Den här handboken är fri programvara; du kan distribuera den och/eller modifiera den under villkoren för GNU General Public License. Referera till licensen i Appendix F.

Bygg version av denna manual: 20230623.
Innehåll

1 Välkommen till Debian
1.1 Vad är Debian? ... 1
1.2 Vad är GNU/Linux? 1
1.3 Vad är Debian GNU/Linux? 2
1.4 Vad är Debian-inställaren? 3
1.5 Få tag på Debian 3
1.6 Få tag på senaste versionen av det här dokumentet ... 3
1.7 Organisering av det här dokumentet 3
1.8 Om copyright och programvarulicenser 4

2 Systemkrav
2.1 Maskinvara som stöds 5
 2.1.1 Arkitekturer som stöds 5
 2.1.2 Processorer, moderkort och grafikstöd 6
 2.1.2.1 Maskiner ... 6
 2.1.3 Flera processorer 6
 2.1.4 Stöd för grafikhårdvara 6
 2.1.5 Maskinvara för anslutning till nätverk 6
 2.1.6 Punktskriftskärmar 6
 2.1.7 Kringutrustning och annan maskinvara 6
 2.2 Enheter som kräver fast programvara 6
 2.3 Köpa maskinvara specifikt för GNU/Linux 7
 2.3.1 Undvik proprietär eller sluten maskinvara 7
 2.4 Installationsmedia 8
 2.4.1 Cd-rom/Dvd-rom/Bd-rom 8
 2.4.2 Nätverk .. 8
 2.4.3 Hårddisk .. 8
 2.4.4 Un*x eller GNU-system 8
 2.4.5 Lagringssystem som stöds 8
 2.5 Krav för minne och diskplats 8

3 Före installation av Debian GNU/Linux 10
 3.1 Översikt av installationsprocessen 10
 3.2 Säkerhetskopiera dina befintliga data! 11
 3.3 Information du behöver 11
 3.3.1 Dokumentation .. 11
 3.3.1.1 Installationshandbok 11
 3.3.1.2 Maskinvarudokumentation 11
 3.3.2 Hitta informationskällor för maskinvara 11
 3.3.3 Maskinvarukompatibilitet 12
 3.3.3.1 Testa hårdvarukompatibilitet med ett Live-System .. 13
 3.3.4 Nätverksinställningar 13
 3.4 Matcha minimikrav för maskinvara 13
 3.5 Förpartionering för system med flera operativsystem 13
 3.6 Inställning av maskinvara och operativsystem före installation 14
 3.6.1 Hur man uppdaterar firmware för baremetal ppc64el 14
 3.6.2 Uppdatera KVM-gästfirmware (SLOF) 15
 3.6.3 Uppdatera PowerKVM hypervisor 16
 3.6.3.1 Instruktioner för Netboot installation 16
 3.6.3.2 Instruktioner för DVD 16
INNEHÅLL

4 Få tag på installationsmedia
4.1 Officiella Debian GNU/Linux installationsavbildningar
4.2 Hämta filer från Debian-speglar
4.2.1 Var man får tag på installationsfiler
4.3 Förbereda filer för uppsstart med hårdisk
4.4 Förbereda filerna för nätverksuppsstart via TFTP
4.4.1 Konfigurering av DHCP-server
4.4.2 Konfigurera en BOOTP-server
4.4.3 Aktivering av TFTP-server
4.4.4 Flytta TFTP-avbildningarna till rätt plats
4.5 Automatisk installation
4.5.1 Automatisk installation med Debian Installer
4.6 Verifiera integriteten för installationsfiler

5 Starta upp installationssystemet
5.1 Starta upp installationsprogrammet på 64-bit PowerPC (little-endian)
5.1.1 Starta en ppc64el maskin
5.1.1.1 Petitboot
5.2 Hjälpmedel
5.2.1 Installationsprogrammets frontend
5.2.2 Punktskriftskärm med USB
5.2.3 Punktskriftskärm med seriekabel
5.2.4 Brädenheter
5.2.5 Tema med hög kontrast
5.2.6 Zooma
5.2.7 Expertinstallation, räddningsläge, automatisk installation
5.2.8 Tillgänglighet för det installerade systemet
5.3 Uppstartsparametrar
5.3.1 Startkonsol
5.3.2 Parametrar för Debian Installer
5.3.3 Användning av uppstartsparametrar för att besvara frågor
5.3.4 Skicka parametrar till kärnmoduler
5.3.5 Svartlistning av kärnmoduler
5.4 Felsök installationsprocessen
5.4.1 Tillförlitligheten för optiska medier
5.4.1.1 Vanliga problem
5.4.1.2 Hur man undersöker och kanske även löser problem
5.4.2 Uppstartsconfiguration
5.4.3 Tolkning av kärnans uppstartsmeddelanden
5.4.4 Rapportering av installationsproblem
5.4.5 Skicka installationsrapporter

6 Användning av Debian Installer
6.1 Hur installationsprogrammet fungerar
6.2 Introduktion till komponenter
6.3 Användning av individuella komponenter
6.3.1 Konfiguration av Debians installationsprogram och maskinvara
6.3.1.1 Kontrollera tillgängligt minne / minimalt minnesläge
6.3.1.2 Val av lokalnätsuppspelningsalternativ
6.3.1.3 Val av tangembord
6.3.1.4 Leta efter en ISO-avbildning för Debian Installer
6.3.1.5 Konfigurera nätverket
6.3.1.5.1 Automatisk nätverksconfiguration
6.3.1.5.2 Manuell nätverksconfiguration
6.3.1.5.3 IPv4 och IPv6
6.3.2 Skapa användare och lösenord
6.3.2.1 Ställa in ett lösenord för root
6.3.2.2 Skapa en vanlig användare
6.3.3 Konfigurera klockan och tidszon
6.3.4 Partitionering och val av monteringspunkter .. 36
6.3.4.1 Partitionsflaggor som stöds ... 36
6.3.4.2 Guidad partitionering ... 36
6.3.4.3 Manuell partitionering ... 38
6.3.4.4 Konfiguration av multidiskenheter (Programvaru-RAID) 38
6.3.4.5 Konfigurering av den logiska volymhanteraren (LVM) 40
6.3.4.6 Konfigurera krypterade volymer ... 41
6.3.5 Installation av grundsystemet ... 43
6.3.6 Installera ytterligare programvara ... 44
6.3.6.1 Konfigurera apt ... 44
6.3.6.1.1 Installera från fler än en cd eller dvd-avbild .. 44
6.3.6.1.2 Använda en nätverksspegel ... 45
6.3.6.1.3 Välj en nätverksspegel .. 45
6.3.6.2 Val och installation av programvara ... 45
6.3.7 Gör dit system klart för uppstart .. 47
6.3.7.1 Sökning efter andra operativsystem .. 47
6.3.7.2 Installera starthanteraren Grub på en hårddisk 47
6.3.7.3 Fortsätt utan starthanterare ... 47
6.3.8 Färdigställ installationen .. 47
6.3.8.1 Ställa in systemklockan ... 47
6.3.8.2 Starta om systemet ... 47
6.3.9 Felsökning .. 47
6.3.9.1 Spara installationsloggarna ... 48
6.3.9.2 Användning av skalet och visning av loggar ... 48
6.3.10 Installation over network-console ... 48
6.4 Låsa in saknad fast programvara ... 49
6.4.1 Förbereda ett media .. 50
6.4.2 Fast programvara och det installerade systemet 50
6.4.3 Slutför det installerade systemet .. 50
6.5 Customization ... 51
6.5.1 Inställning av en alternativ init system .. 51
7 Starta upp ditt nya Debian-system .. 52
7.1 Sanningens minut ... 52
7.2 Montering av krypterade volymer ... 52
7.2.1 Felsökning .. 52
7.3 Logga in ... 53
8 Nästa steg och hur man ska gå vidare .. 54
8.1 Stänga av systemet ... 54
8.2 Orientera dig runt i Debian .. 54
8.2.1 Debiants paketsystem ... 54
8.2.2 Ytterligare mjukvara tillgängligt för Debian .. 55
8.2.3 Hantera programversioner .. 55
8.2.4 Hantera cronjobb .. 55
8.3 Ytterligare läsning och information ... 55
8.4 Konfigurera ditt system att använda e-post ... 55
8.4.1 Standardkonfiguration för e-post .. 56
8.4.2 Skicka e-post utanför systemet ... 56
8.4.3 Konfigurera e-postservern Exim4 .. 56
8.5 Bygg en ny kärna ... 57
8.6 Återställning av ett trasigt system ... 57
A Installationshjälp ... 58
A.1 Förberedelser .. 58
A.2 Starta upp installationsprogrammet .. 58
A.2.1 Optisk skiva ... 58
A.2.2 Uppstart från nätverk .. 58
A.2.3 Uppstart från hårddisk .. 58
INNEHÅLL

D.3.5 Installera en kärna .. 87
D.3.6 Ställ in starthanteraren ... 87
D.3.7 Fjärråtkomst: installera SSH och konfigurera åtkomst 87
D.3.8 Slutgiltiga justeringar ... 88
D.4 Installera Debian GNU/Linux över PPP over Ethernet (PPPoE) 88

E Administrivia ... 90
 E.1 Om det här dokumentet .. 90
 E.2 Bidrag till det här dokumentet 90
 E.3 Stora bidragsgivare .. 90
 E.4 Varumärken ... 91

F GNU General Public License .. 92
 F.1 BAKGRUND .. 92
 F.2 GNU GENERAL PUBLIC LICENSE 93
 F.3 METOD FÖR ATT ANVÄNDA DESSA VILLKOR 95
3 Före installation av Debian GNU/Linux

3.1 Maskinvaruinformation som som kan vara hjälpfulla för en installation 12
3.2 Rekommenderade minimala systemkrav ... 13
Sammanfattning

Det här dokumentet innehåller installationsinstruktioner för Debian GNU/Linux 12 system (kodnamn ”bookworm”) för arkitekturen 64-bit PowerPC (little-endian) ("ppc64el"). Den innehåller även referenser till mer information och information om hur du får ut det mesta av ditt nya Debian-system.

VARNING

This translation of the installation guide is not up-to-date and currently there is noone actively working on updating it. Keep this in mind when reading it; it may contain outdated or wrong information. Read or double-check the English variant, if in doubt. If you can help us with updating the translation, please contact debian-boot@lists.debian.org or the debian-110n-xxx mailinglist for this language. Many thanks

Översatt av Daniel Nylander <po@danielnylander.se>. Stort tack till Anders Lennartsson för korrekturläsningen. GNU General Public License översattes av Mikael Pawlo. Skicka synpunkter på översättningen till <debian-110n-swedish@lists.debian.org> eller <tp-sv@listor.tp-sv.se>.
Installation av Debian GNU/Linux 12 för ppc64el

Vi är glada att du har valt att prova Debian och är säkra på att du kommer att tycka att utgåvan av Debian GNU/Linux är unik. Debian GNU/Linux sammanför högkvalitativa fria programvaror från hela världen och integrerar dem i en sammanhängande helhet. Vi tror att du kommer att tycka att resultatet verkligen är mer än summan av delarna.

Vi förstår att många av er vill installera Debian utan att läsa den här handboken och Debian Installer är designad för att göra det möjligt. Om du inte har tid att läsa hela installationsguiden just nu rekommenderar vi att du läser installationshjälpen som går igenom den grundläggande installationsprocessen och länkar till manualen för mer avancerade ämnen eller når saker går fel. Installationshjälpen kan du hitta i Appendix A.

Med det sagt hoppas vi att du får tid att läsa större delen av den här handboken och genom att göra det bli mer informerad och få positiva erfarenheter av installationen.
Kapitel 1

Välkommen till Debian

Det här kapitlet ger en överblick av Debian-projektet och Debian GNU/Linux. Om du redan känner till historien bakom Debian-projektet och Debian GNU/Linux-utgåvan kan du hoppa till nästa kapitel.

1.1 Vad är Debian?

Debian-utvecklare är involverade i en uppsjö av aktiviteter såsom administration av webbplatsen och FTP-servern, grafisk design, juridiska aspekter för programvarulicenser, dokumentation samt, så klart, underhåll av programvarupaketen.

Med avsikt att kommunicera vår filosofi och attrahera utvecklare som tror på principerna som Debian står för har Debian-projektet publicerat ett antal dokument som pekar ut våra värderingar och fungerar som guider till vad det betyder att vara en Debian-utvecklare:

- **Debians sociala kontrakt** är ett resultat av Debians engagemang för användare och utvecklare av fri programvara. Alla som godtar att följa det sociala kontraktet kan bli en underhållare. Alla underhållare kan introducera ny programvara i Debian — om programvaran tillgodoser våra kriterier för att vara fritt och att paketet följer våra kvalitetsstandarder.

- **Debians riktlinjer för fri programvara** (DFSG) är klara och konkisa regler för Debians kriterier för fri programvara. DFSG är ett mycket inflytelserikt dokument i den fria programvarurörelsen och var grundstenen för The Open Source Definition.

- **Debians Policymanual** är en omfattande specifikation av Debian-projektets kvalitetsstandarder.

Debian-utvecklarna är också involverade i ett antal andra projekt, vissa specifika till Debian, andra involverar några eller alla Linux-relaterade projekt. Några exempel är:

- **Filesystem Hierarchy Standard** (FHS) är ett försök att standardisera organiseringen av filsystemet för Linux. FHS kommer att tillåta programvarutecklare att fokusera på att utveckla program utan att behöva oroa sig för hur paketen kommer att installeras i olika utgåvor av GNU/Linux.

- **Debian Jr.** är ett internt projekt vars mål är att göra Debian attraktivt även för unga användare.

För mer allmän information om Debian, se Debian GNU/Linux FAQ.

1.2 Vad är GNU/Linux?

GNU/Linux är ett operativsystem: ett antal program som låter dig interagera med din dator och köra andra program. Ett operativsystem innehåller olika fundamentala program som behövs för att din dator så att den kan kommunicera och ta emot instruktioner från användare; läs och skriva data till hårddiskar, band och skrivare; kontrollera användningen av minne; och köra annan programvara. Den viktigaste delen av ett operativsystem är kärnan. I ett
1.3 Vad är Debian GNU/Linux?

Debians beaktande av detaljer gör att vi kan skapa en högkvalitativ, stabil och skärbar utgåva. Installationer kan lätt konfigureras för att hantera olika roller, från bantade installationer för brandväggar till arbetsstationer för vetenskapliga ändamål eller högprestandaservern.

Debian är speciellt populär bland erfarna användare för dess tekniska förträfflighet och sitt djupa engagemang för behov och förväntningar hos användare och utvecklare av Debian. Debian har också introducerat många funktioner till Linux som nu är vardagsmat.

Till exempel var Debian den första Linux-utgåvan som inkluderade ett pakethanteringsystem för enkel installation och borttagnings av programvara. Den var också den första Linux-utgåvan som kunde bli uppgraderad utan att kräva ominstallation.

Funktionen som mest utmärker Debian från de andra Linux-utgåvorna är dess pakethanteringssystem. Dessa verktyg ger administratören för Debian-systemet total kontroll över paketen som installerats på ett system inklusive möjligheten att installera enstaka paket eller automatiskt uppdatering av hela operativsystemet. Individuella paket kan också skyddas från att uppdateras. Du kan även tala om för pakethanteringsystemet om programvara du själv har byggt och vilka beroenden de uppfyller.

För att skydda ditt system mot ”trojanska hästar” och annan onsint programvara verifierar Debi ans servrar att uppskakade paket verkligen kommer från dess registrerade Debian-användare. Debian-paketterare är också noggranna med att deras paket konfigureras på ett säkert sätt. Om säkerhetsproblem upptäcks i utsända paket kommer normalt sett
KAPITEL 1. VÄLKOMMEN TILL DEBIAN

1.4 Vad är Debian-installatören?

Debian Installer, även känt som "d-i", är programvaran för att installera ett grundläggande fungerande Debian-system.

Installationen utförs genom att besvara en grundläggande uppsättning frågor. Det finns också ett expertläge som gör det möjligt att styrta alla aspekter av installationen och en avancerad funktion för att utföra automatiserade installationer.

Installationsprogrammet har sitt ursprung i boot-floppies-projektet och det var förstnämnda av Joey Hess 2000. Sedan dess har installationssystemet kontinuerligt utvecklats av volontärer som förbättrar och lägger till fler funktioner.

Mer information finns på Debian Installer-sida, på Wiki och på e-postlista för debian-boot.

1.5 Få tag på Debian

För information om hur man hämtar Debian GNU/Linux från Internet eller från var man kan köpa officiella Debian installationsmedia, se webbsidan Få tag på Debian. Webbsidan Hämta Debian från Internet innehåller en full lista av officiella Debian-speglar så du lätt kan hitta den närmaste.

Debian kan efter installationen uppgraderas på ett enkelt sätt. Installationsprocessen kommer att hjälpa till att ställa in systemet så att du kan göra dessa uppgraderingar när installation är klar, om det behövs.

1.6 Få tag på senaste versionen av det här dokumentet

Det här dokumentet är under konstant omarbetning. Se på webbsidorna för Debian 12 efter den absolut senaste information om 12-utgåvan av Debian GNU/Linux-systemet. Uppdaterade versioner av den här installationshandboken finns också tillgängliga från officiella installationshandboken.

1.7 Organisering av det här dokumentet

Expertanvändare kan också hitta intressant referensinformation i det här dokumentet inklusive minimistorlek för installation, detaljer om vilken maskinvara som stöds av Debians installationssystem och så vidare. Vi uppmuntrar expertanvändare att hoppa runt i dokumentet.

I allmänhet är handboken uppbyggd i en linjär form som tar dig genom installationsprocessen från början till slut. Här är stegen som krävs för att installera Debian GNU/Linux och avsnitten i det här dokumentet som motsvarar varje steg:

1. Ta reda på om din maskinvara möter kraven för att använda installationssystemet i Kapitel 2.

2. Säkerhetskopiering av ditt system, all nödvändig planering och maskinvarukonfigurerings- och maskinvaruplanering före du installerar Debian finns i Kapitel 3. Om du förbereder ett system med flera operativsystem kan du behöva skapa ytterligare partitioner på din härddisk som Debian kan användas för.

3. I Kapitel 4 kan du hitta de nödvändiga installationsfilerna för din installationsmetod.

5. Genomför den aktuella installationen enligt Kapitel 6. Det här innefattar ditt val av språk, konfiguration av drivrutiner för kringutrustning, konfiguration av nätverksanlutning så att återstående installationsfiler kan hämtas direkt från en Debian-server (om du inte installerar från en uppsättning CD/DVD-installationsavbildningar), partitionering av dina hårddiskar och installation av ett grundsystem och efter det val och installation av paket för vissa funktioner. (Viss bakgrund om inställning av partitioner för ditt Debian-system finns förklarat i Appendix C.)

När du har fått ditt system installerat kan du läsa Kapitel 8. Det här kapitlet förklarar var man letar för att finna mer information om Unix och Debian och hur du ersätter din kärna.

Till slut, information om det här dokumentet och hur man bidrar till det kan hittas i Appendix E.

1.8 Om copyright och programvarulicenser

Att kalla programvara för fri betyder inte att programvaran inte är upphovsrättsskyddad och det betyder inte att installationsmedia som innehåller den programvaran måste distribueras gratis. Fri programvara, i den bemärkelsen betyder att licenser för individuella program inte kräver att du betalar för rättigheten att distribuera eller använda de programmen. Fri programvara betyder också att alla inte bara kan utöka, justera och ändra programvaran men också att du kan distribuera resultatet av sådant arbete.

NOTERA

Debian-projektet gör som ett praktiskt tillmötesgående mot sina användare vissa paket med programvara tillgängliga, vilka inte uppfyller våra kriterier för att vara fria. Dessa paket är dock inte en del av den officiella utgåvan och är bara tillgängliga från områdena contrib eller non-free av Debian-speglarna eller på tredjeparts cd/dvd-skivor, se Debian GNU/Linux FAQ under "Debians FTP-arkiv" för mer information om utseendet och innehållet av arkiven.

Många av programmen i system är licensierade under GNU General Public License och refereras ofta till som "GPL". GPL kräver att du gör källkoden av programmen tillgängliga när du distribuerar en binär kopia av programmet; det villkoret av licensen ser till att alla användare har möjligheten att modifiera programvaran. På grund av det här villkoret är källkoden för alla sådana program är tillgänglig i Debian-systemet.

Det finns ytterligare flera olika copyrightvillkor och programvarulicenser som används av programmen i Debian. Du kan hitta information om copyright och licenser för varje installerat paket på ditt system genom att se i filen /usr/share/doc/paketnamn/copyright.

För mer information om licenser och hur Debian fastställer om programvaran är tillräckligt fri för att inkluderas i huvudutgåvan, se Debians riktlinjer för fri programvara.

Den mest viktiga juridiska informationen är att den här programvaran kommer utan garanti. Programmerarna som har skapat denna programvara har gjort det som förmån för gemenskapen. Ingen garanti lämnas för anpassningen av programvaran för vilket ändamål som helst. Dock, eftersom programvaran är fri, är du berättigad att modifiera så programvaran passar dina behov — och att njuta av fördelarna av de ändringar gjorda av andra som har utökat programvaran på det här sättet.

¹För information om hur man hittar, packar upp och bygger binärer från Debians källkodspaket, se Debian GNU/Linux FAQ under "Grunder för Debians pakethanteringssystem".
Kapitel 2

Systemkrav

Det här avsnittet innehåller information om vilken maskinvara du behöver för att börja med Debian. Du kommer också att hitta länkar till ytterligare information om vilken maskinvara som stöds av GNU och Linux.

2.1 Maskinvara som stöds

Detta avsnitt innehåller allmän information och pekar till källor för ytterligare information.

2.1.1 Arkitekturer som stöds

Debian GNU/Linux 12 har stöd för 9 större arkitekturer och ett flertal variationer av varje arkitektur kända som ”varianter”.

<table>
<thead>
<tr>
<th>Arkitektur</th>
<th>Debian-beteckning</th>
<th>Underarkitektur</th>
<th>Variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD64 & Intel 64</td>
<td>amd64</td>
<td>standard x86-maskiner</td>
<td>standard</td>
</tr>
<tr>
<td>Intel x86-baserad</td>
<td>i386</td>
<td>Endast Xen PV-domänér</td>
<td>xen</td>
</tr>
<tr>
<td>ARM</td>
<td>armeel</td>
<td>Marvell Kirkwood och Orion</td>
<td>marvell</td>
</tr>
<tr>
<td>ARM med hårdvara</td>
<td>armhf</td>
<td>multiplatform</td>
<td>armmp</td>
</tr>
<tr>
<td>FPU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64bit ARM</td>
<td>arm64</td>
<td>MIPS Malta</td>
<td>5kc-malta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loongson 3</td>
<td>loongson-3</td>
</tr>
<tr>
<td>32bit MIPS</td>
<td>mipsel</td>
<td>MIPS Malta</td>
<td>4kc-malta</td>
</tr>
<tr>
<td>(little-endian)</td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loongson 3</td>
<td>loongson-3</td>
</tr>
<tr>
<td>Power Systems</td>
<td>ppc64el</td>
<td>IBM POWER8 eller nyare maskiner</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPL från VM-läsare och DASD</td>
<td>generisk</td>
</tr>
<tr>
<td>64bit IBM S/390</td>
<td>s390x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Det här dokumentet täcker in installationen för 64-bit PowerPC (little-endian)--arkitekturen med Linux-kärnan. Om du letar efter information om någon av de andra arkitekturerna som Debian stöder kan du se på sidorna för Debian-porteringar.

Det här är den första officiella utgåvan av Debian GNU/Linux för arkitekturen 64-bit PowerPC (little-endian). Vi tycker att den har bevisat sig vara tillräckligt bra för att ges ut. Dock har den inte haft samma exponering (och

2.1.2 Processor, moderkort och grafikstöd

2.1.2.1 Maskiner

- S822L
- S821L
- S822
- S821
- TYAN GN70-BP010

2.1.3 Flera processorer

Multiprocessor support — also called "symmetric multiprocessing" or SMP — is available for this architecture. Having multiple processors in a computer was originally only an issue for high-end server systems but has become common in recent years nearly everywhere with the introduction of so called "multi-core" processors. These contain two or more processor units, called "cores", in one physical chip.

2.1.4 Stöd för grafikhårdvara

Debian's support for graphical interfaces is determined by the underlying support found in X.Org's X11 system, and the kernel. Basic framebuffer graphics is provided by the kernel, whilst desktop environments use X11. Whether advanced graphics card features such as 3D-hardware acceleration or hardware-accelerated video are available, depends on the actual graphics hardware used in the system and in some cases on the installation of additional "firmware" blobs (see Avsnitt 2.2).

2.1.5 Maskinvara för anslutning till nätverk

Nästan alla nätverkskort (NIC) som stöds av Linux-kärnan stöds även av installationssystemet; modulära drivrutiner ska vanligtvis läsas in automatiskt.

2.1.6 Punktskriftsskärmar

2.1.7 Kringutrustning och annan maskinvara

Linux har stöd för ett stort antal maskinvaruenheter såsom möss, skrivare, skannrar, PCMCIA/CardBus/ExpressCard och USB-enheter. Dock krävs inte de flesta av dessa enheter vid installation av systemet.

2.2 Enheter som kräver fast programvara

Besides the availability of a device driver, some hardware also requires so-called firmware or microcode to be loaded into the device before it can become operational. This is most common for network interface cards (especially wireless NICs), but for example some USB devices and even some hard disk controllers also require firmware.

With many graphics cards, basic functionality is available without additional firmware, but the use of advanced features requires an appropriate firmware file to be installed in the system.
On many older devices which require firmware to work, the firmware file was permanently placed in an EE-PROM/Flash chip on the device itself by the manufacturer. Nowadays most new devices do not have the firmware embedded this way anymore, so the firmware file must be uploaded into the device by the host operating system every time the system boots.

In most cases firmware is non-free according to the criteria used by the Debian GNU/Linux project and thus cannot be included in the main distribution. If the device driver itself is included in the distribution and if Debian GNU/Linux legally can distribute the firmware, it will often be available as a separate package from the non-free-firmware section of the archive (prior to Debian GNU/Linux 12.0: from the non-free section).

However, this does not mean that such hardware cannot be used during installation. Starting with Debian GNU/Linux 12.0, following the 2022 General Resolution about non-free firmware, official installation images can include non-free firmware packages. By default, `debian-installer` will detect required firmware (based on kernel logs and modalias information), and install the relevant packages if they are found on an installation medium (e.g. on the netinst). The package manager gets automatically configured with the matching components so that those packages get security updates. This usually means that the non-free-firmware component gets enabled, in addition to main.

Users who wish to disable firmware lookup entirely can do so by setting the `firmware=never` boot parameter. It's an alias for the longer `hw-detect/firmware-lookup=never` form.

Unless firmware lookup is disabled entirely, `debian-installer` still supports loading firmware files or packages containing firmware from a removable medium, such as a USB stick. See Avmitt 6.4 for detailed information on how to load firmware files or packages during the installation. Note that `debian-installer` is less likely to prompt for firmware files now that non-free firmware packages can be included on installation images.

If the `debian-installer` prompts for a firmware file and you do not have this firmware file available or do not want to install a non-free firmware file on your system, you can try to proceed without loading the firmware. There are several cases where a driver prompts for additional firmware because it may be needed under certain circumstances, but the device does work without it on most systems (this e.g. happens with certain network cards using the `tg3` driver).

2.3 Köpa maskinvara specifikt för GNU/Linux

Det finns ett flertal tillverkare som levererar system med Debian eller andra distributioner av GNU/Linux förinstallerat. Du kan betala mer för privilegiet men det ger en känsla av trygghet eftersom du kan vara säker på att maskinvaran har bra stöd av GNU/Linux.

2.3.1 Undvik proprietär eller sluten maskinvara

Some hardware manufacturers simply won’t tell us how to write drivers for their hardware. Others won’t allow us access to the documentation without a non-disclosure agreement that would prevent us from releasing the driver’s source code, which is one of the central elements of free software. Since we haven’t been granted access to usable documentation on these devices, they simply won’t work under Linux.

In many cases there are standards (or at least some de-facto standards) describing how an operating system and its device drivers communicate with a certain class of devices. All devices which comply to such a (de-facto-)standard can be used with a single generic device driver and no device-specific drivers are required. With some kinds of hardware (e.g. USB "Human Interface Devices", i.e. keyboards, mice, etc., and USB mass storage devices like USB flash disks and memory card readers) this works very well and practically every device sold in the market is standards-compliant.

In other fields, among them e.g. printers, this is unfortunately not the case. While there are many printers which can be addressed via a small set of (de-facto-)standard control languages and therefore can be made to work without problems in any operating system, there are quite a few models which only understand proprietary control commands for which no usable documentation is available and therefore either cannot be used at all on free operating systems or can only be used with a vendor-supplied closed-source driver.

Even if there is a vendor-provided closed-source driver for such hardware when purchasing the device, the practical lifespan of the device is limited by driver availability. Nowadays product cycles have become short and it is not uncommon that a short time after a consumer device has ceased production, no driver updates get made available any more by the manufacturer. If the old closed-source driver does not work anymore after a system update, an otherwise perfectly working device becomes unusable due to lacking driver support and there is nothing that can be done in this case. You should therefore avoid buying closed hardware in the first place, regardless of the operating system you want to use it with.
Du kan hjälpa till att förbättra denna situation genom att uppmuntra tillverkare av sluten hårdvara att släppa dokumenationen och andra resurser som är nödvändiga för att vi ska kunna tillhandahålla fria drivrutiner för deras hårdvara.

2.4 Installationsmedia

2.4.1 Cd-rom/Dvd-rom/Bd-rom

Installation från optisk skiva stöds för de flesta arkitekturer.

2.4.2 Nätverk

Nätverket kan användas under installationen för att hämta filer som behövs för installationen. Huruvida nätverket används eller inte beror på installationsmetoden du valde samt dina svar på vissa frågor som kommer att ställas under installationen. Installationssystemet har stöd för de flesta typer av nätverksanslutningar (inkluderat PPPoE, men inte ISDN eller PPP), antingen via HTTP eller FTP. Efter att installationen är färdig, kan du även konfigurera ditt system att använda ISDN och PPP.

You can also boot the installation system over the network without needing any local media like CDs/DVDs or USB sticks. If you already have a netboot-infrastructure available (i.e. you are already running DHCP and TFTP services in your network), this allows an easy and fast deployment of a large number of machines. Setting up the necessary infrastructure requires a certain level of technical experience, so this is not recommended for novice users.

Disklös installation med nätverksuppstart från ett lokalt nätverk och nfs-montering av alla lokala filsystem är ett annat alternativ.

2.4.3 Hårddisk

Starta upp installationssystemet direkt från en hårdisk är en annan möjlighet för många arkitekturer. Det här kräver ett annat operativsystem för att läsa in installationsprogrammet på hårddisken. Denna metod rekommenderas endast i speciella fall när ingen annan installationsmetod är tillgänglig.

2.4.4 Un*x eller GNU-system

2.4.5 Lagringssystem som stöds

Debian installationsprogrammet innehåller en kärna som är byggd för att maximera antalet system den kan köras på. IDE systems are also supported.

2.5 Krav för minne och diskplats

The installer normally automatically enables memory-saving tricks to be able to run on such low-memory system, but on architectures that are less tested it may miss doing so. It can however be enabled manually by appending the lowmem=1 or even lowmem=2 boot parameter (see also Avsnitt 6.3.1.1 and Avsnitt 5.3.2).
WARNING

On ppc64el the lowmem levels have not been tested, so automatic detection is probably outdated and you thus probably need to pass the boot parameter if your system has little memory.

Installation on systems with less memory or disk space available may be possible but is only advised for experienced users.
Kapitel 3

Före installation av Debian GNU/Linux

Det här kapitlet går igenom förberedelser för installation av Debian innan du ens startar upp installationsprogrammet. Det inkluderar säkerhetskopiering av ditt data, insamling av information om din maskinvara och att hitta all nödvändig information.

3.1 Översikt av installationsprocessen

Först, bara som en notering angående ominstallationer. Med Debian är omständigheter som kräver en total ominstallation av ditt system mycket ovanliga; kanske är mekaniska fel på hårddisken vanligaste orsaken.

Många vanliga operativsystem kan kräva att en total installation genomförs när kritiska fel inträffar eller för uppgraderingar till nyare versioner av operativsystemet. Även om en total nyinstallation inte krävs måste ofta program du använder installeras om för att fungera korrekt i det nya operativsystemet.

Med Debian GNU/Linux är det troligt att ditt operativsystem kan lagas istället för att bytas ut om saker går fel. Uppgraderingar kräver aldrig en total fullständig installation; du kan alltid uppgradera direkte. Program är nästan alltid kompatibla med tidigare utgivor av operativsystemet. Om en ny programversion kräver nyare hjälpprogramvara kommer Debians paketsystem att se till att all nödvändig programvara automatiskt identifieras och installeras. Mycket arbete har lagts på att ominstallationer inte ska behövas, så utgå därför ifrån att det är din absolut sista utväg.

Installationsprogrammet är inte designad för att ominstallera ett befintligt system.

Här är en översikt av de steg du kommer att ta under installationsprocessen.

1. Säkerhetskopiera befintliga data eller dokument från hårddisken där du planerar att installera.
2. Samla information om din dator och annan behövlig dokumentation innan du startar installationen.
4. Skaffa installeringsprogramvaran och eventuella specialdrivrutiner eller firmware som din maskin kräver.
5. Ställ in startmedia som CD-skivor/DVD-skivor/USB-minnen eller ge en nätverksstartinfrastruktur från vilken installationsprogrammet kan startas.
7. Välj installationsspråket.
10. Se den automatiska hämtningen, installeringen och konfigureringen av grundsystemet.
11. Välj och installera ytterligare programvara.
12. Installera en starthanterar som kan starta upp Debian GNU/Linux eller dina andra operativsystem.
13. Starta det nyligen installerade systemet för första gången.
KAPITEL 3. FÖRE INSTALLATION AV DEBIAN … 3.2. SÄKERHETSKOPIERA DINA BEFINTLIGA DATA!

3.2 Säkerhetskopiera dina befintliga data!

Om du får problem under installationen hjälper det att veta vilka paket som ingår i varje steg. Här är de ledande programvaruskådisarna i det här installationsdramat:

För att anpassa systemet för att passa dina behov, låter tasksel dig välja att installera olika fördefinierade samlingar av programvara såsom en webbserver eller en skrivbordsmiljö.

One important option during the installation is whether or not to install a graphical desktop environment, consisting of the X Window System and one of the available graphical desktop environments. If you choose not to select the "Desktop environment" task, you will only have a relatively basic, command line driven system. Installing the Desktop environment task is optional because in relation to a text-mode-only system it requires a comparatively large amount of disk space and because many Debian GNU/Linux systems are servers which don’t really have any need for a graphical user interface to do their job.

Tänk dock på att X Window System är fullständigt separerat från debian-installer, och är dessutom mycket mer komplicerat. Felsökning av X Window System täcks inte in av den här handboken.

3.3 Information du behöver

3.3.1 Dokumentation

3.3.1.1 Installationshandbok

Dokumentet du nu läser, som är den officiella versionen av Installationsguiden för utgåvan bookworm av Debian; tillgänglig i olika format och översättningar.

3.3.1.2 Maskinvarudokumentation

Innehåller ofta användbar information om hur du konfigurerar eller använder din maskinvara.

3.3.2 Hitta informationskällor för maskinvara

I många fall kan installationsprogrammet automatiskt identifiera din maskinvara. Men för att vara förberedd rekommenderar vi att du gör dig hemmastadd med din maskinvara före installationen.

Maskinvarainformation kan samlas in från:

• Handböckerna som kommer med varje maskinvarudel.

• The BIOS/UEFI setup screens of your computer. You can view these screens when you start your computer by pressing a combination of keys. Check your manual for the combination. Often, it is the Delete or the F2 key, but some manufacturers use other keys or key combinations. Usually upon starting the computer there will be a message stating which key to press to enter the setup screen.

• Förpackningarna och lådorna för varje del av maskinvaran.
• Systemkommandon eller verktyg i ett annat operativsystem, inklusive filhanterarskärmar. Den här källan är speciellt användbar för information om RAM-minne och hårddiskutrymme.

• Din systemadministratör eller Internetleverantör. De här källorna kan informera dig om de inställningar du behöver för att ställa in din nätverksanslutning och e-post.

Tabell 3.1 Maskinvaruinformation som som kan vara hjälpfulla för en installation

<table>
<thead>
<tr>
<th>Maskinvara</th>
<th>Information du kan behöva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hårddiskar</td>
<td>Hur många du har.</td>
</tr>
<tr>
<td></td>
<td>Deras ordning i systemet.</td>
</tr>
<tr>
<td></td>
<td>Om IDE (även känd som PATA), SATA eller SCSI används.</td>
</tr>
<tr>
<td></td>
<td>Tillgängligt ledigt utrymme.</td>
</tr>
<tr>
<td></td>
<td>Partitioner.</td>
</tr>
<tr>
<td></td>
<td>Partitioner där andra operativsystem är installerade.</td>
</tr>
<tr>
<td>Nätverksinterfaces</td>
<td>Typ/model av tillgängliga nätverksgränssnitt.</td>
</tr>
<tr>
<td>Skrivare</td>
<td>Modell och tillverkare.</td>
</tr>
<tr>
<td>Grafikkort</td>
<td>Typ/modell och tillverkare.</td>
</tr>
</tbody>
</table>

3.3.3 Maskinvarukompatibilitet

Många produkter fungerar utan problem på Linux. Mängden maskinvara som stöds av Linux ökar dagligen. Dock kan Linux fortfarande inte köra lika många olika typer av maskinvara som en del andra operativsystem.

Drivers in Linux in most cases are not written for a certain ”product” or ”brand” from a specific manufacturer, but for a certain hardware/chipset. Many seemingly different products/brands are based on the same hardware design; it is not uncommon that chip manufacturers provide so-called ”reference designs” for products based on their chips which are then used by several different device manufacturers and sold under lots of different product or brand names.

This has advantages and disadvantages. An advantage is that a driver for one chipset works with lots of different products from different manufacturers, as long as their product is based on the same chipset. The disadvantage is that it is not always easy to see which actual chipset is used in a certain product/brand. Unfortunately sometimes device manufacturers change the hardware base of their product without changing the product name or at least the product version number, so that when having two items of the same brand/product name bought at different times, they can sometimes be based on two different chipsets and therefore use two different drivers or there might be no driver at all for one of them.

For USB and PCI/PCI-Express/ExpressCard-enheter, så är ett bra sätt att ta reda på vilken chipset de är baserade på är att titta på deras enhets-ID. Alla USB/PCI/PCI-Express/ExpressCard-enheter har ett så kallat ”leverantörs” och ”produkt” ID:s, och kombinationen av dessa två är vanligtvis densamma för alla produkter baserade på samma chipset.

På Linux system, så kan dessa ID:n läsas med lsbabr kommandot för USB enheter och med lspci -nn kommandot för PCI/PCI-Express/ExpressCard enheter. Dessa leverantörs och produkt ID:n är oftast angivna i form av två hexadecimala tal, separerade med ett kolon, som t.ex ”1d6b:0001”.

Ett exempel för utdata från lsbabr: ”Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub”, varvid lsbabr är leverantörs-ID och 0002 är produkt-ID.

Ett exempel för utdata från lsbabr för ett Ethernetkort: ”03:00.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller [10ec:8168] (rev 06)”. ID:erna ges inom de högra hakparenteserna, dvs här är 10ec leverantören och 8168 är produkt-ID:1.

Som ett annat exempel kan ett grafikkort ge följande utdata: ”04:00.0 VGA compatible controller [0300]: Advanced Micro Devices [AMD] nee ATI RV710 [Radeon HD 4350] [1002:954f]”.

On Windows systems, the IDs for a device can be found in the Windows device manager on the tab ”details”, where the vendor ID is prefixed with VEN_ and the product ID is prefixed with DEV_. On Windows 7 systems, you have to select the property ”Hardware IDs” in the device manager’s details tab to actually see the IDs, as they are not displayed by default.

Searching on the internet with the vendor/product ID, ”Linux” and ”driver” as the search terms often results in information regarding the driver support status for a certain chipset. If a search for the vendor/product ID does not yield usable results, a search for the chip code names, which are also often provided by lsbabr and lspci (”RTL8111”/”RTL8168B” in the network card example and ”RV710” in the graphics card example), can help.
3.3.3.1 Testa hårdvarukompabilitet med ett Live-System

Debian GNU/Linux är också tillgänglig som så kallat "live system" för vissa architekturer. En live system är ett förutkonfigurerat och redo att användas system i en komprimerad format som kan startas och användas från ett läsbar enda medium som en CD eller DVD. Använda det av default inte skapa irriterande permanenta ändringar på ditt dator. Du kan ändra inställning och installera tilläggsprogram från inuti live system again, everything is reset to its defaults. If you want to see if your hardware is supported by Debian GNU/Linux, the easiest way is to run a Debian live system on it and try it out.

There are a few limitations in using a live system. The first is that all changes you do within the live system must be held in your computer's RAM, this only works on systems with enough RAM to do that, so installing additional large software packages may fail due to memory constraints. Another limitation with regards to hardware compatibility testing is that the official Debian GNU/Linux live system contains only free components, i.e. there are no non-free firmware files included in it. Such non-free packages can of course be installed manually within the system, but there is no automatic detection of required firmware files like in the debian-installer, so installation of non-free components must be done manually if needed.

Information om tillgängliga varianter av Debian livebilder finns kan hittas på Debian Livebilder webbplatsen.

3.3.4 Nätverksinställningar

If your computer is connected to a fixed network (i.e. an Ethernet or equivalent connection — not a dialup/PPP connection) which is administered by somebody else, you should ask your network’s system administrator for this information:

- Ditt datornamn (du kanske kan välja det här helt på egen hand).
- Ditt domännamn.
- Din dators IP-adress.
- Nätmasken som används på ditt nätverk.
- IP-adressen till den gateway som är standardrutten ut från ditt nätverk, om ditt nätverk har en gateway.
- Systemet på ditt nätverk som du ska använda som en DNS-server (Domännamnslänk).

If the network you are connected to uses DHCP (Dynamic Host Configuration Protocol) for configuring network settings, you don’t need this information because the DHCP server will provide it directly to your computer during the installation process.

Om du har internettjänst via DSL eller kabelmodem (dvs. via ett kabel-tv nätverk) och har en router (som ofta tillhandahålls förkonfigurerad av din telefon eller catv -leverantör) som hanterar din nätverksanslutning, är DHCP vanligtvis tillgängligt som standard.

Om du använder ett WLAN/WiFi nätverk, bör du ta reda på:

- Ditt ESSID ("network name") för ditt trådlösa nätverk.
- WEP- och WPA/WPA2-säkerhetsnyckel för att ansluta till nätverket (om sådan används).

3.4 Matcha minimikrav för maskinvara

När du har samlad in information om maskinvaran i din dator, kontrollera att din maskinvara låter dig göra den typ av installation som du vill göra.

Beroende på dina behov, kan du klara dig med mindre än vad som rekommenderas av maskinvaran listad i tabellen nedan. Många användare riskerar dock troligt att bli frustrerade om de ignorera de här förslagen.

<table>
<thead>
<tr>
<th>Installationstyp</th>
<th>RAM (minimum)</th>
<th>RAM (reklamerad)</th>
<th>Hårddisk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingen skrivbordsmiljö</td>
<td>256 megabyte</td>
<td>512 megabyte</td>
<td>4 gigabyte</td>
</tr>
<tr>
<td>Med skrivbordsmiljö</td>
<td>1 gigabyte</td>
<td>2 gigabyte</td>
<td>10 gigabyte</td>
</tr>
</tbody>
</table>

The minimum values assumes that swap will be enabled and a non-liveCD image is used. The "No desktop" value assumes that the non-graphical (text-based) installer is used.
The actual minimum memory requirements are a lot less than the numbers listed in this table. With swap enabled, it is possible to install Debian with as little as 32MB. The same goes for the disk space requirements, especially if you pick and choose which applications to install; see Avsnitt D.2 for additional information on disk space requirements.

Det är möjligt att köra en grafisk skrivbordsmiljö på äldre eller mindre kraftfulla system, men i det fallet rekommenderas det att installera en fönsterhanterare som är mindre resursnödvändiga än skrivbordsmiljöerna GNOME eller KDE Plasma; tänkbara alternativ är xfce4, icewm och wmaker, men det finns även andra att välja bland.

Det är praktiskt omöjligt att ge allmänna krav för minne eller diskutrymme för serverinstallationer eftersom det beror mycket på vad servern kommer att användas till.

Det är möjligt att köra en grafisk skrivbordsmiljö på äldre eller mindre kraftfulla system, men i det fallet rekommenderas det att installera en fönsterhanterare som är mindre resursnödvändiga än skrivbordsmiljöerna GNOME eller KDE Plasma; tänkbara alternativ är xfce4, icewm och wmaker, men det finns även andra att välja bland.

Det är praktiskt omöjligt att ge allmänna krav för minne eller diskutrymme för serverinstallationer eftersom det beror mycket på vad servern kommer att användas till.

Kom ihåg att dessa storlekar inte inkluderar alla de andra material som vanligtvis hittas på ett system, såsom användarfiler, e-post och data. Det är alltid bäst att vara generös när du uppskattar utrymmet för dina egna filer och data.

Diskutrymmet som krävs för oproblematisk körning av själva Debian GNU/Linux-systemet är inkluderat i dessa rekommenderade systemkrav. Noterbart är att partitionen /var innehåller en hel del tillståndsinformation som är specifik för Debian i tillägg till dess vanliga innehåll, som loggfiler. Filerna för dpkg (med information om alla installerade paket) kan enkelt konsumera 40 MB. Även apt lägger hämtade paket här innan de installeras. Du bör vanligtvis allokeran åtminstone 200 MB för /var, och en hel del mer om du installerar en grafisk skrivbordsmiljö.

3.5 Förpartionering för system med flera operativsystem

Partitionering av din disk refererar helt enkelt till processen att dela upp din disk i sektioner. Varje sektion blir då oberoende av de andra. Det är grovt sett likvärdigt med att sätta upp väggar inne i ett hus; om du ställer in möbler i ett rum så påverkar de inte något annat rum.

If you already have an operating system on your system which uses the whole disk and you want to stick Debian on the same disk, you will need to repartition it. Debian requires its own hard disk partitions. It cannot be installed on Windows or Mac OS X partitions. It may be able to share some partitions with other Unix systems, but that’s not covered here. At the very least you will need a dedicated partition for the Debian root filesystem.

You can find information about your current partition setup by using a partitioning tool for your current operating system. Partitioning tools always provide a way to show existing partitions without making changes.

Several modern operating systems offer the ability to move and resize certain existing partitions without destroying their contents. This allows making space for additional partitions without losing existing data. Even though this works quite well in most cases, making changes to the partitioning of a disk is an inherently dangerous action and should only be done after having made a full backup of all data.

3.6 Inställning av maskinvara och operativsystem före installation

This section will walk you through pre-installation hardware setup, if any, that you will need to do prior to installing Debian. Generally, this involves checking and possibly changing BIOS/UEFI/system firmware settings for your system. The "BIOS/UEFI" or "system firmware" is the core software used by the hardware; it is most critically invoked during the bootstrap process (after power-up).

3.6.1 Hur man uppdaterar firmware för baremetal ppc64el

Detta är ett utdrag ur IBM PowerKVM på IBM POWER8.

Open Power Abstraction Layer (OPAL) is the system firmware in the stack of POWER processor-based server.

Det kan finnas tillfällen då användaren kan behöva uppgradera Power Systems firmware till en nyare nivå för att skaffa nya funktioner eller ytterligare stöd för enheter.

Se till att följande krav är uppfyllda:

• ett operativsystem som körs i systemet;
• the .img file of the OPAL level that the user needs to update to;
• maskinen är inte under HMC kontroll.
Power Systems has two sides of flash to boot firmware from, namely permanent and temporary. This provides a way to test firmware updates on the temporary side of the flash before committing the tested changes to the permanent side, thereby committing the new updates.

Utför följande steg för att uppdatera:

1. Save the level of the existing firmware before really updating. In ASM, in the system menu, click Service Aids -> Service Processor Command Line, and run the following command:

 `cupcmd -f`

2. Download the `.img` file of the level of firmware to be updated to a location in the host filesystem. Refer to IBM Fix Central for downloading the image file.

 Verifiera den nedladdade avbilden genom att köra följande kommando och spara utdata.

 `update_flash -v -f <fil_namn>.img`

3. Uppdatera firmware genom att köra följande kommando.

 `update_flash -f <fil_namn>.img`

 NOTERA
 - Kommandot startar om systemet och därför kommer eventuella sessioner att gå förlorade.
 - Starta inte om eller stäng av systemet förrän det är tillbaka.

4. Verify the updated firmware level of the temporary side of the flash as in step 1.

5. In case the update has to be reverted, the user can do so by running this command:

 `update_flash -r`

 Rejection would reject only the temporary side of the flash. Therefore, the new level should be committed to the permanent side only after thorough testing of the new firmware.

 The new updated level can be committed to the permanent side of the flash by running the following command.

 `update_flash -c`

3.6.2 Uppdatera KVM -gästfirmware (SLOF)

Slimline Open Firmware (SLOF) is an implementation of the IEEE 1275 standard. It can be used as partition firmware for pSeries machines running on QEMU or KVM.

The package qemu-slof is, in fact, a dependency of package qemu-system-ppc (which also provides the virtual package qemu-system-ppc64), and can be installed or updated via **apt** tool on Debian-based distros. Like so:

```
# apt install qemu-slof
```

SLOF can also be installed into rpm-based distribution systems, given the proper repository or rpm package. Additionally, the upstream source code is available at http://github.com/leilihh/SLOF.

Thus, one can use a different SLOF file rather than the default, when running qemu-system, by adding the command line argument `-bios <slof_file>` when starting qemu.
3.6.3 Uppdatera PowerKVM hypervisor

3.6.3.1 Instruktion för Netboot installation

You will need a DHCP/TFTP (BOOTP) server, as well as a web server. After downloading ibm-powerkvm-*-ppc64-service-*-iso, mount loop it and unpack it into some directory within your HTTP server www root structure (say wwwroot):

```
# cd <directory-where-the-iso-is>
# mkdir ./iso
# sudo mount -o loop ibm-powerkvm-*-ppc64-service-*-iso ./iso
# cp -a ./iso/* <path-to-wwwroot>
```

Create the petitboot.conf file in a directory under your tftproot, say /tftproot/powerkvm, with the following contents:

```
label PowerKVM Automated Install
kernel http://YOUR-SERVER-IP/SOME-PATH-TO-wwwroot/ppc/ppc64/vmlinuz
initrd http://YOUR-SERVER-IP/SOME-PATH-TO-wwwroot/ppc/ppc64/initrd.img
append root-live:http://YOUR-SERVER-IP/SOME-PATH-TO-wwwroot/LiveOS/squashfs.img →
    repo=http://YOUR-SERVER-IP/SOME-PATH-TO-wwwroot/packages rd.dm=0 rd.md=0 →
    console=hvc0 console=tty0
```

Editing your dhcpd.conf, set this directive at the beginning:

```
option conf-file code 209 = text;
```

Add the system directive:

```
host <your-system> {
    hardware ethernet <system macaddr>
    fixed-address <system ip>;
    option host-name "<system hostname>";
    option conf-file "<powerkvm/petitboot.conf>";
}
```

Reboot the dhcp server.

Starta din PowerLinux maskin.

There should be the following option at petitboot (select it):

"Power KVM Automated Install"

The installer menu should appear automatically.

3.6.3.2 Instruktion för DVD

Boot the ISO ibm-powerkvm-*-ppc64-service-*-iso (either burn a DVD or make it virtual if using QEMU) and simply wait for the boot.

There should be the following option at petitboot (select it):

"POWERKVM_LIVECD"

The installer menu should appear automatically.
Kapitel 4

Få tag på installationsmedia

4.1 Officiella Debian GNU/Linux installationsavbildningar

Eftersom CD-skivor har en ganska begränsad kapacitet av dagens standarder, är inte alla grafiska skrivbordsmiljöer installerbara med endast den första CD; för vissa skrivbordsmiljöer kräver en CD-installation antingen nätverksanslutning under installationen för att hämta återstående filer eller ytterligare CD-skivor.

När installationsprogrammet har startat upp kan den hämta de andra filerna den behöver från skivan.

Om du inte har en uppsättning installationsmedia behöver du hämta systemfiler för installationsprogrammet och placera dem på hårddisk eller en ansluten dator så att de kan användas för att starta upp installationsprogrammet.

4.2 Hämta filer från Debian-speglar

För att hitta den närmaste (och kanske även den snabbaste) spegeln, se Hämta Debian från Internet.

4.2.1 Var man får tag på installationsfiler

Dom olika Installationsfilerna kan hittas på varje Debian-spegel i katalogen debian/dists/bookworm/main/installer-ppc64el/current/images/ — MANIFEST listar varje avbild och dess funktion.

4.3 Förbereda filer för uppstart med hårddisk

Installationsprogrammet kan startas upp med uppstartsfilser placerade på en befintlig hårddiskpartition, antingen starta- de från ett annat operativsystem eller genom att kalla upp en starthanterare direkt från BIOS. På moderna UEFI-system kan kärnan startas direkt från UEFI-partitionen utan behov av en startladdare.

En full installation, "helt över nätverket" kan göras med den här tekniken. Det här förhindrar problem med flyttbar media, hitta och bränna CD/DVD-avbildningar.
4.4 Förbered filerna för nätverksuppstart via TFTP

Om din maskin är ansluten till ett lokalt nätverk har du möjligheten att starta upp via nätverket från en annan maskin med TFTP. Om du tänker starta upp installationssystemet från en annan maskin behöver uppstartsfilerna placeras på specifika platser på den maskinen och maskinen konfigureras för att få stöd för uppstart av din specifika maskin.

Du behöver konfigurera en TFTP-server, och för många maskiner även en DHCP-server, eller BOOTP-server. BOOTP är ett IP-protokoll som informerar en dator om dess IP-adress och var på nätverket den kan hämta en uppstartsavbildning. DHCP (Dynamic Host Configuration Protocol) är en mer flexibel, bakåtkompatibel utökning av BOOTP. Vissa system kan endast konfigureras via DHCP.

Trivial File Transfer Protocol (TFTP) används för att erbjuda uppstartsavbildningar till klienten. Teoretiskt sett kan alla servrar, på alla Plattformar, som implementerat de här protokollen, kan användas. I exemplet i det här avsnittet, tillhandahåller vi kommandon för SunOS 4.x, SunOS 5.x (även kallad Solaris) och GNU/Linux.

4.4.1 Konfigurering av DHCP-server

En fri DHCP-serverprogramvara är ISC dhcpd. För Debian GNU/Linux, rekommenderas paketet isc-dhcp-server. Här är en exempelkonfigurationsfil för det (se /etc/dhcp/dhcpd.conf):

```plaintext
option domain-name "exempel.se";
option domain-name-servers ns1.exempel.se;
option subnet-mask 255.255.255.0;
default-lease-time 600;
max-lease-time 7200;
server-name "servername";
subnet 192.168.1.0 netmask 255.255.255.0 {
    range 192.168.1.200 192.168.1.253;
    option routers 192.168.1.1;
}
host klientnamn {
    filename "/tftpboot.img";
    server-name "servername";
    next-server servernamn;
    hardware ethernet 01:23:45:67:89:AB;
    fixed-address 192.168.1.90;
}
```

I det här exemplet finns det en server kallad servernamn som gör allt arbete som DHCP-server, TFTP-server och nätverksgateway. Du behöver nästan säkert ändra domännamnsalternativen, såväl som servernamnet och klientens maskinvaruadress. Alternativet filename bör vara ange namnet på den fil som ska hämtas via TFTP.

Efter du har redigerat konfigurationsfilen för dhcpd, starta om den med /etc/init.d/isc-dhcp-server restart.

4.4.2 Konfigurera en BOOTP-server

To use CMU bootpd, you must first uncomment (or add) the relevant line in /etc/inetd.conf. On Debian GNU/Linux, you can run update-inetd --enable bootps, then /etc/init.d/inetd reload to do so. Just in case your BOOTP server does not run Debian, the line in question should look like:

```plaintext
bootps dgram udp wait root /usr/sbin/bootpd bootpd -i -t 120
```

Now, you must create an /etc/bootptab file. This has the same sort of familiar and cryptic format as the good old BSD printcap, termcap, and disktab files. See the bootptab manual page for more information. For CMU bootpd, you will need to know the hardware (MAC) address of the client. Here is an example /etc/bo onto pt ab:

```plaintext
client:\
hd="/tftpboot:");
bf=tftpboot.img:\
ip=192.168.1.90:\
sm=255.255.255.0:
```
KAPITEL 4. FÅ TAG PÅ INSTALLATIONSMEDIA

4.5. AUTOMATISK INSTALLATION

You will need to change at least the "ha" option, which specifies the hardware address of the client. The "bf" option specifies the file a client should retrieve via TFTP; see Avsnitt 4.4.4 for more details.

Tvåtemot är konfigurering av BOOTP med ISC dhcdp riktigt enkelt, för att den behandlar BOOTP-klienter som vanliga specialfall av DHCP-klienter. Vissa arkitekturer kräver en komplex konfiguration för att starta upp klienter via BOOTP. Om din dator är en av dessa, läs avsnittet Avsnitt 4.4.1. Om inte, kommer du antagligen komma undan med bara lägga till direktivet allow bootp till konfigurationssblocket för subnett som innehåller klienten i `/etc/dhcp/dhcppd.conf`, och starta om dhcppd med `/etc/init.d/isc-dhcp-server restart`.

4.4.3 Aktivering av TFTP-server

För att få igång TFTP-servern så bör du först försäkra dig om att tftpd är aktiverad.

NOTERA

4.4.4 Flytta TFTP-avbildningarna till rätt plats

4.5 Automatisk installation

For installing on multiple computers it’s possible to do fully automatic installations. Debian packages intended for this include fai-quickstart (which can use an install server) and the Debian Installer itself. Have a look at the FAI home page for detailed information.

4.5.1 Automatisk installation med Debian Installer

Debian Installer har stöd för att automatiska installationer via förkonfigurationsfiler. En förkonfigurationsfil kan läsas in från nätverket eller från flyttbart media, och används för att fylla i svar på frågor som ställs under installationsprocessen.

Full dokumentation om förinställning inklusive ett fungerande exempel som du kan redigera finns i Appendix B.

4.6 Verifiera integriteten för installationsfiler

Du kan verifiera integriteten för nedladdade filer mot kontrollsummor som finns i SHA256SUMS eller SHA512SUMS filer på Debian speglarna. Du hittar dom på samma platser som själva installationsavbilderna. Besök följande platser:

- kontrollsummafiler för CD-avbilder,
- kontrollsummafiler för DVD-avbilder,
• kontrollsummafiler för andra installationsfiler.

För att beräkna kontrollsumman för en nedladdad installationsfil, använd

```
sha256sum filename.iso
```

respektive

```
sha512sum filename.iso
```

och jämför sedan den visade kontrollsumman med motsvarande i en av SHA256SUMS respektive SHA512SUMS filerna.

Debian CD FAQ har mer användbar information på detta ämne, som t.ex skriptet `check_debian_iso`, för att halvautomatisera ovanstående procedur), samt instruktioner, hur man själva verifierar integriteten för ovanstående kontrollsumfiler.
Kapitel 5

Starta upp installationssystemet

5.1 Starta upp installationsprogrammet på 64-bit PowerPC (little-endian)

5.1.1 Starta en ppc64el maskin

Hur du startar en ppc64el maskin:

5.1.1.1 Petitboot

Petitboot är en plattformövergripande bootloader baserad på Linux kexec. Petitboot stödjer uppladdning av kernel, initrd och device tree filer från några Linux monterbara filsystem, plus kan ladda filer från nätverket med hjälp av FTP, SFTP, TFTP, NFS, HTTP och HTTPS protokoll. Petitboot kan boota några operativsystem som inkluderar kexec boot support.

Petitboot tar hänsyn till bootloader konfigurationssidor på monterbara enheter i systemet, och kan även konfigureras att använda boot information från en DHCP-server.

5.2 Hjälpmedel

Svårgörda användare kan behöva specifik support på grund av t.ex. visuell utsatt nedskadning. USB braille datorer är identifierade automatiskt (inte serien datorer med hjälp av en seriell till USB konverterare), men de flesta andra tillgänglighetsfunktioner måste aktiveras manuellt. Vissa boot parameters kan angivas för att aktivera tillgänglighetsfunktioner. OBS! På många arkitekter redogör boot laddaren för ditt tangentbord som ett QWERTY tangentbord.

5.2.1 Installationsprogrammets frontend

Debian installerstöder flera frontend-sidor för frågetalanger, med varierande tillgänglighet för tillgänglighet: notabelt, text används ordtext medan newt används textbaserade dialogbox. Val kan göras vid startskärmen, se dokumentationen för DEBIAN_FRONTEND i Avsnitt 5.3.2.

Med den newt frontend (vanligtvis används med braille), en mestadels väljer svars med pil tangenter och trycker Enter för validering. Trycker Tab eller Shift - Tab tillåter att switcha mellan dialogelement, och notabelt att nå Go Back knappen, vilket ger tillbaka till förutgående frågor. Vissa dialoger innehåller fält som kan aktiveras och avaktiveras med hjälp av Space tangent.

Med text frontend (vanligtvis används med talespråk), en mestadels väljer svars medan man skriver deras nummer följt av Enter, eller med hjälp av pil tangenter, och trycker Enter för validering. Man kan också inte skriva något och bara trycka Enter för att acceptera standardvärde. Trycker enter och trycker Enter tillbaka till förutgående frågor. Under val av valfrialfalls (t.ex. under uppgiftval), en kan typa enter för att man fyller i tillgängliga alternativ.

5.2.2 Punktskriftsskärmar med USB

5.2.3 Punktskriftsskärmars med seriekabel

Serial braille displays cannot safely be automatically detected (since that may damage some of them). You thus need to append the \texttt{brltty=driver, port} boot parameter to tell \texttt{brltty} which driver and port it should use. \textit{Driver} should be replaced by the two-letter driver code for your terminal (see the \texttt{BRLTTY manual}). \textit{Port} should be replaced by the name of the serial port the display is connected to. \texttt{ttyS0} is the default. \texttt{ttyUSB0} can be typically used when using a serial-to-USB converter. A third parameter can be provided, to choose the name of the braille table to be used (see the \texttt{BRLTTY manual}); the English table is the default. Note that the table can be changed later by entering the preference menu. A fourth parameter can be provided to pass parameters to the braille driver, such as \texttt{protocol=foo} which is needed for some rare models. Documentation on key bindings for braille devices is available on the \texttt{brltty} website.

5.2.4 Brädenheter

Vissa hjälpmedelsenheter är faktiska kort som ansluts inne i datorn och som läser test direkt från grafikminnet. För att få dem att fungera så måste stöd för framebuffer inaktiveras genom att använda uppstartsparametern \texttt{fb=false}. Detta kommer dock att minska antalet tillgängliga språk.

5.2.5 Tema med hög kontrast

For users with low vision, the installer can use a high-contrast color theme that makes it more readable. To enable it, you can use the "Accessible high contrast" entry from the boot screen with the \texttt{d} shortcut, or append the \texttt{theme=dark} boot parameter.

5.2.6 Zooma

For users with low vision, the graphical installer has a very basic zoom support: the Control-+ and Control– shortcuts increase and decrease the font size.

5.2.7 Expertinstallation, räddningsläge, automatisk installation

Expert, Rescue, and Automated installation choices are also available with accessibility support. To access them, one has to first enter the "Advanced options" submenu from the boot menu by typing \texttt{a}. When using a BIOS system (the boot menu will have beeped only once), this has to be followed by \texttt{Enter}; for UEFI systems (the boot menu will have beeped twice) that must not be done. Then, to enable speech synthesis, \texttt{s} can optionally be pressed (followed again by \texttt{Enter} on BIOS systems but not on UEFI systems). From there, various shortcuts can be used: \texttt{x} for expert installation, \texttt{r} for rescue mode, or \texttt{a} for automated installation. Again these need to be followed by \texttt{Enter} when using a BIOS system.

The automated install choice allows to install Debian completely automatically by using preseeding, whose source can be entered after accessibility features get started. Preseeding itself is documented in Appendix B.

5.2.8 Tillgänglighet för det installerade systemet

Dokumentation om tillgänglighet för det installerade systemet finns på Debian tillgänglighet wikisidan.

5.3 Uppstartsparametrar

Uppstartsparametrar är parametrar för Linux-kärnan som generellt sett används för att se till att kringutrustning hanteras korrekt. För det mesta kan kärnan automatiskt identifiera information om din kringutrustning. Ibland behöver du dock hjälpa kärnan en bit på vägen.

Om det här är första gången du startar upp systemet kan du prova de uppstartsparametrar som är standard (alltså, ställ inte in några parametrar) och se om det fungerar korrekt. Det kommer säkert att göra det. Om inte, kan du starta om senare och leta efter några speciella parametrar som informerar systemet om din maskinvara.

Information om många uppstartsparametrar kan hittas i Linux BootPrompt HOWTO, inklusive tips för ovanlig maskinvara. Det här avsnittet innehåller endast en del av de mest vanliga parametrarna. Vissa vanliga problem finns beskrivna i Avsnitt 5.4.
5.3.1 Startkonsol

If you are booting with a serial console, generally the kernel will autodetect this. If you have a videocard (framebuffer) and a keyboard also attached to the computer which you wish to boot via serial console, you may have to pass the console=device argument to the kernel, where device is a serial device of the target, which is usually something like ttyS0.

You may need to specify parameters for the serial port, such as speed and parity, for instance console=TTYS0,9600n8; other typical speeds may be 57600 or 115200. Be sure to specify this option after "---", so that it is copied into the bootloader configuration for the installed system (if supported by the installer for the bootloader).

In order to ensure the terminal type used by the installer matches your terminal emulator, the parameter TERM=type can be added. Note that the installer only supports the following terminal types: linux, bterm, ansi, vt102 and dumb. The default for serial console in debian-installer is vt102. If you are using an IPMI console, or a virtualization tool which does not provide conversion into such terminals types itself, e.g. QEMU/KVM, you can start it inside a screen session. That will indeed perform translation into the screen terminal type, which is very close to vt102.

5.3.2 Parametrar för Debian Installer

The installation system recognizes a few additional boot parameters¹ which may be useful.

Ett antal parametrar har en "kort form" som hjälper till att undvika begränsningarna i kärnans kommandoradflaggor och gör dem enklare att ange. Om en parameter har en kort form, kommer den att listas inom hakparanteser bakom den (normala) långa formen. Exemplet i den här handboken kommer vanligtvis att använda den korta formen också.

debconf/priority (priority) Den här parametern ställer in så att meddelanden med lägst prioritet visas.

Standardinstallationen använder priority=high. Det betyder att både meddelanden med prioritetera hög och kritisk visas, men meddelanden med prioritetera medium och låg hoppas över. Om problem påträffas justerar installationsprogrammet prioriteten efter behov.

DEBIAN_FRONTEND Denna boot parameter controls the type of user interface used for the installer. The current possible parameter settings are:

- DEBIAN_FRONTEND=noninteractive
- DEBIAN_FRONTEND=text
- DEBIAN_FRONTEND=newt
- DEBIAN_FRONTEND=gtk

The default frontend is DEBIAN_FRONTEND=newt. DEBIAN_FRONTEND=text may be preferable for serial console installs. Some specialized types of install media may only offer a limited selection of frontends, but the newt and text frontends are available on most default install media. On architectures that support it, the graphical installer uses the gtk frontend.

BOOT_DEBUG Ställ in den här uppstartsparametern till 2 innebär att installationsprogrammets uppstartsprocess kommer att loggas på ett informativt sätt. Ställ in den till 3 och felsökningsloggar blir tillgängliga på strategiska punkter i uppstartsprocessen. (Avsluta skalan för att fortsätta uppstartsprocessen.)

- BOOT_DEBUG=0 Det här är standardinställningen.
- BOOT_DEBUG=1 Mer information än normalt.
- BOOT_DEBUG=2 Mycket felsökningsinformation.
- BOOT_DEBUG=3 Skal kommer att köras på olika punkter i uppstartsprocessen för detaljerad felsökning. Avsluta skalen för att fortsätta uppstarten.

¹With current kernels (2.6.9 or newer) you can use 32 command line options and 32 environment options. If these numbers are exceeded, the kernel will panic. Also there is a limit of 255 characters for the whole kernel command line, everything above this limit may be silently truncated.
logg_värd, logg_port Gör att installationsprogrammet skickar loggmåttländen till ett fjärranslutet syslog på den angivna värd och porten samt till en lokal fil. Om den inte anges, är porten standard på standard syslog port 514.

lowmem Kan användas för att tvinga installationsprogrammet till en lowmem-nivå högre än den som installationspro- grammet ställer in som standard baserat på tillgängligt minne. Möjliga värden är 1 och 2. Se även Avsnitt 6.3.1.1.

noshell Förhindrar att installationsprogrammet erbjuder interaktiva skal på tty2 och tty3. Användbart för oövervakade installationer där fysisk säkerhet är begränsad.

debian-installer/theme (theme) A theme determines how the user interface of the installer looks (colors, icons, etc.). Which themes are available may differ per frontend. Currently both the newt and gtk frontend have (apart from the default look) only one additional theme named "dark" theme, which was designed for visually impaired users. Set this theme by booting with theme=dark (there is also the keyboard shortcut d for this in the boot menu).

netcfg/disable_autoconfig By default, the debian-installer automatically probes for network configuration via IPv6 autoconfiguration and DHCP. If the probe succeeds, you won’t have a chance to review and change the obtained settings. You can get to the manual network setup only in case the automatic configuration fails. If you have an IPv6 router or a DHCP server on your local network, but want to avoid them because e.g. they give wrong answers, you can use the parameter netcfg/disable_autoconfig=true to prevent any automatic configuration of the network (neither v4 nor v6) and to enter the information manually.

preseed/url (url) Ange url:en till en förkonfigurationsfil som ska hämtas ner och användas för att automatisera installationen. Se Avsnitt 4.5.

preseed/file (file) Ange sökvägen till en förkonfigurationsfil som ska läsas in för att automatisera installationen. Se Avsnitt 4.5.

preseed/interactive Ställ in till true för att visa frågor även om de har blivit förinställda. Kan vara användbart för testning eller felsökning av en förkonfigurationsfil. Observera att det här inte har någon effekt på parametrar som skickas som uppstartsparametrar, men för de kan en speciell syntax användas. Se Avsnitt B.5.2 för detaljer.

auto-install/enable (auto) Fördröj frågor som vanligtvis frågas innan förinställning är möjlig efter att nätverket har konfigurerats. Se Avsnitt B.2.3 för detaljer om hur man automatiserar installationer.

finish-install/keep-consoles Under installationer från seriella eller hanteringskonsoller är de vanliga virtuella konsollerna (VT1 till VT6) oftast inaktiverade i /etc/inittab. Ställ in till true för att förhindra detta.

KAPITEL 5. STARTA UPP INSTALLATIONSSYSTEMET 5.3. UPPSTARTSPARAMETRAR

debian-installer/allow_unauthenticated

Som standard kräver installationsprogrammet att förråden autentiseras med en känd gpg-nyckel. Ställ in till true för att inaktivera den autentiseringen. **Warning: osäkert, rekommenderas inte.**

rescue/enable

Ställ in till true för att gå in i räddningsläget istället för att genomföra en normal installation. Se Avsnitt 8.6.

5.3.3 Användning av uppstartsparametrar för att besvara frågor

Med några undantag kan ett värde ställas in vid uppstartsprompten för valfri fråga som ställs under installationen, även om det här bara är verklig användbart i specifica fall. Allmänna instruktioner om hur man kan göra det här kan hittas i Avsnitt B.2.2. Några specifica exempel listas här nedan.

debian-installer/language (language), debian-installer/country (country), debian-installer/locale (locale)

anna/choose_modules (modules)

netcfg/disable_autoconfig

Ställ in till true om du vill inaktivera IPv6 autokonfiguration och DHCP och istället tvinga fram statistisk nätverkskonfiguration.

mirror/protocol (protocol)

taskset:taskset/first (tasks)

Kan användas för att välja funktioner som inte finns tillgängliga från den interaktiva funktionslistan, såsom funktionen kde-desktop. Se Avsnitt 6.3.6.2 för ytterligare information.

5.3.4 Skicka parametrar till kärnmoduler

Om drivrutiner är kompilerade in i kärnan kan du skicka parametrar till dem som beskrivs i dokumentationen för kärnan. Dock om drivrutinerna är byggda som moduler och därför att kärnmoduler läses in lite annorlunda under en installation än vid uppstart av ett installerat system, är det inte möjligt att skicka parametrar till moduler som kan samma sätt som du normalt gör. Istället behöver du använda en speciell syntax som känns igen av installationsprogrammet som ser till att parametrarna sparas i de korrekta konfigurationsfilerna och på så sätt kommer att användas när modulerna faktiskt läses in. Parametrarna kommer även att propageras automatiskt till konfigurationen för det installerade systemet.

Observera att det är nuförtiden ganska ovanligt att parametrar behöver skickas till moduler. I de flesta fall kommer kärnan att söka av befintlig hårdvara i ett system och ställa in bra standardvärden på det sättet. Dock, i vissa fall, kan det fortfarande krävas att parametrar ställs in manuellt.

Syntaxen att använda för att ställa in parametrar för moduler är:

```plaintext
modulnamn.parameternamn=värde
```

Om du behöver skicka flera parametrar till samma eller olika moduler är det bara att upprepa detta. Till exempel, för att ställa in ett gammalt 3Com-nätverkskort till att använda BNC-kontakten (coax) och IRQ 10, skulle du skicka:

```
3c509.xcvr=3 3c509.irq=10
```
5.3.5 Svartlistning av kärnmoduler

Du kan svartlista en modul genom att använda följande syntax: `modulnamn.blacklist=yes`. Det här kommer att göra att modulen blir svartlistad i `/etc/modprobe.d/blacklist.local`, både under installationen och för det installerade systemet.

Observera att en modul fortfarande kan läsas in av själva installationssystemet. Du kan förhindra det från att hända genom att köra installationen i expertläget och avmarkera modulen från listan över moduler som visas under maskinvaridentifieringsfaserna.

5.4 Felsök installationsprocessen

5.4.1 Tillförlitligheten för optiska medier

Sometimes, especially with older drives, the installer may fail to boot from an optical disc. The installer may also — even after booting successfully from such disc — fail to recognize the disc or return errors while reading from it during the installation.

Det finns två mycket enkla saker som du bör prova först.

• If the disc does not boot, check that it was inserted correctly and that it is not dirty.

• If the installer fails to recognize the disc, try just running the option Detect and mount installation media a second time. Some DMA related issues with very old CD-ROM drives are known to be resolved in this way.

Om det inte fungerar, prova nedanstående förslag. De flesta, men inte alla, förslag som diskuteras där gäller för cd-rom och dvd.

If you cannot get the installation working from optical disc, try one of the other installation methods that are available.

5.4.1.1 Vanliga problem

• Några äldre cd-rom-enheter saknar stöd för att läsa från skivor som blev brända med höga hastigheter med en modern cd-brännare.

• Några cd-rom-enheter fungerar inte korrekt om ”direkt minnesåtkomst” (DMA) är aktiverat på dom.

5.4.1.2 Hur man undersöker och kanske även löser problem

If the optical disc fails to boot, try the suggestions listed below.

• Check that your BIOS/UEFI actually supports booting from optical disc (only an issue for very old systems) and that booting from such media is enabled in the BIOS/UEFI.

• If you downloaded an iso image, check that the md5sum of that image matches the one listed for the image in the MD5SUMS file that should be present in the same location as where you downloaded the image from.

```
$ md5sum debian-testing-1386-netinst.iso
a20391b12f7ff22ef705cee4059c6b92 debian-testing-1386-netinst.iso
```

Next, check that the md5sum of the burned disc matches as well. The following command should work. It uses the size of the image to read the correct number of bytes from the disc.

```
$ dd if=/dev/cdrom | \
  > head -c `stat --format=%s debian-testing-1386-netinst.iso` | \
  > md5sum
a20391b12f7ff22ef705cee4059c6b92 -
262668+0 poster in
262668+0 poster ut
134486016 bytes (134 MB) kopierade, 97.474 sekunder, 1.4 MB/s
```
If, after the installer has been booted successfully, the disc is not detected, sometimes simply trying again may solve the problem. If you have more than one optical drive, try changing the disc to the other drive. If that does not work or if the disc is recognized but there are errors when reading from it, try the suggestions listed below. Some basic knowledge of Linux is required for this. To execute any of the commands, you should first switch to the second virtual console (VT2) and activate the shell there.

- Växla till VT4 eller visa innehållet i /var/log/syslog (använd nano som redigerare) för att leta efter specifika felmeddelanden. Efter det, kontrollera även utskriften för dmesg.

- Check in the output of dmesg if your optical drive was recognized. You should see something like (the lines do not necessarily have to be consecutive):

```
ata1.00: ATAPI: MATSHITADVD- RAM UJ-822S, 1.61, max UDMA/33
ata1.00: configured for UDMA/33
scsi 0:0:0:0: CD-ROM MATSHITA DVD- RAM UJ-822S 1.61 PQ: 0 ANSI: 5
sr0: scsi3-mmc drive: 24x/24x writer dvd-ram cd/rw xa/form2 cdda tray
cdrom: Uniform CD-ROM driver Revision: 3.20
```

If you don't see something like that, chances are the controller your drive is connected to was not recognized or may be not supported at all. If you know what driver is needed for the controller, you can try loading it manually using modprobe.

- Check that there is a device node for your optical drive under /dev/. In the example above, this would be /dev/sr0. There should also be a /dev/cdrom.

- Använd kommandot mount för att kontrollera att din optiska skiva redan är monterad, om inte, försök att montera den manuellt:

```
$ mount /dev/hdc /cdrom
```

Kontrollera om det uppstod felmeddelanden efter körning av kommandot.

- Check if DMA is currently enabled:

```
$ cd /proc/ide/hdc
$ grep using_dma settings
using_dma 1 0 1 rw
```

A ”1” in the first column after using_dma means it is enabled. If it is, try disabling it:

```
$ echo -n "using_dma:0" >settings
```

Make sure that you are in the directory for the device that corresponds to your optical drive.

- Om det uppstår problem under installationen, prova att kontrollera integriteten för installationsmedia med alternativa nära slutet på installationsprogrammets huvudmeny. Det här alternativet kan även användas som ett allmänt test för att se om skivan kan läsas tillförlitligt.

5.4.2 Uppstartskonfiguration

Om du har problem med att kärnan hänger sig under uppstartsprocessen, inte känner igen kringutrustning som du faktiskt har, eller inte korrekt detekterar vissa enheter, är uppstartsparametrarna det första att kontrollera, vilket diskuteras i Avsnitt 5.3.

I vissa fall kan funktionsstörningar orsakas av att enhetens firmware saknas (se Avsnitt 2.2 och Avsnitt 6.4).

5.4.3 Tolkning av kärnans uppstartsmeddelanden

Under uppstartssekvensen kanske du se många meddelanden liknande can’t find någonting, eller någonting not present, can’t initialize någonting, eller till och med this driver release depends on någonting. De flesta av de här meddelandena är harmlösa. Du ser dem för att kärnan för installationssystemet är byggd för att köras på många olika datorer och med många olika kringutrustningsenheter. Ingen dator kommer så klart att innehålla alla tänkbara kringutrustningsenheter, så operativsystemet kan kliga en hel del när den letar efter kringutrustning som du inte har. Du kan också se att systemet gör en paus. Det händer när det väntar på att en enhet ska svara, och att den enheten finns inte i ditt system. Om du tycker att tiden det tar att starta upp systemet är på tok för lång, kan du skapa en anpassad kärna senare (se Avsnitt 8.5).
5.4.4 Rapportering av installationsproblem

If you get through the initial boot phase but cannot complete the install, the menu option Save debug logs may be helpful. It lets you store system error logs and configuration information from the installer on a storage medium, or download them using a web browser. This information may provide clues as to what went wrong and how to fix it. If you are submitting a bug report, you may want to attach this information to the bug report.

Andra relevanta installationsmeddelanden kan hittas i /var/log/ under installationen, och /var/log/installer/ efter datorn har startats om till det nyligen installerade systemet.

5.4.5 Skicka installationsrapporter

If you still have problems, please submit an installation report (in English please, whenever possible). We also encourage installation reports to be sent even if the installation is successful, so that we can get as much information as possible on the largest number of hardware configurations.

Observera att din installationsrapport kommer att publiceras i Debians felhanteringsystem (BTS) och vidarebefordras till en publik sändlista. Se till att du använder en e-postadress som du inte har några problem med att den används publikt.

Om du har ett fungerande Debian-system är det enklaste sättet att skicka in en installationsrapport att installera pakten installation-report och reportbug (apt install installation-report reportbug), konfigurera reportbug som det förklaras i Avsnitt 8.4.2, och kör kommandot reportbug installation-reports.

Alternatively you can use this template when filling out installation reports, and file the report as a bug report against the installation-reports pseudo package, by sending it to submit@bugs.debian.org.

<table>
<thead>
<tr>
<th>Package: installation-reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image version: <Full URL to image you downloaded is best></td>
</tr>
<tr>
<td>Date: <Date and time of the install></td>
</tr>
<tr>
<td>Machine: <Description of machine (eg, IBM Thinkpad R32)></td>
</tr>
<tr>
<td>Processor:</td>
</tr>
<tr>
<td>Memory:</td>
</tr>
<tr>
<td>Partitions: <df -Tl will do; the raw partition table is preferred></td>
</tr>
<tr>
<td>Output of lspci -knn (or lspci -nn):</td>
</tr>
</tbody>
</table>

Base System Installation Checklist:
[O] = OK, [E] = Error (please elaborate below), [] = didn’t try it

Initial boot:	[]
Detect network card:	[]
Configure network:	[]
Detect media:	[]
Load installer modules:	[]
Detect hard drives:	[]
Partition hard drives:	[]
Install base system:	[]
Clock/timezone setup:	[]
User/password setup:	[]
Install tasks:	[]
Install boot loader:	[]
Overall install:	[]

Comments/Problems:

<Description of the install, in prose, and any thoughts, comments and ideas you had during the initial install.>

Please make sure that any installation logs that you think would be useful are attached to this report. (You can find them in the installer system in /var/log/ and later on the installed system under /var/log/installer.) Please compress large files using gzip.
In the bug report, describe what the problem is, including the last visible kernel messages in the event of a kernel hang. Describe the steps that you did which brought the system into the problem state.
Kapitel 6

Användning av Debian Installer

6.1 Hur installationsprogrammet fungerar

Debians installationsprogram innehåller ett antal komponenter för speciella ändamål för att genomföra varje funktion i installationen. Varje komponent gör sin funktion och ställer frågor till användaren vars svar behövs för att utföra jobbet. Själva frågorna ger olika prioriteringar och prioriteten för frågorna som kommer att ställas ställs in när installationsprogrammet startas.

När en standardinstallation är genomförd kommer endast viktiga (hög prioritet) frågor att ställas. Det här resulterar i en mycket automatiserad installationsprocess med liten interaktivitet för användaren. Komponenter körs automatiskt i sekvens; vilka komponenter som körs beror huvudsakligen på installationsmetoden du använder och på din maskinvära. Installationsprogrammet kommer att använda förvalda värden för frågor som inte ställs.

Om problem uppstår kommer användaren att se ett felmeddelande och installationsmenyn kan visas för att välja en alternativ åtgärd. Om det inte uppstår problem kommer användaren aldrig att se installationsmenyn utan kommer helt enkelt svara på frågor för varje komponent i turordning. Meddelanden om allvarliga fel har "kritisk" prioritet så att användaren alltid blir notifierad.

Några av de förvalda värden som installationsprogrammet använder kan ges genom att skicka med uppstartsargument när debian-installer startas. Om, till exempel du önskar att tvinga fram statisk nätverkskonfiguration (IPv6-autokonfiguration och DHCP används som standard om tillgänglig) kan du lägga till uppstartsparametern netcfg/disable_autoconfig=true. Se Avsnitt 5.3.2 för tillgängliga flaggor.

Vissa dialogrutnor kan erbjuda ytterligare hjälp. Om hjälp finns så kommer det att indikeras på nedre raden i skärmen och den hjälpinformationen kan kommas åt genom att trycka på F1-tangenten.

Felmeddelanden omdirigeras till den tredje konsollen. Du kan tillgå den här konsollen genom att trycka Vänster Alt-F3 (håll nere vänster Alt-tangent när du trycker ned funktionstangenten F3); gå tillbaka till huvudkonsollen för installationsprogrammet med Vänster Alt-F1.

6.2 Introduktion till komponenter

Här är en lista på installationskomponenter med en kort beskrivning av varje komponents syfte. Detaljer du kanske behöver känna till om en specifik komponent finns in Avsnitt 6.3.

main-menu Visar listan av komponenter för användaren under installationen och startar en komponent när den väljs. Huvudmenyns frågor är satta till medium prioriteten så om din priorität är satt till hög eller kritisk (hög är förvald) kommer du inte att se den här menyn. Om det inträffar fel som kräver ingripande från dig kommer prioriteten att nergraderas temporärt för att låta dig lösa problemet och i så fall kommer menyn att visas.

Du kan komma till huvudmenyn genom att välja Bakåt-knappen flera gånger för att backa hela vägen ut ur nuvarande komponent.

localechooser Låter användaren lokalanpassa installationen och det installerade systemet: språk, land och lokaler. Installationsprogrammet kommer att visa meddelanden på det valda språket om inte översättningen för det språket inte är komplett och då kommer vissa meddelanden att visas på engelska.

console-setup Visar en lista på tangentbord/layouter från vilken användaren kan välja en som passar bäst för hans egen modell.

hw-detect Identifierar automatiskt det mesta av systemets maskinvara inklusive nätverkskort, diskettenheter och PCMCIA.

cdrom-detect Letar efter och monterar Debians installations-media.

netcfg Konfigurerar datorns nätverksanslutning så att den kan kommunicera mot Internet.

iso-scan Söker efter ISO-avbildningar (.iso-filer) på hårdiskar.

choose-mirror Presenterar en lista av Debian-arkivets speglar. Användaren kan välja källan för sina installationspaket.

cdrom-checker Kontrollerar installationsmediets integritet. På detta sätt kan användaren försäkra sig om att installationsavbilden inte är skadad.

lowmem Lowmem försöker att identifiera system med lite minne och gör då olika trick att ta bort onödiga delar av debian-installer från minnet (på bekostnad av vissa funktioner).

anna Anna's Not Nearly APT. Installerar paket som har hämtats från den valda spegeln eller installations media.

user-setup Ställer in root-lösenordet och lägger till en icke-root-användare.

clock-setup Uppdaterar systemklockan och fastställer huruvida klockan är inställd till UTC eller inte.

tzsetup Väljer tidszonen, baserat på platsen som valdes tidigare.

partman Låter användaren partitionera hårdiskar ansluta till systemet, skapa filsystem på de valda partitionerna och ansluta dem till monteringspunkter. Inkluderat är också intressanta funktioner som ett fullt automatiskt läge eller stöd för LVM. Det här är det verktyg som föredras för partitionering i Debian.

partman-lvm Hjälper användaren med konfigurationen av LVM (logisk volymhantering).

partman-md Låter användaren ställa in programvaru-RAID (Redundant Array of Inexpensive Disks). Den här programvaru-RAID är normalt sett överlägsen till de billiga IDE (pseudomaskinvara) RAID-styrkort som finns på nyare moderkort.

base-installer Installerar de mest enkla paketuppsättningar som tillåter datorn att köra Debian GNU/Linux efter omstart.

apt-setup Konfigurerar apt, mestadels automatiskt, baserad på vilket media som installationsprogrammet körs från.

pkgsel Använder tasksel för att välja och installera ytterligare programvara.

os-prober Identifierar nuvarande installerade operativsystem på datorn och skickar informationen till bootloader-installer vilken kan erbjuda dig möjligheten att lägga till upptäckta operativsystem till starthanterarens startmeny. Det här sättet gör att användaren lätt kan välja vilken operativsystem som ska startas vid uppstart.
KAPITEL 6. ANVÄNDNING AV DEBIAN INSTALLER

6.3. ANVÄNDNING AV INDIVIDUELLA KOMPONENTER

bootloader-installer Låter användaren starta ett skal från menyn eller på den andra konsollen.

shell Ger ett sätt för användaren att spela in information på ett USB-minne, nätverk, hårddisk eller andra media när problem påträffas för att senare kunna skicka en noggrann rapport om problem i installationsprogramvaran till Debian-utvecklarna.

6.3 Användning av individuella komponenter

I det här avsnittet kommer vi att beskriva varje installationskomponent i detalj. Komponenterna har blivit grupperade i steg som bör kännas igen av användarna. De presenteras i den ordning de dyker upp under installationen. Observera att inte alla moduler kommer att användas för varje installation; vilka moduler som faktiskt används beror på installationsmetoden du använder och på din maskinvara.

6.3.1 Konfiguration av Debi ans installationsprogram och maskinvara

Du kommer att märka att debian-installer genomför identifiering av maskinvara flera gånger under det här steget. Första gången är målet den maskinvara som behövs för att läsa in komponenter för installationsprogrammet (exempelvis din cd-rom eller nätverkskort). Eftersom alla drivrutiner kanske inte finns tillgängliga under den första körningen behövs en repetering av identifieringen senare i processen.

Under maskinvarudetektering så kontrollerar debian-installer om några av drivrutinerna för maskinvaran i ditt system kräver att fast programvara läses in. Om någon fast programvara begärs men inte finns tillgänglig så kommer en dialogruta att visas där saknad fast programvara läses in från ett flyttbart media. Se Avsnitt 6.4 för ytterligare detaljer.

6.3.1.1 Kontrollera tillgängligt minne / minimalt minnesläge

En av de första sakerna som debian-installer gör är att kontrollera tillgängligt minne. Om det tillgängliga minnet är begränsat kommer den här komponenten att göra ändringar i installationsprocessen som förhoppningsvis låter dig installera Debian GNU/Linux på ditt system.

Den första åtgärden man kan göra för att minska installationsprogrammets minneskonsumtion är att inaktivera översättningar, vilket betyder att installationen endast kan göras på engelska. Du kan så klart fortfarande lokalananpassa det installerade systemet tefter installationen har färdigställts.

När installationsprogrammet har anpassat sig till ett litet minne så bör du skapa en förhållandefull stor växlingspartition (64–128 MB). Växlingspartitionen används som virtuell minne och ökar således mången minne som är tillgängligt för systemet. Installationsprogrammet kommer att använda växlingspartitionen så snart som möjligt i installationsprocessen. Observera att mycket användning av växlingsutrymmet kommer att minska ditt systems prestanda och kan leda till hög nyttjandegrad av systemets disk.

Trots dessa åtgärder är det ändå möjligt att ditt system låser sig, att oväntade fel uppstår eller att processer avslutas av kärnan för att systemet har slut på minne (vilket resulterar i ”Out of memory”-meddelanden på VT4 och i systemloggen).

Det har till exempel rapporterats om misslyckanden med att skapa ett stort filsystem av typen ext3 i lågminnesläget, när det finns för lite växlingsutrymme. Om ett stort växlingsutrymme inte hjälper, prova då istället att skapa filsystemet som ext2 (vilket är en basfunktion i installationsprogrammet). Det är möjligt att ändra en ext2-partition till ext3 efter installationen.
Det är möjligt att tvinga installationsprogrammet till att använda en högre lowmem-nivå än den som är baserad på tillgängligt minne genom att använda upptstartsparametern "lowmem" som beskrivs i Avsnitt 5.3.2.

6.3.1.2 Val av lokalanpassningsalternativ

I de flesta fall är de första frågorna som ställs angående valet av lokalanpassningsalternativ som kommer att användas både för installationen och för det installerade systemet. Lokalanpassningsalternativen består av plats och lokaler.

Språket du väljer kommer att användas i resten av installationsprocessen om en översättning av de olika dialogerna finns tillgänglig. Om ingen giltig översättning finns tillgänglig för det valda språket kommer installationsprogrammet att falla tillbaka på engelska.

The selected geographic location (in most cases a country) will be used later in the installation process to select the correct time zone and a Debian mirror appropriate for that country. Language and country together will help determine the default locale for your system and select the correct keyboard layout.

Du kommer först att bli frågad att välja ditt föredragna språk. Namnen på språken listas på både engelska (vänstra sidan) och på själva språket (högra sidan); namnen på högra sidan visas också i språkets korrekt skrift. Listan är sorterad efter de engelska namnen. På toppen av listan finns ett extra alternativ som låter dig att välja lokalen "C" istället för ett språk. Välja lokalen "C" betyder att installationen fortsätter på engelska; det installerade systemet kommer inte att ha något stöd för lokalanpassning eftersom paketet locales inte kommer att installeras.

Om språket bara har ett land associerat med det kommer en lista med länder att visas för kontinenten eller regionen landet tillhör, med det landet som standard. Använd Göm tillbaka alternativet för att välja länder på en annan kontinent.

NOTERA

Det är viktigt att välja det land där du bor eller var du befinner dig eftersom det bestämmer den tidszon som ska konfigureras för det installerade systemet.

If you selected a combination of language and country for which no locale is defined and there exist multiple locales for the language, then the installer will allow you to choose which of those locales you prefer as the default locale for the installed system². In all other cases a default locale will be selected based on the selected language and country.

Alla standardlokaler som valts enligt beskrivningen i föregående stycke kommer att använda UTF-8 som teckenkodning.

If you are installing at low priority, you will have the option of selecting additional locales, including so-called "legacy" locales³, to be generated for the installed system; if you do, you will be asked which of the selected locales should be the default for the installed system.

6.3.1.3 Val av tangentbord

Flytta markören till tangentbordsvalet du önskar och tryck på Enter. Använd pilangenterna för att flytta markören — de är på samma plats för alla tangentbordslayouter på alla språk, så de är oberoende av tangentbordskonfiguration.

6.3.1.4 Leta efter en ISO-avbildning för Debian Installer

När installation görs via metoden hd-media kommer du till en punkt där du behöver hitta och montera iso-avbildningen för Debian Installer för att få tag på resten av installationsfilerna. Komponenten iso-scan gör exakt det.

¹I tekniska termer: där flera lokalanpassningar finns för det språket men med olika landskoder.
²At medium and low priority you can always select your preferred locale from those available for the selected language (if there's more than one).
³Legacy locales are locales which do not use UTF-8, but one of the older standards for character encoding such as ISO 8859-1 (used by West European languages) or EUC-JP (used by Japanese).
KAPITEL 6. ANVÄNDNING AV DEBIAN INSTALLER

6.3. ANVÄNDNING AV INDIVIDUELLA

Först monterar iso-scan automatiskt alla blockenheter (exempelvis partitioner och logiska volymer) som har något känt filsystem på sig och söker sekventiellt efter filnamn som slutar på .iso (eller .ISO för den sakens skull). Tänk på att det första försöket söker endast av filer i rotkatalogen på i första nivån av underkatalogerna (alltså, den hittar /vadsomhelst.iso, /data/vadsomhelst.iso, men inte /data/tmp/vadsomhelst.iso). Efter en iso-avbildning har hittats, kontrollerar iso-scan dess innehåll för att fastställa om avbilden är en giltig Debian-avbild eller inte. I det första fallet är vi klara, i det senare söker iso-scan efter en annan avbild.

Om det tidigare försöket att hitta en iso-avbildning för installationsprogrammet misslyckades, kommer iso-scan att fråga dig om du vill genomföra en mer genomgående sökning. Den här fansen kommer inte bara att se på de översta katalogerna utan gå igenom hela filsystemet.

Om iso-scan inte hittar din iso-avbildning för installationsprogrammet, starta om till ditt ursprungliga operativsystem och kontrollera om avbilden är namngiven korrekt (slutar på .iso), om den är placerad på ett filsystem som känns igen av debian-installer, och om det inte är skadat (validera kontrollsumman). Erfarna Unix-användare kunde ha gjort det här på andra konsollen, utan att starta om.

Note that the partition (or disk) hosting the ISO image can’t be reused during the installation process as it will be in use by the installer. To work-around this, and provided that you have enough system memory, the installer can copy the ISO image into RAM before mounting it. This is controlled by the low priority iso-scan/copy_iso_to_ram debconf question (it is only asked if the memory requirement is met).

6.3.1.5 Konfigurera nätverket

När du kommer till det här steget, om systemet upptäcker att du har fler än en nätverksenhet, kommer du att bli frågad att välja vilken enhet som ska vara ditt primära nätverksgränssnitt, alltså det som du vill använda för installationen. Övriga gränssnitt kommer inte att bli konfigurerade vid den här tidpunkten. Du kan konfigurera ytterligare gränssnitt efter att installationen är färdig; se manualsidan interfaces(5).

6.3.1.5.1 Automatisk nätverkskonfiguration

By default, debian-installer tries to configure your computer’s network automatically as far as possible. If the automatic configuration fails, that may be caused by many factors ranging from an unplugged network cable to missing infrastructure for automatic configuration. For further explanation in case of errors, check the error messages on the fourth console. In any case, you will be asked if you want to retry, or if you want to perform a manual setup. Sometimes the network services used for autoconfiguration can be slow in their responses, so if you are sure everything is in place, simply start the autoconfiguration attempt again. If autoconfiguration fails repeatedly, you can instead choose the manual network setup.

6.3.1.5.2 Manuell nätverkskonfiguration

The manual network setup in turn asks you a number of questions about your network, notably IP address, Netmask, Gateway, Name server addresses, and a Hostname. Moreover, if you have a wireless network interface, you will be asked to provide your Wireless ESSID ("wireless network name") and a WEP key or WPA/WPA2 passphrase. Fill in the answers from Avsnitt 3.3.

6.3.1.5.3 IPv4 och IPv6

Från Debian GNU/Linux 7.0 ("Wheezy") och framåt, debian-installer stödjer IPv6 så väl som "klassisk" IPv4. Alla kombinationer av IPv4 och IPv6 (IPv4-endast, IPv6-endast och dual-stack-konfigurationer) är stödda.

Autoconfiguration for IPv4 is done via DHCP (Dynamic Host Configuration Protocol). Autoconfiguration for IPv6 supports stateless autoconfiguration using NDP (Neighbor Discovery Protocol, including recursive DNS server
6.3.2 Skapa användare och lösenord

6.3.2.1 Ställa in ett lösenord för root

Kontot root kallas även för superanvändare; det är ett konto som kringgår alla säkerhetsskydd på ditt system. Root-kontot bör endast användas för systemadministration och endast användas under en så kort tid som möjligt.

Lösenord som du skapar bör innehålla åtminstone 6 tecken och bör innehålla både versaler och gemener, såväl som specialtecken. Ta extra hänsyn när du ställer in ditt root-lösenord eftersom det är ett sådant kraftfullt konto. Undvik ord som man hittar i ordböcker eller användning av personlig information som lätt kan gissas.

Om någon berättar för dig att de behöver ditt root-lösenord, var extremt försiktig. Du bör normalt sett aldrig ge ut ditt root-lösenord, om du inte administrerar en maskin med fler än en systemadministratör.

In case you do not specify a password for the “root” user here, this account will be disabled but the sudo package will be installed later to enable administrative tasks to be carried out on the new system. By default, the first user created on the system will be allowed to use the sudo command to become root.

6.3.2.2 Skapa en vanlig användare

Varför inte? Tja, en anledning är att undvika att använda roots privilegier är att det är mycket lätt att skada något som root och som inte går att rätta till. En annan anledning är att du kanske luras till att köra en trojansk häst — det är ett program som utnyttjar krafterna av din superanvändare för att åsidosätta säkerheten i ditt system bakom din rygg.

En bra bok om systemadministration i Unix täcker in det här ämnet mer i detalj — om det här är nytt för dig, fundera på att läsa en sådan bok.

Du kommer första att bli frågad efter användarendes fullständiga namn. Sedan kommer du att bli frågad efter ett namn på användarens konto; generellt sett ditt förmann eller något liknande det bör räcka och det är även standardvalet här. Till slut kommer du bli frågad efter ett lösenord för kontot.

Om du vill skapa en annan användare vid en senare punkt efter installationen, använd kommandot adduser.

6.3.3 Konfigurera klockan och tidszon

Installationsprogrammet kommer först att försöka att ansluta till en tidsserver på Internet (med NTP-protokollet) för att ställa in systemtiden korrekt. Om detta inte lyckas kommer installationsprogrammet att anta att den tid och datum som hämtas från systemklockan, när installationssystemet startades upp, är korrekt. Det är inte möjligt att manuellt ställa in systemtiden under installationsprocessen.

Beroende på platsen som valdes i tidigare i installationsprocessen så kommer du kanske att bli visad en lista över tidszoner som är relevanta för den platsen. Om din plats endast har en tidszon och du gör en standardinstallation kommer du inte att bli tillfrågad någonting, systemet antar att det är rätt tidszon.

I expertläge eller när du installerar med medelprioritet har du det extra alternativet att välja ”Coordinated Universal Time” (UTC) som tidszon.

Om du av någon anledning vill ställa in en tidszon för det installerade systemet som inte matchar den valda platsen så finns det två alternativ.

1. Det enklaste alternativet är att bara välja en annan tids-zon efter att installationen har färdigställts och du har startat upp det nya systemet. Kommandot för att göra detta är:

```
# dpkg-reconfigure tzdata
```

2. Alternativet kan tidszonen ställas in i början av installationen genom att skicka parametern `time/zone=värde` när du startar upp installationssystemet. Värdet ska så klart vara en giltig tidszon, till exempel Europe/London eller UTC.

För automatiska installationer kan tidszonen ställas in till önskat värde med förinställning.
6.3.4 Partitionering och val av monteringspunkter

Vid den här tidpunkten, efter identifiering av maskinvara har startats en sista gång, bör debian-installer vara vid sin fulla kraft, anpassad för användarens behov och klar att göra ett riktigt jobb. Precis som titeln på det här avsnittet indikerar är huvudfunktionen för de nästkommande komponenterna partitionering av dina diskar, skapande av filsystem, tilldelning av monteringspunkter och även konfigurering av närliggande saker som krypterade LVM eller RAID-enheter.

Om du känner dig osäker med partitionering eller bara vill veta mer detaljer, se Appendix C.

Först kommer du få möjligheten att automatiskt partitionera antingen en hel disk eller ledigt utrymme på en disk. Det finns också en så kallad ”guidad” partitionering. Om du inte vill partitionera automatiskt, välj Manuellt från menyn.

6.3.4.1 Partitionsflaggor som stöds

The partitioner used in debian-installer is fairly versatile. It allows to create many different partitioning schemes, using various partition tables, file systems and advanced block devices.

Exactly which options are available depends mainly on the architecture, but also on other factors. For example, on systems with limited internal memory some options may not be available. Defaults may vary as well. The type of partition table used by default can for example be different for large capacity hard disks than for smaller hard disks. Some options can only be changed when installing at medium or low debconf priority; at higher priorities sensible defaults will be used.

Installationsprogrammet har stöd för olika former av avancerad partitionering och användningen av lagringsenheter, vilket i många fall kan kombineras.

- Logisk volymhantering (LVM)
- Programvara-RAID
- Kryptering
- Multipath(experimentell)

Se vår Wiki för mer information. Stöd för multipath är för närvarande endast tillgänglig om det är aktiverat när installationsprogrammet startas.

Följande filsystem stöds.

- ext2, ext3, ext4
 Standardfilsystemet som väljs i de flesta fall är ext4; för /boot partitionen så väljs ext2 som standard när guidad partitionering används.
- jfs (inte tillgänglig på alla arkitekturer)
- xfs (inte tillgänglig på alla arkitekturer)
- reiserfs (valfri; inte tillgänglig på alla arkitekturer)
- FAT16, FAT32

The partitioner accepts units as power-of-ten (1 MB = 1000 kB = 1000000 B), as well as power-of-two (1 MiB = 1024 kiB = 1048576 B). Unit prefixes are supported until EB/EiB (exabyte/exbibyte).

6.3.4.2 Guidad partitionering

Om du väljer guidad partitionering har du tre alternativ: skapa partitioner direkt på hårddisken (klassisk metod), skapa dem med logisk volymhantering (LVM), eller att skapa dem med krypterad LVM⁴.

⁴Installationsprogrammet kommer att kryptera LVM-volymgruppen med en 256 bitars AES-nyckel och använder kärnans stöd för "dm-crypt".
Alternativet att använda (krypterad) LVM kanske inte är tillgängligt på alla arkitekturen.

När LVM eller krypterad LVM används kommer installationsprogrammet att skapa de flesta partitioner inne i en stor partition; fördelen med den här metoden är att partitioner inne i den här stora partitionen kan man enkelt ändra storlek på senare. I fallet med krypterad LVM, kommer den stora partitionen inte vara läsbar utan att känna till en speciell nyckelfras, vilket ger extra säkerhet för ditt (personliga) data.

När krypterad LVM används, kommer installationsprogrammet även att automatiskt radera disken genom att skriva slumpmässig data till den. Det här ökar på säkerheten ytterligare (och gör det omöjligt att se vilka delar av disken som används och ser även till att eventuella spår av tidigare installationer raderas), men kan ta lite tid beroende på storleken på din disk.

Om du väljer guidad partitionering med LVM eller krypterad LVM, kommer vissa ändringar i partitionstabellen att behöva skrivas till den valda disken när LVM konfigureras. Dessa ändringar raderar effektivt all data som för närvarande finns på den valda hårddisken och du kommer inte kunna ångra den här åtgärden. Dock kommer installationsprogrammet fråga dig att bekräfta dessa ändringar innan de skrivs till disken.

Allt data på disken du har valt kommer eventuellt att föröras, men du kommer alltid att bli tillfrågad att bekräfta de ändringar som kommer att skrivas till disken. Om du har valt klassisk metod för partitioneringen, kommer du kunna ångra det. Men när (krypterad) LVM används är detta inte möjligt.

Härnäst kommer du att kunna välja från de planer som listas i tabellen nedan. Alla planer har sina fördelar och nackdelar, vissa av dem diskuteras i Appendix C. Om du är osäker, välj den första. Tänk dock på att guidad partitionering behöver en viss minimal mängd av ledigt utrymme att arbeta med. Om du inte ger den åtminstone 1 GB utrymme (beroende på vald plan), kommer den guidade partitioneringen att misslyckas.

<table>
<thead>
<tr>
<th>Partitioneringsplan</th>
<th>Minsta utrymme</th>
<th>Skapade partitioner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alla filer på en partition</td>
<td>600 MB</td>
<td>/, växl</td>
</tr>
<tr>
<td>Separat partition för /home</td>
<td>500 MB</td>
<td>/, /home, växl</td>
</tr>
<tr>
<td>Separata partitioner för /home, /var och /tmp</td>
<td>1 GB</td>
<td>/, /home, /var, /tmp, växl</td>
</tr>
</tbody>
</table>

Om du väljer guidad partitionering med (krypterad) LVM kommer installationsprogrammet även att skapa en separat partition för /boot. De andra partitionerna, inklusive växlingsutrymmet, kommer att skapas inom LVM-partitionen.

Efter du valt en plan kommer nästa skärm att visa din nya partitionstabell, inklusive information om hur och om partitionerna kommer att formateras och var de kommer att monteras.

Listan över partitioner kan se ut som den här:

```bash
SCSI1 (0,0,0) (sda) - 6.4 GB WDC AC36400L
  #1 primär 16.4 MB B f ext2 /boot
  #2 primär 551.0 MB växl växl
  #3 primär 5.8 GB ntfs
  pri/log 8.2 MB LEDIGT UTRYMME

SCSI2 (1,0,0) (sdb) - 80.0 GB ST380021A
  #1 primär 15.9 MB ext3
```
KAPITEL 6. ANVÄNDNING AV DEBIAN INSTALLER

6.3. ANVÄNDNING AV INDIVIDUELLA...
Fördelarna som du får beror på den typ av MD-enhet du skapar. För närvarande stöds:

RAID0 Är huvudsakligen riktad mot prestanda. RAID0 delar upp all inkommande data i *stripes* och distribuerar dem jämnt över alla diskar i kedjan. Det här kan öka hastigheten på läs- och skrivoperationer men när en av diskarna går sönder kommer du att förlora *allting* (delar av informationen finns fortfarande på den friska disken (eller flera), den andra delen *fanns* på den trasiga disken).

Typisk användning för RAID0 är en partition för videoredigeringsprogram.

RAID1 Är lämplig för konfigurationer där tillförlitlighet är ledordet. Den innehåller flera (vanligtvis två) lika stora partitioner där varje partition innehåller exakt samma data. Det här betyder tre saker. För det första, om en av dina diskar går sönder, kommer du fortfarande att ha data speglad på de återstående diskarna. För det andra, du kan endast använda en liten del av den tillgängliga kapaciteten (mer specifikt, det är storleken på den minsta partitionen i RAID-kedjan). För det tredje, filläsningsställning är lastbalanserade mellan diskarna, vilket kan öka prestandan på en server, såsom en filserver, som brukar vara belastad med fler diskläsnings och skrivningar.

Du kan även ha en reservdisk i kedjan som kommer att ta över platsen för en trasig disk om något går fel.

RAID5 Är en bra kompromiss mellan hastighet, tillförlitlighet och dataredundans. RAID5 delar upp all inkommande data i stripes och distribuerar dem jämnt över alla utan en disk (liknande RAID0). Tvärtom RAID0 beräknar även RAID5 *paritetsinformation*, som skrivs på den återstående disken. Paritetsdisken är inte statistisk (det skulle kallas för RAID4), utan förändras periodvis, så att paritetsinformationen distribueras jämnt över alla diskar. När en av diskarna går sönder, kan den saknade delen av informationen beräknas utifrån det återstående datat och dess paritet. RAID5 måste innehålla åtminstone tre aktiva partitioner. Du kan även ha en reservdisk i kedjan som kommer att ta över platsen för en trasig disk om något går fel.

Som du kan se, RAID5 har tillförlitlighet som liknar den för RAID1 men erbjuder mindre redundans. Å andra sidan är den kanske lite långsammare på skrivoperationer än RAID0 på grund av beräkningarna av paritetsinformation.

RAID6 Liknar RAID5 förutom att den använder två paritetsdiskar istället för en.

En RAID6-kedja kan överleva upp till två trasiga diskar.

RAID10 kan användas för att uppnå tillförlitlighet och redundans utan nackdelen att behöva beräkna paritetsinformation.

För att summera:

<table>
<thead>
<tr>
<th>Typ</th>
<th>Minimum antal enheter</th>
<th>Reservenhet</th>
<th>Överlever diskfel?</th>
<th>Tillgänglig plats</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID0</td>
<td>2</td>
<td>nej</td>
<td>nej</td>
<td>Storlek för den minsta partitionen multiplicerat med antalet enheter i RAID</td>
</tr>
<tr>
<td>RAID1</td>
<td>2</td>
<td>valfri</td>
<td>ja</td>
<td>Storlek för den minsta partitionen i RAID</td>
</tr>
<tr>
<td>RAID5</td>
<td>3</td>
<td>valfri</td>
<td>ja</td>
<td>Storlek för den minsta partitionen multiplicerat med (antalet enheter i RAID minus en)</td>
</tr>
<tr>
<td>RAID6</td>
<td>4</td>
<td>valfri</td>
<td>ja</td>
<td>Storlek för den minsta partitionen multiplicerat med (antalet enheter i RAID minus två)</td>
</tr>
<tr>
<td>Typ</td>
<td>Minimum antal enheter</td>
<td>Reservenhet</td>
<td>Överlever diskfel?</td>
<td>Tillgänglig plats</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>--------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>RAID10</td>
<td>2</td>
<td>valfri</td>
<td>ja</td>
<td>Totalen för alla partitioner delat med antalet delkopior (standard är två)</td>
</tr>
</tbody>
</table>

Om du vill veta mer om programvaru-RAID, ta en titt på [Software RAID HOWTO](#). För att skapa en MD-enhet behöver du markera de partitioner som den ska innehålla markerade för användning i ett RAID. (Det här gör man i `partman` i menyen Partitionsinställningar där du bör välja Använd som: → fysisk volym för RAID.)

NOTERA

- RAID0 är enkel — du kommer att visas en lista över tillgängliga RAID-partitioner och du behöver endast välja de partitioner som ska utgöra MD-enheten.
- RAID5 har en liknande inställningsprocedur som RAID1 med undantaget att du behöver använda åtminstone tre aktiva partitioner.
- RAID6 har en liknande inställningsprocedur som RAID1 med undantaget att du behöver använda åtminstone fyra aktiva partitioner.
- RAID10 har också en liknande inställningsprocedur som RAID1 förutom i expertläget. I expertläget kommer debian-installer att fråga dig om layouten. Layouten har två delar. Den första delen är layouttypen. Den är antingen \(n \) (för nära kopior), \(f \) (för fjärran kopior) eller \(c \) (för positionskopior). Den andra delen är antalet kopior som ska göras av datat. Det måste finnas minst så många aktiva enheter så att var och en av kopiorna kan distribueras till olika diskar.

Det är fullt möjligt att ha flera MD-typer samtidigt. Till exempel om du har tre stycken 200 GB stora hårddiskar dedicerade till MD, där varje hårddisk innehåller två stycken 100 GB stora partitioner, kan du kombinera de första partitionerna på alla tre hårddiskar till en RAID0 (300 GB stor för snabb videoredigering) och använda de övriga tre partitionerna (2 aktiva och 1 reserv) för RAID1 (ganska tillförlitlig 100 GB stor partition för `/home`).

Efter att du har konfigurerat MD-enheterna efter dina behov kan du välja Slutför i `partman` för att återgå till `partman` för att skapa filsystem på dina nya MD-enheter och ge dem de vanliga attributen såsom monteringspunkter.

Konfigurering av den logiska volymhanteraren (LVM)

Om du arbetar med datorer som en systemadministratör eller ”avancerad” användare har du säkert upplevt en situation där någon diskpartition (oftast den mest viktiga) fått slut på ledigt utrymme medan någon annan partition haft otroligt mycket oanvänd utrymme och du har behövt att hantera den här situationen genom att flytta runt saker, symboliska länkar, etc.
För att undvika de beskrivna situationen kan du använda logisk volymhantering (LVM). Med LVM kan du kort sagt kombinera dina partitioner (fysiska volymer på LVM-språk) för att forma en virtuell disk (en så kallad volymgrupp) som sedan kan delas upp i virtuella partitioner (logiska volymer). Meningen är att logiska volymer (och så klart de underliggande volymgrupperna) kan spänna över ett flertal fysiska diskar.

Nu när du har insett att du behöver mer utrymme för din gamla 160 GB stora /home-partition kan du helt enkelt lägga till en ny 300 GB stor disk till datorn, låta den bli medlem av din befintliga volymgrupp och sedan förändra storleken på den logiska volymen som tillhandahåller fylldisken för /home och voilà — dina användare har mer plats igen på sin nya 460 GB stora partition. Det här exemplet är så klart lite grovt förenklat. Om du inte har läst den än bör du konsultera LVM HOWTO.

LVM-konfiguration i debian-installer är ganska enkel och stöds fullständigt i partman. Först måste du markera de partitioner som ska användas som fysiska volymer för LVM. Det här görs i meny Partitionsinställningar där du ska välja Använd som: → fysisk volym för LVM.

WARNING

Be aware: the new LVM setup will destroy all data on all partitions marked with an LVM type code. So, if you already have an LVM on some of your disks, and want to install Debian additionally to that machine, the old (already existing) LVM will be wiped out! The same counts for partitions, which are (for any reason) misleadingly marked with an LVM type code, but contain something different (like an encrypted volume). You need to remove such disks from the system, before performing a new LVM setup!

- Visa konfigurationsdetaljer: visar LVM-enhetsstrukturen, namn och storlekar på logiska volymer och annat
- Skapa volymgrupp
- Skapa logisk volym
- Ta bort volymgrupp
- Ta bort logisk volym
- Utöka volymgrupp
- Minska volymgrupp
- Slutför: återvänd till huvudskärmen för partman

Använd alternativen i den meny för att först skapa en volymgrupp och sedan skapa dina logiska volymer i den. Efter du återvänt till huvudskärmen i partman kommer du att se skapade logiska volymer på samma sätt som vanliga partitioner (och du bör även behandla dem som det).

6.3.4.6 Konfigurera krypterade volymer

The two most important partitions to encrypt are: the home partition, where your private data resides, and the swap partition, where sensitive data might be stored temporarily during operation. Of course, nothing prevents you from encrypting any other partitions that might be of interest. For example /var where database servers, mail servers or print servers store their data, or /tmp which is used by various programs to store potentially interesting temporary
files. Some people may even want to encrypt their whole system. Generally the only exception here is the /boot partition which must remain unencrypted, because historically there was no way to load the kernel from an encrypted partition. (GRUB is now able to do that, but `debian-installer` currently lacks native support for encrypted /boot. The setup is therefore covered in a separate document.)

NOTERA

Observera att prestandan för krypterade partitioner kommer att vara mindre än för okrypterade eftersom datan behöver dekrypteras eller krypteras för varje läsning eller skrivning. Prestandaskillnaden beror på din processorhastighet, vald kryptering och nyckellängd.

För att använda kryptering måste du skapa en ny partition genom att välja ett fritt utrymme i huvudpartitioneringsmenyn. Ett annat alternativ är att välja en befintlig partition (t.ex. en vanlig partition, en logisk LVM-volym eller en RAID-volym). I menyn Partitionsinställningar behöver du välja fysisk volym för kryptering för alternativet Använd som:

Krypteringsmetoden som stöds av `debian-installer` är *dm-crypt* (ingår i nyare Linux-kärnor, som också kan vara lämpligt för fysiska LVM-volymer).

Låt oss ta en titt på tillgängliga alternativ när du väljer kryptering via Device-mapper (*dm-crypt*). Som vanligt: när du är osäker, använd standardvalen därför att de har noga vals ut med tanke på säkerhet.

Kryptering:

Nyckellängd: 256 Här kan du ange längden för krypteringsnyckeln. En större nyckellängd ökar generellt styrkan på krypteringen. På andra sidan, ökning av längden på nyckeln har en negativ inverkan på prestandan. Tillgängliga nyckellängder är olika beroende på valt chiffer.

IV-algoritm: *xts-plain64* *Initieringsvektorn* eller *IV*-algoritmus används i kryptografi för att se till att tillämpningen av chiffret på samma klartextdata med samma nyckel, alltid producera en unik chiffertext. Idén är att förhindra en attackerare från att kunna utläsa information från upprepade mönster i krypterat data.

Det minst säkra alternativet för kända attacker av de som tillhandahålls är standardvälet *xts-plain64*. Använd endast de andra alternativen när du behöver kompatibilitet med tidigare installerade system som inte kan använda nyare algoritmer.

Krypteringsnyckel: *Lösenfras* Här kan du välja typ av krypteringsnyckel för denna partition.

Lösenfras Krypteringsnyckeln kommer att beräknas med en lösenfras som basis och som du kan ange senare i processen.

Slumpmässig nyckel En ny krypteringsnyckel kommer att genereras från slumpmässigt data varje gång du för söker att ta fram den krypterade partitionen. Med andra ord: vid varje nedstäning av systemet kommer innehållet på partitionen att föröra eftersom nyckeln raderas från minnet. (Så klart, du kan försöka att ta fram nyckeln via en brute force-attack, men såvida det inte finns en okänd särbarhet i chifferalgoritmen kommer detta inte kunna göras under vår livstid.)

Slumpmässiga nycklar är användbara för växlingspartitioner därför att du inte behöver bry dig om att komma ihåg lösenfrasen eller att radera känslig information från växlingspartitionen före nedstäning av din dator. Dock betyder det även att du inte kommer att kunna använda funktionaltiet som ”suspend-to-disk” som erbjuds av nyare Linux-kärnor eftersom det blir omöjligt (under en efterföljande uppstart) att återhämta suspenderat data som skrivits på växlingspartitionen.

Radera data: *ja* Bestämmer huruvida innehållet på denna partition ska skivas över med slumpmässigt data före krypteringen ställs in. Detta rekommenderas därför att det kan annars vara möjligt för en attackerare att avgöra vilka delar av partitionen som används och vilka som inte används. Dessutom blir det svårt att återskapa data som partitionen innehållit tidigare.

6. Att använda en lösenfras som nyckel betyder att partitionen måste konfigureras med *LUKS*.

KAPITEL 6. ANVÄNDNING AV DEBIAN INSTALLER
6.3. ANVÄNDNING AV INDIVIDUELLA...

Härnäst kommer du att bli frågad att ange en lösenfras för de partitioner som konfigurerats att använda en. Bra lösenfraser bör vara längre än 8 tecken, bör innehålla en blandning av bokstäver, siffror och andra tecken och bör inte innehålla vanliga ord som hittas i ordböcker eller information som lätt kan kopplas samman med dig (såsom födelsedatum, eventuell hobby, namn på husdjur, namn på familjemedlemmar eller närstående, etc.).

Varning

Om du väljer att använda andra metoder än ett lösenord för att skapa krypteringsnycklar, kan de genereras nu. På grund av att kärnan kanske inte har samlat in en tillräckligt mängd av slumpmässigt data så tidigt i installationen kan denna process ta lång tid. Du kan hjälpa till att snabbare på processen genom att generera slumpmässigt data: t.ex. genom att trycka slumpmässigt valda tangenter eller genom att växla till skälet på den andra virtuella konsollen och generera lite nätverk- och disktrafik (hämna några filer, skicka stora filer till /dev/null, etc.). Detta kommer att uppprepas för varje partition som ska krypteras.

After returning to the main partitioning menu, you will see all encrypted volumes as additional partitions which can be configured in the same way as ordinary partitions. The following example shows a volume encrypted via dm-crypt.

```
Encrypted volume (sda2_crypt) - 115.1 GB Linux device-mapper
   #1 115.1 GB F ext3
```

Now is the time to assign mount points to the volumes and optionally change the file system types if the defaults do not suit you.

En sak att notera här är identifierarna inom parantes (sda2_crypt och i detta fall) samt monteringspunkterna du har tilldelat varje krypterad volym. Du kommer att behöva denna information senare vid uppstart av det nya systemet. Skillnaderna mellan en vanlig uppfartsprocess och en uppstartsprocess med kryptering beskrivs senare i Avsnitt 7.2.

När du är nöjd med partitioneringsplanen, fortsätt med installationen.

6.3.5 Installation av grundsystemet

Även om det här steget är det minst problematiska så tar det en större del av installationen på grund av att det hämtar, validierar och packar upp hela grundsystemet. Om du har en långsam dator eller nätverksanslutning kan det här ta en stund.

Under installationen av grundsystemet, kommer meddelanden om uppackning och konfigurering omdirigeras till tty4. Du kan komma åt den här terminalen genom att trycka Vänster Alt-F4; gå tillbaka till huvudprocessen för installationsprogrammet med Vänster Alt-F1.

De olika meddelandena om uppackning/konfigurering som genereras under den här fasen, sparas i /var/log/syslog. Du kan kontrollera dem där om installationen genomförts över en seriokonsoll.

When packages are installed using the package management system, it will by default also install packages that are recommended by those packages. Recommended packages are not strictly required for the core functionality of the selected software, but they do enhance that software and should, in the view of the package maintainers, normally be installed together with that software.
6.3.6 Installera ytterligare programvara

6.3.6.1 Konfigurera apt

One of the tools used to install packages on a Debian GNU/Linux system is the program apt, from the apt package⁸. Other front-ends for package management, like aptitude and synaptic, are also in use. These front-ends are recommended for new users, since they integrate some additional features (package searching and status checks) in a nice user interface.

apt måste konfigureras så att den vet var den ska hämta paket ifrån. Resultat av den här konfigurationen skrivs till filen /etc/apt/sources.list och du kan undersöka och redigera den för att passa dina behov efter att installationen är färdig.

Om du installerar med standardprioritet kommer installationsprogrammet att ta hand om det mesta av konfigurationen automatiskt, baserat på installationsmetoden som du använder och om möjligt använda val gjorda tidigare i installationen. I de flesta fall kommer installationsprogrammet att automatiskt lägga till en säkerhetsspegel och, om du installerar den stabila distributionen, en spegel för uppdateringstjänsten ”stable-updates”.

If you are installing at a lower priority (e.g. in expert mode), you will be able to make more decisions yourself. You can choose whether or not to use the security and/or stable-updates services, and you can choose to add packages from the ”contrib”, ”non-free”, and ”non-free-firmware” sections of the archive.

6.3.6.1.1 Installera från fler än en cd eller dvd-avbild

Om du installerar från en cd eller dvd-avbild som är del av en större uppsättning så kommer installationsprogrammet att fråga om du vill söka igenom ytterligare installationsmedia. Om du har flera media tillgängliga kommer du antagligen att vilja göra det så att installationsprogrammet kan använda paketen som finns på dem.

Om du inte har fler cd eller dvd-media så är det inget problem: användning av dem är inte nödvändigt. Om du i tillägg till det inte använder en nätverksspegel (som förklaras i nästa avsnitt) kandet betyda att inte alla paket som tillhör funktionerna kan installeras som du har valt i nästa steg i installationen.

If you do scan multiple installation media, the installer will prompt you to exchange them when it needs packages from one that isn’t currently in the drive. Note that only discs that belong to the same set should be scanned. The

⁸Note that the program which actually installs the packages is called dpkg. However, this program is more of a low-level tool. apt is a higher-level tool, which will invoke dpkg as appropriate. It knows how to retrieve packages from your installation media, the network, or wherever. It is also able to automatically install other packages which are required to make the package you’re trying to install work correctly.
order in which they are scanned does not really matter, but scanning them in ascending order will reduce the chance
of mistakes.

6.3.6.1.2 Använda en nätverksspegel
En fråga som kommer att ställas under de flesta installationer är om en nätverksspegel ska användas som en paketkälla.
I de flesta fall är standardsvaret ett bra svar men det finns några undantag.

Om du installerar från en komplett cd-avbildning, är användningen av en nätverksspegel inte nödvändig, men det rekommenderas starkt eftersom en enda cd-avbildning endast innehåller ett ganska begränsat antal paket. Om du har en begränsad internetslutning kan det fortfarande vara bäst att inte välja en nätverksspegel här, utan att färdigställa installationen med endast det som finns tillgängliga på cd-avbildning och installera ytterligare paket efter installationen (alltså efter att du har startat upp det nya systemet).

Om du installerar från DVD kommer de paket som behövs under installationen att finnas på den första dvd-skivan. Avbild Användning av en nätverksspegel är valfritt.

En fördel med att lägga till en nätverksspegel är att uppdateringar, som har skett sedan cd/dvd-avbilderna skapades och har inkluderats i en punktutgåva, kommer att bli tillgängliga för installation, och därigenom förlängna livslängden för din cd/dvd-uppställning utan att kompromittera säkerheten eller stabiliteten för det installerade systemet.

För att summera: välja en nätverksspegel är oftast en bra idé, förutom när du har en långsom internetslutning. Om den aktuella versionen för ett paket finns tillgänglig på installationsmedia, så kommer installationsprogrammet att använda den. Mängden data som kommer att hämtas ner om du väljer en spegel beror på

1. vilka paket som behövs för dessa funktioner,
2. vilka av dessa paket som finns på de installationsmedia som du har sökt igenom, samt
3. huruvida några uppdaterade versioner av paketen som inkluderats på installationsmedia finns tillgängliga från en spegelserver (anteningen en vanlig paketspeglar eller en spegelserver för säkerhet eller stabila uppdateringar).

Observera att sista punkten betyder, även om du väljer att inte använda en nätverksspegel, att vissa paket kan hämtas ner från Internet ändå om det finns en säkerhets eller stabila uppdatering tillgänglig för dem och att dessa tjänster har konfigurerats.

6.3.6.1.3 Välj en nätverksspegel
Om du inte väljer att använda en nätverksspegel, kommer du att få en lista över nätverksspeglar baserat på ditt landsval tidigare i installationsprocessen. Att välja standard erbjuds är vanligtvis bra.

En spegel kan också specifceras för hand genom att välja ”ang information manuellt”Du kan sedan ange ett spegelvärdnamn och ett valfritt portnummer. Detta måste faktiskt vara en URL bas, dvs när man anger en IPv6-adress måste man till exempel lägga till hakparenteser runt den t.ex ”[2001:db8::1]”.

If your computer is on an IPv6-only network (which is probably not the case for the vast majority of users), using the default mirror for your country might not work. All the mirrors in the list are reachable via IPv4, but only some of them can be used via IPv6. As connectivity of individual mirrors can change over time, this information is not available in the installer. If there is no IPv6 connectivity for the default mirror for your country, you can either try some of the other mirrors offered to you or choose the ”enter information manually” option. You can then specify ”ftp.ipv6.debian.org” as the mirror name, which is an alias for a mirror available via IPv6, although it will probably not be the fastest possible one.

6.3.6.2 Val och installation av programvara
Under installationsprocessen får du möjligheten att välja ytterligare programvara att installera. Hellre än att välja individuella programvarupaket från de 95196 paket som finns tillgängliga fokuserar det här steget av installationsprocessen på att välja och installera fördefinierade samlingar av programvara för att snabbt ställa in datorn att genomföra olika funktioner.
De här funktionerna representerar löst ett antal olika jobb eller saker du vill utföra med din dator, såsom ”Skrivbordsmiljö”, ”Webbserver”, eller ”SSHserver”. Avsnitt D.2 listar utrymmet som krävs för de tillgängliga funktionerna.

Vissa funktioner kan vara förvalda baserade på egenskaperna för datorn som du installerar. Om du inte godkänner de här valen kan du avmarkera dem. Du kan även välja att inte installera några funktioner alls.

Tips

I standardanvändargränssnittet för installationsprogrammet kan du använda blankslag för att växla marking av en funktion.

Notera

The ”Desktop environment” task will install a graphical desktop environment.

By default, debian-installer installs the desktop environment. It is possible to interactively select a different desktop environment during the installation. It is also possible to install multiple desktops, but some combinations of desktop may not be co-installable.

Note that this will only work if the packages needed for the desired desktop environment are actually available. If you are installing using a single full CD image, they will possibly need to be downloaded from a network mirror as they might not be available on the CD image due to its limited amount of space. Installing any of the available desktop environments this way should work fine if you are using a DVD image or any other installation method.

De olika serveruppgifterna installerar programvara ungefär enligt följande. Webbserver: apache2, SSH server: openssh.

Funktionen ”Standardsystem” kommer att installera alla paket som har prioriteten ”standard”. Detta inkluderar en mängd vanliga verktyg som normalt finns tillgängliga på de flesta Linux- eller Unix-system. Du bör lämna denna funktion markeras såvida inte du vet vad du gör och vill ha ett mycket minimalt system.

Om en standardlokal annan än lokalen ”C” väljs under språkvalen så kommer tasksel att kontrollera om några lokalanpassningsfunktioner har definierats för den lokalen och kommer sedan automatiskt att försöka installera relevanta lokalanpassningspaket. Detta inkluderar till exempel paket som innehåller ordlistor eller speciella typsnitt för ditt språk. Om en skrivbordsmiljö har valts så kommer den även att installera lämpliga lokalanpassningspaket för det (om det finns några).

När du har valt dina funktioner, välj Fortsätt. Vid det här tillfället kommer apt att installera paketen som är en del av de funktioner som du har valt. Om ett specifikt program behöver mer information från användare så kommer den att fråga dig under denna process.

Även när paket har inkluderats på cd-skivan, kan installationsprogrammet fortfarande behöva hämta dem från spegeln om den tillgängliga versionen på spegeln är nyare än den som inkluderats på cd-skivan. Om du installerar den stabila utgåvan, kan det här hända efter en punktutgåva (en uppdatering av den ursprungliga stabila utgåvan); om du installerar testutgåvan kommer det här att hända om du använder en äldre avbildning.

6.3.7 Gör ditt system klart för uppstart

If you are installing a diskless workstation, obviously, booting off the local disk isn’t a meaningful option, and this step will be skipped.

6.3.7.1 Sökning efter andra operativsystem

Innan en starthanterare blir installerad kommer installationsprogrammet att försöka att söka efter andra operativsystem som finns installerade på maskinen. Om det hittar ett operativsystem som stöds kommer du bli informerad om detta under installationssteget för starthanteraren och datorn kommer att bli konfigurerad att starta upp det här andra operativsystemet i tillägg till Debian.

Observera att uppstart av flera operativsystem på samma maskin fortfarande är lite av svart magi. Det automatiska stödet för identifiering och inställning av starthanterare för att starta upp andra operativsystem varierar mellan arkitekturer och även för underarkitekturer. Om det inte fungerar bör du konsultera dokumentationen för din starthanterare för mer information.

6.3.7.2 Installera starthanteraren Grub på en hårddisk

Den starthanterare som är standard på ppc64el kallas för ”grub”. Grub är en flexibel och robust starthanterare och ett bra standardval både för nybörjare och erfarna användare.

By default, Grub will be installed into the PReP partition, where it will take over complete control of the boot process.

6.3.7.3 Fortsätt utan starthanterare

Det här alternativet kan användas för att färdigställa installationen även om inte starthanterare kommer att installeras, antingen på grund av att arkitekturer/underarkitekturer inte erbjuder en eller på grund av att ingen önskas (exempelvis, du vill använda den befintliga starthanteraren).

6.3.8 Färdigställ installationen

Det här är det sista steget i Debians installationsprocess under vilket installationsprogrammet kommer att göra de sista justeringarna. Det består mestadels av att knyta ihop allt efter debian-installer.

6.3.8.1 Ställa in systemklockan

Installationsprogrammet kan fråga dig om datorns klocka är inställd till UTC. Normalt sett undviks den här frågan om möjligt och installationsprogrammet försöker lista ut om klockan är inställd till UTC baserat på vilka andra operativsystem som är installerade.

I expertläget kan du alltid välja om eller inte klockan är inställd till UTC.

Vid det här tillfället kommer debian-installer även att försöka spara den aktuella tiden till systemets hårdvaruklocka. Det här görs antingen i UTC eller lokal tid, beroende på det val som tidigare gjordes.

6.3.8.2 Starta om systemet

Du kommer att bli uppmanad att mata ut uppstartsmediumet (cd-skiva, USB minne, etc) som du använde för att starta upp installationsprogrammet med. Efter det kommer systemet att startas om till ditt nya Debian-system.

6.3.9 Felsökning

Komponenterna som listas i det här avsnittet är normalt sett inte inblandade i installationsprocessen men väntar i bakgrunden för att hjälpa användaren om något går fel.
6.3.9.1 Spara installationsloggar
Om installationen lyckas, kommer loggfilerna som skapas under installationsprocessen att automatiskt sparas till /var/log/installer/ på ditt nya Debian-system.

6.3.9.2 Användning av skälet och visning av loggar
Om du inte kan växla mellan konsollerna finns även alternativet Starta ett skäl i huvudmenyn som kan användas för att starta ett skäl. Du kan komma till huvudmenyn från de flesta dialoger genom att använda Bakåtknappen eller flera gånger. Ange exit för att stänga skälet och återvända till installationsprogrammet.

Vid den här tidpunkten har du startat upp från RAM-disken, och det finns en begränsad uppsättning Unix-verktyg tillgängliga för dig. Du kan se vilka program som finns tillgängliga med kommandot ls /bin /sbin /usr/bin /usr/sbin och genom att skriva help. Skälet är ett Bourne-skalklon kallat ash och har några trevliga funktioner som till exempel automatisk komplettering och historik.

För att redigera och visa filer, använd textredigeraren nano. Loggfiler för installationssystemet kan hittas i katalogen /var/log.

NOTERA

Även om du kan göra i stort sett allt ett skäl som de tillgängliga kommandona tillåter dig att göra, är alternativet att använda ett skäl egentliga endast där om någotintande skulle gå fel och att du behöver felsöka.

Göra saker manuellt från skälet kan störa installationsprocessen och resultera i fel eller en ofullständig installation. Specifikt bör du alltid låta installationsprogrammet aktivera din växlingspartition och inte göra det själv från ett skäl.

6.3.10 Installation over network-console
En av de mer intressanta komponenterna är network-console. Den låter dig göra en stor del av installationen över nätverket via SSH. Användningen av nätverk antyder att du måste genomföra de första stegen av installationen från konsollen, åtminstone till punkten där nätverket ställs in. (Dock kan du automatisera den delen med Avsnitt 4.5.)
Den här komponenten läses inte in i huvudmenyn som standard så du måste specifikt begära den. Om du installerar från ett optiskt media behöver du starta upp med mediumprioritet eller annars kan du starta huvudmenyn och välja Läs in installationskomponenter från installationsmedia och från listan av ytterligare komponenter välja network-console: Fortsätt installationen genom fjärråtkomst med SSH. En lyckad inläsning indikeras av en ny menypost kallad Fortsätt installationen genom fjärråtkomst med SSH.

Bestämmer du dig för att fortsätta med installationen lokalt kan du alltid trycka Enter, vilket tar dig tillbaka till huvudmenyn, där du kan välja en annan komponent.
Låt oss nu hoppa över till andra sidan av kabeln. Som en förutsättning behöver du konfigurera din terminal för teckenkoden UTF-8, på grund av att installationssystemet använder den kodningen. Om du inte gör det kommer fjärrinstallation fortfarande vara möjlig men du kommer att uppleva konstiga skärmproblemer med förstärda dialogrutor eller oläsbare tecken som inte är ascii. Etablera en anslutning till installationssystemet är så enkelt som att ange:

```
$ ssh -l installer installationsvärd
```

¹⁰Alltså: tryck ner Alt-tangenten på vänster sida av blankste-g-tangenten och funktionstangenten F2 samtidigt.

Notera

Du kanske kan förhindra att anslutningen bryts genom att lägga till flaggan `-o ServerAliveInterval=värd` när ssh-anslutningen startas, eller genom att lägga till den flaggan i din konfigurationsfil för ssh. Observera dock att i vissa fall kan denna flagga även orsaka att en anslutning bryts (till exempel om keep-alive-paket skickas under en kort tid med nätverkproblem, från vilken ssh själv skulle ha återhämtat sig), så den ska endast användas när den behövs.

Notera

Om du installerar flera datorer i turordning och de råkar ha samma IP-adress eller värdnamn kommer ssh att vägra att ansluta till en sådan värd. Anledningen är att den kommer att ha ett olikt fingeravtryck. vilket är ett vanligt tecken på en spoofing-attack. Om du är säker på att det inte är fallet, behöver du ta bort den relevanta raden från ~/.ssh/known_hosts och försöka igen.

> Om du installerar flera datorer i turordning och de råkar ha samma IP-adress eller värdnamn kommer ssh att vägra att ansluta till en sådan värd. Anledningen är att den kommer att ha ett olikt fingeravtryck vilket är ett vanligt tecken på en spoofing-attack. Om du är säker på att det inte är fallet, behöver du ta bort den relevanta raden från ~/.ssh/known_hosts och försöka igen.

Varning

Efter att du har startat fjärrinstallationen över SSH bör du inte gå tillbaka till installationssessionen som kör på den lokala konsolen. Om du gör det kan databasen som tillhandahåller konfigurationen av det nya systemet skadas. Det i sin tur kan resultera i en misslyckad installation eller problem med det installerade systemet.

6.4 Läsa in saknad fast programvara

Vissa enheter kräver att fast programvara läses in, vilket beskrivs i Avsnitt 2.2. I de flesta fall kommer enheten inte att fungera alls om inte den fasta programvaran finns tillgänglig; ibland kan grundläggande funktionalitet erbjudas om den fasta programvaran saknas och att den fasta programvaran endast behövs för att aktivera ytterligare funktioner.

Starting with Debian GNU/Linux 12.0, following the 2022 General Resolution about non-free firmware, official installation images (like netinst) can include non-free firmware packages. Even with those firmware packages available, some firmware files might still be missing. Or one might be using netboot files, which don’t include firmware packages.

Om en enhet begär fast programvara som inte finns tillgänglig kommer debian-installer att visa en dialogruta som erbjuder att läsa in den saknade fasta programvaran. Om detta alternativ väljs kommer debian-installer
att söka av tillgängliga enheter efter antingen fristående filer för fast programvara eller paket som innehåller den fasta programvaran. Om den hittas kommer den fasta programvaran att kopieras till den rätta platsen (/lib/firmware) och drivrutinsmodulen kommer att läsas om.

Notera

Vilka enheter som söks av och vilka filsystem som stöds är beroende på arkitekturen, installationsmetoden och vilket steg i installationen. Speciellt under tidiga steg i installationen kommer inläsning av fast programvara att fungera bäst från ett FAT-formaterat USB-minne.

Observera att det är möjligt att hoppa över inläsning av fast programvara om du vet att enheten kommer att fungera även utan den eller om enheten inte behövs under installationen.

6.4.1 Förbereda ett media

The most common method to load such firmware is from some removable medium such as a USB stick. To prepare a USB stick (or other medium like a hard drive partition), the firmware files or packages must be placed in either the root directory or a directory named `/firmware` of the file system on the medium. The recommended file system to use is FAT as that is most certain to be supported during the early stages of the installation.

Tarballs and zip files containing current packages for the most common firmware, and the associated metadata to ensure a proper detection by the installer (`dep11` directory), are available from:

- `https://cdimage.debian.org/cdimage/firmware/bookworm/

Just download the tarball or zip file for the correct release and unpack it to the file system on the medium.

Det är också möjligt att kopiera individuella filer med fast programvara i valfritt media. Fristående fast programvara kan till exempel hämtas från ett redan installerat system eller från maskinvarans tillverkare.

6.4.2 Fast programvara och det installerade systemet

Any firmware loaded during the installation will be copied automatically to the installed system. In most cases this will ensure that the device that requires the firmware will also work correctly after the system is rebooted into the installed system. However, if the installed system runs a different kernel version than the installer, there is a slight chance that the firmware cannot be loaded due to version skew.

If the firmware was loaded from a firmware package, `debian-installer` will also install this package for the installed system and will automatically add the non-free-firmware section of the package archive in APT's `sources.list`. This has the advantage that the firmware should be updated automatically if a new version becomes available.

Om inläsningen av den fasta programvaran hoppades över under installationen så kommer den relevanta enheten antagligen inte att fungera med det installerade systemet tills den fasta programvaran (paket) har installerats manuellt.

Notera

Om den fasta programvaran lästes in från fristående filer kommer den fasta programvaran som kopierades till det installerade systemet inte att uppdateras automatiskt såvida inte motsvarande paket för fast programvara (om tillgänglig) har installerats efter att installationen färdigställdes.

6.4.3 Slutför det installerade systemet

Depending on how the installation was performed, it might be that the need for some firmware was not detected during installation, that the relevant firmware was not available, or that one chose not to install some firmware at that time. In some cases, a successful installation can still end up in a black screen or a garbled display when rebooting into the installed system. When that happens, the following workarounds can be tried:

- Pass the `nomodeset` option on the kernel command line. This might help boot into a "fallback graphics" mode.
• Använd Ctrl-Alt-F2 knappkombinationen för att byta till VT2, vilket kan erbjuda en funktionell inloggningsprompt.

6.5 Customization

Using the shell (see Avsnitt 6.3.9.2), the installation process can be carefully customized, to fit exceptional use cases:

6.5.1 Installing an alternative init system

Debian uses systemd as its default init system. However, other init systems (such as sysvinit and OpenRC) are supported, and the easiest time to select an alternative init system is during the installation process. For detailed instructions on how to do so, please see the Init page on the Debian wiki.
Kapitel 7

Starta upp ditt nya Debian-system

7.1 Sanningens minut

Första uppstarten av ditt nya system är vad elingenjörer kallar för "rökttest". Få inte panik om systemet misslyckas med att starta upp korrekt. Om installationen lyckades är chanserna goda att det bara är ett relativt litet problem som förhindrar systemet från att starta upp Debian. I de flesta fall kan problem rättas till utan att behöva uppprepa installationen. Ett tillgängligt alternativ för att rätta till uppstartsproblem är att använda installationsprogrammets inbyggda räddningsläge (se Avsnitt 8.6).

Om du är nybörjare när det gäller Debian och Linux, kanske du behöver lite hjälp från mer erfarna användare. För mindre vanliga arkitekturer som 64-bit PowerPC (little-endian) är det bäst att fråga på sändlistan debian-powerpc. Du kan även skicka in en installationsrapport, som beskrivs i Avsnitt 5.4.5. Se till att du beskriver ditt problem i detalj och inkluderar eventuella meddelanden som visas och kan hjälpa andra att felsöka problemet.

7.2 Montering av krypterade volymer

Om du skapade krypterade volymer under installationen och tilldelade monteringspunkter till dem, kommer du att bli efterfrågad vid uppstart om att ange lösenfrasen för varje av dessa volymer.

För partitioner som är krypterade med dm-crypt kommer följande prompt att visas under uppstarten:

```
Starting early crypto disks... del_crypt(starting)
```

Enter LUKS passphrase:

På första raden av prompten är del namnet på underliggande partition, t.ex. sda2 eller md0. Du undrar kanske nu för vilken volym du faktiskt anger lösenfrasen. Relaterar det till /home? Eller till /var? Om du bara skapade en krypterad volym är detta enkelt och du behöver bara ange lösenfrasen som du angav för den volymen. Om du har skapat fler än en krypterad volym under installationen kan anteckningarna du skrev ner i sista steget i Avsnitt 6.3.4.6 komma till hands. Om du inte antecknade relationerna mellan cryptx och monteringspunkterna kan du fortfarande hitta dem i /etc/crypttab och /etc/fstab på ditt nya system.

Prompten kan se annorlunda ut när ett krypterat rotfilsystem monteras. Detta beror på vilken initramfs-generator som användes för att generera den inittred som används för att starta upp systemet. Exemplet nedan är för en inittred som genereras med initramfs-tools:

```
Begin: Mounting root file system... ...
Begin: Running /scripts/local-top ...
Enter LUKS passphrase:
```

Inga tecken (inte ens stjärnor) kommer att visas när lösenfrasen matas in. Om du matar in fel lösenfras har du ytterligare två försök att mata in den korrekta lösenfrasen. Efter det tredje försöket kommer uppstartsprocessen att hoppa över denna volym och fortsätta montera nästa filsystem. Se Avsnitt 7.2.1 för ytterligare information.

Efter att alla lösenfraser har matats in ska uppstarten fortsätta som normalt.

7.2.1 Felsökning

Om någon av de krypterade volymerna inte kunde monteras på grund av att en felaktig lösenfras matades in, kan du montera dem manuellt efter uppstart. Det finns ett flertal olika situationer.
KAPITEL 7. STARTA UPP DITT NYA DEBIAN-SYSTEM 7.3. LOGGA IN

- Det första fallet gäller rotpartitionen. När den inte har monterats korrekt kommer uppstartsprocessen att stanna och du måste då starta om datorn och försöka igen.

- Det enklaste fallet är för krypterade volymer som innehåller data som /home eller /srv. Du kan helt enkelt montera dem manuellt efter uppstarten.

För dm-crypt är detta lite svårare. Först behöver du registrera volymerna med device mapper genom att köra:

```
# /etc/init.d/cryptdisks start
```

Detta kommer att söka av alla volymer som angivits i /etc/crypttab och skapa lämpliga enheter under katalogen /dev efter att de korrekta lösenfraserna har angivits. (Redan registrerade volymer kommer att hoppas över så att du kan upprepa detta kommando flera gånger utan att vara orolig.) Efter en lyckad registrering kan du helt enkelt montera volymerna på vanligt sätt:

```
# mount /monteringspunkt
```

- Om någon volym som innehåller ickekritiska systemfiler inte kan monteras (/usr eller /var), ska systemet fortfarande kunna starta upp och du bör kunna montera volymerna manuellt precis som i föregående situation. Dock behöver du även starta (om) de tjänster som normalt kör i din standardkörnivå på grund av att det är mycket sannolikt att de inte startades. Det enklaste sättet är att bara starta om datorn.

7.3 Logga in

När ditt system startar upp kommer du bli presenterad med inloggningsprompten. Logga in med ditt personliga användarnamn och lösenord som du valde under installationsprocessen. Ditt system är nu färdigt att användas.

Om du är en ny användare kanske du vill utforska dokumentationen som redan finns installerad på ditt system när du börjar använda det. Det finns för närvarande flera dokumentationssystem, men arbete fortgår på att integrera de olika dokumentationstyperna. Här är ett par startpunkter.

Dokumentation som följer med program och andra paket som du har installerat kan hittas i /usr/share/doc/, i en katalog med samma namn som programmet (eller rättare sagt, Debian-paketet som innehåller programmet). Dock är mer detaljerad dokumentation ofta paketerad separat i speciella dokumentationssaker som oftast inte blir installerade som standard. Till exempel kan dokumentation om pakethanteringsverktyget apt hittas i paketen apt-doc eller apt-howto.

Ett enkelt sätt att visa dessa dokument med en textbaserad webbläsare är att köra följande kommandon:

```
$ cd /usr/share/doc/
$ w3m .
```

Punkten efter kommandot w3m talar om för det att visa innehållet i den aktuella katalogen.

Om du har en grafisk skrivbordsmiljö installerad, kan du även använda dess grafiska webbläsare. Starta webbläsaren från programmenyn och skriv in /usr/share/doc/ i adressfältet.

Kapitel 8

Nästa steg och hur man ska gå vidare

8.1 Stänga av systemet

För att stänga av ett körande Debian GNU/Linux-system ska du inte starta om med reset-knappen på fram- eller baksidan av din dator, eller helt enkelt stänga av datorn. Debian GNU/Linux bör stängas ner på ett kontrollerat sätt, annars kan filer gå förloren eller hårddisken bli skadad. Om du kör en skrivbordsmiljö finns det ofta ett alternativ tillgängligt för att ”logga ut” från programmenyn som låter dig stänga av (eller starta om) systemet.

8.2 Orientera dig runt i Debian

Debian är lite olik från övriga distributioner. Även om du känner till Linux i andra distributioner är det några saker du bör känna till om Debian för att hjälpa dig att behålla ditt system i gott skick. Det här kapitlet innehåller material för att hjälpa dig att ta dig fram i systemet; det är inte menat att vara en hjälp för att använda Debian utan helt enkelt en kort sammanfattning av systemet för de som har bråttom.

8.2.1 Debians paketsystem

Det viktigaste konceptet att få grepp om är Debians paketsystem. Stora delar av ditt system bör anses vara under paketsystemets kontroll. Dessa inkluderar:

• /usr (undantaget /usr/local)
• /var (inga filer från paket placeras i /var/local, varför detta går att använda till lokala kataloger och filer)
• /bin
• /sbin
• /lib

Till exempel om du ersätter /usr/bin/perl kommer det att fungera men om du uppgraderar ditt perl-paket kommer filen du placerade där att ersättas. Experter kan komma runt det här genom att ”hålla kvar” paket i aptitude.¹

One of the best installation methods is apt. You can use the command line version of apt as well as tools like aptitude or synaptic (which are just graphical frontends for apt). Note that apt will also let you merge main, contrib, non-free, and non-free-firmware so you can have restricted packages (strictly speaking not belonging to Debian) as well as packages from Debian GNU/Linux at the same time.

¹Under SysV init systemet hade halt samma effekt som poweroff, men med systemd som init system (standard sedan Jessie) är deras effekter olika.
8.2.2 Ytterligare mjukvara tillgängligt för Debian
Det finns officiella och icke-officiella mjukvaruförråd som inte är aktiverade i som standard vid installation av Debian. Dessa innehåller mjukvara som många tycker är viktiga och förväntar sig att ha.Information om dessa ytterligare förråd kan hittas på wikisidan med titeln The Software Available for Debian’s Stable Release.

8.2.3 Hantera programversioner
Alternativa versioner av programmen hanteras av update-alternatives. Om du hanterar ett flertal versioner av dina program, läs manualsidan för update-alternatives.

8.2.4 Hantera cronjobb
Alla jobb under systemadministratören ansvar bör ligga i /etc eftersom de är konfigurationsfiler. Om root har ett cronjobb för dagliga, veckomässiga eller månatliga körningar, lägg dem i /etc/cron.{daily, weekly, monthly}. Dessa startas från /etc/crontab och kommer att köras i alfabetisk ordning.

Men om du har ett cronjobb som (a) behöver köras som en speciell användare, eller (b) behöver köras vid en speciell tidpunkt eller frekvens, kan du antingen använda /etc/crontab, eller ännu bättre, /etc/cron.d/ vadsohnelst. Dessa speciella filer har också ett extra fält som låter dig bestämma under vilket användarkonto som cronjobbet ska köras.

I annat fall kan du bara redigera filerna och cron kommer att upptäcka dem automatiskt. Det finns inget behov att köra ett speciellt kommando. För mer information, se manualsidorna cron(8), crontab(5) och /usr/share/doc/cron/README.Debian.

8.3 Ytterligare läsning och information

En allmän källa för information för GNU/Linux är webbplatsen för Linux Documentation Project. Där kan du hitta HOWTO-dokument och pekare till annan mycket värdefull information om delar av GNU/Linux-systemet.

Linux är en implementering av Unix. Linux Documentation Project (LDP) samlar in ett antal HOWTO: er och onlineböcker som rör Linux.

Om du är nybörjare i Unix-världen bör du antagligen gå ut och köpa några böcker att läsa. Den här listan av Unix FAQ innehåller ett antal av UseNet-dokument som ger trevliga historiska referenser.

8.4 Konfigurera ditt system att använda e-post
Idag är e-post en viktig del av många personers liv. Eftersom det finns många alternativ för hur man gör konfigurationen, och eftersom det är viktigt för några Debian-verktyg att den är rätt konfigurerad, kommer vi försöka att täcka in grunderna i detta avsnitt.

Det finns tre huvudfunktioner som definierar ett e-postsystem. Först är det e-postklienten (MUA) som är det program som en användare använder för att skriva och läsa e-post. sedan är det Mail Transfer Agent (MTA) som tar hand om överföringen av meddelanden från en dator till en annan. Till sist är det Mail Delivery Agent (MDA) som tar hand om leveransen av inkommande e-post till användarens inkorg.

Dessa tre funktioner kan genomföras av separata program, men de kan även kombineras till ett eller två program. Det är också möjligt att ha olika program som hanterar dessa funktioner för olika typer av e-post.

På Linux- och Unix-system är mutt historiskt sett en mycket populär e-postklient. Som de flesta traditionella Linux-program är den textbaserad. Den används ofta i kombination med exim eller sendmail samt MTA och procmail som MDA.

Med den ökande populariteten för grafiska skrivbordsystem, har användningen av grafiska e-postprogram som GNOME:s evolution, KDE:s kmail eller Mozillas thunderbird blivit mer populär. Dessa program kombinerar
funktionerna av en MUA, MTA och MDA, men kan — och används ofta — i kombination med de traditionella Linux-verktygen.

8.4 Konfigurera ditt system att använda.

8.4.1 Standardkonfiguration för e-post
Även om du planerar att använda ett grafiskt e-postprogram, skulle det vara användbart att ha en traditionell MTA/MDA installerad och rätt konfigurerad på ditt Debian GNU/Linux-system. Anledningen är att olika verktyg som kör på systemet\(^2\) kan skicka viktiga notifieringar via e-post för att informera systemadministratören om (potentiella) problem eller ändringar.

För detta kan du installera `exim4` och `mutt` med `apt install exim4 mutt`. `exim4` är en kombination av MTA/MDA som är relativt liten men mycket flexibel. Den kommer som standard att konfigureras för att endast hantera e-post lokalt till själva systemet, och e-post adresserad till systemadministratören (root-kontot) kommer att levereras till det vanliga användarkontot som skapades under installationen\(^3\).

När e-post från systemet levereras kommer de att läggas till i en fil i `var/mail/<kontonamn>`. E-postmeddelandena kan läsas med `mutt`.

8.4.2 Skicka e-post utanför systemet
Som tidigare nämnts, är det installerade Debian-systemet endast konfigurerat att hantera e-post lokalt för systemet, inte för att skicka e-post till andra eller för att ta emot post från andra.

Om du vill att `exim4` ska hantera extern e-post, referera till nästa underavsnitt för de grundläggande konfigurationsalternativen. Se till att testa att post kan skickas och tas emot korrekt.

Om du tänker använda ett grafiskt e-postprogram och använda en e-postserver hos din Internetleverantör (ISP) eller ditt företag, finns det egentligen inget behov att konfigurera `exim4` till att hantera extern e-post. Konfigurera helt enkelt ditt grafiska favoritpostprogram till att använda de rätta servern till att skicka och ta emot e-post (hur man gör det är utanför omfånget för den här handboken).

För att korrekt konfigurera `reportbug` till att använda en extern e-postserver, kör kommandot `reportbug --configure` och svara "nej" på frågan om en MTA finns tillgänglig. Du kommer då att bli frågad efter den SMTP-server som ska användas för att skicka in felrapporter.

8.4.3 Konfigurera e-postservern Exim4
Om du vill att ditt system även ska hantera extern e-post, behöver du konfigurera om paketet `exim4`\(^4\):

```
# dpkg-reconfigure exim4-config
```

Efter det kommandot har angivits (som root), kommer du att bli frågad om du vill dela upp konfigurationen i mindre filer. Välj standardalternativet om du är osäker.

Härnäst kommer du att bli presenterad med flera vanliga postscenarioir. Välj det alternativ som bäst återspeglar dina behov.

internetssystem Ditt system är anslutet till ett nätverk och din e-post skickas och tas emot direkt via SMTP. På de efterföljande skärmnarna kommer du bli frågad om du vill dela upp konfigurationen i mindre filer. Välj standardalternativet om du är osäker.

Härnäst kommer du att bli presenterad med flera vanliga postscenarioir. Välj det alternativ som bäst återspeglar dina behov.

e-post skickad av smart värd I det här scenariot kommer din utgående post att vidarebefordras till en annan maskin, en så kallad ”smart värd” (smart-host), som tar hand om sändningen av meddelandet till dess mål. Den smarta värdens lagrar vanligtvis inkommande post som är adresserad till din dator, så att du inte behöver vara permanent ansluten. Det betyder också att du måste hämta din e-post från den smarta värdens med program som till exempel `fetchmail`.

\(^2\)Exempel är: `cron`, `quota`, `logcheck`, `aide`, ...

\(^3\)Vidarebefordring av e-post för root till det vanliga användarkontot konfigurerarvi `etc/aliases`. Om inget vanligt användarkonto skapades, kommer posten att läsas till själva root-kontot.

\(^4\)Du kan så klart också ta bort `exim4` och ersätta det med en alternativ MTA/MDA.
8.5 Bygg en ny kärna

Varför skulle någon vilja sammanställa en ny kärna? Det är förmodligen inte nödvändigt eftersom standardkärnan som levereras med Debian hanterar nästan alla konfigurationer.

Om du ändå vill kompilera en egen kärna är detta förstås möjligt och vi rekommenderar att du använder ”make deb-pkg” målet. För mer information, läs Debian Linux kernel Handbook.

8.6 Återställning av ett trasigt system

För att komma åt räddningsläget, välj rescue från uppstartsmenyn, ange rescue vid prompten boot: eller starta med startparametern rescue/enable=true. Du kommer då att visas de första skärmarna av installationsprogrammet med en notering i skärmhörnet som indikerar att den körs i räddningsläget och inte en full installation. Var lugn, ditt system kommer inte att skrivas över! Räddningsläget använder helt enkelt fördelarna av funktionerna för identificering av maskinvärd som är tillgängliga i installationsprogrammet för att vara säker på att dina diskar, nätverksenheter och så vidare är tillgängliga för dig under tiden du repararar ditt system.

Om möjligt kommer installationsprogrammet nu att ge dig en skalprompt i filsystemet du valt, vilket du kan använda för att genomföra nödvändiga reparationer.

Om installationsprogrammet inte kan köra ett användbart skall i rotfilsystemet du valt, det kanske beror på att filsystemet innehåller fel, kommer den att skriva ut en varning och efter det ge dig ett skall i installationsprogrammets miljö istället. Du kanske inte har så många verktyg tillgängliga i denna miljö men de räcker ofta för att laga ditt system. Rotfilsystemet du valt kommer att monteras på katalogen /target.

Oavsett vilket, efter du har avslutat skallet kommer systemet att startas om.

Till slut, observera att det kan vara svårt att reparera trasiga system och denna handbok försöker inte att gå in så djupt i alla saker som kan ha gått fel och hur man rättar till dem. Om du har problem, konsultera en expert.
Bilaga A

Installationshjälp

Det här dokumentet beskriver hur man installerar Debian GNU/Linux bookworm för 64-bit PowerPC (little-endian) ("ppc64el") med den nya debian-installer. Det här är en snabb genomgång av installationsprocessen vilken bör innehålla all information du behöver för de flesta typer av installationer. När mer information är användbart kommer vi att länka till mer detaljerade förklaringar i andra delar av det här dokumentet.

A.1 Förberedelser

Om du påträffar fel under din installation, referera till Avsnitt 5.4.5 för instruktioner om hur man rapporterar dem. Om du har frågor som inte kan bli besvarade av det här dokumentet, skicka dem gärna till sändlistan debian-boot (debian-boot@lists.debian.org) eller fråga på IRC (#debian-boot på OFTC-nätverket).

A.2 Starta upp installationsprogrammet

Debian-cd-teamet ger ut färdiga installationsavbildningar med debian-installer på sidan Debian GNU/Linux på CD/DVD. För mer information om var man får tag på installationsavbildningar, se Avsnitt 4.1.

Vissa installationsmetoder kräver andra avbildningar än för optiska medier. Avsnitt 4.2.1 beskriver hur man hittar avbildningar på Debian-speglar.

Underavsnitten nedan ger detaljer om vilka avbildningar du bör hämta för varje tänkbar installation.

A.2.1 Optisk skiva

Hämta den typ du föredrar och bränn den till en optisk skiva.

A.2.2 Uppstart från nätverk

A.2.3 Uppstart från hårddisk

A.3 Installation

När installationsprogrammet har startat kommer du bli hälsad med en startskärm. Tryck Enter för uppstart, eller läs instruktionerna för de andra uppstartsmetoderna och parametrar (se Avsnitt 5.3).

Du kan bli frågad att bekräfta ditt tangentbordarrangemang. Välj den förvalda om du är osäker.

Nu är det bara att luta sig tillbaka under tiden Debian-installeraren identifierar din maskinvara och läser in resten av installationsavbildningen.

Efter det kommer installationsprogrammet att försöka att identifiera din nätverksmaskinvara och ställa in nätverket via DHCP. Om du inte är ansluten till ett nätverk eller inte har DHCP har du getts möjligheten att konfigurera nätverket manuellt.

Nu är det dags att partitionera dina diskar. Först kommer du få möjligheten att automatiskt partitionera, antingen en hel disk eller ledigt utrymme på en disk (se Avsnitt 6.3.4.2). Det här rekommenderas för nya användare eller de som har bråttom. Om du inte vill partitionera automatiskt, välj Manuell från menyn.

Om du behöver mer information om installationsprocessen, se Kapitel 6.

A.4 Sänd oss en installationsrapport

Om du lyckades att göra en installation med debian-installer, ta dig gärna tid att skicka in en rapport till oss. Det enklaste sättet att göra det på är att installera paketet reportbug (apt install reportbug), konfigurera reportbug vilket förklaras i Avsnitt 8.4.2, och köra reportbug installation-reports.

Om du inte färdigställde installation har du möjligen hittat ett fel i Debian-installer. För att förbättra installationsprogrammet är det nödvändigt att vi känner till dessa fel, så ta då dig tid att rapportera dem. Du kan använda en installationsrapport för att rapportera problem; om installationen totalt misslyckades, se Avsnitt 5.4.4.

A.5 Och till slut…

Vi hoppas att din Debian-installation känns bra och att du tycker att Debian är användbar. Du kanske även vill läsa Kapitel 8.
Bilaga B

Automatiserad installation med förinställningar

Den här bilagan förklarar hur man förinställer svar på frågor i debian-installer för att automatisera din installation.

Konfigurationsdelarna som används i den här bilagan finns även tillgängliga som exempelfiler för förkonfiguration från https://www.debian.org/releases/bookworm/example-preseed.txt.

B.1 Introduktion

Förinställningar ger ett sätt att ställa in svar på frågor som ställs under installationsprocessen, utan att manuellt behöva ange svaren under tiden installationen körs. Det här gör det möjligt att fullstännigt automatisera de flesta typer av installationer och erbjuder även vissa funktioner som inte finns tillgängliga vid normala installationer.

B.1.1 Metoder för förinställning

Följande tabell visar vilka förinställningsmetoder som kan användas med vilka installationsmetoder.

<table>
<thead>
<tr>
<th>Installationsmetod</th>
<th>initrd</th>
<th>fil</th>
<th>nätverk</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD/DVD/USB</td>
<td>ja</td>
<td>ja</td>
<td>ja†</td>
</tr>
<tr>
<td>nätuppstart</td>
<td>ja</td>
<td>nej</td>
<td>ja</td>
</tr>
<tr>
<td>hd-media</td>
<td>ja</td>
<td>ja</td>
<td>ja†</td>
</tr>
</tbody>
</table>

An important difference between the preseeding methods is the point at which the preconfiguration file is loaded and processed. For initrd preseeding this is right at the start of the installation, before the first question is even asked. Preseeding from the kernel command line happens just after. It is thus possible to override configuration set in the initrd by editing the kernel command line (either in the bootloader configuration or manually at boot time for bootloaders that allow it). For file preseeding this is after the installation image has been loaded. For network preseeding it is only after the network has been configured.

†men endast om du har nätverksåtkomst, och ställer in preseed/url på lämpligt sätt
Viktigt

Obviously, any questions that have been processed before the preconfiguration file is loaded cannot be preseeded (this will include questions that are only displayed at medium or low priority, like the first hardware detection run). A not so convenient way to avoid these questions from being asked is to preseed them through the boot parameters, as described in Avsnitt B.2.2.

B.1.2 Begränsningar

Även om de flesta frågor som används av debian-installer kan förinställas med den här metoden finns det vissa undantag. Du måste partitionera (om) en hel disk eller använda tillgängligt ledigt utrymme på en disk; det är inte möjligt att använda befintliga partitioner.

B.2 Användning av förinställningar

You will first need to create a preconfiguration file and place it in the location from where you want to use it. Creating the preconfiguration file is covered later in this appendix. Putting it in the correct location is fairly straightforward for network preseeding or if you want to read the file off a usb-stick. If you want to include the file in an installation ISO image, you will have to remaster the image. How to get the preconfiguration file included in the initrd is outside the scope of this document; please consult the developers’ documentation for debian-installer.

B.2.1 Inläsning av förkonfigurationsfilen

Om du använder förinställning via initrd, behöver du endast se till att filen som heter preseed.cfg finns inkluderar i rotkatalogen på initrd. Installationsprogrammet kommer automatiskt att kontrollera om den filen finns och sedan läsa in den.

Om du anger förkonfigurationsfilen i konfigurationen för starthanteraren, bör du kanske ändra konfigurationen så att du inte behöver trycka Enter för att starta installationsprogrammet. För syslinux betyder det att ställa in timeout-värdet till 1 i syslinux.cfg.

För att se till att installationsprogrammet får rätt förkonfigurationsfil, kan du valfritt ange en kontrollsumma för filen. För närvarande behöver det vara en md5sum och om den anges måste den stämma med förkonfigurationsfilen eller så kommer installationsprogrammet att vägra använda den.

Boot parameters to specify:
- if you're netbooting:
 preseed-url=http://host/path/to/preseed.cfg
 preseed/url/checksum=5da499872beccfeda2c4872f9171c3d
- or
 preseed-url=tftp://host/path/to/preseed.cfg
 preseed/url/checksum=5da499872beccfeda2c4872f9171c3d
- if you're booting a remastered installation image:
 preseed/file=/cdrom/preseed.cfg
Observera att preseed/url kan kortas ner till endast url, preseed/file till file och preseed/file/checksum till preseed-md5 när de skickas som uppstartsparametrar.

B.2.2 Användning av uppstartsparametrar för att förinställa frågor

Om en förkonfigurationsfil inte kan användas för att förinställa vissa steg, kan installationsprogrammet fortfarande vara fullständigt automatiserad eftersom du kan skicka förinställningsvärden på kommandoraden när installationsprogrammet startar upp.

Uppstartsparametrar kan även användas om du inte vill använda förinställning utan bara vill tillhandahålla ett svar på en specifik fråga. Några exempel på var det här kan vara användbart finns dokumenterat i den här handboken.

En ”---” i uppstartsflaggorna har en speciell betydelse. Kärnparametrar som dyker upp efter den sista ”---” kan kopieras in i starthanterarens konfiguration för det installerade systemet (om det stöds av installationsprogrammet för starthanteraren). Installationsprogrammet kommer automatiskt att filtrera ut alla flaggor (som förkonfigurationsflaggor) som den känner igen.

Notera

De aktuella linux-kärnorna (2.6.9 och senare) accepterar maximalt 32 kommandoradflaggor och 32 miljöflaggor, inklusive eventuella flaggor som läggs till som standard för installationsprogrammet. Om dessa tal översätts kommer kärnan att få panik (krasch). (För tidigare kärnor var dessa tal lägre.)

För de flesta installationer kan vissa av de standardflaggor i din konfigurationsfil för starthanteraren såsom vga=normal med säkerhet tas bort, vilket kan ge dig möjlighet att lägga till fler flaggor för förinställningen.

Notera

Det kanske inte alltid är möjligt att ange värden med blanksteg för uppstartsparametrar, även om du avgränsar dem med citationstecken.

B.2.3 Auto-läget

Det finns flera funktioner i Debiams Installationsprogram som kombinerar att tillåta ganska enkla kommandorader vid startprompten för att resultera i godtyckligt komplexa anpassade automatiska installationer.

²Ägaren av en deconf-variabel (eller mall) är vanligtvis namnet på paketet som innehåller motsvarande deconf-mall. För variabler som används i själva installationsprogrammet är ägaren ”d-i”. Mallar och variabler kan ha fler än en ägare som hjälper till att bestämma huruvida de kan tas bort från deconf-databasen om paketet avinstalleras.
Dessa är aktiverade genom att använda Automated installboot-valet, även kallat auto för vissa arkitektureller startmetoder. I denna sektion, auto är alltså ingen parameter det betyder att du väljer det startalternativet och lägger till följande startparametrar på startprompten.

För att visa detta är några exempel som kan användas vid uppstartsPrompten:

```bash
auto url=autoserver
```

Det här förlitar sig på att det finns en DHCP-server som får maskinen till den punkt där autoserver kan slas upp av DNS, kanske efter den lokala domänen läggs til om den tillhandahölls av DHCP. Om det gjordes på ett system där domänen var example.se, och de har en ganska förnuftiga DHCP-configuration, skulle det resultera i att förinställningsfilen hämtades från http://autoserver.example.se/d-i/bookworm/./preseed.cfg.

Om det inte finns någon lokal DHCP- eller DNS-infrastruktur, eller om du inte vill använda standard sökvägen till preseed.cfg, kan du fortfarande använda en angiven url, och om du inte vill använda elementet ./ kommer det att fästas åt början av sökvägen (alltså den tredje / i urlen). Här är ett exempel som kräver minimalt stöd från den lokala nätverksinfrastrukturen:

```bash
auto url=http://192.168.1.2/sökväg/till/minförinställnings.fil
```

Sättet det här fungerar på är:

- om url:en saknar ett protokoll, antas http,
- om värdenamnssektionen inte innehåller punkter, den har erhållit domänen från DHCP som lagt till den, och
- om det inte finns några / efter värdenamnet, kommer standard sökvägen att läggas till.

I tillägg till att ange url:en, kan du även ange inställningar som inte direkt påverkar beteendet för själva debian-installer, men som kan skickas genom till skript som angivits med preseed/run i den inlästa förinställningsfilen. För tillfället, det enda exemplet på det här är auto-install/classes, vilken har aliaset classes. Den här kan användas på detta sätt:

```bash
auto url=example.se classes=klass_A;klass_B
```

Klasserna skulle till exempel kunna beteckna systemtypen som ska installeras, eller lokalanpassningen som ska användas.

Det är så klart möjligt att utöka det här konceptet, och om du gör det, är det rimligt att använda namnrymden auto-install namespace för det här. Så ett exempel på det här är auto-install/style vilket sedan används i dina skript. Om du känner behovet att göra det här, nämn det på sändlistan debian-boot@lists.debian.org så att vi kan undvika konflikter i namnrymden, och kanske lägga till ett alias för parameter åt dig.

UppstartsvARSER avär ännu inte definierad på alla arkitektureller. Samma effekt kan uppnås genom att helt enkelt lägga till de två parametrarna auto=true priority=critical till kärnans kommandorad. Parametern auto är ett alias för auto-install/enable och ställer man in den till true så fördröjs frågor om lokalanpassning och tangentbord tills efter det finns en chans att förinställa dem, samt priority är ett alias för debconf/priority och ställer man in den till critical så stoppas alla frågor med en lägre prioritet från att ställas.

Ytterligare flaggor som kan vara intressanta vid försök att automatisera en installation när DHCP används är: interface=auto netcfg/dhcp_timeout=60 vilket gör att maskinen väljer det första användbara nätverkskortet och väntar lite längre på ett svar på sin DHCP-fråga.
Tips

Ett djupgående exempel på hur man använder det här ramverket, inklusive exempskript och klasser, kan hittas på webbsidan för dess utvecklare. Exempen som finns tillgängliga där visar många andra trevliga effekter som kan uppnås genom kreativ användning av förkonfigurering.

B.2.4 Användbara alias vid förinställning

Följande alias kan vara användbara vid användning av (automatiskt läge) förinställning. Observera att dessa helt enkelt är kort alias för frågenamn, och du behöver även alltid ange ett värde: till exempel, auto=true eller interface=eth0.

<table>
<thead>
<tr>
<th>priority</th>
<th>debconf/priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>fb</td>
<td>debian-installer/framebuffer</td>
</tr>
<tr>
<td>auto</td>
<td>auto-install/enable</td>
</tr>
<tr>
<td>classes</td>
<td>auto-install/classes</td>
</tr>
<tr>
<td>fil</td>
<td>preseed/file</td>
</tr>
<tr>
<td>url</td>
<td>preseed/url</td>
</tr>
<tr>
<td>theme</td>
<td>debian-installer/theme</td>
</tr>
<tr>
<td>language</td>
<td>debian-installer/language</td>
</tr>
<tr>
<td>country</td>
<td>debian-installer/country</td>
</tr>
<tr>
<td>locale</td>
<td>debian-installer/locale</td>
</tr>
<tr>
<td>keymap</td>
<td>keyboard-configuration/xkb-keymap</td>
</tr>
<tr>
<td>modules</td>
<td>annu/choose_modules</td>
</tr>
<tr>
<td>firmware</td>
<td>hw-detect/firmware-lookup</td>
</tr>
<tr>
<td>interface</td>
<td>netcfg/choose_interface</td>
</tr>
<tr>
<td>domain</td>
<td>netcfg/get_domain</td>
</tr>
<tr>
<td>hostname</td>
<td>netcfg/get_hostname</td>
</tr>
<tr>
<td>protocol</td>
<td>mirror/protocol</td>
</tr>
<tr>
<td>suite</td>
<td>mirror/suite</td>
</tr>
<tr>
<td>rekommendationer</td>
<td>base-installer/install-recommends</td>
</tr>
<tr>
<td>tasks</td>
<td>taskset:taskset/first</td>
</tr>
<tr>
<td>desktop</td>
<td>taskset:taskset/desktop</td>
</tr>
<tr>
<td>preseed-md5</td>
<td>preseed/file/checksum</td>
</tr>
</tbody>
</table>

B.2.5 Examples of boot prompt preseeding

Här är några exempel på hur startprompten kan se ut (du måste anpassa detta till dina behov).

```plaintext
# För att ställa in franska som språk och Frankrike som land:
/install.amd/vmlinuz vga=788 initrd=/install.amd/gtk/initrd.gz language=fr country=FR --- quiet

# För att ställa in engelska som språk och Tyskland som land och använda en tysk tangentbordslayout:
/install.amd/vmlinuz vga=788 initrd=/install.amd/gtk/initrd.gz language=en country=DE locale=en_US.UTF-8 keymap=de --- quiet

# För att installera MATE skrivbordet
/install.amd/vmlinuz vga=788 initrd=/install.amd/gtk/initrd.gz desktop=mate- --- quiet

# För att installera webbserveruppgiften:
/install.amd/vmlinuz initrd=/install.amd/gtk/initrd.gz taskset:taskset/first=web- ---

server ---
```

B.2.6 Använd en DHCP-server för att ange förkonfigurationsfiler

Det är också möjligt att använda DHCP för att ange en förkonfigurationsfil att hämta från nätverket. DHCP tillåter att man anger ett filnamn. Normalt är det en fil som används för uppstart via nätverket men om det verkar vara en URL så kommer installationsmediumet som har stöd för förinställning via nätverket att hämta filen från URL:en och
BILAGA B. AUTOMATISERAD INSTALLATION MED ...

B.3 Skapa en förkonfigurationsfil

Förkonfigurationsfilen är i samma format som används av kommandot `debconf-set-selections`. Det allmänna formatet för en rad i en förkonfigurationsfil är:

```plaintext
<ägare> <frågans namn> <frågetyp> <värde>
```

Denna fil ska börja med `#_preseed_V1`

Det finns ett par regler att ha i åtanke när man skriver en förkonfigurationsfil:

- Lägg endast till ett enda blanksteg eller tabulatortecken mellan typ och värde: eventuella tomrum kommer att tolkas som om de tillhör värdet.

- En rad kan vara uppdelad i flera rader genom att lägga till ett omvänt snedstreck på slutet (`") som ett radfortsättningstecken. En bra plats att dela en rad är efter frågans namn; en dålig plats är mellan typ och värde. Delade rader kommer att sammanfogas till en enda rad med alla inledande/avslutade tomrum ihopslagna till ett enda blanksteg.

- För debconf-variabler (mallar) som endast används i själva installationsprogrammet bör ägaren ställas in till ”d-i”; för förinställningsvariabler som används i det installerade systemet bör namnet på paketet som innehåller motsvarande debconf-mall användas. Endast variabler som har sina ägare inställda till någonting annat än ”d-i” kommer att propageras till debconf-databasen för det installerade systemet.

- De flesta frågor behöver förinställas med giltiga värden på engelska och inte med översatta värden. Dock finns det några frågor (till exempel i `partman`) där översatta värden måste användas.

- Vissa frågor tar en kod som ett värde istället för den engelska texten som visas under installationen.

- Börja med `#_preseed_V1`

- En kommentar består av en rad som börjar med `börjar` med ett hashtecken (`#`) och sträcker sig upp till längden på den raden.

Det enklaste sättet att skapa en förkonfigurationsfil på är att använda exemplenfilen som länkas i Avsnitt B.4 som grund och arbeta vidare därefter.

En alternativ metod är att göra en manuell installation och sedan, efter omstart, använda `debconf-get-selections` från paketet `debconf-utils` för att dumpa både debconf-databasen och installationsprogrammets cdebconf-databas till en enda fil:

```
$ echo "#_preseed_V1" > file
$ debconf-get-selections --installer >> file
$ debconf-get-selections >> file
```

Dock, en fil som genereras på detta sätt kommer att ha några poster som inte bör förinställas, och exemplenfilen är en bättre startpunkt för de flesta användare.
Notera

Denna metod förlitar sig på att vid slutet av installationen, sparas installationsprogrammets cdebconf-databas till det installerade systemet i /var/log/installer/cdebconf. Dock, på grund av att databasen kan innehålla känslig information, är filerna som standard endast läsbara av root.

Katalogen /var/log/installer och alla filer i den kommer att tas bort från ditt system om du rensar ut paketet installation-report.

För att kontrollera möjliga värden för frågor kan du använda nano för att undersöka filerna i /var/lib/cdebconf under tiden en installation pågår. Se templates.dat för de rå mallarna och questions.dat för de aktuella värdena och för de värden som tilldelas till variabler.

För att kontrollera om formatet på din förkonfigurationsfil är giltigt före en installation genomförs, kan du använda kommandot debconf-set-selections -c preseed.cfg.

B.4 Innehållet av en förkonfigurationsfil (för bookworm)

Konfigurationsdelarna som används i den här bilagan finns även tillgängliga som exempelfiler för förkonfiguration från https://www.debian.org/releases/bookworm/example-preseed.txt.

Observera att det här exemplet är baserat på en installation för Intel x86-arkitektur. Om du installerar en annan arkitektur, vissa av exemplen (såsom tangentbordsval och installation av starthanteraren) kanske inte är relevanta och behöver ersättas av debconf-inställningar som är lämpliga för din arkitektur.

Detaljer om hur de olika komponenterna i Debian Installer faktiskt fungerar beskrivs i Avsnitt 6.3.

B.4.1 Lokalanpassning

During a normal install the questions about localization are asked first, so these values can only be preseeded via the initrd or kernel boot parameter methods. Auto mode (Avsnitt B.2.3) includes the setting of auto-install/enable=true (normally via the auto preseed alias). This delays the asking of the localisation questions, so that they can be preseeded by any method.

Lokalen kan användas för att ange både språk och land samt kan vara en kombination av ett språk som stöds av debian-installer och ett känt land. Om kombinationen inte formar en giltig lokal så kommer installationsprogrammet att automatiskt välja en lokal som är giltig för det valda språket. För att ange lokalen som en uppstartsparameter, använd locale=sv_SE.

Även om denna metod är mycket enkel att använda så tillåter den inte förinställning av alla möjliga kombinationer av language, country och locale³. Så alternativt kan värdena förinställas individuellt. Språk och land kan även anges som uppstartsparhamer.

```bash
# Förinställning av endast locale ställer in language, country och locale.
# Förinställning av endast locale ställer in language, country och locale.
# Förinställning av endast locale ställer in language, country och locale.
d-i debian-installer/locale string sv_SE

d-i debian-installer/locale string sv_SE

d-i debian-installer/locale string sv_SE

d-i debian-installer/locale string sv_GB.UTF-8

d-i debian-installer/locale string sv_GB.UTF-8

d-i keyboard-configuration/toggle select No toggling
```

³Förinställning av locale till en NL skulle till exempel resultera i en_US.UTF-8 som standardlokal för det installerade systemet. Om till exempel en_GB.UTF-8 föredras istället så kommer värdena att behöva förinställas individuellt.

Keyboard configuration consists of selecting a keymap and (for non-latin keymaps) a toggle key to switch between the non-latin keymap and the US keymap. Only basic keymap variants are available during installation. Advanced variants are available only in the installed system, through dpkg-reconfigure keyboard-configuration.

```bash
# Förinställning av endast locale ställer in language, country och locale.

d-i keyboard-configuration/xkb-keymap select se

d-i keyboard-configuration/toggle select No toggling
```

Keyboard configuration consists of selecting a keymap and (for non-latin keymaps) a toggle key to switch between the non-latin keymap and the US keymap. Only basic keymap variants are available during installation. Advanced variants are available only in the installed system, through dpkg-reconfigure keyboard-configuration.

```bash
# Förinställning av endast locale ställer in language, country och locale.

d-i keyboard-configuration/xkb-keymap select se

d-i keyboard-configuration/toggle select No toggling
```
För att hoppa över konfiguration av tangentbordet kan du förinställa keymap med `skip-config`. Det här kommer att resultera i att kärnans tangentlayout fortsätter vara aktiv.

B.4.2 Nätverkskonfiguration

Om du behöver välja ett specifikt nätverksnätvärk när du startar upp via nätverket före inläsning av en förkonfigurationsfil från nätverket, använd en uppstartsparameter såsom `interface=eth1`.

Även om förinställning av nätverkskonfigurationen normalt sett inte är möjlig när man använder förinställning via nätverk (med "preseed/url") så kan du använda följande hack för att komma runt det, till exempel om du vill ställa in en statisk adress för nätverksnätvärken. Hacket tvingar nätverkskonfigurationen att köra igen efter att förkonfigurationen har lästs in genom att skapa ett "preseed/run"-skript som innehåller följande kommandon:

```
kill-all-dhcp; netcfg
```

Följande debconf-variabler är relevanta för nätverkskonfiguration.

```bash
# Disable network configuration entirely. This is useful for cdrom
# installations on non-networked devices where the network questions,
# warning and long timeouts are a nuisance.
#d-i netcfg/enable boolean false

# netcfg will choose an interface that has link if possible. This makes it
# skip displaying a list if there is more than one interface.
#d-i netcfg/choose_interface select auto

# To pick a particular interface instead:
#d-i netcfg/choose_interface select eth1

# To set a different link detection timeout (default is 3 seconds).
# Values are interpreted as seconds.
#d-i netcfg/link_wait_timeout string 10

# If you have a slow dhcp server and the installer times out waiting for
# it, this might be useful.
#d-i netcfg/dhcp_timeout string 60
#d-i netcfg/dhcppv6_timeout string 60

# Automatic network configuration is the default.
# If you prefer to configure the network manually, uncomment this line and
# the static network configuration below.
#d-i netcfg/disable_autoconfig boolean true

# If you want the preconfiguration file to work on systems both with and
# without a dhcp server, uncomment these lines and the static network
# configuration below.
#d-i netcfg/dhcp_failed note
#d-i netcfg/dhcp_options select Configure network manually

# Static network configuration.
#
# IPv4 example
#d-i netcfg/get_ipaddress string 192.168.1.42
#d-i netcfg/get_netmask string 255.255.255.0
#d-i netcfg/get_gateway string 192.168.1.1
#d-i netcfg/get_nameservers string 192.168.1.1
#d-i netcfg/confirm_static boolean true
#
# IPv6 example
#d-i netcfg/get_ipaddress string fc00::2
#d-i netcfg/get_netmask string ffff:ffff:ffff:ffff::
#d-i netcfg/get_gateway string fc00::1
```
BILAGA B. AUTOMATISERAD INSTALLATION MED DEBIAN

B.4. INNEHÅLLET AV EN ...

B.4.3 Nätverkskonsoll

Observera att netcfg automatiskt kommer att fastställa nätmasken om netcfg/get_netmask inte har förinställats. I detta fall måste variabeln markeras som seen för automatiska installationer. I liknande fall kommer netcfg att välja en lämplig adress om netcfg/get_gateway inte har angivits. I specifika fall kan du även ställa in netcfg/get_gateway till ”none” för att ange att ingen gateway ska användas.

More information related to network-console can be found in Avsnitt 6.3.10.

B.4.4 Spegelinställningar

Beroende på installationsmetoden du använder, kan en spegel användas både för att hämta ytterligare komponenter för installationsprogrammet, för att installera grundsystemet och för att ställa in /etc/apt/sources.list för det installerade systemet.

Parametern mirror/suite bestämmer sviten för det installerade systemet.

Mirror protocol:
If you select ftp, the mirror/country string does not need to be set.
Default value for the mirror protocol: http.
#d-i mirror/protocol string ftp
d-i mirror/country string manual
d-i mirror/http/hostname string ftp.se.debian.org
d-i mirror/http/directory string /debian
B.4.5 Kontoinställning

Lösenordet för root-kontot, namn och lösenordet för den första vanliga användarens konto kan förinställas. För lösenorden kan du använda antingen klartextvärden eller crypt(3)-hashar.

WARNING

Be aware that preseeding passwords is not completely secure as everyone with access to the preconfiguration file will have the knowledge of these passwords. Storing hashed passwords is considered secure unless a weak hashing algorithm like DES or MD5 is used which allow for bruteforce attacks. Recommended password hashing algorithms are SHA-256 and SHA512.

```
# Hoppa över skapandet av ett root-konto (normalt användarkonto
# kommer att kunna använda sudo).
#d-i passwd/root-login boolean false
# Alternativt, för att hoppa över skapandet av ett normalt användarkonto.
#d-i passwd/make-user boolean false

# Lösenord för root, antingen i klartext
#d-i passwd/root-password password r00tme
#d-i passwd/root-password-again password r00tme
# eller krypterat med en crypt(3)-hash.
#d-i passwd/root-password-crypted password [crypt(3) hash]

# För att skapa ett normalt användarkonto.
#d-i passwd/user-fullname string Debian Användare
#d-i passwd/username string debian
# Normala användarens lösenord, antingen i klartext
#d-i passwd/user-password password insecure
#d-i passwd/user-password-again password insecure
# eller krypterat med en crypt(3)-hash.
#d-i passwd/user-password-crypted password [crypt(3) hash]
# Skapa första användaren med angivet UID istället för standard.
#d-i passwd/user-uid string 1010

# Användarkontot kommer att läggas till i vissa initiala standardgrupper.
# För att åsidosätta detta, använd denna.
#d-i passwd/user-default-groups string audio cdrom video
```


Följande kommando (tillgängligt från paketet `whois` paketet) kan användas för att generera en SHA-512-baserad crypt(3) hash för ett lösenord:

```
mkpasswd -m sha-512
```

B.4.6 Inställning av klocka och tidszon
Kontrollerar om maskinvaruklockan är inställd till UTC eller inte.
d-i clock-setup/utc boolean true

Du kanske vill ställa in den här till någon giltig inställning för TZ;
se innehållet i /usr/share/zoneinfo/ för giltiga värden.
d-i time/zone string Europe/Stockholm

Kontrollerar om NTP ska användas för att ställa in klockan under installationen
d-i clock-setup/ntp boolean true

NTP-server att använda. Standardvärdet är oftast ett bra värde.
#d-i clock-setup/ntp-server string ntp.exempe1.se

B.4.7 Partitionering

Stöd finns för att göra förinställningar för installationer som ska använda RAID, LVM och kryptering men inte med full flexibilitet som vid partitionering under en vanlig installation utan förinställningar.

Warning

Identifieringen av diskar är beroende på ordningen som deras drivrutiner läses in i. Om det finns flera diskar i systemet, bör du vara mycket säker på att den rätta disken kommer att väljas före förinställningen används.

B.4.7.1 Partitioneringsexempel

```plaintext
# If the system has free space you can choose to only partition that space.
# This is only honoured if partman-auto/method (below) is not set.
#d-i partman-auto/init_automatically_partition select biggest_free

# Alternatively, you may specify a disk to partition. If the system has only
# one disk the installer will default to using that, but otherwise the device
# name must be given in traditional, non-devfs format (so e.g. /dev/sda
# and not e.g. /dev/discs/disc0/disc).
# For example, to use the first SCSI/SATA hard disk:
#d-i partman-auto/disk string /dev/sda
# In addition, you'll need to specify the method to use.
# The presently available methods are:
# - regular: use the usual partition types for your architecture
# - lvm: use LVM to partition the disk
# - crypto: use LVM within an encrypted partition
#d-i partman-auto/method string lvm

# You can define the amount of space that will be used for the LVM volume
# group. It can either be a size with its unit (eg. 20 GB), a percentage of
# free space or the 'max' keyword.
#d-i partman-auto-lvm/guided_size string max

# If one of the disks that are going to be automatically partitioned
# contains an old LVM configuration, the user will normally receive a
# warning. This can be preseeded away...
```
d-i partman-lvm/device_remove_lvm boolean true
The same applies to pre-existing software RAID array:
d-i partman-md/device_remove_md boolean true
And the same goes for the confirmation to write the lvm partitions.
d-i partman-lvm/confirm boolean true
d-i partman-lvm/confirm_noovertwrite boolean true

You can choose one of the three predefined partitioning recipes:
- atomic: all files in one partition
- home: separate /home partition
- multi: separate /home, /var, and /tmp partitions
Or provide a recipe of your own...
If you have a way to get a recipe file into the d-i environment, you can
just point at it.
#d-i partman-auto/expert_recipe_file string /hd-media/recipe

If not, you can put an entire recipe into the preconfiguration file in one
(logical) line. This example creates a small /boot partition, suitable
swap, and uses the rest of the space for the root partition:
#d-i partman-auto/expert_recipe string
boot-root ::
40 50 100 ext3
$primary{ } $bootable{ }
method{ format } format{ }
use_filesystem{ } filesystem{ ext3 }
mountpoint{ /boot }
.
500 10000 1000000000 ext3
method{ format } format{ }
use_filesystem{ } filesystem{ ext3 }
mountpoint{ / }
.
64 512 300% linux-swap
method{ swap } format{ }
.

The full recipe format is documented in the file partman-auto-recipe.txt
included in the ‘debian-installer’ package or available from D-I source
repository. This also documents how to specify settings such as file
system labels, volume group names and which physical devices to include
in a volume group.

Partitioning for EFI
If your system needs an EFI partition you could add something like
this to the recipe above, as the first element in the recipe:
538 538 1075 free
$iflabel{ gpt }
$reusemethod{ }
method{ efi }
format{ }
.
The fragment above is for the amd64 architecture; the details may be
different on other architectures. The ‘partman-auto’ package in the
D-I source repository may have an example you can follow.

This makes partman automatically partition without confirmation, provided
that you told it what to do using one of the methods above.
d-i partman-partitioning/confirm_write_new_label boolean true
d-i partman/choose_partition select finish
d-i partman/confirm boolean true
d-i partman/confirm_noovertwrite boolean true
B4.7.2 Partitionering med RAID

Du kan även använda förinställning för att konfigurera partitioner på programvara-RAID-kedjor. Nivåer som stöds är RAID 0, 1, 5, 6 och 10, skapa trasiga kedjor och ange reservenheter.

WARNING

The method should be set to "raid".
#d-i partman-auto/method string raid
Specify the disks to be partitioned. They will all get the same layout, # so this will only work if the disks are the same size.
#d-i partman-auto/disk string /dev/sda /dev/sdb

Next you need to specify the physical partitions that will be used.
#d-i partman-auto/expert_recipe string \
 # multiraid :: \
 # 1000 5000 4000 raid \
 # $primary{ } method{ raid } \
 # . \
 # 64 512 300% raid \
 # method{ raid } \
 # . \
 # 500 10000 1000000000 raid \
 # method{ raid } \
 # .

Last you need to specify how the previously defined partitions will be # used in the RAID setup. Remember to use the correct partition numbers # for logical partitions. RAID levels 0, 1, 5, 6 and 10 are supported; # devices are separated using "#". # Parameters are: # <raidtype> <devcount> <sparecount> <fstype> <mountpoint> \
<devices> <sparedevices>

#d-i partman-auto-raid/recipe string \
 # 1 2 0 ext3 / \
 # /dev/sda1#/dev/sdb1 \
 # . \
 # 1 2 0 swap - \
 # /dev/sda5#/dev/sdb5 \
 # . \
 # 0 2 0 ext3 /home \
 # /dev/sda6#/dev/sdb6 \
 # .
B.4.7.3 Kontrollera hur partitioner monteras

Vanligtvis så monteras filsystem med hjälp av en universiell unik identifierare (UUID) som en nyckel; detta tillåter att de monteras korrekt även om deras enhetsnamn ändras. UUID är långa och svåra att läsa, så om du föredrar, installationsprogrammet kan montera filsystem som är baserade på de traditionella enhetsnamnen, eller baserade på en etikett som du tilldelar det. Om du frågar installationsprogrammet att montera efter etikett så kommer alla filsystem som inte har en etikett att monteras efter ett UUID istället.

Enheter med stabila namn, såsom logiska LVM-volymer, kommer att fortsätta att använda deras traditionella namn istället för UUID.

WARNING

Traditionella enhetsnamn kan ändras baserat på ordningen i vilken kärnan upptäcker enheter vid uppförst, vilket kan orsaka att fel filsystem monteras. På samma sätt kan etiketter krocka om du ansluter en ny disk eller en USB-enhet och om det händer så kan beteendet för ditt system vara slumpmässigt.

B.4.8 Installation av grundsystem

Det finns faktiskt inte speciellt mycket som kan förinställas för det här steget av installationen. De enda frågorna som ställs är angående installationen av kärnan.

B.4.9 Apt-inställning

Konfiguration av `/etc/apt/sources.list` och grundläggande konfigurationsalternativ är fullständigt automatiserade baserat på din installationsmetod och svar på tidigare ställda frågor. Du kan valfritt lägga till andra (lokala) förråd.

```
# Standard är att montera efter UUID, men du kan även välja "traditional" för filsystemetiketter
# att använda traditionella enhetsnamn, eller "label" för att prova → filsystemen
# innan installationsprogrammet faller tillbaka på UUID.
#d-i partman/mount_style select uuid
```
B.4.10 Paketval

Du kan välja att installera alla kombinationer av funktioner som finns tillgängliga. Tillgängliga funktioner just nu inkluderar:

- **standard** (standard verktyg)
- **skrivbord** (grafiskt skrivbord)
- **gnome-desktop** (Gnome skrivbord)
- **xfce-desktop** (XFCE skrivbord)
- **kde-desktop** (KDE Plasma skrivbord)
- **cinnamon-desktop** (Cinnamon skrivbord)
• **mate-desktop** (MATE skrivbord)
• **lxde-desktop** (LXDE skrivbord)
• **web-server** (webb server)
• **ssh-server** (SSH server)

Du kan även välja att inte installera några funktioner, och tvinga fram installationen av en uppsättning paket på något annat sätt. Vi rekommenderar alltid att inkludera funktionen **standard**.

Or if you don’t want the tasksel dialog to be shown at all, preseed pkgsel/run_tasksel (no packages are installed via tasksel in that case).

Om du vill installera några individuella paket i tillägg till de paket som installerats av funktioner, kan du använda parametern pkgsel/include. Värdet för denna parameter kan vara en lista över paket, komma- eller blankstegs-separerad, vilket även tillåter att den enkelt kan användas på kommandoraden för kärnan.

```bash
#tasksel tasksel/first multiselect standard, web-server, kde-desktop
# Or choose to not get the tasksel dialog displayed at all (and don’t install
# any packages):
#d-i pkgsel/run_tasksel boolean false

# Individual additional packages to install
#d-i pkgsel/include string openssh-server build-essential
# Whether to upgrade packages after debootstrap.
# Allowed values: none, safe-upgrade, full-upgrade
#d-i pkgsel/upgrade select none

# You can choose, if your system will report back on what software you have
# installed, and what software you use. The default is not to report back,
# but sending reports helps the project determine what software is most
# popular and should be included on the first CD/DVD.
#popularity-contest popularity-contest/participate boolean false
```

B.4.11 Färdigställande av installationen

```bash
# Under installationer från seriellkonsoll är de vanliga virtuella konsollerna
# (VT1–VT6) vanligtvis inaktiverade i /etc/inittab. Avkommentera nästa
# rad för att förhindra detta.
#d-i finish-install/keep-consoles boolean true

# Undvik det sista meddelandet om att installationen är färdig.
#d-i finish-install/reboot_in_progress note

# Det här kommer att förhindra installationsprogrammet från att mata ut cd-skivan
# under omstarten. vilket kan vara användbart i vissa situationer.
#d-i cdrom-detect/eject boolean false

# Så här gör man för att stänga av installationsprogrammet när det är färdigt,
# men utan att starta om till det installerade systemet.
#d-i debian-installer/exit/halt boolean true
# Det här kommer att stänga av maskinen istället för att bara stoppa den.
#d-i debian-installer/exit/poweroff boolean true
```

B.4.12 Förinställning av andra paket

```bash
# Beroende på vilken programvara du väljer att installera, eller om saker går fel
# under installationsprocessen, är det möjligt att andra frågor kan ställas.
# Du kan förinställa de här också, så klart. För att få en lista på alla
# möjliga frågor som kan ställas under en installation, gör en
# installation, och kör sedan de här kommandona:
```
B.5 Avancerade inställningar

B.5.1 Kör anpassade kommandon under installationen

Ett mycket kraftfullt och flexibelt alternativ som erbjuds av förkonfigurationsverktygen är möjligheten att köra kommandon eller skriva punkter i installationen.

När filsystemet för målsystemet är monterat, är det tillgängligt i /target. Om en installations-CD används, när den är monterad finns den tillgänglig i /cdrom.

```
# Förinställning i d-i anses inte som säker. Inget i installationsprogrammet ← leter
# efter buffertöverflöden eller andra attackförsök genom värdena i en
# förkonfigurationsfil såsom den här. Använd endast förkonfigurationfiler från en
# plats du kan lita på! För att gör det och på grund av att det är generellt sett
# användbart, hår är ett sätt att automatiskt köra de skalkommandon du vill
# inne i installationsprogrammet.

# Det första kommandot körs så tidigt som möjligt, direkt efter
# att förinställningen är inläst.
#d-i preseed/early_command string anna-install some-udeb
# Det här kommandot körs direkt före partitioneraren startar. Det kan vara
# användbart för att tillämpa förinställning av dynamisk partitionering som är
# beroende av tillståndet för diskarna (som kanske annars inte är synligt när
# preseed/early_command körs).
#d-i partman/early_command \
#   string debconf-set partman-auto/disk "$(list-devices disk | head -n1)"
# Det här kommandot körs precis innan installationen är färdig, men när det
# fortfarande finns en användbar /target-katalog. Du kan göra en chroot till / ←
# target och
# använda det direkt, eller använda apt-install och kommandon från /target för ←
# att
# enkelt installera paket och köra kommandon på målsystemet.
#d-i preseed/late_command string apt-install zsh; in-target chsh -s /bin/zsh
```

B.5.2 Användning av förinställningar för att ändra på standardvärden

Det är möjligt att använda förinställning för att ändra standardsvaret på en fråga, men fortfarande ställa frågan. För att göra det här måste flaggan `seen` återställas till "false" efter att värdet ställts in för en fråga.

```
d-i foo/bar string value
```

Samma effekt kan uppnås för `all` frågor genom att ställa in parametern `preseed/interactive=true` på uppstartsprompten. Det här kan också vara användbart för testning eller felsökning av din förkonfigurationsfil.

Observera att "d-i"-ägaren endast ska användas för variable som används i själva installationsprogrammet. För variabler som tillhör paket som installeras på målsystemet så ska du istället använda namnet för paketet. Se sidofoten på Avsnitt B.2.2.

För mer felsökningsinformation använd uppstartsflagan `DEBCONF_DEBUG=5`. Detta innebära att `debconf` kommer att skriva mer detaljer om varje inställning för varje variabel och om framstegen genom processen genom varje pakets installationsskript.
B.5.3 Kedjeinläsning av förkonfigurationsfiler

Det är möjligt att inkludera andra förkonfigurationsfiler från en förkonfigurationsfil. Alla inställningar i de filerna kommer att åsidosätta eventuella inställningar från filer som lästs in tidigare. Det gör det möjligt att lägga in, till exempel, allmänna nätverksinställningar för din plats i en fil och mer specifika inställningar för vissa konfigurationer i andra filer.

```
# Fler än en fil kan listas, separerade med blanksteg; alla kommer att
# läsas in. De inkluderade filerna kan även innehålla egna direktiv för preseed/ →
# include.
# Observera att om filnamnen är relativa, tas de från samma katalog som
# förkonfigurationsfilen som inkluderar dem.
#d-i preseed/include string x.cfg

# Installationsprogrammet kan valfritt validera kontrollsummar för ←
# förkonfigurationsfiler innan
# de används. För närvarande stöds endast md5sums, lista kontrollsummorna
# i samma ordning som listan över filer som ska inkluderas.
#d-i preseed/include/checksum string 5da499872beccc6eda2c4872f9171c3d

# Mer flexibelt, det här kör ett skalkommando och om det skriver ut namnen på
# förkonfigurationsfiler, inkludera de filerna.
#d-i preseed/include_command
#    string if [ "'hostname'" = bosse ]; then echo bosse.cfg; fi

# Mest flexibelt av alla, denna hämtar ett program och kör det. Programmet
# kan använda kommandon såsom debconf-set för att ändra debconf-databasen.
# Fler än ett skript kan listas, separerade med blanksteg.
# Observera att om filnamnen är relativa tas de från samma katalog
# som förkonfigurationsfilen som kör dem.
#d-i preseed/run string foo.sh
```

Bilaga C

Partitionerar för Debian

C.1 Bestämma Debian-partitioner och storlekar

Det andra skälet är att generellt sett mer viktigt i en företagsmiljö, men det är beroende på din användning av maskinen. Till exempel, en e-postserver får in ett stort antal spam via e-post som lätt kan fylla upp en partition. Om du gjorde `/var/mail` till en separat partition på e-postservern, kommer det mesta av systemet fortfarande fungera även om du blir spammad.

Den enda riktiga nackdelen med att använda fler partitioner är att det ofta är svårt att veta i förväg vilka dina behov kommer att vara. Om du gör en partition för liten så behöver du antingen installera om systemet eller så kommer du få flytta runt saker hela tiden för att skapa plats på partitionen. På andra sidan, om du gör partitionen för stor, kommer du att slösa utrymme som kunde användas någon annanstans. Diskutrymme är billigt nuvöntiden, men varför kasta bort dina pengar?

C.2 Katalogträdet

Debian GNU/Linux följer Filesystem Hierarchy Standard för namngivning av kataloger och filer. Den här standarden låter användarna och programvaror att förutse platsen för filer och kataloger. Rotnivåkatalogen representeras helt enkelt av ett snedstreck, `/`. På rotnivån, alla inkluderar Debian-system dessa kataloger:

<table>
<thead>
<tr>
<th>Katalog</th>
<th>Innehåll</th>
</tr>
</thead>
<tbody>
<tr>
<td>bin</td>
<td>Systemkritiska kommandobinärer</td>
</tr>
<tr>
<td>boot</td>
<td>Statiska filer för starthanteraren</td>
</tr>
<tr>
<td>dev</td>
<td>Enhetssökel</td>
</tr>
<tr>
<td>etc</td>
<td>Värdspecifik systemkonfiguration</td>
</tr>
<tr>
<td>home</td>
<td>Användarnas hembibliokataloger</td>
</tr>
<tr>
<td>lib</td>
<td>Viktiga delade bibliotek och kärnmoduler</td>
</tr>
<tr>
<td>media</td>
<td>Innehåller monteringspunkter för flyttbart media</td>
</tr>
<tr>
<td>mnt</td>
<td>Monteringspunkt för montering av temporär filsystem</td>
</tr>
<tr>
<td>proc</td>
<td>Virtuell katalog för systeminformation</td>
</tr>
<tr>
<td>root</td>
<td>Hembibliokatalog för root-användaren</td>
</tr>
</tbody>
</table>

- **The root partition** / must always physically contain /etc, /bin, /sbin, /lib, /dev and /usr, otherwise you won’t be able to boot. This means that you should provide at least 600–750MB of disk space for the root partition including /usr, or 5–6GB for a workstation or a server installation.

- **/var**: variabel data såsom nyhetsartiklar, e-post, webblater, databaser, cache för paketsystemet, etc. kommer att placeras under den här katalogen. Storleken på den här katalogen beror mycket på användningen av ditt system men för de flesta personer kommer det här att bestämmas av pakethanteringsverktygets behov. Om du tänker göra en full installation av i stort sett allt som Debian kan erbjuda, på en enda gång, bör 2 eller 3 GB utrymme för /var vara tillräckligt. Om du tänker installera in omgångar (så att säga, installera tjänster och verktyg, följt av textprogram, sedan X, ...), kan du komma runt med 300–500 MB. Om hårddiskutrymme är begränsat och du inte planerar att göra några större systemuppdateringar, kan du klara dig med så lite som 30 eller 40 MB.

- **/tmp**: temporärdata som skapas av program kommer sannolikt att hamna i den här katalogen. 40–100 MB bör nog vara tillräckligt. Vissa program — inklusive arkivhanterare, verktyg för cd/dvd-tillverkning och multimediaprogram — kan använda /tmp för att temporärt lagra bildfiler. Om du planerar att använda sådana program bör du justera tillgängligt utrymme för /tmp på lämpligt sätt.

C.3 Rekommenderad partitionstabell

För nya användare, personliga Debian burkar, hemsystem och andra en-användarkonfigurationer, en enda /-partition (plus växlingsutrymmen) är antagligen det lättaste, enklaste sättet att köra. Den rekommenderade partitionstypen är ext4.

För fleraanvändarsystem eller system med massor av diskutrymme, är det bäst att lägga /var, /tmp, och /home på egna partitioner, separerade från partitionen /.

För mycket komplexa system, bör du se Multi Disk HOWTO. Den innehåller fördjupad information, mestadels av intresse för Internetleverantörer och personal som installerar servrar.

Som en idé för utrymmet som tas upp av de funktioner som du kanske är intresserade av att lägga in efter din systeminstallation är klar, se på Avsnitt D.2.
C.4 Enhetsnamn i Linux

Namnen på Linux diskar och partitioner kan vara olika från andra operativsystem. Du behöver veta namnen som Linux använder när du skapar och monterar partitioner. Här är de grundläggande benämningarna:

- Den första hårddisken som upptäckts heter /dev/sda.
- Den andra hårddisken som upptäcks heter /dev/sdb och så vidare.
- Den första SCSI Cd-rom kallas /dev/scd0 också känd som /dev/sr0.

Partitionerna på varje disk representeras av lägga till ett decimaltal till disknamnet: sda1 och sda2 representerar den första och andra partitionen på första SCSI-disken i ditt system.

Observera att om du har två SCSI-värdbussadaptörer (alltså, styrkort), ordningen på diskarna kan vara förvirrande. Den bästa lösningen i det här fallet är att se på uppstartsmeddelandena, och antagligen känner du till diskmodellerna och/eller storlekarna.

C.5 Debians partitioneringsprogram

Flera varianter av partitioneringsprogram har anpassats av Debians utvecklare för att fungera på olika typer av hårddiskar och datorarkitekturen. Följande är en lista på de program som lämpar sig för din arkitektur.

partman Rekommenderat partitioneringsverktyg i Debian. Den här schweiziska armékniven kan också ändra storlek på partitioner, skapa filsystem och tilldela dem monteringspunkter.

fdisk Den originella diskpartitioneren för Linux, bra för experter.

Var försiktig om du har befintliga FreeBSD-partitioner på din maskin. Installationsklämorna inkluderar stöd för dessa partitioner, men sättet som fdisk representerar dem på (eller inte) kan göra att enhetsnamnen skiljer sig.

Se Linux+FreeBSD HOWTO.

cfdisk En diskpartitioneren i helskärm som är enkel att använda för resten av oss.

Observera att cfdisk inte förstår FreeBSD-partitioner alls, och, igen, som ett resultat av det kan enhetsnamnen skilja sig.

Ett av dessa program kommer att köras som standard när du väljer Partitionera diskar (eller liknande). Det kan vara möjligt att använda ett annat partitioneringsverktyg från kommandoraden på VT2, men det är inte rekommenderat.
Bilaga D

Diverse bitar

D.1 Linux-enheter

De olika specialfilerna för Linux kan hittas under katalogen /dev. Dessa filer kallas för enhetsfiler och uppträder inte på samma sätt som vanliga filer. De mest vanliga typer av enhetsfiler är för blockenheter och teckenheter. Dessa filer är ett gränssnitt mot den faktiska drivrutinen (del av Linux-kärnan) som i sin tur kommer åt hårdvaran. En annan, mindre vanlig, typ av enhetsfil är den namngivna röret (named pipe). De mest viktiga enhetsfilerna listas i tabellerna nedan.

<table>
<thead>
<tr>
<th>Fil</th>
<th>Beskrivning</th>
</tr>
</thead>
<tbody>
<tr>
<td>sda</td>
<td>Första härddisken</td>
</tr>
<tr>
<td>sdb</td>
<td>Andra härddisken</td>
</tr>
<tr>
<td>sda1</td>
<td>Första partitionen på första härddisken</td>
</tr>
<tr>
<td>sdb7</td>
<td>Sjunde partitionen på den andra härddisken</td>
</tr>
<tr>
<td>sr0</td>
<td>Första CD-ROM-skivan</td>
</tr>
<tr>
<td>sr1</td>
<td>Andra CD-ROM-skivan</td>
</tr>
<tr>
<td>ttyS0</td>
<td>Serieport 0, COM1 under MS-DOS</td>
</tr>
<tr>
<td>ttyS1</td>
<td>Serieport 1, COM2 under MS-DOS</td>
</tr>
<tr>
<td>psaux</td>
<td>PS/2-musenhet</td>
</tr>
<tr>
<td>gpmdata</td>
<td>Pseudoenhet, repeterar data från GPM-demonen (mus)</td>
</tr>
<tr>
<td>cdrom</td>
<td>Symbolisk länk till Cd-enheten</td>
</tr>
<tr>
<td>mus</td>
<td>Symbolisk länk till musenheten</td>
</tr>
<tr>
<td>null</td>
<td>Allting som skrivs till den här enheten kommer att försvinna</td>
</tr>
<tr>
<td>zero</td>
<td>Man kan läsa oändligt antal nollor från den här enheten</td>
</tr>
</tbody>
</table>

D.1.1 Konfigurera din mus

Vissa kärnmoduler måste läsas in för att din mus ska fungera. I vissa fall identifieras de korrekta modulerna automatiskt, men inte alltid för gamla serie- och bussmoss, vilka är ganska ovanliga förutom på mycket gamla datorer.

¹Seriemoss har oftast en 9-hålig D-formad kontakt; bussmoss har en 8-pinnars rund kontakt, förväxla den inte med den 6-pinnars runda
Sammandrag över Linux-kärnmoduler som behövs för olika mustyper:

<table>
<thead>
<tr>
<th>Modul</th>
<th>Beskrivning</th>
</tr>
</thead>
<tbody>
<tr>
<td>psmouse</td>
<td>PS/2-möss (ska identifieras automatiskt)</td>
</tr>
<tr>
<td>usbhid</td>
<td>USB-möss (ska identifieras automatiskt)</td>
</tr>
<tr>
<td>sermouse</td>
<td>De flesta seriemöss</td>
</tr>
<tr>
<td>logibm</td>
<td>Bussmus ansluten till Logitech-kort</td>
</tr>
<tr>
<td>inport</td>
<td>Bussmus ansluten till ATI eller Microsoft InPort-kort</td>
</tr>
</tbody>
</table>

För att läsa in en musdrivrutinsmodul kan du använda kommandot `modconf` (från paketet med samma namn) och leta i kategorin `kernel/drivers/input/mouse`.

D.2 Nödvändig diskplats för funktioner

En standardinstallation för arkitekturen amd64 med en standard kärna, inklusive alla standardpaket, kräver 1242 MB diskutrymme. En minimal grundinstallation, utan funktionen ”Standardsystem” vald, kommer att ta upp 1012 MB.

VIKTIGT

I båda fallen är det här det faktiska diskutrymmet som används **after** att installationen är färdig och eventuella temporärfiler har tagits bort. Det tar heller inte hänsyn till utrymme som används av filsystemet, till exempel för journalfiler. Det här betyder en markant ökning av diskutrymmet som behövs av båda **under** installationen och för normal systemanvändning.

Följande tabell listar storlekar som rapporterats av aptitude för funktionerna listade i tasksel. Observera att några funktioner har överlappande beständsdelar, så den totala installerade storleken för två funktioner tillsammans kan vara mindre än totalen som fås genom att lägga ihop siffrorna.

Som standard kommer installationsprogrammet att installera skrivbordsmiljön GNOME, men alternativa skrivbordsmiljörer kan väljas antingen genom att använda en av de speciella installationsavbildningarna eller genom att ange den önskade skrivbordsmiljön under installationen (se Avsnitt 6.3.6.2).

Observera att du behöver lägga till storlekar som listas i tabellen till storleken för standardinstallationen när storlekarerna på partitionerna bestäms. De flesta storlekar listade som ”Installered storlek” kommer att hamna i `/usr` och i `/lib`; storleken listad som ”Hämtad storlek” krävs (temporärt) för `/var`.

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Installered storlek (MB)</th>
<th>Hämtad storlek (MB)</th>
<th>Utrymme som behövs för installation (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skrivbordsmiljö</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• GNOME (standard)</td>
<td>3216</td>
<td>859</td>
<td>4075</td>
</tr>
<tr>
<td>• KDE Plasma</td>
<td>4584</td>
<td>1316</td>
<td>5900</td>
</tr>
<tr>
<td>• Xfce</td>
<td>2509</td>
<td>683</td>
<td>3192</td>
</tr>
<tr>
<td>• LXDE</td>
<td>2539</td>
<td>693</td>
<td>3232</td>
</tr>
<tr>
<td>• MATE</td>
<td>2851</td>
<td>762</td>
<td>3613</td>
</tr>
<tr>
<td>• Cinnamon</td>
<td>4676</td>
<td>1324</td>
<td>6000</td>
</tr>
<tr>
<td>Webserver</td>
<td>85</td>
<td>19</td>
<td>104</td>
</tr>
<tr>
<td>SSH-server</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Om du installerar i ett annat språk än engelska, kan tasksel automatiskt installera en **lokalanpassningsfunktion** om det finns en tillgänglig för ditt språk. Utrymmeskrav skiljer sig mellan språken; du bör avsätta upp till 350 MB totalt för hämtning och installation.

D.3 Installera Debian GNU/Linux från ett Unix/Linux-system

Det här avsnittet förklarar hur man installerar Debian GNU/Linux från ett befintligt Unix- eller Linux-system, utan att använda det menystyrda installationsprogrammet som förklaras i resten av handboken. Den här HOWTO:n för ”cross-kontakten för en PS/2-mus eller den 4-pinnars runda kontakten för en ADB-mus.”
installation” har efterfrågats av användare som byter till Debian GNU/Linux från Red Hat, Mandriva och SUSE. I detta avsnitt antas att viss erfarenhet av *nix-kommandon och navigering i filsystemet. I detta avsnitt symboliserar $ ett kommando som ska anges i användarens aktuella system, medan # refererar till ett kommando som ska anges i Debians chroot-miljö.

När du har fått det nya Debian-systemet konfigurerat enligt din smak, kan du migrera din befintliga användardata (om den finns) till det, och fortsätta köra. Det här är alltså en installation av Debian GNU/Linux ”utan nedtid”. Det är också ett klurigt sätt att hantera maskinvara som annars inte fungerar snällt med olika uppstarts- eller installationsmedia.

NOTERA

D.3.1 Påbörja arbetet

Skapa sedan filsystem på dina partitioner. För att till exempel skapa ett ext3-filsystem på partitionen /dev/sda6 (det är vår rotpartition i exemplet):

```bash
# mke2fs -j /dev/sda6
```

För att istället skapa ett ext2-filsystem, uteslut -j.

Initialisera och aktivera växlingsutrymmet (ersätt partitionsnumret med din tilltänkta Debian-partition för växlingsutrymmet):

```bash
# mkswap /dev/sda5
# sync
# swapon /dev/sda5
```

Montera en partition som /mnt/debinst (installationspunkten, som ska vara rotfilsystemet (/) på ditt nya system). Namnet på monteringspunkten är strikt godtyckligt, det refereras till senare här nedan.

```bash
# mkdir /mnt/debinst
# mount /dev/sda6 /mnt/debinst
```

NOTERA

Om du vill ha delar av filsystemet (exempelvis, /usr) monterat på separata partitioner, behöver du skapa och montera dessa kataloger manuellt innan du fortsätter till nästa steg.

D.3.2 Installera debootstrap

Verktyget som Debian Installer använder, som är känt som det officiella sättet att installera Debians grundsystem, är debootstrap. Det använder `wget` och `ar`, men är annars endast beroende av `/bin/sh` och grundläggande Unix/Linux-
verktyg². Installa `wget` och `ar` om de inte redan finns på ditt aktuella system, hämta och installera sedan `debootstrap`.

Eller så kan du använda följande procedur för att installera det manuellt. Skapa en arbetskatalog för att extrahera `.deb`-filen till:

```
# mkdir arbetskatalog
# cd arbetskatalog
```


```
# ar -x debootstrap_0.X.X_all.deb
# cd /
# zcat /fullständig-sökväg-till-arbetskatalog/arbetskatalog/data.tar.gz | tar xv
```

D.3.3 Kör debootstrap

Om du har en bookworm Debian GNU/Linux installationsavbildning monterad på `/cdrom`, kan du ersätta en fil-URL istället för en http-URL: `file:/cdrom/debian/`

Ersätt en av följande för `ARCH` i kommandot `debootstrap` med `amd64`, `arm64`, `armel`, `armhf`, `i386`, `mips64el`, `mipsel`, `ppc64el`, `s390x`.

```
# /usr/sbin/debootstrap --arch ARCH bookworm \
/mnt/debinst http://ftp.us.debian.org/debian
```

Om målarkitekturen skiljer sig från värden bör du lägga till alternativet `--foreign`.

D.3.4 Konfigurera grundsystemet

Nu är du har ett riktigt Debian-system, även om det är ganska minimalt, på disk. Kör `chroot` in i det:

```
# LANG=C.UTF-8 chroot /mnt/debinst /bin/bash
```

Om målarkitekturen skiljer sig från värden måste du först kopiera qemu-user-static till den nya värden:

```
# cp /usr/bin/qemu-ARCH-static /mnt/debinst/usr/bin
# LANG=C.UTF-8 chroot /mnt/debinst qemu-ARCH-static /bin/bash
```

Efter chroot kan du behöva ställa in terminaldefinitionen så att den är kompatibel med Debian bassystemet, till exempel:

```
# export TERM=xterm-color
```

Beroende på värden av `TERM`, kan du behöva installera `ncurses-term` paketet för att få stöd för det. Om målarkitekturen skiljer sig från värden måste du avsluta flerstegets startband:

```
/debootstrap/debootstrap --second-stage
```

D.3.4.1 Skapa enhetsfiler

Ett par av de tillgängliga alternativen är:

- installera makedev-paketet och skapa en standarduppsättning med statiska enhetsfiler (efter chroot)

²Dessa inkluderar GNU-kärnverktyg och kommandon såsom `sed`, `grep` och `gzip`. 84
BILAGA D. DIVERSE BITAR

D.3. INSTALLERA DEBIAN GNU/LINUX FRÅN ...

apt install makedev
mount none /proc -t proc
cd /dev
MKEDEV generic

- skapa manuellt endast specifika enhetsfiler med MKEDEV
- bindmontera /dev från ditt värdsystem på toppen av /dev i målsystemet; observera att postinst-skripten för vissa paket kan försöka att skapa enhetsfiler, så detta alternativ ska endast användas med försiktighet

D.3.4.2 Montera partitioner

Du måste skapa /etc/fstab.

editor /etc/fstab

Här är ett exempel som du kan ändra på för att passa in:

```
# /etc/fstab: statisk filsystemsinformation.
#
# filsystem  monteringsp. typ flaggor
dump pass
/dev/XXX   /   ext3 defaults   0 1
/dev/XXX   /boot   ext3 ro,nosuid,nodev 0 2
/dev/XXX   none     swap   sw   0 0
proc   /proc     proc defaults   0 0
/dev/cdrom  /media/cdrom  iso9660 noauto,ro,user,exec 0 0
/dev/XXX   /tmp     ext3   rw,nosuid,nodev 0 2
/dev/XXX   /var     ext3   rw,nosuid,nodev 0 2
/dev/XXX   /usr     ext3   rw,nosuid,nodev 0 2
/dev/XXX   /home    ext3   rw,nosuid,nodev 0 2
```

Använd `mount -a` för att montera alla filsystem som du har angivna i din /etc/fstab, eller använd följande kommando för att montera filsystem individuellt:

```
# mount /path   # exempelvis: mount /usr
```

Nuvarande Debian-system har monteringspunkter för flyttbara media under /media, men innehåller symboliska länkar / för att vara kompatibla. Skapa dessa efter behov, till exempel:

```
# cd /media
# mkdir cdrom0
# ln -s cdrom0 cdrom
# cd /
# ln -s media/cdrom
```

Du kan montera proc-filsystemet flera gånger till godtyckliga platser, även om /proc är vanligast. Om du inte använder `mount -a`, tänk på att montera proc innan du fortsätter:

```
# mount -t proc proc
```

Kommandot `ls /proc` bör nu visa en icke-tom katalog. Om det här skulle misslyckas, kan du kanske montera proc utanför chroot:

```
# mount -t proc proc /mnt/debinst/proc
```

D.3.4.3 Ställ in tidszon

Att ställa in den tredje raden i filen /etc/adjtime till "UTC" eller "LOCAL" avgör om systemet kommer att tolka hårdvaruklockan som inställd på UTC respektive lokal tid. Följande kommando låter dig ställa in det.

```
# editor /etc/adjtime
```
Här är ett exempel:

```
0.0 0 0.0
0
UTC
```

Följande kommando låter dig välja din tidszon.

```
# dpkg-reconfigure tzdata
```

D.3.4.4 Konfigurera nätverket

För att konfigurera nätverket, redigera `/etc/network/interfaces`, `/etc/resolv.conf`, `/etc/hostname` och `/etc/hosts`.

```
# editor /etc/network/interfaces
```

Här är några enkla exemplet från `/usr/share/doc/ifupdown/examples`:

```ini
# /etc/network/interfaces -- konfigurationsfil för ifup(8), ifdown(8)
# Se manualsidan interfaces(5) för information om vilka flaggor som
# finns tillgängliga.
loopback-gränssnittet behövs egentligen inte längre, men kan användas
om det behövs.
#
# auto lo
iface lo inet loopback

# För att använda dhcp:
#
# auto eth0
iface eth0 inet dhcp

# Ett exempel på statisk IP-konfiguration: (nätverk, broadcast och gateway är ← valfria)
#
# auto eth0
iface eth0 inet static
    address 192.168.0.42
    network 192.168.0.0
    netmask 255.255.255.0
    broadcast 192.168.0.255
    gateway 192.168.0.1
```

Ange din namnserver (eller flera) och sökdirektiv i `/etc/resolv.conf`:

```
# editor /etc/resolv.conf
```

En enkelt exempel för `/etc/resolv.conf`:

```
search example.com
nameserver 10.1.1.36
nameserver 192.168.9.100
```

Ange vårdnamnet för ditt system (2 till 63 tecken):

```
# echo DebianVardNamn > /etc/hostname
```

Och en grundläggande `/etc/hosts` med IPv6-stöd:

```
127.0.0.1 localhost
127.0.1.1 DebianVardNamn
```

Följande rader är önskvärda för IPv6-kapabla värddar
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts

Om du har flera nätverkskort bör du sortera namnen på drivrutinsmodulerna i filen /etc/modules i önskad ordning. Sedan, under uppstart, kommer varje kort att associeras med gränssnittsnamnet (eth0, eth1, etc.) som du förväntar dig.

D.3.4.5 Konfigurera apt

Debootstrap har skapat en mycket grundläggande /etc/apt/sources.list som tillåter installation av ytterligare paket. Dock kanske du vill lägga till ytterligare källor, till exempel för källkodspaket och säkerhetsuppdateringar:

```
deb-src http://ftp.se.debian.org/debian bookworm main

deb http://security.debian.org/ bookworm-security main
deb-src http://security.debian.org/ bookworm-security main
```

Se till att köra `apt update` efter att du har gjort ändringar i källistan.

D.3.4.6 Konfigurera lokaler och tangentbord

För att konfigurera dina lokalinställningar till att använda ett språk annat än engelska, installera stödpaketet `locales` och konfigurera det. För närvarande rekommenderas användning av UTF-8-lokaler.

```
# apt install locales
# dpkg-reconfigure locales
```

För att konfigurera ditt tangentbord (om det behövs):

```
# apt install console-setup
# dpkg-reconfigure keyboard-configuration
```

Observera att tangentbordet inte kan ställas in när chroot används men kommer att konfigureras inför nästa omstart.

D.3.5 Installera en kärna

Om du tänker starta upp det här systemet, vill du antagligen ha en Linux-kärna och en starthanterare. Identifiera tillgängliga förpaketerade kärnor med:

```
# apt search linux-image
```

Installera sedan det kärnpaket som du önskar med hjälp av dess paketnamn.

```
# apt install linux-image-arch-etc
```

D.3.6 Ställ in starthanteraren

För att göra ditt Debian GNU/Linux-system startbart, ställ in din starthanterare att läsa in den installerade kärnan med din nya rotpartition. Observera att `debootstrap` inte installerar en starthanterare, men du kan använda `apt` inne i din Debian chroot-miljö för att göra det.

Observera att detta antar att enhetsfilen `/dev/sda` har skapats. Det finns alternativa metoder för att installera `grub2`, men dessa är utanför omfånget för denna bilaga.

D.3.7 Fjärråtkomst: installera SSH och konfigurera åtkomst

Om du kan logga in på systemet via konsolen kan du hoppa över det här avsnittet. Om systemet ska vara tillgängligt via nätverket senare, måste du installera SSH och konfigurera åtkomst.

```
# apt install ssh
```
Root login med lösenord är inaktiverat som standard, så att ställa in tillgång kan göras genom att ange ett lösenord och återaktivera root login med lösenord:

```
# passwd
# editor /etcssh/sshd_config
```

Detta är alternativet som ska aktiveras:

```
PermitRootLogin yes
```

Åtkomst kan också ställas in genom att lägga till en SSH-nyckel till root-kontot:

```
# mkdir /root/.ssh
# cat << EOF > /root/.ssh/authorized_keys
ssh-rsa ....
EOF
```

Slutligen kan åtkomst ställas in genom att lägga till en icke-root-användare och ange ett lösenord:

```
# adduser joe
# passwd joe
```

D.3.8 Slutgiltiga justeringar

Som nämnts tidigare, det installerade systemet kommer att vara mycket minimalt. Om du vill fylla upp systemet lite mer, finns det en enkel metod för att installera alla paket med ”standard”prioritet:

```
# tasksel install standard
```

Du kan så klart också använda `apt` för att installera paket individuellt.

Efter installationen kommer det att finnas en hel del hämtade paket i `/var/cache/apt/archives/`. Du kan frigöra diskutrymme genom att köra:

```
# apt clean
```

D.4 Installera Debian GNU/Linux över PPP over Ethernet (PPPoE)

I vissa länder är PPP over Ethernet (PPPoE) ett vanligt protokoll för bredbandsanslutningar (ADSL eller kabel) till en internetleverantör. Konfiguration av en nätverksanslutning med PPPoE stöds inte som standard i installationsprogrammet men går att få att fungera mycket enkelt. Det här avsnittet förklarar hur man gör.

PPPoE-anslutningen som konfigurerats under installationen kommer också vara tillgänglig efter omstart till det installerade systemet (se Kapitel 7).

För att få möjligheten att konfigurera och använda PPPoE under installationen behöver du installera från en av cd/dvd-avbildningarna som finns tillgängliga. Det stöds inte för andra installationsmetoder (t.ex. nätinstallation).

Installation över PPPoE är mestadels samma som för andra installationer. Följande steg förklarar skillnaderna.

- Starta upp installationsprogrammet med uppstartsparameter `modules=ppp-udeb`. Det här kommer att se till att komponenten som ansvarar för konfigurering av PPPoE (`ppp-udeb`) kommer att läsas in och köras automatiskt.
- Följ de vanliga initiala steg för installationen (språk, land och tangentbordsval; inläsningen av ytterligare installerarkomponenter³).
- Nästa steg är identifieringen av nätverksmaskinvaran för att identifiera de Ethernet-kort som finns anslutna till systemet.
- Efter det här är konfigurationen av PPPoE startad. Installationsprogrammet kommer att söka igenom alla identifierade Ethernet-gränssnitt i ett försök att hitta en PPPoE-koncentrator (en typ av server som hanterar PPPoE-anslutningar).

³Komponenten `ppp-udeb` läses in som en av de ytterligare komponenterna i det här steget. Om du vill installera på medium eller låg prioritet (expertläge) kan du även manuellt välja `ppp-udeb` istället för att ange parametern ”modules” vid uppstartsprompten.
Det är möjligt att koncentratorn inte kommer att hittas vid första försöket. Det kan hända ibland vid långsamma eller belastade nätverk eller med felaktiga servrar. I de flesta fall lyckas ett andra försök att identifiera koncentratorn; för att försöka igen, välj Konfigurera och starta en PPPoE-anslutning från huvudmenyn i installationsprogrammet.

- Efter att en koncentrator har hittats kommer användaren att bli tillfrågad att ange inloggningsinformationen (användarnamn och lösenord för PPPoE-anslutningen).

- Nu kommer installationsprogrammet att använda den angivna informationen för att etablera PPPoE-anslutningen. Om korrekt information har angivits kommer PPPoE-anslutningen att konfigureras och installationsprogrammet ska kunna använda den för att ansluta till Internet och hämta ner paket (om det behövs). Om inloggningsinformationen inte är korrekt eller några fel dyker upp kommer installationsprogrammet att stoppa, men konfigurationen kan startas om igen genom att välja menyposten Konfigurera och starta en PPPoE-anslutning.
Bilaga E

Administrivia

E.1 Om det här dokumentet

Det här dokumentet är skrivet i DocBook XML. Formaten för utdata genereras av olika program med information från paketen docbook-xml och docbook-xsl.

För att förbättra hanteringen av det här dokumentet använder vi ett antal XML-funktioner såsom entities och profil-attribut. Dessa spelar en roll som är besläktad med variabler och villkor i programspråk. XML-källkoden till det här dokumentet innehåller information om varje arkitektur och profil-attribut används för att isolera vissa delar av texten som är arkitekturspecifik.

E.2 Bidrag till det här dokumentet

Om du har problem eller förslag angående det här dokumentet bör du antagligen sända in om som en felrapport mot paketet installation-guide. Se paketet reportbug eller läs online-dokumentationen för Debians felrapporteringssystem. Det vore trevligt om du kunde kontrollera öppna fel mot paketet debian-installer-manual för att se om ditt problem redan har blivit rapporterat. Om det har gjorts kan du ange ytterligare bekräftelse på problemet eller behjälpig information till xxxx@bugs.debian.org där xxxx är numret för den redan öppnade felrapporten.

Vänligen kontakta inte författaren av det här dokumentet direkt. Det finns även en diskussionslista för debian-installer som inkluderar diskussioner om den här handboken. Sändlistan är debian-boot@lists.debian.org. Instruktioner för prenumeration av den här listan kan hittas på sidan Debian Mailing List Subscription eller så kan du blädda i Debian Mailing List Archives online.

E.3 Stora bidragsgivare

Detta dokument skrevs ursprungligen av Bruce Perens, Sven Rudolph, Igor Grobman, James Treacy och Adam Di Carlo. Sebastian Ley skrev installationshjälpen.

Miroslav Kuře har dokumenterat mycket av den nya funktionaliteten i debian-installer för Sarge. Frans Pop var huvudredaktör och utgivningsansvarig för utgövorna Etch, Lenny och Squeeze.

Många, många Debian-användare och utvecklare har bidragit till det här dokumentet. Speciellt tack måste ges till Michael Schmitz (m68k-stöd), Frank Neumann (originalförfattare av installationshandboken för Amiga), Arto Astala, Eric Delaunay/Ben Collins (SPARC-information), Tapio Lehtonen och Stéphane Bortzmeyer för ett flertal redigeringar och texter. Vi måste tacka Pascal Le Bail för användbar information om uppstart från USB-minnen.

Mycket behjälpig text och information hittades i Jim Minthas HOWTO för uppstart via nätverket (ingen URL tillgänglig), Debian FAQ, Linux/m68k FAQ, Linux för SPARC-processorer FAQ, Linux/Alpha FAQ bland andra. Ansvariga för dessa fritt tillgängliga och rikliga källor av information måste erkännas.
Avsnittet om chrootade installationer i den här handboken (Avsnitt D.3) blev framtagen ur delar från dokument som är copyright Karsten M. Self.

E.4 Varumärken

Alla varumärken tillhör sina respektive ägare.
Bilaga F

GNU General Public License

NOTERA

This is an unofficial translation of the GNU General Public License into Swedish. It was not published by the Free Software Foundation, and does not legally state the distribution terms for software that uses the GNU GPL — only the original English text of the GNU GPL does that. However, we hope that this translation will help Swedish speakers to better understand the GNU GPL.

Det här är en inofficiell svensk översättning av GNU General Public License. Den har inte publicerats av Free Software Foundation och fastställer inte heller de juridiska villkor för distribuering för programvara som använder GNU GPL — det gör endast den ursprungliga engelska texten av GNU GPL. Dock hoppas vi att denna översättning kan hjälpa svenska läsare att förstå GNU GPL bättre.

Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.

Var och en äger kopiera och distribuera exakta kopior av det här licensavtalet, men att ändra det är inte tillåtet.

F.1 BAKGRUND

De flesta programvarulicenser är skapade för att ta bort din frihet att ändra och dela med dig av programvaran. GNU General Public License är tvärtom skapad för att garantera din frihet att dela med dig av och förändra fri programvara -- för att försäkra att programvaran är fri för alla dess användare. Den här licensen [General Public License] används för de flesta av Free Software Foundations programvaror och för alla andra program vars upphovsmän använder sig av General Public License. (Viss programvara från Free Software Foundation använder istället GNU Library General Public License.) Du kan använda licensen för dina program.

För att skydda dina rättigheter, måste vi begränsa var och ens möjlighet att hindra dig från att använda dig av dessa rättigheter samt från att kräva att du ger upp dessa rättigheter. Dessa begränsningar motsvaras av en förpliktelse för dig om du distribuerar kopior av programvaran eller om du ändrar eller modifierar programvaran.

Om du exempelvis distribuerar kopior av en fri programvara, oavsett om du gör det gratis eller mot en avgift, måste du ge mottagaren alla de rättigheter du själv har. Du måste också tillse att mottagaren får källkoden eller kan
få den om mottagaren så önskar. Du måste också visa dessa licensvillkor för mottagaren så att mottagaren känner till sina rättigheter.

Vi skyddar dina rättigheter i två steg: (1) upphovsrätt till programvaran och (2) dessa licensvillkor som ger dig rätt att kopiera, distribuera och eller ändra programvaran.

För varje upphovsmans säkerhet och vår säkerhet vill vi för tydlighets skull klargöra att det inte lämnas några garantier för den här fria programvaran. Om programvaran förändras av någon annan än upphovsmannen vill vi klargöra för mottagaren att det som mottagaren har är inte originalversionen av programvaran och att förändringar av och felaktigheter i programvaran inte skall belasta den ursprunglige upphovsmannen.

Slutligen skall det sägas att all fri programvara ständigt hotas av programvarupatent. Vi vill undvika att en distributör [eller vidareutvecklare] av fri programvara individuellt skaffar patentlicenser till programvaran och därmed gör programvaran till föremål för äganderätt. För att undvika det här har vi gjort det tydligt att samtliga programvarupatent måste registreras för allas fri användning eller inte registreras alls.

Här nedan följer licensvillkoren för att kopiera, distribuera och ändra programvaran.

F.2 GNU GENERAL PUBLIC LICENSE

VILLKOR FÖR ATT KOPIERA, DISTRIBUERA OCH ÄNDRA PROGRAMVARAN

0. Dessa licensvillkor gäller varje programvara eller annat verk som innehåller en hänvisning till dessa licensvillkor där upphovsrättsinnehavaren stadgat att programvaran kan distribueras enligt [General Public License] dessa villkor. ”Programvaran” enligt nedan syftar på varje sådan programvara eller verk och ”Verk baserat på Programvaran” syftar på antingen Programvaran eller på derivativa verk, såsom ett verk som innehåller Programvaran eller en del av Programvaran, antingen en exakt kopia eller en ändrad kopia och/eller översatt till ett annat språk. (Översättningar ingår nedan utan begränsningar i begreppet ”modifiering”.) Varje licenstagare benämns som ”du”.

Åtgärder utom kopiering, distribution och ändringar täcks inte av dessa licensvillkor. Användningen av Programvaran är inte begränsad och resultatet av användningen av Programvaran täcks endast av dessa licensvillkor om resultatet utgör ett Verk baserat på Programvaran (oberoende av att det skapats av att programmet körs). Det beror på vad Programvaran gör.

1. Du ågar kopiera och distribuera exakta kopior av Programvarans källkod såsom du mottog den, i alla medier, förutsatt att Du tydligt och på ett skäligt sätt på varje exemplar fäster en riktig upphovsrättsklausul och garantiavsägelse, vidhåller alla hänvisningar till dessa licensvillkor och till alla garantiavsägelser samt att till alla mottagaren av Programvaran ge en kopia av dessa licensvillkor tillsammans med Programvaran.

2. Du åger ändra ditt exemplar eller andra kopior av Programvaran eller någon del av Programvaran och därmed skapa ett Verk baserat på Programvaran, samt att kopiera och distribuera sådana förändrade versioner av Programvaran eller verk enligt villkoren i paragraf 1 ovan, förutsatt att du också uppfyller följande villkor:

a. Du tills att de förändrade filerna har ett tydligt meddelande som berättar att Du ändrat filerna samt vilket datum dessa ändringar gjordes.

b. Du tills att alla verk som du distribuerar eller offentliggör som till en del eller i sin helhet innehåller eller är härrätt från Programvaran eller en del av Programvaran, licensieras i sin helhet, utan kostnad till tredje man enligt dessa licensvillkor.

c. Om den förändrade Programvaran i sitt normala utförande kan utföra interaktiv kommandon när det körs, måste Du tillse att när Programmet startas skall det skriva ut eller visa, på ett enkelt tillgängligt sätt, ett meddelande som tydligt och på ett skäligt sätt på varje exemplar fäster en riktig upphovsrättsklausul och garantiavsägelse (eller i förekommande fall ett meddelande som klargör att du tillhandahåller en garanti) samt att mottagaren åger distribuera Programvaran enligt dessa licensvillkor samt berätta hur mottagaren kan se dessa licensvillkor.

(Från den här skyldigheten undantas det fall att Programvaran förvisso är interaktiv, men i sitt normala utförande inte visar ett meddelande av den här typen. I sådant fall behöver Verk baserat Programvaran inte visa ett sådant meddelande som nämns ovan.)

Dessa krav gäller det förändrade verket i dess helhet. Om identifierbara delar av verket inte harrör från Programvaran och skälen kan anses vara fristående och självständiga verk i sig, då skall dessa licensvillkor inte gälla i de delarna där de distribueras som egna verk. Men omamma delar distribueras tillsammans med en helhet som innehåller verk som harrör från Programvaran, måste distributionen i sin helhet ske enligt dessa licensvillkor. Licensvillkoren skall i sådant fall gälla för andra licenstagare för hela verket och sålunda till alla delar av Programvaran, oavsett vem som är upphovsmann till vilka delar av verket.
FÖREFORKOMSANTE AV ETT ANNAT VERK PÅ ETT LAGRINGSMEDEL ELLER SAMLINGSMEDEL SOM INNEHÅLLER PROGRAMVARAN ELLER VERK BASERAT PÅ PROGRAMVARAN LEGER INTE TIL ATT DET ANDRA VERKET OMFATTAS AV Dessa LICENSVILLKOR.

3. Du äger kopiera och distribuera Programvaran (eller Verk baserat på Programvaran enligt paragraf 2) i objektkod eller i körbar form enligt villkoren i paragraf 1 och paragraf 2 förutsatt att Du också gör en av följande saker:

 a. Bifogar den kompletta källkoden i maskinläsbar form, som måste distribueras enligt villkoren i paragraf 1 och 2 på ett medium som i allmänhet används för utbyte av programvara, eller
 b. Bifogar ett skriftligt erbjudande, med minst tre års giltighet, att ge tredje man, mot en avgift som högst uppgår till Din kostnad att utföra fysisk distribution, en fullständig kopia av källkoden i maskinläsbar form, distribuerad enligt villkoren i paragraf 1 och 2 på ett medium som i allmänhet används för utbyte av programvara, eller
 c. Bifogar det skriftligt erbjudande Du fick att erhålla villkoren i enlighet med b ovan.

Källkoden för ett verk avser den form av ett verk som är att föredra för att göra förändringar av verket. För ett körbart verk avser källkoden all källkod för moduler det innehåller, samt alla tillhörande gränssnittsfiler, definitioner, scripts för att kontrollera kompilering och installation av den körbara Programvaran. Ett undantag kan dock göras för sådant som normalt distribueras, antingen i binär form eller som källkod, med huvudkomponenterna i operativsystemet (kompliator, kärna och så vidare) i vilket körbara programvaran körs, om inte den här komponenten medföljer den körbara programvaran.

Om distributionen av körbar Programvara eller objektkod görs genom att erbjuder tillgång till att kopiera från en bestämd plats, då skall motsvarande tillgång till att kopiera källkoden från samma plats räknas som distribution av källkoden, även om trejde man inte behöver kopiera källkoden tillsammans med objektkoden.

7. Om du på grund av domstolsdom eller anklagelse om patentintrång eller på grund av annan anledning (ej begränsat till patentfrågor), få till villkor (oavsett om de kommer via domstols dom, avtal eller på annat sätt) som strider mot dessa licensvillkor så fräntar de inte Din förplikterna enligt dessa licensvillkor. Om du inte kan distribuera Programvaran och samtidigt uppfylla licensvillkor och andra villkor, får du som konsekvens inte distribuera Programvaran. Om exempelvis ett patent gör att Du inte distribuera Programvaran fritt till alla de som mottager kopior direkt eller indirekt från Dig, så måste Du helt sluta distribuera Programvaran.

Om delar av den här paragrafen förklaras ogiltig eller annars inte kan verkställas skall resten av paragrafen äga fortsatt giltighet och paragrafen i sin helhet äga fortsatt giltighet i andra sammanhang.

Syftet med den här paragrafen är inte att förmå Dig att begå patentintrång eller att begå intrång i andra villkor eller att förmå Dig att beträda villkoren i sådana villkor. Den här paragrafen har enda syfte, vilket är att skydda distributionssystemet för fri programvara vilket görs genom användandet av dessa licensvillkor. Många har bidragit till det stora utbudet av programvara som distribueras med hjälp av dessa licensvillkor och den fortsatta giltigheten och användningen av det här systemet, men det är upphovsmannen själv som måste besluta om han eller hon vill distribuera Programvaran genom det här systemet eller ett annat och en licencstagare kan inte tvinga en upphovsmann till ett annat beslut.

Den här paragrafen har till syfte att ställa det utom tvivel vad som anses följa av resten av dessa licensvillkor.

8. Om distributionen och/eller användningen av Programvaran är begränsad i vissa länder på grund av patent eller upphovsrättligt skyddade gränssnitt kan upphovsmannen till Programvaran lägga till en geografisk sprednings-

INGEN GARANTI

11. DÅ Denna PROGRAMVARA LICENSIERAS UTAN KOSTNAD GES INGEN GARANTI FÖR PROGRAMMET. UTOM SÅDAN GARANTI SOM MÄSTE GES ENLIGT TILLÄMPLIGT LAG. FÖRUTOM DÅ DET UTTRYCKS I SKRIFT TILLHANDAHÅLLER UPPHOVSFRÄTTSINNEHAVAREN OCH/ELLER ANDRA PARTER PROGRAMMET "I BEFINTLIGT SKICK" UTAN GARANTIER AV NÅGRA SLAG, VARKEN UTTRYCKLIGA ELLER UNDERFÖRSTÄDDA, INKLUSIVE, MEN INTE BEGRÄNSAT TILL, UNDERFÖRSTÄDDA GARANTIER VID KÖP OCH LÄMPLIGHET FÖR ETT SÄRSKILT ÄNDAMÅL. HELA RISKEN FÖR KVALITET OCH ANVÄNDBARHET BÄRS AV DIG. OM PROGRAMMET SKULLE VISA SIG HA DEFEKT SKALL DU BÄRA ALLA KOSTNADER FÖR FELETS AVHJÄLPANDE, REPARATIONER ELLER NÖDVÄNDIGSERVICE.

12. INTE I NÅGOT FALL, UTOM NÄR DET GÄLLER ENLIGT TILLÄMPLIG LAG ELLER NÄR DET ÖVERENSKOMMITS SKRIFTLIGEN, SKALL EN UPPHOVSFRÄTTSINNEHAVARE ELLER ANNAN PART SOM ÄGER ÄNDRA OCH/ELLER DISTRIBUERA PROGRAMVARAN ENLIGT OVARAN, VARA SKYLDIG UTGE ERSÄTTNING FÖR SKADA DU LIDER, INKLUSIVE ALLMÄN, DIREKT ELLER INDIREKT SKADA SOM FÖLJER PÅ GRUND AV ANVÄNDNING ELLER OMÖJLIGHET ATT ANVÄNDA PROGRAMVARAN (INKLUSIVE MEN INTE BEGRÄNSAT TILL FÖRLUST AV DATA OCH INFORMATION ELLER DATA OCH INFORMATION SOM FRAMSTÄLTS FELAKTIGT AV DIG ELLER TREDJE PART ELLER FEL DÄR PROGRAMMET ELLER ANNAN PART UPPLYST OM MÖJLIGHETEN TILL SÅDAN SKADA.

SLUT PÅ LICENSVILLKOR

F.3 METOD FÖR ATT ANVÄNDA DESSA VILLKOR

Om du utvecklar ett nytt program och vill att det skall vara av största möjliga nytta för allmänheten är det bästa du kan göra att göra programmet till fri programvara som var och en kan mångfaldiga och ändra enligt dessa villkor.

För att uppnå det här skall du lägga till följande text till programmet. Det är säkrast att lägga dem i början av varje källkodsfil för att tillse att du med överlåtelser avsaknaden av garantiåtagande och varje fil skall minst ha "copyright"-raderna och en länk till var användaren hittar hela licensen.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
Lägg här in information om hur användaren når dig per e-post och vanlig post.
Om ditt program är interaktivt visa följande för användaren när programmet startas i interaktivt läge:

Gnomovision version 69, Copyright © år namn på upphovsman
Gnomovision comes with absolutely no warranty; for details
type show w. This is free software, and you are welcome
to redistribute it under certain conditions; type show c
for details.

Kommandot "show w" respektive "show c" skall visa tillämpliga delar av General Public License. Du kan givetvis använda andra kommandon än "show w" och "show c" det kan till och med röra sig om musklick eller menyval, använd det som passar till programmet.

Om du arbetar som programmerare skall din arbetsgivare eller din skola skriva under en "copyright disclaimer" för programmet om det är nödvändigt. Här är ett exempel, ändra namnen:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
program Gnomovision (which makes passes at compilers) written
by James Hacker.

signaturen för Ty Coon, 1 April 1989
Ty Coon, President of Vice

Den här General Public License tillåter inte att du inkorporerar ditt program i icke-fri programvara. Om du utvecklar subrutiner eller programbibliotek kan det vara lämpligt att tillåta länkning till icke-fri programvara. Om du vill göra det här bör du istället för den här licensen använda GNU Lesser General Public License.