<tr>
<th>Verzeichnis</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>mnt</td>
<td>Einbindungspunkt für temporär genutzte Dateisysteme</td>
</tr>
<tr>
<td>proc</td>
<td>Virtuelles Verzeichnis für System-Informationen</td>
</tr>
<tr>
<td>root</td>
<td>Home-Verzeichnis des Superusers root</td>
</tr>
<tr>
<td>run</td>
<td>Sich zur Laufzeit verändernde Daten</td>
</tr>
<tr>
<td>sbin</td>
<td>Grundlegende System-Binär-Dateien</td>
</tr>
<tr>
<td>sys</td>
<td>Virtuelles Verzeichnis für System-Informationen</td>
</tr>
<tr>
<td>tmp</td>
<td>Temporäre Dateien</td>
</tr>
<tr>
<td>usr</td>
<td>Zweite Ebene in der Hierarchie</td>
</tr>
<tr>
<td>var</td>
<td>Sich oft verändernde Daten</td>
</tr>
<tr>
<td>srv</td>
<td>Daten für Dienste, die von diesem System bereitgestellt werden</td>
</tr>
<tr>
<td>opt</td>
<td>Zusätzliche Anwendungspakete, die nicht von Debian stammen</td>
</tr>
</tbody>
</table>

Ein Beispiel: ein älterer Rechner bei Ihnen zu Hause könnte 512MB RAM haben und eine 20GB-IDE-Festplatte auf /dev/sda. /dev/sda1 könnte eine 8GB-Partition für ein anderes Betriebssystem sein, /dev/sda3 eine 512MB Swap-Partition und /dev/sda2 die 11.4GB große Linux-Partition.

Wenn Sie daran interessiert sind, wie viel Festplattenspeicher die einzelnen Programmgruppen benötigen, lesen Sie Abschnitt D.2.

C.4 Gerätebezeichnungen unter Linux

Die Namen von Festplatten und Partitionen unter Linux sind teilweise unterschiedlich zu denen bei anderen Betriebssystemen. Sie müssen die Namen kennen, die Linux nutzt, wenn Sie Partitionen erstellen und ins Dateisystem einbinden. Hier ein Basis-Namensschema:

- Die erste SCSI-Festplatte (nach der SCSI-ID) heißt /dev/sda.
- Die zweite SCSI-Festplatte (nach der SCSI-ID) heißt /dev/sdb und so weiter.
- Das erste SCSI-CD-ROM-Laufwerk heißt /dev/scd0, auch als /dev/sr0 bekannt.

Die Partitionen auf den einzelnen Festplatten werden gekennzeichnet über eine dezimale Nummer, die zur Festplattenbezeichnung hinzugefügt wird: sda1 und sda2 stellen die erste und zweite Partition auf der ersten SCSI-Festplatte im System dar.

Hier ein Beispiel aus dem wahren Leben. Wir nehmen an, Sie hätten ein System mit zwei SCSI-Platten, eine auf SCSI-Adresse 2 und die andere auf 4. Die erste Festplatte (auf Adresse 2) heißt dann sda und die zweite sdb. Wenn die sda-Platte 3 Partitionen enthält, wären das sda1, sda2 und sda3. Das gleiche gilt für die Festplatte sdb und ihre Partitionen.

Beachten Sie: wenn Sie zwei SCSI-Host-Bus-Adapter (z.B. Controller) haben, kann die Reihenfolge der Festplatten sehr konfus sein. Die beste Lösung ist in diesem Fall, die Boot-Meldungen zu beobachten, zumindest wenn Sie die Festplatten-Modelle und/oder deren Größe kennen.

C.5 Debian-Partitionierungsprogramme

Es wurden mehrere Variationen der Partitionierungsprogramme von den Entwicklern in Debian eingepflegt, um mit verschiedenen Festplattentypen und Rechnerarchitekturen funktionieren zu können. Hier eine Liste der Programme, die für Ihre Architektur verfügbar sind:

- **partman** Das bevorzugte Partitionierungswerkzeug in Debian. Dieses Schweizer Messer unter den Partitionierungsprogrammen kann auch die Größe von bestehenden Partitionen verändern sowie Dateisysteme erstellen und die Einbindungspunkte zuweisen.

- **fdisk** Der Original-Linux-Festplatten-Partitionierer, gut für Gurus.

Seien Sie vorsichtig, wenn Sie bestehende FreeBSD-Partitionen auf Ihrem Rechner haben. Die Installationskernel bieten Unterstützung für diesen Partitionstyp, aber die Art und Weise, wie *fdisk* sie darstellt (oder eventuell nicht), kann verursachen, dass sich die Gerätebezeichnungen unterscheiden. Lesen Sie dazu das Linux+FreeBSD-HowTo.

- **cfdisk** Ein einfach zu nutzender Festplatten-Partitionierer im Vollbildmodus für den Rest der Welt.

Beachten Sie, dass *cfdisk* FreeBSD-Partitionen nicht versteht und sich deswegen Gerätebezeichnungen unterscheiden können (siehe oben).

Eines dieser Programme wird standardmäßig gestartet, wenn Sie Eine Festplatte partitionieren (oder ähnliches) auswählen. Es könnte möglich sein, ein anderes Programm auf der zweiten virtuellen Konsole VT2 zu benutzen, aber dies wird nicht empfohlen.
Anhang D

Verschiedenes

D.1 Linux-Geräte

<table>
<thead>
<tr>
<th>Gerätedatei</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>sda</td>
<td>Die erste Festplatte</td>
</tr>
<tr>
<td>sdb</td>
<td>Die zweite Festplatte</td>
</tr>
<tr>
<td>sda1</td>
<td>Die erste Partition auf der ersten Festplatte</td>
</tr>
<tr>
<td>sdb7</td>
<td>Die siebte Partition auf der zweiten Festplatte</td>
</tr>
<tr>
<td>sr0</td>
<td>Das erste CD-ROM-Laufwerk</td>
</tr>
<tr>
<td>sr1</td>
<td>Das zweite CD-ROM-Laufwerk</td>
</tr>
<tr>
<td>ttyS0</td>
<td>Der erste serielle Port (Port 0, unter MS-DOS COM1 genannt)</td>
</tr>
<tr>
<td>ttyS1</td>
<td>Der zweite serielle Port (Port 1, unter MS-DOS COM2 genannt)</td>
</tr>
<tr>
<td>psaux</td>
<td>PS/2-Maus</td>
</tr>
<tr>
<td>gpmdata</td>
<td>Pseudo-Gerät, das Daten vom GPM-(Maus-)Daemon überträgt</td>
</tr>
<tr>
<td>cdrom</td>
<td>Symbolischer Link zum CD-ROM-Laufwerk</td>
</tr>
<tr>
<td>mouse</td>
<td>Symbolischer Link zur Gerätedatei der Maus</td>
</tr>
<tr>
<td>null</td>
<td>Alles, was an dieses Gerät geschickt wird, verschwindet</td>
</tr>
<tr>
<td>zero</td>
<td>Man kann endlos Nullen von diesem Gerät lesen</td>
</tr>
</tbody>
</table>

D.1.1 Einrichten der Maus

Bestimmte Kernel-Module müssen geladen werden, damit Ihre Maus funktioniert. In den meisten Fällen werden
die richtigen Module automatisch erkannt, aber für ältere serielle oder Bus-Mäuse funktioniert dies nicht immer¹; diese sind jedoch sehr selten, außer vielleicht bei sehr alten Rechnern. Eine Zusammenfassung der Linux-Kernel-Module, die für verschiedene Maustypen erforderlich sind:

<table>
<thead>
<tr>
<th>Modul</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>psmouse</td>
<td>PS/2-Maus (sollte automatisch erkannt werden)</td>
</tr>
<tr>
<td>usbhid</td>
<td>USB-Maus (sollte automatisch erkannt werden)</td>
</tr>
<tr>
<td>sermouse</td>
<td>Die meisten seriellen Mäuse</td>
</tr>
<tr>
<td>logimb</td>
<td>Bus-Maus, die an eine Logitech-Adapterkarte angeschlossen ist</td>
</tr>
<tr>
<td>inport</td>
<td>Bus-Maus, die an eine AT oder Microsoft InPort-Karte angeschlossen ist</td>
</tr>
</tbody>
</table>

Um ein Maustreiber-Modul zu laden, können Sie den Befehl `modconf` (aus dem gleichnamigen Paket) verwenden; sehen Sie in der Kategorie `kernel/drivers/input/mouse` nach.

D.2 Festplattenplatz, der für die Programmgruppen benötigt wird

WICHTIG

In beiden Fällen ist dies der benötigte Platz auf der Platte, nachdem die Installation beendet ist und alle temporären Dateien gelöscht wurden. Ebenfalls ist der vom Dateisystem genutzte Overhead nicht mit eingerechnet, zum Beispiel für die Journal-Dateien. Dies bedeutet, dass noch bedeutend mehr Festplattenplatz benötigt wird, und zwar sowohl während der Installation als auch später bei der normalen Nutzung des Systems.

Die folgende Tabelle listet die Größe der Programmgruppen auf (die Sie in taskel auswählen können), wie Sie von aptitude angegeben wird. Beachten Sie, dass einige Gruppen überlappende Bestandteile haben, so dass die absolut installierte Größe von zwei Gruppen zusammen weniger sein kann als die Summe der einzelnen Werte.

Standardmäßig wird der Installer die GNOME-Arbeitsplatzumgebung installieren, aber es können auch alternative Umgebungen ausgewählt werden: entweder durch Verwendung eines der speziellen Installations-Images oder indem während der Installation die gewünschte Arbeitsplatzumgebung festgelegt wird (siehe Abschnitt 6.3.6.2).

Bedenken Sie, dass Sie zu den Angaben aus der Liste noch die Größe der Standard-Installation hinzurechnen müssen, wenn es darum geht, die benötigte Größe der Partitionen abzuschätzen. Von dem, was unter „Größe nach der Installation“ aufgeführt ist, wird das meiste in `/usr` und `/lib` landen; die Werte unter „Herunterzuladende Größe“ werden (vorübergehend) in `/var` benötigt.

<table>
<thead>
<tr>
<th>Programmgruppe</th>
<th>Größe nach der Installation (MB)</th>
<th>Herunterzuladende Größe (MB)</th>
<th>Für die Installation benötigt (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitsplatzrechner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• GNOME (Standardeinstellung)</td>
<td>3216</td>
<td>859</td>
<td>4075</td>
</tr>
<tr>
<td>• KDE Plasma</td>
<td>4584</td>
<td>1316</td>
<td>5900</td>
</tr>
<tr>
<td>• Xfce</td>
<td>2509</td>
<td>683</td>
<td>3192</td>
</tr>
<tr>
<td>• LXDE</td>
<td>2539</td>
<td>693</td>
<td>3232</td>
</tr>
<tr>
<td>• MATE</td>
<td>2851</td>
<td>762</td>
<td>3613</td>
</tr>
<tr>
<td>• Cinnamon</td>
<td>4676</td>
<td>1324</td>
<td>6000</td>
</tr>
<tr>
<td>Web-Server</td>
<td>85</td>
<td>19</td>
<td>104</td>
</tr>
<tr>
<td>SSH-Server</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

¹Serielle Mäuse haben gewöhnlich einen 9-poligen Sub-D-Anschluss, Bus-Mäuse haben einen runden 8-poligen Stecker (nicht zu verwechseln mit dem runden 6-poligen Stecker einer PS/2-Maus oder dem runden 4-poligen Stecker einer ADB-Maus).
Falls Sie bei der Sprachauswahl nicht Englisch gewählt haben, installiert `tasksel` möglicherweise automatisch eine Programmgruppe für die Lokalisierung, falls diese für Ihre Sprache verfügbar ist. Der Speicherbedarf differiert abhängig von der Sprache; Sie sollten insgesamt bis zu 350MB für das Herunterladen und die Installation vorsehen.

D.3 Debian GNU/Linux von einem anderen Unix/Linux-System aus installieren

Sobald Sie das neue Debian-System nach Ihren Wünschen konfiguriert haben, können Sie Ihre eventuell vorhandenen eigenen Dateien hinüber verschieben und loslegen. Deswegen wird dies auch die „zero-downtime“-Installation (Installation ohne eine Zeitspanne, während der das System nicht verfügbar ist) genannt. Es ist ebenso ein geschickter Weg, mit Hardware-Komponenten zurechtzukommen, die sich sonst nicht gut mit verschiedenen Boot- oder Installationsmedien vertragen.

ANMERKUNG

Da dies überwiegend eine manuelle Prozedur ist, sollten Sie im Hinterkopf behalten, dass Sie einen erheblichen Teil der grundlegenden Systemkonfiguration selbst erledigen müssen, was auch mehr Wissen über Debian und über Linux allgemein erfordert als eine reguläre Installation. Sie können nicht davon ausgehen, dass Sie durch diese Prozedur ein System erhalten, das identisch ist zu dem aus einer normalen Installation. Sie sollten auch bedenken, dass in dieser Prozedur nur die grundlegenden Schritte zur Systemkonfiguration beschrieben sind. Es könnten zusätzliche Installations- oder Konfigurationsschritte erforderlich sein.

D.3.1 Es geht los!

Benutzen Sie die *nix-Partitionierungsprogramme des vorhandenen Systems, um Ihre Festplatte nach Bedarf neu zu partitionieren; erstellen Sie zumindest ein neues Dateisystem plus Swap. Sie benötigen ungefähr 1012 MB Speicher für eine Nur-Konsolen-Installation oder ca. 2539 MB, wenn Sie vorhaben, X zu installieren (und noch mehr, wenn Sie Desktop-Umgebungen wie GNOME oder KDE Plasma installieren möchten).

Dateisysteme auf Ihren Partitionen erzeugen: um ein Dateisystem auf einer Partition zu erstellen, zum Beispiel ein ext3-Dateisystem auf `/dev/sda6` (dies soll in diesem Beispiel unsere Root-Partition sein):

```bash
# mke2fs -j /dev/sda6
```

Um stattdessen einen ext2-Dateisystem zu erzeugen, lassen Sie das `-j` weg.

Initialisieren und aktivieren Sie den Swap (passen Sie die Partitionsnummer für Ihre geplante Debian-Swap-Partition an):

```bash
# mkswap /dev/sda5
# sync
# swapon /dev/sda5
```

Hängen Sie eine Partition (wahrscheinlich die neue) als `/mnt/debinst` ins Dateisystem ein (das Installationsverzeichnis; es wird das Root(-/)-Dateisystem des neuen Debian). Der Einbindungspunkt (`/mnt/debinst`) ist rein willkürlich gewählt; es wird später noch öfter darauf verwiesen.

```bash
# mkdir /mnt/debinst
# mount /dev/sda6 /mnt/debinst
```
ANMERKUNG

Falls Sie Teile des Dateisystems (z.B. /usr) auf andere Partitionen speichern und eingebinden möchten, müssen Sie diese Verzeichnisse manuell erstellen und einbinden, bevor Sie mit dem nächsten Schritt fortfahren.

D.3.2 debootstrap installieren

Das Programm, das auch der Debian-Installer benutzt und das als offizielle Methode angesehen wird, ein Debian-Basisssystem zu installieren, ist **debootstrap**. Es nutzt **wget** und **ar**, aber ansonsten hängt es nur von **/bin/sh** und grundsätzlichen Unix-/Linuxwerkzeugen² ab. Installieren Sie **wget** und **ar**, falls sie noch nicht auf Ihrem laufenden System vorhanden sind; dann laden Sie **debootstrap** herunter und installieren es ebenfalls.

Oder Sie nutzen die folgende Prozedur, um es manuell zu installieren. Erstellen Sie ein Arbeitsverzeichnis, in das Sie die .deb-Pakete entpacken.

```bash
# mkdir work
# cd work

Das **debootstrap**-Binary finden Sie im Debian-Archiv (achten Sie darauf, die richtige Datei für Ihre Architektur zu verwenden). Laden Sie das **debootstrap**.deb aus dem **Pool** herunter, kopieren Sie es in das Arbeitsverzeichnis **work** und extrahieren Sie daraus die Dateien. Sie benötigen root-Rechte, um die Binär-Dateien zu installieren.

```bash
ar -xf debootstrap_0.X.X_all.deb
cd /
zcat /full-path-to-work/work/data.tar.gz | tar xv
```

### D.3.3 Starten Sie debootstrap


Wenn Sie ein Debian GNU/Linux Bookworm Installations-Image in `/cdrom` eingebunden haben, können Sie statt der http-URL auch eine file-URL angeben: `file:/cdrom/debian/`.

Setzen Sie in dem folgenden **debootstrap**-Befehl für `ARCH` eine der folgenden Architekturbezeichnungen ein: amd64, arm64, armel, armhf, i386, mips64el, mipsel, ppc64el, s390x.

```bash
#/usr/sbin/debootstrap --arch ARCH bookworm
/mnt/debinst http://ftp.de.debian.org/debian
```

Falls die Zielarchitektur sich von der des Host-Systems unterscheidet, sollten Sie hier die Option `--foreign` hinzufügen.

### D.3.4 Das Basissystem konfigurieren

Sie haben jetzt ein echtes, aber noch etwas mageres Debian-System auf der Festplatte. Wechseln Sie mit **chroot** hinein:

```bash
LANG=C.UTF-8 chroot /mnt/debinst /bin/bash
```

Falls die Zielarchitektur sich von der des Host-Systems unterscheidet, müssen Sie vorher qemu-user-static installieren und auf das neue System kopieren:

```bash
cp /usr/bin/qemu-ARCH-static /mnt/debinst/usr/bin
LANG=C.UTF-8 chroot /mnt/debinst qemu-ARCH-static /bin/bash
```

²Dazu gehören die GNU Core Utilities und Kommandos wie **sed**, **grep**, **tar** und **gzip**.
Danach müssen Sie unter Umständen die Definition der Terminal-Variable anpassen, so dass sie mit dem Debian-Basisystem kompatibel ist, zum Beispiel:

```
export TERM=xterm-color
```

Abhängig von dem Wert von TERM müssen Sie unter Umständen das Paket `ncurses-term` installieren, um Unterstützung dafür zu bekommen. Falls die Zielarchitektur sich von der des Host-Systems unterscheidet, müssen Sie den Multistage-Bootstrap-Vorgang abschließen mit:

```
/debootstrap/debootstrap --second-stage
```

### D.3.4.1 Gerätedateien erzeugen

An diesem Punkt enthält `/dev/` nur sehr grundlegende Gerätedateien. Für die nächsten Schritte der Installation könnten zusätzliche Gerätedateien benötigt werden. Es gibt verschiedene Wege, hiermit umzugehen; welche Sie benutzen, hängt von verschiedenen Faktoren ab: welches Gast-System Sie für die Installation verwenden, ob Sie vorhaben, einen modularen Kernel zu verwenden oder nicht und ob Sie für das neue System dynamische Gerätedateien (z.B. mittels `udev`) benutzen möchten oder statische.

Einige der verfügbaren Optionen sind:

- installieren Sie das Paket `makedev` und erzeugen Sie einen Standardsatz von statischen Gerätedateien, indem Sie (nach dem Chroot) Folgendes ausführen:
  ```
 # apt install makedev
 # mount none /proc -t proc
 # cd /dev
 # MAKEDEV generic
  ```

- erzeugen Sie manuell lediglich bestimmte Gerätedateien mittels `MAKEDEV`.

- binden Sie das Verzeichnis `/dev` aus Ihrem Gast-System als `/dev` in Ihr Zielsystem ein. Beachten Sie, dass die `postinst`-Skriptte einiger Pakete versuchen könnten, neue Gerätedateien zu erzeugen; deshalb sollte diese Option nur mit Vorsicht verwendet werden.

### D.3.4.2 Partitionen einbinden

Sie müssen die Datei `/etc/fstab` erzeugen.

```
editor /etc/fstab
```

Hier ein Beispiel, das Sie sich anpassen können:

```
/etc/fstab: statische Dateisystem-Informationen.
#
file system mount point type options dump pass
/dev/XXX / ext3 defaults 0 1
/dev/XXX /boot ext3 ro,nosuid,nodev 0 2
/dev/XXX none swap sw 0 0
proc /proc proc defaults 0 0
/dev/cdrom /media/cdrom iso9660 noauto,ro,user,exec 0 0
/dev/XXX /tmp ext3 rw,nosuid,nodev 0 2
/dev/XXX /var ext3 rw,nosuid,nodev 0 2
/dev/XXX /usr ext3 rw,nodev 0 2
/dev/XXX /home ext3 rw,nosuid,nodev 0 2
```

Nutzten Sie den Befehl `mount -a`, um alle Dateisysteme, die Sie in `/etc/fstab` angegeben haben, einzubinden; um die Dateisysteme einzeln einzubinden, benutzen Sie:

```
mount /path # z.B.: mount /usr
```
Aktuelle Debian-Systeme haben Einbindungspunkte (Mountpoints) für Wechseldatenträger in /media, behalten aber aus Kompatibilitätsgründen auch symbolische Links in /. Erstellen Sie diese nach Bedarf, zum Beispiel mit:

```
cd /media
mkdir cdrom0
ln -s cdrom0 cdrom
cd /
ln -s media/cdrom
```

Sie können das proc-Dateisystem mehrfach einbinden und in frei wählbare Verzeichnisse, obwohl /proc dafür üblich ist. Wenn Sie nicht `mount -a` verwendet haben, stellen Sie sicher, dass proc eingebunden ist, bevor Sie fortfahren:

```
mount -t proc proc /
```

Der Befehl `ls /proc` sollte jetzt ein nicht-leeres Verzeichnis zeigen. Falls dies fehlschlägt, können Sie vielleicht proc außerhalb der chroot-Umgebung einbinden:

```
mount -t proc proc /mnt/debinst/proc
```

### D.3.4.3 Die Zeitzone setzen

Indem Sie die dritte Zeile der Datei `/etc/adjtime` auf „UTC“ oder „LOCAL“ setzen, legen Sie fest, ob das System die Hardware-CMOS-Uhr als UTC-Zeit oder als lokale Zeit interpretiert. Mit folgendem Befehl können Sie diese Option setzen:

```
editor /etc/adjtime
```

Hier ein Beispiel:

```
0.0 0 0.0
0
UTC
```

Mit folgendem Befehl wählen Sie Ihre Zeitzone aus:

```
dpkg-reconfigure tzdata
```

### D.3.4.4 Das Netzwerk konfigurieren

Um Ihr Netzwerk einzurichten, müssen Sie die Dateien `/etc/network/interfaces`, `/etc/resolv.conf`, `/etc/hostname` und `/etc/hosts` anpassen.

```
editor /etc/network/interfaces
```

Hier sind ein paar einfache Beispiele aus `/usr/share/doc/ifupdown/examples`

```
/etc/network/interfaces -- configuration file for ifup(8), ifdown(8)
See the interfaces(5) manpage for information on what options are available.
Die Loopback-Schnittstelle wird eigentlich nicht mehr benötigt, kann
aber benutzt werden, falls erforderlich.
#
auto lo
iface lo inet loopback
#
Wenn Sie DHCP benutzen möchten:
auto eth0
iface eth0 inet dhcp
#
Ein Beispiel für eine statische IP-Einstellung (network, broadcast und
gateway sind hierbei optional):

```
Tragen Sie die Adresse Ihres/Ihrer Nameserver(s) sowie Suchregeln in /etc/resolv.conf ein:

```
editor /etc/resolv.conf
```

Eine einfache beispielhafte /etc/resolv.conf:

```
search example.com
nameserver 10.1.1.36
nameserver 192.168.9.100
```

Geben Sie den Hostnamen Ihres Systems ein (zwischen 2 und 63 Stellen lang):

```
echo DebianHostName > /etc/hostname
```

Und hier ein Beispiel für /etc/hosts mit IPv6-Unterstützung:

```
127.0.0.1 localhost
127.0.1.1 DebianHostName

The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts
```

Wenn Sie mehrere Netzwerkkarten haben, sollten Sie die Namen der Treibermodule in /etc/modules in die richtige Reihenfolge bringen. Während des Bootens wird dann jede Karte die Schnittstellenbezeichnung (eth0, eth1, etc.) bekommen, die Sie erwarten.

### D.3.4.5 Apt konfigurieren

Debootstrap hat eine grundsätzliche /etc/apt/sources.list erstellt, die es erlaubt, zusätzliche Pakete zu installieren. Allerdings möchten Sie vielleicht einige Quellen hinzufügen, z.B. für Quellpakete oder für Sicherheits-Updates:

```
deb-src http://ftp.de.debian.org/debian bookworm main

deb http://security.debian.org/ bookworm-security main
deb-src http://security.debian.org/ bookworm-security main
```

Denken Sie daran, **apt update** auszuführen, nachdem Sie die Datei sources.list geändert haben.

### D.3.4.6 Das Gebietschema (Locales) konfigurieren

Um Ihre lokalen Einstellungen anzupassen, wenn Sie nicht Englisch verwenden möchten, installieren Sie das Paket locales und konfigurieren es. Es wird die Verwendung von UTF-8-Gebietsschemata empfohlen.

```
apt install locales
dpkg-reconfigure locales
```

Um Ihre Tastatur zu konfigurieren (falls nötig):

```
apt install console-setup
dpkg-reconfigure keyboard-configuration
```

Beachten Sie, dass die Tastatureinstellung nicht verändert werden kann, während Sie im chroot sind; die Konfiguration wird jedoch beim nächsten Neustart aktiv.
D.3.5 Einen Kernel installieren

Wenn Sie vorhaben, dieses System zu booten, möchten Sie wahrscheinlich einen Linux-Kernel und einen Bootloader. Sie finden verfügbare, bereits fertig paketierte Kernel mit dem Befehl

```
apt search linux-image
```

Installieren Sie einen Kernel Ihrer Wahl, indem Sie seinen Paketnamen benutzen:

```
apt install linux-image-arch-etc
```

D.3.6 Den Bootloader einrichten

Um Ihr Debian GNU/Linux-System boot-fähig zu machen, richten Sie Ihren Bootloader ein, so dass er den installierten Kernel mit Ihrer neuen Root-Partition startet. Bedenken Sie, dass debootstrap keinen Bootloader installiert, allerdings können Sie apt in Ihrer Debian-chroot-Umgebung benutzen, um dies zu erledigen.

Beachten Sie, dass hier davon ausgegangen wird, dass eine Gerätedatei namens /dev/sda erzeugt worden ist. Es gibt alternative Möglichkeiten, grub2 zu installieren, aber das ist nicht Thema dieses Anhangs.

D.3.7 Fernzugriff: Installation von SSH und Einrichten eines Zugangs

Für den Fall, dass Sie sich auf dem System über die Konsole anmelden können, kann dieser Abschnitt übersprungen werden. Falls das System später über das Netzwerk erreichbar sein soll, müssen Sie SSH installieren und einen Zugang einrichten:

```
apt install ssh
```

Das Login als root ist standardmäßig deaktiviert, daher können Sie einen Zugang einrichten, indem Sie ein Passwort setzen und das Login für root mit Passwort wieder aktivieren:

```
passwd
editor /etc/ssh/sshd_config
```

Dies ist die Option, die aktiviert werden muss:

```
PermitRootLogin yes
```

Es kann ebenfalls ein Zugang eingerichtet werden, indem ein SSH-Schlüssel für root hinzugefügt wird:

```
mkdir /root/.ssh
cat << EOF > /root/.ssh/authorized_keys
ssh-rsa
EOF
```

Und zu guter Letzt können Sie einen Zugang einrichten, indem Sie einen nicht-root-Benutzer anlegen und für diesen ein Passwort setzen:

```
adduser joe
passwd joe
```

D.3.8 Zum Schluss

Wie bereits vorher erwähnt, wird das installierte System nur sehr minimalistisch ausgestattet sein. Wenn Sie möchten, dass das System ein bisschen ausgereifter wird, gibt es eine einfache Methode, alle Pakete mit „Standard“-Priorität zu installieren:

```
tasksel install standard
```

Sie können natürlich auch einfach apt benutzen, um individuell Pakete zu installieren.

Nach der Installation liegen viele heruntergeladene Pakete in dem Verzeichnis /var/cache/apt/archives/. Sie können etliches an Festplattenspeicher wieder freigeben, indem Sie folgendes ausführen:

```
apt clean
```
D.4 Debian GNU/Linux unter Verwendung von PPP over Ethernet (PPPoE) installieren

In einigen Länder ist PPP over Ethernet (PPPoE) ein gängiges Protokoll für Breitbandverbindungen (ADSL oder Kabel) zum Internet-Anbieter (z.B. auch in Deutschland). Die Einrichtung einer Netzwerkverbindung über PPPoE wird standardmäßig vom Installer nicht unterstützt, aber es ist nicht schwer, dies zum Laufen zu bringen. Dieser Abschnitt erklärt, wie es geht.

Die PPPoE-Verbindung, die während der Installation eingerichtet wird, ist auch nach dem Neustart im neu installierten System verfügbar (siehe Kapitel 7).

Um während der Installation die Möglichkeit zu haben, PPPoE einzurichten und zu nutzen, müssen Sie von einem der verfügbaren CD-ROM-/DVD-Images installieren. Von anderen Installationsmethoden (z.B. Netzwerk-Boot) wird PPPoE nicht unterstützt.

Eine Installation über PPPoE hat viel mit jeder anderen Installation gemeinsam. Die folgenden Schritte erklären die Unterschiede.

- Booten Sie den Installer mit dem Parameter `modules=ppp-udeb`. Dies sorgt dafür, dass die benötigte Komponente für die Einrichtung von PPPoE automatisch geladen und gestartet wird.
- Folgen Sie den normalen einführenden Schritten der Installation (Sprache, Land, Auswahl der Tastatur, Laden der zusätzlichen Installer-Komponenten³).
- Im nächsten Schritt folgt die Erkennung der Netzwerk-Hardware, um alle im System vorhandenen Ethernet-Karten zu identifizieren.
- Danach wird die eigentliche Einrichtung von PPPoE gestartet. Der Installer prüft alle erkannten Ethernet-Schnittstellen auf einen vorhandenen PPPoE-Konzentrator (eine Art Server, der PPPoE-Verbindungen bereitstellt).
- Es ist möglich, dass der Konzentrator beim ersten Versuch nicht gefunden wird. Dies kann gelegentlich bei langsamen oder überlasteten Netzen vorkommen oder bei fehlerbehafteten Servern. In den meisten Fällen ist ein zweiter Versuch, den Konzentrator zu erkennen, erfolgreich. Wählen Sie dazu Konfiguriere und starte eine PPPoE-Verbindung aus dem Hauptmenü des Installers.
- Nachdem der Konzentrator gefunden wurde, werden Sie aufgefordert, die Einwahldaten (PPPoE-Benutzername und Passwort) einzugeben.
- Jetzt wird der Installer versuchen, mit den eingegebenen Daten eine PPPoE-Verbindung aufzubauen. Wenn die Daten korrekt sind, sollte die Verbindung hergestellt werden und der Installer sollte die Internetverbindung nutzen können, um (falls nötig) Pakete herunterzuladen. Sind die eingegebenen Daten nicht korrekt oder ein anderer Fehler tritt auf, bricht der Installer ab, aber Sie können erneut versuchen, PPPoE zu konfigurieren, indem Sie den Menüpunkt Konfiguriere und starte eine PPPoE-Verbindung auswählen.

Anhang E

Administratives

E.1 Über dieses Dokument

Dieses Handbuch wurde ursprünglich erstellt für Sarge’s Debian-Installer und basiert auf dem Woody-Installations-Handbuch für Boot-Floppies (was wiederum auf älteren Debian-Installationsanleitungen beruht) sowie auf dem Progeny-Distributions-Handbuch, das 2003 unter der GPL herausgegeben wurde.


An der Übersetzung dieses Handbuchs ins Deutsche haben viele Mitglieder der debian-l10n-german@lists.debian.org-Mailinglist mitgewirkt, Koordinator und Hauptübersetzer ist Holger Wansing. Fehler, Hinweise, Verbesserungsvorschläge etc. bezüglich der deutschen Übersetzung senden Sie bitte an obige Mailinglisten-Adresse.

E.2 An diesem Dokument mithelfen

Wenn Sie Probleme oder Empfehlungen betreffend den Inhalt (nicht die Übersetzung!) dieses Handbuchs haben, sollten Sie sie vielleicht als Fehlerbericht gegen das Paket installation-guide einschicken. Schauen Sie sich das Paket reportbug an oder lesen Sie die Online-Dokumentation der Debian-Fehlerdatenbank. Es wäre schön, wenn Sie die bereits gemeldeten Fehler gegen installation-guide überprüfen könnten, um zu sehen, ob Ihr Problem bereits an uns berichtet worden ist. Ist dies der Fall, können Sie eine zusätzliche Bestätigung oder hilfreiche Informationen betreffend das Problem an xxxxxx@bugs.debian.org schicken (dabei ist xxxxxx die Nummer des bereits vorhandenen Fehlerberichts).


Bitte kontaktieren Sie die Autoren dieses Dokuments nicht direkt. Es gibt eine Mailingliste für den debian-installer, die auch Diskussionen über das Handbuch einschließt, dies ist debian-boot@lists.debian.org. Anleitungen, wie Sie diese Liste abonnieren, finden Sie auf der Debian Mailinglisten-Abonnierungs-Webseite oder Sie besuchen die Debian Mailinglisten-Archive online.

E.3 Wesentliche Beiträge zu diesem Handbuch


Miroslav Kufe hat Dokumentation über eine Reihe neuer Funktionen in Sarges Debian-Installer geschrieben. Frans Pop war während der Veröffentlichungsphasen von Etch, Lenny und Squeeze hauptsächlicher Autor der englischen
Originalversion dieses Handbuchs und verantwortlich für die Veröffentlichung.

Viele, viele Debian-Nutzer und -Entwickler waren an diesem Handbuch beteiligt. Speziell müssen wir erwähnen: Michael Schmitz (m68k-Support), Frank Neumann (ursprünglicher Autor des *Amiga Install Manuals*), Arto Astala, Eric Delaunay/Ben Collins (Informationen über SPARC), Tapio Lehtonen und Stéphane Bortzmeyer für eine Vielzahl von Korrekturen und Texten. Ebenfalls müssen wir Pascal Le Bail danken für nützliche Informationen über das Booten von einem USB-Memory-Stick.


Der Abschnitt D.3 dieses Handbuchs stammt teilweise aus Dokumenten, die unter dem Copyright von Karsten M. Self stehen.

### E.4 Anerkennung der Warenzeichen

Alle Warenzeichen sind Eigentum der jeweiligen Markeninhaber.
Anhang F

GNU General Public License (Allgemeine Öffentliche GNU-Lizenz, GNU GPL)

ANMERKUNG

This is an unofficial translation of the GNU General Public License into German. It was not published by the Free Software Foundation, and does not legally state the distribution terms for software that uses the GNU GPL – only the original English text of the GNU GPL does that. However, we hope that this translation will help German speakers to better understand the GNU GPL.

Dies ist eine inoffizielle Übersetzung der GNU General Public License (GNU GPL, Allgemeine Öffentliche GNU-Lizenz) ins Deutsche. Sie wurde nicht von der Free Software Foundation (FSF) herausgegeben und kann rechtlich gesehen keine Aussagen über die Bedingungen zur Verteilung von Software machen, die unter der GNU GPL herausgegeben wird – dies kann nur die englische Originalversion der GNU GPL. Allerdings hoffen wir, dass diese Übersetzung deutschsprachigen Lesern hilft, die GNU GPL besser zu verstehen.


Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.

Es ist jedermann gestattet, diese Lizenzurkunde zu vervielfältigen und unveränderte Kopien zu verbreiten; Änderungen sind jedoch nicht erlaubt.

F.1 Vorwort

Die Bezeichnung „freie“ Software bezieht sich auf Freiheit, nicht auf den Preis. Unsere Lizzenen sollen Ihnen die Freiheit garantieren, Kopien freier Software zu verbreiten (und etwas für diesen Service zu berechnen, wenn Sie möchten), die Möglichkeit, die Software im Quelltext zu erhalten oder den Quelltext auf Wunsch zu bekommen. Die Lizzenen sollen garantieren, dass Sie die Software ändern oder Teile davon in neuen freien Programmen verwenden dürfen – und dass Sie wissen, dass Sie dies alles tun dürfen.

Um Ihre Rechte zu schützen, müssen wir Einschränkungen machen, die es jedem verbieten, Ihnen diese Rechte zu verweigern oder Sie aufzufordern, auf diese Rechte zu verzichten. Aus diesen Einschränkungen folgen bestimmte Verantwortlichkeiten für Sie, wenn Sie Kopien der Software verbreiten oder sie verändern.

Beispielsweise müssen Sie den Empfängern alle Rechte gewähren, die Sie selbst haben, wenn Sie – kostenlos oder gegen Bezahlung – Kopien eines solchen Programms verbreiten. Sie müssen sicherstellen, dass auch die Empfänger den Quelltext erhalten bzw. erhalten können. Und Sie müssen ihnen diese Bedingungen zeigen, damit sie ihre Rechte kennen.

Wir schützen Ihre Rechte in zwei Schritten: (1) Wir stellen die Software unter ein Urheberrecht (Copyright), und (2) wir bieten Ihnen diese Lizenz an, die Ihnen das Recht gibt, die Software zu vervielfältigen, zu verbreiten und/oder zu verändern.

Um die Autoren und uns zu schützen, wollen wir darüber hinaus sicherstellen, dass jeder erfährt, dass für diese freie Software keinerlei Garantie besteht. Wenn die Software von jemand anderem modifiziert und weitergegeben wird, möchten wir, dass die Empfänger wissen, dass sie nicht das Original erhalten haben, damit irgendwelche von anderen verursachte Probleme nicht den Ruf des ursprünglichen Autors schädigen.


Es folgen die genau genommen Bedingungen für die Vervielfältigung, Verbreitung und Bearbeitung.

F.2 Deutsche Übersetzung der GNU GENERAL PUBLIC LICENSE

BEDINGUNGEN FÜR DIE VERVIELFÄLTIGUNG, VERBREITUNG UND BEARBEITUNG

0. Diese Lizenz gilt für jedes Programm und jedes andere Datenwerk, in dem ein entsprechender Vermerk des Copyright-Inhabers darauf hinweist, dass das Datenwerk unter den Bestimmungen dieser General Public License verbreitet werden darf. Im Folgenden wird jedes derartige Programm oder Datenwerk als „das Programm“ bezeichnet; die Formulierung „auf dem Programm basierendes Datenwerk“ bezeichnet das Programm sowie jegliche Bearbeitung des Programms im urheberrechtlichen Sinne, also ein Datenwerk, welches das Programm, auch auszugsweise, sei es unverändert oder verändert und/oder in eine andere Sprache übersetzt, enthält. (Im Folgenden wird die Übersetzung ohne Einschränkung als „Bearbeitung“ eingestuft.) Jeder Lizenznehmer wird im Folgenden als „Sie“ angesprochen.

Andere Handlungen als Vervielfältigung, Verbreitung und Bearbeitung werden von dieser Lizenz nicht berührt; sie fallen nicht in ihren Anwendungsbereich. Der Vorgang der Ausführung des Programms wird nicht eingeschränkt, und die Ausgaben des Programms unterliegen dieser Lizenz nur, wenn der Inhalt ein auf dem Programm basierendes Datenwerk darstellt (unabhängig davon, dass die Ausgabe durch die Ausführung des Programms erfolgte). Ob dies zutrifft, hängt von den Funktionen des Programms ab.


Sie dürfen für den eigentlichen Kopiervorgang eine Gebühr verlangen. Wenn Sie es wünschen, dürfen Sie auch gegen Entgelt eine Garantie für das Programm anbieten.

2. Sie dürfen Ihre Kopie(n) des Programms oder eines Teils davon verändern, wodurch ein auf dem Programm basierendes Datenwerk entsteht; Sie dürfen derartige Bearbeitungen unter den Bestimmungen von Paragraph 1 vervielfältigen und verbreiten, vorausgesetzt, dass zusätzlich alle im folgenden genannten Bedingungen erfüllt werden:

a. Sie müssen die veränderten Dateien mit einem auffälligen Vermerk versehen, der auf die von Ihnen vorgenommene Modifizierung und das Datum jeder Änderung hinweist.

b. Sie müssen dafür sorgen, dass jede von Ihnen verbreitete oder veröffentlichte Arbeit, die ganz oder teilweise von dem Programm oder Teilen davon abgeleitet ist, Dritten gegenüber als Ganzes unter den Bedingungen dieser Lizenz ohne Lizenzgebühren zur Verfügung gestellt wird.
c. Wenn das veränderte Programm normalerweise bei der Ausführung interaktiv Kommandos einliest, müssen Sie dafür sorgen, dass es, wenn es auf dem üblichsten Wege für solche interaktive Nutzung gestartet wird, eine Meldung ausgibt oder ausdruckt, die einen geeigneten Copyright-Vermerk enthält sowie einen Hinweis, dass es keine Gewährleistung gibt (oder anderenfalls, dass Sie Garantie leisten), und dass die Benutzer das Programm unter diesen Bedingungen weiter verbreiten dürfen. Auch muss der Benutzer darauf hingewiesen werden, wie er eine Kopie dieser Lizenz ansehen kann. (Ausnahme: Wenn das Programm selbst interaktiv arbeitet, aber normalerweise keine derartige Meldung ausgibt, muss Ihr auf dem Programm basierendes Datenwerk auch keine solche Meldung ausgeben).


Somit ist es nicht die Absicht dieses Abschnittes, Rechte für Datenwerke in Anspruch zu nehmen oder Ihnen die Rechte für Datenwerke streitig zu machen, vielmehr ist es die Absicht, die Rechte zur Kontrolle der Verbreitung von Datenwerken, die auf dem Programm basieren oder unter seiner auszugsweisen Verwendung zusammengestellt worden sind, auszuüben.

Ferner bringt auch das einfache Zusammenlegen eines anderen Datenwerks, das nicht auf dem Programm basiert, mit dem Programm oder einem auf dem Programm basierenden Datenwerk auf ein- und demselben Speicherspeichermedium die Datenwerke nicht in den Anwendungsbereich dieser Lizenz.

3. Sie dürfen das Programm (oder ein darauf basierendes Datenwerk gemäß Paragraph 2) als Objektcode oder in ausführbarer Form unter den Bedingungen der Paragraphen 1 und 2 kopieren und weitergeben – vorausgesetzt, dass Sie außerdem eine der folgenden Leistungen erbringen:

a. Liefern Sie das Programm zusammen mit dem vollständigen zugehörigen maschinenlesbaren Quelltext auf einem für den Datenaustausch üblichen Medium aus, wobei die Verteilung unter den Bedingungen der Paragraphen 1 und 2 erfolgen muss. Oder:

b. Liefern Sie das Programm zusammen mit einem mindestens drei Jahre lang gültigen schriftlichen Angebot aus, jedem Dritten eine vollständige maschinenlesbare Kopie des Quelltextes zur Verfügung zu stellen – zu nicht höheren Kosten als denen, die durch den physikalischen Kopiervorgang anfallen – wobei der Quelltext unter den Bedingungen der Paragraphen 1 und 2 auf einem für den Datenaustausch üblichen Medium weitergegeben wird. Oder:

c. Liefern Sie das Programm zusammen mit dem schriftlichen Angebot der Zurverfügungstellung des Quelltextes aus, das Sie selbst erhalten haben. (Diese Alternative ist nur für nicht-kommerzielle Verbreitung zulässig und nur, wenn Sie das Programm als Objektcode oder in ausführbarer Form mit einem entsprechenden Angebot gemäß Absatz b erhalten haben.)

Unter dem Quelltext eines Datenwerks wird diejenige Form des Datenwerks verstanden, die für Bearbeitungen vorzugsweise verwendet wird. Für ein ausführbares Programm bedeutet „der komplette Quelltext“: Der Quelltext aller im Programm enthaltenen Module einschließlich aller zugehörigen Modulschnittstellen-Definitionsdateien sowie der zur Kompilierung und Installation verwendeten Skripte. Als besondere Ausnahme jedoch braucht der verteilte Quelltext nichts von dem zu enthalten, was üblicherweise (entweder als Quelltext oder in binärer Form) zusammen mit den Hauptkomponenten des Betriebssystems (Kernel, Compiler usw.) geliefert wird, unter dem das Programm läuft – es sei denn, diese Komponente selbst gehört zum ausführbaren Programm.

Wenn die Verbreitung eines ausführbaren Programms oder von Objektcode dadurch erfolgt, dass der Kopierzugriff auf eine dafür vorgesehene Stelle gewährt wird, so gilt die Gewährung eines gleichwertigen Zugriffs auf den Quelltext als Verbreitung des Quelltextes, auch wenn Dritte nicht dazu gezwungen sind, den Quelltext zusammen mit dem Objektcode zu kopieren.


5. Sie sind nicht verpflichtet, diese Lizenz anzunehmen, da Sie sie nicht unterzeichnet haben. Jedoch gibt Ihnen nichts anderes die Erlaubnis, das Programm oder von ihm abgeleitete Datenwerke zu verändern oder zu verbreiten. Diese Handlungen sind gesetzlich verboten, wenn Sie diese Lizenz nicht anerkennen. Indem Sie das Programm (oder
ein darauf basierendes Datenwerk) verändern oder verbreiten, erklären Sie Ihr Einverständnis mit dieser Lizenz und mit allen ihren Bedingungen bezüglich der Vervielfältigung, Verbreitung und Veränderung des Programms oder eines darauf basierenden Datenwerks.


7. Sollten Ihnen infolge eines Gerichtsurteils, des Vorwurfs einer Patentverletzung oder aus einem anderen Grunde (nicht auf Patentfragen begrenzt) Bedingungen (durch Gerichtsbeschluss, Vergleich oder anderweitig) auferlegt werden, die den Bedingungen dieser Lizenz widersprechen, so befreien Sie diese Umstände nicht von den Bestimmungen dieser Lizenz. Wenn es Ihnen nicht möglich ist, das Programm unter gleichzeitiger Beachtung der Bedingungen in dieser Lizenz und Ihrer anderweitigen Verpflichtungen zu verbreiten, dann dürfen Sie als Folge das Programm überhaupt nicht verbreiten. Wenn zum Beispiel ein Patent nicht die gebührenfreie Weiterverbreitung des Programms durch diejenige erteilt, die das Programm direkt oder indirekt von Ihnen erhalten haben, dann besteht der einzige Weg, sowohl das Patentrecht als auch diese Lizenz zu befolgen, darin, ganz auf die Verbreitung des Programms zu verzichten.

Sollte sich ein Teil dieses Paragraphen als ungültig oder unter bestimmten Umständen nicht durchsetzbar erweisen, so soll dieser Paragraph seinem Sinne nach angewandt werden; im Übrigen soll dieser Paragraph als Ganzes gelten.

Zweck dieses Paragraphen ist nicht, Sie dazu zu bringen, irgendwelche Patente oder andere Eigentumsansprüche zu verleihen oder die Gültigkeit solcher Ansprüche zu bestreiten; dieser Paragraph hat einzig den Zweck, die Integrität des Verbreitungssystems der freien Software zu schützen, das durch die Praxis öffentlicher Lizenzen verwirklicht wird. Viele Leute haben großzügige Beiträge zu dem großen Angebot der mit diesem System verbreiteten Software im Vertrauen auf die konsistente Anwendung dieses Systems geleistet; es liegt am Autor/Geber, zu entscheiden, ob er die Software mittels irgendeines anderen Systems verbreiten will; ein Lizenznehmer hat auf diese Entscheidung keinen Einfluss.

Dieser Paragraph ist dazu gedacht, deutlich klar zu stellen, was als Konsequenz aus dem Rest dieser Lizenz betrachtet wird.

8. Wenn die Verbreitung und/oder die Benutzung des Programms in bestimmten Staaten entweder durch Patente oder durch urheberrechtlich geschützte Schnittstellen eingeschränkt ist, kann der Urheberrechtshaber, der das Programm unter diese Lizenz gestellt hat, eine explizite geographische Begrenzung der Verbreitung angeben, in der diese Staaten ausgeschlossen werden, so dass die Verbreitung nur innerhalb und zwischen den Staaten erlaubt ist, die nicht ausgeschlossen sind. In einem solchen Fall beinhaltet diese Lizenz die Beschränkung, als wäre sie in diesem Text niedergeschrieben.


KEINE GEWÄHRLEISTUNG


12. IN KEinem FALL, AUßER WENN DURCH GELTEDENES RECHT GEFORDERT ODER SCHRIFTLICH ZUGESICHERT, IST Irgendein COPYRIGHT-INHABER ODER Irgendein Dritter, Der Das
F.3 Wie Sie diese Bedingungen auf Ihre eigenen, neuen Programme anwenden können

Wenn Sie ein neues Programm entwickeln und wollen, dass es vom größtmöglichen Nutzen für die Allgemeinheit ist, dann erreichen Sie das am besten, indem Sie es zu freier Software machen, die jeder unter diesen Bestimmungen weiterverbreiten und verändern kann.

Um dies zu erreichen, fügen Sie die folgenden Vermerke zu Ihrem Programm hinzu. Am sichersten ist es, sie an den Anfang einer jeden Quelldatei zu stellen, um den Gewährleistungsausschluss möglichst deutlich darzustellen; zumindest aber sollte jede Datei eine „Copyright“-Zeile besitzen sowie einen kurzen Hinweis darauf, wo die vollständigen Vermerke zu finden sind.

one line to give the program's name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110, USA.

Fügen Sie auch einen kurzen Hinweis hinzu, wie Sie elektronisch und per Brief erreichbar sind. Wenn Ihr Programm interaktiv ist, sorgen Sie dafür, dass es nach dem Start einen kurzen Vermerk ausgibt:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type show w.

This is free software, and you are welcome to redistribute it under certain conditions; type show c for details.

Die hypothetischen Kommandos „show w“ und „show c“ sollten die entsprechenden Teile der GNU GPL anzeigen. Natürlich können die von Ihnen verwendeten Kommandos anders heißen als „show w“ und „show c“; es könnten auch Mausklicks oder Menüpunkte sein – was immer am besten in Ihr Programm passt.

Soweit vorhanden, sollten Sie auch Ihren Arbeitgeber (wenn Sie als Programmierer arbeiten) oder Ihre Schule einen Copyright-Verzicht für das Programm unterschreiben lassen. Hier ein Beispiel. Die Namen müssen Sie natürlich ändern.

Yoyodyne, Inc., hereby disclaims all copyright interest in the program Gnomovision (which makes passes at compilers) written by James Hacker.
Diese General Public License gestattet nicht die Einbindung des Programms in proprietäre Programme. Ist Ihr Programm eine Funktionsbibliothek, so kann es sinnvoller sein, das Binden proprietärer Programme mit dieser Bibliothek zu gestatten. Wenn Sie dies tun wollen, sollten Sie die GNU Library General Public License anstelle dieser Lizenz verwenden.

signature of Ty Coon], 1 April 1989

Ty Coon, President of Vice